2016年北京市中考数学试题(word版无答案)
2016年北京市中考数学试题解析版
2016年北京市高级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只.有.一个。
1. 如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为(A) 45°(B) 55°(C) 125°(D) 135°答案:B考点:用量角器度量角。
解析:由生活知识可知这个角小于90度,排除C、D,又OB边在50与60之间,所以,度数应为55°。
2. 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里。
将28 000用科学计数法表示应为(A)(B) 28(C)(D)答案:C考点:本题考查科学记数法。
解析:科学记数的表示形式为10na⨯形式,其中1||10≤<,n为整数,28000=。
故选C。
a3. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是(A)a(B)(C)(D)答案:D考点:数轴,由数轴比较数的大小。
解析:由数轴可知,-3<a<-2,故A、B错误;1<b<2,-2<-b<-1,即-b在-2与-1之间,所以,。
4. 内角和为540的多边形是答案:c考点:多边形的内角和。
解析:多边形的内角和为(2)180n-⨯︒,当n=5时,内角和为540°,所以,选C。
5. 右图是某个几何体的三视图,该几何体是(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱答案:D考点:三视图,由三视图还原几何体。
解析:该三视图的俯视为三角形,正视图和侧视图都是矩形,所以,这个几何体是三棱柱。
6. 如果,那么代数2()b aaa a b--的值是(A) 2 (B)-2 (C)(D)答案:A考点:分式的运算,平方差公式。
解析:2()b aaa a b--=22a b aa a b--=()()a b a b aa a b-+-=a b+=2。
7. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是答案:D考点:轴对称图形的辨别。
北京市中考数学试卷(含答案解析).docx
2016 年北京市中考数学试卷 ( 含答案解析 )2016 年北京市中考数学试卷一、选择题(本题共30 分,每小题 3 分)1.(3 分)如图所示,用量角器度量∠AOB,可以读出∠ AOB的度数为()A.45°B.55°C.125°D.135°2.( 3 分)神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000 公里,将 28000 用科学记数法表示应为()A.2.8 × 103B.28×103 C.2.8 × 104D.0.28 ×1053.( 3 分)实数 a,b 在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣ 2 B.a<﹣ 3 C.a>﹣ b D.a<﹣ b4.(3 分)内角和为 540°的多边形是()A.B.C.D.5.(3 分)如图是某个几何体的三视图,该几何体是()A.圆锥B.三棱锥C.圆柱D.三棱柱6.(3 分)如果 a+b=2,那么代数( a﹣)?的值是()A.2B.﹣2 C.D.﹣7.(3 分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.8.(3 分)在 1﹣7 月份,某种水果的每斤进价与售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3 月份B.4 月份C.5 月份D.6 月份9.(3 分)如图,直线m⊥ n,在某平面直角坐标系中,x 轴∥ m, y 轴∥ n,点 A 的坐标为(﹣ 4,2),点 B 的坐标为( 2,﹣ 4),则坐标原点为()A.O1B.O2C.O3D.O410.(3 分)为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%, 15%和 5%,为合理确定各档之间的界限,随机抽查了该市 5 万户居民家庭上一年的年用水量(单位:3m),绘制了统计图.如图所示,下面四个推断合理的是()①年用水量不超过3180m的该市居民家庭按第一档水价交费;3②年用水量超过 240m的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在 150﹣180 之间;④该市居民家庭年用水量的平均数不超过 180.A.①③B.①④C.②③D.②④二、填空题(本题共18 分,每小题 3 分)11.( 3 分)如果分式有意义,那么x的取值范围是.12.(3 分)如图中的四边形均为矩形,根据图形,写出一个正确的等式.13.( 3 分)林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵10001500250040008000150002000030000数 n成活的棵8651356222035007056131701758026430数 m成活的频0.8650.9040.8880.8750.8820.8780.8790.881率估种幼在此条件下移植成活的概率.14.( 3 分)如,小、小珠之的距离 2.7m,他在同一路灯下的影分 1.8m, 1.5m,已知小、小珠的身高分 1.8m,1.5m,路灯的高m.15.( 3 分)百子回是由 1,2,3⋯, 100 无重复排列而成的正方形数表,它是一部数化的澳史,如:中央四位“ 19 99 12 20 ” 示澳回日期,最后一行中两位“ 23 50 ” 示澳面,⋯,同它也是十幻方,其每行 10 个数之和,每列 10 个数之和,每条角 10 个数之和均相等,个和.16.(3 分)下面是“ 已知直外一点作条直的垂”的尺作程:已知:直 l 和 l 外一点 P.(如 1)求作:直 l 的垂,使它点P.作法:如 2(1)在直 l 上任取两点 A, B;(2)分以点 A,B 心, AP,BP半径作弧,两弧相交于点 Q;(3)作直 PQ.所以直 PQ就是所求的垂.回答:作的依据是.三、解答题(本题共72 分,第 17-26 题,每小题 5 分,第 27 题 7 分,第 28 题7 分,第 29 题 8 分),解答时应写出文字说明、演算步骤或证明过程17.( 5 分)计算:(3﹣π)0 +4sin45 °﹣+|1 ﹣| .18.( 5 分)解不等式组:.19.( 5 分)如图,四边形 ABCD是平行四边形, AE 平分∠ BAD,交 DC的延长线于点 E.求证: DA=DE.20.( 5 分)关于 x 的一元二次方程22有两个不相等的实数x +(2m+1)x+m﹣1=0根.(1)求 m的取值范围;(2)写出一个满足条件的 m的值,并求此时方程的根.21.( 5 分)如图,在平面直角坐标系xOy 中,过点 A(﹣ 6, 0)的直线 l 1与直线 l 2:y=2x 相交于点 B( m,4).( 1)求直线 l 1的表达式;( 2)过动点 P(n,0)且垂于 x 轴的直线与 l 1, l 2的交点分别为 C,D,当点 C 位于点 D 上方时,写出 n 的取值范围.22.( 5 分)调查作业:了解你所在小区家庭 5 月份用气量情况:小天、小东和小芸三位同学住在同一小区,该小区共有300 户家庭,每户家庭人数在 2﹣ 5 之间,这 300 户家庭的平均人数均为 3.4 .小天、小东和小芸各自对该小区家庭 5 月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1,表 2 和表 3.表 1 抽样调查小区 4 户家庭 5 月份用气量统计表3(单位: m)家庭人数2345用气量14192126表 2家庭人数用气量表 3家庭人数用气量抽样调查小区15 户家庭 5 月份用气量统计表3(单位: m)22233333333333410 11 15 13 14 15 15 17 17 18 18 18 18 2022抽样调查小区15 户家庭 5 月份用气量统计表3(单位: m)22233333344445510 12 13 14 17 17 18 19 20 20 22 26 31 2831根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映该小区家庭 5 月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.23.( 5 分)如图,在四边形A BCD中,∠ ABC=90°, AC=AD,M, N分别为 AC,CD 的中点,连接BM,MN, BN.(1)求证: BM=MN;(2)∠ BAD=60°, AC平分∠ BAD,AC=2,求 BN的长.24.( 5 分)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6 亿元,占地区生产总值的12.2%.2012 年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2 亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013 年,北京市文化产业实现增加值2406.7 亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014 年,北京市文化创意产业实现增加值2749.3 亿元,占地区生产总值的13.1%,创历史新高, 2015 年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3 亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将 2011﹣ 2015 年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016 年北京市文化创意产业实现增加值约亿元,你的预估理由.25.( 5 分)如, AB⊙ O的直径, F 弦 AC的中点,接OF并延交于点 D,点 D 作⊙ O的切,交 BA的延于点 E.( 1)求:AC∥DE;( 2)接 CD,若 OA=AE=a,写出求四形 ACDE面的思路.26.( 5 分)已知 y 是 x 的函数,自量 x 的取范 x>0,下表是 y 与 x 的几:x⋯123579⋯y⋯ 1.98 3.95 2.63 1.58 1.130.88⋯小根据学函数的,利用上述表格所反映出的y 与 x 之的化律,函数的象与性行了探究.下面是小的探究程,充完整:(1)如,在平面直角坐系 xOy 中,描出了以上表格中各坐的点,根据描出的点,画出函数的象;(2)根据画出的函数象,写出:① x=4 的函数 y;② 函数的一条性:.27.( 7 分)在平面直角坐系xOy 中,抛物 y=mx22mx+m 1(m> 0)与 x 的交点 A, B.(1)求抛物的点坐;(2)横、坐都是整数的点叫做整点.①当 m=1,求段 AB上整点的个数;②若抛物在点 A,B 之的部分与段 AB所成的区域内(包括界)恰有 6 个整点,合函数的象,求 m的取范.28.( 7 分)在等△ ABC中,(1)如 1, P, Q是 BC上的两点, AP=AQ,∠ BAP=20°,求∠ AQB的度数;(2)点 P, Q是 BC上的两个点(不与点 B,C 重合),点 P 在点 Q的左,且 AP=AQ,点 Q关于直 AC的称点 M,接 AM,PM.①依意将 2 全;②小茹通察、提出猜想:在点 P,Q 运的程中,始有 PA=PM,小茹把个猜想与同学行交流,通,形成了明猜想的几种想法:想法 1:要明 PA=PM,只需△ APM是等三角形;想法 2:在 BA上取一点 N,使得 BN=BP,要明 PA=PM,只需△ ANP≌△ PCM;想法3:将段 BP点 B 旋 60°,得到段 BK,要 PA=PM,只需PA=CK,PM=CK⋯你参考上面的想法,帮助小茹明PA=PM(一种方法即可).29.( 8 分)在平面直角坐系 xOy 中,点 P 的坐( x1, y1),点 Q的坐( x2,y2),且x1≠ x2,y1≠y2,若 P,Q某个矩形的两个点,且矩形的均与某条坐标轴垂直,则称该矩形为点P, Q 的“相关矩形”,如图为点P,Q 的“相关矩形”示意图.( 1)已知点 A 的坐标为( 1,0),①若点 B 的坐标为( 3,1),求点 A, B 的“相关矩形”的面积;②点 C 在直线 x=3 上,若点 A, C 的“相关矩形”为正方形,求直线AC的表达式;( 2)⊙ O的半径为,点M的坐标为(m,3),若在⊙ O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.2016 年北京市中考数学试卷参考答案与试题解析一、选择题(本题共30 分,每小题 3 分)1.(3 分)如图所示,用量角器度量∠AOB,可以读出∠ AOB的度数为()A.45°B.55°C.125°D.135°【分析】由图形可直接得出.【解答】解:由图形所示,∠AOB的度数为55°,故选 B.【点评】本题主要考查了角的度量,量角器的使用方法,正确使用量角器是解题的关键.2.( 3 分)神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000 公里,将 28000 用科学记数法表示应为()A.2.8 × 103B.28×103 C.2.8 × 104D.0.28 ×105【分析】科学记数法的表示形式为a×10n的形式.其中 1≤|a| < 10,n 为整数,确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值>10 时, n 是正数;当原数的绝对值< 1 时,n是负数.【解答】解: 28000=1.1 ×104.故选: C.【点评】此题考查科学记数 n 法的表示方法,表示时关键要正确确定 a 的值以及 n的值.3.( 3 分)实数 a,b 在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣ 2 B.a<﹣ 3 C.a>﹣ b D.a<﹣ b【分析】利用数轴上 a, b 所在的位置,进而得出 a 以及﹣ b 的取值范围,进而比较得出答案.【解答】解: A、如图所示:﹣ 3<a<﹣ 2,故此选项错误;B、如图所示:﹣ 3<a<﹣ 2,故此选项错误;C、如图所示: 1<b< 2,则﹣ 2<﹣ b<﹣ 1,故 a<﹣ b,故此选项错误;D、由选项 C可得,此选项正确.故选: D.【点评】此题主要考查了实数与数轴,正确得出 a 以及﹣ b 的取值范围是解题关键.4.(3 分)内角和为 540°的多边形是()A.B.C.D.【分析】根据多边形的内角和公式(n﹣2)?180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣ 2)?180°=540°,解得 n=5.故选: C.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.(3 分)如图是某个几何体的三视图,该几何体是()A.圆锥B.三棱锥C.圆柱D.三棱柱【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选 D【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.6.(3 分)如果 a+b=2,那么代数( a﹣)?的值是()A.2B.﹣2 C.D.﹣【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:∵ a+b=2,∴原式 =?=a+b=2故选: A.【点评】此题考查了分式的化简求值,将原式进行正确的化简是解本题的关键.7.(3 分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解: A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选 D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.(3 分)在 1﹣7 月份,某种水果的每斤进价与售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3 月份B.4 月份C.5 月份D.6 月份【分析】根据图象中的信息即可得到结论.【解答】解:由图象中的信息可知, 3 月份的利润 =7.5 ﹣5=2.5 元,4 月份的利润 =6﹣ 3=3 元,5 月份的利润 =4.5 ﹣2=2.5 元,6 月份的利润 =3﹣ 1.2=1.8 元,故出售该种水果每斤利润最大的月份是 4 月份,故选 B.【点评】本题考查了象形统计图,有理数大小的比较,正确的把握图象中的信息,理解利润 =售价﹣进价是解题的关键.9.(3 分)如图,直线m⊥ n,在某平面直角坐标系中,x 轴∥ m, y 轴∥ n,点 A 的坐标为(﹣ 4,2),点 B 的坐标为( 2,﹣ 4),则坐标原点为()A.O1B.O2C.O3D.O4【分析】先根据点 A、B 的坐标求得直线 AB的解析式,再判断直线 AB在坐标平面内的位置,最后得出原点的位置.【解答】解:设过 A、B 的直线解析式为 y=kx+b,∵点A 的坐标为(﹣ 4,2),点B 的坐标为( 2,﹣ 4),∴,解得,∴直线 AB为 y=﹣ x﹣2,∴直线 AB经过第二、三、四象限,如图,由 A、B的坐标可知,沿 CD方向为 x 轴正方向,沿 CE方向为 y 轴正方向,故将点 A 沿着 CD方向平移 4 个单位,再沿着 EC方向平移 2 个单位,即可到达原点位置,则原点为点 O1.故选: A.【点评】本题主要考查了坐标与图形性质,解决问题的关键是掌握待定系数法以及一次函数图象与系数的关系.在一次函数 y=kx+b 中,k 决定了直线的方向, b 决定了直线与 y 轴的交点位置.10.(3 分)为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%, 15%和 5%,为合理确定各档之间的界限,随机抽查了该市 5 万户居民家庭上一年的年用水量(单位:3m),绘制了统计图.如图所示,下面四个推断合理的是()3①年用水量不超过 180m的该市居民家庭按第一档水价交费;3②年用水量超过 240m的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在 150﹣180 之间;④该市居民家庭年用水量的平均数不超过 180.A.①③B.①④C.②③D.②④【分析】利用条形统计图结合中位数的定义分别分析得出答案.3【解答】解:①由条形统计图可得:年用水量不超过 180m的该市居民家庭一共有( 0.25+0.75+1.5+1.0+0.5 )=4(万),3× 100%=80%,故年用水量不超过180m的该市居民家庭按第一档水价交费,正确;②∵年用水量超过3的该市居民家庭有( 0.15+0.15+0.05 ) =0.35 (万),240m∴×100%=7%≠5%,故年用水量超过3240m的该市居民家庭按第三档水价交费,故此选项错误;③∵ 5 万个数数据的中间是第 25000 和 25001 的平均数,∴该市居民家庭年用水量的中位数在 120﹣150 之间,故此选项错误;④由①得,该市居民家庭年用水量的平均数不超过 180,正确,故选: B.【点评】此题主要考查了频数分布直方图以及中位数的定义,正确利用条形统计图获取正确信息是解题关键.二、填空题(本题共18 分,每小题 3 分)11.( 3 分)如果分式有意义,那么x的取值范围是x≠ 1.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由题意,得x﹣1≠0,解得 x≠1,故答案为: x≠1.【点评】本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.12 .( 3 分)如图中的四边形均为矩形,根据图形,写出一个正确的等式am+bm+cm=m(a+b+c).【分析】直接利用矩形面积求法结合提取公因式法分解因式即可.【解答】解:由题意可得: am+bm+cm=m(a+b+c).故答案为: am+bm+cm=m(a+b+c).【点评】此题主要考查了提取公因式法分解因式,正确利用矩形面积求出是解题关键.13.( 3 分)林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵10001500250040008000150002000030000数 n成活的棵8651356222035007056131701758026430数 m成活的频0.8650.9040.8880.8750.8820.8780.8790.881率估计该种幼树在此条件下移植成活的概率为0.881.【分析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.881 .故答案为: 0.881 ;【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率 =所求情况数与总情况数之比.14.( 3 分)如图,小军、小珠之间的距离为 2.7m,他们在同一盏路灯下的影长分别为 1.8m, 1.5m,已知小军、小珠的身高分别为 1.8m,1.5m,则路灯的高为3 m.【分析】根据 CD∥AB∥MN,得到△ ABE∽△ CDE,△ ABF∽△ MNF,根据相似三角形的性可知,,即可得到.【解答】解:如,∵ CD∥ AB∥ MN,∴△ ABE∽△ CDE,△ ABF∽△ MNF,∴,,即,,解得: AB=3m.答:路灯的高3m.【点】本考了中心投影,相似三角形的判定和性,熟掌握相似三角形的判定和性是解的关.15.( 3 分)百子回是由1,2,3⋯, 100 无重复排列而成的正方形数表,它是一部数化的澳史,如:中央四位“19 99 12 20” 示澳回日期,最后一行中两位“ 23 50 ” 示澳面,⋯,同它也是十幻方,其每行 10 个数之和,每列10 个数之和,每条角10 个数之和均相等,个和505 .【分析】根据已知得:百子回是由 1,2,3⋯, 100 无重复排列而成,先算和;又因一共有 10 行,且每行 10 个数之和均相等,所以每行 10 个数之和 =和÷ 10.【解答】解: 1~100 的和:=5050,一共有 10 行,且每行10 个数之和均相等,所以每行10 个数之和: 5050÷10=505,故答案: 505.【点】本是数字化的律,是常考型;一般思路:按所描述的律从 1 开始算,从算的程中慢慢律,出与每一次算都符合的律,就是最后的答案;此非常,跟百子碑介没关系,只考行、列就可以,同,也可以利用列来算.16.(3 分)下面是“ 已知直外一点作条直的垂”的尺作程:已知:直 l 和 l 外一点 P.(如 1)求作:直 l 的垂,使它点P.作法:如 2(1)在直 l 上任取两点 A, B;(2)分以点 A,B 心, AP,BP半径作弧,两弧相交于点 Q;(3)作直 PQ.所以直 PQ就是所求的垂.回答:作的依据是到段两个端点的距离相等的点在段的垂直平分上( A、B 都在段 PQ的垂直平分上).【分析】只要证明直线 AB是线段 PQ的垂直平分线即可.【解答】解:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B 都在线段 PQ的垂直平分线上),理由:如图,∵ PA=AQ, PB=QB,∴点 A、点 B 在线段 PQ的垂直平分线上,∴直线 AB垂直平分线段 PQ,∴ PQ⊥AB.【点评】本题考查作图﹣基本作图,解题的关键是理解到线段两个端点的距离相等的点在线段的垂直平分线上,属于中考常考题型.三、解答题(本题共72 分,第 17-26题,每小题 5 分,第 27 题 7 分,第 28 题7 分,第 29 题 8 分),解答时应写出文字说明、演算步骤或证明过程17.( 5 分)计算:(3﹣π)0 +4sin45 °﹣+|1﹣ |.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(3﹣π)0+4sin45 °﹣+|1 ﹣ | 的值是多少即可.【解答】解:(3﹣π)0 +4sin45°﹣+|1﹣ |=1+4× ﹣2﹣ 1=1﹣2 +﹣1=【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:① a0=1( a≠0);② 00≠1.(3)此题还考查了特殊角的三角函数值,要牢记 30°、 45°、 60°角的各种三角函数值.18.( 5 分)解不等式组:.【分析】根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集.【解答】解:解不等式 2x+5> 3( x﹣ 1),得: x<8,解不等式 4x>,得:x>1,∴不等式组的解集为: 1<x <8.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.( 5 分)如图,四边形ABCD是平行四边形, AE 平分∠ BAD,交 DC的延长线于点 E.求证: DA=DE.【分析】由平行四边形的性质得出 AB∥CD,得出内错角相等∠ E=∠ BAE,再由角平分线证出∠ E=∠DAE,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ E=∠ BAE,∵ AE平分∠ BAD,∴∠ BAE=∠DAE,∴∠ E=∠ DAE,∴DA=DE.【点评】本题考查了平行四边形的性质、平行线的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出∠ E=∠DAE是解决问题的关键.20.( 5 分)关于 x 的一元二次方程22有两个不相等的实数x +(2m+1)x+m﹣1=0根.(1)求 m的取值范围;(2)写出一个满足条件的 m的值,并求此时方程的根.【分析】(1)由方程有两个不相等的实数根即可得出△> 0,代入数据即可得出关于 m的一元一次不等式,解不等式即可得出结论;( 2)结合( 1)结论,令 m=1,将 m=1代入原方程,利用因式分解法解方程即可得出结论.【解答】解:(1)∵关于 x 的一元二次方程22有两个不相x +(2m+1)x+m﹣ 1=0等的实数根,22∴△ =(2m+1)﹣ 4×1×( m﹣1)=4m+5> 0,解得: m>﹣.(2) m=1,此时原方程为 x2+3x=0,即 x(x+3)=0,解得: x1=0,x2=﹣3.【点评】本题考查了根的判别式、解一元一次不等式以及用因式分解法解一元二次方程,解题的关键是:( 1)根据根的个数结合根的判别式得出关于m 的一元一次不等式;(2)选取 m 的值.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出方程(不等式或不等式组)是关键.21.( 5 分)如图,在平面直角坐标系xOy 中,过点 A(﹣ 6, 0)的直线 l 1与直线 l 2:y=2x 相交于点 B( m,4).( 1)求直线 l 1的表达式;( 2)过动点 P(n,0)且垂于 x 轴的直线与 l 1, l 2的交点分别为 C,D,当点 C位于点 D 上方时,写出 n 的取值范围.【分析】(1)先求出点 B 坐标,再利用待定系数法即可解决问题.(2)由图象可知直线 l 1在直线 l 2上方即可,由此即可写出 n 的范围.【解答】解:(1)∵点 B 在直线 l 2上,∴ 4=2m,∴ m=2,点 B( 2, 4)设直线 l 1的表达式为 y=kx+b,由题意,解得,∴直线 l 1的表达式为 y=x+3.( 2)由图象可知n<2.【点评】本题考查两条直线平行、相交问题,解题的关键是灵活应用待定系数法,学会利用图象根据条件确定自变量取值范围.22.( 5 分)调查作业:了解你所在小区家庭 5 月份用气量情况:小天、小东和小芸三位同学住在同一小区,该小区共有 300 户家庭,每户家庭人数在 2﹣ 5 之间,这 300 户家庭的平均人数均为 3.4 .小天、小东和小芸各自对该小区家庭 5 月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1,表 2 和表 3.表 1抽样调查小区 4 户家庭 5 月份用气量统计表3(单位: m)家庭人数2345用气量14192126表 2抽样调查小区15 户家庭 5 月份用气量统计表3(单位: m)家222333333333334庭人数用101115131415151717181818182022气量表 3抽样调查小区15 户家庭 5 月份用气量统计表3(单位: m)家222333333444455庭人数用101213141717181920202226312831气量根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映该小区家庭 5 月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.【分析】首先根据题意分析家庭平均人数,进而利用加权平均数求出答案,再利用已知这 300 户家庭的平均人数均为 3.4 分析即可.【解答】解:小天调查的人数太少,小东抽样的调查数据中,家庭人数的平均值为:(2× 3+3×11+4)÷ 15=2.87 ,远远偏离了平均人数的 3.4 ,所以他的数据抽样有明显的问题,小芸抽样的调查数据中,家庭人数的平均值为:( 2× 2+3× 7+4× 4+5× 2)÷15=3.4 ,说明小芸抽样数据质量较好,因此小芸的抽样调查的数据能较好的反应出该小区家庭 5 月份用气量情况.【点评】此题主要考查了抽样调查的可靠性以及加权平均数,正确理解抽样调查的随机性是解题关键.23.( 5 分)如图,在四边形A BCD中,∠ ABC=90°, AC=AD,M, N分别为 AC,CD 的中点,连接BM,MN, BN.(1)求证: BM=MN;(2)∠ BAD=60°, AC平分∠ BAD,AC=2,求 BN的长.【分析】(1)根据三角形中位线定理得MN= AD,根据直角三角形斜边中线定理得 BM= AC,由此即可证明.222( 2)首先证明∠ BMN=90°,根据 BN=BM+MN即可解决问题.【解答】(1)证明:在△ CAD中,∵ M、N分别是 AC、CD的中点,∴ MN∥AD,MN= AD,在 RT△ ABC中,∵ M是 AC中点,∴ BM= AC,∵AC=AD,∴ MN=BM.( 2)解:∵∠ BAD=60°, AC平分∠ BAD,∴∠ BAC=∠DAC=30°,由( 1)可知, BM= AC=AM=MC,∴∠ BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠ NMC=∠DAC=30°,∴∠ BMN=∠BMC+∠NMC=90°,222∴ BN=BM+MN,由( 1)可知 MN=BM=AC=1,∴BN=【点评】本题考查三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.24.( 5 分)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6 亿元,占地区生产总值的12.2%.2012 年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2 亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013 年,北京市文化产业实现增加值2406.7 亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014 年,北京市文化创意产业实现增加值2749.3 亿元,占地区生产总值的13.1%,创历史新高, 2015 年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3 亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将 2011﹣ 2015 年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016 年北京市文化创意产业实现增加值约3471.7亿元,你的预估理由用近3年的平均增长率估计2016 年的增长率.。
【中考真题】2016年北京市中考数学试题(解析版)
2016年北京市中考真题一、选择题(本题共30分,每小题3分)1.(3分)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.125°D.135°2.(3分)神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103B.28×103C.2.8×104D.0.28×1053.(3分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b4.(3分)内角和为540°的多边形是()A. B.C. D.5.(3分)如图是某个几何体的三视图,该几何体是()A.圆锥 B.三棱锥C.圆柱 D.三棱柱6.(3分)如果a+b=2,那么代数(a﹣)•的值是()A.2 B.﹣2 C.D.﹣7.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C. D.8.(3分)在1﹣7月份,某种水果的每斤进价与售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份9.(3分)如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),则坐标原点为()A.O1B.O2C.O3D.O410.(3分)为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断合理的是()①年用水量不超过180m3的该市居民家庭按第一档水价交费;②年用水量超过240m3的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150﹣180之间;④该市居民家庭年用水量的平均数不超过180.A.①③B.①④C.②③D.②④二、填空题(本题共18分,每小题3分)11.(3分)如果分式有意义,那么x的取值范围是.12.(3分)如图中的四边形均为矩形,根据图形,写出一个正确的等式.13.(3分)林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n1000 1500 2500 4000 8000 15000 20000 30000成活的棵数m865 1356 2220 3500 7056 13170 17580 26430成活的频率0.865 0.904 0.888 0.875 0.882 0.878 0.879 0.881估计该种幼树在此条件下移植成活的概率为.14.(3分)如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为m.15.(3分)百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为.16.(3分)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分),解答时应写出文字说明、演算步骤或证明过程.17.(5分)计算:(3﹣π)0+4sin 45°﹣+|1﹣|.18.(5分)解不等式组:.19.(5分)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.20.(5分)关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.21.(5分)如图,在平面直角坐标系xOy中,过点A(﹣6,0)的直线l1与直线l2:y=2x 相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.22.(5分)调查作业:了解你所在小区家庭5月份用气量情况:小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2﹣5之间,这300户家庭的平均人数均为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1,表2和表3.表1 抽样调查小区4户家庭5月份用气量统计表(单位:m3)家庭人数 2 3 4 5用气量14 19 21 26表2 抽样调查小区15户家庭5月份用气量统计表(单位:m3)家庭人数2 2 23 3 3 3 3 3 3 3 3 3 3 4用气量10 11 15 13 14 15 15 17 17 18 18 18 18 20 22表3 抽样调查小区15户家庭5月份用气量统计表(单位:m3)家庭人数2 2 23 3 3 3 3 34 4 4 45 5用气量10 12 13 14 17 17 18 19 20 20 22 26 31 28 31 根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.23.(5分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.24.(5分)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约亿元,你的预估理由.25.(5分)如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.26.(5分)已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:x … 1 2 3 5 7 9 …y … 1.98 3.95 2.63 1.58 1.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.27.(7分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.28.(7分)在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有P A=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明P A=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明P A=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证P A=PM,只需证P A=CK,PM=CK…请你参考上面的想法,帮助小茹证明P A=PM(一种方法即可).29.(8分)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.参考答案一、选择题(本题共30分,每小题3分)1.B【解析】由图形所示,∠AOB的度数为55°,故选B.2.C【解析】28000=1.1×104.故选C.3.D【解析】A、如图所示:﹣3<a<﹣2,故此选项错误;B、如图所示:﹣3<a<﹣2,故此选项错误;C、如图所示:1<b<2,则﹣2<﹣b<﹣1,故a<﹣b,故此选项错误;D、由选项C可得,此选项正确.故选D.4.C【解析】设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选C.5.D【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D.6.A【解析】∵a+b=2,∴原式=•=a+b=2故选A.7.D【解析】A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.8.B【解析】由图象中的信息可知,3月份的利润=7.5﹣5=2.5元,4月份的利润=6﹣3=3元,5月份的利润=4.5﹣2=2.5元,6月份的利润=3﹣1.2=1.8元,故出售该种水果每斤利润最大的月份是4月份,故选B.9.A【解析】设过A、B的直线解析式为y=kx+b,∵点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),∴,解得,∴直线AB为y=﹣x﹣2,∴直线AB经过第二、三、四象限,如图,由A、B的坐标可知,沿CD方向为x轴正方向,沿CE方向为y轴正方向,故将点A沿着CD方向平移4个单位,再沿着EC方向平移2个单位,即可到达原点位置,则原点为点O1.故选:A.10.B【解析】①由条形统计图可得:年用水量不超过180m3的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),×100%=80%,故年用水量不超过180m3的该市居民家庭按第一档水价交费,正确;②∵年用水量超过240m3的该市居民家庭有(0.15+0.15+0.05)=0.35(万),∴×100%=7%≠5%,故年用水量超过240m3的该市居民家庭按第三档水价交费,故此选项错误;③∵5万个数数据的中间是第25000和25001的平均数,∴该市居民家庭年用水量的中位数在120﹣150之间,故此选项错误;④由①得,该市居民家庭年用水量的平均数不超过180,正确,故选:B.二、填空题(本题共18分,每小题3分)11.x≠1【解析】由题意,得x﹣1≠0,解得x≠1,故答案为x≠1.12.am+bm+cm=m(a+b+c)【解析】由题意可得:am+bm+cm=m(a+b+c).故答案为am+bm+cm=m(a+b+c).13.0.881【解析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.881.故答案为0.881;14.3【解析】如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,,即,,解得:AB=3m,答:路灯的高为3m.15.505【解析】1~100的总和为:=5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:5050÷10=505,故答案为505.16.到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上)【解析】到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵P A=AQ,PB=QB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分),解答时应写出文字说明、演算步骤或证明过程17.解:(3﹣π)0+4sin 45°﹣+|1﹣|=1+4×﹣2﹣1=1﹣2+﹣1=18.解:解不等式2x+5>3(x﹣1),得:x<8,解不等式4x>,得:x>1,∴不等式组的解集为:1<x<8.19.证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠E=∠BAE,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠E=∠DAE,∴DA=DE.20.解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,∴ =(2m+1)2﹣4×1×(m2﹣1)=4m+5>0,解得:m>﹣.(2)m=1,此时原方程为x2+3x=0,即x(x+3)=0,解得:x1=0,x2=﹣3.21.解:(1)∵点B在直线l2上,∴4=2m,∴m=2,点B(2,4)设直线l1的表达式为y=kx+b,由题意,解得,∴直线l1的表达式为y=x+3.(2)由图象可知n<2.22.解:小天调查的人数太少,小东抽样的调查数据中,家庭人数的平均值为:(2×3+3×11+4)÷15=2.87,远远偏离了平均人数的3.4,所以他的数据抽样有明显的问题,小芸抽样的调查数据中,家庭人数的平均值为:(2×2+3×7+4×4+5×2)÷15=3.4,说明小芸抽样数据质量较好,因此小芸的抽样调查的数据能较好的反应出该小区家庭5月份用气量情况.23.(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在Rt△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=24.解:(1)2011﹣2015年北京市文化创意产业实现增加值如图所示,(2)设2013到2015的平均增长率为x,则2406.7(1+x)2=3072.3,解得x≈13%,用近3年的平均增长率估计2016年的增长率,∴2016年的增长率为3072.3×(1+13%)≈3471.7亿元.故答案分别为3471.7,用近3年的平均增长率估计2016年的增长率.25.(1)证明:∵ED与⊙O相切于D,∴OD⊥DE,∵F为弦AC中点,∴OD⊥AC,∴AC∥DE.(2)解:作DM⊥OA于M,连接CD,CO,AD.首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AE•DM,只要求出DM即可.(方法二:证明△ADE的面积等于四边形ACDE的面积的一半)∵AC∥DE,AE=AO,∴OF=DF,∵AF⊥DO,∴AD=AO,∴AD=AO=OD,∴△ADO是等边三角形,同理△CDO也是等边三角形,∴∠CDO=∠DOA=60°,AE=CD=AD=AO=DO=a,∴AO∥CD,又AE=CD,∴四边形ACDE是平行四边形,易知DM=a,∴平行四边形ACDE面积=a2.26.解:(1)如图,(2)①x=4对应的函数值y约为2.0;②该函数有最大值.故答案为2,该函数有最大值.27.解:(1)∵y=mx2﹣2mx+m﹣1=m(x﹣1)2﹣1,∴抛物线顶点坐标(1,﹣1).(2)①∵m=1,∴抛物线为y=x2﹣2x,令y=0,得x=0或2,不妨设A(0,0),B(2,0),∴线段AB上整点的个数为3个.②如图所示,抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,∴点A在(﹣1,0)与(﹣2,0)之间(包括(﹣1,0)),当抛物线经过(﹣1,0)时,m=,当抛物线经过点(﹣2,0)时,m=,∴m的取值范围为<m≤.28.解:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ=20°,∴∠AQB=∠APQ=∠BAP+∠B=80°;(2)如图2,∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,(将线段BP绕点B顺时针旋转60°,得到线段BK,要证P A=PM,只需证P A=CK,PM=CK…请你参考上面的想法,帮助小茹证明P A=PM)∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠P AC=∠MAC+∠CAP=60°,∴∠P AM=60°,∵AP=AQ,∴AP=AM,∴△APM是等边三角形,∴AP=PM.证明△ABP≌△ACM≌△BCK.29.解:(1)①∵A(1,0),B(3,1)由定义可知:点A,B的“相关矩形”的底与高分别为2和1,∴点A,B的“相关矩形”的面积为2×1=2;②由定义可知:AC是点A,C的“相关矩形”的对角线,又∵点A,C的“相关矩形”为正方形∴直线AC与x轴的夹角为45°,设直线AC的解析为:y=x+m或y=﹣x+n把(1,0)分别y=x+m,∴m=﹣1,∴直线AC的解析为:y=x﹣1,把(1,0)代入y=﹣x+n,∴n=1,∴y=﹣x+1,综上所述,若点A,C的“相关矩形”为正方形,直线AC的表达式为y=x﹣1或y=﹣x+1;(2)设直线MN的解析式为y=kx+b,∵点M,N的“相关矩形”为正方形,∴由定义可知:直线MN与x轴的夹角为45°,∴k=±1,∵点N在⊙O上,∴当直线MN与⊙O有交点时,点M,N的“相关矩形”为正方形,当k=1时,作⊙O的切线AD和BC,且与直线MN平行,其中A、C为⊙O的切点,直线AD与y轴交于点D,直线BC与y轴交于点B,连接OA,OC,把M(m,3)代入y=x+b,∴b=3﹣m,∴直线MN的解析式为:y=x+3﹣m∵∠ADO=45°,∠OAD=90°,∴OD=OA=2,∴D(0,2)同理可得:B(0,﹣2),∴令x=0代入y=x+3﹣m,∴y=3﹣m,∴﹣2≤3﹣m≤2,∴1≤m≤5,当k=﹣1时,把M(m,3)代入y=﹣x+b,∴b=3+m,∴直线MN的解析式为:y=﹣x+3+m,同理可得:﹣2≤3+m≤2,∴﹣5≤m≤﹣1;综上所述,当点M,N的“相关矩形”为正方形时,m的取值范围是:1≤m≤5或﹣5≤m≤﹣1。
2016年中考数学试题(解析版)
2016年北京市高级中等学校招生考试数学试卷一、选择题。
1. 如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为 (A ) 45° (B ) 55° (C ) 125° (D ) 135° 答案:B2. 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里。
将28 000用科学计数法表示应为(A ) (B ) 28(C )(D )答案:C3. 实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是(A ) a (B )(C )(D )答案:D4. 内角和为540的多边形是答案:c5. 右图是某个几何体的三视图,该几何体是(A ) 圆锥 (B ) 三棱锥 (C ) 圆柱 (D ) 三棱柱 答案:D6. 如果,那么代数2()b aa a a b-- 的值是 (A ) 2 (B )-2 (C ) (D )答案:A7. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是答案:D8. 在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是(A ) 3月份 (B ) 4月份 (C ) 5月份 (D ) 6月份 答案:B解析:各月每斤利润:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利润最大,选B。
9. 如图,直线,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为(A)(B)(C)(D)答案:A 考点:平面直角坐标系。
解析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处。
如下图,O1符合。
10. 为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增。
2016年北京中考数学试卷和参考答案
2016年北京中考数学试卷和参考答案2016年北京市高级中等学校招生考试数学试卷学校姓名准考证号考生须知1.本试卷共8页,共三道大题,29道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束后,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选BAO项,符合题意的选项只有..一个。
1. 如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为(A) 45°(B) 55°(C) 125°(D) 135°2. 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里。
将28 000用科学计数法表示应为(A)3108.2⨯(B)31028⨯(C)4108.2⨯(D)510.0⨯283. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是(A) a >-2 (B)a<-3 (C)a>-b (D)a<-b4. 内角和为540°的多边形是5. 右图是某个几何体的三视图,该几何体是(A ) 圆锥 (B ) 三棱锥(C ) 圆柱 (D ) 三棱柱6. 如果a+b=2,那么代数b a a a b a -•-)(2的值是(A ) 2 (B )-2 (C )21 (D )21-7. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是A B C D8. 在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是(A) 3月份(B) 4月份(C) 5月份(D) 6月份第8题图第9题图9. 如图,直线m⊥n,在某平面直角坐标系中,x 轴∥m,y轴∥n,点A的坐标为(-4,2),点B 的坐标为(2,-4),则坐标原点为(A)O1(B)O2(C)O3(D)O410. 为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增。
中考2016年北京市高级中等学校招生考试数学试卷
2016年北京市高级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个。
1. 如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为(A ) 45° (B ) 55° (C ) 125° (D ) 135°答案:B考点:用量角器度量角。
解析:由生活知识可知这个角小于90度,排除C 、D ,又OB 边在50与60之间,所以,度数应为55°。
2. 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里。
将28 000用科学计数法表示应为(A ) (B ) 28 (C ) (D ) 2.8×103×1032.8×1040.28×105答案:C考点:本题考查科学记数法。
解析:科学记数的表示形式为形式,其中,n 为整数,28000=10n a ⨯1||10a ≤<。
故选C 。
2.8×1043. 实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是(A ) a (B ) (C ) (D )>‒ 2 a <‒ 3 a >‒ b a <‒ b 答案:D考点:数轴,由数轴比较数的大小。
解析:由数轴可知,-3<a <-2,故A 、B 错误;1<b <2,-2<-b <-1,即-b 在-2与-1之间,所以,。
a <‒ b 4. 内角和为540的多边形是°答案:c考点:多边形的内角和。
解析:多边形的内角和为,当n =5时,内角和为540°,所以,选C 。
(2)180n -⨯︒5. 右图是某个几何体的三视图,该几何体是(A ) 圆锥 (B ) 三棱锥 (C ) 圆柱 (D ) 三棱柱答案:D考点:三视图,由三视图还原几何体。
解析:该三视图的俯视为三角形,正视图和侧视图都是矩形,所以,这个几何体是三棱柱。
2016年北京市中考数学试卷-答案
北京市2016年高级中等学校招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】A 、如图所示:32a -<<-,故此选项错误;B 、如图所示:32a -<<-,故此选项错误;C 、如图所示:12b <<,则21b -<-<-,故此选项错误;D 、由选项C 可得a b <-,此选项正确.【提示】利用数轴上a ,b 所在的位置,进而得出a 以及b -的取值范围,进而比较得出答案.【考点】实数与数轴4.【答案】C【解析】设多边形的边数是n ,则2180540n -∙︒=︒(),解得5n =,故选C. 【提示】根据多边形的内角和公式2180n -∙︒()列式进行计算即可求解.【考点】多边形内角与外角5.【答案】D【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱,故选D.【提示】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【考点】由三视图判断几何体6.【答案】A【解析】2a b +=【提示】原式括号中两项通分并利用同分母分式的减法法则计算,即可求出值.【解析】A 、是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项错误;C 、是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项正确,故选D.【提示】根据轴对称图形的概念求解即可.【考点】轴对称图形8.【答案】B 【解析】由图象中的信息可知,3月份的利润7.5 4.53=-=元,4月份的利润6 2.4 3.6=-=元,5月份的利润 4.5 1.53=-=元,6月份的利润 2.51 1.5=-=元,故出售该种水果每斤利润最大的月份是4月份,故选B.【提示】根据图象中的信息即可得到结论.【考点】象形统计图9.【答案】A【解析】解:设过A 、B 的直线解析式为y kx b =+点A 的坐标为(4,2)-,点B 的坐标为(2,4)-24k b ∴-+=42k b -+=解得:1k -=, 2b -=∴直线AB 为 2y x =--∴直线AB 经过第二、三、四象限如图,连接AB ,则原点在AB 的右上方,∴坐标原点为O 1,故选A.【提示】先根据点A 、B 的坐标求得直线AB 的解析式,再判断直线AB 在坐标平面内的位置,最后得出原点的位置.【考点】坐标与图形性质,一次函数图象与系数的关系10.【答案】B【解析】解:①由条形统计图可得:年用水量不超过3180m 的该市居民家庭一共有0.250.75 1.5 1.0 1.54++++=(万),又4 100%80%5⨯=,故年用水量不超过3180m 的该市居民家庭按第一档水价交费,正确;②年用水量超过240m 3的该市居民家庭有 (0.150.150.05)0.35++=(万),0.35100%7%5%5∴⨯=≠,故年用水量超过240m 3的该市居民家庭按第三档水价交费,故此选项错误;③5万个数数据的中间是第25000和25001的平均数,∴该市居民家庭年用水量的中位数在120-150之间,故此选项错误;④由①得,该市居民家庭年用水量的平均数不超过180,正确,故选B.【提示】利用条形统计图结合中位数的定义分别分析得出答案.【考点】频数(率)分布直方图,加权平均数,中位数第Ⅱ卷二、填空题11.【答案】1x ≠ 【解析】由题意,得:10x -≠,解得1x ≠,故答案为:1x ≠.【提示】根据分母不为零分式有意义,可得答案.【考点】分式有意义的条件12.【答案】()am bm cm m a b c ++=++(答案不唯一)【解析】由题意可得:()am bm cm m a b c ++=++,故答案为()am bm cm m a b c ++=++.【提示】直接利用矩形面积求法结合提取公因式法分解因式即可.【考点】因式分解-提公因式法13.【答案】0.882(答案不唯一)【解析】0.8650.9040.8880.8750.8820.8780.8790.88180.882x =+++++++÷≈(),∴这种幼树移植成活率的概率约为0.882,故答案为:0.882【提示】对于不同批次的幼树移植成活率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法.【考点】利用频率估计概率14.【答案】3【解析】解:如图,CD ∥AB ∥MN ,ABE CDE ∴△∽△,ABF MNF △∽△,CD DE AB BE∴=,FN MN FB AB =, 即1.8 1.81.8+AB BD=,1.5 1.51.5 2.7AB BD =+-, 解得:=3AB m .答:路灯的高为3m .【解析】解:1~100的总和为:(1+100)15002500=⨯,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:505010505÷=,故答案为:505.【提示】根据已知得:百子回归图是由1,2,3……,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和÷10.【考点】规律型:数字的变化类16.【答案】解:到线段两个端点的距离相等的点在线段的垂直平分线上(A 、B 都在线段PQ 的垂直平分线上),理由:如图,PA PQ =,PB PB =,∴点A 、点B 在线段PQ 的垂直平分线上,∴直线AB 垂直平分线段PQ ,PQ AB ∴⊥.【解析】解不等式2531x x +>-(),得:8x <,解不等式742x x +>,得:1x >, ∴不等式组的解集为:18x <<.【提示】根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集. 【考点】解一元一次不等式组19.【答案】四边形ABCD 是平行四边形,∴AB ∥CD ,E BAE ∠=∠∴,AE 平分∠BAD ,BAE DAE ∠=∠∴,【解析】解:(1)关于x 的一元二次方程222110x m x m +++-=()有两个不相等的实数根,2221411450m m m ∆=+-⨯⨯-=+>∴()(),解得:54m >-. (2)如当1m =,此时原方程为230x x +=.即(3)0x x +=,解得:10x =,23x =-.【提示】(1)由方程有两个不相等的实数根即可得出0∆>,代入数据即可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令1m =,将1m =代入原方程,利用因式分解法解方程即可得出结论.【考点】根的判别式,解一元二次方程的因式分解法,解一元一次不等式21.【答案】(1)3y x =+(2)2n <【解析】解:(1)点B 在直线2l 上,42m ∴=,2m ∴=,点B (2,4).设直线1l 的表达式为y kx b =+,由题意:60,2 4.k b k b -+=⎧⎨+=⎩解得1,23.k b ⎧=⎪⎨⎪=⎩ ∴直线1l 的表达式为132y x =+. (2)与图象可知2n <.【提示】(1)先求出点B 坐标,再利用待定系数法即可解决问题.(2)由图象可知直线1l 在直线2l 上方即可,由此即可写出n 的范围.【考点】两条直线相交或平行问题22.【答案】解:小芸,小天调查的人数太少,小东抽样的调查数据中,家庭人数的平均值为:23311415 2.87⨯+⨯+÷=(),远远偏离了平均人数的3.4,所以他的数据抽样有明显的问题,小芸抽样的调查数据中,家庭人数的平均值为:2237445215 3.4⨯+⨯+⨯+⨯÷=(),说明小芸抽样数据质量较好,因此小芸的抽样调查的数据能较好的反应出该小区家庭5月份用气量情况.【提示】首先根据题意分析家庭平均人数,进而利用加权平均数求出答案,再利用已知这300户家庭的平均人数均为3.4分析即可.【考点】抽样调查的可靠性,加权平均数23.【答案】【解析】(1)证明:在△CAD 中,M 、N 分别是AC 、CD 的中点.MN ∴∥AD ,12MN AD =. 在Rt △ABC 中,M 是AC 中点.12BM AC ∴=. AC AD =,MN BM ∴=.(2)解:60BAD ∠=︒,AC 平分∠BAD ,30BAC DAC ∴∠=∠=︒.由(1)可知,12BM AC AM MC ===, 260BMC BAM ABM BAM ∴∠=∠+∠=∠=︒,MN ∥AD ,30NMC DAC ∴∠=∠=︒.90BMN BMC NMC ∴∠=∠+∠=︒,222BN BM MN ∴=+,由(1)可知112MN BM AC ===,(2)首先证明90BMN ∠=︒,根据222BN BM MN =+即可解决问题.【考点】三角形中位线定理,直角三角形斜边上的中线,勾股定理24.【答案】(1)解:2011-2015年北京市文化创意产业实现增加值如图所示,(2)3300 预估理由须包含折线图中提供的信息,且支撑预估的数据.【提示】(1)画出2011-2015的北京市文化创意产业实现增加值折线图即可.(2)设2013到2015的平均增长率为x ,列出方程求出x ,用近3年的平均增长率估计2016年的增长率即可解决问题.【考点】解直角三角形的应用方向角问题25.【答案】(1)证明:ED 与⊙O 相切于D .OD DE ∴⊥,F 为弦AC 中点,OD AC ∴⊥,AC ∴∥DE .(2)解:作DM OA ⊥于M ,连接CD ,CO ,AD .首先证明四边形ACDE 是平行四边形,根据•ACDE S AE DM =平行四边形,只要求出DM 即可. AC ∥DE ,AE AO =,OF DF ∴=.AF DO ⊥,AD AO ∴=,AD AO OD ∴==.ADO ∴△是等边三角形,同理△CDO 也是等边三角形,.60CDO DOA ∴∠=∠=︒,AE CD AD AO DD a =====,AO ∴∥CD ,又AE CD =,∴四边形ACDE 是平行四边形,易知AE =,(2)作D M O A ⊥于M ,连接CD ,CO ,AD ,首先证明四边形ACDE 是平行四边形,根据平行四边形ACDE 的面积•AE DM =,只要求出DM 即可.【考点】切线的性质 26.【答案】解:(1)如图,(2)根据图形可知4x =对应的函数值y 约为2.0;由图可知该函数有最大值.故答案为2,该函数有最大值.【提示】(1)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为4所对应的函数值即可;②利用函数图象有最高点求解.【考点】函数的概念【解析】(1)2221(1)1y mx mx m m x =-+-=--,∴抛物线顶点坐标(1,1)-.(2)①1m =,∴抛物线为22y x x =-,令0y =,得0x =或2,不妨设A (0,0),B (2,0),∴线段AB 上整点的个数为3个.②如图所示,抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有6个整点, ∴点A 在(1,0)-与(2,0)-之间(包括(1,0)-),当抛物线经过(1,0)-时,14m =. 当抛物线经过点(2,0)-时,19m =. ∴m 的取值范围为1194m <≤.【提示】(1)利用配方法即可解决问题.(2)①1m =代入抛物线解析式,求出A 、B 两点坐标即可解决问题.②根据题意判断出点A 的位置,利用待定系数法确定m 的范围.【考点】抛物线与x 轴的交点,二次函数图象上点的坐标特征28.【答案】解:(1)AP AQ =,APQ AQP ∴∠=∠,APB AQC ∴∠=∠.ABC ∆是等边三角形,60B C ∴∠=∠=︒.20BAP CAQ ∴∠=∠=︒.80AQB APQ BAP B ∴∠=∠=∠+∠=︒.(2)如图2,AP AQ =,APQ AQP ∴∠=∠,APB AQC ∴∠=∠.ABC ∆是等边三角形.60B C ∴∠=∠=︒.BAP CAQ ∴∠=∠.点Q 关于直线AC 的对称点为M ,AQ AM ∴=,QAC MAC ∠=∠.MAC BAP ∴∠=∠.60BAP PAC MAC CAP ∴∠+∠=∠+∠=︒.60PAM ∴∠=︒.AP AQ =.AP AM ∴=.∴APM ∆是等边三角形.AP PM ∴=.【提示】(1)根据等腰三角形的性质得到APQ AQP ∠=∠,由邻补角的定义得到APB AQC ∠=∠,根据三角形外角的性质即可得到结论;(2)如图2根据等腰三角形的性质得到APQ AQP ∠=∠,由邻补角的定义得到APB AQC ∠=∠,由点Q 关于直线AC 的对称点为M ,得到AQ AM =,OAC MAC ∠=∠,等量代换得到MAC BAP ∠=∠,推出△APM 是等边三角形,根据等边三角形的性质即可得到结论.【考点】三角形综合题29.【答案】(1)①2②直线AC 的表达式为1y x =-或1y x =-+(2)m 的取值范围是:15m ≤≤或-51m ≤≤-【解析】解:(1)①A (1,0),B (3,1)由定义可知:点A ,B 的“相关矩形”的底与高分别为2和1,∴点A ,B 的“相关矩形”的面积为212⨯=;②由定义可知:AC 是点A ,C 的“相关矩形”的对角线,又点A ,C 的“相关矩形”为正方形∴直线AC 与x 轴的夹角为45°,设直线AC 的解析为:y x m =+或y x n =-+,把(1,0)代入y x m =+,1m ∴=-,∴直线AC 的解析为:1y x =-,把(1,0)代入y x n =-+,1n ∴=,1y x ∴=-+,综上所述,若点A ,C 的“相关矩形”为正方形,直线AC 的表达式为1y x =-或1y x =-+;(2)设直线MN 的解析式为y kx b =+,点M ,N 的“相关矩形”为正方形,∴由定义可知:直线MN 与x 轴的夹角为45°,1k ∴=±,点N 在⊙O 上,∴当直线MN 与⊙O 有交点时,点M ,N 的“相关矩形”为正方形,当1k =时,作⊙O 的切线AD 和BC ,且与直线MN 平行,其中A 、C 为⊙O 的切点,直线AD 与y 轴交于点D ,直线BC 与y 轴交于点B ,连接OA ,OC ,把M (,3)m 代入y x b =+,3b m ∴=-,∴直线MN 的解析式为:3y x m =+-45ADO ∠=︒,90OAD ∠=︒.2OD ∴==.D ∴(0,2)同理可得:B (0,-2),∴令0x =代入3y x m =+-,3y m ∴=-,232m ∴-≤-≤,15m ∴≤≤,当1k =-时,把M (m ,3)代入y x b =-+,3b m ∴=+,∴直线MN 的解析式为:3y x m =++,同理可得:232m -≤+≤,51m ∴-≤≤-;综上所述,当点M ,N 的“相关矩形”为正方形时,m 的取值范围是:15m ≤≤或51m -≤≤-.【提示】(1)①由相关矩形的定义可知:要求A 与B 的相关矩形面积,则AB 必为对角线,利用A 、B 两点的坐标即可求出该矩形的底与高的长度,进而可求出该矩形的面积;②由定义可知,AC 必为正方形的对角线,所以AC 与x 轴的夹角必为45,设直线AC 的解析式为;y kx b =+,由此可知1k =±,再(1,0)代入y kx b =+,即可求出b 的值;(2)由定义可知,MN 必为相关矩形的对角线,若该相关矩形的为正方形,即直线MN 与x 轴的夹角为45°,由因为点N 在圆O 上,所以该直线MN 与圆O 一定要有交点,由此可以求出m 的范围.【考点】圆的综合题。
2016年北京市中考数学试卷(解析版)
2016年北京市中考数学试卷总分:120一、选择题(本题共30分,每小题3分)1.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45° B.55° C.125° D.135°考点:角的概念.分析:由图形可直接得出.解答:解:由图形所示,∠AOB的度数为55°,故选B.点评:本题主要考查了角的度量,量角器的使用方法,正确使用量角器是解题的关键.2.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103 B.28×103 C.2.8×104 D.0.28×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解答:解:28000=1.1×104.故选:C.点评:此题考查科学记数n法的表示方法,表示时关键要正确确定a的值以及n的值.3.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>-2 B.a<-3 C.a>-b D.a<-b考点:实数与数轴.分析:利用数轴上a,b所在的位置,进而得出a以及-b的取值范围,进而比较得出答案.解答:解:A、如图所示:-3<a<-2,故此选项错误;B、如图所示:-3<a<-2,故此选项错误;C、如图所示:1<b<2,则-2<-b<-1,故a<-b,故此选项错误;D、由选项C可得,此选项正确.故选:D.点评:此题主要考查了实数与数轴,正确得出a以及-b的取值范围是解题关键.4.内角和为540°的多边形是()A .B .C .D .考点:多边形内角与外角.分析:根据多边形的内角和公式(n-2)•180°列式进行计算即可求解. 解答:解:设多边形的边数是n ,则 (n-2)•180°=540°, 解得n=5. 故选:C .点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.如图是某个几何体的三视图,该几何体是( ) A .圆锥 B .三棱锥 C .圆柱 D .三棱柱 考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱. 故选D点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.6.如果a+b=2,那么代数b-a a •)a b -(a 2的值是( )A .2B .-2C .21D .-21考点:分式的化简求值. 专题:计算题;分式.分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值. 解答:解:∵a+b=2,∴原式= b-a a a b)-b)(a +(a =a+b=2故选:A .点评:此题考查了分式的化简求值,将原式进行正确的化简是解本题的关键.7.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A 、是轴对称图形,故本选项错误; B 、是轴对称图形,故本选项错误; C 、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.点评:本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份 B.4月份 C.5月份 D.6月份考点:象形统计图.分析:根据图象中的信息即可得到结论.解答:解:由图象中的信息可知,3月份的利润=7.5-4.5=3元,4月份的利润=6-2.4=3.6元,5月份的利润=4.5-1.5=3元,5月份的利润=2.5-1=1.5元,故出售该种水果每斤利润最大的月份是4月份,故选B.点评:本题考查了象形统计图,有理数大小的比较,正确的把握图象中的信息,理解利润=售价-进价是解题的关键.9.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1 B.O2 C.O3 D.O4考点:坐标与图形性质;一次函数图象与系数的关系.分析:先根据点A、B的坐标求得直线AB的解析式,再判断直线AB在坐标平面内的位置,最后得出原点的位置.解答:解:设过A、B的直线解析式为y=kx+b∵点A的坐标为(-4,2),点B的坐标为(2,-4)∴ 2=−4k+b−4=2k+b解得: k=−1b=−2∴直线AB为y=-x-2∴直线AB经过第二、三、四象限如图,连接AB,则原点在AB的右上方∴坐标原点为O1故选(A)点评:本题主要考查了坐标与图形性质,解决问题的关键是掌握待定系数法以及一次函数图象与系数的关系.在一次函数y=kx+b中,k决定了直线的方向,b决定了直线与y轴的交点位置.10.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断合理的是()①年用水量不超过180m3的该市居民家庭按第一档水价交费;②年用水量超过240m3的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150-180之间;④该市居民家庭年用水量的平均数不超过180.A.①③ B.①④ C.②③ D.②④考点:频数(率)分布直方图;加权平均数;中位数.分析:利用条形统计图结合中位数的定义分别分析得出答案.解答:解:①由条形统计图可得:年用水量不超过180m3的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),4×100%=80%,故年用水量不超过180m3的该市居民家庭按第一档水价交费,正确;5②∵年用水量超过240m3的该市居民家庭有(0.15+0.15+0.05)=0.35(万),∴50.35×100%=7%≠5%,故年用水量超过240m 3的该市居民家庭按第三档水价交费,故此选项错误;③∵5万个数数据的中间是第25000和25001的平均数,∴该市居民家庭年用水量的中位数在120-150之间,故此选项错误; ④由①得,该市居民家庭年用水量的平均数不超过180,正确, 故选:B .点评:此题主要考查了频数分布直方图以及中位数的定义,正确利用条形统计图获取正确信息是解题关键.二、填空题(本题共18分,每小题3分) 11.如果分式1-x 2有意义,那么x 的取值范围是 _______. 考点:分式有意义的条件.分析:根据分母不为零分式有意义,可得答案. 解答:解:由题意,得:x-1≠0, 解得x ≠1, 故答案为:x ≠1.点评:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.12.如图中的四边形均为矩形,根据图形,写出一个正确的等式 ______________.考点:因式分解-提公因式法.分析:直接利用矩形面积求法结合提取公因式法分解因式即可. 解答:解:由题意可得:am+bm+cm=m (a+b+c ). 故答案为:am+bm+cm=m (a+b+c ).点评:此题主要考查了提取公因式法分解因式,正确利用矩形面积求出是解题关键.13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n 1000 1500 2500 4000 8000 15000 20000 30000 成活的棵数m 865 1356 2220 3500 7056 13170 17580 26430 成活的频率nm0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为 _______. 考点:利用频率估计概率.分析:对于不同批次的幼树移植成活率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法. 解答:解:x =(0.865+0.904+0.888+0.875+0.882+0.878+0.879+0.881)÷8=0.882, ∴这种幼树移植成活率的概率约为0.882. 故答案为:0.882点评:此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.14.如图,小军、小珠之间的距离为2.7m ,他们在同一盏路灯下的影长分别为1.8m ,1.5m ,已知小军、小珠的身高分别为1.8m ,1.5m ,则路灯的高为 _______m .考点:中心投影.分析:根据CD ∥AB ∥MN ,得到△ABE ∽△CDE ,△ABF ∽△MNF ,根据相似三角形的性质可知BEDE ABCD =,ABMN FB FN =,即可得到结论.解答:解:如图,∵CD ∥AB ∥MN , ∴△ABE ∽△CDE ,△ABF ∽△MNF , ∴BEDE ABCD =,ABMN FB FN =,即BD +1.81.8AB 1.8=,BD-2.7+1.5 1.5AB 1.5=, 解得:AB=3m , 答:路灯的高为3m .点评:本题考查了中心投影,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.15.百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为 _______.考点:规律型:数字的变化类.分析:根据已知得:百子回归图是由1,2,3…,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和÷10.解答:解:1~100的总和为:2100×100)+(1=5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:5050÷10=505, 故答案为:505.点评:本题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案;此题非常简单,跟百子碑简介没关系,只考虑行、列就可以,同时,也可以利用列来计算.16.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是 _______.考点:作图—基本作图.分析:只要证明直线AB是线段PQ的垂直平分线即可.解答:解:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵PA=PQ,PB=PB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.点评:本题考查作图-基本作图,解题的关键是理解到线段两个端点的距离相等的点在线段的垂直平分线上,属于中考常考题型.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分),解答时应写出文字说明、演算步骤或证明过程17.计算:(3-π)0+4sin45°-8+|1-3|.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(3-π)0+4sin45°-8+|1-3|的值是多少即可.解答:解:(3-π)0+4sin45°-8+|1-3|=3132222113222241=-+-+=-+-⨯+.点评:(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a 0=1(a ≠0);②00≠1. (3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.18.解不等式组:2x+5>3(x −1) 4x >27+x .考点:解一元一次不等式组.分析:根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集. 解答:解:解不等式2x+5>3(x-1),得:x <8, 解不等式4x >27+x ,得:x >1,∴不等式组的解集为:1<x <8.点评:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.如图,四边形ABCD 是平行四边形,AE 平分∠BAD ,交DC 的延长线于点E .求证:DA=DE .考点:平行四边形的性质. 专题:证明题.分析:由平行四边形的性质得出AB ∥CD ,得出内错角相等∠E=∠BAE ,再由角平分线证出∠E=∠DAE ,即可得出结论. 解答:证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD , ∴∠E=∠BAE , ∵AE 平分∠BAD , ∴∠BAE=∠DAE , ∴∠E=∠DAE , ∴DA=DE .点评:本题考查了平行四边形的性质、平行线的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出∠E=∠DAE 是解决问题的关键.20.关于x 的一元二次方程x 2+(2m+1)x+m 2-1=0有两个不相等的实数根. (1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根.考点:根的判别式;解一元二次方程-因式分解法;解一元一次不等式.分析:(1)由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于m的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m=1,将m=1代入原方程,利用因式分解法解方程即可得出结论.解答:解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根,∴△=(2m+1)2-4×1×(m2-1)=4m+5>0,5.解得:m>-4(2)m=1,此时原方程为x2+3x=0,即x(x+3)=0,解得:x1=0,x2=-3.点评:本题考查了根的判别式、解一元一次不等式以及用因式分解法解一元二次方程,解题的关键是:(1)根据根的个数结合根的判别式得出关于m的一元一次不等式;(2)选取m的值.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出方程(不等式或不等式组)是关键.21.如图,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y=2x相交于点B(m,4).菁优网(1)求直线l1的表达式;(2)过动点P(n,0)且垂于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.考点:两条直线相交或平行问题.分析:(1)先求出点B坐标,再利用待定系数法即可解决问题.(2)由图象可知直线l1在直线l2上方即可,由此即可写出n的范围.解答:解:(1)∵点B在直线l2上,∴4=2m,∴m=2,点B(2,4)设直线l1的表达式为y=kx+b,由题意: 2k+b=4−6k+b=01,b=3,解得k=21x+3.∴直线l1的表达式为y=2(2)与图象可知n<2.点评:不同考查两条直线平行、相交问题,解题的关键是灵活应用待定系数法,学会利用图象根据条件确定自变量取值范围.22.调查作业:了解你所在小区家庭5月份用气量情况:小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2-5之间,这300户家庭的平均人数均为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1,表2和表3.表1 抽样调查小区4户家庭5月份用气量统计表 (单位:m 3)家庭人数 2 3 4 5 用气量14192126表2 抽样调查小区15户家庭5月份用气量统计表 (单位:m 3)家庭人数 222 3 3 3 3 3 3 3 3 3 3 3 4 用气量10 1115131415151717181818182022表3 抽样调查小区15户家庭5月份用气量统计表 (单位:m 3)家庭人数 222 3 3 3 3 3 3 4 4 4 4 5 5 用气量10 1213141717181920202226312831根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.考点:抽样调查的可靠性;加权平均数.分析:首先根据题意分析家庭平均人数,进而利用加权平均数求出答案,再利用已知这300户家庭的平均人数均为3.4分析即可. 解答:解:小芸,小天调查的人数太少,小东抽样的调查数据中,家庭人数的平均值为: (2×3+3×11+4)÷15=2.87,远远偏离了平均人数的3.4,所以他的数据抽样有明显的问题,小芸抽样的调查数据中,家庭人数的平均值为:(2×2+3×7+4×4+5×2)÷15=3.4,说明小芸抽样数据质量较好,因此小芸的抽样调查的数据能较好的反应出该小区家庭5月份用气量情况. 点评:此题主要考查了抽样调查的可靠性以及加权平均数,正确理解抽样调查的随机性是解题关键.23.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN . (1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.考点:三角形中位线定理;直角三角形斜边上的中线;勾股定理.分析:(1)根据三角形中位线定理得MN=21AD ,根据直角三角形斜边中线定理得BM=21AC ,由此即可证明.(2)首先证明∠BMN=90°,根据BN 2=BM 2+MN 2即可解决问题. 解答:(1)证明:在△CAD 中,∵M 、N 分别是AC 、CD 的中点, ∴MN ∥AD ,MN=21AD ,在RT △ABC 中,∵M 是AC 中点, ∴BM=21AC ,∵AC=AD , ∴MN=BM .(2)解:∵∠BAD=60°,AC 平分∠BAD , ∴∠BAC=∠DAC=30°,1AC=AM=MC,由(1)可知,BM=2∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,1AC=1,由(1)可知MN=BM=2∴BN=2.点评:本题考查三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.24.阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011-2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约 _______亿元,你的预估理由 ______________.考点:折线统计图;用样本估计总体.分析:(1)画出2011-2015的北京市文化创意产业实现增加值折线图即可.(2)设2013到2015的平均增长率为x,列出方程求出x,用近3年的平均增长率估计2016年的增长率即可解决问题.解答:解:(1)2011-2015年北京市文化创意产业实现增加值如图所示,(2)设2013到2015的平均增长率为x,则2406.7(1+x)2=3072.3,解得x≈13%,用近3年的平均增长率估计2016年的增长率,∴2016年的增长率为3072.3×(1+13%)≈3471.7亿元.故答案分别为3471.7,用近3年的平均增长率估计2016年的增长率.点评:本题考查折线图、样本估计总体的思想,解题的关键是用近3年的平均增长率估计2016年的增长率,属于中考常考题型.25.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.考点:切线的性质.分析:(1)欲证明AC∥DE,只要证明AC⊥OD,ED⊥OD即可.(2)作DM⊥OA于M,连接CD,CO,AD,首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AE•DM,只要求出DM即可.解答:(1)证明:∵ED与⊙O相切于D,∴OD⊥DE,∵F为弦AC中点,∴OD⊥AC,∴AC∥DE.(2)解:作DM⊥OA于M,连接CD,CO,AD.首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AE•DM,只要求出DM即可.∵AC∥DE,AE=AO,∴OF=DF,∵AF⊥DO,∴AD=AO,∴AD=AO=OD,∴△ADO是等边三角形,同理△CDO也是等边三角形,∴∠CDO=∠DOA=60°,AE=CD=AD=AO=DD=a,∴AO∥CD,又AE=CD,3a,∴四边形ACDE是平行四边形,易知DM=23a2.∴平行四边形ACDE面积=2点评:本题考查切线的性质、平行四边形的性质、垂径定理等知识,解题的关键是学会添加常用辅助线,利用特殊三角形解决问题,属于中考常考题型.26.已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:x … 1 2 3 5 7 9 …y … 1.98 3.95 2.63 1.58 1.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为 _______;②该函数的一条性质: _____________________.考点:函数的概念.专题:数形结合.分析:(1)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为4所对应的函数值即可;②利用函数图象有最高点求解.解答:解:(1)如图,(2)①x=4对应的函数值y约为2.0;②该函数有最大值.故答案为2,该函数有最大值.点评:本题考查了函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.27.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.考点:抛物线与x 轴的交点;二次函数图象上点的坐标特征. 分析:(1)利用配方法即可解决问题.(2)①m=1代入抛物线解析式,求出A 、B 两点坐标即可解决问题. ②根据题意判断出点A 的位置,利用待定系数法确定m 的范围. 解答:解:(1)∵y=mx 2-2mx+m-1=m (x-1)2-1, ∴抛物线顶点坐标(1,-1). (2)①∵m=1, ∴抛物线为y=x 2-2x ,令y=0,得x=0或2,不妨设A (0,0),B (2,0), ∴线段AB 上整点的个数为3个.②如图所示,抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有6个整点, ∴点A 在(-1,0)与(-2,0)之间(包括(-1,0)), 当抛物线经过(-1,0)时,m=41,当抛物线经过点(-2,0)时,m=91,∴m 的取值范围为91<m ≤41.点评:本题考查抛物线与x 轴的交点、配方法确定顶点坐标、待定系数法等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.28.在等边△ABC 中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).考点:三角形综合题.分析:(1)根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,根据三角形外角的性质即可得到结论;(2)如图2根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,由点Q关于直线AC的对称点为M,得到AQ=AM,∠OAC=∠MAC,等量代换得到∠MAC=∠BAP,推出△APM是等边三角形,根据等边三角形的性质即可得到结论.解答:解:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ=20°,∴∠AQB=∠APQ=∠BAP+∠B=80°;(2)如图2,∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,。
2016北京中考数学试卷及答案
2016年北京市中考数学一、选择题(共10小题;共50分)1. 如图所示,用量角器度量∠AOB,可以读出∠AOB( )A. 45∘B. 55∘C. 125∘D. 135∘2. 神舟十号飞船是我国“神舟”系列飞船之一.每小时飞行约28000公里,将28000用科学记数法表示应为( )A. 2.8×103B. 28×103C. 2.8×104D. 0.28×1053. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A. a>−2B. a<−3C. a>−bD. a<−b4. 内角和为540∘的多边形是( )A. B.C. D.5. 下图是某个几何体的三视图,该几何体是( )A. 圆锥B. 三棱锥C. 圆柱D. 三棱柱6. 如果a+b=2,那么代数式(a−b2a )⋅aa−b的值是( )A. 2B. −2C. 12D. −127. 甲骨文是我国的一种古代文字,是汉字的早期形式.下列甲骨文中,不是轴对称的是( )A. B.C. D.8. 在1 ∼ 7月份,某种水果的每斤进价与每斤售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )A. 3月份B. 4月份C. 5月份D. 6月份9. 如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(−4,2),点B的坐标为(2,−4),则坐标原点为( )A. O1B. O2C. O3D. O410. 为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图,如图所示,下面有四个推断:①年用水量不超过180m3的该市居民家庭按第一档水价交费②年用水量超过240m3的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150∼180之间④该市居民家庭年用水量的平均数不超过180其中合理的是( )A. ①③B. ①④C. ②③D. ②④二、填空题(共6小题;共30分)11. 如果分式2有意义,那么x的取值范围是.x−112. 下图中的四边形均为矩形,根据图形,写出一个正确的等式:.13. 林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:估计该种幼树在此条件下移植成活的概率为.14. 如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身髙分别为1.8m,1.5m,则路灯的高为m.15. 百子回归图是由1,2,3,⋯,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,⋯⋯,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、毎条对角线10个数之和均相等.则这个和为.16. 下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.已知:直线l和l外一点P.求作:直线l的垂线,使它经过点P.作法:如图,(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.三、解答题(共13小题;共169分)17. 计算:(3−π)0+4sin45o−√8+∣1−√3∣ .18. 解不等式组:{2x+5>3(x−1), 4x>x+72.19. 如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.20. 关于x的一元二次方程x2+(2m+1)x+m2−1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.21. 如图,在平面直角坐标系xOy中,过点A(−6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分別为C,D,当点C位于点D上方时,写出n的取值范围.22. 调查作业:了解你所住小区家庭5月份用气量情况.小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,毎户家庭人数在2∼5之间,这300户家庭的平均人数约为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分別为表1、表2和表3.表1 抽样调查小区4户家庭5月份用气量统计表(单位:m3)表2 抽样调查小区15户家庭5月份用气量统计表(单位:m3)表3 抽样调查小区15户家庭5月份用气量统计表(单位:m3)根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映出该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.23. 如图,在四边形ABCD中,∠ABC=90∘,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)若∠BAD=60∘,AC平分∠BAD,AC=2,求BN的长.24. 阅读下列材料:北京市正围绕“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.1%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化创意产业实现增加值2406.7亿元,比上年增长9.1%.文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2794.3亿元,占地区生产总值的13.1%,创历史新高.2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)用折线图将2011—2015年北京市文化创意产业实现增加值表示出來,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约亿元,你的预估理由是.25. 如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长AC⏜交于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.26. 已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:① x=4对应的函数值y约为;②该函数的一条性质:.27. 在平面直角坐标系xOy中,抛物线y=mx2−2mx+m−1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点,①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.28. 在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20∘,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验,提出猜想:在点P,Q运动的过程中,始终有PA=PM.小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证PA=PM,只需证△APM是等边三角形.想法2:在BA上取一点N,使得BN=BP,要证PA=PM,只需证△ANP≌△PCM.想法3:将线段BP绕点B顺时针旋转60∘,得到线段BK,要证PA=PM,只需证PA= CK,PM=CK.⋯⋯请你参考上面的想法,帮助小茹证明PA=PM.(―种方法即可)29. 在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.下图为点P,Q的“相关矩形”的示意图.(1)己知点A的坐标为(1,0)①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为√2,点M的坐标为(m,3).若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.答案第一部分1. B2. C3. D4. C5. D6. A【解析】(a −b 2a )⋅a a−b =(a+b )(a−b )a ⋅a a−b =a +b .7. D 8. B 9. A 10. B 【解析】提示:年用水量不超过 180 m 3 的占0.25+0.75+1.5+1+0.55=45=80% .①中推理合理; 年用水量超过 240 m 3 的占0.15+0.15+0.55=425=16% .②中推理不合理;中位数在 90∼150 之间;年用水量的平均约为 133.65 m 3 .第二部分11. x ≠1 12. m (a +b +c )=ma +mb +mc (开放性试题,答案合理即可) 13. 0.88114. 3【解析】依题意,得 BC =1.8,FH =1.5,CD =1.8,EF =1.5 . ∴∠H =∠B =45∘ .∴BO =HO =AO =12BH .又 CF =2.7 ,∴BH =6 .∴AO =3 .15. 50516. 到线段两端距离相等的点在线段的中垂线上;两点确定一条直线.第三部分17. 原式=1+4×√22−√8+√3−1=1+2√2−2√2+√3−1=√3.18. 原不等式为 {2x +5>3(x −1), ⋯⋯①4x >x+72. ⋯⋯②解不等式①,得x <8.解不等式②,得x >1.原不等式组的解集为 1<x <8.19. ∵ 四边形 ABCD 是平行四边形,∴AB ∥DC .∴AB ∥DE .∴∠AED =∠BAE .∵AE 平分 ∠BAD ,∴∠BAE =∠EAD ,∴∠EAD =∠AED ,∴DA =DE .20. (1) 由题意,得 Δ=(2m +1)2−4(m 2−1)>0 .∴4m 2+4m +1−4m 2+4>0 .解得 m >−54 .(2) 取 m =−1 .方程为 x 2−x =0 .解得 x =1 或 x =0 .(m 取值在范围内,计算正确即可)21. (1) 由题可知,点 B (m,4) 在直线 l 2:y =2x 上,∴4=2m .∴m =2 .∴B (2,4).设 l 1 的解析式为 y =kx +b .∵l 1 过点 A (−6,0),B (2,4),{2k +b =4,−6k +b =0.解得 {k =12,b =3.∴l 1 的表达式为 y =12x +3. (2) 由题可知:C (n 2+3,n),D (2n,n ), C 在 D 上方,∴n 2+3>2n∴n <2.22. 小芸同学比较好.小天的样本容量较少,不具有代表性;小东的样本中家庭平均人口为 2×3+3×11+415=2.87 (人),与 300 户家庭的平均人数 3.4 人 有较大偏差,∴ 小东的样本类型不全面,不具有代表性;小芸的样本中家庭平均人口为 2×2+3×7+4×4+5×215=3.4 (人),与 300 户家庭的平均人数相近,∴小芸抽样调查的数据能较好地反映出该小区家庭5月份用气量情况.23. (1)∵∠ABC=90∘,M为AC的中点,∴BM=12AC.∵在△ACD中,M,N分别为AC,CD的中点.∴MN∥AD,MN=12AD.∵AC=AD,∴BM=12AC=12AD=MN,即BM=MN.(2)∵∠BAD=60∘,AC平分∠BAD,∴∠BAC=∠CAD=12∠BAD=30∘.∵∠BCA=90∘−∠BAC=60∘,BM=12AC=MC,∴△BMC为等边三角形.∴∠BMC=60∘.∴MN∥AD,∴∠CMN=∠CAD=30∘.∴∠BMN=∠BMC+∠CMN=90∘.∵AC=2,∴BM=MN=12AC=1 .∴BN=√BM2+MN2=√12+12=√2.24. (1)如图(2)① 3355.7,2012年到2015年平均每年增加3072.3−1938.64=283.425(亿元). 3072.3+283.4≈3355.7 .【解析】② 3340,去除2014年最高值计算.因为题目问法比较灵活,学生答出(3289.8∼3459.9)之间均可.25. (1)如图所示,连接BC.∵AB为⊙O的直径,∴∠ACB=90∘ .ED为⊙O的切线.∴∠EDO=90∘.∵F是AC中点且AO=BO,∴在△ABC中,FO是△ABC的一条中位线.∴FO∥BC,∴∠AFO=∠ACB=90∘ .∴∠AFO=∠EDO .∴AC∥DE.(2)方法一:思路:①作DH⊥AB于H,连接AD.②由∠EDO=90∘,EA=AO,得AD=AO=DO,△DAO为等边三角形;③由EA=AO,AC∥ED,得2AF=DE=AC .④由AC∥ED,AC=DE得四边形AEDC为平行四边形;⑤由△DAO为等边三角形,得DH=√32a;⑥ S平行四边形AEDC =EA×DH=√22a2.求解过程:连接AD,过点D作DH⊥AB于H . 在Rt△EDO中,∵OA=AE,∴DA=OA=AE=a .∴DA=AO=OD=a .∴△DAO为等边三角形.∴DH=√32AO=√32a.∵AC∥ED,OA=AE,∴AF为△EOD的一条中位线. ∴ED=2AF .∴F为AC中点.∴AC=2AF .∴AC=ED .又∵AC∥ED,∴四边形AEDC为平行四边形.S平行四边形AEDC =EA×DH=a×√32a=√32a2.【解析】方法二:①连接AD,DC.②由直角三角形斜边中线性质可得AD=a,进而可得△ADO是等边三角形.③由∠AOD=60∘,可解得:ED=√3a,DF=12a,AC=√3a.④ S四边形ACDE =S△EDA+S△ADC=√32a2.由(1)可得:∠EDO=90∘,又∵OA=AE=a,∴AD=OA=a.又∵OD=OA=a,∴△ADO为正三角形,∴∠AOD=60∘,∴∠DEO=∠CAO=30∘,∴ED=√3a,OF=12a,∴DF=12a,∴S四边形ACDE=S△EAD+S△ADF+S△DFC=12×DF×ED+12DF×AF+12DF×FC=12(ED+AF+FC)×DF=12(√3a+√32a+√32a)×12a=√32a2.26. (1)如图即为所求.(2)① 2;② x>2时,y随x的增大而减小.(答案不唯一)27. (1)y=mx2−2mx+m−1 =m(x−1)2−1.∴ 顶点坐标为 (1,−1).(2) ① 当 m =1 时,y =x 2−2x .当 y =0 时,x 1=0,x 2=2 .∴ A (0,0),B (2,0),∴ 线段 AB 上整点有三个 (1,0),(0,0),(2,0).② ∵ 顶点坐标为 (1,−1) ,∴6 个整点为 (−1,0),(0,0),(1,0),(2,0),(3,0),(1,1) .∴x =3 时 y ≤0,且 x =4 时,y >0,即{4m −1≤0,9m −1>0.解得 19<m ≤14.28. (1) ∵AP =AQ ,∴∠AQP =∠APQ .∵∠APC =∠B +∠BAP =60∘+20∘=80∘.∴∠AQB =80∘. (2)∵△ABC 为等边三角形,∴∠ABC =∠ACB =∠BAC =60.∵AP =AQ ,∴∠AQP =∠APQ .∴∠BAP +∠ABC =∠CAQ +∠ACB∴∠BAP =∠CAQ .∵Q ,M 关于 AC 对称,∴AQ =AM ,∠QAC =∠MAC .∴∠PAM =∠PAC +∠MAC =∠PAC +∠BAP =∠BAC =60∘.又PA=QA=MA,∴△APM为正三角形.∴PA=PM.29. (1)①如图.A,B的“相关矩形”的长为3−1=2,宽为1−0=1,∴S=2×1=2.②若C在x=3上.则A,C相关矩形与x轴平行的边长度为2 .设C(3,y).则∣y∣=3−1=2,∴y=±2.当C(3,2)时,AC表达式y=x−1;当C(3,−2)时,AC表达式y=−x+1.(2)当⊙O上存在点N,使MN的相关矩形为正方形时,设直线MN解析式为y=kx+b . ∵MN为正方形对角线,∴k=±1 .∴当y=x+b或y=−x+b与⊙O有交点时,存在点N .当直线y=−x+b与⊙O相切时.如图l1与l2,直线l1与⊙O切于点N1,直线l2与⊙O切于点N2 . ∵⊙O的半径为√2,∴P1(0,−2).∴l1与y轴交于P1(0,−2).∴l1的解析式为y=−x−2 .当y=3时,x=−5 .∴M1(−5,3).同理可得M2(−1,3).当k=1时,当直线y=x+b与⊙O相切时.如图 .同理可得M3(1,3),M4(5,3).因此m取值范围为−5≤m≤−1或1≤m≤5.。
【中考真题】北京市2016年中考数学试卷及参考答案
【中考真题】北京市2016年中考数学试卷及参考答案一、选择题(本题共30分,每小题3分)1.如图所示,用量角器度量AOB ∠,可以读出AOB ∠的度数为 (A)45° (B)55° (C)125° (D) 135°2.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为 (A)2.8×103 (B) 28×103 (C) 2.8×104 (D)0.28×1053.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是ba 3210123(A) 2a >- (B) 3a <- (C) a b >- (D) a b <- 4.内角和为540° 的多边形是(A)(B)(C)5.右图是某个几何体的三视图,该几何体是 (A)圆锥 (B) 三棱锥 (C)圆柱 (D)三棱柱6.如果2a b +=,那么代数式2b aa a ab ⎛⎫- ⎪-⎝⎭g的值是 (A) 2 (B) -2 (C) 12 (D)12-7.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是..轴对称的是8.在1~7月份,某种水果的每斤进价与每斤售价的信息如图所示,则出售该种水果每斤利润最大的月份是 (A)3月份 (B) 4月份 (C)5月份 (D)6月份9.如图,直线m n ⊥,在某平面直角坐标系中,x 轴∥m ,y 轴∥n ,点A 的坐标为42-(,),点B 的坐标为24-(,),则坐标原点为 (A)1O (B) 2O (C) 3O (D) 4O10.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增.计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:3m ),绘制了统计图,如图所示.下面有四个推断: ①年用水量不超过1803m 的该市居民家庭按第一档水价交费 ②年用水量不超过2403m 的该市居民家庭按第三档水价交费 ③该市居民家庭年用水量的中位数在150~180之间 ④该市居民家庭年用水量的平均数不超过180 其中合理的是(A) ①③ (B)①④ (C) ②③ (D)②④ 二、填空题(本题共18分,每小题3分) 11.如果分式21x -有意义,那么x 的取值范围是 . 12.右图中四边形均为矩形,根据图形,写出一个正确的等式:.13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:移植的棵数n1000 1500 2500 4000 8000 15000 20000 30000成活的棵数m865 1356 2220 3500 7056 13170 17580 26430成活的频率mn0.865 0.904 0.888 0.875 0.882 0.878 0.879 0.881估计该种幼树在此条件下移植成活的概率为__________.14.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯小的影长分别为1.8m、1.5m,已知小军、小珠的身高分别为1.8m、1.5m,则路灯的高为__________m15.百子回归图是由1,2,3,...,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,……,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为________。
2016北京市数学中考题
2016年北京市高级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个。
1. (2016北京,1,3分)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()(A) 45°(B) 55°(C) 125°(D) 135°答案:B考点:用量角器度量角。
解析:由生活知识可知这个角小于90度,排除C、D,又OB边在50与60之间,所以,度数应为55°。
2. (2016北京,1,3分)神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里。
将28 000用科学计数法表示应为()(A)错误!未找到引用源。
(B) 28错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
答案:C考点:本题考查科学记数法。
解析:科学记数的表示形式为10na⨯形式,其中1||10a≤<,n为整数,28000=。
故选C。
3. (2016北京,3,3分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()(A)a错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
答案:D考点:数轴,由数轴比较数的大小。
解析:由数轴可知,-3<a错误!未找到引用源。
<-2,故A、B错误;1<b<2,-2<-b<-1,即-b在-2与-1之间,所以,错误!未找到引用源。
4. (2016北京,4,3分)内角和为540错误!未找到引用源。
的多边形是()答案:c考点:多边形的内角和。
解析:多边形的内角和为(2)180n-⨯︒,当n=5时,内角和为540°,所以,选C。
5. (2016北京,5,3分)右图是某个几何体的三视图,该几何体是()(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱答案:D考点:三视图,由三视图还原几何体。
解析:该三视图的俯视为三角形,正视图和侧视图都是矩形,所以,这个几何体是三棱柱。
2016年北京市中考数学试卷(解析版)
2016年北京市中考数学试卷总分:120一、选择题(本题共30分,每小题3分)1.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45° B.55° C.125° D.135°考点:角的概念.分析:由图形可直接得出.解答:解:由图形所示,∠AOB的度数为55°,故选B.点评:本题主要考查了角的度量,量角器的使用方法,正确使用量角器是解题的关键.2.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103 B.28×103 C.2.8×104 D.0.28×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解答:解:28000=1.1×104.故选:C.点评:此题考查科学记数n法的表示方法,表示时关键要正确确定a的值以及n的值.3.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>-2 B.a<-3 C.a>-b D.a<-b考点:实数与数轴.分析:利用数轴上a,b所在的位置,进而得出a以及-b的取值范围,进而比较得出答案.解答:解:A、如图所示:-3<a<-2,故此选项错误;B、如图所示:-3<a<-2,故此选项错误;C、如图所示:1<b<2,则-2<-b<-1,故a<-b,故此选项错误;D、由选项C可得,此选项正确.故选:D.点评:此题主要考查了实数与数轴,正确得出a以及-b的取值范围是解题关键.4.内角和为540°的多边形是( )A .B .C .D .考点:多边形内角与外角.分析:根据多边形的内角和公式(n-2)•180°列式进行计算即可求解. 解答:解:设多边形的边数是n ,则 (n-2)•180°=540°, 解得n=5. 故选:C .点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.如图是某个几何体的三视图,该几何体是( ) A .圆锥 B .三棱锥 C .圆柱 D .三棱柱 考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱. 故选D点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.6.如果a+b=2,那么代数b-a a •)a b -(a 2的值是( )A .2B .-2C .21 D .-21 考点:分式的化简求值. 专题:计算题;分式.分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值. 解答:解:∵a+b=2, ∴原式=b-a a a b)-b)(a +(a •=a+b=2 故选:A .点评:此题考查了分式的化简求值,将原式进行正确的化简是解本题的关键.7.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A 、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.点评:本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份 B.4月份 C.5月份 D.6月份考点:象形统计图.分析:根据图象中的信息即可得到结论.解答:解:由图象中的信息可知,3月份的利润=7.5-4.5=3元,4月份的利润=6-2.4=3.6元,5月份的利润=4.5-1.5=3元,5月份的利润=2.5-1=1.5元,故出售该种水果每斤利润最大的月份是4月份,故选B.点评:本题考查了象形统计图,有理数大小的比较,正确的把握图象中的信息,理解利润=售价-进价是解题的关键.9.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1 B.O2 C.O3 D.O4考点:坐标与图形性质;一次函数图象与系数的关系.分析:先根据点A、B的坐标求得直线AB的解析式,再判断直线AB在坐标平面内的位置,最后得出原点的位置.解答:解:设过A、B的直线解析式为y=kx+b∵点A的坐标为(-4,2),点B的坐标为(2,-4)∴ 2=−4k+b−4=2k+b解得: k=−1b=−2∴直线AB为y=-x-2∴直线AB经过第二、三、四象限如图,连接AB,则原点在AB的右上方∴坐标原点为O1故选(A)点评:本题主要考查了坐标与图形性质,解决问题的关键是掌握待定系数法以及一次函数图象与系数的关系.在一次函数y=kx+b中,k决定了直线的方向,b决定了直线与y轴的交点位置.10.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断合理的是()①年用水量不超过180m3的该市居民家庭按第一档水价交费;②年用水量超过240m3的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150-180之间;④该市居民家庭年用水量的平均数不超过180.A.①③ B.①④ C.②③ D.②④考点:频数(率)分布直方图;加权平均数;中位数.分析:利用条形统计图结合中位数的定义分别分析得出答案.解答:解:①由条形统计图可得:年用水量不超过180m3的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),54×100%=80%,故年用水量不超过180m 3的该市居民家庭按第一档水价交费,正确; ②∵年用水量超过240m 3的该市居民家庭有(0.15+0.15+0.05)=0.35(万),∴50.35×100%=7%≠5%,故年用水量超过240m 3的该市居民家庭按第三档水价交费,故此选项错误;③∵5万个数数据的中间是第25000和25001的平均数,∴该市居民家庭年用水量的中位数在120-150之间,故此选项错误; ④由①得,该市居民家庭年用水量的平均数不超过180,正确, 故选:B .点评:此题主要考查了频数分布直方图以及中位数的定义,正确利用条形统计图获取正确信息是解题关键.二、填空题(本题共18分,每小题3分) 11.如果分式1-x 2有意义,那么x 的取值范围是 _______.考点:分式有意义的条件.分析:根据分母不为零分式有意义,可得答案. 解答:解:由题意,得:x-1≠0, 解得x ≠1, 故答案为:x ≠1.点评:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.12.如图中的四边形均为矩形,根据图形,写出一个正确的等式 ______________.考点:因式分解-提公因式法.分析:直接利用矩形面积求法结合提取公因式法分解因式即可. 解答:解:由题意可得:am+bm+cm=m (a+b+c ). 故答案为:am+bm+cm=m (a+b+c ).点评:此题主要考查了提取公因式法分解因式,正确利用矩形面积求出是解题关键.13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n 1000 1500 2500 4000 8000 15000 20000 30000 成活的棵数m 865 1356 2220 3500 7056 13170 17580 26430 成活的频率nm0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为 _______. 考点:利用频率估计概率.分析:对于不同批次的幼树移植成活率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法. 解答:解:x =(0.865+0.904+0.888+0.875+0.882+0.878+0.879+0.881)÷8=0.882, ∴这种幼树移植成活率的概率约为0.882.故答案为:0.882点评:此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.14.如图,小军、小珠之间的距离为2.7m ,他们在同一盏路灯下的影长分别为1.8m ,1.5m ,已知小军、小珠的身高分别为1.8m ,1.5m ,则路灯的高为 _______m .考点:中心投影.分析:根据CD ∥AB ∥MN ,得到△ABE ∽△CDE ,△ABF ∽△MNF ,根据相似三角形的性质可知BEDE ABCD =,ABMN FBFN =,即可得到结论.解答:解:如图,∵CD ∥AB ∥MN , ∴△ABE ∽△CDE ,△ABF ∽△MNF , ∴BEDE ABCD =,ABMN FBFN =,即BD +1.81.8AB 1.8=,BD-2.7+1.5 1.5AB 1.5=, 解得:AB=3m , 答:路灯的高为3m .点评:本题考查了中心投影,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.15.百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为 _______.考点:规律型:数字的变化类.分析:根据已知得:百子回归图是由1,2,3…,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和÷10.解答:解:1~100的总和为:2100×100)+(1=5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:5050÷10=505,故答案为:505.点评:本题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案;此题非常简单,跟百子碑简介没关系,只考虑行、列就可以,同时,也可以利用列来计算.16.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是 _______.考点:作图—基本作图.分析:只要证明直线AB是线段PQ的垂直平分线即可.解答:解:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵PA=PQ,PB=PB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.点评:本题考查作图-基本作图,解题的关键是理解到线段两个端点的距离相等的点在线段的垂直平分线上,属于中考常考题型.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分),解答时应写出文字说明、演算步骤或证明过程17.计算:(3-π)0+4sin45°-8+|1-3|. 考点:实数的运算;零指数幂;特殊角的三角函数值. 专题:计算题.分析:根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(3-π)0+4sin45°-8+|1-3|的值是多少即可.解答:解:(3-π)0+4sin45°-8+|1-3|=3132222113222241=-+-+=-+-⨯+.点评:(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a 0=1(a ≠0);②00≠1. (3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.18.解不等式组:2x+5>3(x −1) 4x >27+x .考点:解一元一次不等式组.分析:根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集. 解答:解:解不等式2x+5>3(x-1),得:x <8, 解不等式4x >27+x ,得:x >1,∴不等式组的解集为:1<x <8.点评:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.如图,四边形ABCD 是平行四边形,AE 平分∠BAD ,交DC 的延长线于点E .求证:DA=DE .考点:平行四边形的性质. 专题:证明题.分析:由平行四边形的性质得出AB ∥CD ,得出内错角相等∠E=∠BAE ,再由角平分线证出∠E=∠DAE ,即可得出结论. 解答:证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD , ∴∠E=∠BAE , ∵AE 平分∠BAD , ∴∠BAE=∠DAE ,∴∠E=∠DAE,∴DA=DE.点评:本题考查了平行四边形的性质、平行线的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出∠E=∠DAE 是解决问题的关键.20.关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.考点:根的判别式;解一元二次方程-因式分解法;解一元一次不等式.分析:(1)由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于m的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m=1,将m=1代入原方程,利用因式分解法解方程即可得出结论.解答:解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根,∴△=(2m+1)2-4×1×(m2-1)=4m+5>0,5.解得:m>-4(2)m=1,此时原方程为x2+3x=0,即x(x+3)=0,解得:x1=0,x2=-3.点评:本题考查了根的判别式、解一元一次不等式以及用因式分解法解一元二次方程,解题的关键是:(1)根据根的个数结合根的判别式得出关于m的一元一次不等式;(2)选取m的值.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出方程(不等式或不等式组)是关键.21.如图,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y=2x相交于点B(m,4).菁优网(1)求直线l1的表达式;(2)过动点P(n,0)且垂于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.考点:两条直线相交或平行问题.分析:(1)先求出点B坐标,再利用待定系数法即可解决问题.(2)由图象可知直线l1在直线l2上方即可,由此即可写出n的范围.解答:解:(1)∵点B在直线l2上,∴4=2m,∴m=2,点B(2,4)设直线l1的表达式为y=kx+b,由题意: 2k+b=4−6k+b=01,b=3,解得k=21x+3.∴直线l1的表达式为y=2(2)与图象可知n<2.点评:不同考查两条直线平行、相交问题,解题的关键是灵活应用待定系数法,学会利用图象根据条件确定自变量取值范围.22.调查作业:了解你所在小区家庭5月份用气量情况:小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2-5之间,这300户家庭的平均人数均为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1,表2和表3.表1 抽样调查小区4户家庭5月份用气量统计表(单位:m3)表2 抽样调查小区15户家庭5月份用气量统计表(单位:m3)表3 抽样调查小区15户家庭5月份用气量统计表(单位:m3)根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.考点:抽样调查的可靠性;加权平均数.分析:首先根据题意分析家庭平均人数,进而利用加权平均数求出答案,再利用已知这300户家庭的平均人数均为3.4分析即可.解答:解:小芸,小天调查的人数太少,小东抽样的调查数据中,家庭人数的平均值为:(2×3+3×11+4)÷15=2.87,远远偏离了平均人数的3.4,所以他的数据抽样有明显的问题,小芸抽样的调查数据中,家庭人数的平均值为:(2×2+3×7+4×4+5×2)÷15=3.4,说明小芸抽样数据质量较好,因此小芸的抽样调查的数据能较好的反应出该小区家庭5月份用气量情况.点评:此题主要考查了抽样调查的可靠性以及加权平均数,正确理解抽样调查的随机性是解题关键.23.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.考点:三角形中位线定理;直角三角形斜边上的中线;勾股定理. 分析:(1)根据三角形中位线定理得MN=21AD ,根据直角三角形斜边中线定理得BM=21AC ,由此即可证明.(2)首先证明∠BMN=90°,根据BN 2=BM 2+MN 2即可解决问题.解答:(1)证明:在△CAD 中,∵M 、N 分别是AC 、CD 的中点, ∴MN ∥AD ,MN=21AD ,在RT △ABC 中,∵M 是AC 中点,∴BM=21AC ,∵AC=AD ,∴MN=BM .(2)解:∵∠BAD=60°,AC 平分∠BAD ,∴∠BAC=∠DAC=30°,由(1)可知,BM=21AC=AM=MC ,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN ∥AD ,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN 2=BM 2+MN 2,由(1)可知MN=BM=21AC=1,∴BN=2.点评:本题考查三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.24.阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011-2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约 _______亿元,你的预估理由______________.考点:折线统计图;用样本估计总体.分析:(1)画出2011-2015的北京市文化创意产业实现增加值折线图即可.(2)设2013到2015的平均增长率为x,列出方程求出x,用近3年的平均增长率估计2016年的增长率即可解决问题.解答:解:(1)2011-2015年北京市文化创意产业实现增加值如图所示,(2)设2013到2015的平均增长率为x,则2406.7(1+x)2=3072.3,解得x≈13%,用近3年的平均增长率估计2016年的增长率,∴2016年的增长率为3072.3×(1+13%)≈3471.7亿元.故答案分别为3471.7,用近3年的平均增长率估计2016年的增长率.点评:本题考查折线图、样本估计总体的思想,解题的关键是用近3年的平均增长率估计2016年的增长率,属于中考常考题型.25.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.考点:切线的性质.分析:(1)欲证明AC∥DE,只要证明AC⊥OD,ED⊥OD即可.(2)作DM⊥OA于M,连接CD,CO,AD,首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AE•DM,只要求出DM即可.解答:(1)证明:∵ED与⊙O相切于D,∴OD⊥DE,∵F为弦AC中点,∴OD⊥AC,∴AC∥DE.(2)解:作DM⊥OA于M,连接CD,CO,AD.首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AE•DM,只要求出DM即可.∵AC∥DE,AE=AO,∴OF=DF,∵AF⊥DO,∴AD=AO,∴AD=AO=OD,∴△ADO是等边三角形,同理△CDO也是等边三角形,∴∠CDO=∠DOA=60°,AE=CD=AD=AO=DD=a,∴AO∥CD,又AE=CD,3a,∴四边形ACDE是平行四边形,易知DM=23a2.∴平行四边形ACDE面积=2点评:本题考查切线的性质、平行四边形的性质、垂径定理等知识,解题的关键是学会添加常用辅助线,利用特殊三角形解决问题,属于中考常考题型.26.已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:x … 1 2 3 5 7 9 …y … 1.98 3.95 2.63 1.58 1.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为 _______;②该函数的一条性质: _____________________.考点:函数的概念.专题:数形结合.分析:(1)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为4所对应的函数值即可;②利用函数图象有最高点求解.解答:解:(1)如图,(2)①x=4对应的函数值y约为2.0;②该函数有最大值.故答案为2,该函数有最大值.点评:本题考查了函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.27.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.考点:抛物线与x轴的交点;二次函数图象上点的坐标特征.分析:(1)利用配方法即可解决问题.(2)①m=1代入抛物线解析式,求出A、B两点坐标即可解决问题.②根据题意判断出点A的位置,利用待定系数法确定m的范围.解答:解:(1)∵y=mx2-2mx+m-1=m(x-1)2-1,∴抛物线顶点坐标(1,-1).(2)①∵m=1,∴抛物线为y=x2-2x,令y=0,得x=0或2,不妨设A (0,0),B (2,0),∴线段AB 上整点的个数为3个.②如图所示,抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有6个整点,∴点A 在(-1,0)与(-2,0)之间(包括(-1,0)),当抛物线经过(-1,0)时,m=41,当抛物线经过点(-2,0)时,m=91,∴m 的取值范围为91<m ≤41.点评:本题考查抛物线与x 轴的交点、配方法确定顶点坐标、待定系数法等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.28.在等边△ABC 中,(1)如图1,P ,Q 是BC 边上的两点,AP=AQ ,∠BAP=20°,求∠AQB 的度数;(2)点P ,Q 是BC 边上的两个动点(不与点B ,C 重合),点P 在点Q 的左侧,且AP=AQ ,点Q 关于直线AC 的对称点为M ,连接AM ,PM .①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P ,Q 运动的过程中,始终有PA=PM ,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM ,只需证△APM 是等边三角形;想法2:在BA 上取一点N ,使得BN=BP ,要证明PA=PM ,只需证△ANP ≌△PCM ;想法3:将线段BP 绕点B 顺时针旋转60°,得到线段BK ,要证PA=PM ,只需证PA=CK ,PM=CK …请你参考上面的想法,帮助小茹证明PA=PM (一种方法即可).考点:三角形综合题.分析:(1)根据等腰三角形的性质得到∠APQ=∠AQP ,由邻补角的定义得到∠APB=∠AQC ,根据三角形外角的性质即可得到结论;(2)如图2根据等腰三角形的性质得到∠APQ=∠AQP ,由邻补角的定义得到∠APB=∠AQC ,由点Q 关于直线AC 的对称点为M,得到AQ=AM,∠OAC=∠MAC,等量代换得到∠MAC=∠BAP,推出△APM是等边三角形,根据等边三角形的性质即可得到结论.解答:解:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ=20°,∴∠AQB=∠APQ=∠BAP+∠B=80°;(2)如图2,∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,∵AP=AQ,∴AP=AM,∴△APM是等边三角形,∴AP=PM.点评:本题考查了等边三角形的性质和判定,等腰三角形的性质,三角形的外角的性质,轴对称的性质,熟练掌握等边三角形的判定和性质是解题的关键.29.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为2,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.考点:圆的综合题.分析:(1)①由相关矩形的定义可知:要求A与B的相关矩形面积,则AB必为对角线,利用A、B两点的坐标即可求出该矩形的底与高的长度,进而可求出该矩形的面积;②由定义可知,AC必为正方形的对角线,所以AC与x轴的夹角必为45,设直线AC的解析式为;y=kx+b,由此可知k=±1,再(1,0)代入y=kx+b,即可求出b的值;(2)由定义可知,MN必为相关矩形的对角线,若该相关矩形的为正方形,即直线MN与x轴的夹角为45°,由因为点N 在圆O上,所以该直线MN与圆O一定要有交点,由此可以求出m的范围.解答:解:(1)①∵A(1,0),B(3,1)由定义可知:点A,B的“相关矩形”的底与高分别为2和1,∴点A,B的“相关矩形”的面积为2×1=2;②由定义可知:AC是点A,C的“相关矩形”的对角线,又∵点A,C的“相关矩形”为正方形∴直线AC与x轴的夹角为45°,设直线AC的解析为:y=x+m或y=-x+n把(1,0)分别y=x+m,∴m=-1,∴直线AC的解析为:y=x-1,把(1,0)代入y=-x+n,∴n=1,∴y=-x+1,综上所述,若点A,C的“相关矩形”为正方形,直线AC的表达式为y=x-1或y=-x+1;(2)设直线MN的解析式为y=kx+b,∵点M,N的“相关矩形”为正方形,∴由定义可知:直线MN与x轴的夹角为45°,∴k=±1,∵点N在⊙O上,∴当直线MN与⊙O有交点时,点M,N的“相关矩形”为正方形,当k=1时,作⊙O的切线AD和BC,且与直线MN平行,其中A、C为⊙O的切点,直线AD与y轴交于点D,直线BC与y轴交于点B,连接OA,OC,把M(m,3)代入y=x+b,∴b=3-m,∴直线MN的解析式为:y=x+3-m。
(完整word版)2016年北京中考数学试卷和参考答案
2016年北京市高级中等学校招生考试数学试卷学校 姓名 准考证号 考生须知1. 本试卷共8页,共三道大题,29道小题,满分120分。
考试时间120分钟.2. 在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3. 试题答案一律填涂在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束后,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只.有.一个。
1. 如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为 (A ) 45° (B ) 55° (C ) 125° (D ) 135°2。
神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里.将28 000用科学计数法表示应为 (A )(B ) 28 (C ) (D )3. 实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是(A ) a (B ) (C ) (D )4。
内角和为540的多边形是5. 右图是某个几何体的三视图,该几何体是BAO(A)圆锥(B)三棱锥(C) 圆柱 (D)三棱柱6。
如果,那么代数的值是(A) 2 (B)-2 (C)(D)7. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是A B C D8. 在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是(A) 3月份(B) 4月份(C) 5月份(D) 6月份第8题图第9题图9. 如图,直线,在某平面直角坐标系中,x轴m,y轴n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为(A)(B)(C)(D)10. 为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增。
计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:),绘制了统计图,如图所示,下面有四个推断:①年用水量不超过180的该市居民家庭按第一档水价交费②年用水量超过240的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150—180之间④该市居民家庭年用水量的平均数不超过180(A) ①③(B)①④(C)②③(D)②④二、填空题(本题共18分,每小题3分)11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016北京市中考数学试题考生须知1.本试卷共8页,共三道大题,29道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个。
1.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为(A)45°(B)55°(C)125°(D)135°2.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里,将28 000用科学记数法表示应为(A) 2.8×103(B) 28×103 (C) 2.8×104 (D) 0.28×1053.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是(A)a >﹣2 (B) a <﹣3 (C) a >﹣b (D) a <﹣b4.内角和为540°的多边形是5.右图是某个几何体的三视图,该几何体是(A) 圆锥(B)三菱锥(C) 圆柱(D) 三棱柱6.如果a+b=2,那么代数式2()b aaa a b-⋅-的值是(A) 2 (B) -2 (C) 12(D) ﹣127. 下列甲骨文中,不是..轴对称图形的是()8.在1~7月份,某种水果的每斤进价与每斤售价的信息如图所示,则出售该种水果每斤利润最大的月份是(A) 3月份(B)4月份(C)5月份(D) 6月份9.如图,直线m⊥n.在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为(A)O1 (B) O2 (C)O3( D) O410.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图,如图所示.下面有四个推断:①年用水量不超过180m3的该市居民家庭按第一档水价交费②年用水量超过240m3的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150~180之间④该市居民家庭年用水量的平均数不超过180其中合理的是(A)①③(B) ①④(C) ②③(D)②④二、填空题(本题共18分,每小题3分)11.如果分式21x有意义,那么,x的取值范围是_________。
12.右图中的四边形均为矩形,根据图形,写出一个正确的等式:_________。
13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:14.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯小的影长分别为1.8m、1.5m,已知小军、小珠的身高分别为1.8m、1.5m,则路灯的高为__________m15.百子回归图是由1,2,3,...,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,……,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为________。
16、下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程.已知:直线l和l外一点P。
________________________________l求作:直线l 的垂线,使它经过点P 作法:如图,(1) 在直线l 上任意两点A 、B;(2) 分别以点A ,B 为圆心,AP ,BP 长为半径做弧,两弧相交于点Q ; (3) 作直线PQ所以直线PQ 就是所求作的垂线。
请回答:该作图的依据是__________三,解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28分7分,第9题8分)解答应写出文字说明、演算步骤或证明过程。
17、计算:0(3)4sin 451π-+.18、解不等式组:253(1)742x x x x +>-⎧⎪⎨+>⎪⎩19、如图,四边形ABCD 是平行四边形,AE 平分BAD ∠ ,交DC 的延长线于点E. 求证:DA=DE20、关于X 的一元二次方程22(21)10x m x m +++-= 有两个不想等的实数根。
(1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根。
21、如图,在平面直角坐标系xOy中,过点(6,0)A -的直线1l 与直线2l :y=2x 相交于点(,4)B m . (1)求直线1l 的表达式;(2)过动点(,0)P n 且垂直与x 轴的直线与1l ,2l的交点分别为C ,D ,当点C 位于点D 上方时,写出n 的取值范围。
22.调查作业:了解你所在小区家庭5月份用气量情况。
小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2~5之间,这300户家庭的平均人数均为3.4。
小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3。
表1 抽样调查小区4户家庭5月份用气量统计表(单位:m ³)表2 抽样调查小区15户家庭5月份用气量统计表(单位:m ³)表3 抽样调查小区15户家庭5月份用气量统计表(单位:m ³)根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映出该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处. 22.如图,在四边形ABCD 中,∠ABC=90°,AC=AD,M,N 分别为AC,CD 的中点,连接BM,MN,BN. (1)求证:BM=MN;(2)若∠BAD=60°,AC 平分∠BAD,AC=2,求BN 的长.24.阅读下列材料:北京市正围绕“政治中心、文化中心、国际交往中心、科技创新中心”的定 位,深入实施“人文北京、科技北京、绿色北京”的发展战略,“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都 经济增长的支柱产业。
2011年,北京文化创意产业实现增加值1938.6亿元,占地区生产总值的12.1%. 2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元, 占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支 柱产业.2013年,北京市文化创意产业实现增加值2406.7亿元,比上年增长9.1%. 文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业 实现增加值2794.3亿元,占地区生产总值的13.1%,创历史新高.2015年,北京市文 化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%. (以上数据来源于北京市统计局) 根据以上材料解答下列问题:(1)用折线图将2011-2015年北京市文化创意产业实现增加值表示出来,并在图中 标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业 实现增加值约________亿元,你的预估理由是_______________.25. 如图,AB 为O 的直径,F 为弦AC 的中点,连接OF 并延长交AC 于点D ,过点D 作O 的切线,交BA 的延长线于点E. (1)求证:AC ∥DE ;(2)连接CD ,若OA=AE=a ,写出求四边形ACDE 面积的思路.26.已知y 是x 的函数,自变量x 的取值范围是x > 0,下表是y 与x 的几组对应值.小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为____;②该函数的一条性质:_______________.27.在平面直角坐标系xOy中,抛物线221(0)=-+->与x轴y mx mx m m的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m 的取值范围.28. 在等边ABC ∆中,(1)如图1,P ,Q 是BC 边上两点,AP=AQ ,20BAP ∠=︒,求AQB ∠的度数;(2)点,P Q 是BC 边上的两个动点(不与,B C 重合),点P 在点Q 的左侧,且AP AQ =,点Q 关于直线AC 的对称点为M ,连接,.AM PM ①依题意将图2补全;②小茹通过观察、实验,提出猜想:在点,P Q 运动的过程中,始终有.PA PM =小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证PA PM =,只需证APM ∆是等边三角形。
想法2:在BA 上取一点N ,使得BN BP =,要证PA PM =,只需证ANP PCM ∆≅∆. 想法3:将线段BP 绕点B 顺时针旋转60︒,得到线段BK ,要证PA PM =,只需证PA CK =,PM CK =. ……请参考上面的想法,帮助小茹证明PA PM =.(一种方法即可)29. 在平面直角坐标系xOy 中,点P 的坐标为()11,x y ,点Q 的坐标为()22,x y ,且12x x ≠,12y y ≠,若,P Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点,P Q 的“相关矩形”.下图为点,P Q 的“相关矩形”的示意图.(1) 已知点A 的坐标为(1,0),① 若点B 的坐标为(3,1),求点,A B 的“相关矩形”的面积;② 点C 在直线x=3上,若点,A C 的“相关矩形”为正方形,求直线AC 的表达式;(2)⊙O 点M 的坐标为(),3m .若在⊙O 上存在一点N ,使得点,M N 的“相关矩形”为正方形,求m 的取值范围.。