高二下 月考1
2022年甘肃省永昌县第一高级中学高二下学期第一次月考英语试题
永昌县第一高级中学2021—2022—2第1次月考卷高二英语第Ⅰ卷(选择题,共70分)第一部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项。
APOETRYCHALLENGEWrite a poem about how courage, determination, and strength have helped you face challenges in your lifePrizes3 Grand Prizes: Trip to Washington, D. c. for each of three winners, a parent and one other person of the winner's choice. Trip includes round- trip air tickets, hotel stay for two nights, and tours of the National Air and Space Museum and the office of National Geographic World.6 First Prizes: The book Sky Pioneer: A Photo-biography of Amelia Earhart signed by author Corinne Szabo and pilot Linda Finch.50 Honorable Mentions: Judges will choose up to 50 honorable mention winners, who will each receive a T-shirt in memory of Earhart's final flight.RulesFollow all rules carefully to prevent disqualification.Write a poem using 100 words or fewer. Your poem can be any format, any number of lines.Write by hand or type on a single sheet of paper. You may use both the front and back of the paper.On the same sheet of paper, write or type your name, address, telephone number; and birth date. Mail your entry to us by October 31 this year.1.How many people can each grand prize winner take on the free trip?A. TwoB. Three. c. Four. D. Six.2. What will each of the honorable mention winners get?A. A plane ticket.B. A special T-shirt.C. A book by Corinne Szabo.D. A photo of Amelia Earhart.3.Which of the following will result in disqualification?A. Typing your poem out.B. Writing a poem of 120words.ing both sides of the paper.D. Mailing you entry on October 30.BOpera for BeginnersMany people think that opera is boring, difficult to understand and unpleasant to listen to. They only see strange people singing in a foreign language and wearing funny costumes. They're too quick to judge and a lot of people have believed stupid ideas about opera without ever actually seeing one. If one takes opera seriously, with an open heart, and goes to several good live performances, I don't see any reason why he or she would dislike or hate it. The following tips can help you learn to enjoy opera.First of all, if you are new to opera, start with a short, well-known title, such as The Marriage of Figaro by Mozart. In the beginning, avoid difficult operas with complex storylines. If your first experience is not fun, then you will expect all operas to be boring. Moreover, before going to a performance, do a little bit of homework: learn the story of the opera. If you know about the main characters and the story before you start watching, it will be much easier to understand what is happening on the stage. Finally, the most important way to enjoy opera is to keep an open mind. If you believe that you will enjoy watching opera, then you will most likely enjoy it. Think of opera as a live TV show. Opera shows the same things—love and hate, good and evil and humans and nature—that are found in many of today's popular movies and best-selling novels. In fact, many of these movies and novels use stories copied from famous operas!Opera is full of catchy, wonderful melodies (旋律). It's full of drama and laughter. It's full of wonder and life. Opera can be fun to watch, and it allows the audience to experience different cultures. Many people have enjoyed it for hundreds of years, and by following the tips above, you can enjoy it, too. Indeed, opera will change the minds of the people who once hated it. And most importantly, as one of the most diverse art forms out there, opera helps you appreciate different performance styles from all over the world.4.Many people think that opera is boring because .A. it is like a TV showB. they dislike its storylinesC. they know little about itD. its music style is old-fashioned5.Which is a good way for beginners to enjoy opera?A. To start with a long opera.B. To learn to sing an opera.C. To master a foreign language.D. To get familiar with an opera's story.6.Many famous operas, popular movies, and best-selling novels .A. share a similar storyB. have the same writerC. teach people about lifestylesD. help people keep an open mind7.What does the underlined word “diverse” in the last paragraph probably mean?A. Ancient.B. Humorous.C. Various.D. Exciting.C"If music is the medicine of the soul(灵魂), let it play on," said a famous person. I think he said so because probably he got some help from music. Music has some strange abilities. Medical scientists have found that a person that feels stressed can actually listen to some kind of music and become well.The researchers said that since stress comes as a result of life events such as starting a new family, starting a new business, and starting a new job, one can actually listen to good music and feel good because good music touches the human mind in a positive way. Music helps you to forget the life events that make you worried and remember the important events that once happened in your life.[来源Depression(抑郁) is a disease caused by stress, smoking, social problems and so on. Depression is also caused by problems such as failure in business. Depression may bring us weakness, headache, and loss of concentration. Good music makes one remember happy moments or good days. If you play music about love, it makes you feel like falling in love again though you may have had several upset experiences. And such good feelings make you healthy.Anxiety(焦虑) is another health problem that can be controlled by music. Anxiety is a side effect of some major health problems such as cancer of the liver and cancer of the breast. Good music makes you feel relaxed and removes the pains from these diseases and you feel all right.Good music can send you to sleep. And you need to know that sleep puts your body in a healthy condition. Sleep takes away the effects of stress, depression and anxiety from a person.8. According to the famous person in Paragraph 1, music can .A. treat many kinds of diseasesB. help you keep healthy in your mindC. take the place of medicine in treating illnessD. make you remember things that happened9. Good music helps people remove stress mainly by .A. letting people have a good sleepB. making people focus only on important thingsC. showing something new to peopleD. making people think positively10. Which of the following is NOT a reason for depression mentioned in the passage?A. Stress.B. Smoking.C. Loss of concentration.D. Failure in business.11. Which of the following might be the best title for the passage?A. The Health Benefits of Listening to MusicB. Stress Can Bring Us Many Kinds of DiseasesC. Some Diseases Have Something to Do With MusicD. Tips For Us to Live a Healthy And Comfortable LifeDEinstein's $1.5 Million Tip to a BellboyIn addition to being a scientist, a philosopher (哲学家),and somewhat of a funny guy, Albert Einstein was something even more admirable: a good tipper. We know this because a piece of paper the Nobel Prize winner gave a bellboy as a tip sold for more than $1.5 million at auction (拍卖).As the story goes, Einstein was traveling to Japan to give a lecture series when hefound out he'd been awarded the Nobel Prize in physics. News of the award spreadquickly and Einstein, somewhat bothered by all of the attention, kept himself in hisroom at a hotel in Tokyo.A bit embarrassed by all the publicity he was receiving, Einstein tried to write downhis thoughts and feelings. Just then, a bellboy came to Einstein's room to deliver a message. Not expecting him, Einstein didn't have any small change to tip him, and instead gave the bellboy a pair of the writings he'd been working on. Aware that his fame in the world was rising, Einstein supposedly told the Japanese messenger the notes would turn out to be more valuable than a regular tip if he was lucky.The two notes were both written in German and signed by Einstein himself. The first note offered the professor's “theory for happiness” It read: “A calm and modest life brings more happiness than the pursuit of success combined with constant restlessness (不安).” The second one simply said, “Where there's a will, there's a way.”Tested or not, the theory does appear to be at least somewhat correct. According to a study of the connection between the life success and well-being of more than 275,000 people, happiness creates personal and professional success more often than success in those areas leads to happiness.Even if his philosophical thoughts contain no scientific value, the notes do shine a little light on Einstein's private thoughts. “What we're doing here is paintin g the picture of Einstein —the man, the scientist, his effect on the world---through his writings,” said Roni Grosz, who is in charge of the world's largest Einstein collection at Hebrew University.Whether the bellboy was able to benefit from Einstein's happiness theory is unclear, but the notes did eventually bringsome joy to one of his relatives when they were sold — the second note brought in $250,000, while the first one that lists Einstein's happiness theory sold for $1.56 million.12.How did Einstein feel about the public attention brought by winning the Nobel Prize?A. ConfidentB.TroubledC. EncouragedD. Regretful13. Why did Einstein give the bellboy the two notes as a tip?A. He didn't have small change with him at the time.B. The bellboy was interested in his thoughts and feelings.C . The bellboy delivered the message that he won the prize.D . The notes would become more valuable than a regular tip.14. From the passage we can know that .A. the second note sold for more moneyB. Roni Grosz is painting a picture of EinsteinC . Einstein went to Japan to give some lecturesD . the two notes brought great wealth to the bellboy15. Which of the following is most similar to Einstein's “theory for happiness”?A . People are just as happy as they make up their minds to be.B . Success is getting what you want; happiness is wanting what you get.C . Happiness is a by-product of an effort to make someone else happy.D .The search for happiness is one of the chief sources of unhappiness.第二节(共5小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
贵州省高二下学期第一次月考数学试题(解析版)
一、单选题1.设集合,集合N 为函数的定义域,则( ){}|12M x x =-≤≤()lg 1y x =-M N ⋂=A . B . C . D . ()12,[]12,[)12,(]12,【答案】D【分析】根据对数的真数为正数化简集合,进而由集合的交运算即可求解. (1,)N =+∞【详解】由,所以, 101x x ->⇒>(1,)N =+∞又,所以, {}|12M x x =-≤≤(]1,2M N = 故选:D2.若,则( ) 43z i =-zz =A .1 B .-1C .D .4355i +4355i -【答案】C【分析】根据共轭复数与模长的求解计算即可.【详解】因为,故. 43z i =-4355z i z==+故选:C.3.已知椭圆中,长轴长为10 )22221(0)x y a b a b +=>>A .B .10C .D .【答案】A【分析】根据椭圆长轴和离心率的概念即可求解.【详解】,所以;又因为 210a = 5a =c e a ==得c =2c =故选:A.4.设是直线,,是两个不同的平面,下列命题中正确的是( ) l αβA .若,,则 //l α//l β//αβB .若,,则 αβ⊥l α⊥l β⊥C .若,,则 αβ⊥//l αl β⊥D .若,,则 //l αl β⊥αβ⊥【答案】D【解析】由线面平行的性质和面面平行的判定可判断选项A ;由面面垂直的性质定理和线面平行的性质可判断选项B ;由面面垂直的性质定理和线面位置关系可判断选项C ;由线面平行的性质和面面垂直的判定定理可判断选项D ;【详解】对于选项A :若,,则或与相交,故选项A 不正确; //l α//l β//αβαβ对于选项B :若,,则或,故选项B 不正确;αβ⊥l α⊥//l βl β⊂对于选项C :若,,则或或与相交,故选项C 不正确;αβ⊥//l α//l βl β⊂l β对于选项D :若,由线面平行的性质定理可得过的平面,设,则,所以//l αl γm γα= //m l ,再由面面垂直的判定定理可得,故选项D 正确;m β⊥αβ⊥故选:D5.已知{}是等差数列,且,则=( ) n a 466,4a a ==10a A .2 B .0C .D .2-4-【答案】B【分析】根据等差数列基本量的计算即可求解.【详解】设等差数列的首项为,公差为,由,即,解得. {}n a 1a d 4664a a =⎧⎨=⎩113654a d a d +=⎧⎨+=⎩191a d =⎧⎨=-⎩所以,所以. 1(1)9(1)10n a a n d n n =+-=--=-+1010100a =-+=故选:B6.已知点P (x ,y )是曲线上的一动点,则点P (x ,y )到直线的距离的最小值为2y x =240x y --=( ) ABCD .35【答案】C【分析】当曲线在点P 处的切线与已知直线平行时点P 到该直线的距离最小,结合导数的几何意义和点到直线的距离公式计算即可求解.【详解】当曲线在点P 处的切线与直线平行时,点P 到该直线的距离最小,240x y --=,2y x '=由直线的斜率,则, 240x y --=2k =22x =得,有,所以, 1x =21y x ==(1,1)P ∴到直线距离. (1,1)P 240x y --=d ==故选:C.7.如图是下列四个函数中的某个函数在区间[-3,3]的大致图像,则该函数是( )A .B .C .D .22sin 1xy x =+321x xy x -=+22cos 1x xy x =+3231x xy x -+=+【答案】D【分析】利用赋值法,结合图形和排除法即可判断ABC ;利用导数和零点的存在性定理研究函数的单调性,结合图形即可判断D. 【详解】A :设,由得, ()22sin 1x f x x =+π3π2<<sin 30>则,结合图形,不符合题意,故A 错误; ()2sin 33010f =>B :设,则,结合图形,不符合题意,故B 错误;()321x xg x x -=+()10g =C :设,当时,,,22cos ()1x x h x x =+π0,2x ⎡⎤∈⎢⎥⎣⎦cos [0,1]x ∈212x x +≥所以,即, 222cos 20111x x xx x ≤≤≤++0()1h x ≤≤当且仅当时等号成立,结合图形,不符合题意,故C 错误;1x =D :设,则, 323()1x xu x x -+=+(0)x >422263()(1)x x u x x --+'=+(0)x >设,则,42()63v x x x =--+(0)x >3()4120v x x x '=--<所以函数在上单调递减,且, ()v x (0,)+∞(0)30,(1)40v v =>=-<故存在,使得,0(0,1)x ∈0()0v x =所以当时,即,当时,即,0(0,)x x ∈()0v x >()0u x '>0(,)x x ∈+∞()0v x <()0u x '<所以函数在上单调递增,在上单调递减,结合图形,符合题意,故D 正确. ()u x 0(0,)x 0(,)x +∞故选:D.8.已知△ABC 的三个内角分别为A ,B ,C ,且满足,则的最大值为222sin 2sin 3sin C A B =-tan B ( ) ABCD .54【答案】B【分析】利用正弦定理及余弦定理表示,结合基本不等式求得的取值范围,从而求得cos B cos B 的取值范围,即得.tan B 【详解】依题意,222sin 2sin 3sin C A B =-由余弦定理得,, 22223c a b =-2222133b ac =-所以 222222222222114143333cos 2226a c a c a ca cb ac B ac ac ac ac+-+++-+====⋅,当且仅当时等号成立, 1263≥=2a c =即为锐角,,, B 2cos 13B ≤<22419cos 1,19cos 4B B ≤<<≤,222222sin 1cos 15tan 10,cos cos cos 4B B B B B B -⎛⎤===-∈ ⎥⎝⎦所以. tan B 故选:B.二、多选题9.下列说法正确的是( ) A .直线在y 轴上的截距为2 24y x +=B .直线必过定点(2,0) ()20R ax y a a --=∈C .直线的倾斜角为10x +=2π3D .过点且垂直于直线的直线方程为 ()2,3-230x y -+=210x y ++=【答案】BD【分析】根据直线的截距式方程即可判断A ,根据直线恒过定点的求法即可判断B ,根据直线斜率的定义即可判断C ,根据垂直直线斜率之积为-1,结合直线的点斜式方程即可判断D. 【详解】A :直线在轴上的截距为,所以A 不正确; 24y x +=y 2-B :由,得,20ax y a --=(2)0x a y --=令,解得:,所以该直线恒过定点,故B 正确;200x y -=⎧⎨=⎩20x y =⎧⎨=⎩(2,0)C :设直线的倾斜角为,,斜率为 10x +=α(]0,απ∈由,故C 错误;tan α=56πα=D :由直线,得该直线的斜率为,230x y -+=12所以过点且垂直于直线的直线斜率为, (2,3)-230x y -+=2故其方程为,即,故D 正确. 32(2)y x -=-+210x y ++=故选:BD.10.斜率为1的直线l 经过抛物线的焦点F ,且与抛物线相交于两点则下24y x =()()1122,,,A x y B x y 列结论正确的有( ) A .B .抛物线的准线方程为 (1,0)F 1y =-C .D .3OA OB ⋅=-10AB =【答案】AC【分析】由抛物线的性质判断AB ;联立直线l 和抛物线方程,利用韦达定理,以及数量积公式、抛物线的定义判断CD.【详解】由抛物线知,焦点,准线方程为,所以A 正确,B 不正确.24y x =(1,0)F =1x -由,消去得:,所以, 214y x y x=-⎧⎨=⎩y 2610x x -+=126x x +=121=x x 所以,所以C 正确; 121212121212(1)(1)2()13OA OB x x y y x x x x x x x x ⋅=+=+--=-++=- 所以,所以D 不正确. 12||28AB x x =++=故选:AC11.已知函数,其图像相邻两条对称轴之间的距离为,且函数()()cos (0,2f x x πωϕωϕ=+><π2是奇函数,则下列判断正确的是( )π3f x ⎛⎫- ⎪⎝⎭A .函数f (x )的最小正周期为B .函数f (x )的图像关于点(,0)对称 ππ6C .函数f (x )在上单调递增D .函数f (x )的图像关于直线对称 3ππ4⎡⎤⎢⎥⎣⎦,7π12=-x 【答案】ABD【分析】利用函数图像相邻两条对称轴之间的距离为和函数是偶函数,求出π2π()3f x -,从而可判断选项A 正确;再利用余弦函数的图像与性质,可以判断出选项()cos(2π)6=+f x x BCD 的正误.【详解】因为函数图像相邻两条对称轴之间的距离为,则,π2π22T =πT ∴=又,2π,0T ωω=>2ω∴=又函数是偶函数,因为, π()3f x -ππ2π()cos(2())cos(2)333f x x x ϕϕ-=-+=-+所以,即, 2πππ(Z)32k k ϕ-+=+∈7ππ(Z)6k k ϕ=+∈又,,则.π2ϕ<π6ϕ∴=()cos(2π)6=+f x x 函数最小正周期,故选项A 正确; πT =函数图像对称点的横坐标为:,即, ππ2π(Z)62x k k +=+∈ππ(Z)62k x k =+∈令时,,故选项B 正确; 0k =π6x =又由:,得到 ππ2π22π(Z)6k x k k -+≤+≤∈7ππππ(Z)1212k x k k -+≤≤-+∈所以函数的单调增区间为:, ()cos(2π)6=+f x x 7πππ,π(Z)1212k k k ⎡⎤-+-+∈⎢⎥⎣⎦令时,得到一个增区间为: 1k =-5π11π,1212⎡⎤⎢⎥⎣⎦故选项C 错误;函数图像的对称所在直线方程为;, πππ2π,(Z)6122k x k x k +==-+∈令时,,故选项D 正确. 1k =-7π12=-x 故选:ABD12.将全体正整数按照以下排列的规律排成一个三角形数阵,下列结论正确的是( )A .第8行最右边的数为38B .第10行从右向左第个5数为51C .第10行所有数的和为505D .第64行从左向右第7个数为2023 【答案】BCD【分析】根据三角数阵可知第行共有个数,且第行的最后一个数字是:,即为n n n 123n ++++ .结合等差数列前n 项求和公式计算,依次判断选项即可. (1)2n n +【详解】由三角形数阵可知, ①第行共有个数;n n ②第行的最后一个数字是:,即为. n 123n ++++ (1)2n n +A :因为,故A 错误; 1234567836+++++++=B :因为,1234567891055+++++++++=所以第行中的个数字依次为.故B 正确; 101046,47,48,49,50,51,52,53,54,55C :由,故C 正确;()5545104655464748495051525354555052S S ⨯+-=+++++++++==D :由,知第行最后的一个数为;()6316312346320162⨯++++++== 632016所以第行中的数字从左到右依次为642017,2018,2019,2020,2021,2022,2023,2024,,第7个数为2023,故D 正确. L 故选:BCD.三、填空题13.已知函数的最小正周期为,则___________. ()()sin 0f x x ωω=>πω=【答案】2【分析】利用正弦型函数的周期公式可求得的值.ω【详解】因为函数的最小正周期为,则. ()()sin 0f x x ωω=>π2π2πω==故答案为:.214.已知直线和圆相交于、两点,则弦长:210l x y --=22:210C x y y +--=A B AB =__________.【详解】由圆方可知其圆心坐标为,半径∴C (0,1)r =d. AB ===点睛:本题主要考查了直线与圆相交求截得弦长问题,属于基础题;求直线被圆所截得的弦长时,根据圆的性质通常考虑由弦心距,弦长的一般作为直角边,圆的半径作为斜边,利用勾股定理来解决问题,通常还会用到点到直线的距离公式.15.已知双曲线,若过右焦点F 且倾斜角为的直线与双曲线的右支有两个22221(0,0)x y a b a b-=>>30 交点,则此双曲线离心率的取值范围是___________.【答案】【分析】根据题意可知双曲线的渐近线方程的斜率需小于直线的斜率,得,结合b y x a =b <.b =【详解】由题意知,双曲线的渐近线方程为, by x a=±要使直线与双曲线的右支有两个交点, 需使双曲线的渐近线方程的斜率小于直线的斜率, by x a=即,即,由tan 30b a ︒<=b <b =,整理得,所以 <2234c a <c e a =<因为双曲线中,所以双曲线的离心率的范围是, 1e >故答案为:. 16.已知三棱锥的所有顶点都在球O 的球面上,SC 是球O 的直径若平面平面S ABC -.SCA ⊥SCB ,,,三棱锥的体积为9,则球O 的表面积为______. SA AC =SB BC =S ABC -【答案】36π【详解】三棱锥S−ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S−ABC 的体积为9, 可知三角形SBC 与三角形SAC 都是等腰直角三角形,设球的半径为r , 可得 ,解得r=3. 112932r r r ⨯⨯⨯⨯=球O 的表面积为: .2436r ππ=点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.四、解答题17.已知数列{a n }的前n 项和为S n ,且满足,. 13a =123n n S a ++=(1)求数列{a n }的通项公式;(2)若等差数列{b n }的前n 项和为T n ,且,,求数列的前n 项和Q n .11T a =33T a =11{}n n b b +【答案】(1)(2)3nn a =9(21)nn +【分析】(1)根据数列的通项与的关系,化简求得,得到数列是首项为n a n S 13()n n a a n N ++=∈{}n a 3、公比为3的等比数列,即求解通项公式; (2)由(1)可得,得到,利用裂项法,3(21)n b n =-()()11111192n 12n 1182n 12n 1n n b b +⎛⎫==- ⎪-+-+⎝⎭即可求解.【详解】(1)当时,得, 1n =29a =由,得,123n n S a ++=123(2)n n S a n -+=≥两式相减得,又,∴,112()n n n n S S a a -+-=-1n n n S S a --=13(2)n n a a n +=≥又,∴,显然, 213a a =13()n n a a n N ++=∈10,3n n na a a +≠=即数列是首项为3、公比为3的等比数列,∴;{}n a 1333n nn a -=⨯=(2)设数列的公差为,则有,{}n b d 13b =由得,解得,∴,33T a =13327b d +=6d =3(1)63(21)n b n n =+-⨯=-又, ()()11111192n 12n 1182n 12n 1n n b b +⎛⎫==- ⎪-+-+⎝⎭∴==. n 111111Q 1183352n 12n 1⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111182n 1⎛⎫- ⎪+⎝⎭()n 92n 1+【点睛】本题主要考查等比数列的定义及通项公式、以及“裂项法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“裂项法”之后求和时,弄错项数导致错解,能较好的考查逻辑思维能力及基本计算能力等.18.若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足.222sin sin sin sin sin A B C B C --=(1)求角A ;(2)若,求△ABC 周长的取值范围. 6a =【答案】(1) 2π3A =(2)(12,6+【分析】(1)根据正弦定理边角互化,可得,由余弦定理即可求解,222a b c bc --=(2)根据正弦定理得,由内角和关系以及和差角公式可得b B=1sin 2c B B ⎫=-⎪⎪⎭,进而由三角函数的性质即可求解.【详解】(1)由正弦定理可得:,222a b c bc --=,, 2221cos 22c b a A bc +-∴==-()0,πA ∈ 2π3A ∴=(2)因为,,所以,故πA B C ++=2π3A =π3B C +=ππ(0)33C BB =-<<由正弦定理得: 62πsin sin sin sin3a bc A B C====所以,b B=π1sin 32c C B B B ⎫⎛⎫==-=-⎪ ⎪⎪⎝⎭⎭所以周长 ABCA 1π6sin 623a b cB B B B ⎫⎛⎫=++=++-=++⎪ ⎪⎪⎝⎭⎭因为,则π03B <<ππ2π<333B <+πsin 13B ⎛⎫<+≤ ⎪⎝⎭故π12663B ⎛⎫<++≤+ ⎪⎝⎭求周长的取值范围为.ABC A (12,6+19.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备9.810.3 10.0 10.29.99.810.0 10.1 10.29.7新设备 10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.x y 21s 22s(1)求,,,;x y 21s 22s(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高). 【答案】(1);(2)新设备生产产品的该项指标的均值较旧设221210,10.3,0.036,0.04x y s s ====备有显著提高.【分析】(1)根据平均数和方差的计算方法,计算出平均数和方差.(2)根据题目所给判断依据,结合(1)的结论进行判断. 【详解】(1), 9.810.31010.29.99.81010.110.29.71010x +++++++++==, 10.110.410.11010.110.310.610.510.410.510.310y +++++++++==, 22222222210.20.300.20.10.200.10.20.30.03610s +++++++++==. 222222222220.20.10.20.30.200.30.20.10.20.0410s +++++++++==(2)依题意,, 0.320.15y x -==⨯===,所以新设备生产产品的该项指标的均值较旧设备有显著提高. y x -≥20.设函数,其中.22()3ln 1f x a x ax x =+-+0a >(1)讨论的单调性;()f x (2)若的图象与轴没有公共点,求a 的取值范围.()y f x =x 【答案】(1)的减区间为,增区间为;(2). ()f x 10,a ⎛⎫ ⎪⎝⎭1,+a ⎛⎫∞ ⎪⎝⎭1a e >【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据及(1)的单调性性可得,从而可求a 的取值范围.()10f >()min 0f x >【详解】(1)函数的定义域为,()0,∞+又, ()23(1)()ax ax f x x+-'=因为,故,0,0a x >>230ax +>当时,;当时,; 10x a<<()0f x '<1x a >()0f x '>所以的减区间为,增区间为. ()f x 10,a ⎛⎫ ⎪⎝⎭1,+a ⎛⎫∞ ⎪⎝⎭(2)因为且的图与轴没有公共点,()2110f a a =++>()y f x =x 所以的图象在轴的上方,()y f x =x 由(1)中函数的单调性可得, ()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭故即. 33ln 0a +>1a e>【点睛】方法点睛:不等式的恒成立问题,往往可转化为函数的最值的符号来讨论,也可以参变分离后转化不含参数的函数的最值问题,转化中注意等价转化. 21.如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥体积最大时,求面MAB 与面MCD 所成二面角的正切值.M ABC -【答案】(1)证明见解析;(2)2.【分析】(1)证得平面,结合面面垂直的判定定理即可证出结论;DM ⊥BMC (2)当在的中点位置时体积最大,建立空间直角坐标系,利用空间向量的夹角坐标公式即M A AB 可求出结果.【详解】(1)由题设知,平面平面,交线为.CMD ⊥ABCD CD 因为,平面,BC CD ⊥BC ⊂ABCD 所以平面,平面,BC ⊥CMD DM ⊂CMD 故,因为是上异于,的点,且为直径, BC DM ⊥M A CDC D DC 所以,又,平面,DM CM ⊥BC CM C =I ,BC CM ⊂BMC 所以平面,而平面,DM ⊥BMC DM ⊂AMD故平面平面;AMD ⊥BMC (2)以D 为坐标原点,的方向为轴正方向,的方向为轴正方向,建立如图所示的空间DA x DC y 直角坐标系.D xyz -当三棱锥M −ABC 体积最大时,M 为的中点.CD 由题设得,()()()()()0,0,0,2,0,0,2,2,0,0,2,0,0,1,1D A B C M()()()2,1,1,0,2,0,2,0,0AM AB DA =-==设是平面MAB 的法向量,则(),,n x y z = 即,可取, 00n AM n AB ⎧⋅=⎪⎨⋅=⎪⎩ 2020x y z y -++=⎧⎨=⎩()1,0,2n = 又是平面的一个法向量,因此 DAMCD, cos ,n DA n DA n DA ⋅=== []0π,,n DA ∈ 得, sin ,n DA = tan ,2n DA = 所以面与面所成二面角的正切值是.MAB MCD 222.已知椭圆的左,右焦点分别为、,离心率为,直线l 经过点2222:1(0)x y C a b a b+=>>1F 2F 122F 且与椭圆C 交于不同两点A ,B ,当A 是椭圆C 上顶点时,l 与圆相切.223x y +=(1)求椭圆C 的标准方程;(2)求的取值范围.11F A F B ⋅ 【答案】(1) 2211612x y +=(2)[]12.7-【分析】(1)根据题意列出方程组,解之即可;22212bc c e a c a b⎧=⎪⎪==⎨⎪⎪=-⎩(2)当直线的斜率不存在时,易得;当直线的斜率存在时,设直线方程为l 117F A F B ⋅= l ,,,联立椭圆方程,利用韦达定理和平面向量数量积的坐标表示可得(2)y k x =-11(,)A x y 22(,)B x y ,令得,结合不等式的性质计算即可求解. 11F A F B ⋅= 22283634k k -+2343t k =+≥11577F A F B t ⋅=- 【详解】(1)当A 为椭圆的上顶点时,直线l 与圆相切, 则圆心到直线l ,a =有,得,1122bc a =bc =则,解得22212bc c e a c a b⎧=⎪⎪==⎨⎪⎪=-⎩4,a b ==所以椭圆的标准方程是; C 2211612x y +=(2)由(1)知,则椭圆的左焦点,当直线的斜率不存在时,2c =1(2,0)F -l 易求得,,则;(2,3)A (2,3)B -11443(3)7F A F B ⋅=⨯+⨯-= 当直线的斜率存在时,设直线方程为,,. l (2)y k x =-11(,)A x y 22(,)B x y 由,消得,, ()22211612y k x x y ⎧=-⎪⎨+=⎪⎩y 2222(34)1616480k x k x k +-+-=, 21221634k x x k ∴+=+2122164834k x x k-=+ 21112121212(2)(2)(2)(2)(2)(2)F A F B x x y y x x k x x ⋅=+++=+++--2221212(1)2(1)()4(1)k x x k x x k =++-+++, 2222222221648162836(1)2(1)4(1)343434k k k k k k k k k --=+⨯+-⨯++=+++令,则, 2343t k =+≥2112283675757734k t F A F B k t t--⋅===-+ ,,, 3t ≥ 1103t <≤571277t -≤-<综上可知,的取值范围是. 11F A F B ⋅ []12,7-。
2022-2023学年高二下学期第一次月考化学试卷
2023上学期第一次月考试卷高二化学试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共100分。
考试时间75分钟。
可能用到的相对原子质量:C-12 N-14 K-39 Fe-56第Ⅰ卷(选择题)一.选择题(本题共15个小题,每小题3分,共45分,每个小题只有一个正确答案)1.下列对示意图的解释正确的是()A B C D示意图解释C2H2分子的空间填充模型基态Be原子最外层电子的电子云图NH3的立体结构金属原子平面密置层排列A.A B.B C.C D.D2.在下列各组元素中,有一组原子的第一电离能分别是1 086 kJ·mol-1、1 402 kJ·mol-1、1 313 kJ·mol-1。
那么这组元素可能是()A.C、N、OB.F、Ne、NaC.Be、B、CD.S、Cl、Ar3.按电子排布,可以把周期表中的元素划分为5个区,以下元素属于p区的是()A.FeB.MgC.BrD.Cu4.下列物质中σ键和π键数目比为1∶2的是()A.O2B.HCNC.CO2D.N25.下列分子或离子的中心原子,带有一对孤电子对的是()A.H2OB.BeCl2C.CH4D.PCl36.氯化亚砜(SOCl2)是一种很重要的化学试剂,可以作为氯化剂和脱水剂。
下列关于氯化亚砜分子的空间结构和中心原子(S)采取何种杂化方式的说法正确的是()A.三角锥形、sp3B.平面三角形、sp2C.平面三角形、sp3D.三角锥形、sp27.下列晶体性质的比较,错误的是()A.熔点:金刚石>碳化硅>晶体硅B.沸点:NH3>PH3C.硬度:白磷>冰>二氧化硅D.熔点:SiI4>SiBr4>SiCl48.第ⅣA族元素中C是生物分子骨架的构成元素,Si、Ge可用作半导体材料。
下列有关说法错误的是()A.三种元素原子的次外层电子排布均是全充满状态B.第一电离能:Si PC.SiH4的相对分子质量比CH4大,范德华力更强,故SiH4的热稳定性强于CH4D.原子半径Ge>Si>C的原因是电子层数增加对半径的影响大于核电荷数增加的影响9.下列说法正确的是()A .键角:4332CH >BF >NH >H OB .σ键和π键比例为7:1C .N 2与O 22+互为等电子体,1molO 22+中含有的π键数目为2N AD .SiH 4、CH 4、P 4的空间构型为正四面体形,键角都相同10.下列说法中不正确的是( )A .X 射线衍射实验可以区分晶体和非晶体,也可以获得晶体的键长和键角的数值B .价层电子对互斥模型一般不用于预测以过渡金属为中心原子的分子空间结构C .杂化轨道用于形成σ键或用来容纳未参与成键的孤电子对,未参与杂化的p 轨道可用于形成π键D .一元有机酸R COOH (R-是直链烷基)中,烷基是推电子基团,烷基越长羧酸的酸性越强11.X 和Y 是原子序数大于4的短周期元素,X m +和Y n -两种离子的电子排布式相同,下列说法中正确的是( )A.X 的原子半径比Y 小,X m +的离子半径比Y n -大B.X m +和Y n -的电子所占用的原子轨道的类型和数目都相同C.电负性:X>YD.第一电离能:X>Y12.某化合物可用作发酵助剂,结构如图所示。
福建省连城县第一中学2022-2023学年高二下学期月考(一)英语试卷(不含音频)
连城一中2022—2023学年下学期高二年级月考1英语试卷满分150分考试时间120分钟第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话.每段对话后有一个小题,从题中所给的A, B, C三个选项中选出最佳选项.听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Where are the speakers?A. At a swimming pool.B. In a clothing shop.C. At a school lab.2. What will Tom do next?A. Turn down the music.B. Postpone the show.C. Stop practicing.3. What is the woman busy doing?A. Working on a paper.B. Tidying up the office.C. Organizing a party.4. When will Henry start his vacation?A. This weekend.B. Next week.C. At the end of August.5. What does Donna offer to do for Bill?A. Book a flight for him.B. Drive him to the airport.C. Help him park the car.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A, B, C 三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间.每段对话或独白读两遍. 听第6段材料,回答第6,7题。
6. Why does Pete call Lucy?A. To say that he’ll be late.B. To tell her about his work.C. To invite her to dinner.7. When is Pete going to see Lucy?A. At 6:00 pm.B. At 6:45 pm.C. At 8:00 pm.听第7段材料,回答第8至10题。
宁夏银川市第二中学2021-2022学年高二下学期第一次月考语文试题
阅读下面的文字,完成下面小题。
区块链技术
材料一:
“区块链技术是一种基础设施,由密码学、分布式通和技术的信任来建立机制,改变了传统的依赖中心节点的信息验证模式。基于这种特性,人们可以构建在没有中介辅助下多个参与方之间的资产交易、价值传递的网络,通过建立执行智能合约,推动契约关系和规则的维护和履行,营造良好市场环境。专家介绍,区块链可以通俗地被理解为一个分布式的共享账本,这个账本由各个区块连成一个链条。在传统记账系统中,记账权掌握在中心服务器手中。而在区块链这个“账本”上,链条上的每一个点都能在上面记录信息,构成点对点的记账系统。因此,区块链技术被认为是一种去中心化的技术。更关键的是,由于以非对称密码算法加密,区块链上的数据难以被篡改,保证了信息的可信度、真实性。
C.历经流变的新写实主义诗歌成为当今诗坛的新主潮,但它强调自我独特的创作风格,难以产生里程碑式的诗篇。
D.唐代著名诗人白居易曾说:“文章合为时而著,歌诗合为事而作。”这与文中坚守与时代同行的创作理念是相通的。
【1~3题答案】
【答案】1. B 2. C 3. C
【解析】
【1题详解】
本题考查理解文意和筛选并整合文中信息的能力。
6. 请结合材料,概括我国区块链产业发展的有利条件。
【4~6题答案】
【答案】4. D 5. B
6.①国家决策层高度重视,有政策引导与支持;②企业积极促进区块链和实体经济的有效融合,推动了更多的技术创新和应用场景落地;③从业者数量和市场认知拥有良好基础;④区块链产业市场目前呈强劲增长态势且将在未来3年延续;⑤监管意识强,理论处于最前沿,占据了创新制高点。
故选C。
【点睛】做选择题,基本方法是排除法。但还要用好“比对法”。就是把选项内容与原文有关内容认真、仔细地比较、对照,不符合原文意思的,就是错误项,反之则为正确项。那么,要比对哪些内容呢?比对词语,命题者在设置选项时对原句作了改装、重组,即主要采取了“删”(删除原文的状语、定语、补语,改变原意)、“漏”(只强调问题的一个方面,有意漏掉重要信息,断章取义)、“改”(改换词语,曲解文意)、“凑”(胡乱拼凑、东拉西扯、无中生有、随意组合信息)等方式设误。要看看选项在对原句改造过程中,删去了哪些词,改了哪些词,添了哪些词,它们是否与原文意思一致。
高二下期第一次月考生物科(试卷)
2022-2023学年高二下学期第一次月考生物试题一、选择题(共50分,每题1分)1.绿藻被认为是21世纪人类最理想的健康食品,螺旋藻(属蓝细菌)特有的藻蓝蛋白能提高淋巴细胞活性,增强人体免疫力。
下列关于绿藻和螺旋藻的叙述错误的是()A.二者的遗传物质都是DNAB.绿藻有核膜、核仁,而螺旋藻没有C.绿藻和螺旋藻合成蛋白质的场所都是核糖体D.绿藻和螺旋藻都能进行光合作用,这与它们含有叶绿体有关2.一段朽木,上面长满了苔藓、地衣,朽木凹处聚积的雨水中还生活着水蚤等多种生物,树洞中还有老鼠、蜘蛛等。
下列各项中,与这段朽木的“生命结构层次”水平相当的是()A.一块稻田里的全部害虫B.一个池塘中的全部鲤鱼C.一片松林里的全部生物D.一间充满生机的温室大棚3.下图是用显微镜观察时的几个操作步骤,要把显微镜视野下的标本从下图中的A转为B,其正确的操作步骤是()①向左下方移动玻片②调节光圈使视野明亮③转动转换器④调节粗准焦螺旋⑤调节细准焦螺旋⑥向右上方移动玻片A.①③②⑤B.①③④⑥C.⑥③②④D.⑥③⑤④4.下列关于原核细胞与真核细胞的叙述,正确的是()A.原核细胞具有染色质,真核细胞具有染色体B.原核细胞没有以核膜为界限的细胞核,真核细胞有以核膜为界限的细胞核C.原核细胞中没有核糖体,真核细胞中含有核糖体D.原核细胞的DNA只分布于拟核,真核细胞的DNA只分布于细胞核5.关于下图所示过程的叙述,错误的是()A.甲是磷酸,在不同的核苷酸中种类相同B.乙是五碳糖,在DNA中是脱氧核糖,在RNA中是核糖C.丙是含氮碱基,在人体细胞遗传物质中有4种D.丁是核苷酸,在一个病毒中有8种6.结合下列曲线,分析有关无机物在生物体内含量的说法,错误的是()A.曲线①可表示人一生中体内自由水与结合水的比值随年龄变化的曲线B.曲线②可表示细胞新陈代谢速率随自由水与结合水比值的变化C.曲线③可以表示一粒新鲜的种子在烘箱中被烘干的过程中,其内无机盐的相对含量变化D.曲线①可以表示人从幼年到成年体内含水量的变化7.对下表的有关分析错误的是()A.甲可能是麦芽糖溶液B.①是斐林试剂,使用时需水浴加热C.乙液可能是一种酶溶液D.②是紫色,③是核苷酸8.在下列四种化合物的化学组成中,“○”中所对应的含义最接近的是()A.①和②B.②和③C.③和④D.⑤和⑥9.下列有关化学元素和化合物的说法正确的是A.某口服液中含有丰富的N,P,Zn等微量元素,可提高人体的免疫力B.自由水能参与许多化学反应中,如光合作用、呼吸作用、DNA和RNA的水解反应C.用32P作标记可以检测出人细胞膜中的胆固醇成分D.染色体、噬菌体和核糖体的成分都是由DNA和蛋白质组成10.下列对组成细胞的元素和化合物的叙述,正确的是()A.蛋白质在高温条件下因肽键解开而变性失活B.组成细胞的元素在无机环境中都能找到C.碳是最基本元素,细胞中的化合物都含碳D.利用甲基绿可以鉴定细胞中的遗传物质是DNA11.用35S标记一定量的氨基酸,并用来培养哺乳动物的乳腺细胞,测得核糖体,内质网、高尔基体上放射性强度的变化曲线《甲图)以及在此过程中高尔基体、内质网、细胞膜膜面积的变化曲线(乙图),下列分析不正确的是()A.甲图中的a、b、c三条曲线所指代的细胞器分别是核糖体、内质网、高尔基体B.与乳腺分泌蛋白的合成与分泌密切相关的具膜细胞器是内质网、高尔基体和线粒体C.乙图中d、e、f三条曲线所指代的膜结构分别是细胞膜、内质网膜、高尔基体膜D.35S在细胞各个结构间移动的先后顺序是核糖体→内质网→高尔基体→细胞膜12.英国医生塞达尼•任格在对离体蛙心进行实验的过程中发现,用不含钙的生理盐水灌注蛙心,收缩不能维持,用含有少量钙和钾的钠盐溶液灌流时,蛙心可持续跳动数小时。
河北省石家庄二十四中2023-2024学年高二下学期第一次月考数学试题
河北省石家庄二十四中2023-2024学年高二下学期第一次月考数学试题一、单选题1.从集合{}1,2,3,4,5中选取两个不同的元素,组成平面直角坐标系中点的坐标,则可确定的点的个数为( ) A .10B .15C .20D .252.五一小长假前夕,甲、乙、丙三人从,,,A B C D 四个旅游景点中任选一个前去游玩,其中甲到过A 景点,所以甲不选A 景点,则不同的选法有( ) A .60B .48C .54D .643.6x ⎛⎝的展开式中含2x 的项的系数为( ).A .20B .20-C .15-D .154.已知随机变量ξ的分布列如下表所示,且满足()0E ξ=,则2a b -=( )A .29B .12C .39D .05.如图,湖北省分别与湖南、安徽、陕西、江西四省交界,且湘、皖、陕互不交界,在地图上分别给各省地域涂色,要求相邻省涂不同色,现有5种不同颜色可供选用,则不同的涂色方案数为( )A .480B .600C .720D .8406.设随机变量X 服从两点分布,若()()100.4P X P X =-==,则()E X =( ) A .0.3B .0.4C .0.6D .0.77.设甲乘汽车、动车前往某目的地的概率分别为0.40.6、,汽车和动车正点到达目的地的概率分别为0.70.9、,则甲正点到达目的地的概率为( ) A .0.78B .0.8C .0.82D .0.848.有一支医疗小队由3名医生和6名护士组成,平均分配到三家医院,每家医院分到医生1名和护士2名.其中护士甲和护士乙必须分到同一家医院,则不同的分配方法有( )种. A .36B .72C .108D .1449.一袋中装有编号分别为1,2,3,4的4个球,现从中随机取出2个球,用X 表示取出球的最大编号,则()E X =( ) A .2B .3C .103D .11310.长时间玩手机可能影响视力.据调查,某校学生大约20%的人近视,而该校大约有10%的学生每天玩手机超过1小时,这些人的近视率约为60%,现从每天玩手机不超过1小时的学生中任意调查一名学生,则他近视的概率为( )A .521B .940C .745D .720二、多选题11.A ,B ,C ,D ,E 五个人并排站在一起,下列说法正确的是( )A .若A ,B 不相邻,有72种排法 B .若A ,B 不相邻,有48种排法C .若A ,B 相邻,有48种排法D .若A ,B 相邻,有24种排法12.对任意实数x ,有()()()()()823801238231111x a a x a x a x a x -=+-+-+-++-L ,下列结论成立的是( )A .01a =-B .01a =C .01281a a a a +++⋯+=D .8012833a a a a a ++--+=L13.已知事件A ,B ,且()13P A =,()15P B A =,()35P B A =,则( ) A .()115P AB =B .()25P B A = C .()25P B A =D .()415P AB =14.将杨辉三角中的每一个数C r n 都换成()11C r n n +,得到如图所示的分数三角形,称为莱布尼茨三角形.莱布尼茨三角形具有很多优美的性质,如从第0行开始每一个数均等于其“脚下”两个数之和,如果()*2N n n ≥∈,那么下面关于莱布尼茨三角形的结论正确的是( )A .当n 是偶数时,中间的一项取得最大值;当n 是奇数时,中间的两项相等,且同时取得最大值B .第8行第2个数是172C .()()111C 1C r n r n n n n -=++(N r ∈,0r n ≤≤)D .()()111111C 1C C r r r n n n n n n --+=++(N r ∈,1r n ≤≤)三、填空题15.4275C A -=. 16.将7个相同的小球放入4个不同的盒子中,则每一个盒子至少有1个小球的放法有种. 17.口袋中装有大小形状相同的红球3个,白球2个,黄球1个,甲从中不放回的逐一取球,已知在第一次取得红球的条件下,第二次仍取得红球的概率为.18.组合数0243434343434C C C C +⋅⋅⋅+++被9除的余数是.四、解答题19.若()522100121012x x a a x a x a x --=++++L .(1)求01238910a a a a a a a +++++++L 的值; (2)求02410a a a a +++L 的值;20.某地要从2名男运动员、4名女运动员中随机选派3人外出比赛.(1)若选派的3人中恰有1名男运动员和2名女运动员,则共有多少种选派方法?(2)设选派的3人中男运动员人数为X,求X的分布列.21.有完全相同的甲、乙两个袋子,袋子有大小、形状完全相同的小球,其中甲袋中有9个红球和1个白球;乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球.假设试验选到甲袋或乙袋的概率都是12.(1)求从袋子中摸出红球的概率;(2)求在摸出白球的条件下,该球来自甲袋的概率.22.已知2n x⎛⎝的展开式二项式系数和为64.(1)求展开式中的常数项;(2)求展开式中二项式系数最大的项.23.新高考数学试卷增加了多项选择题,每小题有A、B、C、D四个选项,原则上至少有2个正确选项,至多有3个正确选项.题目要求:“在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.”其中“部分选对的得部分分”是指:若正确答案有2个选项,则只选1个选项且正确得3分;若正确答案有3个选项,则只选1个选项且正确得2分,只选2个选项且都正确得4分.(1)若某道多选题的正确答案是AB,一考生在解答该题时,完全没有思路,随机选择至少一个选项,至多三个选项,请写出该生所有选择结果所构成的样本空间,并求该考生得分的概率;(2)若某道多选题的正确答案是2个选项或是3个选项的概率均等,一考生只能判断出A选项是正确的,其他选项均不能判断正误,给出以下方案,请你以得分的数学期望作为判断依据,帮该考生选出恰当方案:方案一:只选择A选项:方案二:选择A选项的同时,再随机选择一个选项;。
辽宁省鞍山市普通高中2022-2023学年高二下学期第一次月考高二语文(A卷)答案
高二月考语文试卷(A)答案时间:150分钟,满分:150分一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,17分)1.(3分)【答案】D【解析】A项,“自20世纪60年代起,小说成为拉美文学最有力的代表”扩大范围。
由材料一第一段“那么从20世纪60年代开始,长篇小说就成为拉美文学最有力的代表”可知,选项将原文的“长篇小说”扩大范围为“小说”。
B项,“拉美文学便终结了之前那种划时代作品集中诞生的热闹场面”曲解文意。
由材料一第四段“从20世纪70年代起,拉美文学就难以复制那种划时代作品集中诞生的热闹场面了,但其余波仍久久未平”可知,此时期拉美文学仍有划时代作品。
C项,“学界一致认为……”张冠李戴。
据材料二第二段,这是美国学者哈罗德·布鲁姆在《影响的焦虑》中的观点。
故选D项。
2.(3分)【答案】A【解析】A项,“成为当时拉美小说的全部特征”错误,“魔幻现实主义”不等于当时拉美小说的全部。
见材料一第三段:“这些拉美故事不断突破小说自身的界限,或与其他艺术形式有所联系,或邀请读者一起向传统的小说阅读方式发起挑战,它们意味着新的结构新的语言。
”故选A项。
3.(3分)【答案】C【解析】由材料一第三段“这些拉美故事不断突破小说自身的界限,或与其他艺术形式有所联系,或邀请读者一起向传统的小说阅读方式发起挑战,它们意味着新的结构、新的语言”可知,“不断突破小说自身的界限”指与其他艺术形式有所联系,或向传统的小说阅读方式发起挑战,或运用新的结构、新的语言。
A、B、D三项属于“突破小说自身的界限”。
C项是传统的小说结构。
故选C项。
4.(4分)【答案】①首先,提出问题,总的指出新时期魔幻写作存在“影响的焦虑”和“同质化”的隐忧两方面问题,这促使作家追求魔幻写作的独创性与个人化特征。
②其次,从“影响的焦虑”和“同质化”两个方面展开论述,先分析问题,然后论述如何解决“影响的焦虑”以及“同质化”的问题。
(每点2分,意思对即可。
天津高二下学期第一次月考数学试题(解析版)
一、单选题1.下列各式正确的是( ) A .B . ()cos sin x x '=()ln x x a a a '=C . D .ππsin cos 1212'⎛⎫= ⎪⎝⎭()5615xx --'=-【答案】B【分析】根据基本初等函数的求导公式判断.【详解】;;,,只有B 正确.(cos )sin x x '=-πsin 012'⎛⎫= ⎪⎝⎭56()5x x --'=-()ln x xa a a '=故选:B .2.函数的单调递减区间是( ) (e 3)()x f x x =-A . B . C . D .(),2-∞()0,3()1,4()2,+∞【答案】A【分析】求出导函数,由得减区间. ()f x '()0f x '<【详解】由已知, ()(3)(2)x x x f x e x e x e '=+-=-时,,时,,2x <()0f x '<2x >()0f x '>所以的减区间是,增区间是; ()f x (,2)-∞(2,)+∞故选:A .3.曲线在处的切线l 与坐标轴围成的三角形的面积为( )()2ln f x x x =x e =A .B .C .D .24e 2e 22e 22e 【答案】D【解析】先利用导数的几何意义求出切线方程,再分别求出直线与两坐标轴的交点坐标,即可得l 到切线l 与坐标轴围成的三角形的面积.【详解】由,得,则,,所以曲线在()2ln f x x x =()22ln f x x '=+()2f e e =()224f e '=+=()f x 处的切线的方程为,即.令得;令得.所以直x e =l ()24y e x e -=-42y x e =-0x =2y e =-0y =2ex =线与两坐标轴的交点坐标分别为,,所以切线与坐标轴围成的三角形的面积为l ()0,2e -,02e ⎛⎫⎪⎝⎭l . 212222e e e ⨯⨯=故选D.4.若对任意的实数恒成立,则实数的取值范围是( ) 0,ln 0x x x x a >--≥a A . B .C .D .(,1]-∞-(,1]-∞[1,)-+∞[1,)+∞【答案】A【解析】构造函数,利用导数研究函数在单调性,并计算()ln f x x x x a =--()f x ()0,∞+,可得结果.()min 0f x ≥【详解】令,()ln f x x x x a =--()0,x ∈+∞则,令()'ln f x x =()'01f x x =⇒=若时,01x <<()'0f x <若时,1x >()'0f x >所以可知函数在递减,在递增 ()f x ()0,1()1,+∞所以()()min 11f x f a ==--由对任意的实数恒成立 0,ln 0x x x x a >--≥所以 ()min 101f x a a =--≥⇒≤-故选:A【点睛】本题考查利用导数解决恒成立问题,关键在于构建函数,通过导数研究函数性质,属基础题.5.已知R 上的可导函数的图象如图所示,则不等式的解集为( )()f x ()()20x f x '->A .B . ()(),21,-∞-+∞ ()()212-∞-,,UC .D .()(),12,-∞+∞ ()()1,12,-+∞ 【答案】D【分析】由函数图象得出和的解,然后用分类讨论思想求得结论. ()0f x '>()0f x '<【详解】由图象知的解集为,的解集为,()0f x '>(,1)-∞-(1,)⋃+∞()0f x '<(1,1)-或,(2)()0x f x '->20()0x f x -⇔'>⎧⎨>⎩20()0x f x -<<'⎧⎨⎩所以或,解集即为. 2x >11x -<<()()1,12,-+∞ 故选:D .6.若函数在区间内存在单调递增区间,则实数的取值范围是( )2()ln 2f x x ax =+-1,22⎛⎫⎪⎝⎭a A . B . C . D .(,2]-∞-1,8⎛⎫-+∞ ⎪⎝⎭12,8⎛⎫-- ⎪⎝⎭(2,)-+∞【答案】D【分析】求出函数的导数,问题转化为在有解,进而求函数的最值,即212a x >-1(,2)221()2g x x =可求出的范围.a 【详解】∵, 2()ln 2f x x ax =+-∴,1()2f x ax x'=+若在区间内存在单调递增区间,则有解,()f x 1(,2)21()0,(,2)2f x x '>∈故, 212a x >-令,则在单调递增, 21()2g x x =-21()2g x x =-1(,2)2,1()()22∴>=-g x g 故. 2 a >-故选:D.7.已知函数在处有极值10,则的值为( ) 322()f x x ax bx a =--+1x =a b 、A ., B .,或, 4a =-11b =3a =3b =-4a =-11b =C ., D .以上都不正确1a =-5b =【答案】A【解析】根据条件函数在处有极值10,则有且,解出的值,然后()f x 1x =1(1)0f =()01f '=a b 、再代入检验是否满足条件,得出答案【详解】解:函数的导数为, 2()32f x x ax b '=--因为函数在处有极值10, 322()f x x ax bx a =--+1x =所以且.1(1)0f =()01f '=即,解得或. 2320110a b a b a --=⎧⎨--+=⎩33a b =⎧⎨=-⎩411a b =-⎧⎨=⎩当,,,3a =3b =-22()3633(1)0f x x x x '=-+=-…此时函数单调递增,所以此时函数没有极值,所以不满足条件. 所以经检验值当,时,满足条件. 4a =-11b =故选:A .【点睛】本题考查函数取极值的情况,求参数的值,注意要检验,属于中档题. 8.定义在R 上的偶函数,其导函数,当x ≥0时,恒有,若()f x ()f x '()()02xf x f x '+-<,则不等式的解集为( ) 2()()g x x f x =()(12)g x g x <-A .(,1)B .(∞,)∪(1,+∞)13-13C .(,+∞)D .(∞,)13-13【答案】A【分析】由已知可得,即在上单调递减,再利用函数的奇偶()[2()()]0g x x f x xf x ''=+<()g x [0,)+∞性、单调性,求解题设不等式即可.【详解】当时,,又, 0x ≥2()2()()[2()()]g x xf x x f x x f x xf x '=+''=+()()()()022x xf x f x f x f x ''+-=+<∴,即在上单调递减. ()0g x '<()g x [0,)+∞∵是定义在R 上的偶函数, ()f x ∴是定义在R 上的偶函数,()g x 由不等式,则有, ()(12)g x g x <-(||)(|12|)g x g x <-∴,解得:. |||12|x x >-113x <<∴不等式的解集为. ()(12)g x g x <-1(,1)3故选:A9.设函数与是定义在同一区间上的两个函敉,若对任意的,都有()f x ()g x [],a b [],x a b ∈,则称与在上是“k 度和谐函数”,称为“k 度密切区()()()0f x g x k k -≤>()f x ()g x [],a b [],a b 间”.设函数与在上是“e 度和谐函数”,则m 的取值范围是( ) ()ln f x x =()1mx g x x -=1,e e ⎡⎤⎢⎥⎣⎦A .B .[]e 1,1--[]1,e 1-+C .D .1e,1e e ⎡⎤-+⎢⎥⎣⎦11e,1e e ⎡⎤+-+⎢⎥⎣⎦【答案】B【分析】由新定义转化为不等式恒成立,再转化为求函数的最值,从而得出结论. 【详解】由题意在时恒成立,即在时恒成1ln e mx x x --≤1[e]e x ∈,1e ln e m x m x-≤+≤+1[e]e x ∈,立, 设,则,1()ln h x x x=+22111()x h x x x x -'=-=时,,单调递减,时,,单调递增, 11ex ≤<()0h x '<()h x 1e x <≤()0h x '>()h x 所以,又,,所以,min ()(1)1h x h ==1(e 1e h =-1(e)1e 1e h =+<-max ()e 1h x =-因此由在时恒成立得:1e ln e m x m x-≤+≤+1[e]e x ∈,且,所以.e 1m -≤e e 1m +≥-1e 1m -≤≤+故选:B .【点睛】方法点睛:不等式恒成立问题的处理方法,解决函数不等式恒成立的常用方法是分离参数法,即不等式变形把参数与自变量分离,然后构造新函数,利用导数求得函数的最值,然后解相x 应不等式得参数范围.二、填空题10.已知函数的导函数为,且满足,则________. ()f x ()f x '()()121f x xf x'=+()1f '=【答案】1【分析】根据题意,求导可得,然后令,即可得到结果. ()f x '1x =【详解】因为,则, ()()121f x xf x '=+()()2121f x f x''=-令,可得,解得. 1x =()()1211f f ''=-()11f '=故答案为: 111.函数的单调减区间为_______ . ()219ln 2f x x x =-【答案】.()0,3【解析】利用导数研究函数单调性即可得到结论. 【详解】解:∵,, ()219ln 2f x x x =-0x >则,299()x f x x x x'-=-=由,即,解得 ,()0f x '<290x -<33x -<<,即函数的单调减区间为, 0,03x x >∴<< ()0,3故答案为:.()0,3【点睛】本题主要考查函数单调区间的求解,根据函数的导数和单调性之间的关系是解决本题的关键.12.函数的图象在点处的切线的倾斜角为__________ ()cos x f x e x =(0,(0))f 【答案】4π【详解】因为, ()cos sin x x f x e x e x -'=00(0)cos 0sin 01f e e -'==所以函数的图象在点处的切线的倾斜角为()cos x f x e x =(0,(0))f 4π13.已知函数对区间上任意的都有,则实数m 的最小3()3f x x x =-[3,2]-1,x 2x ()()12f x f x m -≤值是________. 【答案】20【分析】求出在上的最大值和最小值后由两者差可得的范围,即得的最小值、 ()f x [3,2]-m m 【详解】,则=0,,当或时,,3()3f x x x =-2()33f x x '=-1x =±31x -≤<-12x <≤()0f x '>递增,当时,,递减.()f x 11x -<<()0f x '<()f x 所以,,又,, ()(1)2f x f =-=极大值()2f x =-极小值(3)18f -=-(2)2f =所以在上,,[3,2]-()2,()18f x f x ==-最大值最小值所以的最大值为,即,所以的最小值为20. 12()()f x f x -2(18)20--=20m ≥m 故答案为:20.【点睛】本题考查用导数研究函数的最值,解题关键是命题对区间上任意的都有[3,2]-1,x 2x ,转化继.()()12f x f x m -≤12()()()()f x f x f x f x -≤-最大值最小值14.当时,函数有两个极值点,则实数m 的取值范围___________.0x >()22x f x e mx =-+【答案】 2e m >【分析】函数有两个极值点转化为方程有两个不同的实数根,等价于与有两个2xe m x =y m =2x e y x=不同的交点,构造函数,即可求出结果.()(0)2xe h x x x =>【详解】有两个极值点, 2()2xf x e mx =-+所以有两个不同的实数根,'()20x f x e mx =-+=即有两个不同的实数根,2xe m x=等价于与有两个不同的交点,y m =2xe y x =设, ()(0)2x e h x x x =>2(1)'()(0)2x e x h x x x -=>当单调递减, (0,1),'()0,()x h x h x ∈<当单调递增, (1+),'()0,()x h x h x ∈∞>,所以 min ()(1)2eh x h ==当;0()x h x →→+∞,+()x h x →∞→+∞,所以与要有两个不同的交点,只需y m =2xe y x=2e m >故答案为:2em >【点睛】方法点睛:含参方程有根的问题转化为函数图像的交点问题,数形结合,是常用的方法.本题考查了运算求解能力和数形结合思想,属于一般题目.三、双空题15.(1)设函数,其中,若存在唯一的整数,使得,则()()e 21xf x x ax a =--+1a <0x ()00f x <a 的取值范围是________.(2)已知,,若,,使得成立,则实数a 的()e xf x x =()()21g x x a =-++1x ∃2x ∈R ()()21f x g x ≤取值范围________. 【答案】3,12e ⎡⎫⎪⎢⎣⎭1,e ⎡-+∞⎫⎪⎢⎣⎭【分析】(1)根据题意转化为存在唯一的整数,使得在直线的下方,求导得0x ()0g x y ax a =-,然后结合图像即可得到结果;()g x '(2)根据题意,将问题转化为,然后求导得极值,即可得到结果.()()min max f x g x ≤【详解】(1)函数,其中,()()e 21xf x x ax a =--+1a <设,()()e 21,xg x x y ax a =-=-因为存在唯一的整数,使得,0x ()00f x <所以存在唯一的整数,使得在直线的下方, 0x ()0g x y ax a =-因为,所以当时,,()()e 21xg x x '=+12x <-()0g x '<当时,,12x =-()12min 12e 2g x g -⎛⎫=-=- ⎪⎝⎭当时,, 0x =()()01,1e>0g g =-=直线恒过点,斜率为,y ax a =-()1,0a 故,且,解得 ()01a g ->=-()113e g a a --=-≥--32ea >所以的取值范围是a 3,12e ⎡⎫⎪⎢⎣⎭(2),,使得成立,等价于,1x ∃2x ∈R ()()21f x g x ≤()()min max f x g x ≤因为,所以,()e x f x x =()()1e xf x x '=+当时,,则函数递减; 1x <-()0f x '<()f x 当时,,则函数递增; 1x >-()0f x ¢>()f x 所以时,,=1x -()min 1ef x =-因为,所以,()()21g x x a =-++()max g x a =所以,则实数的取值范围是.1e a -≤m 1,e ⎡-+∞⎫⎪⎢⎣⎭故答案为: (1);(2)3,12e ⎡⎫⎪⎢⎣⎭1,e ⎡-+∞⎫⎪⎢⎣⎭四、解答题16.已知函数(a ,),其图象在点处的切线方程为()()322113f x x ax a x b =-+-+b ∈R ()()1,1f .30x y +-=(1)求a ,b 的值;(2)求函数的单调区间和极值; ()f x (3)求函数在区间上的最大值. ()f x []2,5-【答案】(1),;1a =83b =(2)的增区间是和,减区间是,极大值是,极小值是;()f x (,0)-∞(2,)+∞(0,2)8(0)3f =()423f =(3)最大值是,最小值是. 5834-【分析】(1)由出导函数,计算和,由切线方程列方程组解得; ()f x '(1)f '(1)f ,a b (2)由得增区间,由得减区间,从而可得极值;()0f x '>()0f x '<(3)结合(2)可得函数在上的单调性,再计算出区间端点处的函数值,,与[2,5]-(2)f -(5)f (2)中极值比较可得最值.【详解】(1),,22()21f x x ax a '=-+-22(1)1212f a a a a '=-+-=-,2212(1)133f a a b a a b =-+-+=-+-又图象在点处的切线方程为,()()1,1f 30x y +-=所以,解得; 222121(303a a a a b ⎧-=-⎪⎨+-+--=⎪⎩183a b =⎧⎪⎨=⎪⎩(2)由(1)得,,3218()33f x x x =-+2()2(2f x x x x x '=-=-)或时,,时,,0x <2x >()0f x '>02x <<()0f x '<所以的增区间是和,减区间是, ()f x (,0)-∞(2,)+∞(0,2)极大值是,极小值是;8(0)3f =()423f =(3)由(2)知在和上递增,在上单调递减, ()f x [2,0]-[2,5](0,2)又,, (2)4f -=-58(5)3f =所以在上的最大值是,最小值是. ()f x [2,5]-5834-17.已知函数,其中是自然对数的底数,.()()21e xf x ax x =+-e a R ∈(1)若,求的单调区间;a<0()f x (2)若,函数的图象与函数的图象有个不同的交点,求实数的1a =-()f x ()321132g x x x m =++3m 取值范围.【答案】(1)答案见解析(2) 31,1e 6⎛⎫--- ⎪⎝⎭【分析】(1)求得,对实数的取值进行分类讨论,分析导数的符号变()()221e xf x ax a x '⎡⎤=++⎣⎦a 化,由此可得出函数的增区间和减区间;()f x (2)由可得出,构造函数()()f x g x =()232111e 32xm x x x x -=-+++,可知直线与函数的图象有三个交点,利用导数分析函()()232111e 32x h x x x x x =-+++y m =-()h x 数的单调性与极值,数形结合可得出实数的取值范围.()h x m 【详解】(1)解:当时,因为,该函数的定义域为, 0a <()()21e xf x ax x =+-R ,()()()()2221e 1e 21e x x xf x ax ax x ax a x '⎡⎤=+++-=++⎣⎦由可得或. ()0f x '=0x =21a x a+=-①当时,即当时,210a a+-<12a <-由可得或,由可得, ()0f x '<21a x a +<-0x >()0f x ¢>210a x a+-<<此时函数的单调递减区间为、,单调递增区间为; ()f x 21,a a +⎛⎫-∞- ⎪⎝⎭()0,∞+21,0a a +⎛⎫-⎪⎝⎭②当时,即当时,对任意的,且不恒为零, 210a a+-=12a =-x R ∈()0f x '≤()f x '此时函数的减区间为,无增区间; ()f x (),-∞+∞③当时,即当时,210a a+->102a -<<由可得或,由可得, ()0f x '<0x <21a x a +>-()0f x ¢>210a x a+<<-此时函数的单调递减区间为、,单调递增区间为.()f x (),0∞-21,a a ∞+⎛⎫-+ ⎪⎝⎭210,a a +⎛⎫- ⎪⎝⎭综上所述,当时,函数的单调递减区间为、,单调递增区间为12a <-()f x 21,a a +⎛⎫-∞- ⎪⎝⎭()0,∞+; 21,0a a +⎛⎫- ⎪⎝⎭当时,函数的减区间为,无增区间; 12a =-()f x (),-∞+∞当时,函数的单调递减区间为、,单调递增区间为102a -<<()f x (),0∞-21,a a ∞+⎛⎫-+ ⎪⎝⎭. 210,a a +⎛⎫- ⎪⎝⎭(2)解:当时,,1a =-()()21e x f x x x =-+-由可得,可得, ()()f x g x =()232111e 32x x x x x m -+-=++()232111e 32x m x x x x -=-+++令,则, ()()232111e 32x h x x x x x =-+++()()()2e 1x h x x x '=++由可得或,由可得.()0h x '>1x <-0x >()0h x '<10x -<<所以,函数的增区间为、,减区间为,()h x (),1-∞-()0,∞+()1,0-函数的极大值为,极小值为, ()h x ()311e 6h -=+()01h =因为函数、的图象有三个交点,()f x ()g x 所以,直线与函数的图象有三个交点,如下图所示:y m =-()h x由图可知,当时,即当时, 311e 6m <-<+311e 6m --<<-直线与函数的图象有三个交点,y m =-()h x 因此,实数的取值范围是. m 31,1e 6⎛⎫--- ⎪⎝⎭【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与轴的交点问题,突出导数的工具作用,体现了转化与化x 归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由分离变量得出,将问题等价转化为直线与函数()0f x =()a g x =y a =的图象的交点问题.()y g x =18.已知函数()ln 1x f x me x =--(1)设是的极值点,求m ,并求的单调区间;2x =()f x ()f x (2)当时,求证:1m >()1f x >(3)当时,求证: 1m e>()0f x >【答案】(1),在上单调递减,在上单调递增; 21=2m e ()y f x =()0,2()2,∞+(2)证明见解析;(3)证明见解析.【分析】(1)先由是的极值点求出m ,再直接求单调区间;2x =()f x (2)用分析法,只需证明即可,构造函数,利用导数证明ln 20x e x -->()()ln 20x g x e x x =-->,即证;()min 0g x >(3)先判断时,,构造函数,利用导数证明当1m e >()ln 1xe f x x e >--()()ln 10x e p x x x e=-->时,,即证.0x >()()10p x p =≥【详解】解:定义域为 ()ln 1x f x me x =--()01()x f x me x=∞'+-,,(1)∵是的极值点,2x =()f x ∴,解得:. 21(2)=02f me '=-21=2m e 此时, 22111()ln 1()22x x f x e x f x e e e x'=--=-,当时;当时;02x <<()0f x '<2x >()0f x '>所以在上单调递减,在上单调递增.()y f x =()0,2()2,∞+(2)当时,,只需证即可.1m >()1ln 2ln 2x x f x me x e x -=-->--ln 20x e x -->令,则 ()()ln 20x g x e x x =-->()()111x x g x e =xe x x=--'令,则,()()10x h x xe x =->()0x x h x e xe '=>+∵∴存在,使得即,也可化为()121110,110,22h e h e ⎛⎫=-<=-> ⎪⎝⎭01,12x ⎛⎫∈ ⎪⎝⎭()00h x =0010x x e =-00ln 0x x +=∴在上,,则单调递减;在上,,则单调递增.()00x ,()0g x '<()g x ()0x +∞,()0g x '>()g x 所以 ()()000000000min 1ln 221221012x x g x g x =e x =e x x x x x ⎛⎫=--+->++-=-><< ⎪⎝⎭∵即证.(3)当时,, 1m e >()ln 1xe f x x e>--令,则 ()()ln 10x e p x x x e=-->()1x e p x e x '=-令,解得x =1, ()10x e p x =e x'=-∴在上,,则单调递减;在上,,则单调递增. ()01,()0p x '<()p x ()1+∞,()0p x '>()p x ∴,故当时,.()()min 10p x =p =0x >()()10p x p =≥∴时,都有. 1m e>()0f x >【点睛】导数的应用主要有:(1)利用导数研究原函数的单调性,求极值(最值);(2)利用导数求参数的取值范围.(3)构造新函数,利用导数判断单调性,证明不等式成立19.已知函数,.()ln f x x x =()()1g x a x a =+-(1)求函数的极值;()()()h x f x g x =-(2)若存在时,使成立,求的取值范围.[]1,e x ∈()223f x x ax ≥-+-a (3)若不等式对任意恒成立,求实数的取值范围.()()()12e x h x x a a -≤--+[)1,x ∈+∞a 【答案】(1)函数有极小值,无极大值;()h x ()ee a a h a =-(2); 32e e a ≤++(3).(],0-∞【分析】(1)由题可得,然后根据导数与函数极值的关系即得;()()ln 1x x x h x a a =-++(2)由题可得存在,成立,构造函数,利用导[]1,e x ∈32ln a x x x ≤++()[]32ln ,1,e F x x x x x=++∈数求函数的最值即得;(3)设,由题可得对任意恒成立,利用导数可得()()1e xg x x a =--()()ln 1g x g x ≤-[)1,x ∈+∞,进而可得只需在上单调递增,即在0ln 1x x ≤≤-()()1e x g x x a =--[)0,+∞()()e 0x g x x a '=-≥上恒成立,即得.[)0,+∞【详解】(1)因为,()()()()ln 1h x x x x a x a f x g =-=++-∴,()()ln 1n 1l h x x a x a -+='+-=由,可得,由,可得,()0h x '<0e a x <<()0h x '>e a x >∴在上单调递减,在上单调递增, ()h x ()0,e a ()e ,a+∞所以,当时,函数有极小值,无极大值;e a x =()h x ()e e a a h a =-(2)由,可得, ()222ln 3f x x x x ax =≥-+-32ln a x x x≤++即存在,成立, []1,e x ∈32ln a x x x≤++设,则, ()[]32ln ,1,e F x x x x x =++∈()()()22132310x x F x x x x -+'=+-=≥所以函数在上单调递增,, ()F x []1,e ()()max 3e 2e eF x F ==++所以; 32e ea ≤++(3)由题可知对任意恒成立, ()()()1ln 12ex x x a x x a --+≤--[)1,x ∈+∞即对任意恒成立, ()()()1ln ln 1e 11ex x x a x a ---≤---⎡⎤⎣⎦[)1,x ∈+∞设,则对任意恒成立,()()1e x g x x a =--()()ln 1g x g x ≤-[)1,x ∈+∞下面证明对任意恒成立,0ln 1x x ≤≤-[)1,x ∈+∞设,,()ln 1t x x x =-+[)1,x ∈+∞则在上恒成立,且仅在时取等号, ()1110x t x x x-'=-=≤[)1,+∞=1x 所以在上单调递减,()ln 1t x x x =-+[)1,+∞∴,即,()()10t x t ≤=0ln 1x x ≤≤-所以对任意恒成立,只需在上单调递增, ()()ln 1g x g x ≤-[)1,x ∈+∞()()1e xg x x a =--[)0,+∞即在上恒成立,()()e 0x g x x a '=-≥[)0,+∞所以在上恒成立,a x ≤[)0,+∞所以,即实数的取值范围为.0a ≤a (],0-∞【点睛】方法点睛:恒(能)成立问题的解法:若在区间上有最值,则()f x D (1)恒成立:;; ()()min ,00x D f x f x ∀∈>⇔>()()max ,00x D f x f x ∀∈<⇔<(2)能成立:;. ()()max ,00x D f x f x ∃∈>⇔>()()min ,00x D f x f x ∃∈<⇔<若能分离常数,即将问题转化为:(或),则 ()a f x >()a f x <(1)恒成立:;; ()()max a f x a f x >⇔>()()min a f x a f x <⇔<(2)能成立:;. ()()min a f x a f x >⇔>()()max a f x a f x <⇔<。
重庆市巴蜀中学2022-2023学年高二下学期第一次月考语文试题
高2024届高二(下)学月考试语文试卷注意事项:1.答题前,考生务必将自己的姓名、准考证号、班级、学校在答题卡上填写清楚。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试卷上作答无效。
3.考试结束后,请将答题卡交回,试卷自行保存。
满分150分,考试用时150分钟。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,共19分)阅读下面的文字,完成1~5题材料一:建构中国现代散文理论的首要任务是确立散文文体的核心。
散文的特点是自由与真实。
散文没有自己特定的文体标识,其写作内容无所不包,它也没有属于自己的结构要求和特殊写作技巧,散文唯一的不自由是不能任意虚构,真实是它的最基本要求和最可贵品质。
虽不一定是客观上的真人真事,但作者在主观上起码不能有意虚构,更重要的是文中所写的必须是真情实感,在散文中,真实的作者始终在场。
因而,如果追问散文的真正核心是什么,只能说是“人—文”。
在散文中,“人”与“文”一体两面,“人”是散文作者自己,而“文”是“人”的创造物,亦是“人”得以呈现的文本符号。
小说、戏剧和诗歌也包含作者与作品两个层面,但这些文体作者隐藏在形式和话语背后,而散文的“人”与“文”之间无需话语装置和形式中介,作者在文章中是直接在场的,散文是“人文一体”的直接呈现。
以“人—文”为核心,散文文体可分为四个层面:一是知识与经验层面,二是思想与情感层面(理性与情感),三是精神与境界层面,四是文体与语体层面。
知识与经验、思想与情感、精神与境界三个层面是散文的内涵层面,由具体到抽象层层叠加、内化和升华。
知识与经验、思想与情感关乎内容的宽度(丰富性)与深度(深刻性),其中知识与经验层面是直接性、事实性和偏于客观性的内容信息,诉诸叙述、描述和说明;思想与情感层面与前者相伴相生,“理不可以直指也,故即物以明理;情不可以显言也,故即事以寓情”(刘大櫆《论文偶记》),思想统摄知识,经验伴随情感,是基于前者的偏于主观性的方面,诉诸议论与抒情,表现为散文的理趣和意境;精神与境界层面是在前述两个层面基础上的最终升华与结晶,是散文内涵的最高层面,涉及散文整体的精神品质、价值立场、道德理想和性灵情致等,是散文最终达到的境界,也是前述两个层面的人格化,是散文的核心——写作主体人格的最终显现。
黑龙江省齐齐哈尔市重点中学2022-2023学年高二下学期第一次月考语文试题(含答案)
2022-2023学年度下学期第一次月考高二语文试题一、现代文阅读(28分)(一)论述类文本阅读(本题共4小题,12分)阅读下面的文字,完成下面小题。
材料一:唐诗何以成为经典?从数量上来看,据专家估计,唐诗(包含五代诗)存世数量约53000首,作者约3000人。
这组数字,远远超过了从《诗经》以来到隋朝漫长的历史岁月中全部诗歌的总和。
在作者方面,写诗几乎成为当时唐朝全民性的文艺活动,各行各业都有诗作传世,甚至不乏无名氏的精彩诗作留了下来。
因此,从作者的身份、诗作的数量和诗人的数量来看,唐代诗歌都达到了一个极其辉煌的程度,堪称中国历史上诗歌的黄金时代。
唐诗之所以成为古代文学的经典,主要是因为它的艺术造诣登峰造极。
那个伟大的时代不仅诞生了李、杜这样享有世界声誉的诗人,而且还涌现出一批卓有成就的名家,比如初唐四杰、王孟、高岑、晚唐的小李杜等。
不仅如此,唐诗的风格非常多样。
既有像杜甫这样描写现实的伟大诗人,也有像李白这样风格比较浪漫的诗人,同时还有一些深受禅宗思想濡染的诗人。
而且中国古典诗歌的各种体裁的发展,在唐代都达到一个全盛时期。
鲁迅先生曾经说过:“一切好诗,到唐代已经被做完。
此后倘非能翻出如来掌心的齐天大圣,大可不必动手。
”我搞摩鲁迅先生此话之意,大约是如今的我们如果想写诗抒发胸中之意的时候,不妨直接引用一首唐朝诗人的诗即可,不必亲自操刀了。
唐诗之所以经典,还有一个因素就是,经典是要经过长时间检验的,而唐诗具有强大的时间穿透性。
经典在流传过程之中,会得到不断的阐释和接受,会融入很多时代因素,成为作者和读者的一个公共空间,作者在写的时候就会留下空白,等着读者去填充。
读者在读一首诗的时候,在某一个时间节点,忽然之间豁然开朗,领悟到诗歌的真谛,那么这时候我们就和作者发生了共鸣,这就是接受文学传播过程中的时间穿越性。
《红楼梦》中有“香菱学诗”片段,黛玉给香菱推荐“诗歌教科书”:“我这里有《王摩诘全集》,你且把他的五言律诗读一百首,细心揣摩透了。
山东省泰安市新泰2023-2024学年高二下学期第一次月考试题 英语含答案
新泰2022级高二年级下学期第一次阶段性考试英语试题(答案在最后)2024/3/19第Ⅰ卷第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What is the man doing?A.Making a consultation.B.Renting a guitar.anizing a party.2.What is the relationship between the speakers?A.Salesperson and customer.B.Brother and sister.C.Classmates.3.How does the man feel about the concert?A.It was terrible.B.It was average.C.It was pleasant.4.What are the speakers mainly talking about?A.A weekend plan.B.A new company.C.A job opportunity.5.Why does the woman look tired?A.She walked a long distance.B.She did too much housework.C.She played tennis after school.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
广东省台山市重点中学2022-2023学年高二下学期第一次月考语文试题及参考答案
台山市重点中学高二下学期第一次月考试题语文一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,17分)阅读下面的文字,完成1~5题。
材料一:在竞速时代,速度浸入了现代人的日常生活,也不断重塑现代人的感知经验。
个体虽然在时间和空间上变得更加自由,但越来越难以跟上社会的快节奏发展,焦虑感也愈发强烈。
与此同时,速度逐渐成为当代艺术创作的主题,甚至成为一种随处可见的文化景观。
速度美学关注审美艺术中加速或快速的时间体验,强调审美感知的瞬间性、快节奏。
捕捉新奇、紧跟时尚,成为竞速时代审美艺术的共同追求。
在这一背景下出现的“慢速生活”观念,具有某种反拨意味。
对“慢速生活”的提倡,并非逃避生活,而是通过远离加速生活和撤回内心来实现自我保护。
“慢速生活”理念通过减速来与加速的外在生活保持距离,强调关注内心体验,表现了对主体精神和情感的当下性的关注。
现代人对慢食、慢走、慢旅行和休闲阅读等生活模式的倡导,也是希望通过慢生活实现心理时间与物理时间的平衡。
在慢速生活的审美体验中,个体从外部物理时间中抽离,更亲近和关注当下,进而实现对竞速生存的审美救赎。
在“慢速生活”中应运而生的“慢速美学”,是对竞速时代的反思。
慢速审美的核心在于理解和挖掘“当下性”,进而建构过去、当下和未来的时间经验关系。
关注“当下性”,意味着将当下的瞬间固化,将当下视为过去和未来的连接,这实际上是以一种减速的时间模式对抗加速的时间模式。
慢速艺术尝试延长的时间结构,使用了犹豫、延迟和减速的策略,试图让我们暂停下来,体验“当下”短暂的存在。
在中国,对慢速审美的提倡古已有之。
在日常生活美学中,太极、书法、棋艺、茶道、园林等传统文化的审美形式,都提倡在快与慢之间寻求一个平衡点,保持适当的生活节奏和张力。
无论是对文化记忆的留存和保护,还是对绿色城市的提倡,也都体现了身处竞速时代的人们对于传统生活态度、情感关系、文化精神的追忆和传承。
昆德拉反思技术革命所带来的“令人出神的速度”,发出“慢的乐趣怎么失传了呢”的追问。
山西省高二下学期第一次月考数学试题(解析版)
一、单选题1.已知集合,,则( ) {}12M x x =-<(){}ln 1N x y x ==+A . B .C .D .N M ⊆M N ⊆M N ⋂=∅M N =R 【答案】B【分析】化简集合,判断两个集合之间的关系即可得答案. 【详解】由题可得,, {}13M x x =-<<{}1N x x =>-所以,且 ,,. M N ⊆M N M N M =≠∅I R M N N =≠ 故选:B.2.已知向量,,且,则实数( ) ()2,a m = ()3,4b m =- a b ⊥ m =A .3 B .1C .D .131-【答案】B【分析】根据向量垂直的坐标表示可直接构造方程求得结果. 【详解】由得:,a b ⊥ ()2340a b m m ⋅=-+= 解得:. 1m =故选:B.3.在中,角,,的对边分别为,,,若,且,则角的余弦值为ABC A A B C a b c 3a c =13c b =A ( )A .B .C .D .15141613【答案】C【分析】根据余弦定理即得. 【详解】由题可得,,3a c =3b c =试题. ()()22222233cos 223c c c b c a A bc c c+-+-==⋅⋅16=故选:C .4.设为所在平面内一点,,则( )D ABC A 3BC CD =A .B .1433AD AB AC =-+1334AD AB AC =-C .D .4133AD AB AC =+ 4133AD AB AC =- 【答案】A【分析】根据给定条件,利用平面向量的线性运算求解作答.【详解】在中,,ABC A 3BC CD =.1114()3333AD AC CD AC BC AC AC AB AB AC =+=+=+-=-+故选:A5.在中,三角形三条边上的高之比为,则为( ) ABC A 2:3:4ABC A A .钝角三角形 B .直角三角形C .锐角三角形D .等腰三角形【答案】A【分析】由题可得三角形三条边之比为,然后利用余弦定理,求出最大边所对角的余弦值,6:4:3即可判断出结果.【详解】因为三角形三条边上的高之比为,2:3:4所以三角形三条边之比为,即,111::2346:4:3不妨设,6,4,3,0a x b x c x x ===>则最大角的余弦值为,22216911362c 44os 023x x x A x x +-==-<⋅⋅因此角为钝角,三角形为钝角三角形. A 故选:A.6.定义在上的偶函数满足,且在区间上递增,则( ) R ()f x ()()22f x f x +=-[]2,0-A .B .()216log 63f f f ⎛⎫<< ⎪⎝⎭()2166log 3f f f⎛⎫<< ⎪⎝⎭C .D . ()216log 63f f f ⎛⎫<< ⎪⎝⎭()2166log3f ff ⎛⎫<< ⎪⎝⎭【答案】B【分析】由条件求出函数的周期,再根据函数的单调性结合条件即得. 【详解】∵定义在R 上的偶函数,所以, ()()f x f x -=又满足,()f x ()()22f x f x +=-所以, ()()()()()42222f x f x f x f x f x +=++=--=-=所以是周期为4的函数,又函数在区间上递增, ()f x ()f x []2,0-所以在区间上递减,()f x []0,2所以,,()()62f f =()2222161616log log 4log log 3333f f f f ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为,,所以,3223<3223<322222log 4log 3l 3g 202o ==>>>>所以,即.()()22log 3f f f <<()2166log 3f f f ⎛⎫<< ⎪⎝⎭故选:B .7.已知是的外心,,,则( ) O ABC A 4AB =u u u r 2AC = ()AO AB AC ⋅+=A .10B .9C .8D .6【答案】A【分析】根据三角形外心的性质,结合数量积的几何意义以及数量积运算律,即可求得答案. 【详解】如图,O 为的外心,设为的中点, ABC A ,D E ,AB AC 则,,OD AB OE AC ⊥⊥故()AO AB AC AO AB AO AC ⋅+=+⋅⋅||||cos |||co |s AO AB AO AC OAD OAE ⋅∠+=∠⋅⋅⋅||||||||AD AB AE AC +=⋅⋅ , 2222111||41||2222210AB AC +=⨯+⨯⋅==故选:A8.在中,角所对的边分别为,,,若,则ABC A ,,A B C a b c 2022sin sin sin c C b B a A -=的值为( )()sin sin tan tan tan cos cos A BC A B A B ⋅+⋅⋅A .2013 B .C .2029D .2029220212【答案】D【分析】对,利用正、余弦定理整理得,根据题意结2022sin sin sin c C b B a A -=22021cos 2ab C c =合三角恒等变换分析运算即可.【详解】∵,由正弦定理可得:, 2022sin sin sin c C b B a A -=2222022c b a -=整理得:,22222021a b c c +-=由余弦定理可得:,故 22cos 2021ab C c =22021cos 2ab C c =()sin sin sin sin sin sin tan tan tan cos cos tan cos cos cos cos A BA B A B C A B A BC A BA B ⋅⋅=+⋅⋅⎛⎫+⋅⋅ ⎪⎝⎭()()22sin sin sin sin sin sin cos cos sin tan sin cos cos sin sin sin cos A B A B A B C ab CC C A B A B C c A B C⋅⋅⋅⋅====⋅⋅+⋅⋅+. 222021202122cc ==故选:D.二、多选题9.下列说法中错误的是( )A .若,,则B .a b ∥ b c∥a c ∥()()()a b c a b c b a c ⋅=⋅=⋅C .若,则D .a b a c ⋅=⋅b c = ()2222a ba ab b +=+⋅+ 【答案】ABC【分析】根据共线向量的概念,向量数量积的概念及运算法则逐项分析即得.【详解】对于A ,若时,,不一定能推出,故A 错误;0b →→=a b ∥b c ∥ a c ∥ 对于B ,不妨考虑不共线且不互相垂直时,向量与向量不共线,所以不能推,,a b c →→→()a b c ⋅()a b c ⋅ 出,故B 错误;()()a b c a b c ⋅=⋅对于C ,若且时,则,而不一定相等,故C 错误;a b ⊥ a c ⊥ a b a c ⋅=⋅,b c 对于D ,根据数量积的运算法则可知,故D 正确.()2222a ba ab b +=+⋅+故选:ABC.10.在中,,则的面积可以是( )ABC ∆1,6AB AC B π===ABC ∆AB .1 CD【答案】AD【分析】由余弦定理求出,再根据三角形的面积公式即可求出答案. BC 【详解】解:∵,1,6AB AC B π===由余弦定理得,2222cos AC AB BC AB BC B =+-⋅⋅∴, 2320BC BC -+=∴,或, 1BC =2BC =∴由的面积公式得或, ABC ∆1sin 2ABC S AB BC B ∆=⋅⋅⋅ABC S ∆=ABC S ∆=故选:AD .【点睛】本题主要考查三角形的面积公式的应用,考查余弦定理解三角形,属于基础题. 11.在中,,,则下列说法正确的是( ) ABC A cos 2C 1BC =5AC =A . B .的面积为2 4sin 5C =ABC A C.D .ABC A ABC A 【答案】ABD【分析】利用二倍角公式求出,根据同角三角函数的基本关系求出,再由余弦定理求出cosC sin C ,由正弦定理求出外接圆的直径,利用面积公式及等面积法判断B 、D ;c 【详解】解:因为,cos 2C 223cos 2cos 12125C C =-=⨯-=所以,,故A 、B 正确; 4sin 5==C 114sin 152225ABC S ab C ==⨯⨯⨯=A 由余弦定理,即,所以,2222cos c a b ab C =+-222315215205c =+-⨯⨯⨯=c =所以外接圆的直径,故C 错误; 2sin c R C ===设的内切圆半径为,则,即,所以ABC A r ()12ABCS a b c r =++△(11522r ++=r =D 正确; 故选:ABD12.设P 为所在平面内一点,则下列说法正确的是( )ABC A A .若,则点P 是的重心0PA PB PC ++=ABC A B .若,则点P 是的垂心PA PB PB PC PC PA ⋅=⋅=⋅ABC A C .若,,则点P 是的内心 (||||AB ACAP AB AC λ=+,[)0λ∈+∞ABC A D .若,则点P 是的外心()()()0PA PB BA PB PC CB PC PA AC +⋅=+⋅=+⋅=ABC A 【答案】ABD【分析】对于A :以,为邻边作平行四边形PADB ,M 为PD 的中点,利用向量的线性运算PA PB得到,即可证明;对于B :利用数量积运算证明出,,得到P 为||2||PC PM =PB CA ⊥PA BC ⊥的垂心,即可证明;对于C :在边AB ,AC 上分别取点E ,F ,使,,ABC A ||ABAE AB =||AC AF AC = 以AE ,AF 为邻边作平行四边形AEGF ,则四边形AEGF 为菱形,即可判断;对于D :证明出,,,即可证明.||||PA PB = ||||PB PC = ||||PC PA =【详解】对于A :若,则.0PA PB PC ++= PA PB PC +=-以,为邻边作平行四边形PADB ,M 为PD 的中点,则,所以,又PA PBPA PB PD += PD PC =- ,所以,故P 为的重心. 2PD PM=||2||PC PM = ABC A 所以A 正确;对于B :若,则,即,即,所以PA PB PB PC ⋅=⋅ 0PA PB PB PC ⋅-⋅=()0PB PA PC ⋅-= 0PB CA ⋅= .PB CA ⊥同理,则,故P 为的垂心.PA PB PA PC ⋅=⋅u u r u u r u u r u u u rPA BC ⊥ABC A 故B 正确;对于C :在边AB ,AC 上分别取点E ,F ,使,,则,以AE ,||ABAE AB =||AC AF AC = ||||1AE AF == AF 为邻边作平行四边形AEGF ,则四边形AEGF 为菱形.连接AG ,则AG 为的角平分线,由,所以点P 在角平分线AG 上,故点P 的||||AB AC AP AB AC λ⎛⎫=+ ⎪⎝⎭轨迹一定通过的内心. ABC A 所以C 错误;对于D :若,则,同理有22()()()0PA PB BA PA PB PA PB PA PB +⋅=+⋅-=-= ||||PA PB = ,,故P 为的外心.||||PB PC = ||||PC PA =ABCA所以D 正确. 故选:ABD三、填空题13.在△ABC 中,,则=__________ ()()()a c a c b b c +-=+A ∠【答案】2π3【分析】由可得,再由余弦定理可得结果. ()()()a c a c b b c +-=+222b c a bc +-=-【详解】 ()()()a c a c b b c +-=+ 222a c b bc ∴--=222b c a bc -∴+=-,2221cos 222b c a bc A bc bc +--===-所以,故答案为. 23A π∠=23π【点睛】本题主要考查余弦定理及特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条2222cos a b c bc A =+-222cos 2b c a A bc+-=件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数30,45,60o o o 值,以便在解题中直接应用.14.若,且,则的最小值为______.0a >20a b +=21a b -+【答案】5【分析】由,且,得到,进而有,利用基本不等式求0a >20a b +=20a b =->22121a b b b -+=--+解.【详解】解:因为,且, 0a >20a b +=所以,20a b =->则,2212115a b b b -+=--+≥=当且仅当,即时,等号成立, 22b b-=-1b =-所以的最小值为5,21a b -+故答案为:515.探空气球是将探空仪器带到高空进行温度、大气压力、湿度、风速、风向等气象要素测量的气球,利用探空仪将实时探测到的大气垂直方向上的气象数据反馈给地面雷达,通过数据处理,成为全球预报员制作天气预报的重要依据.大气压强对气球能达到的最大高度和停留时间有非常大的影响.已知大气压强随海拔高度的变化规律是,其中是海平面()Pa p ()m h ()0e 0.000126k hp p k -⋅==0p 大气压强.若探空气球在两处测得的大气压强分别为,,且,那么两处的海,A B 1p 2p 122p p =,A B 拔高度的差约为______m.(参考数据:) ln20.693≈【答案】5500【分析】根据题意结合对数运算求解. 【详解】设两处的海拔高度分别为,,A B 12,h h 由题意可得:,且, 121020e e k h k h p p p p -⋅-⋅⎧=⋅⎨=⋅⎩122p p =即,且,12002ee k h k h p p -⋅-⋅⋅=⋅00p ≠可得,两边同时取对数可得:,122e e k h k h -⋅-⋅=()1212,ln lne 2ln 2e k h k h k h k h -⋅-⋅-⋅-⋅==即,整理得, 12ln 2k h k h -⋅-⋅=21ln 20.69355000.000126h h k -=≈=即两处的海拔高度的差约为5500 m. ,A B 故答案为:5500.16.已知为的垂心(三角形的三条高线的交点),若,则H ABC A 1235AH AB AC =+sin BAC ∠=______.【分析】由题可得,,利用,得2235=-+BH AB AC 1335=- CH AB AC 0BH AC ⋅= 0CH AB ⋅= ,,可得, 再利用平方关系结合条件即得.3cos 5AC BAC AB∠= 5cos 9AB BAC AC ∠= 21cos 3BAC ∠=【详解】因为,1235AH AB AC =+所以,同理,2235BH BA AH AB AC =+=-+1335CH CA AH AB AC =+=-由H 为△ABC 的垂心,得,即, 0BH AC ⋅= 22035AB AC AC ⎛⎫-+⋅= ⎪⎝⎭可知,即, 222cos 53AC AC AB BAC =∠ 3cos 5AC BAC AB∠=同理有,即,可知,即0CH AB ⋅= 13035AB AC AB ⎛⎫-⋅= ⎪⎝⎭213cos 35AB AC AB BAC =∠ ,5cos 9ABBAC AC∠= 所以, ,又, 21cos 3BAC ∠=2231cos 2sin 113∠∠=-=-=BAC BAC ()0,πBAC ∠∈所以 sin BAC ∠四、解答题17.已知,,且与的夹角为.1a = 2b = a b 2π3(1)求.()()23a b a b +⋅-(2)求.2a b +【答案】(1)5-【分析】(1)先求得,再利用数量积的运算律求解;a b ⋅(2)先求得,根据向量模的求法,结合数量积的运算律求解.a b ⋅【详解】(1)解:因为,,且与的夹角为,1a = 2b = a b 2π3所以,c 2π3o 1s a b a b ⋅-⋅=⋅=所以()()2223253a b a b a a b b +⋅-=-⋅- ;()22151325=⨯-⨯--⨯=-(2), 2a b +===18.在中,角,,的对边为,,,已知. ABC A A B C a b c ()12cos b A c +=(1)证明:; 2A B =(2)若,求的值. 23a b =cb【答案】(1)证明见解析; (2). 54【分析】(1)根据给定条件,利用正弦定理边化角,再利用和差角的正弦公式推理作答. (2)由已知结合余弦定理角化边,代入计算作答.【详解】(1)在中,由及正弦定理得:, ABC A ()12cos b A c +=sin 2sin cos sin B B A C +=而,因此, ()C A B π=-+sin 2sin cos sin()sin cos cos sin B B A A B A B A B +=+=+即有,显然,有, sin sin cos cos sin sin()B A B A B A B =-=-sin 0B >sin()0A B ->即,角B 为锐角,又,,因此, 0A B ->0πA B <-<()πB A B A +-=<B A B =-所以. 2A B =(2)在中,由及余弦定理得:,整理得,ABC A ()12cos b A c +=22222b c a b b c bc+-+⋅=22bc a b =-而,即,于是,又,即23a b =32a b =22235()24bc b b b =-=0b >54c b =所以. 54c b =19.如图,在矩形中,和分别是边和上的点,满足,.OACB E F AC BC 3AC AE =3BC BF=(1)若,其中,,求,的值;OC OE OF λμ=+ λμ∈R λμ(2)连接分别交,于,两点.记,,以,为基底来表示.AB OC OE M N CO a = CA b = a b CN 【答案】(1); 33,44λμ==(2). 1142CN a b =+【分析】(1)根据给定的图形,利用作基底,结合平面向量基本定理求解作答.,OA OB (2)结合(1)中信息,利用平面向量基本定理确定点的位置,即可求解作答.N 【详解】(1)在矩形中,,,则OACB 3AC AE = 3BC BF = 1133OE OA AE OA AC OA OB =+=+=+ ,,因此1133OF OB BF OB BC OB OA =+=+=+ , 11()()()()3333O OA OB OB OA C OA OB λμμλλμ++=+++=+ 又,不共线,于是,解得, OC OA OB =+ ,OA OB 1313μλλμ⎧+=⎪⎪⎨⎪+=⎪⎩33,44λμ==所以. 33,44λμ==(2)为与的交点,则, N AB OE 1(),R 33t ON tOE t OA OB tOA OB t ==+=+∈ ,, (1)33t t AN ON OA tOA OB OA t OA OB =-=+-=-+ AB OB OA =- 又,即存在,,则, //AN AB R m ∈AN mAB = (1)3t t OA OB mOA mOB -+=-+ 因为不共线,因此,解得, ,OA OB 13t m t m -=-⎧⎪⎨=⎪⎩31,44t m ==显然与的交点是线段、的中点,则,即是线段的中AB OC M AB OC 1142AN AB AM == N AM 点,所以. 11111111()22224242CN CA AN CA AM CA CM CA CM CA CM CA a b =+=+=+-=+=+=+ 20.已知函数的最小正周期为,的图象过点,且()()π2sin 03,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭T ()f x (),1T ,将的图象向左平移个单位长度后得到函数的图象. ()π3f x f x ⎛⎫-= ⎪⎝⎭()f x π4()g x (1)求函数在上的值域; ()g x π0,2⎡⎤⎢⎥⎣⎦(2)在上恰有两个不同的实数解,求的取值范围. ()()2x g x +=[]0,m m【答案】(1)⎡-⎣(2) 11π5π,124⎡⎤⎢⎥⎣⎦【分析】(1)利用函数的最小正周期公式表示点,代入求解角,再根据对称性()f x (),1T ()f x ϕ求解,得到函数,根据图像平移变换得到函数,并求其在给定区间上的值域;ω()f x ()g x(2)化简变形,通过恰有两个不同的实数()()()F x x g x =+()()2x g x +=解,限制的取值范围,从而得解.m 【详解】(1)因为函数的最小正周期为, ()()π2sin 03,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭T 所以,. 2πT ω=0ω>由于的图象过点,即过,代入得 ()f x (),1T 2π,1ω⎛⎫ ⎪⎝⎭,即. ()()2π2sin 2sin 2π2sin 1f x ωϕϕϕω⎛⎫=⋅+=+== ⎪⎝⎭1sin 2ϕ=则,或,又, πZ π2,6k k ϕ=+∈5π2π,Z 6k k ϕ=+∈π2ϕ<所以取. π0,6k ϕ==由于,则的图象关于对称, ()π3f x f x ⎛⎫-= ⎪⎝⎭()f x π6x =故,则. ππππ,Z 662k k ω+=+∈26,Z k k ω=+∈又因为,则令.03ω<<0,2k ω==故. ()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭将的图象向左平移个单位长度后得. ()f x π4()ππ2π2sin 22sin 2463g x x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当,, π0,2x ⎡⎤∈⎢⎣⎦2π2π5π2,333x ⎡⎤+∈⎢⎥⎣⎦令,在单调递减,在单调递增, 2π23t x =+()2sin h t t =2π3π,32⎡⎤⎢⎥⎣⎦3π5π,32⎡⎤⎢⎥⎣⎦当时,取最小值,最小值为;当时,3π2t =()h t 2-2π3t =()h t所以,()h t ⎡∈-⎣所以函数在上的值域为. ()g x π0,2⎡⎤⎢⎥⎣⎦⎡-⎣(2)因为,, ()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭()2π2sin 23g x x ⎛⎫=+ ⎪⎝⎭令 ()()()π2π22sin 263F x x g x x x ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭, πππ22cos 24sin 2663x x x ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由于在上恰有两个不同的实数解,()2F x =[]0,m 则在上恰有两个不同的实数解, π1sin 232x ⎛⎫+= ⎪⎝⎭[]0,m 当,, []0,x m ∈πππ2,2333x m ⎡⎤+∈+⎢⎥⎣⎦当时,,或,或, π1sin 232x ⎛⎫+= ⎪⎝⎭π5π236x +=π13π236x +=π17π236x +=所以依题意,解得. 13ππ17π2636m ≤+<11π5π124m ≤<所以的取值范围. m 11π5π,124⎡⎤⎢⎥⎣⎦21.在中,内角,,所对的边分别为,,.ABC AA B C a b c cos sin C c A =(1)求角的大小;C(2)已知,若为锐角三角形,求的取值范围.c =ABC A a b +【答案】(1) π3(2)【分析】(1,再根据cos sin C c A =cos sin sin A C C A =求解;(),0,πA C ∈(2)由(1)求得,再由,利用三角函数24sin c R C ==2sin 2sin a b R A R B +=+6A π⎛⎫=+ ⎪⎝⎭的性质求解.【详解】(1)解:在中, ,ABCA cos sin C c A =,cos sin sin A C C A =因为,(),0,πA C ∈所以,即sin sin A C C ≠=tan C =则; π3C =(2)由(1)知:, 24sin c R C ===所以,2sin 2sin a b R A R B +=+, 2π4sin sin 3A A ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭, 34sin2A A ⎛⎫= ⎪ ⎪⎝⎭, 6A π⎛⎫=+ ⎪⎝⎭因为为锐角三角形,ABC A 所以所以,则,解得, π02π02π02A B C ⎧<<⎪⎪⎪<<⎨⎪⎪<<⎪⎩π022ππ032A B A ⎧<<⎪⎪⎨⎪<=-<⎪⎩ππ62A <<所以,则,ππ2π663A <+<1sin 126A π⎛⎫<+≤ ⎪⎝⎭所以a b <+≤所以的取值范围是.a b +22.已知函数.()()2ln e 2e 3x x f x a =-+(1)若的定义域为,求的取值范围;()f x R a (2)若,使得在区间上单调递增,且值域为,求的取值范围.,m n ∃∈R ()f x [],m n [],m n a 【答案】(1); 13a >(2). 2334a ≤< 【分析】(1)由题可得恒成立,然后利用参变分离结合函数的性质即得; 2e 2e 30x x a -+>(2)根据复合函数的单调性结合条件可得,且,进而可得在上0a >1e m a ≤2330ax x -+=1,a ⎡⎫+∞⎪⎢⎣⎭有两个不等实根,然后根据二次函数的性质即得.【详解】(1)因为的定义域为,, ()f x R ()()2ln e 2e 3x x f x a =-+所以,即恒成立, 2e 2e 30x x a -+>2222e 3321113e e e e 33x x x x x a -⎛⎫>=-+=--+ ⎪⎝⎭因为,,当时等号成立, 10e x >23211113333e e e x x x ⎛⎫+=--+≤ ⎪⎝⎭-1e 13x =所以,即的取值范围为; 13a >a 13a >(2)因为函数在其定义域上为增函数,要使在区间上单调递增, ln y x =()f x [],m n 则函数在区间上单调递增,又为增函数,2e 2e 3x x u a =-+[],m n e x t =所以在上为增函数,显然时不合题意,223y at t =-+e ,e m n ⎡⎤⎣⎦0a ≤所以,且, 0a >1e m a≤又在区间上单调递增,且值域为,()f x [],m n [],m n 所以,即, ()()()()22ln e 2e 3ln e 2e 3m m n n f m a m f n a n ⎧=-+=⎪⎨=-+=⎪⎩22e 3e 30e 3e 30m m n n a a ⎧-+=⎨-+=⎩所以在上有两个不等实根, 2330ax x -+=1,a ⎡⎫+∞⎪⎢⎣⎭则,解得, ()22Δ312031211330a a aa a a ⎧⎪=-->⎪⎪>⎨⎪⎪⎛⎫⋅-⋅+≥⎪ ⎪⎝⎭⎩2334a ≤<所以的取值范围为. a 2334a ≤<【点睛】方法点睛:恒(能)成立问题的解法:若在区间上有最值,则()f x D (1)恒成立:;;()()min ,00x D f x f x ∀∈>⇔>()()max ,00x D f x f x ∀∈<⇔<(2)能成立:;. ()()max ,00x D f x f x ∃∈>⇔>()()min ,00x D f x f x ∃∈<⇔<若能分离常数,即将问题转化为:(或),则 ()a f x >()a f x <(1)恒成立:;; ()()max a f x a f x >⇔>()()min a f x a f x <⇔<(2)能成立:;. ()()min a f x a f x >⇔>()()max a f x a f x <⇔<。
2023-2024学年江西省南昌市高二下学期第一次月考数学质量检测试题(含解析)
2023-2024学年江西省南昌市高二下册第一次月考数学质量检测试题一、单选题1.数列11111,,,,,371531---⋅⋅⋅的一个通项公式为()A .11(1)21n n n a +=--B .11(1)2nn n a -=-C .1(1)21nn a n =-+D .1(1)21nn n a =--【正确答案】D【分析】根据规律写出数列的通项公式【详解】奇数项为负,偶数项为正,可用(1)n -来实现,而各项分母可看作12345211,213,217,2115,2131,-=-=-=-=-=⋅⋅⋅,各项分子均为1,∴该数列的通项公式为1(1)21nn n a =-⋅-.故选:D.2.3名大学生利用假期到2个山村参加扶贫工作,每名大学生只能去1个村,则不同的分配方案共有()A .4种B .6种C .8种D .10种【正确答案】C【分析】根据分步乘法计数原理求得正确答案.【详解】每个大学生都有2种选择方法,所以不同的分配方案共有2228⨯⨯=种.故选:C3.在等比数列{}n a 中,24a =,1016a =,则2a 和10a 的等比中项为()A .10B .8C .8±D .10±【正确答案】C【分析】根据等比中项的定义可得结果.【详解】根据等比中项的定义可得2a 和10a 的等比中项为8==±.故选:C4.通过抽样调研发现,当地第三季度的医院心脑血管疾病的人数和便利店购买冷饮的人数的相关系数很高,甲认为这是巧合,两者其实没有关系:乙认为冷饮的某种摄入成分导致了疾病;丙认为病人对冷饮会有特别需求:丁认为两者的相关关系是存在的,但不能视为因果,请判断哪位成员的意见最可能成立()A .甲B .乙C .丙D .丁【正确答案】D【分析】正确理解相关系数,相关关系与因果关系的区别是解题的关键.【详解】当地第三季度的医院心脑血管疾病的人数和便利店购买冷饮的人数的相关系数很高,但相关关系是一种非确定性关系,相关关系不等于因果关系,丁的意见最可能成立.故选:D.5.某学校安排音乐、阅读、体育和编程四项课后服务供学生自愿选择参加,甲、乙、丙、丁4位同学每人限报其中一项.已知甲同学报的项目其他同学不报的情况下,4位同学所报项目各不相同的概率等于()A .118B .332C .29D .89【正确答案】C【分析】设A =甲同学报的项目其他同学不报,B =4位同学所报项目各不相同,利用条件概率求解.【详解】解:设A =甲同学报的项目其他同学不报,B =4位同学所报项目各不相同,由题得()4333n A =⨯⨯⨯,()4321n AB =⨯⨯⨯,所以()43212(|)()43339n AB P B A n A ⨯⨯⨯===⨯⨯⨯.故选:C6.下列说法正确的是()①若随机变量η的概率分布列为()(1,2,3,4,5)P k ak k η===,则110a =;②若随机变量()23,X N σ ,(5)0.6P X ≤=,则(1)0.4P X ≤=;③若随机变量28,3X B ⎛⎫~ ⎪⎝⎭,则16()3E X =;④在含有4件次品的10件产品中,任取3件,X 表示取到的次品数,则3(2)10P X ==A .②③B .②④C .①②③D .②③④【正确答案】D【分析】根据分布列的性质即可判断①,利用正态分布密度曲线判断②,根据二项分布的期望公式判断③,利用超几何分布判断④.【详解】对于A ,∴随机变量ξ的概率分布为()(1,2,3,4,5)P k ak k η===,∴(1)(2)(3)(4)(5)1P P P P P ηηηηη=+=+=+=+==,∴2345151a a a a a a ++++==,∴115a =,故①不正确;对于B ,(5)1(5)0.4P X P X >=-≤=,∴(1)(5)0.4P X P X ≤=>=,故②正确;对于C ,由28,3X B ⎛⎫~ ⎪⎝⎭,得216()833E X =⨯=,故③正确;对于D ,由题意,得2146310C C 3(2)C 10P X ⋅===,故④正确.故选:D.7.已知编号为1,2,3的三个盒子,其中1号盒子内装有两个1号球,一个2号球和一个3号球;2号盒子内装有两个1号球,一个3号球;3号盒子内装有三个1号球,两个2号球.若第一次先从1号盒子内随机抽取1个球,将取出的球放入与球同编号的盒子中,第二次从放入球的盒子中任取一个球,则第二次抽到3号球的概率为()A .12B .736C .1148D .16【正确答案】C【分析】记第一次抽到第i 号球的事件分别为()1,2,3i A i =,记第二次在第i 号盒内抽到3号球的事件分别为()1,2,3i B i =,再利用全概率公式求解即可.【详解】记第一次抽到第i 号球的事件分别为()1,2,3i A i =,则有()112P A =,()()2314P A P A ==,记第二次在第i 号盒内抽到3号球的事件分别为()1,2,3i B i =,而1A ,2A ,3A 两两互斥,和为Ω,()1114P B A =,()2214P B A =,()3316P B A =,记第二次抽到3号球的事件为B ,()()()()33111111111124444648i i i i i i i P B P A B P A P B A ==⎡⎤==⋅=⨯+⨯+⨯=⎣⎦∑∑.故选:C .8.有甲、乙两个盒子,甲盒子里有1个红球,乙盒子里有3个红球和3个黑球,现从乙盒子里随机取出()*16,n n n N ≤≤∈个球放入甲盒子后,再从甲盒子里随机取一球,记取到的红球个数为ξ个,则随着()*16,n n n N ≤≤∈的增加,下列说法正确的是()A .E ξ增加,D ξ增加B .E ξ增加,D ξ减小C .E ξ减小,D ξ增加D .E ξ减小,D ξ减小【正确答案】C【分析】由题意可知,从乙盒子里随机取出n 个球,含有红球个数X 服从超几何分布,即()6,3,X H n ,可得出2nEX =,再从甲盒子里随机取一球,则ξ服从两点分布,所以()111222E P n ξξ===++,()1111222D P n ξξ=-==-+,从而可判断出E ξ和D ξ的增减性.【详解】由题意可知,从乙盒子里随机取出n 个球,含有红球个数X 服从超几何分布,即()6,3,X H n ,其中()336k n k n C C P X k C -==,其中Nk ∈,3k ≤且k n ≤,362n nEX ==.故从甲盒中取球,相当于从含有12n+个红球的1n +个球中取一球,取到红球个数为ξ.故()111211222n P n n ξ+===+++,随机变量ξ服从两点分布,所以()111211222n E P n n ξξ+====++,随着n 的增大,E ξ减小;()()()211111422D P P n ξξξ⎡⎤=-===-⎣⎦+,随着n 的增大,D ξ增大.故选:C.本题考查超几何分布、两点分布,分布列与数学期望,考查推理能力与计算能力,属于难题.二、多选题9.已知曲线222:11x y C m m+=+,则下列说法正确的是()A .若C是椭圆,则其长轴长为B .若0m <,则C 是双曲线C .C 不可能表示一个圆D .若1m =,则C上的点到焦点的最短距离为2【正确答案】BC【分析】根据21m m +>可知若为椭圆,则焦点在x 轴上,进而可判断A,进而可判断BC ,根据椭圆的几何性质可判断D.【详解】由于22131024m m m ⎛⎫+-=-+> ⎪⎝⎭,所以21m m +>,对于A,当0m >时,故222:11x y C m m+=+表示焦点在x轴上的椭圆,故椭圆的长轴长为故A 错误,对于B,当0m <时,C 是双曲线,故B 正确,对于C,由于21m m +>,故C 不可能表示一个圆,故C 正确,对于D,1m =时,22:121x y C +=,表示焦点在x 轴上的椭圆,且此时2222,1,1,===a b c故椭圆上的点到焦点的最小距离为1a c --,故D 错误,故选:BC10.已知8件产品中有3件是一等品,其余都是二等品.从这些产品中不放回地抽取三次,令i A 为第(1,2,3)i i =次取到的是一等品,则()A .()138P A =B .1A 与2A 相互独立C .()213|8P A A =D .()32328P A A =【正确答案】AD【分析】根据古典概型的概率公式及条件概率概率公式计算可得;【详解】解:依题意()13118C 3C 8P A ==,故A 正确;()1132111827C C 3C C 28A A P =⋅=,所以()()()212113228|378P A A P A A P A ===,故C 错误()1111325322288C C C C 3A A 8P A =+=,因为()()()2112P P A A A P A ≠,故1A 与2A 不独立,故B 错误;对于D :()3123532383A +C A 3A 28P A A ==,故D 正确;故选:AD11.将9个相同的小球分给甲、乙等4个人,()A .不同的分配方法共有220种B .若每人至少分到1个小球,则不同的分配方法共有56种C .若每人至少分到2个小球,则不同的分配方法共有10种D .若甲至少分到2个小球,其余3人每人至少分到1个小球,则不同的分配方法共有35种【正确答案】ABD【分析】利用隔板法直接判断各选项.【详解】A 选项:不同的分配方法有312C 220=种,故A 选项正确;B 选项:若每人至少分到1个小球,则不同的分配方法共有38C 56=种,故B 选项正确;C 选项:若每人至少分到2个小球,则四人中只有一人分到3个球,其他三人各分到2各球,故不同的分配方法共有34C 4=种,故C 选项不正确;D 选项:若甲至少分到2个小球,其余3人每人至少分到1个小球,则不同的分配方法共有37C 35=种,故D 选项正确;故选:ABD.12.意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,13,21,….该数列的特点如下:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{}n a 称为斐波那契数列,现将{}n a 中的各项除以2所得的余数按原来的顺序构成的数列记为{}n b ,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,下列说法正确的是()A .20221348T =B .100010021S a =-C .若2022n T =,则3033n =D .2222123500500501a a a a a a ++++= 【正确答案】ABD【分析】根据数列特征得到{}n b 为1,1,0,1,1,0,L ,周期为3的数列,从而得到()20221106741348T =++⨯=,A 正确,1000S =1002210021a a a -=-,B 正确,根据数列{}n b 的周期求和得到3033n =或3032n =,所以C 错误,根据提公因式和斐波那契数列的特征得到D 正确.【详解】根据斐波那契数列的特征可以看出,数列为依次连续两个奇数和一个偶数,所以数列{}n b 为1,1,0,1,1,0,L ,则数列{}n b 为周期数列,且周期为3,所以()20221106741348T =++⨯=,故A 正确;因为1000129991000S a a a a =++++ 32431001100010021001a a a a a a a a =-+-++-+- 1002210021a a a =-=-,故B 正确;因为()20221101011=++⨯,101133033⨯=,且30311b =,30321b =,30330b =,所以3033n =或3032n =,故C 错误;22222221235001223500a a a a a a a a a ++++=++++ L ()22222123500233500a a a a a a a a a =++++=+++ 2499500500500501a a a a a ==+= ,故D 正确.故选:ABD 三、填空题13.412x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为___________.【正确答案】24【分析】根据通项公式,确定常数项,再代入二项式定理的通项中即可计算结果.【详解】解:由通项公式得:()44421441C 22C rrr r r rr T x xx ---+⎛⎫== ⎪⎝⎭,令420r -=,即可得2r =,所以展开式的常数项为:42242C 24-=.故2414.写出一个同时具有下列性质①②③的数列{}n a ,①无穷数列;②递减数列;③每一项都是正数,则n a =______.【正确答案】21n (答案不唯一)【分析】根据题目中要求的数列性质,写出满足题意的一个数列即可.【详解】根据题意,要求的数列可以为21n a n =,故21n (答案不唯一).15.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题:①若89S S <,则910S S <;②若110S =,则2100a a +=;③若13140,0S S ><,则{}n S 中7S 最大;④若210S S =,则使0n S >的n 的最大值为11.其中所有真命题的序号是__________.【正确答案】②③④【分析】①由题意可以推出90a >,不能推出100a >,判断①错误;②由题意可得1110a a +=,判断出②正确;③由题意可得780,0a a ><,判断出③正确;④由题意可得670a a +=,进而670,0a a ><,判断出④正确.【详解】若89S S <,则90a >,不能推出100a >,即不能推出910S S <,故①错误;若110S =,则1111111()02a a S +==,即1110a a +=,则2101110a a a a +=+=,故②正确;若13140,0S S ><,则113781141371413()14()14()130,0222a a a a a a S a S +++==>==<,所以780,0a a ><,则{}n S 中7S 最大,故③正确;若210S S =,则1121045a d a d +=+,即11167211560a d a d a d a a +=+++=+=,因为首项为正数,则公差小于0,则670,0a a ><,则11111611()1102a a S a +==>,112126712()6()02a a S a a +==+=,则使0n S >的n 的最大值为11,故④正确.故②③④.四、双空题16.2020年高考前第二次适应性训练结束后,某校对全市的英语成绩进行统计,发现英语成绩的频率分布直方图形状与正态分布的密度曲线()()222x p x μσ--=非常拟合.已知()()max 95p x p ==则方差为_________.据此估计,在全市随机抽取10名高三同学,设X 表示10名同学中英语成绩超过95分的人数,X 的数学期望是__________.【正确答案】645【分析】由()()max 95p x p =μ、σ,写出方差即可;而1(95)2p x >=,易知1(10,)2X B ,根据二项分布的期望公式求期望即可.【详解】由()()max 95p x p ==95μ=,8σ=,故方差264σ=,由正态分布的对称性知:1(95)2p x >=,故1(10,)2X B ,∴X 的数学期望1()1052E X =⨯=.故64,5五、解答题17.某种商品价格与该商品日需求量之间的几组对照数据如下表,经过进一步统计分析,发现y 与x 具有线性相关关系.价格x (元/kg )1015202530日需求量y (kg )1110865(1)根据上表给出的数据,求出y 与x 的线性回归方程ˆˆy bx a ∧=+;(2)利用(1)中的回归方程,当价格40x =元/kg 时,日需求量y 的预测值为多少?(参考公式:线性回归方程ˆˆy bx a ∧=+,其中()()()121ni ii n ii x x yy b x x ==--=-∑∑,a y bx =-.)【正确答案】(1)ˆ0.3214.4yx =-+(2)1.6kg.【分析】(1)根据题中所给的数据,结合参考方程,对数据进行分步计算即可;(2)将价格数据代入回归方程,即可求得预测值.【详解】(1)由所给数据计算得1(1015202530)205x =++++=,1(1110865)85y =++++=,()52222221(10)(5)0510250i i x x =-=-+-+++=∑,()()51103(5)2005(2)10(3)80iii x x yy =--=-⨯+-⨯+⨯+⨯-+⨯-=-∑,()()()51521800.32250iii ii x x y y b x x ==---===--∑∑.80.322014.4a y bx =-=+⨯=.所求线性回归方程为ˆ0.3214.4yx =-+.(2)由(1)知当40x =时,ˆ0.321014.4 1.6y=-⨯+=.故当价格40x =元/kg 时,日需求量y 的预测值为1.6kg.本题考查线性回归直线方程的求解,根据公式计算回归系数即可,属基础题.18.设等差数列{}n a 的前n 项和为n S ,1518a a +=-,972S =-;(1)求数列{}n a 的通项公式;(2)当n S 取最小值时,n 的值.【正确答案】(1)12122n a n =-(2)20或21【分析】(1)求得等差数列{}n a 的首项和公差,由此求得n a .(2)由0n a ≤求得正确答案.【详解】(1)设等差数列{}n a 的公差为d ,则11241893672a d a d +=-⎧⎨+=-⎩,解得1110,2a d =-=,所以()1121101222n a n n =-+-⨯=-.(2)由121022n a n =-≤解得21n ≤,所以当n S 取得最小值时,n 的值为20或21(210a =).19.已知数列{}n a 满足1511a =,()1432n n a a n -=-≥.(1)求证:数列{}1n a +为等比数列;(2)令()2log 1n n b a =+,求数列{}n b 的前n 项和n S .【正确答案】(1)证明见解析(2)2210,5=10+50,6n n n n S n n n ⎧-≤⎨-≥⎩【分析】(1)由11344n n a a -=-知:()11114n n a a -+=+,利用等比数列的通项公式即可得出;(2)()2log 1112n n b a n =+=-,设数列{}112n -的前n 项和为n T ,则210n T n n =-.当5n ≤时,n n S T =;当6n ≥时,52n n S T T =-.【详解】(1)(1)证明:由11344n n a a -=-知()11114n n a a -+=+,由10n a +≠知:11114n n a a -+=+,∴数列{}1n a +是以512为首项,14为公比的等比数列,∴11121151224n n n a --⎛⎫+=⨯= ⎪⎝⎭,∴11221nn a -=-;(2)由(1)知()2log 1112n a n +=-,设(){}2log 1n a +的前n 项和为n T ,210n T n n =-,∴()2log 1112n n b a n =+=-,当5n ≤时,()21log 0n a +>,210n n S T n n ==-,6n ≥,()()()252621555log 1log 21050n n n n S T a a T T T T T n n +=-+--=--=-=-+ ,综上得2210,5=10+50,6n n n n S n n n ⎧-≤⎨-≥⎩.20.已知点()2,0A -、()2,0B ,动点(),M x y 满足直线AM 与BM 的斜率之积为34-,记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)经过点()1,0P -的直线l 与曲线C 交于C 、D 两点.记ABD △与ABC 的面积分别为1S 和2S ,求12S S -的最大值.【正确答案】(1)()221243x y x +=≠±;是去掉两个长轴端点的椭圆【分析】(1)结合两点间的斜率公式求解即可;(2)当直线l 斜率不存在时,120S S -=;当直线l 斜率存在时,设直线l 的方程为()()10y k x k =+≠,与椭圆方程联立,结合韦达定理表示出进行化简变形,再利用基本不等式求解即可.【详解】(1)由题意,2AM y k x =+,2BM yk x =-,2x ≠±,所以3224AM BM y y k k x x ⋅==-+-,整理可得22143x y +=,所以C 的方程为()221243x y x +=≠±,曲线C 是去掉两个长轴端点的椭圆.(2)当直线l 斜率不存在时,直线l 的方程为=1x -,此时ABD △与ABC 的面积相等,所以120S S -=.当直线l 斜率存在时,设直线l 的方程为()()10y k x k =+≠,()11,C x y ,()22,D x y ,联立方程组()221143y k x x y ⎧=+⎪⎨+=⎪⎩,可得()22223484120k x k x k +++-=,则()()()42226443441214410k k k k ∆=-+-=+>,且2122834k x x k +=-+,212241234k x x k-=+,则()()()132212112186+2331244y x k kk y k k x k x x k k k +=+++=+-=+++=,此时221211211422324S S y y y y k k -=⨯⨯=+-=+,由于0k ≠,所以212123344kkk k=≤++当且仅当34k k =,即2k =时取等号,所以12S S -综上所述,12S S -21.甲、乙两支足球队将进行某赛事的决赛.其赛程规则为:每一场比赛均须决出胜负,若在规定时间内踢成平局,则双方以踢点球的方式决出胜负.按主、客场制先进行两场比赛,若某一队在前两场比赛中均取得胜利,则该队获得冠军;否则,需在中立场进行第三场比赛,其获胜方为冠军.假定甲队在主场获胜的概率为12,在客场获胜的概率为13,在第三场比赛中获胜的概率为25,且每场比赛的胜负相互独立.(1)已知甲队获得冠军,求决赛需进行三场比赛的概率;(2)比赛主办方若在决赛的前两场中共投资m (千万元),则能盈利2m(千万元).如果需进行第三场比赛,且比赛主办方在第三场比赛中投资n (千万元).若比赛主办方准备投资一千万元,以决赛总盈利的数学期望为决策依据,则其在前两场的投资额应为多少万元?【正确答案】(1)15(2)34千万元.【分析】(1)甲获胜,且比赛进行了三场,说明前两场一队赢一场,第三场中立场甲赢;(2)根据总盈利和进行的场次有关,求出总盈利2m,即比赛只需进行两场的概率,再求出总盈利为2m.【详解】(1)由于前两场对于比赛双方都是一个主场一个客场,所以不妨设甲队为第一场为主场,第二场为客场,设甲获得冠军时,比赛需进行的场次为X ,则111121(3)11232355P X ⎡⎤⎛⎫⎛⎫==⨯-+-⨯⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.(2)由题可得1m n +=,所以[]1,0,1m n n =-∈比赛结束需进行的场次即为Y ,则2,3Y =,设决赛总盈利为Z ,则,22m mZ =,11111((2)11223232m P Z P Y ⎛⎫⎛⎫====⨯+-⨯-= ⎪ ⎪⎝⎭⎝⎭,11111((3)11223232m P Z P Y ⎛⎫⎛⎫====⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭,所以决赛总盈利为Z 的分步列如下,所以11111()2222222m m E Z m n ⎛=⨯+⨯==-+ ⎝,所以211()22E Z =-+,12=,即14n =时,二次函数211()22E Z =-+有最大值为58,所以以决赛总盈利的数学期望为决策依据,则其在前两场的投资额应为13144m =-=千万元.22.为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按[)0,20,[)20,40,[)40,60,[)60,80,[]80,100分组,绘制频率分布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只.假设小白鼠注射疫苗后是否产生抗体相互独立.(1)填写下面的22⨯列联表,并根据列联表及0.05α=的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.单位:只抗体指标值合计小于60不小于60有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率p ;(ii )以(i )中确定的概率p 作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记n 个人注射2次疫苗后产生抗体的数量为随机变量X .试验后统计数据显示,当90X =时,()P X 取最大值,求参加人体接种试验的人数n 及()E X .参考公式:2χ2()()()()()n ad bc a b c d a c b d -=++++(其中n a b c d =+++为样本容量)参考数据:20()P k χ≥0.500.400.250.150.1000.0500.0250k 0.4550.7081.3232.0722.7063.8415.024【正确答案】(1)列联表答案见解析,认为注射疫苗后小白鼠产生抗体与指标值不小于60有关;(2)(i )0.9;(ii )当接种人数为n =99时,()89.1E X =;当n =100时,()90E X =.【分析】(1)根据频率分布直方图算出每个区间段的小白鼠数量,然后根据指标值完成列联表,并根据参考公式进行运算,然后进行数据比对,最终得到答案;(2)(i )根据古典概型公式,结合对立事件概率求法即可得到答案;(ii )根据()90P X =最大,结合二项定理概率求法列出不等式组解出X ,最后求出期望.【详解】(1)由频率分布直方图,知200只小白鼠按指标值分布为:在[)0,20内有0.00252020010⨯⨯=(只);在[)20,40内有0.006252020025⨯⨯=(只);在[)40,60内有0.008752020035⨯⨯=(只);在[)60,80内有0.025********⨯⨯=(只);在[]80,100内有0.00752020030⨯⨯=(只).由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有10253570++=(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:单位:只抗体指标值合计小于60不小于60有抗体50110160没有抗体202040合计70130200零假设为0H :注射疫苗后小白鼠产生抗体与指标值不小于60无关联.根据列联表中数据,得()220.05200502020110 4.945 3.8411604070130x χ⨯⨯-⨯=≈>=⨯⨯⨯.根据0.05α=的独立性检验,推断0H 不成立,即认为注射疫苗后小白鼠产生抗体与指标值不小于60有关,此推断犯错误的概率不大于0.05.(2)(i )令事件A =“小白鼠第一次注射疫苗产生抗体”,事件B =“小白鼠第二次注射疫苗产生抗体”,事件C =“小白鼠注射2次疫苗后产生抗体”.记事件A ,B ,C 发生的概率分别为()P A ,()P B ,()P C ,则()1600.8200P A ==,()200.540P B ==,()()()0.20.1150.9P C P A P B -⨯==-=.所以一只小白鼠注射2次疫苗后产生抗体的概率0.9p =.(ii )由题意,知随机变量(),0.9X B n ,()C 0.90.1k k n kn P X k -==⨯⨯(0,1,2,,k n =⋅⋅⋅).因为()90P X =最大,所以909090919191909090898989C 0.90.1C 0.90.1C 0.90.1C 0.90.1n n n n n n n n ----⎧⨯⨯≥⨯⨯⎨⨯⨯≥⨯⨯⎩,解得901999n ≤≤,因为n 是整数,所以99n =或100n =,所以接受接种试验的人数为99或100.①当接种人数为99时,()990.989.1E X np ==⨯=;②当接种人数为100时,()1000.990E X np ==⨯=.。
重庆市巴蜀中学2022-2023学年高二下学期第一次月考数学试题答案
高2024届高二(下)月考数学参考答案一、单选题12345678CBDACBDA1.C 510=A 10×9×…×6,所以选C2.B 由二项式展开式的通项公式得:()()2222223552240T C x C x x =-=-=,所以第3项系数为40.3.D 因为每人限报一门课程,所以每人有3种选择,按照分步计数原理,共有4381=种.4.A设递减等比数列{}n a 的公比为q ,因为10a >,故01q <<3112450,1,4a a a a a >=+=,可得2411,4a a ==,则公比24211,42a q q a ==∴=,故212a a q ==,故1666121(1)632111612a q S q ⎛⎫- ⎪-⎝⎭===--5.C由题意知事件A :“甲和乙至少一人选择洪崖洞”包含()1124C C 19n A =⋅+=种情况,事件AB :“甲和乙选择的景点不同,且至少一人选择洪崖洞”包含()1124C C 8n AB =⋅=种情况,所以()()()89n AB P B A n A ==.6.B将6人按3,1,1,1分成四组,且甲、乙在同一组的安排方法有14C 种,将6人按2,2,1,1分成四组,且甲、乙在同一组的安排方法有24C 种,则甲、乙两人被分在同一个足球场的安排方法种数为()441424C C A 240+=.7.D 如图所示:由题意可知,1PQ QF ⊥,设113PF t =,则15QF t =,12PQ t =,由椭圆定义可得212213PF a PF a t =-=-,22212252=2515QF t PF t a a t t a =-=--⇒=,所以123a QF =,243a QF =,在12Rt QF F 中,由勾股定理有2221212QF QF F F +=,即22224433a a c e ⎛⎫+=⇒=⎪⎝⎭(8.A 不等式)0ln 0ln 22>≥--⇒≥---x a exx x x ae x x x x xx(,设2ln ()xx x x xf x e --=,即求()f x 的最小值,xex x x x f )ln )(1()('--=,其中2(ln )ln 2x x x x x x '--=-∵ln 0x x ->恒成立,∴(0,1)x ∈时,()0f x '<;(1,)x ∈+∞,()0f x '>∴()f x 在(0,1)单减,(1,)+∞单增,∴min 2()(1)f x f a e==-≥,所以选A二、多选题9101112ACBCDABDABC9.AC{}12,20.n n n a a a d A +-=∴>是公差为的等差数列,,所以是递增数列,故选Q 2156,3n n a S n n n S B ∴=-∴==,时,故错误;最小,Q 6,n n S S n C n n ⎧⎫=-∴⎨⎬⎩⎭是等差数列故选;,Q2322322236,56,,m m m m m m m m S S m m S S m m m N S S S S D +=-=-∈∴---≠-故错误.,Q 10.B C D对于A :概率为311612==C C P ,所以错误;对于B :概率为1512622==C C P ,所以正确;对于C :概率为158261214==C C C P ,所以正确;对于D :概率为1512622==A A P ,所以正确。
尤溪五中2022-2023学年高二下第一次月考化学试卷及答案
尤溪五中2022-2023学年高二下第一次化学月考试卷满分:100分考试时间:70分钟第Ⅰ卷(选择题共40分)一、选择题(本题共14小题,每小题3分,共42分,每小题只有一个选项符合题意)1.下列说法正确的是()A.N元素的电负性大于O元素B.基态Fe原子的外围电子排布图为C.在基态多电子原子中,P轨道电子能量一定高于s轨道电子能量D.根据原子核外电子排布的特点,Cu在周期表中属于s区元素2.下列说法错误的是()A.基态原子的p能级上半充满的元素一定位于p区B.核外电子排布相同的两原子一定属于同种元素C.基态原子的N层上只有一个电子的元素,不一定是第IA族元素D.基态原子的价电子排布为(n−1)d x ns y的元素,族序数一定为x+y3.已知X、Y元素同周期,且电负性X>Y,下列说法错误的是()A.第一电离能Y可能小于XB.气态氢化物的稳定性:Hm Y大于HnXC.最高价含氧酸的酸性:X对应的酸性强于Y对应的D.X和Y形成化合物时,X显负价,Y显正价4.W、X、Y、Z是原子序数依次增大的四种短周期元素,只有X、Y位于同一周期,且Y与Z 位于同一主族,四种元素可形成一种在医疗农业、染料上有广泛用途的物质,其物质结构如图所示。
下列叙述正确的是()A.原子半径:Z>Y>X>WB.等物质的量浓度的X和Z的含氧酸的酸性:Z>XC.W、X、Z均可与Y形成多种化合物D.简单氢化物的还原性:Y>Z5.X 、Y 、Z 、W 均为短周期元素,原子序数依次递增。
Y 元素最外层电子数是电子层数的3倍,Z 元素在元素周期表中的周期数等于族序数,Z 的简单阳离子与YX -含有相同的电子数,W 元素的最外层电子数是最内电子数的2倍。
下列说法不正确的是( ) A .第一电离能大小:Z> Y >X B .X 和Y 可以组成X 2Y 型化合物C .工业上常用电解法制备元素Z 的单质D .Z 、W 的最高价氧化物均具有很高的熔点 6.下列分子中,中心原子杂化类型相同,分子的空间结构也相同的是( ) A .22BeCl CO 、B .22H O SO 、C .64SF CH 、D .33NF BF 、7.已知 a 、b 、c 、d 四种短周期主族元素,在周期表中相对位置如图,已知化合物中的 b 元素不存在正价,下列说法正确的是( )A .a 、c 两种元素形成的化合物中可能存在离子键B .元素对应形成的简单离子半径大小顺序为:d>c>a>bC .b 单质的电子式为:b ××bD .c 、d 两种元素气态氢化物的稳定性比较:d >c 8.下列说法正确的是 ( )A .4NaHSO 晶体溶于水时,离子键被破坏,共价键不受影响B .22H O 易分解是因为22H O 分子间作用力弱C .NaOH 晶体中既有离子键又含有极性共价键D .HClO 和3PCl 的分子结构中,每个原子最外层都具有8电子稳定结构 9.下列关于物质结构和化学用语的说法正确的是( )A .SO 2、CS 2、HI 都是直线形的分子B .78gNa 2O 2晶体中所含离子数目为3N AC .18gH 2O 或D 2O 的质子数均为10N A D .34gH 2O 2含有极性键的数目为3N A 10.下列说法正确的是( )A .硫难溶于水,微溶于酒精,易溶于CS 2,说明极性:H 2O>C 2H 5OH>CS 2B .BF 3、CCl 4中每个原子都满足8电子稳定结构C .分子晶体中一定存在共价键D .I 2低温下就能升华,说明碘原子间的共价键较弱11.《Green Chemistry 》报道,我国科研工作者发现了一种在低压条件下高效电催化还原CO 2的新方法,其总反应为2NaCl+CO CO+NaClO 通电。
2023-2024学年陕西省咸阳市实验中学高二下学期第一次月考化学试题
2023-2024学年陕西省咸阳市实验中学高二下学期第一次月考化学试题1.1. 咖啡因是咖啡中一种生物碱,对人类的健康发挥着积极作用。
随着生活水平的日益提高,很多人不喜欢喝速溶咖啡,喜欢自己现磨现冲咖啡。
化学老师喜欢的一种冲泡咖啡的过程如图:咖啡因(1)放入适量咖啡粉(3)静置3分钟按压(4)倒入烧杯中A.咖啡因的分子式为C 8 H 10 N 4 O 2,一个分子中采取sp 3杂化的原子数为6个B.将咖啡豆研磨成粉末,主要为了增大了咖啡的浸泡面积,冲泡出来的咖啡口感较浓郁C.咖啡中的咖啡因可通过热水浸泡溶解,与咖啡因能与水形成氢键有关D.步骤(2)(3)(4)涉及的主要操作等同于固-液萃取和分液2.下列有机物命名错误的是A.2,2-二甲基丙烷B.2-甲基4-乙基-1-己烯C.3-甲基-1-丁烯D.2,3-二甲基3-戊烯3.下列化学用语正确的是A.2-丁烯的反式结构:B.2-甲基戊烷的键线式:C.乙烯的球棍模型:D.甲苯的空间填充模型:4.下列关于有机物(如图)的叙述,错误的是A.用系统命名法命名,其名称是2,4-二甲基-1-戊烯B.它的分子中最多有5个碳原子在同一平面上C.该有机物不存在顺反异构D.该有机物使溴水和高锰酸钾溶液褪色的原理不同5.仪器分析是重要的分析化学手段,符合下列波谱的有机化合物X为A.B.C.D.6.下列有关苯的描述中,错误的是A.苯分子中每个碳原子的杂化轨道中的一个参与形成大键B.常温下苯是一种不溶于水且密度小于水的液体C.苯分子中碳原子的三个杂化轨道与其他原子形成三个键D.苯分子呈平面正六边形,六个碳碳键完全相同,键角均为7.下列实验装置能达到实验目的的是A.①装置用于实验室制备乙炔B.②装置用于分离苯和溴苯C.③装置用于实验室制硝基苯D.④装置用于除去甲烷中的乙烯8.下列化学方程式书写正确的是A.乙炔和水反应:B.甲苯和溴在光照下反应:C.丙烯加聚:D.丙烯加成:9.实验室一般用苯和液溴在溴化铁的催化下制备溴苯。
宁夏银川市第二中学2023-2024学年高二下学期月考一数学试卷
宁夏银川市第二中学2023-2024学年高二下学期月考一数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.某影城有一些电影新上映,其中有3部科幻片、4部警匪片、3部战争片及2部喜剧片,小明从中任选1部电影观看,不同的选法共有()A.9种B.12种C.24种D.72种2.用1,2,3,4四个数字组成无重复数字的四位数,其中比2000大的偶数共有()A.16个B.12个C.9个D.8个3.已知随机变量X的分布列如下表,则()D X=()7.如图,小华从图中A 处出发,先到达B 处,再前往C 处,则小华从A 处到C 处可以选择的最短路径有( )A .25条B .48条C .150条D .512条8.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设a ,b ,m (m>0)为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为()mod a b m =.若1221818181818C 2C 2...C 2a =×+×++×,()mod10ab =,则b 的值可以是( )A .2018B .2020C .2022D .202416.如图所示,在杨辉三角,3,3,6,4,(2)现从中不放回地取球,每次取1球,取两次,已知第二次取得白球,求第一次取得黑球的概率.20.某高校在今年的自主招生考试中制定了如下的规则:笔试阶段,考生从6道备选试题中一次性抽取3道题,并独立完成所抽取的3道题,至少正确完成其中2道试题则可以进入面试.已知考生甲能正确完成6道试题中的4道题,另外2道题不能完成.(1)求考生甲能通过笔试进入面试的概率;(2)记所抽取的三道题中考生甲能正确完成的题数为x,求x的分布列和数学期望.21.受环境和气候影响,近阶段在相邻的甲、乙、丙三个市爆发了支原体肺炎,经初步统计,这三个市分别有8%,6%,4%的人感染了支原体肺炎病毒,已知这三个市的人口数之比为4:6:10,现从这三个市中任意选取一个人.(1)求这个人感染支原体肺炎病毒的概率;(2)若此人感染支原体肺炎病毒,求他来自甲市的概率.22.新高考数学试卷增加了多项选择题,每小题有A、B、C、D四个选项,原则上至少有2个正确选项,至多有3个正确选项.题目要求:“在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.”其中“部分选对的得部分分”是指:若正确答案有2个选项,则只选1个选项且正确得3分;若正确答案有3个选项,则只选1个选项且正确得2分,只选2个选项且都正确得4分.(1)若某道多选题的正确答案是AB,一考生在解答该题时,完全没有思路,随机选择至少一个选项,至多三个选项,请写出该生所有选择结果所构成的样本空间,并求该考生得分的概率;(2)若某道多选题的正确答案是2个选项或是3个选项的概率均等,一考生只能判断出A选项是正确的,其他选项均不能判断正误,给出以下方案,请你以得分的数学期望作为判断依据,帮该考生选出恰当方案:方案一:只选择A选项;方案二:选择A选项的同时,再随机选择一个选项;方案三:选择A选项的同时,再随机选择两个选项.【详解】从A 处到B 处的最短路径有46C 15=条,从B 处到C 处的最短路径有25C 10=条,则小华从A 处到C 处可以选择的最短路径有1510150´=条.故选:C.8.A【分析】首先利用二项式定理化简a ,再确定a 被10除的余数,结合选项,即可求解.【详解】因为()()18901891812C 31911011a =+-=-=-=--09188199999C 10C 10...C 10C 1=×-×++×--()0817899910C 10C 10...C 2=×-×++-所以a 被10除得的余数为8,而2018被10除得的余数是8.故选:A .9.ACD【分析】利用分类计数原理、分步计数原理即可.【详解】从思想政治、历史、地理、物理、化学、生物6门科目中任选3门,不同的选科方案有36C 20=种,则A 正确;若某考生计划在物理和生物中至少选一科,则不同的选科方案有12212424C C C C 12416+=+=种,则B 错误;若某考生确定不选物理,则不同的选科方案有35C 10=种,则C 正确;若某考生在物理和历史中选择一科,则不同的选科方案有122412C C =种,则D 正确.故选:ACD.10.ACD【分析】将0x =,2x =,1x =±代入6234560123456(1)x a a x a x a x a x a x a x -=++++++判断是22x,则()322326253C()C280y x x y-×=,系数为80.故答案为:8015.420【分析】根据题意,用,,,,A B C D E表示5个区域,分4步依次分析区域A、B、C、D、E的涂色方法数目,由分步计数原理计算答案.【详解】如图,用,,,,A B C D E表示5个区域,分4步进行分析:①,对于区域A,有5种颜色可选;②,对于区域B ,与A区域相邻,有4种颜色可选;③,对于区域C,与A、B区域相邻,有3种颜色可选;④,对于区域D、E,若D与B颜色相同,E区域有3种颜色可选,若D与B颜色不相同,D区域有2种颜色可选,E区域有2种颜色可选,则区域D、E有3227+´=种选择,则不同的涂色方案有5437420´´´=种.故答案为:420.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
于都实验中学2013-2014学年下学期第一次月考高二年级化学试卷(时间100分钟,满分100分)可能用到的相对原子质量:H:1 C:12 O:16 Cl:35.5 Br:80一、选择题(本题包括16小题,每小题3分,共48分。
每小题仅一个选项正确)1.下列实验操作中,符合“绿色化”的有()①在萃取操作的演示实验中,将CCl4萃取溴水,改为CCl4萃取碘水;②在铜与浓硝酸反应的实验中,将铜片改为可调节高度的铜丝;③将实验室的废酸液和废碱液中和后再排放;A.①和②B.①和③C.②和③D.①②和③2.下列各项表达中正确的是( )A.聚丙烯的结构简式:B.四氯化碳的电子式:C.CH3(甲基)的电子式为D.乙醇的结构简式:CH3CH2OH 3.用一种试剂可将三种无色液体CCl4、苯、甲苯鉴别出来,该试剂是() A.硫酸溶液B.KMnO4酸性溶液C.溴水D.水4.以下实验能获得成功的是( )A.用酸性KMnO4溶液鉴别乙烯和乙炔B.将稀硫酸、稀硝酸和苯混合加热制硝基苯C.苯和硝基苯混合物采用分液的方法分离D.用CuSO4溶液除去由电石和水反应生成的乙炔气体中的杂质5.据调查,劣质的家庭装饰材料会释放出近百种能引发疾病的有害物质,其中一种有机物分子的球棍模型如右图,图中“棍”代表单键、双键或三键,不同大小的球代表不同元素的原子,且三种元素位于不同的短周期。
下面关于该有机物的叙述不正确...的是( )C B.可由乙炔和氯化氢加成得到A.有机物化学式为HClC.分子中所有原子在同一个平面内D.该有机物难溶于水6.从柑橘中炼制萜二烯,下列有关它的推测,不正确的是( ) A.它不能使酸性高锰酸钾溶液褪色C.分子式为C10H16D.与过量的溴的CCl4溶液反应后产物如右图7.设阿伏加德罗常数的值为N AA.1mol苯乙烯中含有的C=C数为4N AB.2.8 g乙烯和丙烯的混合气体中所含碳原子数为0.2N AC.0.1molC n H2n+2中含有的C-C键数为0.1nN AD.1 mol聚乙烯含有的原子数目为6N A8.下列说法不正确...的是( )A.用质谱法可鉴定分子式为C2H6O的未知物究竟是乙醇还是甲醚B.分子式为C2H6与C6H14的两种有机物一定互为同系物C.红外光谱仪、核磁共振仪都可用于有机化合物结构的分析D.只用溴水一种试剂就可以将苯、己烯、四氯化碳、氯化钠溶液区分开9.若用乙烯和氯气在适当的条件下反应制取四氯乙烷,这一过程中所要经历的反应及耗用氯气的量是(设乙烯为1 mol,反应产物中的有机物只有四氯乙烷) () A.加成、取代,3 mol Cl2B.加成,2 mol Cl2C.取代,4 mol Cl2D.加成、取代,2 mol Cl210.下列有关反应和反应类型不相符的是( )A.甲苯与浓硝酸、浓硫酸混合反应制TNT(取代反应)B.苯与乙烯在催化剂存在下反应制取乙苯(取代反应)C.甲苯与酸性KMnO4溶液反应(氧化反应)D.甲苯制取甲基环已烷(加成反应)11.由两种气态烃组成的混合物,体积为10ml。
与过量的氧气混合再充分燃烧,将生成物通过浓H SO气体体积减少15ml,再通过碱石灰气体体积又减少20ml(气体体积均为同温同压下)。
混合烃的组成可能为()A.C2H4和C2H2B.C2H6和C2H4C.CH4和C3H4D.C4H10和C2H4 12.充分燃烧某液态芳香烃X,并收集产生的全部水,恢复到室温时,得到水的质量跟原芳香烃X的质量相等。
则X的分子式是( )A.C10H14B.C11H16 C.C12H18 D.C13H20 13.橙花醇具有玫瑰及苹果香气,可作为香料,其结构简式如下下列关于橙花醇的叙述,错误的是( )A.既能发生取代反应,也能发生加成反应B.在浓硫酸催化下加热脱水,可以生成不止一种四烯烃C.1mo1橙花醇在氧气中充分燃烧,需消耗470.4 L氧气(标准状况)D.1mo1橙花醇在室温下与溴四氯化碳溶液反应,最多消耗240g溴14.已知乙烯为平面结构,因此,1,2 -二氯乙烯可以形成两种不同的空间异构体:分子式为C4H8的有机物,属于烯烃的同分异构体的数目为( )A.2种B.3种C.4种D.5种15.下列说法正确的是( )A.强电解质溶液的导电能力一定比弱电解质溶液的导电能力强B.因为CH3COOH是弱电解质,HCl是强电解质,所以中和等体积等物质的量浓度的醋酸和盐酸时,中和醋酸消耗的NaOH比盐酸消耗的NaOH用量少C.足量Zn分别和等体积、等物质的量浓度的盐酸和醋酸反应时,产生H2的量相同,放出H2的速率不等D.物质的量浓度相同的磷酸钠溶液和磷酸溶液中PO43-的物质的量浓度相同16.下列各组离子在指定条件下,一定能大量共存的是( )A.pH为1的无色溶液:K+、Fe2+、SO32-、Cl-B.含有Fe3+的溶液:Na+、NH4+、S2-、Br-C.水电离出的c(H+)=10-12mol/L的溶液:Ba2+、Na+、NO3-、Cl-D.加入铝条有氢气放出的溶液:Na+、NH4+、HCO3-、SO42-二、非选择题(共52分)17.已知有机物A的结构简式为。
请完成下列空白。
(1)有机物A的分子式是________。
(2)一个A分子中碳氢键有________个,碳碳单键有________个。
(3)有机物A的一氯代物有________种。
18.按要求填空:(1)相对分子质量为72且沸点最低的烷烃的结构简式:;(2)用系统命名法给有机物命名为(3)苯和浓硝酸反应方程式:(4)由乙炔生产聚氯乙烯合成树脂所涉及的有机化学反应方程式为._________________________ ___________________________,19.为证明苯与溴发生的是取代反应而不是加成反应,甲用如图装置Ⅰ进行如下实验:将一定量的苯和溴放在烧瓶中,同时加入少量铁屑,3~5 min后发现滴有AgNO3的锥形瓶中有浅黄色的沉淀生成,即证明苯与溴发生了取代反应.(1)装置I中①中两个反应的方程式为________________________________________,___________________________________________________,(2)①中长导管的作用是________________________________________________.(3)烧瓶中生成的红褐色油状液滴的成分是__________________________,要想得到纯净的产物,可用__________________________试剂洗涤.洗涤后分离粗产品应使用的仪器是____________________.(4)乙同学认为装置Ⅰ需要改进,设计了如图所示装置Ⅱ,并用下列某些试剂完成该实验.可选用的试剂是:苯;液溴;浓硫酸;氢氧化钠溶液;硝酸银溶液;四氯化碳.a的作用是__________________________________________________________.b中的试剂是__________________________________________________________.比较两套装置,装置Ⅱ的主要优点是______________________________________ ________________________________________________________________________ 20.(1) 据报道,2002年10月26日俄罗斯特种部队在解救人质时,使用了一种麻醉作用比吗啡强100倍的氟烷,已知氟烷的化学式为C2HClBrF3,则沸点不同的上述氟烷有(写出所有可能的结构简式)。
(2) 在抗击非典型性肺炎期间,过乙酸(过氧乙酸)曾被广泛用作消毒剂。
已知硫酸和过硫酸的结构简式如下:请从以下八个式子中选择答案回答下列问题(答案用编号表示,选错要倒扣分)①过乙酸(过氧乙酸)的结构简式是。
②过乙酸的同分异构体是。
③过乙酸的同系物是。
21.已知:CH3CH2CH2OH 浓H2SO4 170℃CH3—CH=CH2 + H2O利用上述信息及所学知识,按以下步骤从合成。
(部分试剂和反应条件已略去)请回答下列问题:(1)分别写出B 、D 的结构简式:B 、D 。
(2)反应①~⑦中属于消去反应的是____ _____。
(填数字代号) (3)如果不考虑⑥、⑦反应,对于反应⑤,得到的E 可能的结构简式为:(4)试写出C −→−D 反应的化学方程式(有机物写结构简式,并注明反应条件)22.用示意图中的装置进行A 、B 、C 三组实验,在a 、b 、c 中加入的试剂如表中所示。
请填写表中空格。
17【】 (1)C 14H 14 (2)14 3 (3)519.解析:(2)苯和液溴都是易挥发物质,所以在实验时长导管可以防止这两种物质挥发;同时长导管将生成的溴化氢气体导出.(3)溴能与氢氧化钠溶液反应,而溴苯比较难反应,所以可用氢氧化钠溶液将混合物中的溴除去.答案:(1)①2Fe +3Br 2===2FeBr 3②Br -+Ag +===AgBr↓ (2)导气兼冷凝回流(3) 与Br 2 NaOH 溶液或水 分液漏斗(4)防止倒吸 CCl 4或 防止倒吸;可以控制反应进行;避免杂质干扰;防止污染空气 20.(1)(2)b ;ad ;f∣ F -C -C -Br ∣ ∣ ∣ F F HCl∣ F -C -C -Br ∣ ∣ ∣ F F Cl H∣ F -C -C -Br ∣ ∣ ∣ F F ClH ∣ F -C -C -H ∣ ∣ ∣ F F Br Cl21.22.。