江苏省常州市2018届九年级上学期期中学考试试数学精彩试题(扫描版)
2018年江苏省常州市中考数学 试卷(含答案解析版)
2018年江苏省常州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2.00分)(2018•常州)﹣3的倒数是( )A.﹣3 B.3 C.﹣ D.2.(2.00分)(2018•常州)已知苹果每千克m元,则2千克苹果共多少元?( )A.m﹣2 B.m+2 C. D.2m3.(2.00分)(2018•常州)下列图形中,哪一个是圆锥的侧面展开图?( )A. B. C. D.4.(2.00分)(2018•常州)一个正比例函数的图象经过(2,﹣1),则它的表达式为( )A.y=﹣2x B.y=2x C. D.5.(2.00分)(2018•常州)下列命题中,假命题是( )A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形6.(2.00分)(2018•常州)已知a为整数,且,则a等于( )A.1 B.2 C.3 D.47.(2.00分)(2018•常州)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为( )A.76° B.56° C.54° D.52°8.(2.00分)(2018•常州)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是( )A. B. C. D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(2.00分)(2018•常州)计算:|﹣3|﹣1= .10.(2.00分)(2018•常州)化简:= .11.(2.00分)(2018•常州)分解因式:3x2﹣6x+3= .12.(2.00分)(2018•常州)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是 .13.(2.00分)(2018•常州)地球与月球的平均距离大约384000km,用科学计数法表示这个距离为 km.14.(2.00分)(2018•常州)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是 .15.(2.00分)(2018•常州)如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB= .16.(2.00分)(2018•常州)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是 .17.(2.00分)(2018•常州)下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是 .18.(2.00分)(2018•常州)如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是 .三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6.00分)(2018•常州)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.20.(8.00分)(2018•常州)解方程组和不等式组:(1)(2)21.(8.00分)(2018•常州)如图,把△ABC沿BC翻折得△DBC.(1)连接AD,则BC与AD的位置关系是 .(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.22.(8.00分)(2018•常州)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是 ;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.23.(8.00分)(2018•常州)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).24.(8.00分)(2018•常州)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.25.(8.00分)(2018•常州)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).26.(10.00分)(2018•常州)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2= ,x3= ;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.27.(10.00分)(2018•常州)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?28.(10.00分)(2018•常州)如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b= ,点B的坐标是 ;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.2018年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2.00分)(2018•常州)﹣3的倒数是( )A.﹣3 B.3 C.﹣ D.【考点】17:倒数.【分析】根据倒数的定义可得﹣3的倒数是﹣.【解答】解:﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2.00分)(2018•常州)已知苹果每千克m元,则2千克苹果共多少元?( )A.m﹣2 B.m+2 C. D.2m【考点】32:列代数式.【专题】1 :常规题型.【分析】根据苹果每千克m元,可以用代数式表示出2千克苹果的价钱.【解答】解:∵苹果每千克m元,∴2千克苹果2m元,故选:D.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.3.(2.00分)(2018•常州)下列图形中,哪一个是圆锥的侧面展开图?( )A. B. C. D.【考点】I6:几何体的展开图.【专题】1 :常规题型.【分析】根据圆锥的侧面展开图的特点作答.【解答】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:B.【点评】此题考查了几何体的展开图,注意圆锥的侧面展开图是扇形. 4.(2.00分)(2018•常州)一个正比例函数的图象经过(2,﹣1),则它的表达式为( )A.y=﹣2x B.y=2x C. D.【考点】F8:一次函数图象上点的坐标特征;FB:待定系数法求正比例函数解析式.【专题】53:函数及其图象.【分析】设该正比例函数的解析式为y=kx(k≠0),再把点(2,﹣1)代入求出k的值即可.【解答】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(2,﹣1),∴2=﹣k,解得k=﹣2,∴这个正比例函数的表达式是y=﹣2x.故选:A.【点评】本题考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.5.(2.00分)(2018•常州)下列命题中,假命题是( )A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形【考点】O1:命题与定理.【专题】55:几何图形.【分析】根据矩形、正方形、平行四边形、菱形的判定即可求出答案.【解答】解:A、一组对边平行且相等的四边形是平行四边形,是假命题;B、三个角是直角的四边形是矩形,是真命题;C、四边相等的四边形是菱形,是真命题;D、有一个角是直角的菱形是正方形,是真命题;故选:A.【点评】本题考查菱形、矩形和平行四边形的判定与命题的真假区别,关键是根据矩形、正方形、平行四边形、菱形的判定解答.6.(2.00分)(2018•常州)已知a为整数,且,则a等于( )A.1 B.2 C.3 D.4【考点】2B:估算无理数的大小.【专题】1 :常规题型.【分析】直接利用,接近的整数是2,进而得出答案.【解答】解:∵a为整数,且,∴a=2.故选:B.【点评】此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.7.(2.00分)(2018•常州)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为( )A.76° B.56° C.54° D.52°【考点】MC:切线的性质.【专题】11 :计算题.【分析】先利用切线的性质得∠ONM=90°,则可计算出∠ONB=38°,再利用等腰三角形的性质得到∠B=∠ONB=38°,然后根据圆周角定理得∠NOA的度数.【解答】解:∵MN是⊙O的切线,∴ON⊥NM,∴∠ONM=90°,∴∠ONB=90°﹣∠MNB=90°﹣52°=38°,∵ON=OB,∴∠B=∠ONB=38°,∴∠NOA=2∠B=76°.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.8.(2.00分)(2018•常州)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是( )A. B. C. D.【考点】M5:圆周角定理;T7:解直角三角形.【专题】559:圆的有关概念及性质.【分析】如图,连接AD.只要证明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO==;【解答】解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.【点评】本题考查圆周角定理、直径的性质、锐角三角函数等知识,解题的关键是学会用转化的思想思考问题,属于中考创新题目.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(2.00分)(2018•常州)计算:|﹣3|﹣1= 2 .【考点】15:绝对值;1A:有理数的减法.【专题】11 :计算题;511:实数.【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.10.(2.00分)(2018•常州)化简:= 1 .【考点】6B:分式的加减法.【专题】11 :计算题.【分析】原式利用同分母分式的减法法则计算即可.【解答】解:原式==1,故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.11.(2.00分)(2018•常州)分解因式:3x2﹣6x+3= 3(x﹣1)2 .【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(2.00分)(2018•常州)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是 (﹣2,﹣1) .【考点】P5:关于x轴、y轴对称的点的坐标.【专题】46 :几何变换.【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【解答】解:点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).【点评】本题考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.13.(2.00分)(2018•常州)地球与月球的平均距离大约384000km,用科学计数法表示这个距离为 3.84×105 km.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的一般形式为:a×10n,在本题中a应为3.84,10的指数为6﹣1=5.【解答】解:384 000=3.84×105km.故答案为3.84×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2.00分)(2018•常州)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是 .【考点】M1:圆的认识;R4:中心对称;X4:概率公式.【专题】11 :计算题.【分析】根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等,根据概率公式计算即可.【解答】解:∵圆中的黑色部分和白色部分关于圆心中心对称,∴圆中的黑色部分和白色部分面积相等,∴在圆内随机取一点,则此点取黑色部分的概率是,故答案为:.【点评】本题考查的是概率公式、中心对称图形,掌握概率公式是解题的关键.15.(2.00分)(2018•常州)如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB= 40° .【考点】L5:平行四边形的性质.【专题】555:多边形与平行四边形.【分析】根据等腰三角形的性质,平行四边形的性质以及三角形内角和定理即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C=70°,∵DC=DB,∴∠C=∠DBC=70°,∴∠CDB=180°﹣70°﹣70°=40°,故答案为40°.【点评】本题考查平行四边形的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 16.(2.00分)(2018•常州)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是 2 .【考点】MA:三角形的外接圆与外心;MN:弧长的计算.【专题】559:圆的有关概念及性质.【分析】连接OB、OC,利用弧长公式转化为方程求解即可;【解答】解:连接OB、OC.∵∠BOC=2∠BAC=120°,的长是,∴=,∴r=2,故答案为2.【点评】本题考查三角形的外接圆与外心,圆周角定理,弧长的计算等知识,解题的关键是熟练掌握弧长公式,属于中考常考题型.17.(2.00分)(2018•常州)下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是 15a16 .【考点】42:单项式.【专题】1 :常规题型.【分析】直接利用已知单项式的次数与系数特点得出答案.【解答】解:∵a2,3a4,5a6,7a8,…∴单项式的次数是连续的偶数,系数是连续的奇数,∴第8个代数式是:(2×8﹣1)a2×8=15a16.故答案为:15a16.【点评】此题主要考查了单项式,正确得出单项式次数与系数的变化规律是解题关键.18.(2.00分)(2018•常州)如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是 3≤AP<4 .【考点】S7:相似三角形的性质.【专题】55D:图形的相似.【分析】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.【解答】解:如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.【点评】本题主要考查了相似三角形的性质,相似三角形的对应角相等,对应边的比相等.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6.00分)(2018•常州)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=1﹣2﹣1+4×=1﹣2﹣1+2=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8.00分)(2018•常州)解方程组和不等式组:(1)(2)【考点】98:解二元一次方程组;CB:解一元一次不等式组.【专题】52:方程与不等式.【分析】(1)方程组利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1),①+②得:x=2,把x=2代入②得:y=﹣1,所以方程组的解为:;(2),解不等式①得:x≥3;解不等式②得:x≥﹣1,所以不等式组的解集为:x≥3.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.21.(8.00分)(2018•常州)如图,把△ABC沿BC翻折得△DBC.(1)连接AD,则BC与AD的位置关系是 BC⊥AB .(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.【考点】L6:平行四边形的判定;PB:翻折变换(折叠问题).【专题】14 :证明题.【分析】(1)先由折叠知,AB=BD,∠ACB=∠DBC,进而判断出△AOB≌△DOB,最后用平角的定义即可得出结论;(2)由折叠得出∠ABC=∠DBC,∠ACB=∠DCB,再判断出∠ABC=∠ACB,进而得出∠ACB=∠DBC=∠ABC=∠DCB,最后用两边分别平行的四边形是平行四边形.【解答】解:(1)如图,连接AD交BC于O,由折叠知,AB=BD,∠ACB=∠DBC,∵BO=BO,∴△ABO≌△DBO(SAS),∴∠AOB=∠DOB,∵∠AOB+∠DOB=180°,∴∠AOB=∠DOB=90°,∴BC⊥AD,故答案为:BC⊥AD;(2)添加的条件是AB=AC,理由:由折叠知,∠ABC=∠DBC,∠ACB=∠DCB,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=∠DBC=∠ABC=∠DCB,∴AC∥BD,AB∥CD,∴四边形ABDC是平行四边形.【点评】此题主要考查了折叠的性质,平行四边形的判定,等腰三角形的性质,全等三角形的判定和性质,判断出△ABO≌△DBO(SAS)是解本题的关键.22.(8.00分)(2018•常州)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是 100 ;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.【考点】V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型.【分析】(1)根据2册的人数除以占的百分比即可得到总人数;(2)求出1册的人数是100×30%=30人,4册的人数是100﹣30﹣40﹣20=10人,再画出即可;(3)先列出算式,再求出即可.【解答】解:(1)40÷40%=100(册),即本次抽样调查的样本容量是100,故答案为:100;(2)如图:;(3)12000×(1﹣30%)=8400(人),答:估计该市初中学生这学期课外阅读超过2册的人数是8400人.【点评】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.23.(8.00分)(2018•常州)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).【考点】LB:矩形的性质;X4:概率公式;X6:列表法与树状图法.【专题】1 :常规题型;543:概率及其应用.【分析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【解答】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是A型矩形纸片的概率为;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.(8.00分)(2018•常州)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.【考点】G8:反比例函数与一次函数的交点问题.【专题】33 :函数思想.【分析】(1)根据反比例函数k值的几何意义可求点A的坐标;(2)根据梯形的面积公式可求点B的坐标,再根据待定系数法可求一次函数y=kx+b的表达式.【解答】解:(1)∵点A在反比例函数y=(x>0)的图象上,AC⊥x 轴,AC=OC,∴AC•OC=4,∴AC=OC=2,∴点A的坐标为(2,2);(2)∵四边形ABOC的面积是3,∴(OB+2)×2÷2=3,解得OB=1,∴点B的坐标为(0,1),依题意有,解得.故一次函数y=kx+b的表达式为y=x+1.【点评】考查了反比例函数与一次函数的交点问题,关键是熟练掌握反比例函数k值的几何意义、梯形的面积、待定系数法求一次函数解析式.25.(8.00分)(2018•常州)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).【考点】T8:解直角三角形的应用.【专题】55E:解直角三角形及其应用.【分析】过D作DE⊥AB,可得四边形CHED为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH与直角三角形BDE中,设CH=DE=xm,利用锐角三角函数定义表示出AH与BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到结果.【解答】解:过D作DE⊥AB,可得四边形CHED为矩形,∴HE=CD=40m,设CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=xm,在Rt△ACH中,∠BAC=30°,∴AH=xm,由AH+HE+EB=AB=160m,得到x+40+x=160,解得:x=30,即CH=30m,则该段运河的河宽为30m.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.26.(10.00分)(2018•常州)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2= ﹣2 ,x3= 1 ;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.【考点】AD:一元二次方程的应用.【专题】3 :解题思想.【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【解答】解:(1)x3+x2﹣2x=0,x(x2+x﹣2)=0,x(x+2)(x﹣1)=0所以x=0或x+2=0或x﹣1=0∴x1=0,x2=﹣2,x3=1;故答案为:﹣2,1;(2)=x,方程的两边平方,得2x+3=x2即x2﹣2x﹣3=0(x﹣3)(x+1)=0∴x﹣3=0或x+1=0∴x1=3,x2=﹣1,当x=﹣1时,==1≠﹣1,所以﹣1不是原方程的解.所以方程=x的解是x=3;(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3m设AP=xm,则PD=(8﹣x)m因为BP+CP=10,BP=,CP=∴+=10∴=10﹣两边平方,得(8﹣x)2+9=100﹣20+9+x2整理,得5=4x+9两边平方并整理,得x2﹣8x+16=0即(x﹣4)2=0所以x=4.经检验,x=4是方程的解.答:AP的长为4m.【点评】本题考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.27.(10.00分)(2018•常州)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【考点】KG:线段垂直平分线的性质;KP:直角三角形斜边上的中线;N3:作图—复杂作图.【专题】13 :作图题.【分析】(1)只要证明FC=FB即可解决问题;(2)①作点P关于GN的对称点Pʹ,连接PʹM交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.想办法证明∠N=∠QMN=30°,∠G=∠GMQ=60°,可得QM=QN,QM=QG;【解答】(1)证明:如图1中,∵EK垂直平分线段BC,∴FC=FB,∴∠CFD=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠CFD.(2)①作点P关于GN的对称点Pʹ,连接PʹM交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.理由:设PPʹ交GN于K.∵∠G=60°,∠GMN=90°,∴∠N=30°,∵PK⊥KN,∴PK=KPʹ=PN,∴PPʹ=PN=PM,∴∠Pʹ=∠PMPʹ,∵∠NPK=∠Pʹ+∠PMPʹ=60°,∴∠PMPʹ=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN,QM=QG,∴QG=QN,∴Q是GN的中点.【点评】本题考查作图﹣复杂作图、线段的垂直平分线的性质、直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10.00分)(2018•常州)如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b= ﹣ ,点B的坐标是 (,0) ;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.【考点】HF:二次函数综合题.【专题】537:函数的综合应用.【分析】(1)由点A的坐标,利用二次函数图象上点的坐标特征可求出b的值,代入y=0求出x值,进而可得出点B的坐标;。
2018年江苏省常州市中考数学试卷(带解析)
20.(8 分)解方程组和不等式组:
(1) 2
−3
=7
+ 3 =−1
(2) 2
−6>0
+ 2 ≥−
【解答】解:(1) 2 −3 +3
==−17②①,
第 7页(共 18页)
①+②得:x=2, 把 x=2 代入②得:y=﹣1,
所以方程组的解为:
=2; =−1
(2) 2 + 2−≥6−>0①②, 解不等式①得:x>3; 解不等式②得:x≥﹣1, 所以不等式组的解集为:x>3.
第 12页(共 18页)
用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程 x3+x2 ﹣2x=0,可以通过因式分解把它转化为 x(x2+x﹣2)=0,解方程 x=0 和 x2+x ﹣2=0,可得方程 x3+x2﹣2x=0 的解. (1)问题:方程 x3+x2﹣2x=0 的解是 x1=0,x2= ﹣2 ,x3= 1 ; (2)拓展:用“转化”思想求方程 2 + 3=x 的解; (3)应用:如图,已知矩形草坪 ABCD 的长 AD=8m,宽 AB=3m,小华把一 根长为 10m 的绳子的一端固定在点 B,沿草坪边沿 BA,AD 走到点 P 处,把长 绳 PB 段拉直并固定在点 P,然后沿草坪边沿 PD、DC 走到点 C 处,把长绳剩 下的一段拉直,长绳的另一端恰好落在点 C.求 AP 的长.
作 AC⊥x 轴,垂足是 C,AC=OC.一次函数 y=kx+b 的图象经过点 A,与 y 轴 的正半轴交于点 B. (1)求点 A 的坐标; (2)若四边形 ABOC 的面积是 3,求一次函数 y=kx+b 的表达式.
【解答】解:(1)∵点 A 在反比例函数 y= 4 (x>0)的图象上,AC⊥x 轴,
(完整版)2018年江苏省常州市中考数学试卷及答案
2018年江苏省常州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2.00分)﹣3的倒数是()A.﹣3 B.3 C.﹣ D.2.(2.00分)已知苹果每千克m元,则2千克苹果共多少元?()A.m﹣2 B.m+2 C.D.2m3.(2.00分)下列图形中,哪一个是圆锥的侧面展开图?()A. B.C.D.4.(2.00分)一个正比例函数的图象经过(2,﹣1),则它的表达式为()A.y=﹣2x B.y=2x C.D.5.(2.00分)下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形6.(2.00分)已知a为整数,且,则a等于()A.1 B.2 C.3 D.47.(2.00分)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76°B.56°C.54°D.52°8.(2.00分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(2.00分)计算:|﹣3|﹣1=.10.(2.00分)化简:=.11.(2.00分)分解因式:3x2﹣6x+3=.12.(2.00分)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是.13.(2.00分)地球与月球的平均距离大约384000km,用科学计数法表示这个距离为km.14.(2.00分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.15.(2.00分)如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB=.16.(2.00分)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是.17.(2.00分)下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是.18.(2.00分)如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6.00分)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.20.(8.00分)解方程组和不等式组:(1)(2)21.(8.00分)如图,把△ABC沿BC翻折得△DBC.(1)连接AD,则BC与AD的位置关系是.(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.22.(8.00分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.23.(8.00分)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).24.(8.00分)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.25.(8.00分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).26.(10.00分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB 段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.27.(10.00分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?28.(10.00分)如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C 不重合).(1)b=,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.2018年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2.00分)﹣3的倒数是()A.﹣3 B.3 C.﹣ D.【分析】根据倒数的定义可得﹣3的倒数是﹣.【解答】解:﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2.00分)已知苹果每千克m元,则2千克苹果共多少元?()A.m﹣2 B.m+2 C.D.2m【分析】根据苹果每千克m元,可以用代数式表示出2千克苹果的价钱.【解答】解:∵苹果每千克m元,∴2千克苹果2m元,故选:D.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.3.(2.00分)下列图形中,哪一个是圆锥的侧面展开图?()A. B.C.D.【分析】根据圆锥的侧面展开图的特点作答.【解答】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:B.【点评】此题考查了几何体的展开图,注意圆锥的侧面展开图是扇形.4.(2.00分)一个正比例函数的图象经过(2,﹣1),则它的表达式为()A.y=﹣2x B.y=2x C.D.【分析】设该正比例函数的解析式为y=kx(k≠0),再把点(2,﹣1)代入求出k的值即可.【解答】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(2,﹣1),∴2=﹣k,解得k=﹣2,∴这个正比例函数的表达式是y=﹣2x.故选:A.【点评】本题考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.5.(2.00分)下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形【分析】根据矩形、正方形、平行四边形、菱形的判定即可求出答案.【解答】解:A、一组对边平行且相等的四边形是平行四边形,是假命题;B、三个角是直角的四边形是矩形,是真命题;C、四边相等的四边形是菱形,是真命题;D、有一个角是直角的菱形是正方形,是真命题;故选:A.【点评】本题考查菱形、矩形和平行四边形的判定与命题的真假区别,关键是根据矩形、正方形、平行四边形、菱形的判定解答.6.(2.00分)已知a为整数,且,则a等于()A.1 B.2 C.3 D.4【分析】直接利用,接近的整数是2,进而得出答案.【解答】解:∵a为整数,且,∴a=2.故选:B.【点评】此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.7.(2.00分)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76°B.56°C.54°D.52°【分析】先利用切线的性质得∠ONM=90°,则可计算出∠ONB=38°,再利用等腰三角形的性质得到∠B=∠ONB=38°,然后根据圆周角定理得∠NOA的度数.【解答】解:∵MN是⊙O的切线,∴ON⊥NM,∴∠ONM=90°,∴∠ONB=90°﹣∠MNB=90°﹣52°=38°,∵ON=OB,∴∠B=∠ONB=38°,∴∠NOA=2∠B=76°.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.8.(2.00分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.【分析】如图,连接AD.只要证明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO==;【解答】解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.【点评】本题考查圆周角定理、直径的性质、锐角三角函数等知识,解题的关键是学会用转化的思想思考问题,属于中考创新题目.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(2.00分)计算:|﹣3|﹣1=2.【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.10.(2.00分)化简:=1.【分析】原式利用同分母分式的减法法则计算即可.【解答】解:原式==1,故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.11.(2.00分)分解因式:3x2﹣6x+3=3(x﹣1)2.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(2.00分)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1).【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【解答】解:点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).【点评】本题考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.13.(2.00分)地球与月球的平均距离大约384000km,用科学计数法表示这个距离为 3.84×105km.【分析】科学记数法的一般形式为:a×10n,在本题中a应为3.84,10的指数为6﹣1=5.【解答】解:384 000=3.84×105km.故答案为3.84×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2.00分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.【分析】根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等,根据概率公式计算即可.【解答】解:∵圆中的黑色部分和白色部分关于圆心中心对称,∴圆中的黑色部分和白色部分面积相等,∴在圆内随机取一点,则此点取黑色部分的概率是,故答案为:.【点评】本题考查的是概率公式、中心对称图形,掌握概率公式是解题的关键.15.(2.00分)如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB=40°.【分析】根据等腰三角形的性质,平行四边形的性质以及三角形内角和定理即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C=70°,∵DC=DB,∴∠C=∠DBC=70°,∴∠CDB=180°﹣70°﹣70°=40°,故答案为40°.【点评】本题考查平行四边形的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(2.00分)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是2.【分析】连接OB、OC,利用弧长公式转化为方程求解即可;【解答】解:连接OB、OC.∵∠BOC=2∠BAC=120°,的长是,∴=,∴r=2,故答案为2.【点评】本题考查三角形的外接圆与外心,圆周角定理,弧长的计算等知识,解题的关键是熟练掌握弧长公式,属于中考常考题型.17.(2.00分)下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是15a16.【分析】直接利用已知单项式的次数与系数特点得出答案.【解答】解:∵a2,3a4,5a6,7a8,…∴单项式的次数是连续的偶数,系数是连续的奇数,∴第8个代数式是:(2×8﹣1)a2×8=15a16.故答案为:15a16.【点评】此题主要考查了单项式,正确得出单项式次数与系数的变化规律是解题关键.18.(2.00分)如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是3≤AP<4.【分析】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.【解答】解:如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.【点评】本题主要考查了相似三角形的性质,相似三角形的对应角相等,对应边的比相等.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6.00分)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.【分析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=1﹣2﹣1+4×=1﹣2﹣1+2=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8.00分)解方程组和不等式组:(1)(2)【分析】(1)方程组利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1),①+②得:x=2,把x=2代入②得:y=﹣1,所以方程组的解为:;(2),解不等式①得:x≥3;解不等式②得:x≥﹣1,所以不等式组的解集为:x≥3.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.21.(8.00分)如图,把△ABC沿BC翻折得△DBC.(1)连接AD,则BC与AD的位置关系是BC⊥AB.(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.【分析】(1)先由折叠知,AB=BD,∠ACB=∠DBC,进而判断出△AOB≌△DOB,最后用平角的定义即可得出结论;(2)由折叠得出∠ABC=∠DBC,∠ACB=∠DCB,再判断出∠ABC=∠ACB,进而得出∠ACB=∠DBC=∠ABC=∠DCB,最后用两边分别平行的四边形是平行四边形.【解答】解:(1)如图,连接AD交BC于O,由折叠知,AB=BD,∠ACB=∠DBC,∵BO=BO,∴△ABO≌△DBO(SAS),∴∠AOB=∠DOB,∵∠AOB+∠DOB=180°,∴∠AOB=∠DOB=90°,∴BC⊥AD,故答案为:BC⊥AD;(2)添加的条件是AB=AC,理由:由折叠知,∠ABC=∠DBC,∠ACB=∠DCB,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=∠DBC=∠ABC=∠DCB,∴AC∥BD,AB∥CD,∴四边形ABDC是平行四边形.【点评】此题主要考查了折叠的性质,平行四边形的判定,等腰三角形的性质,全等三角形的判定和性质,判断出△ABO≌△DBO(SAS)是解本题的关键.22.(8.00分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是100;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.【分析】(1)根据2册的人数除以占的百分比即可得到总人数;(2)求出1册的人数是100×30%=30人,4册的人数是100﹣30﹣40﹣20=10人,再画出即可;(3)先列出算式,再求出即可.【解答】解:(1)40÷40%=100(册),即本次抽样调查的样本容量是100,故答案为:100;(2)如图:;(3)12000×(1﹣30%)=8400(人),答:估计该市初中学生这学期课外阅读超过2册的人数是8400人.【点评】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.23.(8.00分)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).【分析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【解答】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是A型矩形纸片的概率为;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.(8.00分)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.【分析】(1)根据反比例函数k值的几何意义可求点A的坐标;(2)根据梯形的面积公式可求点B的坐标,再根据待定系数法可求一次函数y=kx+b的表达式.【解答】解:(1)∵点A在反比例函数y=(x>0)的图象上,AC⊥x轴,AC=OC,∴AC•OC=4,∴AC=OC=2,∴点A的坐标为(2,2);(2)∵四边形ABOC的面积是3,∴(OB+2)×2÷2=3,解得OB=1,∴点B的坐标为(0,1),依题意有,解得.故一次函数y=kx+b的表达式为y=x+1.【点评】考查了反比例函数与一次函数的交点问题,关键是熟练掌握反比例函数k值的几何意义、梯形的面积、待定系数法求一次函数解析式.25.(8.00分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).【分析】过D作DE⊥AB,可得四边形CHED为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH与直角三角形BDE中,设CH=DE=xm,利用锐角三角函数定义表示出AH与BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到结果.【解答】解:过D作DE⊥AB,可得四边形CHED为矩形,∴HE=CD=40m,设CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=xm,在Rt△ACH中,∠BAC=30°,∴AH=xm,由AH+HE+EB=AB=160m,得到x+40+x=160,解得:x=30,即CH=30m,则该段运河的河宽为30m.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.26.(10.00分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=﹣2,x3=1;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB 段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【解答】解:(1)x3+x2﹣2x=0,x(x2+x﹣2)=0,x(x+2)(x﹣1)=0所以x=0或x+2=0或x﹣1=0∴x1=0,x2=﹣2,x3=1;故答案为:﹣2,1;(2)=x,方程的两边平方,得2x+3=x2即x2﹣2x﹣3=0(x﹣3)(x+1)=0∴x﹣3=0或x+1=0∴x1=3,x2=﹣1,当x=﹣1时,==1≠﹣1,所以﹣1不是原方程的解.所以方程=x的解是x=3;(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3m设AP=xm,则PD=(8﹣x)m因为BP+CP=10,BP=,CP=∴+=10∴=10﹣两边平方,得(8﹣x)2+9=100﹣20+9+x2整理,得5=4x+9两边平方并整理,得x2﹣8x+16=0即(x﹣4)2=0所以x=4.经检验,x=4是方程的解.答:AP的长为4m.【点评】本题考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.27.(10.00分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【分析】(1)只要证明FC=FB即可解决问题;(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.想办法证明∠N=∠QMN=30°,∠G=∠GMQ=60°,可得QM=QN,QM=QG;【解答】(1)证明:如图1中,∵EK垂直平分线段BC,∴FC=FB,∴∠CFD=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠CFD.(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.理由:设PP′交GN于K.∵∠G=60°,∠GMN=90°,∴∠N=30°,∵PK⊥KN,∴PK=KP′=PN,∴PP′=PN=PM,∴∠P′=∠PMP′,∵∠NPK=∠P′+∠PMP′=60°,∴∠PMP′=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN,QM=QG,∴QG=QN,∴Q是GN的中点.【点评】本题考查作图﹣复杂作图、线段的垂直平分线的性质、直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10.00分)如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C 不重合).(1)b=﹣,点B的坐标是(,0);(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.【分析】(1)由点A的坐标,利用二次函数图象上点的坐标特征可求出b的值,代入y=0求出x值,进而可得出点B的坐标;(2)代入x=0求出y值,进而可得出点C的坐标,由点A、C的坐标利用待定系数法可求出直线AC的解析式,假设存在,设点M的坐标为(m,m+2),分B、P在直线AC的同侧和异侧两种情况考虑,由点B、M的坐标结合PM:MB=1:2即可得出点P的坐标,再利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之即可得出结论;(3)作∠CBA的角平分线,交y轴于点E,过点E作EF⊥BC于点F,设OE=n,则CE=2﹣n,EF=n,利用面积法可求出n值,进而可得出==,结合∠AOC=90°=∠BOE可证出△AOC∽△BOE,根据相似三角形的性质可得出∠CAO=∠EBO,再根据角平分线的性质可得出∠CBA=2∠EBO=2∠CAB,此题得解.【解答】解:(1)∵点A(﹣4,0)在二次函数y=﹣+bx+2的图象上,∴﹣﹣4b+2=0,∴b=﹣.当y=0时,有﹣x2﹣x+2=0,解得:x1=﹣4,x2=,∴点B的坐标为(,0).故答案为:﹣;(,0).(2)当x=0时,y=﹣x2﹣x+2=2,∴点C的坐标为(0,2).设直线AC的解析式为y=kx+c(k≠0),将A(﹣4,0)、C(0,2)代入y=kx+c中,得:,解得:,∴直线AC的解析式为y=x+2.假设存在,设点M的坐标为(m,m+2).①当点P、B在直线AC的异侧时,点P的坐标为(m﹣,m+3),∵点P在抛物线y=﹣x2﹣x+2上,∴m+3=﹣×(m﹣)2﹣×(m﹣)+2,整理,得:12m2+20m+9=0.∵△=202﹣4×12×9=﹣32<0,∴方程无解,即不存在符合题意得点P;②当点P、B在直线AC的同侧时,点P的坐标为(m+,m+1),∵点P在抛物线y=﹣x2﹣x+2上,∴m+1=﹣×(m+)2﹣×(m+)+2,整理,得:4m2+44m﹣9=0,解得:m1=﹣,m2=,∴点P的横坐标为﹣2﹣或﹣2+.综上所述:存在点P,使得PM:MB=1:2,点P的横坐标为﹣2﹣或﹣2+.(3)∠CBA=2∠CAB,理由如下:作∠CBA的角平分线,交y轴于点E,过点E作EF⊥BC于点F,如图2所示.∵点B(,0),点C(0,2),∴OB=,OC=2,BC=.设OE=n,则CE=2﹣n,EF=n,由面积法,可知:OB•CE=BC•EF,即(2﹣n)=n,解得:n=.∵==,∠AOC=90°=∠BOE,∴△AOC∽△BOE,∴∠CAO=∠EBO,∴∠CBA=2∠EBO=2∠CAB.【点评】题考查了二次函数图象上点的坐标特征、待定系数法求一次函数解析式、三角形的面积、勾股定理、一次函数图象上点的坐标特征以及相似三角形的判定与性质,解题的关键是:(1)由点A的坐标,利用二次函数图象上点的坐标特征求出b的值;(2)分B、P在直线AC的同侧和异侧两种情况找出点P 的坐标;(3)构造相似三角形找出两角的数量关系.。
2018年江苏省常州市中考数学试卷(附参考解析)
2018年江蘇省常州市中考數學試卷一、選擇題(本大題共8小題,每小題2分,共16分.在每小題所給出的四個選項中,只有一項是正確的)1.(2.00分)﹣3的倒數是()A.﹣3 B.3 C.﹣ D.2.(2.00分)已知蘋果每千克m元,則2千克蘋果共多少元?()A.m﹣2 B.m+2 C.D.2m3.(2.00分)下列圖形中,哪一個是圓錐的側面展開圖?()A. B.C.D.4.(2.00分)一個正比例函數的圖象經過(2,﹣1),則它的運算式為()A.y=﹣2x B.y=2x C.D.5.(2.00分)下列命題中,假命題是()A.一組對邊相等的四邊形是平行四邊形B.三個角是直角的四邊形是矩形C.四邊相等的四邊形是菱形D.有一個角是直角的菱形是正方形6.(2.00分)已知a為整數,且,則a等於()A.1 B.2 C.3 D.47.(2.00分)如圖,AB是⊙O的直徑,MN是⊙O的切線,切點為N,如果∠MNB=52°,則∠NOA的度數為()A.76°B.56°C.54°D.52°8.(2.00分)某數學研究性學習小組製作了如下的三角函數計算圖尺:在半徑為1的半圓形量角器中,畫一個直徑為1的圓,把刻度尺CA的0刻度固定在半圓的圓心O處,刻度尺可以繞點O旋轉.從圖中所示的圖尺可讀出sin∠AOB的值是()A.B.C.D.二、填空題(本大題共10小題,每小題2分,共20分.不需寫出解答過程,請把答案直接寫在答題卡相應位置上)9.(2.00分)計算:|﹣3|﹣1=.10.(2.00分)化簡:=.11.(2.00分)分解因式:3x2﹣6x+3=.12.(2.00分)已知點P(﹣2,1),則點P關於x軸對稱的點的座標是.13.(2.00分)地球與月球的平均距離大約384000km,用科學計數法表示這個距離為km.14.(2.00分)中華文化源遠流長,如圖是中國古代文化符號的太極圖,圓中的黑色部分和白色部分關於圓心中心對稱.在圓內隨機取一點,則此點取黑色部分的概率是.15.(2.00分)如圖,在▱ABCD中,∠A=70°,DC=DB,則∠CDB=.16.(2.00分)如圖,△ABC是⊙O的內接三角形,∠BAC=60°,的長是,則⊙O的半徑是.17.(2.00分)下麵是按一定規律排列的代數式:a2,3a4,5a6,7a8,…則第8個代數式是.18.(2.00分)如圖,在△ABC紙板中,AC=4,BC=2,AB=5,P是AC上一點,過點P沿直線剪下一個與△ABC相似的小三角形紙板,如果有4種不同的剪法,那麼AP長的取值範圍是.三、解答題(本大題共10小題,共84分.請在答題卡指定區域內作答,如無特殊說明,解答應寫出文字說明、演算步驟或推理過程)19.(6.00分)計算:|﹣1|﹣﹣(1﹣)0+4sin30°.20.(8.00分)解方程組和不等式組:(1)(2)21.(8.00分)如圖,把△ABC沿BC翻折得△DBC.(1)連接AD,則BC與AD的位置關係是.(2)不在原圖中添加字母和線段,只加一個條件使四邊形ABDC是平行四邊形,寫出添加的條件,並說明理由.22.(8.00分)為了解某市初中學生課外閱讀情況,調查小組對該市這學期初中學生閱讀課外書籍的冊數進行了抽樣調查,並根據調查結果繪製成如下統計圖.根據統計圖提供的資訊,解答下列問題:(1)本次抽樣調查的樣本容量是;(2)補全條形統計圖;(3)該市共有12000名初中生,估計該市初中學生這學期課外閱讀超過2冊的人數.23.(8.00分)將圖中的A型、B型、C型矩形紙片分別放在3個盒子中,盒子的形狀、大小、質地都相同,再將這3個盒子裝入一只不透明的袋子中.(1)攪勻後從中摸出1個盒子,求摸出的盒子中是A型矩形紙片的概率;(2)攪勻後先從中摸出1個盒子(不放回),再從餘下的兩個盒子中摸出一個盒子,求2次摸出的盒子的紙片能拼成一個新矩形的概率(不重疊無縫隙拼接).24.(8.00分)如圖,已知點A在反比例函數y=(x>0)的圖象上,過點A作AC⊥x軸,垂足是C,AC=OC.一次函數y=kx+b的圖象經過點A,與y軸的正半軸交於點B.(1)求點A的座標;(2)若四邊形ABOC的面積是3,求一次函數y=kx+b的運算式.25.(8.00分)京杭大運河是世界文化遺產.綜合實踐活動小組為了測出某段運河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點A、B和點C、D,先用卷尺量得AB=160m,CD=40m,再用測角儀測得∠CAB=30°,∠DBA=60°,求該段運河的河寬(即CH的長).26.(10.00分)閱讀材料:各類方程的解法求解一元一次方程,根據等式的基本性質,把方程轉化為x=a的形式.求解二元一次方程組,把它轉化為一元一次方程來解;類似的,求解三元一次方程組,把它轉化為解二元一次方程組.求解一元二次方程,把它轉化為兩個一元一次方程來解.求解分式方程,把它轉化為整式方程來解,由於“去分母”可能產生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數學思想轉化,把未知轉化為已知.用“轉化”的數學思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通過因式分解把它轉化為x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)問題:方程x3+x2﹣2x=0的解是x1=0,x2=,x3=;(2)拓展:用“轉化”思想求方程=x的解;(3)應用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB 段拉直並固定在點P,然後沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.27.(10.00分)(1)如圖1,已知EK垂直平分BC,垂足為D,AB與EK相交於點F,連接CF.求證:∠AFE=∠CFD.(2)如圖2,在Rt△GMN中,∠M=90°,P為MN的中點.①用直尺和圓規在GN邊上求作點Q,使得∠GQM=∠PQN(保留作圖痕跡,不要求寫作法);②在①的條件下,如果∠G=60°,那麼Q是GN的中點嗎?為什麼?28.(10.00分)如圖,二次函數y=﹣+bx+2的圖象與x軸交於點A、B,與y 軸交於點C,點A的座標為(﹣4,0),P是拋物線上一點(點P與點A、B、C 不重合).(1)b=,點B的座標是;(2)設直線PB與直線AC相交於點M,是否存在這樣的點P,使得PM:MB=1:2?若存在求出點P的橫坐標;若不存在,請說明理由;(3)連接AC、BC,判斷∠CAB和∠CBA的數量關係,並說明理由.2018年江蘇省常州市中考數學試卷參考答案與試題解析一、選擇題(本大題共8小題,每小題2分,共16分.在每小題所給出的四個選項中,只有一項是正確的)1.(2.00分)﹣3的倒數是()A.﹣3 B.3 C.﹣ D.【分析】根據倒數的定義可得﹣3的倒數是﹣.【解答】解:﹣3的倒數是﹣.故選:C.【點評】主要考查倒數的概念及性質.倒數的定義:若兩個數的乘積是1,我們就稱這兩個數互為倒數.2.(2.00分)已知蘋果每千克m元,則2千克蘋果共多少元?()A.m﹣2 B.m+2 C.D.2m【分析】根據蘋果每千克m元,可以用代數式表示出2千克蘋果的價錢.【解答】解:∵蘋果每千克m元,∴2千克蘋果2m元,故選:D.【點評】本題考查列代數式,解答本題的關鍵是明確題意,列出相應的代數式.3.(2.00分)下列圖形中,哪一個是圓錐的側面展開圖?()A. B.C.D.【分析】根據圓錐的側面展開圖的特點作答.【解答】解:圓錐的側面展開圖是光滑的曲面,沒有棱,只是扇形.故選:B.【點評】此題考查了幾何體的展開圖,注意圓錐的側面展開圖是扇形.4.(2.00分)一個正比例函數的圖象經過(2,﹣1),則它的運算式為()A.y=﹣2x B.y=2x C.D.【分析】設該正比例函數的解析式為y=kx(k≠0),再把點(2,﹣1)代入求出k的值即可.【解答】解:設該正比例函數的解析式為y=kx(k≠0),∵正比例函數的圖象經過點(2,﹣1),∴2=﹣k,解得k=﹣2,∴這個正比例函數的運算式是y=﹣2x.故選:A.【點評】本題考查的是待定係數法求正比例函數的解析式,熟知正比例函數圖象上點的座標一定適合此函數的解析式是解答此題的關鍵.5.(2.00分)下列命題中,假命題是()A.一組對邊相等的四邊形是平行四邊形B.三個角是直角的四邊形是矩形C.四邊相等的四邊形是菱形D.有一個角是直角的菱形是正方形【分析】根據矩形、正方形、平行四邊形、菱形的判定即可求出答案.【解答】解:A、一組對邊平行且相等的四邊形是平行四邊形,是假命題;B、三個角是直角的四邊形是矩形,是真命題;C、四邊相等的四邊形是菱形,是真命題;D、有一個角是直角的菱形是正方形,是真命題;故選:A.【點評】本題考查菱形、矩形和平行四邊形的判定與命題的真假區別,關鍵是根據矩形、正方形、平行四邊形、菱形的判定解答.6.(2.00分)已知a為整數,且,則a等於()A.1 B.2 C.3 D.4【分析】直接利用,接近的整數是2,進而得出答案.【解答】解:∵a為整數,且,∴a=2.故選:B.【點評】此題主要考查了估算無理數大小,正確得出無理數接近的有理數是解題關鍵.7.(2.00分)如圖,AB是⊙O的直徑,MN是⊙O的切線,切點為N,如果∠MNB=52°,則∠NOA的度數為()A.76°B.56°C.54°D.52°【分析】先利用切線的性質得∠ONM=90°,則可計算出∠ONB=38°,再利用等腰三角形的性質得到∠B=∠ONB=38°,然後根據圓周角定理得∠NOA的度數.【解答】解:∵MN是⊙O的切線,∴ON⊥NM,∴∠ONM=90°,∴∠ONB=90°﹣∠MNB=90°﹣52°=38°,∵ON=OB,∴∠B=∠ONB=38°,∴∠NOA=2∠B=76°.故選:A.【點評】本題考查了切線的性質:圓的切線垂直於經過切點的半徑.也考查了圓周角定理.8.(2.00分)某數學研究性學習小組製作了如下的三角函數計算圖尺:在半徑為1的半圓形量角器中,畫一個直徑為1的圓,把刻度尺CA的0刻度固定在半圓的圓心O處,刻度尺可以繞點O旋轉.從圖中所示的圖尺可讀出sin∠AOB的值是()A.B.C.D.【分析】如圖,連接AD.只要證明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO==;【解答】解:如圖,連接AD.∵OD是直徑,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故選:D.【點評】本題考查圓周角定理、直徑的性質、銳角三角函數等知識,解題的關鍵是學會用轉化的思想思考問題,屬於中考創新題目.二、填空題(本大題共10小題,每小題2分,共20分.不需寫出解答過程,請把答案直接寫在答題卡相應位置上)9.(2.00分)計算:|﹣3|﹣1=2.【分析】原式利用絕對值的代數意義,以及減法法則計算即可求出值.【解答】解:原式=3﹣1=2.故答案為:2【點評】此題考查了有理數的減法,熟練掌握運算法則是解本題的關鍵.10.(2.00分)化簡:=1.【分析】原式利用同分母分式的減法法則計算即可.【解答】解:原式==1,故答案為:1【點評】此題考查了分式的加減法,熟練掌握運算法則是解本題的關鍵.11.(2.00分)分解因式:3x2﹣6x+3=3(x﹣1)2.【分析】先提取公因式3,再對餘下的多項式利用完全平方公式繼續分解.【解答】解:3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.【點評】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然後再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.12.(2.00分)已知點P(﹣2,1),則點P關於x軸對稱的點的座標是(﹣2,﹣1).【分析】根據關於x軸對稱的點的橫坐標相等,縱坐標互為相反數,可得答案.【解答】解:點P(﹣2,1),則點P關於x軸對稱的點的座標是(﹣2,﹣1),故答案為:(﹣2,﹣1).【點評】本題考查了關於x軸對稱的對稱點,利用關於x軸對稱的點的橫坐標相等,縱坐標互為相反數是解題關鍵.13.(2.00分)地球與月球的平均距離大約384000km,用科學計數法表示這個距離為 3.84×105km.【分析】科學記數法的一般形式為:a×10n,在本題中a應為3.84,10的指數為6﹣1=5.【解答】解:384 000=3.84×105km.故答案為3.84×105.【點評】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.14.(2.00分)中華文化源遠流長,如圖是中國古代文化符號的太極圖,圓中的黑色部分和白色部分關於圓心中心對稱.在圓內隨機取一點,則此點取黑色部分的概率是.【分析】根據中心對稱圖形的性質得到圓中的黑色部分和白色部分面積相等,根據概率公式計算即可.【解答】解:∵圓中的黑色部分和白色部分關於圓心中心對稱,∴圓中的黑色部分和白色部分面積相等,∴在圓內隨機取一點,則此點取黑色部分的概率是,故答案為:.【點評】本題考查的是概率公式、中心對稱圖形,掌握概率公式是解題的關鍵.15.(2.00分)如圖,在▱ABCD中,∠A=70°,DC=DB,則∠CDB=40°.【分析】根據等腰三角形的性質,平行四邊形的性質以及三角形內角和定理即可解決問題.【解答】解:∵四邊形ABCD是平行四邊形,∴∠A=∠C=70°,∵DC=DB,∴∠C=∠DBC=70°,∴∠CDB=180°﹣70°﹣70°=40°,故答案為40°.【點評】本題考查平行四邊形的性質、等腰三角形的性質、三角形內角和定理等知識,解題的關鍵是熟練掌握基本知識,屬於中考常考題型.16.(2.00分)如圖,△ABC是⊙O的內接三角形,∠BAC=60°,的長是,則⊙O的半徑是2.【分析】連接OB、OC,利用弧長公式轉化為方程求解即可;【解答】解:連接OB、OC.∵∠BOC=2∠BAC=120°,的長是,∴=,∴r=2,故答案為2.【點評】本題考查三角形的外接圓與外心,圓周角定理,弧長的計算等知識,解題的關鍵是熟練掌握弧長公式,屬於中考常考題型.17.(2.00分)下麵是按一定規律排列的代數式:a2,3a4,5a6,7a8,…則第8個代數式是15a16.【分析】直接利用已知單項式的次數與係數特點得出答案.【解答】解:∵a2,3a4,5a6,7a8,…∴單項式的次數是連續的偶數,係數是連續的奇數,∴第8個代數式是:(2×8﹣1)a2×8=15a16.故答案為:15a16.【點評】此題主要考查了單項式,正確得出單項式次數與係數的變化規律是解題關鍵.18.(2.00分)如圖,在△ABC紙板中,AC=4,BC=2,AB=5,P是AC上一點,過點P沿直線剪下一個與△ABC相似的小三角形紙板,如果有4種不同的剪法,那麼AP長的取值範圍是3≤AP<4.【分析】分四種情況討論,依據相似三角形的對應邊成比例,即可得到AP的長的取值範圍.【解答】解:如圖所示,過P作PD∥AB交BC於D或PE∥BC交AB於E,則△PCD∽△ACB或△APE∽△ACB,此時0<AP<4;如圖所示,過P作∠APF=∠B交AB於F,則△APF∽△ABC,此時0<AP≤4;如圖所示,過P作∠CPG=∠CBA交BC於G,則△CPG∽△CBA,此時,△CPG∽△CBA,當點G與點B重合時,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此時,3≤AP<4;綜上所述,AP長的取值範圍是3≤AP<4.故答案為:3≤AP<4.【點評】本題主要考查了相似三角形的性質,相似三角形的對應角相等,對應邊的比相等.三、解答題(本大題共10小題,共84分.請在答題卡指定區域內作答,如無特殊說明,解答應寫出文字說明、演算步驟或推理過程)19.(6.00分)計算:|﹣1|﹣﹣(1﹣)0+4sin30°.【分析】直接利用特殊角的三角函數值以及絕對值的性質、零指數冪的性質分別化簡得出答案.【解答】解:原式=1﹣2﹣1+4×=1﹣2﹣1+2=0.【點評】此題主要考查了實數運算,正確化簡各數是解題關鍵.20.(8.00分)解方程組和不等式組:(1)(2)【分析】(1)方程組利用加減消元法求出解即可;(2)分別求出不等式組中兩不等式的解集,找出解集的公共部分即可.【解答】解:(1),①+②得:x=2,把x=2代入②得:y=﹣1,所以方程組的解為:;(2),解不等式①得:x≥3;解不等式②得:x≥﹣1,所以不等式組的解集為:x≥3.【點評】此題考查瞭解二元一次方程組,熟練掌握運算法則是解本題的關鍵.21.(8.00分)如圖,把△ABC沿BC翻折得△DBC.(1)連接AD,則BC與AD的位置關係是BC⊥AB.(2)不在原圖中添加字母和線段,只加一個條件使四邊形ABDC是平行四邊形,寫出添加的條件,並說明理由.【分析】(1)先由折疊知,AB=BD,∠ACB=∠DBC,進而判斷出△AOB≌△DOB,最後用平角的定義即可得出結論;(2)由折疊得出∠ABC=∠DBC,∠ACB=∠DCB,再判斷出∠ABC=∠ACB,進而得出∠ACB=∠DBC=∠ABC=∠DCB,最後用兩邊分別平行的四邊形是平行四邊形.【解答】解:(1)如圖,連接AD交BC於O,由折疊知,AB=BD,∠ACB=∠DBC,∵BO=BO,∴△ABO≌△DBO(SAS),∴∠AOB=∠DOB,∵∠AOB+∠DOB=180°,∴∠AOB=∠DOB=90°,∴BC⊥AD,故答案為:BC⊥AD;(2)添加的條件是AB=AC,理由:由折疊知,∠ABC=∠DBC,∠ACB=∠DCB,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=∠DBC=∠ABC=∠DCB,∴AC∥BD,AB∥CD,∴四邊形ABDC是平行四邊形.【點評】此題主要考查了折疊的性質,平行四邊形的判定,等腰三角形的性質,全等三角形的判定和性質,判斷出△ABO≌△DBO(SAS)是解本題的關鍵.22.(8.00分)為了解某市初中學生課外閱讀情況,調查小組對該市這學期初中學生閱讀課外書籍的冊數進行了抽樣調查,並根據調查結果繪製成如下統計圖.根據統計圖提供的資訊,解答下列問題:(1)本次抽樣調查的樣本容量是100;(2)補全條形統計圖;(3)該市共有12000名初中生,估計該市初中學生這學期課外閱讀超過2冊的人數.【分析】(1)根據2冊的人數除以占的百分比即可得到總人數;(2)求出1冊的人數是100×30%=30人,4冊的人數是100﹣30﹣40﹣20=10人,再畫出即可;(3)先列出算式,再求出即可.【解答】解:(1)40÷40%=100(冊),即本次抽樣調查的樣本容量是100,故答案為:100;(2)如圖:;(3)12000×(1﹣30%)=8400(人),答:估計該市初中學生這學期課外閱讀超過2冊的人數是8400人.【點評】本題考查了條形統計圖、扇形統計圖,總體、個體、樣本、樣本容量,用樣本估計總體等知識點,兩圖結合是解題的關鍵.23.(8.00分)將圖中的A型、B型、C型矩形紙片分別放在3個盒子中,盒子的形狀、大小、質地都相同,再將這3個盒子裝入一只不透明的袋子中.(1)攪勻後從中摸出1個盒子,求摸出的盒子中是A型矩形紙片的概率;(2)攪勻後先從中摸出1個盒子(不放回),再從餘下的兩個盒子中摸出一個盒子,求2次摸出的盒子的紙片能拼成一個新矩形的概率(不重疊無縫隙拼接).【分析】(1)直接利用概率公式計算可得;(2)畫樹狀圖得出所有等可能結果,從中找打2次摸出的盒子的紙片能拼成一個新矩形的結果數,利用概率公式計算可得.【解答】解:(1)攪勻後從中摸出1個盒子有3種等可能結果,所以摸出的盒子中是A型矩形紙片的概率為;(2)畫樹狀圖如下:由樹狀圖知共有6種等可能結果,其中2次摸出的盒子的紙片能拼成一個新矩形的有4種結果,所以2次摸出的盒子的紙片能拼成一個新矩形的概率為=.【點評】此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數與總情況數之比.24.(8.00分)如圖,已知點A在反比例函數y=(x>0)的圖象上,過點A作AC⊥x軸,垂足是C,AC=OC.一次函數y=kx+b的圖象經過點A,與y軸的正半軸交於點B.(1)求點A的座標;(2)若四邊形ABOC的面積是3,求一次函數y=kx+b的運算式.【分析】(1)根據反比例函數k值的幾何意義可求點A的座標;(2)根據梯形的面積公式可求點B的座標,再根據待定係數法可求一次函數y=kx+b的運算式.【解答】解:(1)∵點A在反比例函數y=(x>0)的圖象上,AC⊥x軸,AC=OC,∴AC•OC=4,∴AC=OC=2,∴點A的座標為(2,2);(2)∵四邊形ABOC的面積是3,∴(OB+2)×2÷2=3,解得OB=1,∴點B的座標為(0,1),依題意有,解得.故一次函數y=kx+b的運算式為y=x+1.【點評】考查了反比例函數與一次函數的交點問題,關鍵是熟練掌握反比例函數k值的幾何意義、梯形的面積、待定係數法求一次函數解析式.25.(8.00分)京杭大運河是世界文化遺產.綜合實踐活動小組為了測出某段運河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點A、B和點C、D,先用卷尺量得AB=160m,CD=40m,再用測角儀測得∠CAB=30°,∠DBA=60°,求該段運河的河寬(即CH的長).【分析】過D作DE⊥AB,可得四邊形CHED為矩形,由矩形的對邊相等得到兩對對邊相等,分別在直角三角形ACH與直角三角形BDE中,設CH=DE=xm,利用銳角三角函數定義表示出AH與BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到結果.【解答】解:過D作DE⊥AB,可得四邊形CHED為矩形,∴HE=CD=40m,設CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=xm,在Rt△ACH中,∠BAC=30°,∴AH=xm,由AH+HE+EB=AB=160m,得到x+40+x=160,解得:x=30,即CH=30m,則該段運河的河寬為30m.【點評】此題考查瞭解直角三角形的應用,熟練掌握銳角三角函數定義是解本題的關鍵.26.(10.00分)閱讀材料:各類方程的解法求解一元一次方程,根據等式的基本性質,把方程轉化為x=a的形式.求解二元一次方程組,把它轉化為一元一次方程來解;類似的,求解三元一次方程組,把它轉化為解二元一次方程組.求解一元二次方程,把它轉化為兩個一元一次方程來解.求解分式方程,把它轉化為整式方程來解,由於“去分母”可能產生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數學思想轉化,把未知轉化為已知.用“轉化”的數學思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通過因式分解把它轉化為x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)問題:方程x3+x2﹣2x=0的解是x1=0,x2=﹣2,x3=1;(2)拓展:用“轉化”思想求方程=x的解;(3)應用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB 段拉直並固定在點P,然後沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.【分析】(1)因式分解多項式,然後得結論;(2)兩邊平方,把無理方程轉化為整式方程,求解,注意驗根;(3)設AP的長為xm,根據畢氏定理和BP+CP=10,可列出方程,由於方程含有根號,兩邊平方,把無理方程轉化為整式方程,求解,【解答】解:(1)x3+x2﹣2x=0,x(x2+x﹣2)=0,x(x+2)(x﹣1)=0所以x=0或x+2=0或x﹣1=0∴x1=0,x2=﹣2,x3=1;故答案為:﹣2,1;(2)=x,方程的兩邊平方,得2x+3=x2即x2﹣2x﹣3=0(x﹣3)(x+1)=0∴x﹣3=0或x+1=0∴x1=3,x2=﹣1,當x=﹣1時,==1≠﹣1,所以﹣1不是原方程的解.所以方程=x的解是x=3;(3)因為四邊形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3m設AP=xm,則PD=(8﹣x)m因為BP+CP=10,BP=,CP=∴+=10∴=10﹣兩邊平方,得(8﹣x)2+9=100﹣20+9+x2整理,得5=4x+9兩邊平方並整理,得x2﹣8x+16=0即(x﹣4)2=0所以x=4.經檢驗,x=4是方程的解.答:AP的長為4m.【點評】本題考查了轉化的思想方法,一元二次方程的解法.解無理方程是注意到驗根.解決(3)時,根據畢氏定理和繩長,列出方程是關鍵.27.(10.00分)(1)如圖1,已知EK垂直平分BC,垂足為D,AB與EK相交於點F,連接CF.求證:∠AFE=∠CFD.(2)如圖2,在Rt△GMN中,∠M=90°,P為MN的中點.①用直尺和圓規在GN邊上求作點Q,使得∠GQM=∠PQN(保留作圖痕跡,不要求寫作法);②在①的條件下,如果∠G=60°,那麼Q是GN的中點嗎?為什麼?【分析】(1)只要證明FC=FB即可解決問題;(2)①作點P關於GN的對稱點P′,連接P′M交GN於Q,連接PQ,點Q即為所求.②結論:Q是GN的中點.想辦法證明∠N=∠QMN=30°,∠G=∠GMQ=60°,可得QM=QN,QM=QG;【解答】(1)證明:如圖1中,∵EK垂直平分線段BC,∴FC=FB,∴∠CFD=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠CFD.(2)①作點P關於GN的對稱點P′,連接P′M交GN於Q,連接PQ,點Q即為所求.②結論:Q是GN的中點.理由:設PP′交GN於K.∵∠G=60°,∠GMN=90°,∴∠N=30°,∵PK⊥KN,∴PK=KP′=PN,∴PP′=PN=PM,∴∠P′=∠PMP′,∵∠NPK=∠P′+∠PMP′=60°,∴∠PMP′=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN,QM=QG,∴QG=QN,∴Q是GN的中點.【點評】本題考查作圖﹣複雜作圖、線段的垂直平分線的性質、直角三角形斜邊中線的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬於中考常考題型.28.(10.00分)如圖,二次函數y=﹣+bx+2的圖象與x軸交於點A、B,與y 軸交於點C,點A的座標為(﹣4,0),P是拋物線上一點(點P與點A、B、C 不重合).(1)b=﹣,點B的座標是(,0);(2)設直線PB與直線AC相交於點M,是否存在這樣的點P,使得PM:MB=1:2?若存在求出點P的橫坐標;若不存在,請說明理由;(3)連接AC、BC,判斷∠CAB和∠CBA的數量關係,並說明理由.【分析】(1)由點A的座標,利用二次函數圖象上點的座標特徵可求出b的值,代入y=0求出x值,進而可得出點B的座標;(2)代入x=0求出y值,進而可得出點C的座標,由點A、C的座標利用待定係數法可求出直線AC的解析式,假設存在,設點M的座標為(m,m+2),分B、P在直線AC的同側和異側兩種情況考慮,由點B、M的座標結合PM:MB=1:2即可得出點P的座標,再利用二次函數圖象上點的座標特徵可得出關於m的一元二次方程,解之即可得出結論;(3)作∠CBA的角平分線,交y軸於點E,過點E作EF⊥BC於點F,設OE=n,則CE=2﹣n,EF=n,利用面積法可求出n值,進而可得出==,結合∠AOC=90°=∠BOE可證出△AOC∽△BOE,根據相似三角形的性質可得出∠CAO=∠EBO,再根據角平分線的性質可得出∠CBA=2∠EBO=2∠CAB,此題得解.【解答】解:(1)∵點A(﹣4,0)在二次函數y=﹣+bx+2的圖象上,∴﹣﹣4b+2=0,∴b=﹣.當y=0時,有﹣x2﹣x+2=0,解得:x1=﹣4,x2=,∴點B的座標為(,0).故答案為:﹣;(,0).(2)當x=0時,y=﹣x2﹣x+2=2,∴點C的座標為(0,2).設直線AC的解析式為y=kx+c(k≠0),將A(﹣4,0)、C(0,2)代入y=kx+c中,得:,解得:,∴直線AC的解析式為y=x+2.假設存在,設點M的座標為(m,m+2).①當點P、B在直線AC的異側時,點P的座標為(m﹣,m+3),∵點P在拋物線y=﹣x2﹣x+2上,∴m+3=﹣×(m﹣)2﹣×(m﹣)+2,整理,得:12m2+20m+9=0.∵△=202﹣4×12×9=﹣32<0,∴方程無解,即不存在符合題意得點P;②當點P、B在直線AC的同側時,點P的座標為(m+,m+1),∵點P在拋物線y=﹣x2﹣x+2上,∴m+1=﹣×(m+)2﹣×(m+)+2,整理,得:4m2+44m﹣9=0,解得:m1=﹣,m2=,∴點P的橫坐標為﹣2﹣或﹣2+.綜上所述:存在點P,使得PM:MB=1:2,點P的橫坐標為﹣2﹣或﹣2+.(3)∠CBA=2∠CAB,理由如下:作∠CBA的角平分線,交y軸於點E,過點E作EF⊥BC於點F,如圖2所示.∵點B(,0),點C(0,2),∴OB=,OC=2,BC=.設OE=n,則CE=2﹣n,EF=n,由面積法,可知:OB•CE=BC•EF,即(2﹣n)=n,解得:n=.∵==,∠AOC=90°=∠BOE,∴△AOC∽△BOE,∴∠CAO=∠EBO,∴∠CBA=2∠EBO=2∠CAB.【點評】題考查了二次函數圖象上點的座標特徵、待定係數法求一次函數解析式、三角形的面積、畢氏定理、一次函數圖象上點的座標特徵以及相似三角形的判定與性質,解題的關鍵是:(1)由點A的座標,利用二次函數圖象上點的座標特徵求出b的值;(2)分B、P在直線AC的同側和異側兩種情況找出點P的座標;(3)構造相似三角形找出兩角的數量關係.。
2018九年级上数学期中考试试卷(含答案)
一、选择题(本大题共12小题,每小题3分,共36分)
1.下列各图中,不是中心对称图形的是()
A.①③ B.②④ C.②③ D.①④
2.方程x2﹣4=0的解为()
A.2 B.﹣2 C.±2 D.4
3.若x=1是方程ax2+bx+c=0的解,则()
A.a+b+c=1 B.a﹣b+c=0 C.a+b+c=0 D.a﹣b﹣c=0
4.已知点P(b,2)与点Q(3,2a)关于原点对称点,则a,b的值分别是()A.﹣1,3 B.1,﹣3 C.﹣1,﹣3 D.1,3
5.抛物线y=x2﹣3的顶点坐标、对称轴是()
A.(0,3),x=3 B.(0,﹣3),x=0 C.(3,0),x=3 D.(3,0),x=0
6.二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点()
A.(﹣1,﹣1) B.(1,﹣1) C.(﹣1,1) D.(1,1)
7.关于x的一元二次方程mx2﹣2x+1=0有两个相等实数根,则m的值为()A.﹣1 B.2 C.﹣2 D.1
8.下列描述抛物线y=(1﹣x)(x+2)的开口方向及其最值情况正确的是()A.开口向上,y有最大值 B.开口向上,y有最小值
C.开口向下,y有最大值 D.开口向下,y有最小值
9.用配方法解下列方程时,配方有错误的是()
A.x2﹣2x﹣99=0化为(x﹣1)2=100 B.x2+8x+9=0化为(x+4)2=25
C.2t2﹣7t﹣4=0化为(t﹣)2= D.3x2﹣4x﹣2=0化为(x﹣)2=。
江苏省常州市2018年中考数学试卷(解析版)
2018年江苏省常州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2.00分)﹣3的倒数是()A.﹣3 B.3 C.﹣ D.2.(2.00分)已知苹果每千克m元,则2千克苹果共多少元?()A.m﹣2 B.m+2 C.D.2m3.(2.00分)下列图形中,哪一个是圆锥的侧面展开图?()A. B.C.D.4.(2.00分)一个正比例函数的图象经过(2,﹣1),则它的表达式为()A.y=﹣2x B.y=2x C.D.5.(2.00分)下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形6.(2.00分)已知a为整数,且,则a等于()A.1 B.2 C.3 D.47.(2.00分)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76°B.56°C.54°D.52°8.(2.00分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(2.00分)计算:|﹣3|﹣1=.10.(2.00分)化简:=.11.(2.00分)分解因式:3x2﹣6x+3=.12.(2.00分)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是.13.(2.00分)地球与月球的平均距离大约384000km,用科学计数法表示这个距离为km.14.(2.00分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.15.(2.00分)如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB=.16.(2.00分)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是.17.(2.00分)下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是.18.(2.00分)如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6.00分)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.20.(8.00分)解方程组和不等式组:(1)(2)21.(8.00分)如图,把△ABC沿BC翻折得△DBC.(1)连接AD,则BC与AD的位置关系是.(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.22.(8.00分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.23.(8.00分)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).24.(8.00分)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.25.(8.00分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).26.(10.00分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB 段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.27.(10.00分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?28.(10.00分)如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y 轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C 不重合).(1)b=,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.2018年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2.00分)﹣3的倒数是()A.﹣3 B.3 C.﹣ D.【分析】根据倒数的定义可得﹣3的倒数是﹣.【解答】解:﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2.00分)已知苹果每千克m元,则2千克苹果共多少元?()A.m﹣2 B.m+2 C.D.2m【分析】根据苹果每千克m元,可以用代数式表示出2千克苹果的价钱.【解答】解:∵苹果每千克m元,∴2千克苹果2m元,故选:D.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.3.(2.00分)下列图形中,哪一个是圆锥的侧面展开图?()A. B.C.D.【分析】根据圆锥的侧面展开图的特点作答.【解答】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:B.【点评】此题考查了几何体的展开图,注意圆锥的侧面展开图是扇形.4.(2.00分)一个正比例函数的图象经过(2,﹣1),则它的表达式为()A.y=﹣2x B.y=2x C.D.【分析】设该正比例函数的解析式为y=kx(k≠0),再把点(2,﹣1)代入求出k的值即可.【解答】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(2,﹣1),∴2=﹣k,解得k=﹣2,∴这个正比例函数的表达式是y=﹣2x.故选:A.【点评】本题考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.5.(2.00分)下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形【分析】根据矩形、正方形、平行四边形、菱形的判定即可求出答案.【解答】解:A、一组对边平行且相等的四边形是平行四边形,是假命题;B、三个角是直角的四边形是矩形,是真命题;C、四边相等的四边形是菱形,是真命题;D、有一个角是直角的菱形是正方形,是真命题;故选:A.【点评】本题考查菱形、矩形和平行四边形的判定与命题的真假区别,关键是根据矩形、正方形、平行四边形、菱形的判定解答.6.(2.00分)已知a为整数,且,则a等于()A.1 B.2 C.3 D.4【分析】直接利用,接近的整数是2,进而得出答案.【解答】解:∵a为整数,且,∴a=2.故选:B.【点评】此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.7.(2.00分)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76°B.56°C.54°D.52°【分析】先利用切线的性质得∠ONM=90°,则可计算出∠ONB=38°,再利用等腰三角形的性质得到∠B=∠ONB=38°,然后根据圆周角定理得∠NOA的度数.【解答】解:∵MN是⊙O的切线,∴ON⊥NM,∴∠ONM=90°,∴∠ONB=90°﹣∠MNB=90°﹣52°=38°,∵ON=OB,∴∠B=∠ONB=38°,∴∠NOA=2∠B=76°.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.8.(2.00分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.【分析】如图,连接AD.只要证明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO==;【解答】解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.【点评】本题考查圆周角定理、直径的性质、锐角三角函数等知识,解题的关键是学会用转化的思想思考问题,属于中考创新题目.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(2.00分)计算:|﹣3|﹣1=2.【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.10.(2.00分)化简:=1.【分析】原式利用同分母分式的减法法则计算即可.【解答】解:原式==1,故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.11.(2.00分)分解因式:3x2﹣6x+3=3(x﹣1)2.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(2.00分)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1).【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【解答】解:点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).【点评】本题考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.13.(2.00分)地球与月球的平均距离大约384000km,用科学计数法表示这个距离为 3.84×105km.【分析】科学记数法的一般形式为:a×10n,在本题中a应为3.84,10的指数为6﹣1=5.【解答】解:384 000=3.84×105km.故答案为3.84×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2.00分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.【分析】根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等,根据概率公式计算即可.【解答】解:∵圆中的黑色部分和白色部分关于圆心中心对称,∴圆中的黑色部分和白色部分面积相等,∴在圆内随机取一点,则此点取黑色部分的概率是,故答案为:.【点评】本题考查的是概率公式、中心对称图形,掌握概率公式是解题的关键.15.(2.00分)如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB=40°.【分析】根据等腰三角形的性质,平行四边形的性质以及三角形内角和定理即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C=70°,∵DC=DB,∴∠C=∠DBC=70°,∴∠CDB=180°﹣70°﹣70°=40°,故答案为40°.【点评】本题考查平行四边形的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(2.00分)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是2.【分析】连接OB、OC,利用弧长公式转化为方程求解即可;【解答】解:连接OB、OC.∵∠BOC=2∠BAC=120°,的长是,∴=,∴r=2,故答案为2.【点评】本题考查三角形的外接圆与外心,圆周角定理,弧长的计算等知识,解题的关键是熟练掌握弧长公式,属于中考常考题型.17.(2.00分)下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是15a16.【分析】直接利用已知单项式的次数与系数特点得出答案.【解答】解:∵a2,3a4,5a6,7a8,…∴单项式的次数是连续的偶数,系数是连续的奇数,∴第8个代数式是:(2×8﹣1)a2×8=15a16.故答案为:15a16.【点评】此题主要考查了单项式,正确得出单项式次数与系数的变化规律是解题关键.18.(2.00分)如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是3≤AP<4.【分析】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.【解答】解:如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.【点评】本题主要考查了相似三角形的性质,相似三角形的对应角相等,对应边的比相等.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6.00分)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.【分析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=1﹣2﹣1+4×=1﹣2﹣1+2=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8.00分)解方程组和不等式组:(1)(2)【分析】(1)方程组利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1),①+②得:x=2,把x=2代入②得:y=﹣1,所以方程组的解为:;(2),解不等式①得:x≥3;解不等式②得:x≥﹣1,所以不等式组的解集为:x≥3.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.21.(8.00分)如图,把△ABC沿BC翻折得△DBC.(1)连接AD,则BC与AD的位置关系是BC⊥AB.(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.【分析】(1)先由折叠知,AB=BD,∠ACB=∠DBC,进而判断出△AOB≌△DOB,最后用平角的定义即可得出结论;(2)由折叠得出∠ABC=∠DBC,∠ACB=∠DCB,再判断出∠ABC=∠ACB,进而得出∠ACB=∠DBC=∠ABC=∠DCB,最后用两边分别平行的四边形是平行四边形.【解答】解:(1)如图,连接AD交BC于O,由折叠知,AB=BD,∠ACB=∠DBC,∵BO=BO,∴△ABO≌△DBO(SAS),∴∠AOB=∠DOB,∵∠AOB+∠DOB=180°,∴∠AOB=∠DOB=90°,∴BC⊥AD,故答案为:BC⊥AD;(2)添加的条件是AB=AC,理由:由折叠知,∠ABC=∠DBC,∠ACB=∠DCB,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=∠DBC=∠ABC=∠DCB,∴AC∥BD,AB∥CD,∴四边形ABDC是平行四边形.【点评】此题主要考查了折叠的性质,平行四边形的判定,等腰三角形的性质,全等三角形的判定和性质,判断出△ABO≌△DBO(SAS)是解本题的关键.22.(8.00分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是100;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.【分析】(1)根据2册的人数除以占的百分比即可得到总人数;(2)求出1册的人数是100×30%=30人,4册的人数是100﹣30﹣40﹣20=10人,再画出即可;(3)先列出算式,再求出即可.【解答】解:(1)40÷40%=100(册),即本次抽样调查的样本容量是100,故答案为:100;(2)如图:;(3)12000×(1﹣30%)=8400(人),答:估计该市初中学生这学期课外阅读超过2册的人数是8400人.【点评】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.23.(8.00分)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).【分析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【解答】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是A型矩形纸片的概率为;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.(8.00分)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.【分析】(1)根据反比例函数k值的几何意义可求点A的坐标;(2)根据梯形的面积公式可求点B的坐标,再根据待定系数法可求一次函数y=kx+b的表达式.【解答】解:(1)∵点A在反比例函数y=(x>0)的图象上,AC⊥x轴,AC=OC,∴AC•OC=4,∴AC=OC=2,∴点A的坐标为(2,2);(2)∵四边形ABOC的面积是3,∴(OB+2)×2÷2=3,解得OB=1,∴点B的坐标为(0,1),依题意有,解得.故一次函数y=kx+b的表达式为y=x+1.【点评】考查了反比例函数与一次函数的交点问题,关键是熟练掌握反比例函数k值的几何意义、梯形的面积、待定系数法求一次函数解析式.25.(8.00分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).【分析】过D作DE⊥AB,可得四边形CHED为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH与直角三角形BDE中,设CH=DE=xm,利用锐角三角函数定义表示出AH与BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到结果.【解答】解:过D作DE⊥AB,可得四边形CHED为矩形,∴HE=CD=40m,设CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=xm,在Rt△ACH中,∠BAC=30°,∴AH=xm,由AH+HE+EB=AB=160m,得到x+40+x=160,解得:x=30,即CH=30m,则该段运河的河宽为30m.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.26.(10.00分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=﹣2,x3=1;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB 段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【解答】解:(1)x3+x2﹣2x=0,x(x2+x﹣2)=0,x(x+2)(x﹣1)=0所以x=0或x+2=0或x﹣1=0∴x1=0,x2=﹣2,x3=1;故答案为:﹣2,1;(2)=x,方程的两边平方,得2x+3=x2即x2﹣2x﹣3=0(x﹣3)(x+1)=0∴x﹣3=0或x+1=0∴x1=3,x2=﹣1,当x=﹣1时,==1≠﹣1,所以﹣1不是原方程的解.所以方程=x的解是x=3;(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3m设AP=xm,则PD=(8﹣x)m因为BP+CP=10,BP=,CP=∴+=10∴=10﹣两边平方,得(8﹣x)2+9=100﹣20+9+x2整理,得5=4x+9两边平方并整理,得x2﹣8x+16=0即(x﹣4)2=0所以x=4.经检验,x=4是方程的解.答:AP的长为4m.【点评】本题考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.27.(10.00分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【分析】(1)只要证明FC=FB即可解决问题;(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.想办法证明∠N=∠QMN=30°,∠G=∠GMQ=60°,可得QM=QN,QM=QG;【解答】(1)证明:如图1中,∵EK垂直平分线段BC,∴FC=FB,∴∠CFD=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠CFD.(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.理由:设PP′交GN于K.∵∠G=60°,∠GMN=90°,∴∠N=30°,∵PK⊥KN,∴PK=KP′=PN,∴PP′=PN=PM,∴∠P′=∠PMP′,∵∠NPK=∠P′+∠PMP′=60°,∴∠PMP′=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN,QM=QG,∴QG=QN,∴Q是GN的中点.【点评】本题考查作图﹣复杂作图、线段的垂直平分线的性质、直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10.00分)如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y 轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C 不重合).(1)b=﹣,点B的坐标是(,0);(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.【分析】(1)由点A的坐标,利用二次函数图象上点的坐标特征可求出b的值,代入y=0求出x值,进而可得出点B的坐标;(2)代入x=0求出y值,进而可得出点C的坐标,由点A、C的坐标利用待定系数法可求出直线AC的解析式,假设存在,设点M的坐标为(m,m+2),分B、P在直线AC的同侧和异侧两种情况考虑,由点B、M的坐标结合PM:MB=1:2即可得出点P的坐标,再利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之即可得出结论;(3)作∠CBA的角平分线,交y轴于点E,过点E作EF⊥BC于点F,设OE=n,则CE=2﹣n,EF=n,利用面积法可求出n值,进而可得出==,结合∠AOC=90°=∠BOE可证出△AOC∽△BOE,根据相似三角形的性质可得出∠CAO=∠EBO,再根据角平分线的性质可得出∠CBA=2∠EBO=2∠CAB,此题得解.【解答】解:(1)∵点A(﹣4,0)在二次函数y=﹣+bx+2的图象上,∴﹣﹣4b+2=0,∴b=﹣.当y=0时,有﹣x2﹣x+2=0,解得:x1=﹣4,x2=,∴点B的坐标为(,0).故答案为:﹣;(,0).(2)当x=0时,y=﹣x2﹣x+2=2,∴点C的坐标为(0,2).设直线AC的解析式为y=kx+c(k≠0),将A(﹣4,0)、C(0,2)代入y=kx+c中,得:,解得:,∴直线AC的解析式为y=x+2.假设存在,设点M的坐标为(m,m+2).①当点P、B在直线AC的异侧时,点P的坐标为(m﹣,m+3),∵点P在抛物线y=﹣x2﹣x+2上,∴m+3=﹣×(m﹣)2﹣×(m﹣)+2,整理,得:12m2+20m+9=0.∵△=202﹣4×12×9=﹣32<0,∴方程无解,即不存在符合题意得点P;②当点P、B在直线AC的同侧时,点P的坐标为(m+,m+1),∵点P在抛物线y=﹣x2﹣x+2上,∴m+1=﹣×(m+)2﹣×(m+)+2,整理,得:4m2+44m﹣9=0,解得:m1=﹣,m2=,∴点P的横坐标为﹣2﹣或﹣2+.综上所述:存在点P,使得PM:MB=1:2,点P的横坐标为﹣2﹣或﹣2+.(3)∠CBA=2∠CAB,理由如下:作∠CBA的角平分线,交y轴于点E,过点E作EF⊥BC于点F,如图2所示.∵点B(,0),点C(0,2),∴OB=,OC=2,BC=.设OE=n,则CE=2﹣n,EF=n,由面积法,可知:OB•CE=BC•EF,即(2﹣n)=n,解得:n=.∵==,∠AOC=90°=∠BOE,∴△AOC∽△BOE,∴∠CAO=∠EBO,∴∠CBA=2∠EBO=2∠CAB.【点评】题考查了二次函数图象上点的坐标特征、待定系数法求一次函数解析式、三角形的面积、勾股定理、一次函数图象上点的坐标特征以及相似三角形的判定与性质,解题的关键是:(1)由点A的坐标,利用二次函数图象上点的坐标特征求出b的值;(2)分B、P在直线AC的同侧和异侧两种情况找出点P的坐标;(3)构造相似三角形找出两角的数量关系.。
(完整版)2018年江苏省常州市中考数学试卷(含答案解析版)
2018年江苏省常州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2.00分)(2018•常州)﹣3的倒数是()A.﹣3 B.3 C.﹣13D.132.(2.00分)(2018•常州)已知苹果每千克m元,则2千克苹果共多少元?()A.m﹣2 B.m+2 C.m2D.2m3.(2.00分)(2018•常州)下列图形中,哪一个是圆锥的侧面展开图?()A. B.C.D.4.(2.00分)(2018•常州)一个正比例函数的图象经过(2,﹣1),则它的表达式为()A.y=﹣2x B.y=2x C.y=−12x D.y=12x5.(2.00分)(2018•常州)下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形6.(2.00分)(2018•常州)已知a为整数,且√3<a<√5,则a等于()A.1 B.2 C.3 D.47.(2.00分)(2018•常州)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76°B.56°C.54°D.52°8.(2.00分)(2018•常州)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA 的0刻度固定在半圆的圆心O 处,刻度尺可以绕点O 旋转.从图中所示的图尺可读出sin ∠AOB 的值是( )A .58B .78C .710D .45二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(2.00分)(2018•常州)计算:|﹣3|﹣1= .10.(2.00分)(2018•常州)化简:a a−b −b a−b = .11.(2.00分)(2018•常州)分解因式:3x 2﹣6x +3= .12.(2.00分)(2018•常州)已知点P (﹣2,1),则点P 关于x 轴对称的点的坐标是 .13.(2.00分)(2018•常州)地球与月球的平均距离大约384000km ,用科学计数法表示这个距离为 km .14.(2.00分)(2018•常州)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是 .15.(2.00分)(2018•常州)如图,在▱ABCD 中,∠A=70°,DC=DB ,则∠CDB= .16.(2.00分)(2018•常州)如图,△ABC 是⊙O 的内接三角形,∠BAC=60°,BĈ的长是4π3,则⊙O 的半径是 .17.(2.00分)(2018•常州)下面是按一定规律排列的代数式:a 2,3a 4,5a 6,7a 8,…则第8个代数式是 .18.(2.00分)(2018•常州)如图,在△ABC 纸板中,AC=4,BC=2,AB=5,P 是AC 上一点,过点P 沿直线剪下一个与△ABC 相似的小三角形纸板,如果有4种不同的剪法,那么AP 长的取值范围是 .三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6.00分)(2018•常州)计算:|﹣1|﹣√4﹣(1﹣√2)0+4sin30°.20.(8.00分)(2018•常州)解方程组和不等式组:(1){2x −3y =7x +3y =−1(2){2x −6≥0x +2≥−x21.(8.00分)(2018•常州)如图,把△ABC 沿BC 翻折得△DBC .(1)连接AD ,则BC 与AD 的位置关系是 .(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC 是平行四边形,写出添加的条件,并说明理由.22.(8.00分)(2018•常州)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.23.(8.00分)(2018•常州)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).24.(8.00分)(2018•常州)如图,已知点A在反比例函数y=4x(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.25.(8.00分)(2018•常州)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).26.(10.00分)(2018•常州)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程√2x+3=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB 段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.27.(10.00分)(2018•常州)(1)如图1,已知EK垂直平分BC,垂足为D,AB 与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?28.(10.00分)(2018•常州)如图,二次函数y=﹣13x2+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P 与点A、B、C不重合).(1)b=,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.2018年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2.00分)(2018•常州)﹣3的倒数是()A.﹣3 B.3 C.﹣13D.13【考点】17:倒数.【分析】根据倒数的定义可得﹣3的倒数是﹣1 3.【解答】解:﹣3的倒数是﹣1 3.故选:C.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2.00分)(2018•常州)已知苹果每千克m元,则2千克苹果共多少元?()A.m﹣2 B.m+2 C.m2D.2m【考点】32:列代数式.【专题】1 :常规题型.【分析】根据苹果每千克m元,可以用代数式表示出2千克苹果的价钱.【解答】解:∵苹果每千克m元,∴2千克苹果2m元,故选:D.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.3.(2.00分)(2018•常州)下列图形中,哪一个是圆锥的侧面展开图?()A. B.C.D.【考点】I6:几何体的展开图.【专题】1 :常规题型.【分析】根据圆锥的侧面展开图的特点作答.【解答】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:B.【点评】此题考查了几何体的展开图,注意圆锥的侧面展开图是扇形.4.(2.00分)(2018•常州)一个正比例函数的图象经过(2,﹣1),则它的表达式为()A.y=﹣2x B.y=2x C.y=−12x D.y=12x【考点】F8:一次函数图象上点的坐标特征;FB:待定系数法求正比例函数解析式.【专题】53:函数及其图象.【分析】设该正比例函数的解析式为y=kx(k≠0),再把点(2,﹣1)代入求出k的值即可.【解答】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(2,﹣1),∴2=﹣k,解得k=﹣2,∴这个正比例函数的表达式是y=﹣2x.故选:A.【点评】本题考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.5.(2.00分)(2018•常州)下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形【考点】O1:命题与定理.【专题】55:几何图形.【分析】根据矩形、正方形、平行四边形、菱形的判定即可求出答案.【解答】解:A、一组对边平行且相等的四边形是平行四边形,是假命题;B、三个角是直角的四边形是矩形,是真命题;C、四边相等的四边形是菱形,是真命题;D、有一个角是直角的菱形是正方形,是真命题;故选:A.【点评】本题考查菱形、矩形和平行四边形的判定与命题的真假区别,关键是根据矩形、正方形、平行四边形、菱形的判定解答.6.(2.00分)(2018•常州)已知a为整数,且√3<a<√5,则a等于()A.1 B.2 C.3 D.4【考点】2B:估算无理数的大小.【专题】1 :常规题型.【分析】直接利用√3,√5接近的整数是2,进而得出答案.【解答】解:∵a为整数,且√3<a<√5,∴a=2.故选:B.【点评】此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.7.(2.00分)(2018•常州)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76°B.56°C.54°D.52°【考点】MC:切线的性质.【专题】11 :计算题.【分析】先利用切线的性质得∠ONM=90°,则可计算出∠ONB=38°,再利用等腰三角形的性质得到∠B=∠ONB=38°,然后根据圆周角定理得∠NOA 的度数.【解答】解:∵MN 是⊙O 的切线,∴ON ⊥NM ,∴∠ONM=90°,∴∠ONB=90°﹣∠MNB=90°﹣52°=38°,∵ON=OB ,∴∠B=∠ONB=38°,∴∠NOA=2∠B=76°.故选:A .【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.8.(2.00分)(2018•常州)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA 的0刻度固定在半圆的圆心O 处,刻度尺可以绕点O 旋转.从图中所示的图尺可读出sin ∠AOB 的值是( )A .58B .78C .710D .45 【考点】M5:圆周角定理;T7:解直角三角形.【专题】559:圆的有关概念及性质.【分析】如图,连接AD .只要证明∠AOB=∠ADO ,可得sin ∠AOB=sin ∠ADO=810=45; 【解答】解:如图,连接AD .∵OD 是直径,∴∠OAD=90°,∵∠AOB +∠AOD=90°,∠AOD +∠ADO=90°,∴∠AOB=∠ADO ,∴sin ∠AOB=sin ∠ADO=810=45, 故选:D .【点评】本题考查圆周角定理、直径的性质、锐角三角函数等知识,解题的关键是学会用转化的思想思考问题,属于中考创新题目.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(2.00分)(2018•常州)计算:|﹣3|﹣1= 2 .【考点】15:绝对值;1A :有理数的减法.【专题】11 :计算题;511:实数.【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.10.(2.00分)(2018•常州)化简:a a−b −b a−b = 1 . 【考点】6B :分式的加减法.【专题】11 :计算题.【分析】原式利用同分母分式的减法法则计算即可.【解答】解:原式=a−b a−b =1,故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.11.(2.00分)(2018•常州)分解因式:3x2﹣6x+3=3(x﹣1)2.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(2.00分)(2018•常州)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1).【考点】P5:关于x轴、y轴对称的点的坐标.【专题】46 :几何变换.【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【解答】解:点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).【点评】本题考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.13.(2.00分)(2018•常州)地球与月球的平均距离大约384000km,用科学计数法表示这个距离为 3.84×105km.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的一般形式为:a×10n,在本题中a应为3.84,10的指数为6﹣1=5.【解答】解:384 000=3.84×105km.故答案为3.84×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.(2.00分)(2018•常州)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是 12.【考点】M1:圆的认识;R4:中心对称;X4:概率公式.【专题】11 :计算题.【分析】根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等,根据概率公式计算即可.【解答】解:∵圆中的黑色部分和白色部分关于圆心中心对称,∴圆中的黑色部分和白色部分面积相等,∴在圆内随机取一点,则此点取黑色部分的概率是12, 故答案为:12. 【点评】本题考查的是概率公式、中心对称图形,掌握概率公式是解题的关键.15.(2.00分)(2018•常州)如图,在▱ABCD 中,∠A=70°,DC=DB ,则∠CDB= 40° .【考点】L5:平行四边形的性质.【专题】555:多边形与平行四边形.【分析】根据等腰三角形的性质,平行四边形的性质以及三角形内角和定理即可解决问题.【解答】解:∵四边形ABCD 是平行四边形,∴∠A=∠C=70°,∵DC=DB ,∴∠C=∠DBC=70°,∴∠CDB=180°﹣70°﹣70°=40°,故答案为40°.【点评】本题考查平行四边形的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(2.00分)(2018•常州)如图,△ABC 是⊙O 的内接三角形,∠BAC=60°,BĈ的长是4π3,则⊙O 的半径是 2 .【考点】MA :三角形的外接圆与外心;MN :弧长的计算.【专题】559:圆的有关概念及性质.【分析】连接OB 、OC ,利用弧长公式转化为方程求解即可;【解答】解:连接OB 、OC .∵∠BOC=2∠BAC=120°,BC ̂的长是4π3,∴120⋅π⋅r 180=4π3, ∴r=2,故答案为2.【点评】本题考查三角形的外接圆与外心,圆周角定理,弧长的计算等知识,解题的关键是熟练掌握弧长公式,属于中考常考题型.17.(2.00分)(2018•常州)下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是15a16.【考点】42:单项式.【专题】1 :常规题型.【分析】直接利用已知单项式的次数与系数特点得出答案.【解答】解:∵a2,3a4,5a6,7a8,…∴单项式的次数是连续的偶数,系数是连续的奇数,∴第8个代数式是:(2×8﹣1)a2×8=15a16.故答案为:15a16.【点评】此题主要考查了单项式,正确得出单项式次数与系数的变化规律是解题关键.18.(2.00分)(2018•常州)如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是3≤AP<4.【考点】S7:相似三角形的性质.【专题】55D:图形的相似.【分析】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.【解答】解:如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P 作∠APF=∠B 交AB 于F ,则△APF ∽△ABC ,此时0<AP ≤4;如图所示,过P 作∠CPG=∠CBA 交BC 于G ,则△CPG ∽△CBA ,此时,△CPG ∽△CBA ,当点G 与点B 重合时,CB 2=CP ×CA ,即22=CP ×4,∴CP=1,AP=3,∴此时,3≤AP <4;综上所述,AP 长的取值范围是3≤AP <4.故答案为:3≤AP <4.【点评】本题主要考查了相似三角形的性质,相似三角形的对应角相等,对应边的比相等.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6.00分)(2018•常州)计算:|﹣1|﹣√4﹣(1﹣√2)0+4sin30°.【考点】2C :实数的运算;6E :零指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=1﹣2﹣1+4×12=1﹣2﹣1+2=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8.00分)(2018•常州)解方程组和不等式组:(1){2x −3y =7x +3y =−1(2){2x −6≥0x +2≥−x【考点】98:解二元一次方程组;CB :解一元一次不等式组.【专题】52:方程与不等式.【分析】(1)方程组利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1){2x −3y =7①x +3y =−1②, ①+②得:x=2,把x=2代入②得:y=﹣1,所以方程组的解为:{x =2y =−1;(2){2x −6≥0①x +2≥−x②, 解不等式①得:x ≥3;解不等式②得:x ≥﹣1,所以不等式组的解集为:x ≥3.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.21.(8.00分)(2018•常州)如图,把△ABC 沿BC 翻折得△DBC .(1)连接AD ,则BC 与AD 的位置关系是 BC ⊥AB .(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC 是平行四边形,写出添加的条件,并说明理由.【考点】L6:平行四边形的判定;PB:翻折变换(折叠问题).【专题】14 :证明题.【分析】(1)先由折叠知,AB=BD,∠ACB=∠DBC,进而判断出△AOB≌△DOB,最后用平角的定义即可得出结论;(2)由折叠得出∠ABC=∠DBC,∠ACB=∠DCB,再判断出∠ABC=∠ACB,进而得出∠ACB=∠DBC=∠ABC=∠DCB,最后用两边分别平行的四边形是平行四边形.【解答】解:(1)如图,连接AD交BC于O,由折叠知,AB=BD,∠ACB=∠DBC,∵BO=BO,∴△ABO≌△DBO(SAS),∴∠AOB=∠DOB,∵∠AOB+∠DOB=180°,∴∠AOB=∠DOB=90°,∴BC⊥AD,故答案为:BC⊥AD;(2)添加的条件是AB=AC,理由:由折叠知,∠ABC=∠DBC,∠ACB=∠DCB,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=∠DBC=∠ABC=∠DCB,∴AC∥BD,AB∥CD,∴四边形ABDC是平行四边形.【点评】此题主要考查了折叠的性质,平行四边形的判定,等腰三角形的性质,全等三角形的判定和性质,判断出△ABO≌△DBO(SAS)是解本题的关键.22.(8.00分)(2018•常州)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是100;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.【考点】V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型.【分析】(1)根据2册的人数除以占的百分比即可得到总人数;(2)求出1册的人数是100×30%=30人,4册的人数是100﹣30﹣40﹣20=10人,再画出即可;(3)先列出算式,再求出即可.【解答】解:(1)40÷40%=100(册),即本次抽样调查的样本容量是100,故答案为:100;(2)如图:;(3)12000×(1﹣30%)=8400(人),答:估计该市初中学生这学期课外阅读超过2册的人数是8400人.【点评】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.23.(8.00分)(2018•常州)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).【考点】LB:矩形的性质;X4:概率公式;X6:列表法与树状图法.【专题】1 :常规题型;543:概率及其应用.【分析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【解答】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是A型矩形纸片的概率为1 3;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为46=2 3.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.(8.00分)(2018•常州)如图,已知点A在反比例函数y=4x(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.【考点】G8:反比例函数与一次函数的交点问题.【专题】33 :函数思想.【分析】(1)根据反比例函数k值的几何意义可求点A的坐标;(2)根据梯形的面积公式可求点B的坐标,再根据待定系数法可求一次函数y=kx+b的表达式.【解答】解:(1)∵点A 在反比例函数y=4x(x >0)的图象上,AC ⊥x 轴,AC=OC ,∴AC•OC=4, ∴AC=OC=2,∴点A 的坐标为(2,2); (2)∵四边形ABOC 的面积是3, ∴(OB +2)×2÷2=3, 解得OB=1,∴点B 的坐标为(0,1), 依题意有{2k +b =2b =1,解得{k =12b =1. 故一次函数y=kx +b 的表达式为y=12x +1.【点评】考查了反比例函数与一次函数的交点问题,关键是熟练掌握反比例函数k 值的几何意义、梯形的面积、待定系数法求一次函数解析式.25.(8.00分)(2018•常州)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A 、B 和点C 、D ,先用卷尺量得AB=160m ,CD=40m ,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).【考点】T8:解直角三角形的应用. 【专题】55E :解直角三角形及其应用.【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH +HE +EB=AB 列出方程,求出方程的解即可得到结果.【解答】解:过D作DE⊥AB,可得四边形CHED为矩形,∴HE=CD=40m,设CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=√33xm,在Rt△ACH中,∠BAC=30°,∴AH=√3xm,由AH+HE+EB=AB=160m,得到√3x+40+√33x=160,解得:x=30√3,即CH=30√3m,则该段运河的河宽为30√3m.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.26.(10.00分)(2018•常州)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=﹣2,x3=1;(2)拓展:用“转化”思想求方程√2x+3=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB 段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.【考点】AD:一元二次方程的应用.【专题】3 :解题思想.【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【解答】解:(1)x3+x2﹣2x=0,x(x2+x﹣2)=0,x(x+2)(x﹣1)=0所以x=0或x+2=0或x﹣1=0∴x1=0,x2=﹣2,x3=1;故答案为:﹣2,1;(2)√2x+3=x,方程的两边平方,得2x+3=x2即x2﹣2x﹣3=0(x﹣3)(x+1)=0∴x﹣3=0或x+1=0∴x1=3,x2=﹣1,当x=﹣1时,√2x+3=√1=1≠﹣1,所以﹣1不是原方程的解.所以方程√2x+3=x的解是x=3;(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3m设AP=xm,则PD=(8﹣x)m因为BP+CP=10,BP=√AP2+AB2,CP=√CD2+PD2∴√9+x2+√(8−x)2+9=10∴√(8−x)2+9=10﹣√9+x2两边平方,得(8﹣x)2+9=100﹣20√9+x2+9+x2整理,得5√x2+9=4x+9两边平方并整理,得x2﹣8x+16=0即(x﹣4)2=0所以x=4.经检验,x=4是方程的解.答:AP的长为4m.【点评】本题考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.27.(10.00分)(2018•常州)(1)如图1,已知EK垂直平分BC,垂足为D,AB 与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【考点】KG:线段垂直平分线的性质;KP:直角三角形斜边上的中线;N3:作图—复杂作图.【专题】13 :作图题.【分析】(1)只要证明FC=FB即可解决问题;(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.想办法证明∠N=∠QMN=30°,∠G=∠GMQ=60°,可得QM=QN,QM=QG;【解答】(1)证明:如图1中,∵EK垂直平分线段BC,∴FC=FB,∴∠CFD=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠CFD.(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.理由:设PP′交GN于K.∵∠G=60°,∠GMN=90°, ∴∠N=30°, ∵PK ⊥KN ,∴PK=KP′=12PN ,∴PP′=PN=PM , ∴∠P′=∠PMP′,∵∠NPK=∠P′+∠PMP′=60°, ∴∠PMP′=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°, ∴QM=QN ,QM=QG , ∴QG=QN ,∴Q 是GN 的中点.【点评】本题考查作图﹣复杂作图、线段的垂直平分线的性质、直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10.00分)(2018•常州)如图,二次函数y=﹣13x 2+bx +2的图象与x 轴交于点A 、B ,与y 轴交于点C ,点A 的坐标为(﹣4,0),P 是抛物线上一点(点P 与点A 、B 、C 不重合).(1)b= ﹣56 ,点B 的坐标是 (32,0) ;(2)设直线PB 与直线AC 相交于点M ,是否存在这样的点P ,使得PM :MB=1:2?若存在求出点P 的横坐标;若不存在,请说明理由;(3)连接AC 、BC ,判断∠CAB 和∠CBA 的数量关系,并说明理由.。
2017-2018年江苏省常州市九年级上学期期中数学试卷及参考答案
2017-2018学年江苏省常州市九年级(上)期中数学试卷一、选择题(共8小题,每小题2分,满分16分)1.(2分)下列轴对称图形中,对称轴最少的图形的是()A.B.C.D.2.(2分)一元二次方程x2﹣2x﹣1=0的根的情况为()A.只有一个实数根 B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根3.(2分)下列语句中,正确的是()A.长度相等的两条弧是等弧B.相等的圆周角所对的弧相等C.相等的弧所对的圆心角相等D.平分弦的直径垂直于弦4.(2分)正三角形的中心是该三角形的()A.三条高线的交点 B.三条角平分线的交点C.三边垂直平分线的交点D.以上说法都正确5.(2分)已知⊙O的半径是6,圆心O到直线l的距离是3,则直线l与⊙O的位置关系是()A.相切B.相交C.相离D.无法确定6.(2分)一个长方形的面积为210cm2,宽比长少7cm.设它的宽为xcm,则可得方程()A.2(x+7)+2x=210 B.x+(x+7)=210 C.x(x﹣7)=210 D.x(x+7)=210 7.(2分)已知正方形的周长为8,那么该正方形的外接圆的半径长为()A.2 B.C.4 D.8.(2分)有两个一元二次方程:①ax2+bx+c=0,②cx2+bx+a=0,其中a+c=0()A.如果方程①有两个不相等的实数根,那么方程②也有两个不相等的实数根B.如果方程①和方程②有一个相同的实数根,那么这个根必是x=1C.如果4是方程①的一个根,那么是方程②的一个根D.如果方程①有两根符号相异,那么方程②的两根符号也相异二、填空题(共10小题,每小题2分,满分20分)9.(2分)将一元二次方程(2﹣x)(x+1)=3化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是.10.(2分)已知⊙O的半径长为10cm,OP=16cm,那么点P在⊙O.(填“上”、“内部”或“外部”)11.(2分)一个数的平方等于这个数的三倍这个数是.12.(2分)若扇形的半径为3cm,该扇形的弧长为,则此扇形的面积是cm2.(结果保留π)13.(2分)已知关于x的方程x2+3x+a=0的一个根为﹣4,则另一个根为.14.(2分)如图,AB是⊙O的直径,点D是⊙O上一点,且∠ADC=40°,则∠BAC的度数为.15.(2分)如图,⊙O的半径长为6,∠ACB=60°,则AB的长为.16.(2分)某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是.17.(2分)△ABC中,AB=AC=10,BC=12,则△ABC的内切圆的半径长为.18.(2分)如图,△ABC中,∠ACB=90°,AC=BC=4,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长为.三、解答题(共7小题,满分64分)19.(16分)解下列方程:(1)2(x﹣3)2=5(2)2x2﹣4x+1=0(3)2x2﹣3x﹣3=0(4)(x﹣3)2﹣x+3=0.20.(6分)如图,已知△ABC是锐角三角形.(1)利用直尺与圆规画出△ABC的外接圆⊙O.(保留作图痕迹)(2)利用直尺与圆规画出(1)中经过点B的⊙O的切线l.(保留作图痕迹)21.(7分)已知关于x的方程x2+8x+12﹣a=0有两个不相等的实数根.(1)求a的取值范围;(2)当a取满足条件的最小整数时,求出方程的解.22.(8分)如图,△ABC中,∠C=90°,BC=6,AC=4.点P、Q分别从点A、B 同时出发,点P沿A→C的方向以每秒1个单位长的速度向点C运动,点Q沿B→C的方向以每秒2个单位长的速度向点C运动.当其中一个点先到达点C时,点P、Q停止运动.当四边形ABQP的面积是△ABC面积的一半时,求点P运动的时间.23.(8分)如图,△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,点E为BC的中点,连接OD、DE.(1)求证:OD⊥DE.(2)若∠BAC=30°,AB=8,求阴影部分的面积.24.(9分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?25.(10分)如图1,在平面直角坐标系xOy中,直线l经过点O,点A(0,6),经过点A、O、B三点的⊙P与直线l相交于点C(7,7),且CA=CB.(1)求点B的坐标;(2)如图2,将△AOB绕点B按顺时针方向旋转90°得到△A′O′B.判断直线A′O′与⊙P的位置关系,并说明理由.2017-2018学年江苏省常州市九年级(上)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.(2分)下列轴对称图形中,对称轴最少的图形的是()A.B.C.D.【解答】解:A、有三条对称轴,B、有三条对称轴,C、有一条对称轴,D、有四条对称轴,综上所述,对称轴条数最少的是C选项图形.故选:C.2.(2分)一元二次方程x2﹣2x﹣1=0的根的情况为()A.只有一个实数根 B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根【解答】解:∵a=1,b=﹣2,c=﹣1,∴△=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,所以原方程有两个不相等的实数.故选:B.3.(2分)下列语句中,正确的是()A.长度相等的两条弧是等弧B.相等的圆周角所对的弧相等C.相等的弧所对的圆心角相等D.平分弦的直径垂直于弦【解答】解:A、长度相等的两条弧不一定为等弧,所以A选项错误;B、在同圆或等圆中,相等的圆周角所对的弧相等,所以B选项错误;C、相等的弧所对的圆心角相等,所以C选项正确;D、平分弦(非直径)的直径垂直于弦,所以D选项错误.故选:C.4.(2分)正三角形的中心是该三角形的()A.三条高线的交点 B.三条角平分线的交点C.三边垂直平分线的交点D.以上说法都正确【解答】解:正三角形的中心是该三角形的三条高的交点,也是三条角平分线的交点,也是三边垂直平分线的交点,故选:D.5.(2分)已知⊙O的半径是6,圆心O到直线l的距离是3,则直线l与⊙O的位置关系是()A.相切B.相交C.相离D.无法确定【解答】解:∵⊙O的半径是6,圆心O到直线l的距离是3,6>3,∴直线l与⊙O相交.故选:B.6.(2分)一个长方形的面积为210cm2,宽比长少7cm.设它的宽为xcm,则可得方程()A.2(x+7)+2x=210 B.x+(x+7)=210 C.x(x﹣7)=210 D.x(x+7)=210【解答】解:根据长方形的宽为xcm,可得长为(x+7)cm,根据题意得:x(x+7)=210.故选:D.7.(2分)已知正方形的周长为8,那么该正方形的外接圆的半径长为()A.2 B.C.4 D.【解答】解:∵正方形的周长为8,∴边长AB=2,∵四边形是正方形,∴∠AOB=90°,∴OA=AB×sin45°=,故选:B.8.(2分)有两个一元二次方程:①ax2+bx+c=0,②cx2+bx+a=0,其中a+c=0()A.如果方程①有两个不相等的实数根,那么方程②也有两个不相等的实数根B.如果方程①和方程②有一个相同的实数根,那么这个根必是x=1C.如果4是方程①的一个根,那么是方程②的一个根D.如果方程①有两根符号相异,那么方程②的两根符号也相异【解答】解:A、方程①有两个不相等的实数根,则△=b2﹣4ac>0,所以方程②也有两个不相等的实数根,所以A选项的结论正确;B、因为方程①和方程②有一个相同的根,则(a﹣c)x2=a﹣c,解得x=±1,所以B选项的结论错误;C、因为4是方程①的一个根,则16a+4b+c=0,即c+b+a=0,所以是方程②的一个根,所以C选项的结论正确;D、方程①有两根符号相异,则<0,所以<0,所以方程②的两根符号也相异,所以D选项的结论正确.故选:B.二、填空题(共10小题,每小题2分,满分20分)9.(2分)将一元二次方程(2﹣x)(x+1)=3化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是x2﹣x+1=0.【解答】解:将一元二次方程(2﹣x)(x+1)=3化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是x2﹣x+1=0,故答案为:x2﹣x+1=0.10.(2分)已知⊙O的半径长为10cm,OP=16cm,那么点P在⊙O外部.(填“上”、“内部”或“外部”)【解答】解:∵OP=16>10,∴点P在⊙O外部.故答案为:外部11.(2分)一个数的平方等于这个数的三倍这个数是0或3.【解答】解:设这个数是x,根据题意,得x2=3x,即x2﹣3x=0,x(x﹣3)=0解得x=0或x=3.即这个数是0或3,故答案为0或3.12.(2分)若扇形的半径为3cm,该扇形的弧长为,则此扇形的面积是πcm2.(结果保留π)【解答】解:∵扇形的半径为3cm,该扇形的弧长为,∴扇形的面积=3×=π(cm2),故答案为:π.13.(2分)已知关于x的方程x2+3x+a=0的一个根为﹣4,则另一个根为1.【解答】解:设方程的另一个根为x1,根据题意得:x1+(﹣4)=﹣3,解得:x1=1.故答案为:1.14.(2分)如图,AB是⊙O的直径,点D是⊙O上一点,且∠ADC=40°,则∠BAC的度数为50°.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°.又∵∠B=∠D=40°,∴∠BAC=50°.故答案为:50°.15.(2分)如图,⊙O的半径长为6,∠ACB=60°,则AB的长为6.【解答】解:连接OA,OB,过O点作OE⊥AB于E,∵∠ACB=60°,∴∠AOB=120°,∴∠AOE=60°,∵OE⊥AB,OA=6,∴OE=3,AE=3,∴AB=6,16.(2分)某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是15%.【解答】解:设该药品平均每次降价的百分率是x,根据题意得64×(1﹣x)(1﹣x)=36,整理得64×(1﹣x)2=36,解得x=0.15或1.75(不合题意,舍去);即该药品平均每次降价的百分率是15%.故答案为:15%.17.(2分)△ABC中,AB=AC=10,BC=12,则△ABC的内切圆的半径长为3.【解答】解:设△ABC的内切圆为⊙O,切点分别为E,D,F,AD为BC边上的高,∵AB=AC=10,BC=12,∴AD==8,则AD×BC=r(AB+AC+BC)×8×12=r(10+10+12),解得:r=3.故答案为:3.18.(2分)如图,△ABC中,∠ACB=90°,AC=BC=4,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长为π.【解答】解:取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC=4,∴AB=BC=4,∴OC=AB=2,OP=AB=2,∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF为正方形,EF=OC=2,∴M点的路径为以EF为直径的半圆,∴点M运动的路径长=•2π•=π.故答案为π.三、解答题(共7小题,满分64分)19.(16分)解下列方程:(1)2(x﹣3)2=5(2)2x2﹣4x+1=0(3)2x2﹣3x﹣3=0(4)(x﹣3)2﹣x+3=0.【解答】解:(1)(x﹣3)2=,∴x﹣3=±,∴x1=3+,x2=3﹣.(2)∵a=2,b=﹣4,c=1,∴△=16﹣8=8>0,∴x==x1=,x2=(3)∵a=2,b=﹣3,c=﹣3,∴△=9+24=33>0,∴x=x1=,x2=(4)(x﹣3)(x﹣3﹣1)=0,∴x﹣3=0或x﹣4=0,∴x1=3,x2=4.20.(6分)如图,已知△ABC是锐角三角形.(1)利用直尺与圆规画出△ABC的外接圆⊙O.(保留作图痕迹)(2)利用直尺与圆规画出(1)中经过点B的⊙O的切线l.(保留作图痕迹)【解答】解:(1)如图⊙O即为所求.(2)如图直线l,即为⊙O的切线.21.(7分)已知关于x的方程x2+8x+12﹣a=0有两个不相等的实数根.(1)求a的取值范围;(2)当a取满足条件的最小整数时,求出方程的解.【解答】解:(1)∵一元二次方程x2+8x+12﹣a=0有两个不相等的实数根,∴△=82﹣4(12﹣a)=4a+16>0,∴a>﹣4;(2)a满足条件的最小值为a=﹣3,此时方程为x2+8x+15=0,解得x1=﹣3,x2=﹣5.22.(8分)如图,△ABC中,∠C=90°,BC=6,AC=4.点P、Q分别从点A、B 同时出发,点P沿A→C的方向以每秒1个单位长的速度向点C运动,点Q沿B→C的方向以每秒2个单位长的速度向点C运动.当其中一个点先到达点C时,点P、Q停止运动.当四边形ABQP的面积是△ABC面积的一半时,求点P运动的时间.【解答】解:设点P运动的时间为t秒,则PC=4﹣t,CQ=6﹣2t,根据题意得:×(4﹣t)×(6﹣2t)=××4×6,整理得:t2﹣7t+6=0,解得:t1=1,t2=6.∵6﹣2t≥0,∴t≤3,∴t=1.答:点P运动的时间为1秒.23.(8分)如图,△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,点E为BC的中点,连接OD、DE.(1)求证:OD⊥DE.(2)若∠BAC=30°,AB=8,求阴影部分的面积.【解答】(1)证明:连接DB.∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=90°,∵点E是BC的中点,∴DE=CE=BC,∴∠EDC=∠C,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠A+∠C=90°,∴∠ADO+∠EDC=90°,∴∠ODE=90°,∴OD⊥DE;(2)∵AB=8,∠BAC=30°,∴AD=4,阴影部分的面积=﹣×4×2=π﹣4.24.(9分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?【解答】解:设此时销售单价为(80﹣x)元/件,则每天的销售量为(50+5x)件,根据题意得:(80﹣x﹣40)(50+5x)=3000,整理得:x2﹣30x+200=0,解得:x1=10,x2=20,∵80﹣x≥65,∴x≤15,∴x=10,∴80﹣x=80﹣10=70.答:此时销售单价为70元/件.25.(10分)如图1,在平面直角坐标系xOy中,直线l经过点O,点A(0,6),经过点A、O、B三点的⊙P与直线l相交于点C(7,7),且CA=CB.(1)求点B的坐标;(2)如图2,将△AOB绕点B按顺时针方向旋转90°得到△A′O′B.判断直线A′O′与⊙P的位置关系,并说明理由.【解答】(1)过点C作CE⊥x轴于点E,过点C作CF⊥y轴于点F,∴∠CFO=∠CEO=∠AOB=90°,∴四边形FOEC是矩形,∴∠FCE=90°,∴∠ACE+∠ACF=90°由点C(7,7)得:CF=CE=7,∴∠AOC=∠BOC=45°,OF=CE=7,OE=CF=7,∴∠CBA=∠COA=45°,∠CAB=∠COB=45°,∴∠CAB=∠CBA,∴AC=BC,∵点A(0,6),∴OA=6,∴AF=OF﹣OA=7﹣6=1,∵∠AOB=90°,∴AB为⊙P的直径,∴∠ACB=90°,∴∠ACE+∠BCE=90°,∴∠ACF=∠BCE,在Rt△ACF和Rt△BCE中,,∴Rt△ACF≌Rt△BCE,∴BE=AF=1,∴OB=OE+EB=7+1=8,∴点B(8,0);(2)直线A′O′与⊙P相切.如图2,由AB是⊙P的直径可知:AB的中点即为圆心P,取OB的中点R,连接RP并延长交A′O′的延长线于点Q,∴PR∥OA,PR=OA=3,∵∠AOB=90°,∴∠QRB=90°,∵△A′O′B′由△AOB绕点B按顺时针方向旋转90°得到,∴∠OBO′=90°,BO′=BO=8,∵∠AO′B=90°,∴∠BO′Q=90°,即RP⊥A′O′,∴四边形RBO′Q是矩形,∴∠O′QR=90°,RQ=BO′=8,∴PQ=RQ﹣PR=8﹣3=5,∵⊙P的直径AB=10,∴圆心P到直线A′O′的距离等于半径长5,∴直线A′O′与⊙P相切.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
江苏省常州市九年级上学期期中数学试卷
江苏省常州市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共7题;共14分)1. (2分)(2018·鄂州) 下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学计数法表示为3.03×108元.③若反比例函数(m 为常数),当x>0时,y随x增大而增大,则一次函数y=-2 x + m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y = x2中偶函数的个数为2个.A . 1B . 2C . 3D . 42. (2分) (2017九上·顺义月考) 若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A . k<5B . k<5,且k≠1C . k≤5,且k≠1D . k>53. (2分)如果=,那么的值是()A .B .C .D .4. (2分) (2016九上·无锡期末) 在Rt△ABC中,∠C=90°,若AC=2,BC=1,则tanA的值是()A .B . 2C .D .5. (2分)党的十六大提出全面建设小康社会,加快推进社会主义现代化,力争国民生产总值到2020年比2000年翻两番.在本世纪的前20年(2001~2020年),要实现这一目标,以10年为单位计算,设每10年的国民生产总值的增长率都是x,那么x满足的方程为()A . (1+x)2=2B . (1+x)2=4C . 1+2x=2D . (1+x)+2(1+x)=46. (2分) (2018九上·南召期中) 用配方法解方程,下列变形正确的是()A .B .C .D .7. (2分) (2015九下·义乌期中) 如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果 = ,那么 =()A .B .C .D .二、填空题 (共8题;共9分)8. (1分)计算:× =________.9. (1分) (2016九上·龙海期中) 已知关于x的一元二次方程(a﹣2)x2+x+a2﹣4=0的一个根是0,则a 的值为________.10. (1分) (2020九上·石城期末) 如图,直线y= x+2与x轴交于点A,与y轴交于点B,点D在x轴的正半轴上OD=0A,过点D作CD⊥x轴交直线AB于点C,若反比例函数y= (k≠0)的图象经过点C,则k的值为________ 。
2018届九年级数学上期中试题含答案
2018届九年级数学上学期期中试题(考试时间:120分钟 满分:150分)请注意:1.所有试题的答案均填写在答题卡上,答案写在试卷上无效.2.作图必须用2B 铅笔,并请加黑加粗.一、选择题(本大题共有6小题,每小题3分,共18分)1.有下列四个命题:①直径是弦;②经过三点一定可以作圆;③三角形的内心到三角形三边的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ▲ )A .4个B .3个C .2个D .1个 2.某服装销售商在进行市场占有率的调查时,他最应该关注的是( ▲ ) A .服装型号的平均数 B .服装型号的众数 C .服装型号的中位数 D .最小的服装型号 3.某科普小组有5名成员,身高分别为(单位:cm ):160,165,170,163,167.增加1名身高为165 cm 的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( ▲ )A .平均数不变,方差不变B .平均数不变,方差变大C .平均数不变,方差变小D .平均数变小,方差不变 4.一个不透明的袋子里装有6个只有颜色可以不同的球,其中4个红球,2个白球.从袋中任意摸出1个球,则摸出的球是红球的概率为( ▲ ) A. 21B. 61 C. 31 D. 32 5.二次函数1)1(2+-=x y 图像的顶点坐标是( ▲ )A .(1,1)B .(-1,1)C .(1,-1)D .(-1,-1)6.二次函数122+-=x x y 的图像与坐标轴的交点个数是( ▲ ) A .0 B .1 C .2 D .3 二、填空题(本大题共有10小题,每小题3分,共30分)7.已知一组数据2,2,3,4,5,5,5.这组数据的中位数是 ▲ . 8.如果一组数据-1,0,3,4,6,x 的平均数是3,那么x 等于 ▲ . 9.样本方差计算式()()()[]222212303030801-+⋅⋅⋅+-+-=n x x x S 中n = ▲ . 10.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是 ▲ .11.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是 ▲ .12.如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC ,若∠AOB =120°, 则∠ACB = ▲ °.13.扇形的半径为3 cm ,弧长为2π cm ,则该扇形的面积为 ▲ cm 2. 14.抛物线)3)(2(+-=x x y 与y 轴的交点坐标是 ▲ .15.某同学在用描点法画二次函数y =ax 2+bx +c 图像时,列出了下面的表第16题图y第11题图第12题图格:由于粗心,他算错了一个y值,则这个错误的数值是▲ .16.如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0)、(2,5)、(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为▲ .三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(本题满分12分)(1)已知二次函数c=2的图像经过点(-1,5)和(2,8),求这y+ax个函数的表达式;(2)已知二次函数my+=2的图像与x轴只有一个公共点,求m的-xmx值.18.(本题满分8分)某品牌手机销售公司有营销员14人,销售部为制定营销人员月销售手机定额,统计了这14人某月的销售量如下(单位:台):(1)求这14位营销员该月销售该品牌手机的平均数、中位数和众数.(2)销售部经理把每位营销员月销售量定为90台,你认为是否合理?为什么?19.(本题满分8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从 3 篇不同的文章中抽取一篇参加比赛.抽签规则是:在 3 个相同的标签上分别标注字母A、B、C,各代表 1 篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.20.(本题满分8分)某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有6次3分球未投中.(1)该运动员去年的比赛中共投中多少个3分球?(2)在其中的一场比赛中,该运动员3分球共出手16次,小明说,该运动员这场比赛中一定投中了4个3分球,你认为小明的说法正确吗?请说明理由.21.(本题满分10分)如图,在⊙O的内接四边形ABCD中,AB=AD,∠C =110°.若点PP的度数.第21题图第22题图DA B22.(本题满分10分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,∠CAD=∠ABC.判断直线AD与⊙O的位置关系,并说明理由.23.(本题满分10分)如图,⊙O的直径ABC为AB延长线上一点,CD与⊙O相切于点过点B作弦BE∥CD,连接DE.第23题图BE的中点;(1)求证:点D为⌒(2)若∠C=∠E,求四边形BCDE的面积.24.(本题满分10分)某商场以每件42元的价格购进一种服装,由试销知,每天的销量t(件)与每件的销售价x(元)之间的函数关系为xt3=.204-(1)试写出每天销售这种服装的毛利润y (元)与每件销售价x(元)之间的函数表达式(毛利润=销售价-进货价);(2)每件销售价多少元才能使每天的毛利润最大?最大毛利润是多少?25.(本题满分12分)如图, 在Rt△ABC中,∠B=90°,AB= 3 cm,BC= 4 cm.点P从点A出发,以1 cm/s的速度沿AB运动;同时,点Q从点B出发,以2 cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设动点运动的时间为t (s) .(1)试写出△PBQ的面积S (cm2)与 t (s)之间的函数表达式;(2)当 t 为何值时,△PBQ 的面积S 为2 cm 2;(3)当 t 为何值时,△PBQ 的面积最大?最大面积是多少?26.(本题满分14分)在平面直角坐标系中,二次函数c bx ax y ++=2的图像开口向上,且经过点A (0,23).(1)若此函数的图像经过点(1,0)、(3,0),求此函数的表达式; (2)若此函数的图像经过点B (2,21-),且与x 轴交于点C 、D .①填空:=b (用含a 的代数式表示); ②当2CD 的值最小时,求此函数的表达式.2017年秋学期期中考试九年级数学参考答案与评分标准一、选择题(本大题共有6小题,每小题3分,共18分) 1.B ;2.B ;3.C ;4.D ;5.A ;6.C.二、填空题(本大题共有10小题,每小题3分,共30分)7. 4; 8. 6; 9. 80; 10. 52; 11. 53; 12. 60; 13. 3π; 14. (0,-6); 15. -5; 16 . (1,4)、(6,5)、(7,4).三、解答题(共10题,102分.下列答案仅供参考........,有其它答案或解法.......,参.照标准给分......) 17.(本题满分12分)(1)(本小题6分)解:将(-1,5)和(2,8)分别代入c ax y +=2,得⎩⎨⎧=+=+845c a c a (3分) 解得41==c a (5分) ∴ y =x 2+4; (6分)(2)(本小题6分)解:04)(422=--=-m m ac b (2分) 得 042=-m m (4分) 解得 0=m 或4=m (6分) 18.(本题满分8分)解:(1)平均数:90台 中位数:80台 众数:80台. (6分) (2)不合理,因为若将每位营销员月销售量定为90台,则多数营销员可能完不成任务. (8分)19.(本题满分8分) 解:(4分)所有等可能的结果:(A ,A )、(A ,B )、(A ,C )、(B ,A )、(B ,B )、(B ,C )、(C ,A )、(C ,B )、(C ,C ). (6分)∴P(甲、乙抽中同一篇文章)3193==. (8分)20. (本题满分8分)解:(1)设该运动员共出手x个3分球,(1分)开始A B C乙 A B C A B C A B C甲根据题意,得4075.0x =6,(3分)解得x=320, 0.25x=0.25×320=80(个),(4分)答:运动员去年的比赛中共投中80个3分球; (5分)(2)小明的说法不正确;(6分)3分球的命中率为0.25,是相对于40场比赛来说的,而在其中的一场比赛中,虽然该运动员3分球共出手16次,但是该运动员这场比赛中不一定是投中了4个3分球. (8分) 21.(本题满分10分)解:连接BD . (1分) ∵四边形ABCD 是⊙O 的内接四边形, ∴∠BAD +∠C =180°.∴∠BAD =180°-∠C =180°-110°=70°. (在△ABD 中,∵AB =AD ,∠BAD =70°,∴∠ABD =∠ADB = 55°. (6分) ∵又四边形APBD 是⊙O 的内接四边形, ∴∠P +∠ADB =180°.∴∠P =180°-∠ADB =180°-55°=125°. (10分) 22.(本题满分10分)解:直线AD 与⊙O 相切. (2分)D A B∵AB 是⊙O 的直径,∴∠ACB = 90°. (4分) ∴∠ABC +∠BAC = 90°. (6分) 又∵∠CAD =∠ABC ,∴∠CAD +∠BAC = 90°. (8分) ∴直线AD 与⊙O 相切. (10分) 23.(本题满分10分)(1)证明:连接OD 交BE 于F ,∵CD 与⊙O 相切于点D ,∴OD ⊥DC∵BE ∥CD ,∴∠OFB =∠ODC =90∴OD ⊥BE ,∴⌒BD =⌒DE ,∴点D (2)解:连接OE .∵BE ∥CD ,∴∠C =∠ABE .∵∠C =∠BED ,∴∠ABE =∠BED ,∴DE ∥CB , ∴四边形BCDE 是平行四边形.∵∠ABE =∠BED ,∴∠AOE =∠BOD ,∴⌒AE =⌒BD . ∵⌒BD =⌒DE ,∴⌒BD =⌒DE =⌒AE ,∴∠BOD =∠DOE =∠AOE =60°.∴△DOE 为等边三角形. 又∵OD ⊥BE ,∴DF =OF =21OD =3,BF =EF . 在Rt △OEF 中,EF =22OF OE -=2236-=33,BE =36.∴四边形BCDE 的面积=DF BE ⋅=336⨯=318. (10分)24.(本题满分10分)解:(1))2043)(42(+--=x x y ; (4分) (2))2043)(42(+--=x x y (5分)856833032-+-=x x (7分)当x = 55时,y 有最大值,最大值是507. (9分)答:每件销售价是55元才能使每天的毛利润最大,最大毛利润是507元.(10分)25.(本题满分12分)解:(1)S △PBQ PB BQ ⋅=21()t t -⨯⨯=3221t t 32+-=; (4分)(2)232=+-=t t s 且0≤ t ≤2, 解得1=t 或1=t ,∴当1=t s 或2 s 时,△PBQ 的面积为2 cm 2 ; (8分)(3)∵49)23(322+--=+-=t t t S 且0≤ t ≤2 , ∴当23=t s 时,△PBQ 的面积最大,最大值是49cm 2. (12分) 26.(本题满分14分)解:(1)将(0,23)、(1,0)、(3,0)分别代入c bx ax y ++=2,得⎪⎪⎩⎪⎪⎨⎧=++=++=039023c b a c b a c 解得⎪⎪⎩⎪⎪⎨⎧=-==23221c b a ∴此时函数的表达式是:232212+-=x x y (5分)(2)① 填空:=b 12--a (用含a 的代数式表示); (9分)② 将12--=a b 代入232++=bx ax y ,得 23)12(2++-=x a ax y .设点C (1x ,0)、D (2x ,0).得a a x x 1221+=+,a x x 2321=. ∴ 2CD ()221x x -=4212+-=a a 3)11(2+-=a.∴当1=a 时,2CD 的值最小,最小值是3. ∴此时函数的表达式是:2332+-=x x y . (14分)。
2018年九年级(上)期中数学试题(含答案)- 精品
2018—2018学年度第一学期期中考试九年级数学试题(三年制)题号一二三总分16 17 18 19 20 21 22 23 24 25得分选择题答题栏题号 1 2 3 4 5 6 7 8 9 10答案一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内)1.8的立方根是A.2B. ±2C. 4D. ±42.下列图形中,是中心对称图形的是A.B.C.D.3.化简154122⨯+的结果是A.52B.63C.3D.534.估算171+的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.一元二次方程240x x c++=中,0c<,该方程的解的情况是A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.不能确定6.已知:如图所示,正方形ABCD是⊙O的内接四边形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是A.45°B.60°C.75°D.90°九年级数学试题(三年制)第1页(共8页)(第6题图)POBCDACD7. 用配方法解方程x 2-2x -5=0时,原方程应变形为A .(x +1)2=6B .(x +2)2=9C . (x -1)2=6D .(x -2)2=98. 如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是A .3,2B . -3,-2C . 3,-2D . -3,29. 若关于x 的一元二次方程 (k -1)x 2+x -k 2=0的一个根为1,则k 的值为 A .-1 B .0 C .1 D .0或1 10. 如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O , 则折痕AB 的长为 A .2cmB .3cmC .23cmD .25cm二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上)11.函数y =11-+x x 的自变量x 的取值范围为 . 12.如图,已知平行四边形ABCD 的两条对角线交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的坐标为 .13.点A (-2,6)到原点的距离是 .14.如图所示,若⊙O 的半径为13cm ,点p 是弦AB 上一动点,且到圆心的最短距离为5 cm ,则弦AB 的长为________cm .15.已知:如图,点E 、F 是半径为5cm 的⊙O 上两定点,点P 是直径AB 上的一动点,AB ⊥OF ,∠AOE =30°,则点P 在AB 上移动的过程中,PE +PF 的最小值是 cm .九年级数学试题(三年制)第2页(共8页)(第15题图)(第10题图)OAB(第14题图)OABP(第15题图)OABEFP (第12题图)y xABCDO三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤)16.(本题满分6分)计算:①3 (12+8)②(24-21) +(81+6)17.(本题满分4分)解方程:3x (x -1)=2(x -1)九年级数学试题(三年制)第3页(共8页)18.(本题满分4分)如图,已知点A B ,的坐标分别为(0,0)(4,0),将ABC △绕点A 按逆时针方向旋转90°得到AB C ''△. (1)画出AB C ''△; (2)写出点C '的坐标; (3)求BB '的长.19.(本题满分4分)若关于x 的一元二次方程x 2+2kx +(k 2+2k -5)=0有两个实数根,分别是x 1,x 2 , ①求k 的取值范围.②若有x 1+x 2 =x 1x 2,则k 的值是多少?九年级数学试题(三年制)第4页(共8页)yO x123451234-1-2-3-4-1-2-3A B C65(第18题图)20.(本题满分4分)阅读下列材料:211+=)12)(21(12-+-=2-1,321+=)23)(32(23-+-=3-2,231+=)32)(23(32-+-=2-3,521+=)25)(52(25-+-=5-2.读完以上材料,请你计算下列各题: (1)1031+= .(2)11++n n = .(3)211++321++231++…+201120101+= .21.(本题满分5分)如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上任意一点(不与点A 、B重合),连接CO 并延长CO 交⊙O 于点D ,连接AD . (1)弦AB =________(结果保留根号); (2)当∠D =20°时,求∠BOD 的度数.九年级数学试题(三年制)第5页(共8页)OBDAC(第21题图)22.(本题满分6分)如图,要设计一幅宽为12cm ,长为20cm 的图案,其中有一横一竖的彩条,横竖彩条的宽度相等,如果要使彩条所占面积是图案面积的四分之一,应如何设计彩条的宽度?23.(本题满分7分)阅读理解:我们把d c b a称作二阶行列式,规定它的运算法则为bc ad dc ba -=.。
【真题】江苏省常州市2018年中考数学试题含答案解析(Word版)
2018年江苏省常州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2.00分)﹣3的倒数是()A.﹣3 B.3 C.﹣ D.2.(2.00分)已知苹果每千克m元,则2千克苹果共多少元?()A.m﹣2 B.m+2 C.D.2m3.(2.00分)下列图形中,哪一个是圆锥的侧面展开图?()A. B.C.D.4.(2.00分)一个正比例函数的图象经过(2,﹣1),则它的表达式为()A.y=﹣2x B.y=2x C.D.5.(2.00分)下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形6.(2.00分)已知a为整数,且,则a等于()A.1 B.2 C.3 D.47.(2.00分)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76°B.56°C.54°D.52°8.(2.00分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(2.00分)计算:|﹣3|﹣1=.10.(2.00分)化简:=.11.(2.00分)分解因式:3x2﹣6x+3=.12.(2.00分)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是.13.(2.00分)地球与月球的平均距离大约384000km,用科学计数法表示这个距离为km.14.(2.00分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.15.(2.00分)如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB=.16.(2.00分)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是.17.(2.00分)下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是.18.(2.00分)如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6.00分)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.20.(8.00分)解方程组和不等式组:(1)(2)21.(8.00分)如图,把△ABC沿BC翻折得△DBC.(1)连接AD,则BC与AD的位置关系是.(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.22.(8.00分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.23.(8.00分)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).24.(8.00分)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.25.(8.00分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).26.(10.00分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB 段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.27.(10.00分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?28.(10.00分)如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y 轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C 不重合).(1)b=,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.2018年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2.00分)﹣3的倒数是()A.﹣3 B.3 C.﹣ D.【分析】根据倒数的定义可得﹣3的倒数是﹣.【解答】解:﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2.00分)已知苹果每千克m元,则2千克苹果共多少元?()A.m﹣2 B.m+2 C.D.2m【分析】根据苹果每千克m元,可以用代数式表示出2千克苹果的价钱.【解答】解:∵苹果每千克m元,∴2千克苹果2m元,故选:D.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.3.(2.00分)下列图形中,哪一个是圆锥的侧面展开图?()A. B.C.D.【分析】根据圆锥的侧面展开图的特点作答.【解答】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:B.【点评】此题考查了几何体的展开图,注意圆锥的侧面展开图是扇形.4.(2.00分)一个正比例函数的图象经过(2,﹣1),则它的表达式为()A.y=﹣2x B.y=2x C.D.【分析】设该正比例函数的解析式为y=kx(k≠0),再把点(2,﹣1)代入求出k的值即可.【解答】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(2,﹣1),∴2=﹣k,解得k=﹣2,∴这个正比例函数的表达式是y=﹣2x.故选:A.【点评】本题考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.5.(2.00分)下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形【分析】根据矩形、正方形、平行四边形、菱形的判定即可求出答案.【解答】解:A、一组对边平行且相等的四边形是平行四边形,是假命题;B、三个角是直角的四边形是矩形,是真命题;C、四边相等的四边形是菱形,是真命题;D、有一个角是直角的菱形是正方形,是真命题;故选:A.【点评】本题考查菱形、矩形和平行四边形的判定与命题的真假区别,关键是根据矩形、正方形、平行四边形、菱形的判定解答.6.(2.00分)已知a为整数,且,则a等于()A.1 B.2 C.3 D.4【分析】直接利用,接近的整数是2,进而得出答案.【解答】解:∵a为整数,且,∴a=2.故选:B.【点评】此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.7.(2.00分)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76°B.56°C.54°D.52°【分析】先利用切线的性质得∠ONM=90°,则可计算出∠ONB=38°,再利用等腰三角形的性质得到∠B=∠ONB=38°,然后根据圆周角定理得∠NOA的度数.【解答】解:∵MN是⊙O的切线,∴ON⊥NM,∴∠ONM=90°,∴∠ONB=90°﹣∠MNB=90°﹣52°=38°,∵ON=OB,∴∠B=∠ONB=38°,∴∠NOA=2∠B=76°.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.8.(2.00分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.【分析】如图,连接AD.只要证明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO==;【解答】解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.【点评】本题考查圆周角定理、直径的性质、锐角三角函数等知识,解题的关键是学会用转化的思想思考问题,属于中考创新题目.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(2.00分)计算:|﹣3|﹣1=2.【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.10.(2.00分)化简:=1.【分析】原式利用同分母分式的减法法则计算即可.【解答】解:原式==1,故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.11.(2.00分)分解因式:3x2﹣6x+3=3(x﹣1)2.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(2.00分)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1).【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【解答】解:点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).【点评】本题考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.13.(2.00分)地球与月球的平均距离大约384000km,用科学计数法表示这个距离为 3.84×105km.【分析】科学记数法的一般形式为:a×10n,在本题中a应为3.84,10的指数为6﹣1=5.【解答】解:384 000=3.84×105km.故答案为3.84×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2.00分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.【分析】根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等,根据概率公式计算即可.【解答】解:∵圆中的黑色部分和白色部分关于圆心中心对称,∴圆中的黑色部分和白色部分面积相等,∴在圆内随机取一点,则此点取黑色部分的概率是,故答案为:.【点评】本题考查的是概率公式、中心对称图形,掌握概率公式是解题的关键.15.(2.00分)如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB=40°.【分析】根据等腰三角形的性质,平行四边形的性质以及三角形内角和定理即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C=70°,∵DC=DB,∴∠C=∠DBC=70°,∴∠CDB=180°﹣70°﹣70°=40°,故答案为40°.【点评】本题考查平行四边形的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(2.00分)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是2.【分析】连接OB、OC,利用弧长公式转化为方程求解即可;【解答】解:连接OB、OC.∵∠BOC=2∠BAC=120°,的长是,∴=,∴r=2,故答案为2.【点评】本题考查三角形的外接圆与外心,圆周角定理,弧长的计算等知识,解题的关键是熟练掌握弧长公式,属于中考常考题型.17.(2.00分)下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是15a16.【分析】直接利用已知单项式的次数与系数特点得出答案.【解答】解:∵a2,3a4,5a6,7a8,…∴单项式的次数是连续的偶数,系数是连续的奇数,∴第8个代数式是:(2×8﹣1)a2×8=15a16.故答案为:15a16.【点评】此题主要考查了单项式,正确得出单项式次数与系数的变化规律是解题关键.18.(2.00分)如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是3≤AP<4.【分析】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.【解答】解:如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.【点评】本题主要考查了相似三角形的性质,相似三角形的对应角相等,对应边的比相等.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6.00分)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.【分析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=1﹣2﹣1+4×=1﹣2﹣1+2=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8.00分)解方程组和不等式组:(1)(2)【分析】(1)方程组利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1),①+②得:x=2,把x=2代入②得:y=﹣1,所以方程组的解为:;(2),解不等式①得:x≥3;解不等式②得:x≥﹣1,所以不等式组的解集为:x≥3.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.21.(8.00分)如图,把△ABC沿BC翻折得△DBC.(1)连接AD,则BC与AD的位置关系是BC⊥AB.(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.【分析】(1)先由折叠知,AB=BD,∠ACB=∠DBC,进而判断出△AOB≌△DOB,最后用平角的定义即可得出结论;(2)由折叠得出∠ABC=∠DBC,∠ACB=∠DCB,再判断出∠ABC=∠ACB,进而得出∠ACB=∠DBC=∠ABC=∠DCB,最后用两边分别平行的四边形是平行四边形.【解答】解:(1)如图,连接AD交BC于O,由折叠知,AB=BD,∠ACB=∠DBC,∵BO=BO,∴△ABO≌△DBO(SAS),∴∠AOB=∠DOB,∵∠AOB+∠DOB=180°,∴∠AOB=∠DOB=90°,∴BC⊥AD,故答案为:BC⊥AD;(2)添加的条件是AB=AC,理由:由折叠知,∠ABC=∠DBC,∠ACB=∠DCB,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=∠DBC=∠ABC=∠DCB,∴AC∥BD,AB∥CD,∴四边形ABDC是平行四边形.【点评】此题主要考查了折叠的性质,平行四边形的判定,等腰三角形的性质,全等三角形的判定和性质,判断出△ABO≌△DBO(SAS)是解本题的关键.22.(8.00分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是100;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.【分析】(1)根据2册的人数除以占的百分比即可得到总人数;(2)求出1册的人数是100×30%=30人,4册的人数是100﹣30﹣40﹣20=10人,再画出即可;(3)先列出算式,再求出即可.【解答】解:(1)40÷40%=100(册),即本次抽样调查的样本容量是100,故答案为:100;(2)如图:;(3)12000×(1﹣30%)=8400(人),答:估计该市初中学生这学期课外阅读超过2册的人数是8400人.【点评】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.23.(8.00分)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).【分析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【解答】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是A型矩形纸片的概率为;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.(8.00分)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.【分析】(1)根据反比例函数k值的几何意义可求点A的坐标;(2)根据梯形的面积公式可求点B的坐标,再根据待定系数法可求一次函数y=kx+b的表达式.【解答】解:(1)∵点A在反比例函数y=(x>0)的图象上,AC⊥x轴,AC=OC,∴AC•OC=4,∴AC=OC=2,∴点A的坐标为(2,2);(2)∵四边形ABOC的面积是3,∴(OB+2)×2÷2=3,解得OB=1,∴点B的坐标为(0,1),依题意有,解得.故一次函数y=kx+b的表达式为y=x+1.【点评】考查了反比例函数与一次函数的交点问题,关键是熟练掌握反比例函数k值的几何意义、梯形的面积、待定系数法求一次函数解析式.25.(8.00分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).【分析】过D作DE⊥AB,可得四边形CHED为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH与直角三角形BDE中,设CH=DE=xm,利用锐角三角函数定义表示出AH与BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到结果.【解答】解:过D作DE⊥AB,可得四边形CHED为矩形,∴HE=CD=40m,设CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=xm,在Rt△ACH中,∠BAC=30°,∴AH=xm,由AH+HE+EB=AB=160m,得到x+40+x=160,解得:x=30,即CH=30m,则该段运河的河宽为30m.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.26.(10.00分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=﹣2,x3=1;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB 段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【解答】解:(1)x3+x2﹣2x=0,x(x2+x﹣2)=0,x(x+2)(x﹣1)=0所以x=0或x+2=0或x﹣1=0∴x1=0,x2=﹣2,x3=1;故答案为:﹣2,1;(2)=x,方程的两边平方,得2x+3=x2即x2﹣2x﹣3=0(x﹣3)(x+1)=0∴x﹣3=0或x+1=0∴x1=3,x2=﹣1,当x=﹣1时,==1≠﹣1,所以﹣1不是原方程的解.所以方程=x的解是x=3;(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3m设AP=xm,则PD=(8﹣x)m因为BP+CP=10,BP=,CP=∴+=10∴=10﹣两边平方,得(8﹣x)2+9=100﹣20+9+x2整理,得5=4x+9两边平方并整理,得x2﹣8x+16=0即(x﹣4)2=0所以x=4.经检验,x=4是方程的解.答:AP的长为4m.【点评】本题考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.27.(10.00分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【分析】(1)只要证明FC=FB即可解决问题;(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.想办法证明∠N=∠QMN=30°,∠G=∠GMQ=60°,可得QM=QN,QM=QG;【解答】(1)证明:如图1中,∵EK垂直平分线段BC,∴FC=FB,∴∠CFD=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠CFD.(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.理由:设PP′交GN于K.∵∠G=60°,∠GMN=90°,∴∠N=30°,∵PK⊥KN,∴PK=KP′=PN,∴PP′=PN=PM,∴∠P′=∠PMP′,∵∠NPK=∠P′+∠PMP′=60°,∴∠PMP′=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN,QM=QG,∴QG=QN,∴Q是GN的中点.【点评】本题考查作图﹣复杂作图、线段的垂直平分线的性质、直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10.00分)如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y 轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C 不重合).(1)b=﹣,点B的坐标是(,0);(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.【分析】(1)由点A的坐标,利用二次函数图象上点的坐标特征可求出b的值,代入y=0求出x值,进而可得出点B的坐标;(2)代入x=0求出y值,进而可得出点C的坐标,由点A、C的坐标利用待定系数法可求出直线AC的解析式,假设存在,设点M的坐标为(m,m+2),分B、P在直线AC的同侧和异侧两种情况考虑,由点B、M的坐标结合PM:MB=1:2即可得出点P的坐标,再利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之即可得出结论;(3)作∠CBA的角平分线,交y轴于点E,过点E作EF⊥BC于点F,设OE=n,则CE=2﹣n,EF=n,利用面积法可求出n值,进而可得出==,结合∠AOC=90°=∠BOE可证出△AOC∽△BOE,根据相似三角形的性质可得出∠CAO=∠EBO,再根据角平分线的性质可得出∠CBA=2∠EBO=2∠CAB,此题得解.【解答】解:(1)∵点A(﹣4,0)在二次函数y=﹣+bx+2的图象上,∴﹣﹣4b+2=0,∴b=﹣.当y=0时,有﹣x2﹣x+2=0,解得:x1=﹣4,x2=,∴点B的坐标为(,0).故答案为:﹣;(,0).(2)当x=0时,y=﹣x2﹣x+2=2,∴点C的坐标为(0,2).设直线AC的解析式为y=kx+c(k≠0),将A (﹣4,0)、C (0,2)代入y=kx +c 中, 得:,解得:,∴直线AC 的解析式为y=x +2.假设存在,设点M 的坐标为(m ,m +2).①当点P 、B 在直线AC 的异侧时,点P 的坐标为(m ﹣,m +3), ∵点P 在抛物线y=﹣x 2﹣x +2上, ∴m +3=﹣×(m ﹣)2﹣×(m ﹣)+2,整理,得:12m 2+20m +9=0.∵△=202﹣4×12×9=﹣32<0,∴方程无解,即不存在符合题意得点P ;②当点P 、B 在直线AC 的同侧时,点P 的坐标为(m +,m +1), ∵点P 在抛物线y=﹣x 2﹣x +2上, ∴m +1=﹣×(m +)2﹣×(m +)+2,整理,得:4m 2+44m ﹣9=0,解得:m 1=﹣,m 2=, ∴点P 的横坐标为﹣2﹣或﹣2+.综上所述:存在点P ,使得PM :MB=1:2,点P 的横坐标为﹣2﹣或﹣2+. (3)∠CBA=2∠CAB ,理由如下:作∠CBA 的角平分线,交y 轴于点E ,过点E 作EF ⊥BC 于点F ,如图2所示. ∵点B (,0),点C (0,2),∴OB=,OC=2,BC=.设OE=n ,则CE=2﹣n ,EF=n , 由面积法,可知:OB•CE=BC•EF ,即(2﹣n )=n ,解得:n=.∵==,∠AOC=90°=∠BOE,∴△AOC∽△BOE,∴∠CAO=∠EBO,∴∠CBA=2∠EBO=2∠CAB.【点评】题考查了二次函数图象上点的坐标特征、待定系数法求一次函数解析式、三角形的面积、勾股定理、一次函数图象上点的坐标特征以及相似三角形的判定与性质,解题的关键是:(1)由点A的坐标,利用二次函数图象上点的坐标特征求出b的值;(2)分B、P在直线AC的同侧和异侧两种情况找出点P的坐标;(3)构造相似三角形找出两角的数量关系.。
江苏省2018届九年级数学上学期期中试题苏科版
江苏省 2018 届九年级数学上学期期中试题(总分 150 分时间 120 分钟)一、选择题(每题 3 分,合计24 分)1.以下方程中,一元二次方程是(▲).A.x 2 1 0 .(2x-)(x+2).ax2bx c. 3x2 2 y 5 0 x B 1 =1C0 D2.⊙ O的半径为 5cm,点 A 到圆心 O的距离 OA=4cm,则点 A 与圆 O的地点关系为(▲).A.点 A在圆上 B .点 A在圆内 C .点 A 在圆外 D .没法确立3.一元二次方程x 2 8x 1 0 配方后,可变形为(▲).A.( x 4) 2 17 B. ( x 4) 2 15 C. (x 4)2 17 D. (x 4) 2 154.若y3 ,则xy的值为(▲).x 4 xA.1B.5C.7D.44 4 75.在 Rt△ABC中,∠ C=90°, AC= 8, BC= 15,则 sinA 的值为(▲).A.8B .15C .8.15 17 8D17156.假如一个圆的内接正六边形的周长为30cm,那么圆的半径为(▲).A. 6 B.5 C.4D. 37.在某班初三学生毕业20 年的联谊会上,每两名学生握手一次,统计共握手630 次.若设参加此会的学生为x 名,依据题意可列方程为(▲).A.x( x 1) 630 B. x( x 1) 630C.2x( x 1) 630 D. x(x 1) 630 28.如图,在直角坐标系中,有两点A(6, 3) ,B( 6,0),以原点 O为位似中心,相像比为1,在第一象限内把线段AB 减小后得到3CD,则 C 的坐标为(▲).(第 8 题图)A. (2 ,1) B .(2,0)C.(3, 3) D .(3 ,1)二、填空题(每题 3 分,合计30 分)9.方程x2 2x 0 的解是▲.10.⊙ O的半径为4,圆心 O到直线l 的距离为 5,则直线l 与⊙ O的地点关系是▲ .11.制造一种产品,本来每件的成本是100 元,因为连续两次降低成本,此刻的成本是81 元.设平均每次降低成本的百分率为x,则依据题意列方程为▲.12.如图,在Rt △ ABC中,∠ ACB= 90°, AC= 8,BC= 6, CD⊥ AB,垂足为D,则tan ∠ BCD的值是▲.13.如图,身高为 1.7m 的小明 AB站在小河的一岸,利用树的倒影去丈量河对岸一棵树CD的高度,CD在水中的倒影为C′D, A、 E、C′在一条线上.假如小河BD的宽度为12m,BE= 3m,那么这棵树 CD的高为▲ m.(第 12 题图)(第13题图)(第15题图)14.已知一块圆心角为240°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽视不计),圆锥的底面圆的半径是20 cm,则这块扇形铁皮的半径是▲ cm.15.如图,在平面直角坐标系中,一段圆弧经过点A、 B、 C三个格点,此中点 B 的坐标为( 4, 3),则圆弧所在圆的半径为▲.(第 16 题图)(第17题图)16.如图,△ ABC中, D为 BC上一点,∠ BAD=∠ C,AB= 6, BD= 4,则 CD的长为▲.17.如图,已知AB 是⊙ O的直径, AT 是⊙ O的切线,∠ ATB=40°, BT 交⊙ O于点 C,E 是 AB上一点,且 BE=BC,延伸 CE交⊙ O于点 D,则∠ CDO= ▲ °.18.已知对于x 的一元二次方程mx 2 (m 2)x 2 0( m 0) 的两个实数根都是整数,则整数m 的值是▲.三、解答题(合计96 分)19.(此题满分8 分)采用适合的方法解方程:( 1) 2 2 6 () (2 x 3) 2 2x x x 0220.(此题满分8 分)1 24sin 60 ( 7) 0 3 2 .计算:( )221.(此题满分 8 分)已知对于 x 的一元二次方程x2 mx m 2 0 .(1)若此方程的一个根为 1,求m的值;(2)求证:无论m取何实数,此方程都有两个不相等的实数根.22.(此题满分8 分)如图,在△ ABC中,∠ BAC =124°.(1)用直尺和圆规作△ ABC的外接圆(不写作法,保存印迹);(2)设△ ABC的外接圆的圆心为 O,求∠ BOC的度数.23.(此题满分10 分)如图,在△ ABC中,∠ B=45°,∠ C=30°,AB=4.( 1)求 AC与 BC的长;( 2)求△ ABC的面积( 3 ≈,结果精准到0.01 ).24.(此题满分10 分)如图,电力企业在电线杆上的 C处引两条等长的拉线 CE、CF 固定电线杆 CD,拉线 CE和地面成60°角,在离电线杆 9 米的 B 处布置测角仪,在 A 处测得电线杆上 C 处的仰角为 30°,已知测角仪高 AB为 1.5 米.(1)求 CD的长(结果保存根号);(2)求 EF的长(结果保存根号).25.(此题满分 10 分)如图,已知平行四边形OABC的三个极点 A、 B、 C 在以 O 为圆心的半圆上,过点 C 作 CD⊥ AB,分别交 AB、 AO的延伸线于点 D、 E, AE交半圆 O于点 F,连结 CF.( 1)判断直线 DE与半圆 O的地点关系,并说明原因;( 2)若半圆 O的半径为︵6,求 AC的长.26.(此题满分10 分)某网店从过去销售数据中发现:某种商品当每件盈余50 元时,均匀每日可销售30 件;该商品每降价 1 元,则均匀每日可多售出 2 件.若该商品降价x 元( x 为正整数),该网店的此商品的日盈余为y 元.( 1)写出 y 与 x 的函数关系式;( 2)该商品降价多少元时,销售此商品的日盈余可达到2100 元?( 3)在双“十一”促销活动中,该店商想在销售此商品后获取超出2100 元的收益,你以为可以吗?假如能够,请给出你的一种降价建议,并考证计算说明.假如不能够,请说明原因.27.(此题满分12 分)如图,在 Rt△ ABC中,∠ C=90°, AC=BC=8,点 P 为 AB的中点, E 为 BC上一动点,过P 点作 FP ⊥PE交 AC于 F 点,经过 P、E、 F 三点确立⊙ O.(1)试说明:点 C 也必定在⊙ O上.(2)点 E 在运动过程中,∠ PEF的度数能否变化?若不变,求出∠ PEF的度数;若变化,说明原因.(3)求线段 EF 的取值范围,并说明原因.28.(此题满分12 分)如图,已知△ABC中, AB=10cm, AC=8cm, BC=6cm.假如点P 由 B 出发沿 BA 向点 A 匀速运动,速度均为 3cm/s ;同时点Q由 A 出发沿 AC向点 C 匀速运动,速度为2cm/s .当一点抵达终点,另一点就停止运动;连结PQ,设运动的时间为t s.(1)当t为什么值时, PQ∥BC.(2)设△ AQP的面积为S(单位: cm2),写出S与t的函数关系式,并写出自变量的取值范围.(3)能否存在某时辰的t值,使线段 PQ恰巧把△ ABC的面积分为 1:4 两部分?若存在,求出此时 t 的值;若不存在,请说明原因.扬大附中东部分校2017- 2018 学年度第一学期期中考试九年级数学参照答案一、选择题(每题题号 1 答案 B 3 分,合计2B24 分)3C4C5D6B7D8D二、填空题(每题 3 分,合计 30 分)题号9 10 11 12 13 答案0, 2 相离100(1 x)2 81 34题号14 15 16 17 18 答案30 2 5 5 15°±1,±2三、解答题(合计96 分)19. 解:( 1)x 1 7 ;(2)x11,x2 3 ;(每个解2分,共 8分)20. 解:原式=22 4 3 1 ( 3 2)(4分)2=4 2 3 1 3 2(7 分)=53.(8 分)21.解:( 1)m=1(3 分)2( 2)因为根的鉴别式 = (m 2)2 4 0(7分)因此无论 m 取何实数,此方程都有两个不相等的实数根.(8 分)22. 解:( 1)正确绘图;( 4 分)(2)∠ BOC的度数是 112°.( 8 分)23.解:( 1)AC=4 2( 3 分), BC=2 2+2 6( 6 分)( 2)△ ABC的面积 =4+4 3 (8分)≈(10分)24.解:( 1)CD的长 =1.5+3 3(米)( 6 分)(2) EF=CE=6+ 3(米)( 10 分)25.解:( 1)直线 CE与半圆 O相切,原因以下:∵四边形 OABC是平行四边形,∴ AB∥ OC.∵∠ D=90°,∴∠ OCE=∠D=90°,即OC⊥DE,∴直线 CE与半圆 O相切.( 5 分)︵(10 分)(2) AC的长 = 426. 解:( 1)y=(50-x)(30+2x)= 2x2 70x 1500 (3分)( 2)由题意,得:2x2 70 x 1500=2100 ,解得:x=15或20(7分)答: x=15 或 20 时,销售此商品的日盈余可达到2100 元 . (8 分)( 3)当 x=16,17,18,19 中的任何一个数时,都能够超出2100 元.(计算过程略)(10 分)27. 解:( 1)连结 PC,经过全等,证得∠ EPF=90°,获取EF 为直径,从而获取点 C 在圆上.( 4 分)( 2)∠ PEF的度数不变,是45°.经过全等或许圆周角性质证明.( 8 分)( 3) EF 最大是 8,最小是4 2 (12分)28.解:( 1)当t为20s 时, PQ∥ BC;( 3 分)11( 2)如图:作PD⊥ AC于点 D,S =1×2t ×3(10-3t )=9t 2+6t (5分)2 5 5自变量 t 的取值范围是 0<t <10( 6 分)3( 3)假定存在某时辰t 的值,使线段 PQ 恰巧把△ ABC 的面积分为 1:4 两部分:① S=1 S 即 921 × 1 ×8×6,t +6t =△ APQ5 △ ABC ,5 5 2因此 3t 2, t =2,t = 4 ,均切合题意; ( 9 分)- 10t+8=01 23② S △APQ = 4S △ ABC , 即9 t 2+6t = 4× 1×8×6,55 5 2因此 3t 2- 10t+32=0 ,△ =100-4×3×32<0,此方程无实数根( 11 分)综上议论, t 1 =2 或 4时,使线段 PQ 恰巧把△ ABC 的面积分为 1:4 两部分.(12 分)3。
2018-2019学年江苏省常州市金坛市九年级(上)期中数学试卷.
2018.2019学年江苏省常州市金坛市九年级(上)期中数学试卷一、选择题(每小题2分,共16分)1.(2分)下列方程中是关于x的一元二次方程的是()A.ax2+bx+c=OB.x3+2x2=x—1C.(x+lXx-2)=0D.x+2=/2.(2分)已知一元二次方程x2+jtv-3=0有一个根为1,则k的值为()A.-2B.2C.-4D.43.(2分)下列对一元二次方程x2+x-3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根4.(2分)某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是()A.300(1+.x)=507B.300(1+x)2=507C.300(1+x)+300(1+x)2=507D.300+300(1+x)+300(1+x)2=5075.(2分)如图,点4,B,C均在上,若匕4=66。
,则Z.OCB的度数是()A.24°B.28°C.33°D.48°6.(2分)如图,AB.AC.BD是G)O的切线,切点分别是P、C、D.若佃=5,AC=3,则仞)的长是()A. 4B.3C.2D.17.(2分)如图,是半圆的直径,。
为圆心,C是半圆上的点,D是左上的点,若ZBOC=40°,则NO的度数为()A.100°B.110°C.120°D.130°8.(2分)在平面直角坐标系中,以点(3,-4)为圆心,r为半径的圆与坐标轴有且只有3个公共点,则〃的值是()A.3B. 4C.3或 4D.4或5二、填空题(每小题2分,共20分)9.(2分)方程x2-x=0的解是.10.(2分)关于x的一元二次方程x2+4x-k=0有实数根,则A的取值范围是_11.(2分)若一元二次方程x2+x-2=0的解为玉、勺,则玉・冯的值是.12.(2分)小明用一根长30ctm的铁她.围成一个斜边长为13cm的直角三角形,则直角三角形的而积是—cm2.13.(2分)如果正数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学参考答案及评分意见一、选择题(每小题2分,共16分)题号 1 2 3 4 5 6 7 8 答案CBCDADBB二、填空题(每小题2分,共20分)9.012=+-x x 10.外部 11.3或0 12.π 13.1 14.50 15. 36 16.25% 17. 3 18.π2 三、解下列方程(共16分) 19.⑴ 5)3(22=-x⑴ 01422=+-x x2103±=-x -----------------------2分 21)1(2=-x ---------------------- 2分2103±=x ----------------------- 4分 221±=x ----------------------- 4分 ⑶ 03322=--x x ⑷ 03)32=+--x x (3,3,2-=-==c b a03)32=---)((x x -------- 1分03342>=-ac b ------------- 1分0]31)[3=---)((x x43332233)3(±=⨯±--=x -- 2分04)3=+--)((x x ------- 2分4333433321-=+=x x ,-----4分 4,321==x x --------------- 4分四、作图题(共6分)20.⑴ △ABC 任意两边的垂直平分的交点即为△ABC 外接圆的圆心. -------------------------- 4分⑵ 过点B 作垂直于BO 的直线l ,即为⊙O的切线 --------------------------------------------------- 6分五、解答题(共42分)21. ⑴ 根据题意得:0)12482>--a (--------------------------------------------------------- 1分 解得:4->a -------------------------------------------------------------------------------- 2分⑵ ∵ 4->a ∴ 最小的整数为﹣3 ----------------------------------------------------------- 3分 ∴ x 2+8x +12﹣(﹣3)=0 ---------------------------------------------------------------- 4分 即:x 2+8x +15=0解得:x 1=-3,x 2=-5 ----------------------------------------------------------------- 6分22.设点P 运动了x 秒,则AP =x ,BQ =2x ------------------------------------------------------- 1分由AC =4,BC =6得:PC =4-x ,QC =6-2x ---------------------------------------------- 2分根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( ------------------------------------------------------- 3分 解得:11=x ,62=x ----------------------------------------------------------------------- 4分 经检验,x =6舍去 ----------------------------------------------------------------------------------- 5分 答:点P 运动的时间是1秒. -------------------------------------------------------------------- 6分23.⑴ 连接D B.lBOACQBACP∵ AB 是⊙O 的直径 ∴ ∠ADB =90° ∴ ∠CDB =90° ∵ 点E 是BC 的中点 ∴ DE =CE =BC 21∴ ∠EDC =∠C ------------------------------------------------ 1分 ∵ OA =OD ∴ ∠A =∠ADO∵ ∠ABC =90° ∴ ∠A +∠C =90° ------------------ 2分 ∴ ∠ADO +∠EDC =90° ∴ ∠ODE =90°∴ OD ⊥DE ------------------------------------------------------ 3分⑵ ππ31643601202=⨯⨯=OAD S 扇形cm 2 --------------------- 4分 23432421cm S OAD =⨯⨯=△ ------------------------ 5分∴ )(343162cm S -=π阴影 ------------------------------ 6分24.解:设降价x 元后销售这款工艺品每天能盈利3000元.根据题意可得:3000)550)(4080(=+--x x --------------------------------------------- 4分解这个方程得:201021==x x ,(不合题意,舍去) ---------------------------------- 5分 当x =10时,80-x =70>65; -------------------------------------------------------------------- 6分 当x =20时,80-x =60<65(不符合题意,舍去) ---------------------------------------- 7分 答:此时销售单价应定为75元. ------------------------------------------------------------------ 8分DEBOAC25.⑴ ∵ AD 平分∠BDF ∴ ∠ADF =∠ADB∵ ∠ABC +∠ADC =180°,∠ADC +∠ADF =180°∴ ∠ADF =∠ABC ---------------------------------------------------------------------------------- 1分 ∵ ∠ACB =∠ADB∴ ∠ABC =∠ACB ------------------------------------------------------------------------------ 2分∴ AB =AC --------------------------------- 3分 ⑵ 过点A 作AG ⊥BD ,垂足为点G . ∵ AD 平分∠BDF ,AE ⊥CF ,AG ⊥BD∴ AG =AE ,∠AGB =∠AEC =90° -------------------------- 4分 在Rt △AED 和Rt △AGD 中⎩⎨⎧==ADAD AGAE ∴ Rt △AED ≌Rt △AGD (HL )∴ GD =ED =2 --------------------------------------------------------------------------------- 5分 在Rt △AEC 和Rt △AGB 中⎩⎨⎧==ACAB AGAE ∴ Rt △AEC ≌Rt △AGB (HL )∴ BG =CE ---------------------------------------------------------------------------------------- 6分 ∵ BD =11∴ BG =BD -GD =11-2=9 --------------------------------------------------------------- 7分 ∴ CE =BG =9∴ CD =CD -DE =9-2=7 ------------------------------------------------------------------ 8分26.⑴ 过点C 作CE ⊥x 轴于点E ,过点C 作CF ⊥y 轴于点F∴ ∠CFO =∠CEO =∠CEB=90° ∵ ∠AOB =90° ∴ 四边形FOEC 是矩形 ∴ ∠FCE =90° ∴ ∠ACE +∠ACF =90° 由点C (7,7)得:CF =CE =7∴ ∠AOC =∠BOC =45°,OF =CE =7,OE =CF =7∴ ∠CBA =∠COA =45°,∠CAB =∠COB =45°FGEOACBD∴ ∠CAB =∠CBA ∴ AC =BC ∵ 点A (0,6) ∴ OA =6∴ AF =OF -OA =7-6=1 ------------------------------------------------------------------- 1分 ∵ ∠AOB =90° ∴ AB 为⊙P 的直径 ∴ ∠ACB =90° ∴ ∠ACE +∠BCE =90°∴ ∠ACF =∠BCE ----------------------------------------------------------------------------- 2分 在Rt △ACF 和Rt △BCE 中⎩⎨⎧==CECF BCAC ∴ Rt △ACF ≌Rt △BCE∴ BE =AF =1 ---------------------------------------------------------------------------------- 3分∴ OB =OE +EB =7+1=8∴ 点B (8,0) --------------------------------------------------------------------------------- 4分xxyyl图1图2RQA'O'DCPOEFDCOABAB⑵ 直线A ′O ′与⊙P 相切. 如图2,由AB 是⊙P 的直径可知:AB 的中点即为圆心P 取OB 的中点R ,连接RP 并延长交A ′O ′的延长线于点Q ∴ PR ∥OA ,PR =OA 21=3……………………………………………………………5分 ∵ ∠AOB =90° ∴ ∠QRB =90°∵ △A ′O ′B ′由△AOB 绕点B 按顺时针方向旋转90°得到 ∴ ∠OBO ′=90°,BO ′=BO =8∵ ∠AO ′B =90° ∴ ∠BO ′Q =90° 即:RP ⊥A ′O ′ ∴ 四边形RBO ′Q 是矩形∴ ∠O ′QR =90°,RQ=BO ′=8 -------------------------------------------------------- 6分∴PQ=RQ-PR=8-3=5 ------------------------------------------------------------------- 7分∵⊙P的直径AB=10∴圆心P到直线A′O′的距离等于半径长5∴直线A′O′与⊙P相切. ------------------------------------------------------------------ 8分九年级数学参考答案及评分意见一、选择题(每小题2分,共16分)题号 1 2 3 4 5 6 7 8 答案CBCDADBB二、填空题(每小题2分,共20分)9.012=+-x x 10.外部 11.3或0 12.π 13.1 14.50 15. 36 16.25% 17. 3 18.π2 三、解下列方程(共16分) 19.⑴ 5)3(22=-x⑴ 01422=+-x x2103±=-x -----------------------2分 21)1(2=-x ---------------------- 2分2103±=x ----------------------- 4分 221±=x ----------------------- 4分 ⑶ 03322=--x x ⑷ 03)32=+--x x (3,3,2-=-==c b a03)32=---)((x x -------- 1分03342>=-ac b ------------- 1分0]31)[3=---)((x x43332233)3(±=⨯±--=x -- 2分04)3=+--)((x x ------- 2分 4333433321-=+=x x ,-----4分 4,321==x x --------------- 4分四、作图题(共6分)20.⑴ △ABC 任意两边的垂直平分的交点即为△ABC 外接圆的圆心. -------------------------- 4分⑵ 过点B 作垂直于BO 的直线l ,即为⊙O的切线 --------------------------------------------------- 6分五、解答题(共42分)lBOAC21. ⑴ 根据题意得:0)12482>--a (--------------------------------------------------------- 1分 解得:4->a -------------------------------------------------------------------------------- 2分⑵ ∵ 4->a ∴ 最小的整数为﹣3 ----------------------------------------------------------- 3分 ∴ x 2+8x +12﹣(﹣3)=0 ---------------------------------------------------------------- 4分 即:x 2+8x +15=0解得:x 1=-3,x 2=-5 ----------------------------------------------------------------- 6分22.设点P 运动了x 秒,则AP =x ,BQ =2x ------------------------------------------------------- 1分由AC =4,BC =6得:PC =4-x ,QC =6-2x ---------------------------------------------- 2分 根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQCS S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( ------------------------------------------------------- 3分 解得:11=x ,62=x ----------------------------------------------------------------------- 4分 经检验,x =6舍去 ----------------------------------------------------------------------------------- 5分 答:点P 运动的时间是1秒. -------------------------------------------------------------------- 6分23.⑴ 连接D B.∵ AB 是⊙O 的直径 ∴ ∠ADB =90° ∴ ∠CDB =90° ∵ 点E 是BC 的中点 ∴ DE =CE =BC 21∴ ∠EDC =∠C ------------------------------------------------ 1分 ∵ OA =OD ∴ ∠A =∠ADO∵ ∠ABC =90° ∴ ∠A +∠C =90° ------------------ 2分 ∴ ∠ADO +∠EDC =90° ∴ ∠ODE =90°∴ OD ⊥DE ------------------------------------------------------ 3分⑵ ππ31643601202=⨯⨯=OAD S 扇形cm 2--------------------- 4分 23432421cm S OAD =⨯⨯=△ ------------------------ 5分∴ )(343162cm S -=π阴影 ------------------------------ 6分24.解:设降价x 元后销售这款工艺品每天能盈利3000元.根据题意可得:3000)550)(4080(=+--x x --------------------------------------------- 4分解这个方程得:201021==x x ,(不合题意,舍去) ---------------------------------- 5分DEBOAC QBACP当x=10时,80-x=70>65; -------------------------------------------------------------------- 6分当x=20时,80-x=60<65(不符合题意,舍去) ---------------------------------------- 7分答:此时销售单价应定为75元. ------------------------------------------------------------------ 8分25.⑴ ∵ AD 平分∠BDF ∴ ∠ADF =∠ADB∵ ∠ABC +∠ADC =180°,∠ADC +∠ADF =180°∴ ∠ADF =∠ABC ---------------------------------------------------------------------------------- 1分 ∵ ∠ACB =∠ADB∴ ∠ABC =∠ACB ------------------------------------------------------------------------------ 2分 ∴ AB =AC --------------------------------- 3分 ⑵ 过点A 作AG ⊥BD ,垂足为点G . ∵ AD 平分∠BDF ,AE ⊥CF ,AG ⊥BD ∴ AG =AE ,∠AGB =∠AEC =90° -------------------------- 4分在Rt △AED 和Rt △AGD 中⎩⎨⎧==ADAD AGAE ∴ Rt △AED ≌Rt △AGD (HL )∴ GD =ED =2 --------------------------------------------------------------------------------- 5分 在Rt △AEC 和Rt △AGB 中⎩⎨⎧==AC AB AGAE ∴ Rt △AEC ≌Rt △AGB (HL )∴ BG =CE ---------------------------------------------------------------------------------------- 6分 ∵ BD =11∴ BG =BD -GD =11-2=9 --------------------------------------------------------------- 7分 ∴ CE =BG =9∴ CD =CD -DE =9-2=7 ------------------------------------------------------------------ 8分 26.⑴ 过点C 作CE ⊥x 轴于点E ,过点C 作CF ⊥y 轴于点F∴ ∠CFO =∠CEO =∠CEB=90° ∵ ∠AOB =90° ∴ 四边形FOEC 是矩形 ∴ ∠FCE =90° ∴ ∠ACE +∠ACF =90° 由点C (7,7)得:CF =CE =7∴ ∠AOC =∠BOC =45°,OF =CE =7,OE =CF =7 ∴ ∠CBA =∠COA =45°,∠CAB =∠COB =45° ∴ ∠CAB =∠CBA ∴ AC =BC ∵ 点A (0,6) ∴ OA =6∴ AF =OF -OA =7-6=1 ------------------------------------------------------------------- 1分 ∵ ∠AOB =90° ∴ AB 为⊙P 的直径 ∴ ∠ACB =90° ∴ ∠ACE +∠BCE =90°∴ ∠ACF =∠BCE ----------------------------------------------------------------------------- 2分 在Rt △ACF 和Rt △BCE 中⎩⎨⎧==CECF BCAC FG EOACB D∴ Rt △ACF ≌Rt △BCE∴ BE =AF =1 ---------------------------------------------------------------------------------- 3分 ∴ OB =OE +EB =7+1=8∴ 点B (8,0) --------------------------------------------------------------------------------- 4分xxyyl图1图2RQA'O'DCPOEFDCOABAB⑵ 直线A ′O ′与⊙P 相切.如图2,由AB 是⊙P 的直径可知:AB 的中点即为圆心P 取OB 的中点R ,连接RP 并延长交A ′O ′的延长线于点Q ∴ PR ∥OA ,PR =OA 21=3……………………………………………………………5分 ∵ ∠AOB =90° ∴ ∠QRB =90°∵ △A ′O ′B ′由△AOB 绕点B 按顺时针方向旋转90°得到 ∴ ∠OBO ′=90°,BO ′=BO =8∵ ∠AO ′B =90° ∴ ∠BO ′Q =90° 即:RP ⊥A ′O ′ ∴ 四边形RBO ′Q 是矩形∴ ∠O ′QR =90°,RQ=BO ′=8 -------------------------------------------------------- 6分 ∴ PQ =RQ -PR =8-3=5 ------------------------------------------------------------------- 7分 ∵ ⊙P 的直径AB =10∴ 圆心P 到直线A ′O ′的距离等于半径长5∴直线A ′O ′与⊙P 相切. ------------------------------------------------------------------ 8分。