物理习题集答案(长江大学)
《工程流体力学》课后习题答案
pB 水 H B p A 水 H A Hg h pB p A 水 H A H B Hg h
pBA 水 H Hg h 9800 0.5 13.6 9800 0.5 71540 Pa 0.73at
2-10. 欲测输油管上 A、B 两点的压差,使用 U 形管压差计,内装水银,若读数 h=360mm, 油的相对密度 0.78,则 pA-pB=? 解:
p A 油hA pB 油hB Hg h p A pB Hg h 油 hB hA p A pB Hg h 油h 13.6 水 h 0.78 水 h 13.6 0.78 9800 360 10 3 45228.96 Pa 0.46at
题 2-4
4
2-5.
油罐内装相对密度 0.8 的油品,下有底水,为测 定油深及油面上的压力, 装置如图所示的 U 形管 水银压力计,测得各液面位置如图。试确定油面 高度 H 及液面压力 p0。 解:13.6×0.5-0.8=6mH2O 6-1.6=6-0.4-d 油 H H=(1.6-0.4)/d 油=1.5m P0=6-1.6mH2O=4.4mH2O=0.44at=4.312×104Pa (表压) 题 2-5 图
μ=νρ=0.4×10-4×890=3.56×10-2 Pa·s 1-8. 图示一平板在油面上作水平运动,已知运动速度 u=1m/s,板与固定边界 的距离δ=1,油的动力粘度μ=1.147Pa·s,由平板所带动的油层的运动 速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?
2
解: 1-9. 题
E
1-5.
1
p
1 4 108 Pa 9 2.5 10
长江大学物理习题集下学期答案
答案练习1 库伦定律 电场强度 一、选择题 C B A C D二、填空题 1. λ1d/(λ1+λ2).2. 2qy j /[4πε0 (a 2+y 2)3/2] , ±a/21/2.3. M/(E sin θ).三、计算题1. 取环带微元 d q =σd S=σ2π(R sin θ)R d θ =2πσR 2sin θd θd E =d qx/[4πε0(r 2+x 2)3/2]=()3024cos d sin 2RR R πεθθθπσ =σsin θcos θd θ/(2ε0)()()0/204/2d cos sin εσεθθθσπ==⎰E方向x 轴正向.2.取园弧微元d q=λd l =[Q/(πR )]R d θ=Q d θ/π d E =d q/(4πε0r 2)=Q d θ/(4π2ε0R 2)d E x =d E cos(θ+π) =-d E cos θ d E y =d E sin(θ+π) =-d E sin θE x =()⎰⎰-=2/32/2024d cos d ππεπθθR Q E x=Q/(2π2ε0R 2)E y =⎰d E y ()⎰-2/32/2024d sin ππεπθθR Q =0方向沿x 轴正向.练习2 电场强度(续)一、选择题 D C D B A 二、填空题1. 2p/(4πε0x 3), -p/(4πε0y 3).2. λ/(πε0a ), 03. 5.14⨯105.三、计算题1. 取无限长窄条电荷元d x ,电荷线密度λ'=λd x/a它在P 点产生的电场强度为 d E=λ'/(2πε0r )=λd x/(2πε0a 22xb +)d E x =d E cos α=-λx d x/[2πε0a (b 2+x 2)]d E y =d E sin α=λb d x/[2πε0a (b 2+x2)]E x =()⎰⎰-+=2/2/2202a a x xb a xdxdE πελ=()04ln 2/2/022=+-a a a x b πελ E y =()⎰⎰-+=2/2/2202a a y xb a bdxdE πελbaa bx b a b a a 2arctan arctan 1202/2/0πελπελ=⋅=-2. 取窄条面元d S=a d x ,该处电场强度为 E=λ/(2πε0r ) 过面元的电通量为 d Φe =E ⋅d S=[λ/(2πε0r )]a d x cos θ =λac d x/[2πε0(c 2+x 2)]Φe =⎰d Φ()⎰-+=2/2/2202b b x c acdxπελ2/2/0arctan 12b b c x c ac -⋅=πελ =λa arctan[b /(2c )]/(πε0)练习3 高斯定理 一、选择题 D A D C B二、填空题1. σ/(2ε0),向左;3σ/(2ε0),向左;σ/(2ε0),向右. 2 -Q/ε0, -2Q r 0/(9πε0R 2),-Q r 0/(2πε0R 2).3 (q 1+ q 4)/ε0, q 1、q 2、q 3、q 4, 矢量和三、计算题 1 因电荷分布以中心面面对称,故电场强度方向垂直于平板,距离中心相等处场强大小相等.取如图所示的柱形高斯面:两底面∆S 以平板中心面对称,侧面与平板垂直.=⋅⎰S E d SQ /ε0左边=⎰⋅左底S E d +⎰⋅右底S E d +⎰⋅侧面S E d =2∆SE (1) 板内|x |<aQ=()[]⎰-∆xx Sdx a x 2cos 0πρ=()()[]xx a x S a -∆2sin 20ππρ=4ρ0(a /π)∆S sin[πx /(2a )] 得E={2ρ0a sin[πx /(2a )]}/(πε0) (2)板外|x |>aQ=()[]⎰-∆aa Sdx a x 2cos 0πρ=()()[]aa a x S a -∆2sin 20ππρ=4ρ0(a /π)∆S得 E=2ρ0a /(πε0)当x >0方向向右, 当x <0方向向左.2. 球形空腔无限长圆柱带电体可认为是均匀带正电(体电荷密度为ρ)无限长圆柱体与均匀带负电(体电荷密度为-ρ)球体组成.分别用高斯定理求无限长均匀带电圆柱体激发的电场E 1与均匀带电球体激发的电场E 2.为求E 1,在柱体内作同轴的圆柱形高斯面,有=⋅⎰S E d S02102ερπεπl r Q rlE ==E 1=ρr 1/(2ε0)方向垂直于轴指向外;为求E 2,在球体内外作同心的球形高斯面,有=⋅⎰S E d S0224επQ E r = 球内r<a Q=-ρ4πr 23/3 E 2=-πr 2/(3ε0) 球外r>a Q=-ρ4πa 3/3E 2=-πa 3/(3ε0r 22)负号表示方向指向球心.对于O 点 E 1=ρd/(2ε0), E 2=-πr 2/(3ε0)=0(因r 2=0)得 E O =ρa/(2ε0) 方向向右; 对于P 点E 1=ρd/(2ε0), E 2=-πa 3/(12ε0d 2) 得E P =ρd/(2ε0)-πa 3/(12ε0d 2) 方向向左.练习4 静电场的环路定理 电势一、选择题 A C B D D二、填空题 1.)222(812310q q q R++πε.2 Ed cos α.3 .-q/(6πε0R )三、计算题1.解:设球层电荷密度为ρ.ρ=Q/(4πR 23/3-4πR 13/3)=3Q/[4π(R23-R 13)]球内,球层中,球外电场为 E 1=0, E 2=ρ(r 3-R 13)/(3ε0r 2) , E 3=ρ(R 23-R 13)/(3ε0r 2) 故⎰⎰⎰∞+=⋅=rR R R r211d d d 21r E r E r E ϕ⎰∞+2d 3R r E=0+{ρ(R 22-R 12)/(6ε0)+[ρR 13/(3ε0)(1/R 2-1/R 1)]}+ ρ(R 23-R 13)/(3ε0R 2) =ρ(R 22-R 12)/(2ε0)=3Q (R 22-R 12)/[8πε0(R 23-R 13)] 2.(1)⎰⋅=-212d 2r r r r U U 1l E =⎰2102r r dr rπελ=(λ/2πε0)ln(r 2/r 1)(2)无限长带电直线不能选取无限远为势能零点,因为此时带电直线已不是无限长了,公式E=λ/(2πε0r )不再适用.练习5 静电场中的导体 一、选择题 A A C D B二、填空题1. 2U 0/3+2Qd/(9ε0S ).2. 会, 矢量.3. 是, 是, 垂直, 等于.三、计算题 1. E x =-∂U/∂x=-C [1/(x 2+y 2)3/2+x (-3/2)2x /(x 2+y 2)5/2]= (2x 2-y 2)C /(x 2+y 2)5/2 E y =-∂U/∂y=-Cx (-3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2x轴上点(y =0)E x =2Cx 2/x 5=2C /x 3 E y =0E =2C i /x 3y轴上点(x =0)E x =-Cy 2/y 5=-C /y 3 E y =0E =-C i /y 32. B 球接地,有 U B =U ∞=0, U A =U ABU A =(-Q+Q B )/(4πε0R 3)U AB=[Q B/(4πε0)](1/R2-1/R1) 得Q B=QR1R2/(R1R2+R2R3-R1R3)U A=[Q/(4πε0R3)][-1+R1R2/(R1R2+R2R3-R1R3)]=-Q(R2-R1)/[4πε0(R1R2+R2R3-R1R3)]练习6 静电场中的电介质一、选择题 D D B A C二、填空题1.非极性, 极性.2.取向, 取向; 位移, 位移.3.-Q/(2S), -Q/(S)三、计算题1. 在A板体内取一点A, B板体内取一点B,它们的电场强度是四个表面的电荷产生的,应为零,有E A=σ1/(2ε0)-σ2/(2ε0)-σ3/(2ε0)-σ4/(2ε0)=0E A=σ1/(2ε0)+σ2/(2ε0)+σ3/(2ε0)-σ4/(2ε0)=0而S(σ1+σ2)=Q1 S(σ3+σ4)=Q2有σ1-σ2-σ3-σ4=0σ1+σ2+σ3-σ4=0σ1+σ2=Q1/Sσ3+σ4=Q2/S解得σ1=σ4=(Q1+Q2)/(2S)=2.66⨯10-8C/ m2σ2=-σ3=(Q1-Q2)/(2S)=0.89⨯10-8C/m2两板间的场强E=σ2/ε0=(Q1-Q2)/(2ε0S)V=U A -U B ⎰⋅=BA l E d =Ed=(Q 1-Q 2)d /(2ε0S )=1000V四、证明题 1. 设在同一导体上有从正感应电荷出发,终止于负感应电荷的电场线.沿电场线ACB 作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l+⋅⎰ACBl E d ⎰⋅ABl E d 2=⎰⋅ACBl E d ≠与静电场的环路定理=⋅⎰l E d l 0相违背,故在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习7 静电场习题课 一、选择题 D B A C A二、填空题1. 9.42×103N/C, 5×10-9C .2. 25.3 R 1/R 2, 4πε0(R 1+R 2), R 2/R 1.三、计算题1. (1)拉开前 C 0=ε0S/dW 0=Q 2/(2C 0)= Q 2d /(2ε0S ) 拉开后 C=ε0S/(2d )W=Q 2/(2C )=Q 2d /(ε0S ) ∆W=W -W 0= Q 2d /(2ε0S ) (2)外力所作功A=-A e =-(W 0-W )= W -W 0=Q 2d /(2ε0S )外力作功转换成电场的能量 {用定义式解:A=⎰⋅l F d =Fd =QE 'd=Q [(Q/S )/(2ε0)]d = Q 2d /(2ε0S ) }2. 洞很细,可认为电荷与电场仍为球对称,由高斯定理可得球体内的电场为E =(ρ4πr 3/3)/(4πε0r 2)(r /r ) =ρr /(3ε0)=Q r /(4πε0R 3)F =-q E =-qQ r /(4πε0R 3) F 为恢复力, 点电荷作谐振动-qQr /(4πε0R 3)=m d 2r/d t 2 ω=[ qQ /(4πε0mR 3)]1/2因t =0时, r 0=a, v 0=0,得谐振动A=a ,ϕ0=0故点电荷的运动方程为()t mR qQ a r 304cos πε=练习8 磁感应强度 毕奥—萨伐尔定律一、选择题 A A B C D二、填空题1. 所围面积,电流,法线(n ).2. μ0I/(4R 1)+ μ0I/(4R 2),垂直向外; (μ0I/4)(1/R 12+1/R 22)1/2,π+arctan(R 1/R 2). 3. 0.三、计算题 1.取宽为d x 的无限长电流元 d I=I d x/(2a ) d B=μ0d I/(2πr ) =μ0I d x/(4πar )d B x =d B cos α=[μ0I d x/(4πar )](a/r )=μ0I d x/(4πr 2)=μ0I d x/[4π(x 2+a 2)]d B y =d B sin α= μ0Ix d x/[4πa (x 2+a 2)]()⎰⎰-+==a ax x ax xI B B 2204d d πμ=[μ0I/(4π)](1/a )arctan(x/a )a a-=μ0I/(8a )()⎰⎰-+==aay y ax a xIx B B 2204d d πμ=[μ0I/(8πa )]ln(x 2+a 2)a a-=02. 取宽为d L 细圆环电流, d I=I d N=I [N/(πR/2)]R d θ=(2IN/π)d θ d B=μ0d Ir 2/[2(r 2+x 2)3/2] r=R sin θ x=R cos θ d B=μ0NI sin 2θ d θ /(πR )⎰⎰==πππθθμ220d sin d RNI B B =μ0NI/(4R )练习9 毕—萨定律(续) 一、选择题 D B C A D二、填空题 1. 0.16T.2. μ0Qv /(8πl 2), z 轴负向. 3. μ0nI πR 2. 三、计算题1.取窄条面元d S =b d r ,面元上磁场的大小为B =μ0I /(2πr ), 面元法线与磁场方向相反.有Φ1=⎰-=aabIbdr r I 2002ln 2cos 2πμππμ Φ2=⎰-=aabIbdr r I 42002ln 2cos 2πμππμ Φ1/Φ2=12. 在圆盘上取细圆环电荷元d Q =σ2πr d r ,[σ=Q /(πR 2) ],等效电流元为 d I =d Q /T =σ2πr d r/(2π/ω)=σωr d r (1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与ω同向,大小为d B=μ0d Ir 2/[2(x 2+r 2)3/2]=μ0σωr 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=RRx rx r r x r rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++Rx r x r x r232222220d 4σωμ-()()⎰++Rx r x r x 02322222d 4σωμ =⎪⎪⎭⎫⎝⎛+++RR x r x x r 022202202σωμ =⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ(2)求磁距. 电流元的磁矩d P m=d IS=σωr d rπr2=πσωr2d r⎰=R mdr rP3πσω=πσωR4/4=ωQR2/4练习10 安培环路定理一、选择题 B C C D A二、填空题1.环路L所包围的电流, 环路L上的磁感应强度,内外.2.μ0I, 0,2μ0I.3.-μ0IS1/(S1+S2),三、计算题1. 此电流可认为是由半径为R的无限长圆柱电流I1和一个同电流密度的反方向的半径为R'的无限长圆柱电流I2组成.I1=JπR2 I2=-JπR '2 J=I/[π(R2-R '2)]它们在空腔内产生的磁感强度分别为B1=μ0r1J/2 B2=μ0r2J/2方向如图.有B x=B2sinθ2-B1sinθ1=(μ0J/2)(r2sinθ2-r1sinθ1)=0B y =B2cosθ2+B1cosθ1=(μ0J/2)(r2cosθ2+r1cosθ1)=(μ0J/2)d所以 B = B y= μ0dI/[2π(R2-R '2)]方向沿y轴正向2. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为B1=μ0J/2 在平面①的上方向右,在平面①的下方向左;电流②在空间产生的磁场为B2=μ0J/2在平面②的上方向左,在平面②的下方向右.(1) 两无限大电流流在平面之间产生的磁感强度方向都向左,故有B=B1+B2=μ0J(2) 两无限大电流流在平面之外产生的磁感强度方向相反,故有B=B1-B2=0练习11 安培力洛仑兹力一、选择题 D B C A B二、填空题1 IBR .2 10-2, π/23 0.157N·m ; 7.85×10-2J . 三、计算题1. (1) P m=IS=Ia2方向垂直线圈平面.线圈平面保持竖直,即P m与B垂直.有M m=P m×BM m=P m B sin(π/2)=Ia2B=9.4×10-4m⋅N(2) 平衡即磁力矩与重力矩等值反向M m=P m B sin(π/2-θ)=Ia2B cosθM G= M G1 + M G2 + M G3=mg(a/2)sinθ+mga sinθ+ mg(a/2)sinθ=2(ρSa)ga sinθ=2ρSa2g sinθIa2B cosθ=2ρSa2g sinθtanθ=IB/(2ρSg)=0.2694θ=15︒2.在圆环上取微元 I 2d l = I 2R d θ 该处磁场为 B =μ0I 1/(2πR cos θ) I 2d l 与B 垂直,有 d F= I 2d lB sin(π/2) d F=μ0I 1I 2d θ/(2πcos θ)d F x =d F cos θ=μ0I 1I 2d θ /(2π) d F y =d F sin θ=μ0I 1I 2sin θd θ /(2πcos θ)⎰-=222102πππθμd I I F x =μ0I 1I 2/2 因对称F y =0.故 F =μ0I 1I 2/2 方向向右.练习12 物质的磁性 一、选择题 D B D A C二、填空题1. 7.96×105A/m,2.42×102A/m. 2. 见图3.矫顽力H c 大, 永久磁铁.三、计算题1. 设场点距中心面为x ,因磁场面对称以中心面为对称面过场点取矩形安培环路,有⎰⋅l l H d =ΣI 0 2∆LH=ΣI 0 (1) 介质内,0<x <b/2.ΣI 0=2x ∆lJ =2x ∆l γE ,有 H =x γE B =μ0μr 1H=μ0μr 1x γE (2) 介质外,|x |>b/2.ΣI 0=b ∆lJ =b ∆l γE ,有 H =b γE/2 B =μ0μr 2H=μ0μr 2b γE/22. 因磁场柱对称 取同轴的圆形安培环路,有 ⎰⋅l l H d =ΣI 0 在介质中(R 1<r <R 2),ΣI 0=I ,有 2πrH = I H = I /(2πr)介质内的磁化强度 M =χm H =χm I /(2πr ) 介质内表面的磁化电流 J SR 1=| M R 1×n R 1|=| M R 1|=χm I /(2πR 1) I SR 1=J SR 1⋅2πR 1=χm I (与I 同向)介质外表面的磁化电流 J SR 2=| M R 2×n R 2|=| M R 2|=χm I /(2πR 2) I SR 2=J SR 2⋅2πR 2=χm I (与I 反向)练习13 静磁场习题课 一、选择题 D C A A A 二、填空题1. 6.67×10-6T ; 7.20×10-21A ·m 2.2. Rih πμ20.3. -πR 2c (Wb).三、计算题1.(1)螺绕环内的磁场具有轴对称性,故在环内作与环同轴的安培环路.有 ⎰⋅l l B d =2πrB=μ0∑I i =μ0NI B=μ0NI/(2πr ) (2)取面积微元h d r 平行与环中心轴,有 d Φm =|B ⋅d S |=[μ0NI/(2πr )]h d r =μ0NIh d r /(2πr )Φm =⎰=22120021ln 22D D D D NIh dr r NIh πμπμ 2. 因电流为径向,得径向电阻为⎰=2112ln 22R RR R d rd dr πρπρ I=ε/[ρln(R 2/R 1)/(2πd )]=2πd ε/[ρln(R 2/R 1)]取微元电流 d I d l=J d S d r =[I/(2πrd )]r d θd d r=d εd θd r /[ρln(R 2/R 1)] 受磁力为 d F=|d I d l ×B |=Bd εd θd r /[ρln(R 2/R 1)]d M=|r ×d F |=Bd εd θr d r /[ρln(R 2/R 1)] 练习练习14 电磁感应定律 动生电动势一、选择题 D B D A C二、填空题 1.t I r r ωωπμcos 202210,22102Rr I r πμ .2. > , < , = .3. B ωR 2/2; 沿曲线由中心向外.三、计算题 1. 取顺时针为三角形回路电动势正向,得三角形面法线垂直纸面向里.取窄条面积微元d S =y d x =[(a+b -x )l/b ]d xΦm =⎰⋅S d S B=()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a b Il ln 20πμ εi =-d Φm /d t=()dt dIa b a b a b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ =-5.18×10-8V负号表示逆时针2. (1) 导线ab 的动生电动势为εi = ⎰lv×B ·d l=vBl sin(π/2+θ)=vBl cos θI i =εi /R = vBl cos θ/R方向由b 到a . 受安培力方向向右,大小为F =| ⎰l (I i d l×B )|= vB 2l 2cos θ/R F 在导轨上投影沿导轨向上,大小为F '= F cos θ =vB 2l 2cos 2θ/R重力在导轨上投影沿导轨向下,大小为mg sin θmg sin θ -vB 2l 2cos 2θ/R=ma=m d v /d t dt=d v /[g sin θ -vB 2l 2cos 2θ/(mR )]()[]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t lB e l B mgR v θθθ222cos 2221cos sin --=(2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .练习15 感生电动势 自感 一、选择题 A D C B B二、填空题 1.er 1(d B /d t )/(2m ),向右;eR 2(d B /d t )/(2r 2m ),向下. 2. μ0n 2l πa 2, μ0nI 0πa 2ωcos ωt . 3.ε=πR 2k/4,从c 流至b .三、计算题1.(1) 用对感生电场的积分εi =⎰l E i ·d l 解:在棒MN 上取微元d x (-R<x<R ),该处感生电场大小为E i =[R 2/(2r )](d B/d t )与棒夹角θ满足tan θ=x/Rεi =⎰⋅N M l E i d =⎰NM i x E θcos d=()⎰-⋅RR r R r x t B R 22d d d =⎰-+⋅RRR x x t B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )R R-=πR 2(d B/d t )/4 因εi =>0,故N 点的电势高.(2) 用法拉第电磁感应定律εi =-d Φ/d t 解:沿半径作辅助线OM ,ON 组成三角形回路MONMεi =⎰⋅N M l E i d =⎰⋅-MN l E i d=-⎢⎣⎡⋅⎰M N l E i d +⎰⋅O M l E i d +⎥⎦⎤⋅⎰N O l E i d =-(-d ΦmMONM /d t ) =d ΦmMONM /d t 而 ΦmMONM =⎰⋅S d S B =πR 2B/4 故 εi =πR 2(d B/d t )/4 N 点的电势高.2. .等效于螺线管B 内=μ0 nI=μ0 [Q ω /(2π)]/L=μ0 Q ω /(2πL )B 外=0Φ=⎰S B ⋅d S=B πa 2=μ0Q ω a 2 /(2 L ) εi =-d Φ/d t=-[μ0Q a 2 /(2 L )]d ω/d t=μ0ω 0Q a2 /(2 L t0)I i=εi /R=μ0ω 0Q a2 /(2 LR t0) 方向与旋转方向一致.练习16 互感(续)磁场的能量一、选择题 D C B C A二、填空题1. 0.2. ΦAB=ΦBA.3. μ0I2L/(16π.)三、计算题1. 取如图所示的坐标,设回路有电流为I,则两导线间磁场方向向里,大小为0≤r≤a B1=μ0Ir/(2πa2)+μ0I/[2π(d-r)]a≤r≤d-a B2=μ0I/(2πr)+μ0I/[2π(d-r)]d-a≤r≤d B3=μ0I/(2πr)+μ0I(d-r)/(2πa2)取窄条微元d S=l d r,由Φm=⎰⋅SSB d 得Φml =⎰aarIrl22dπμ+()⎰-ardrIl2dπμ+⎰-a darrIlπμ2d0+()⎰--adardrIlπμ2d+⎰-a darrIlπμ2d0+()⎰-a daarl r-dI22dπμ=μ0Il/(4π)+[μ0Il/(2π)]ln[d/(d-a)] +[μ0Il/(2π)]ln[(d-a)/a]+[μ0Il/(2π)]ln[(d-a)/a]+[μ0Il/(2π)]ln[d/(d-a)]+μ0Il/(4π)=μ0Il/(2π)+(μ0Il/π)ln(d/a) 由L l=Φl /I,L0= L l/l=Φl /(Il).得单位长度导线自感L0==μ0l/(2π)+(μ0l/π)ln(d/a)2. 设环形螺旋管电流为I, 则管内磁场大小为B=μ0NI/(2πρ) r≤ρ≤R 方向垂直于截面; 管外磁场为零.取窄条微元d S=h dρ,由Φm=⎰⋅S SB d得Φm =⎰RrNIhπρρμ2d0=μ0NIh ln(R/r)/(2π)M=Φm/I==μ0Nh ln(R/r)/(2π)练习17 麦克斯韦方程组一、选择题 C A D B C二、填空题1. 1.2. ②, ③, ①.3. 1.33×102 W/m2 ,2.51×10-6J/m3.三、计算题1. 设极板电荷为Q, 因I=d Q/d t, Q=CU,有(1) I=d(CU)/d t=C d U/d td U/d t=I/C= I0e-kt/CU= I0(1-e-kt)/(kC)(2)I d=dΦd/d t=d(DS)/d t=d(εES)/d t =d[ε(U/d)S]/d t=(εS/d)d U/d t =C d U/d t=I=I0e-kt(3)在极板间以电容器轴线为心,以r为半径作环面垂直于轴的环路,方向与I d成右手螺旋.有⎰⋅llH d=2πrH=∑I d当r<R时∑I d=[I d/(πR2)]πr2 H=I d r/(2πR2)B=μH=μI d r/(2πR2)=μI0e-kt r/(2πR2)当r>R时∑I d=I d H=Ir/(2πr)B=μI0e-k t/(2πr)方向与回路方向相同.O 点,r =0: B =0A 点,r =R 1<R :B =μI 0e -kt R 1/(2πR 2) 方向向里C 点,r =R 2>R : B =μI 0e -k t /(2πR 2) 方向向外.2.(1)坡印廷矢量平均值S =I =P /(2πr 2) r =10km S =P /(2πr 2)=1.59×10-5W/m 2(2) 电场强度和磁场强度振幅.εE =μHS =|S |=|E ×H |=2E με=εμH 2 E=εμS H=μεS E m =E 2=002εμS =1.09⨯10-1V /m H m =H 2=002μεS =2.91×10-4A/m练习18 电磁感应习题课一、选择题 A B B C D二、填空题1 0, 2μ0I 2/(9π2a 2).2 700Wb/s.3 vBl sin α, A 点.三、计算题1. 任意时刻金属杆角速度为ω,取微元长度d rd εi =v ×B ⋅d l=ωrBdr εi =⎰d εi =r r B ad 0⎰ω=ω Ba 2/2I =εi /R =ω Ba 2/(2R ) 方向由O 向A .微元d r 受安培力为|d F |=|I d l ×B |= IB d r d M =|d M |=|r ×d F |= IBr d r M=⎰d M =r r IB ad 0⎰=I Ba 2/2=ωB 2a 4/(4R )方向与ω相反.依转动定律,有-ω B 2a 4/(4R )=J α=(ma 2/3)d ω /d td t=-[4Rm/(3ω B 2a 2)]d ω =-[4Rm/(3 B 2a 2)]d ω/ωt =()[]()ωωωωd 34022⎰a B mR=-[4Rm/(3 B 2a 2)]ln(ω/ω0)t mRa B e43022-=ωω2. 因b >>a ,可认为小金属环上的磁场是均匀.Φm =⎰⋅S d S B =BS cos θ=[μ0I/(2b )]πa 2cos θ=μ0I πa 2cos θ/(2b )(1) I 恒定,θ=ω1t : εi =-d Φm /d t =(-d Φm /d θ)(d θ/d t )=μ0I πa 2ω1sin(ω1t )/(2b )(2) I =I 0sin ω2t ,θ=0:εi =-d Φm /d t =(-d Φm /d I )(d I/d t )=-μ0πa 2I 0ω2cos ω2t/(2b ) (3) I =I 0sin ω2t ,θ= ω1t :εi =-d Φm /d t=-[(∂Φm /∂θ)(∂θ/∂t )+(∂Φm /∂I )(∂I/∂t)]=[μ0I 0πa 2/(2b )][ω1sin(ω1t )sin(ω2t )-ω2cos ω2t ]练习19 义相对论的基本原理及其时空观一、选择题 C D B A A二、填空题 1. c , c . 2. c c 97.017/16=. 3. ()c l a 201-三、计算题1 (1)设K '相对于K 的运动速度为v ,运动方向为x 正向.因x 1=x 2,有∆t '=(∆t -v ∆x /c 2)/(1-v 2/c 2)1/2=∆t /(1-v 2/c 2)1/2v=[1-(∆t )2/(∆t ')2]1/2c =3c /5=1.8×108m/s(2)∆x'=(∆x-v∆t)/(1-v2/c2)1/2=-v∆t/(1 -v2/c2)1/2=-v∆t'=3c(m)=9×108m2. 设地球和飞船分别为K和K'系,有(1)飞船上观察者测飞船长度为固有长度,又因光速不变,有∆x'=90m∆t'=∆x'/c=3×10-7s(2)地球上观察者∆x=(∆x'+v∆t')/(1-v2/c2)1/2=27 0m∆t=(∆t'+v∆x'/c2)/(1-v2/c2)1/2=9×10-7s{或∆t=(∆t'+v∆x'/c2)/(1-v2/c2)1/2=(∆x'/c+v∆x'/c2)/(1-v2/c2)1/2=[(∆x'+v∆t')/(1-v2/c2)1/2]/c=∆x/c=9×10-7s }练习20 相对论力学基础一、选择题 A C A B C二、填空题1.1.49MeV.2.2/3c, 2/3c.3.5.81×10-13, 8.04×10-2.三、计算题1. E k=mc2-m0c2m=m0+E k/c2回旋周期T=2πm/(qB)=2π( m0+E k/c2)/(qB) E k=104MeV=1.6×10-9Jm0=1.67×10-27kg q=1.6⨯10-19C T=2π( m0+E k/c2)/(qB)=7.65×10-7s212.E =m 0c 2/221c v -=E 0/221c v -γ= 1/221c v -=E /E 0v=c ()201E E -=2.998×108m/s运动的距离∆l =v ∆t =v τ0γ= c ()201E E -τ0 E /E 0 =c τ0()1/20-E E =1.799×104m练习21 热辐射 光电效应一、选择题 A D C D B二、填空题1. 0.64 .2. 2.4×103K.3. 在一定温度下,单位时间内从绝对黑体表面单位面积上所辐射的各波长的总能量.三、计算题1. (1)T=b/λm =5.794×103K . (2)P =M (T )S =σT 44πR S 2=3.67×1026W(3)P'=P/S'=σT 44πR S 2/(4πL 2)=1.30×103W/m 22. λm = b/T =9.66×10-4mνm =c /λm =c /(b/T )=cT/b =3.11×1011Hz P =M (T )S =σT 44πR E 2=2.34×109W练习22 康普顿效应 氢原子的玻尔理论一、选择题 D B A C A二、填空题1. hc/λ;h/λ;h/(λc ).2. 1.45V ;7.14×105m/s .3. π;0.三、计算题1.hν=hc/λ=mv2/2+A=eU c+AU c=(hc/λ-A)/e=(hc/(λe)-A/emv=[2m( hc/λ-A)]1/2R=mv/(qB)=[2m( hc/λ-A)]1/2/(eB)2.(1) ∆λ=h(1-cosϕ)/(m0c) λ=λ0+∆λ=λ0+h(1-cosϕ)/(m0c)=1.024×10-10m(2)hν0+m0c2=hν+mc2=hν+m0c2+E khν0= hν+E kE k=hν0- hν= hc/λ0- hc/λ=hc(λ-λ0)/(λ0λ)=hc∆λ/[λ0(λ0+∆λ)]=4.71×10-17J=294eV练习23 德布罗意波不确定关系一、选择题 D C D A B二、填空题1. 1.46Å; 6.63×10-31m.2.3/3.3. 6.63×10-24. (或1.06×10-24,3.32×10-24,0.53×10-24)三、计算题1. (1)由带电粒子在均匀磁场中作圆运动运动的知识知,R=mv/(qB).于是有pα=mαvα=qBR=2eBRλα=h/pα=h/(2eBR)=9.98×10-12m =9.98×10-3nm(2) 设小球与α粒子速率相同v=vα=2eBR/mαλ= h/p= h/(mv)= h/[m(2eBR/mα)] =[h/(2eBR)](mα/m)=(mα/m)λα=6.62×10-34m2. (1)考虑相对论效应E k=eU=mc2-m0c2=E-E0p2c2=E2-E02=(E+E0)(E-E0)=(E k+2E0)E k22=(eU +2 m0c2) eUp=[(eU +2 m0c2) eU]1/2/cλ=h/p=hc/[(eU +2 m0c2)eU]1/2=8.74×10-13m(2)不考虑相对论效应E k=eU=mv2/2=p2/(2m)p=(2meU)1/2λ=h/p=h/(2meU)1/2= h/(2m0eU)1/2=1.23×10-12m(λ-λ0)/λ0=40.7%﹪﹪练习24 薛定谔方程氢原子的量子力学描述一、选择题 A C A D B二、填空题1.ν3=ν1+ν2;1/λ3=1/λ1+1/λ2.2. 粒子t时刻出现在r处的概率密度;单值,有限,连续;⎰=ψ1ddd2zyx.3. a/6, a/2, 5a/6.三、计算题1所发射光子的能量ε=hν=hc/λ=2.56eV激发能为∆E=10.19eV能级的能量为E k,有∆E=E k- E1E k=E1+∆E=-13.6+10.19=-3.41eV 初态能量E n=E k+ε=-0.85eV初态主量子数n=(E1/E n)1/2=42. 由归一化⎰∞∞-=VΨd2⎰l x c022(l-x)d x=1得c=530l0~l/3区间发现粒子的概率P=⎰l xΨ2d=⎰l30x2(l-x)2d x/l5=17/81=21%练习25 近代物理习题课一、选择题 D D D C B二、填空题231 13.6eV, 5.2 >, >, <.3. 459W/s三、计算题1. (1)ε=hν=hc/λ=2.86eV(2) 巴耳末系k=2,E2=E1/22=-13.6/4=-3.4eVE n=E1/n2=E2+ε=-0.54eVn=(E1/E n)1/2=5(3) 可发射四个线系, 共10条谱线;波长最短的谱线是从n=5的能态跃迁到n=1的能态而发射的光譜线2 ∆p∆x≧ћ/2 ∆p≧ћ/(2∆x)取p≈∆p≧ћ/(2∆x)=7.3⨯10-21kgm/sE k= p2/(2m)≈[ћ/(2∆x)]2/(2m)=ћ2/[8 m (∆x)2]=2.5⨯102425。
物理习题集答案(长大)
1长江大学练习1 库伦定律 电场强度一、选择题 C B A C D二、填空题1. λ1d/(λ1+λ2).2. 2qy j /[4πε0 (a 2+y 2)3/2] , ±a/21/2.3. M/(E sin θ).三、计算题1. 取环带微元 d q =σd S=σ2π(R sin θ)R d θ =2πσR 2sin θd θd E =d qx/[4πε0(r 2+x 2)3/2]=()3024cos d sin 2R R R πεθθθπσ =σsin θcos θd θ/(2ε0))()0/2004/2d cos sin εσεθθθσπ==⎰E方向x 轴正向.2.取园弧微元 d q=λd l=[Q/(πR )]R d θ=Q d θ/π d E =d q/(4πε0r 2) =Q d θ/(4π2ε0R 2) d E x =d E cos(θ+π) =-d E cos θ d E y =d E sin(θ+π) =-d E sin θ E x =()⎰⎰-=2/32/2024d cos d ππεπθθR Q E x=Q/(2π2ε0R 2)E y =⎰d E y ()⎰-2/32/2024d sin ππεπθθR Q =0方向沿x 轴正向.练习2 电场强度(续)一、选择题 D C D B A 二、填空题1. 2p/(4πε0x 3), -p/(4πε0y 3).2. λ/(πε0a ), 03. 5.14⨯105.三、计算题1. 取无限长窄条电荷元d x ,电荷线密度λ'=λd x/a它在P 点产生的电场强度为d E=λ'/(2πε0r )=λd x/(2πε0a 22x b +) d E x =d E cos α=-λx d x/[2πε0a (b 2+x 2)] d E y =d E sin α=λb d x/[2πε0a (b 2+x 2)]E x =()⎰⎰-+=2/2/2202a a x x b a xdxdE πελ=()04ln 2/2/022=+-a a ax b πελE y =()⎰⎰-+=2/2/2202a a y xb a bdxdE πελ2baa bx b a b a a 2arctan arctan 1202/2/0πελπελ=⋅=-2. 取窄条面元d S=a d x ,该处电场强度为 E=λ/(2πε0r ) 过面元的电通量为 d Φe =E ⋅d S=[λ/(2πε0r )]a d x cos θ =λac d x/[2πε0(c 2+x 2)] Φe =⎰d Φ()⎰-+=2/2/2202b b x c acdxπελ2/2/0arctan 12b b c x c ac -⋅=πελ =λa arctan[b /(2c )]/(πε0)练习3 高斯定理一、选择题 D A D C B二、填空题1. σ/(2ε0),向左;3σ/(2ε0),向左;σ/(2ε0),向右. 2 -Q/ε0, -2Q r 0/(9πε0R 2), -Q r 0/(2πε0R 2). 3 (q 1+ q 4)/ε0, q 1、q 2、q 3、q 4, 矢量和三、计算题1 因电荷分布以中心面面对称,故电场强度方向垂直于平板,距离中心相等处场强大小相等.取如图所示的柱形高斯面:两底面∆S 以平板中心面对称,侧面与平板垂直.=⋅⎰S E d SQ /ε左边=⎰⋅左底S E d +⎰⋅右底S E d +⎰⋅侧面S E d =2∆SE(1) 板内|x |<aQ=()[]⎰-∆xxSdx a x 2cos 0πρ=()()[]xx a x S a -∆2sin 20ππρ =4ρ0(a /π)∆S sin[πx /(2a )]得 E={2ρ0a sin[πx /(2a )]}/(πε0) (2)板外|x |>aQ=)[]⎰-∆aaSdx a x 2cos 0πρ=()()[]aa a x S a -∆2sin 20ππρ =4ρ0(a /π)∆S得 E=2ρ0a /(πε0)当x >0方向向右, 当x <0方向向左.2. 球形空腔无限长圆柱带电体可认为是均匀带正电(体电荷密度为ρ)无限长圆柱体与均匀带负电(体电荷密度为-ρ)球体组成.分别用高斯定理求无限长均匀带电圆柱体激发的电场E 1与均匀带电球体激发的电场E 2.为求E 1,在柱体内作同轴的圆柱形高斯面,有=⋅⎰S E d S02102ερπεπl r Q rlE == E 1=ρr 1/(2ε0)方向垂直于轴指向外;为求E 2,在球体内外作同心的球形高斯面,有=⋅⎰S E d S0224επQ E r = 球内r<a Q=-ρ4πr 23/3 E 2=-πr 2/(3ε0) 球外r>a Q=-ρ4πa 3/3 E 2=-πa 3/(3ε0r 22) 负号表示方向指向球心.对于O 点E 1=ρd/(2ε0), E 2=-πr 2/(3ε0)=0 (因r 2=0) 得 E O =ρa/(2ε0) 方向向右; 对于P 点E 1=ρd/(2ε0), E 2=-πa 3/(12ε0d 2) 得 E P =ρd/(2ε0)-πa 3/(12ε0d 2) 方向向左.练习4 静电场的环路定理 电势一、选择题 A C B D D3二、填空题1. )222(812310q q q R++πε.2 Ed cos α.3 .-q/(6πε0R )三、计算题1.解:设球层电荷密度为ρ.ρ=Q/(4πR 23/3-4πR 13/3)=3Q/[4π(R 23-R 13)]球内,球层中,球外电场为E 1=0, E 2=ρ(r 3-R 13)/(3ε0r 2) , E 3=ρ(R 23-R 13)/(3ε0r 2)故⎰⎰⎰∞+=⋅=rR R R r211d d d 21r E r E r E ϕ⎰∞+2d 3R r E=0+{ρ(R 22-R 12)/(6ε0)+[ρR 13/(3ε0)(1/R 2-1/R 1)]}+ ρ(R 23-R 13)/(3ε0R 2)=ρ(R 22-R 12)/(2ε0)=3Q (R 22-R 12)/[8πε0(R 23-R 13)]2. (1)⎰⋅=-212d 2r r r r U U 1l E =⎰2102r r dr rπελ=(λ/2πε0)ln(r 2/r 1)(2)无限长带电直线不能选取无限远为势能零点,因为此时带电直线已不是无限长了,公式E=λ/(2πε0r )不再适用.练习5 静电场中的导体一、选择题 A A C D B二、填空题1. 2U 0/3+2Qd/(9ε0S ).2. 会, 矢量.3. 是, 是, 垂直, 等于.三、计算题1. E x =-∂U/∂x=-C [1/(x 2+y 2)3/2+x (-3/2)2x /(x 2+y 2)5/2] = (2x 2-y 2)C /(x 2+y 2)5/2 E y =-∂U/∂y=-Cx (-3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2 x 轴上点(y =0) E x =2Cx 2/x 5=2C /x 3 E y =0E =2C i /x 3y 轴上点(x =0) E x =-Cy 2/y 5=-C /y 3 E y =0 E =-C i /y 32. B 球接地,有 U B =U ∞=0, U A =U AB U A =(-Q+Q B )/(4πε0R 3) U AB =[Q B /(4πε0)](1/R 2-1/R 1)得 Q B =QR 1R 2/( R 1R 2+ R 2R 3- R 1R 3)U A =[Q/(4πε0R 3)][-1+R 1R 2/(R 1R 2+R 2R 3-R 1R 3)]=-Q (R 2-R 1)/[4πε0(R 1R 2+R 2R 3-R 1R 3)]练习6 静电场中的电介质一、选择题 D D B A C二、填空题1. 非极性, 极性.2. 取向, 取向; 位移, 位移.3. -Q/(2S ), -Q/(S )三、计算题1. 在A 板体内取一点A , B 板体内取一点B ,它们的电场强度是四个表面的电荷产生的,应为零,有E A =σ1/(2ε0)-σ2/(2ε0)-σ3/(2ε0)-σ4/(2ε0)=0 E A =σ1/(2ε0)+σ2/(2ε0)+σ3/(2ε0)-σ4/(2ε0)=0 而 S (σ1+σ2)=Q 1 S (σ3+σ4)=Q 2 有 σ1-σ2-σ3-σ4=0σ1+σ2+σ3-σ4=0 σ1+σ2=Q 1/S σ3+σ4=Q 2/S解得 σ1=σ4=(Q 1+Q 2)/(2S )=2.66⨯10-8C/m 2σ2=-σ3=(Q 1-Q 2)/(2S )=0.89⨯10-8C/m 2 两板间的场强 E=σ2/ε0=(Q 1-Q 2)/(2ε0S )4V=U A -U B ⎰⋅=BAl E d=Ed=(Q 1-Q 2)d /(2ε0S )=1000V四、证明题1. 设在同一导体上有从正感应电荷出发,终止于负感应电荷的电场线.沿电场线ACB作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l +⋅⎰ACBl E d ⎰⋅ABl E d 2=⎰⋅ACBl E d ≠与静电场的环路定理=⋅⎰l E d l0相违背,故在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习7 静电场习题课一、选择题 D B A C A二、填空题1. 9.42×103N/C, 5×10-9C .2.25.3 R 1/R 2, 4πε0(R 1+R 2), R 2/R 1.三、计算题1. (1)拉开前 C 0=ε0S/d W 0=Q 2/(2C 0)= Q 2d /(2ε0S )拉开后 C=ε0S/(2d )W=Q 2/(2C )=Q 2d /(ε0S ) ∆W=W -W 0= Q 2d /(2ε0S )(2)外力所作功A=-A e =-(W 0-W )= W -W 0= Q 2d /(2ε0S ) 外力作功转换成电场的能量 {用定义式解:A=⎰⋅l F d =Fd =QE 'd=Q [(Q/S )/(2ε0)]d= Q 2d /(2ε0S ) }2. 洞很细,可认为电荷与电场仍为球对称,由高斯定理可得球体内的电场为 E =(ρ4πr 3/3)/(4πε0r 2)(r /r ) =ρr /(3ε0)=Q r /(4πε0R 3) F =-q E =-qQ r /(4πε0R 3)F 为恢复力, 点电荷作谐振动-qQr /(4πε0R 3)=m d 2r/d t 2 ω=[ qQ /(4πε0mR 3)]1/2因t =0时, r 0=a, v 0=0,得谐振动A=a ,ϕ0=0故点电荷的运动方程为()t mR qQ a r 304cos πε=练习8 磁感应强度 毕奥—萨伐尔定律一、选择题 A A B C D二、填空题1. 所围面积,电流,法线(n ).2. μ0I/(4R 1)+ μ0I/(4R 2),垂直向外;(μ0I/4)(1/R 12+1/R 22)1/2,π+arctan(R 1/R 2). 3. 0.三、计算题1.取宽为d x 的无限长电流元d I=I d x/(2a ) d B=μ0d I/(2πr ) =μ0I d x/(4πar )d B x =d B cos α=[μ0I d x/(4πar )](a/r )=μ0I d x/(4πr 2)= μ0I d x/[4π(x 2+a 2)]d B y =d B sin α= μ0Ix d x/[4πa (x 2+a 2)]()⎰⎰-+==aax x ax xI B B 2204d d πμ=[μ0I/(4π)](1/a )arctan(x/a )a a-=μ0I/(8a )()⎰⎰-+==aay y ax a xIx B B 2204d d πμ5=[μ0I/(8πa )]ln(x 2+a 2)a a-=02. 取宽为d L 细圆环电流, d I=I d N=I [N/(πR/2)]R d θ=(2IN/π)d θ d B=μ0d Ir 2/[2(r 2+x 2)3/2] r=R sin θ x=R cos θ d B=μ0NI sin 2θ d θ /(πR )⎰⎰==πππθθμ220d sin d RNI B B =μ0NI/(4R )练习9 毕—萨定律(续)一、选择题 D B C A D二、填空题1. 0.16T.2. μ0Qv /(8πl 2), z 轴负向.3. μ0nI πR 2. 三、计算题1.取窄条面元d S =b d r , 面元上磁场的大小为 B =μ0I /(2πr ), 面元法线与磁场方向相反.有Φ1=⎰-=aabIbdr r I 2002ln 2cos 2πμππμ Φ2=⎰-=aabIbdr r I 42002ln 2cos 2πμππμ Φ1/Φ2=12. 在圆盘上取细圆环电荷元d Q =σ2πr d r ,[σ=Q /(πR 2) ],等效电流元为 d I =d Q /T =σ2πr d r/(2π/ω)=σωr d r(1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与ω同向,大小为d B=μ0d Ir 2/[2(x 2+r 2)3/2]=μ0σωr 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=RRx rx r r x r rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++Rx r x r x r232222220d 4σωμ-()()⎰++R x r x r x 023222220d 4σωμ=⎪⎪⎭⎫⎝⎛+++RRx r xx r 022202202σωμ =⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ (2)求磁距. 电流元的磁矩d P m =d IS=σωr d r πr 2=πσωr 2d r⎰=Rm dr r P 03πσω=πσωR 4/4=ωQR 2/4练习10 安培环路定理一、选择题 B C C D A二、填空题1. 环路L 所包围的电流, 环路L 上的磁感应强度,内外. 2. μ0I , 0, 2μ0I . 3. -μ0IS 1/(S 1+S 2),三、计算题1. 此电流可认为是由半径为R 的无限长圆柱电流I 1和一个同电流密度的反方向的半径为R '的无限长圆柱电流I 2组成.I 1=J πR 2 I 2=-J πR '2 J =I/[π (R 2-R '2)] 它们在空腔内产生的磁感强度分别为B 1=μ0r 1J/2B 2=μ0r 2J/2 方向如图.有B x =B 2sin θ2-B 1sin θ1=(μ0J/2)(r 2sin θ2-r 1sin θ1)=0B y =B2cosθ2+B1cosθ1=(μ0J/2)(r2cosθ2+r1cosθ1)=(μ0J/2)d所以 B = B y= μ0dI/[2π(R2-R '2)]方向沿y轴正向2. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为B1=μ0J/2在平面①的上方向右,在平面①的下方向左;电流②在空间产生的磁场为B2=μ0J/2在平面②的上方向左,在平面②的下方向右.(1) 两无限大电流流在平面之间产生的磁感强度方向都向左,故有B=B1+B2=μ0J (2) 两无限大电流流在平面之外产生的磁感强度方向相反,故有B=B1-B2=0练习11 安培力洛仑兹力一、选择题 D B C A B二、填空题1 IBR .2 10-2, π/23 0.157N·m ; 7.85×10-2J .三、计算题1. (1) P m=IS=Ia2方向垂直线圈平面.线圈平面保持竖直,即P m与B垂直.有M m=P m×BM m=P m B sin(π/2)=Ia2B=9.4×10-4m⋅N(2) 平衡即磁力矩与重力矩等值反向M m=P m B sin(π/2-θ)=Ia2B cosθM G= M G1 + M G2 + M G3= mg(a/2)sinθ+ mga sinθ+ mg(a/2)sinθ=2(ρSa)ga sinθ=2ρSa2g sinθIa2B cosθ=2ρSa2g sinθtanθ=IB/(2ρSg)=0.2694θ=15︒2.在圆环上取微元I2d l= I2R dθ该处磁场为B=μ0I1/(2πR cosθ)I2d l与B垂直,有d F= I2d lB sin(π/2)d F=μ0I1I2dθ/(2πcosθ)d F x=d F cosθ=μ0I1I2dθ/(2π)d F y=d F sinθ=μ0I1I2sinθdθ/(2πcosθ)⎰-=22212πππθμdI IFx=μ0I1I2/2因对称F y=0.故F=μ0I1I2/2 方向向右.练习12 物质的磁性一、选择题 D B D A C二、填空题1. 7.96×105A/m,2.42×102A/m.2. 见图3.矫顽力H c大, 永久磁铁.三、计算题1. 设场点距中心面为x,因磁场面对称以中心面为对称面过场点取矩形安培环路,有⎰⋅llH d=ΣI02∆LH=ΣI0(1)介质内,0<x<b/2. ΣI0=2x∆lJ=2x∆lγE,有H=xγE B=μ0μr1H=μ0μr1xγE(2)介质外,|x|>b/2. ΣI0=b∆lJ=b∆lγE,有H=bγE/2B=μ0μr2H=μ0μr2bγE/2672. 因磁场柱对称 取同轴的圆形安培环路,有⎰⋅ll H d =ΣI 0在介质中(R 1<r <R 2),ΣI 0=I ,有 2πrH = I H = I /(2πr ) 介质内的磁化强度 M =χm H =χm I /(2πr )介质内表面的磁化电流 J SR 1=| M R 1×n R 1|=| M R 1|=χm I /(2πR 1) I SR 1=J SR 1⋅2πR 1=χm I (与I 同向) 介质外表面的磁化电流J SR 2=| M R 2×n R 2|=| M R 2|=χm I /(2πR 2) I SR 2=J SR 2⋅2πR 2=χm I (与I 反向)练习13 静磁场习题课一、选择题 D C A A A 二、填空题1. 6.67×10-6T ; 7.20×10-21A ·m2.2. R ih πμ20.3. -πR 2c (Wb).三、计算题1.(1)螺绕环内的磁场具有轴对称性,故在环内作与环同轴的安培环路.有 ⎰⋅ll B d =2πrB=μ0∑I i =μ0NIB=μ0NI/(2πr )(2)取面积微元h d r 平行与环中心轴,有d Φm =|B ⋅d S | =[μ0NI/(2πr )]h d r =μ0NI h d r /(2πr )Φm =⎰=22120021ln 22D D D D NIh dr r NIh πμπμ 2. 因电流为径向,得径向电阻为⎰=2112ln 22R RR R d rd dr πρπρ I=ε/[ρln(R 2/R 1)/(2πd )]=2πd ε/[ρln(R 2/R 1)] 取微元电流d I d l=J d S d r =[I/(2πrd )]r d θd d r=d εd θd r /[ρln(R 2/R 1)]受磁力为 d F=|d I d l ×B |=Bd εd θd r /[ρln(R 2/R 1)]d M=|r ×d F |=Bd εd θ r d r /[ρln(R 2/R 1)] 练习练习14 电磁感应定律 动生电动势一、选择题 D B D A C二、填空题1. t I r r ωωπμcos 202210,22102Rr I r πμ . 2. > , < , = .3. B ωR 2/2; 沿曲线由中心向外.三、计算题1. 取顺时针为三角形回路电动势正向,得三角形面法线垂直纸面向里.取窄条面积微元 d S =y d x =[(a+b -x )l/b ]d xΦm =⎰⋅S d S B=()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a b Il ln 20πμ εi =-d Φm /d t=()dt dIa b a b a b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ=-5.18×10-8V负号表示逆时针2. (1) 导线ab 的动生电动势为εi = ⎰l v×B ·d l=vBl sin(π/2+θ)=vBl cos θI i =εi /R = vBl cos θ/R方向由b 到a . 受安培力方向向右,大小为F =| ⎰l (I i d l×B )|= vB 2l 2cos θ/RF 在导轨上投影沿导轨向上,大小为F '= F cos θ =vB 2l 2cos 2θ/R8重力在导轨上投影沿导轨向下,大小为mg sin θmg sin θ -vB 2l 2cos 2θ/R=ma=m d v /d t dt=d v /[g sin θ -vB 2l 2cos 2θ/(mR )])]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t l B e l B mgR v θθθ222cos 2221cos sin --= (2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .练习15 感生电动势 自感一、选择题 A D C B B二、填空题1. er 1(d B /d t )/(2m ),向右;eR 2(d B /d t )/(2r 2m ),向下.2. μ0n 2l πa 2, μ0nI 0πa 2ωcos ωt .3.ε=πR 2k/4,从c 流至b .三、计算题1.(1) 用对感生电场的积分εi =⎰l E i ·d l 解:在棒MN 上取微元d x (-R<x<R ), 该处感生电场大小为 E i =[R 2/(2r )](d B/d t ) 与棒夹角θ满足tan θ=x/Rεi =⎰⋅NMl E i d =⎰NMi x E θcos d=()⎰-⋅RRr R r x t B R 22d d d =⎰-+⋅RR R x x t B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )R R-=πR 2(d B/d t )/4因εi =>0,故N 点的电势高. (2) 用法拉第电磁感应定律εi =-d Φ/d t 解: 沿半径作辅助线OM ,ON 组成三角形回路MONMεi=⎰⋅NMl E i d =⎰⋅-MNl E i d=-⎢⎣⎡⋅⎰MNl E i d +⎰⋅OM l E i d +⎥⎦⎤⋅⎰NO l E i d=-(-d ΦmMONM /d t ) =d ΦmMONM /d t 而 ΦmMONM =⎰⋅Sd S B =πR 2B/4故 εi =πR 2(d B/d t )/4N 点的电势高. 2. .等效于螺线管B 内=μ0 nI=μ0 [Q ω /(2π)]/L=μ0 Q ω /(2πL )B 外=0Φ=⎰S B ⋅d S=B πa 2=μ0Q ω a 2 /(2 L ) εi =-d Φ/d t=-[μ0Q a 2 /(2 L )]d ω /d t=μ0ω 0Q a 2 /(2 L t 0) I i =εi /R=μ0ω 0Q a 2 /(2 LR t 0)方向与旋转方向一致.练习16 互感(续)磁场的能量一、选择题 D C B C A二、填空题1. 0.2. ΦAB =ΦBA .3. μ0I 2L /(16π.)三、计算题1. 取如图所示的坐标,设回路有电流为I ,则两导线间磁场方向向里,大小为0≤r ≤a B 1=μ0Ir/(2πa 2)+ μ0I/[2π(d -r )] a ≤r ≤d -a B 2=μ0I/(2πr )+μ0I/[2π(d -r )] d -a ≤r ≤d B 3=μ0I/(2πr )+ μ0I (d -r )/(2πa 2) 取窄条微元d S=l d r ,由Φm =⎰⋅SS B d 得Φml =⎰aa r Irl 0202d πμ+()⎰-a r d r Il 002d πμ +⎰-ad ar r Il πμ2d 0+()⎰--a d ar d rIl πμ2d 09+⎰-ad ar r Il πμ2d 0+()⎰-a d aa rl r -d I 202d πμ =μ0Il/(4π)+[μ0Il/(2π)]ln[d/(d -a )] +[μ0Il/(2π)]ln[(d -a )/a ] +[μ0Il/(2π)]ln[(d -a )/a ]+[μ0Il/(2π)]ln[d/(d -a )]+μ0Il/(4π)=μ0Il/(2π)+(μ0Il/π)ln(d/a )由L l =Φl /I ,L 0= L l /l=Φl /(Il ).得单位长度导线自感 L 0==μ0l/(2π)+(μ0l/π)ln(d/a )2. 设环形螺旋管电流为I , 则管内磁场大小为B =μ0NI/(2πρ) r ≤ρ≤R方向垂直于截面; 管外磁场为零.取窄条微元d S=h d ρ,由Φm =⎰⋅SS B d 得Φm =⎰RrNIh πρρμ2d 0=μ0NIh ln(R/r )/(2π) M =Φm /I ==μ0Nh ln(R/r )/(2π)练习17 麦克斯韦方程组一、选择题 C A D B C二、填空题1. 1.2. ②, ③, ①.3. 1.33×102 W/m 2 , 2.51×10-6J/m 3.三、计算题1. 设极板电荷为Q , 因I=d Q/d t , Q=CU ,有 (1) I=d(CU )/d t=C d U/d td U/d t =I/C = I 0e -kt /C U = I 0(1-e -kt )/(kC )(2)I d =d Φd /d t =d(DS )/d t =d(εES )/d t =d[ε(U /d )S ]/d t=(εS /d )d U/d t =C d U/d t=I=I 0e -kt(3)在极板间以电容器轴线为心,以r 为半径作环面垂直于轴的环路,方向与I d 成右手螺旋.有⎰⋅ll H d =2πrH =∑I d当r <R 时 ∑I d =[I d /(πR 2)]πr 2 H =I d r /(2πR 2)B =μH =μI d r /(2πR 2)=μI 0e -kt r /(2πR 2) 当r >R 时 ∑I d =I d H =Ir /(2πr ) B =μI 0e -k t /(2πr )方向与回路方向相同. O 点,r =0: B =0A 点,r =R 1<R :B =μI 0e -kt R 1/(2πR 2) 方向向里C 点,r =R 2>R : B =μI 0e -k t /(2πR 2) 方向向外.2.(1)坡印廷矢量平均值 S =I =P /(2πr 2) r =10km S =P /(2πr 2)=1.59×10-5W/m 2 (2) 电场强度和磁场强度振幅.εE =μHS =|S |=|E ×H |=2E με=εμH 2E=εμS H=μεS E m =E 2=002εμS =1.09⨯10-1V/mH m =H 2=002μεS =2.91×10-4A/m练习18 电磁感应习题课一、选择题 A B B C D二、填空题1 0, 2μ0I 2/(9π2a 2).2 700Wb/s.3 vBl sin α, A 点.三、计算题1. 任意时刻金属杆角速度为ω,取微元长度d rd εi =v ×B ⋅d l=ωrBdr10 εi =⎰d εi =r r B ad 0⎰ω=ω Ba 2/2I =εi /R =ω Ba 2/(2R )方向由O 向A .微元d r 受安培力为|d F |=|I d l ×B |= IB d r d M =|d M |=|r ×d F |= IBr d r M=⎰d M =r r IB ad 0⎰=I Ba 2/2=ω B 2a 4/(4R )方向与ω相反.依转动定律,有-ω B 2a 4/(4R )=J α=(ma 2/3)d ω /d td t=-[4Rm/(3ω B 2a 2)]d ω =-[4Rm/(3 B 2a 2)]d ω/ωt =()[]()ωωωωd 34022⎰a B mR=-[4Rm/(3 B 2a 2)]ln(ω/ω0)t mRa B e43022-=ωω2. 因b >>a ,可认为小金属环上的磁场是均匀.Φm =⎰⋅Sd S B =BS cos θ=[μ0I/(2b )]πa 2cos θ=μ0I πa 2cos θ/(2b ) (1) I 恒定,θ=ω1t : εi =-d Φm /d t =(-d Φm /d θ)(d θ/d t )=μ0I πa 2ω1sin(ω1t )/(2b ) (2) I =I 0sin ω2t ,θ=0:εi =-d Φm /d t =(-d Φm /d I )(d I/d t ) =-μ0πa 2I 0ω2cos ω2t/(2b )(3) I =I 0sin ω2t ,θ= ω1t : εi =-d Φm /d t=-[(∂Φm /∂θ)(∂θ/∂t )+(∂Φm /∂I )(∂I/∂t )] =[μ0I 0πa 2/(2b )][ω1sin(ω1t )sin(ω2t )-ω2cos ω2t ]练习19 义相对论的基本原理及其时空观一、选择题 C D B A A二、填空题1. c , c .2. c c 97.017/16=.3. ()c l a 201-三、计算题1 (1)设K '相对于K 的运动速度为v ,运动方向为x 正向.因x 1=x 2,有∆t '=(∆t -v ∆x /c 2)/(1-v 2/c 2)1/2=∆t /(1-v 2/c 2)1/2 v=[1-(∆t )2/(∆t ')2]1/2c =3c /5=1.8×108m/s (2) ∆x '=(∆x -v ∆t )/(1-v 2/c 2)1/2=-v ∆t /(1-v 2/c 2)1/2=-v ∆t '=3c (m)=9×108m2. 设地球和飞船分别为K 和K '系,有(1)飞船上观察者测飞船长度为固有长度,又因光速不变,有∆x '=90m ∆t '=∆x '/c =3×10-7s (2)地球上观察者∆x =(∆x '+v ∆t ')/(1-v 2/c 2)1/2=270m ∆t =(∆t '+v ∆x '/c 2)/(1-v 2/c 2)1/2=9×10-7s {或 ∆t =(∆t '+v ∆x '/c 2)/(1-v 2/c 2)1/2=(∆x '/c+v ∆x '/c 2)/(1-v 2/c 2)1/2 =[(∆x '+v ∆t ')/(1-v 2/c 2)1/2]/c =∆x /c =9×10-7s }练习20 相对论力学基础一、选择题 A C A B C二、填空题1. 1.49MeV .2. 2/3c , 2/3c .3. 5.81×10-13, 8.04×10-2.三、计算题1. E k =mc 2-m 0c 2 m =m 0+E k /c 2回旋周期T =2πm /(qB )=2π( m 0+E k /c 2)/(qB ) E k =104MeV=1.6×10-9J m 0=1.67×10-27kg q =1.6⨯10-19C11T =2π( m 0+E k /c 2)/(qB )=7.65×10-7s2. E = m 0c 2/221c v- =E 0/221c v -γ= 1/221c v -=E /E 0v=c ()201E E -=2.998×108m/s运动的距离∆l =v ∆t =v τ0γ= c ()201E E -τ0 E /E 0=c τ0()1/20-E E =1.799×104m练习21 热辐射 光电效应一、选择题 A D C D B二、填空题1. 0.64 .2. 2.4×103K.3. 在一定温度下,单位时间内从绝对黑体表面单位面积上所辐射的各波长的总能量.三、计算题1. (1)T=b/λm =5.794×103K .(2) P =M (T )S =σT 44πR S 2=3.67×1026W (3) P '= P/S '=σT 44πR S 2/(4πL 2)=1.30×103W/m 22. λm = b/T =9.66×10-4mνm =c /λm = c /(b/T )=cT/b =3.11×1011Hz P =M (T )S =σT 44πR E 2=2.34×109W练习22 康普顿效应 氢原子的玻尔理论一、选择题 D B A C A二、填空题1. hc/λ;h/λ;h/(λc ).2. 1.45V ;7.14×105m/s .3. π;0.三、计算题1. h ν=hc /λ=mv 2/2+A =eU c +AU c =(hc /λ-A )/e =(hc /(λe )-A /emv =[2m ( hc /λ-A )]1/2R =mv /(qB )=[2m ( hc /λ-A )]1/2/(eB )2.(1) ∆λ=h (1-cos ϕ)/(m 0c ) λ=λ0+∆λ=λ0+h (1-cos ϕ)/(m 0c )=1.024×10-10m (2) h ν0+m 0c 2= h ν+mc 2= h ν+m 0c 2+E kh ν0= h ν+E k E k =h ν0- h ν= hc/λ0- hc/λ= hc (λ-λ0)/(λ0λ) = hc ∆λ/[λ0(λ0+∆λ)]=4.71×10-17J=294eV练习23 德布罗意波 不确定关系一、选择题 D C D A B二、填空题1. 1.46Å; 6.63×10-31m.2. 3/3. 3. 6.63×10-24. (或1.06×10-24,3.32×10-24, 0.53×10-24)三、计算题1. (1)由带电粒子在均匀磁场中作圆运动运动的知识知,R =mv /(qB ).于是有 p α=m αv α=qBR =2eBRλα=h/p α=h/(2eBR )=9.98×10-12m =9.98×10-3nm(2) 设小球与α粒子速率相同v =v α=2eBR/m αλ= h/p = h/(mv )= h/[m (2eBR/m α)] =[h/(2eBR )](m α/m )=(m α/m )λα=6.62×10-34m2. (1)考虑相对论效应E k =eU =mc 2-m 0c 2=E -E 0p 2c 2=E 2-E 02= (E+E 0)(E -E 0)= (E k +2E 0)E k= (eU +2 m 0c 2) eU p =[(eU +2 m 0c 2) eU ]1/2/cλ=h /p =hc/[(eU +2 m 0c 2) eU ]1/2=8.74×10-13m(2)不考虑相对论效应12 E k =eU=mv 2/2=p 2/(2m ) p =(2meU )1/2 λ=h /p = h /(2meU )1/2= h /(2m 0eU )1/2=1.23×10-12m(λ-λ0)/λ0=40.7%﹪﹪练习24 薛定谔方程 氢原子的量子力学描述一、选择题 A C A D B二、填空题1. ν3=ν1+ν2;1/λ3=1/λ1+1/λ2. 2. 粒子t 时刻出现在r 处的概率密度; 单值,有限,连续;⎰=ψ1d d d 2z y x . 3. a /6, a /2, 5a /6.三、计算题1所发射光子的能量ε=h ν=hc /λ=2.56eV 激发能为∆E =10.19eV 能级的能量为E k ,有∆E =E k - E 1E k =E 1+∆E =-13.6+10.19=-3.41eV 初态能量 E n =E k +ε=-0.85eV 初态主量子数 n =(E 1/E n )1/2=42. 由归一化⎰∞∞-=V Ψd 2⎰lx c 022(l -x )d x =1得 c =530l0~l /3区间发现粒子的概率 P =⎰lx Ψ02d =⎰l30x 2(l -x )2d x /l 5=17/81=21%练习25 近代物理习题课一、选择题 D D D C B二、填空题1 13.6eV , 5.2 >, >, <. 3. 459W/s三、计算题1. (1)ε =h ν=hc/λ=2.86eV(2) 巴耳末系k =2,E 2=E 1/22=-13.6/4=-3.4eVE n =E 1/n 2=E 2+ε =-0.54eVn =(E 1/E n )1/2=5(3) 可发射四个线系, 共10条谱线;波长最短的谱线是从n =5的能态跃迁到n =1的能态而发射的光譜线2 ∆p ∆x ≧ћ/2 ∆p ≧ћ/(2∆x ) 取 p ≈∆p ≧ћ/(2∆x )=7.3⨯10-21kgm/sE k = p 2/(2m )≈[ћ/(2∆x )]2/(2m ) =ћ2/[8 m (∆x )2]=2.5⨯1013。
答案长江大学物理习题集(上册)
一、运动学 1.基本物理量 (1).位置矢量(运动方程) r = r (t) = x (t)i + y (t)j + z (t)k, 速度v = dr/dt = (dx/dt)i+(dy/dt)j + (dz/dt)k, 加速度 a=dv/dt=(dvx/dt)i+(dvy/dt)j +(dvz/dt)k =d2r/dt2=(d2x/dt2)i+(d2y/dt2)j + (d2z/dt2)k, 切向加速度 at= dv/dt, 法向加速度 an= v2/ . (2).圆周运动及刚体定轴转动的角量描述 =(t), =d/dt, = d/dt =d2/dt2, 角量与线量的关系 △l=r△, v=r (v= ×r), at=r, an=r2。 2.相对运动 v20=v21+v10, a20=a21+a10. 二、质点动力学 1.牛顿三定律(略); 惯性系(略);非惯性系(略); 惯性力:平动加速参照系 F惯= ma (a为非惯性系相对惯性系的加速度). 匀速转动参照系的惯性离心力 F惯= m2r 2.动量 P=mv, 冲量 , 质点及质点系的动量定理 =P2-P1, 动量守恒定律: (1) F外=0, p=恒量, (2) (F外)某方向=0,p某方向=恒量, (3) F外f内,p≈恒量 (F外) 某方向( f内) 某方向,p某方向≈恒量 3.功 功率 P=F·v,
2. 阻力作功 A= 依动能定理,有
第一次x1=0,x2=1; 第二次x1=1,x2待求 k(x22-12)= k(12-02) 得 x=,所以第二次击铁钉的深度为 x=-1=0.414cm
Ⅳ 课堂例题 一. 选择题 1.一质点在几个外力同时作用下运动时,下述哪种说法正确? (A) 质点的动量改变时,质点的动能一定改变. (B) 质点的动能不变时,质点的动量也一定不变. (C) 外力的冲量是零,外力的功一定为零. (D) 外力的功为零,外力的冲量一定为零. 2.有一劲度系数为k的轻弹簧,原长为l0,将它吊在天花板上.当它 下端挂一托盘平衡时,其长度变为l1.然后在托盘中放一重物,弹簧长 度变为l2,则由l1伸长至l2的过程中,弹性力所作的功为 (A) . (B) . (C) . (D) . 3.某物体的运动规律为dv/dt=-kv2t,式中的k为大于零的常量. 当t=0时,初速为v0,则速度v与时间t的函数关系是 (A) (B) (C) (D) 4.一根细绳跨过一光滑的定滑轮,一端挂一质量为M的物体,另一 端被人用双手拉着,人的质量m=M/2.若人相对于绳以加速度a0向上 爬,则人相对于地面的加速度(以竖直向上为正)是 (A) (2 a0 + g)/3. (B) -(3g-a0). (C) -(2 a0 + g)/3. (D) a0. 5.假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地 球中心的 (A) 角动量守恒,动能也守恒. (B) 角动量守恒,动能不守恒. (C) 角动量不守恒,动能守恒. (D) 角动量不守恒,动量也不守恒. (E) 角动量守恒,动量也守恒. 6.如图所示,A、B为两个相同的绕着轻绳的定滑轮.A滑轮挂一质
长江大学大学物理历年考试试卷修订稿
长江大学大学物理历年考试试卷集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]a 的正三角形顶点,每条导线中的电流都是I ,这三条导线在正三角形中心O 点产生的磁感强度为:(A) B = 0 (B) B =30I /(a ) (C) B =30I /(2a ) (D) B =30I /(3a )5.无限长直圆柱体,半径为R ,沿轴向均匀流有电流. 设圆柱体内(r < R )的磁感强度为B 1,圆柱体外(r >R )的磁感强度为B 2,则有:(A) B 1、B 2均与r 成正比 (B) B 1、B 2均与r 成反比 (C) B 1与r 成正比, B 2与r 成反比 (D) B 1与r 成反比, B 2与r 成正比6.如图5所示.匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是:(A) ad 边转入纸内,bc 边转出纸外. (B) ad 边转出纸外,cd 边转入纸内. (C) ab 边转入纸内,cd 边转出纸外. (D) ab 边转出纸外,cd 边转入纸内. 7.图6中, M 、P 、O 为软磁材料制成的棒,三者在同一平面内,当K 闭合后(A) P 的左端出现N 极 (B) M 的左端出现N 极(C) O 的右端出现N 极 (D) P 的右端出现N 极8.如图7所示,导体棒AB 在均匀磁场中绕通过C 点的垂直于棒长且沿磁场方向的轴OO 转动(角速度与B 同方向), BC 的长度为棒长的1/3. 则:(A) A 点比B 点电势低 (B) A 点与B 点电势相等(C) A 点比B 点电势高 (D) 有电流从A 点流向B 点 9.已知钠的逸出功是2 .46 eV ,那么钠的红限波长是: (A) 540nm (B )505nm (C) 435nm (D) 355nm.图5图6图7U CU 0A BC 10.在加热黑体过程中,其最大单色辐出度对应的波长由0.8m 变到0.4m ,则其温度增大为原来的(A)16倍 (B)8倍 (C) 4倍 (D)2倍二. 填空题(每空2分,共30分).1. 如图8所示,在场强为E 的均匀电场中,A 、B两点间距离为d ,AB 连线方向与E 的夹角为30°, 从A 点经任意路径到B 点的场强线积分l E d ⎰⋅AB=2. 一平行板电容器,极板面积为S ,相距为d . 若B 板接地,且保持A 板的电势U A = U 0不变,如图9所示. 把一块面积相同的带电量为Q 的导体薄板C 平行地插入两板之间,则导体薄板C 的电势U C =3.一平行板电容器两极板间电压为U ,其间充满相对电容率为e r 的各向同性均匀电介质,电介质厚度为d . 则电介质中的电场能量密度w =4.如图10所示,在真空中,电流由长直导线1沿切向经a 点流入一电阻均匀分布的圆环,再由b 点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I ,圆环半径为R ,aob =180.则圆心O 点处的磁感强度的大小B =5.圆柱体上载有电流I ,电流在其横截面上均匀分布,一回路L (顺时针绕向)通过圆柱内部,将圆柱体横截面分为两部分,其面积大小分别为S 1和S 2,如图11所示. 则=⋅⎰Ll B d6.在磁感强度为B =a i +b j +c k (T)的均匀磁场中,有一个半径为R 的半球面形碗,碗口开口沿x 轴正方向.则通过此半球形碗的磁通量为B图8图137. 边长为a 和2a 的两正方形线圈A 、B,如图12所示地同轴放置,通有相同的电流I , 线圈B 中的电流产生的磁场通过线圈A 的磁通量用A 表示, 线圈A 中的电流产生的磁场通过线圈B 的磁通量用B 表示,则二者大小关系式为8.矩形线圈长为a 宽为b ,置于均匀磁场B 中.线圈以角速度旋转,如图13所示,当t =0时线圈平面处于纸面,且AC 边向外,DE边向里.设回路正向ACDEA . 则任一时刻线圈内感应电动势为9.一截面为长方形的环式螺旋管共有N 匝线圈,其尺寸如图14所示.则其自感系数为10.在一通有电流I 的无限长直导线所在平面内, 有一半径为r 、电阻为R 的导线环,环中心距直导线为a ,如图15所示,且a >>r .当直导线的电流被切断后,沿导线环流过的电量约为11.一平行板空气电容器的两极板都是半径为R 的圆形导体片,在充电时,板间电场强度的变化率为d E /d t .若略去边缘效应,则两板间的位移电流大小为__________12.在某地发生两件事,静止位于该地的甲测得时间间隔为10s ,若相对甲以3c /5(c 表示真空中光速)的速率作匀速直线运动的乙测得时间间隔为13.把一个静止质量为m 0的粒子,由静止加速到v =0.6c (c 为真空中的光速)需做功为14.某微观粒子运动时的能量是静止能量的k 倍,其运动速度的大小为 15.波长 =600nm 的光沿x 轴正向传播,若光的波长的不确定量Δ=104nm,光子的坐标的不确定量至少为 三.计算题(每小题10分,共40分)1415 a1.一均匀带电的球层, 其电荷体密度为 , 球层内表面半径为R 1 , 外表面半径为R 2 ,设无穷远处为电势零点, 求球层内外表面的电势.2. 一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为的各向同性均匀非铁磁绝缘材料,如右图所示.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布. 3. 如右图所示。
大学物理习题集(上-含解答)
大学物理习题集(上册,含解答)第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t-=+,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t-=+. 计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m).根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =.图1.3因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变量得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅, 201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自v 图1.7由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于212t h a t =∆, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t .算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为1222l l vl t v u v u v u =+=+-- 022222/1/1/t l v u v u v==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?AB AB vv + uv - uABvuuvv[解答]雨对地的速度2v r 等于雨对车的速度3v r 加车对地的速度1v r,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v r 运动,0v r 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F r拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力? [解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N), 这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N),图1.101h lα图2.1这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m g a m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a r 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角;(4)用与斜面平行的加速度1b r把小车沿斜面往上推(设b 1 = b );(5)以同样大小的加速度2b r(b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力12图2.32 图2.4的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的矢量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+, 因此角度为cos arctansin b g b ϕθϕ=+;而张力为T=.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,(2)图2.6得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C =+,当h = 0时,v = 0,所以C = 0,因此速率为v =2.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程图2.7222d d k x f ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv C x =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C =-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =(2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101n k C x n -=--,因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d vf mg kv mt =--=,分离变量得d d()d v m mg kv t m mg kv k mg kv +=-=-++,积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+, 当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得 001/k v v v t R μ=+.由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosg R θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 /20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,mg图2.11小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=-r r r 得:21p p p =+∆r r r,由此可作矢量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆== 24.4(m·s -1). 棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).v xΔvv y2.15 如图所示,三个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C之前的运动时间;t =. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作矢量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45°= 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s r的大小为 d s = R d θ.重力G r的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+πr rsin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f r的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πr rcos d k u mg R θθ=-,积分得摩擦力所做的功为图2.174520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G r 、摩擦力f r 和马的拉力F r 就是平衡力,即0F G f ++=rr r ,或者()F G f =-+r r r . 拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅r r r rr r 12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)22k mgR μ=-+.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因数为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
长江大学13-14年大学物理期末试卷及答案
B 卷第 1 页共 4 页2013─2014学年第二学期 《 大学物理A 》(下)考试试卷( B 卷)注意:1、本试卷共4页, 答题纸2页; 2、考试时间: 120分钟; 3、姓名、序号必须写在指定地方; 4、考试为闭卷考试;5、可用计算器,但不准借用;6、考试日期:2009.6.30.7、答题答在答题纸上有效, 答在试卷上无效. 一.选择题(每小题3分,共30分)1. 如图1所示,在真空中半径分别为2R 和4R 的两个同心球面,其上分别均匀地带有电量+4q 和-4q ,今将一电量为+Q 的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动能为:(A) R Qq 04πε. (B) RQq 02πε. (C) R Qq 08πε. (D) RQq 083πε.2.有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 4的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的:(A) 16倍和1/16. (B) 4倍和1/16. (C) 16倍和1/4. (D) 4倍和1/4.3. 有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为μ1和μ2.设r 1∶r 2=1∶2,μ1∶μ2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为:(A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1.(B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1.(C) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. (D) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2.4.波长λ =10000 Å的光沿x 轴正向传播,若光的波长的不确定量∆λ =10-3 Å,则利用不确定关系式h x p x ≥∆∆可得光子的x 坐标的不确定量至少为(A) 10 cm . (B) 100 cm . (C) 1000 cm . (D) 10000 cm . 5. 以下说法错误的是(A)电荷电量大,受的电场力可能小; (B)电荷电量小,受的电场力可能大;4q图1B 卷第 2 页共 4 页(C)电场为零的点,任何点电荷在此受的电场力为零; (D)电荷在某点受的电场力与该点电场方向一致。
长江大学《大学物理》习题课2
3、有一半径为R的单匝圆线圈,通以电流I,若将 该导线弯成匝数N = 2的平面圆线圈,导线长度不 变,并通以同样的电流,则线圈中心的磁感强度 和线圈的磁矩分别是原来的
(A) (B) (C) (D) 4倍和1/8. 4倍和1/2. 2倍和1/4. 2倍和1/2.
4、如图所示的一细螺绕环,它由表面绝缘的导线 在铁环上密绕而成,每厘米绕10匝.当导线中的 电流I为2.0 A时,测得铁环内的磁感应强度的大小 B为1.0 T,则可求得铁环的相对磁导率 r 为(真空 7 1 磁导率 0 4 10 T m A ) (A) (B) (C) (D) 7.96×102 3.98×102 1.99×102 63.3
4、一根同轴线由半径为R1的长导线和套在它外面 的内半径为R2、外半径为R3的同轴导体圆筒组 成.中间充满磁导率为μ的各向同性均匀非铁磁绝
缘材料,如图.传导电流I沿导
线向上流去,由圆筒向下流回,
R3 R2 R 1 I
在它们的截面上电流都是均匀
分布的.求同轴线内外的磁感 强度大小B的分布.
I
B
A R O C D E
cos36°=0.8090)
2、如图所示,一无限长直导线通有电流I =10 A,在
一处折成夹角θ =60°的折线,求角平分线上与导线
的垂直距离均为r =0.1 cm的P点处的磁感强度.
( 0 4 107 T m A1 )
r P r
3、半径为R的无限长圆筒上有一层均匀分布的面电 流,这些电流环绕着轴线沿螺旋线流动并与轴线方向 成 角.设面电流密度(沿筒面垂直电流方向单位长 度的电流)为i,求轴线上的磁感强度
(A) 21 212
(B) 21 12 (C) 21 12 1 (D) 21 12 2
大学物理习题集加答案解析
大学物理习题集(一)大学物理教研室2010年3月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量G=×1011N·m2·kg2重力加速度g=s2阿伏伽德罗常量N A=×1023mol1摩尔气体常量R=·mol1·K1玻耳兹曼常量k=×1023J·K1斯特藩玻尔兹曼常量= ×10-8 W·m2·K4标准大气压1atm=×105Pa真空中光速c=×108m/s基本电荷e=×1019C电子静质量m e=×1031kg质子静质量m n=×1027kg中子静质量m p=×1027kg真空介电常量0= ×1012 F/m真空磁导率0=4×107H/m=×106H/m普朗克常量h = ×1034 J·s维恩常量b=×103m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A) 试验电荷是电量极小的正电荷;(B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 0 r3),以下说法正确的是(A) r→0时, E→∞;(B) r→0时,q不能作为点电荷,公式不适用;(C) r→0时,q仍是点电荷,但公式无意义;(D) r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B) 一个正点电荷和一个负点电荷组成的系统;(C) 两个等量异号电荷组成的系统;(D) 一个正电荷和一个负电荷组成的系统.(E) 两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f , 其电场强度的大小为f / q0 , 以下说法正确的是(A) E正比于f;(B) E反比于q0;(C) E正比于f 且反比于q0;(D) 电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷q2的作用力为f12,当放入第三个电荷Q后,以下说法正确的是(A) f12的大小不变,但方向改变, q1所受的总电场力不变;(B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化;(D) f12的大小、方向均发生改变, q1受的总电场力也发生了变化.二.填空题1.如图所示,一电荷线密度为的无限长带电直线垂直通过图面上的A点,一电荷为Q的均匀球体,其球心为O点,ΔAOP是边长为a的等边三角形,为了使P点处场强方向垂直于OP, 则和Q的数量关系式为,且与Q为号电荷(填同号或异号) .2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q ,测得它所受力的大小为f1;将其撤走,改放一个等量的点电荷q,测得电场力的大小为f2 ,则A点电场强度E的大小满足的关系式为.3.一半径为R的带有一缺口的细圆环, 缺口宽度为d (d<<R)环上均匀带正电, 总电量为q ,如图所示, 则圆心O处的场强大小E = ,场强方向为.三.计算题1.一“无限长”均匀带电的半圆柱面,半径为R, 设半圆柱面沿轴线单位长度上的电量为,如图所示.试求轴线上一点的电场强度.2.一带电细线弯成半径为R的半圆形, 电荷线密度为= 0 sin, 式中0为一常数, 为半径R与X 轴所成的夹角, 如图所示,试求环心O处的电场强度.练习二电场强度(续)电通量一.选择题1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小;(B)电荷电量小,受的电场力可能大;(C)电场为零的点,任何点电荷在此受的电场力为零;(D)电荷在某点受的电场力与该点电场方向一致.2.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E处处不等;(B) 球面上的电场强度矢量E处处相等,故球面上的电场是匀强电场;(C) 球面上的电场强度矢量E的方向一定指向球心;(D) 球面上的电场强度矢量E的方向一定沿半径垂直球面向外.3.关于电场线,以下说法正确的是(A) 电场线上各点的电场强度大小相等;(B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行;(A) 开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合;(D) 在无电荷的电场空间,电场线可以相交.4.如图,一半球面的底面园所在的平面与均强电场E的夹角为30°,球面的半径为R,球面的法线向外,则通过此半球面的电通量为(A)R2E/2 .(B) R2E/2.(C) R2E.(D) R2E.5.真空中有AB两板,相距为d ,板面积为S(S>>d2),分别带+q和q,在忽略边缘效应的情况下,两板间的相互作用力的大小为(A)q2/(40d2 ) .(B) q2/(0 S) .(C) 2q2/(0 S).(D) q2/(20 S) .二.填空题1.真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+ 和,点P1和P2与两带电线共面,其位置如图所示,取向右为坐标X正向,则= ,= .2.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度, 可将园盘分成无数个同心的细园环, 园环宽度为d r,半径为r,此面元的面积d S= ,带电量为d q = ,此细园环在中心轴线上距圆心x的一点产生的电场强度E = .3.如图所示,均匀电场E中有一袋形曲面,袋口边缘线在一平面S内,边缘线所围面积为S0,袋形曲面的面积为S ,法线向外,电场与S面的夹角为,则通过袋形曲面的电通量为.三.计算题1.一带电细棒弯曲线半径为R的半圆形,带电均匀,总电量为Q,求圆心处的电场强度E.2.真空中有一半径为R的圆平面,在通过圆心O与平面垂直的轴线上一点P处,有一电量为q 的点电荷,O、P间距离为h ,试求通过该圆平面的电通量.练习三高斯定理一.选择题1.如果对某一闭合曲面的电通量为=0,以下说法正确的是(A) S面上的E必定为零;(B) S面内的电荷必定为零;(C) 空间电荷的代数和为零;(D) S面内电荷的代数和为零.2.如果对某一闭合曲面的电通量0,以下说法正确的是(A) S面上所有点的E必定不为零;(B) S面上有些点的E可能为零;(C) 空间电荷的代数和一定不为零;(D) 空间所有地方的电场强度一定不为零.3.关于高斯定理的理解有下面几种说法,其中正确的是(A) 如高斯面上E处处为零,则该面内必无电荷;(B) 如高斯面内无电荷,则高斯面上E处处为零;(C) 如高斯面上E处处不为零,则高斯面内必有电荷;(D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E) 高斯定理仅适用于具有高度对称的电场.4.图示为一轴对称性静电场的E~r关系曲线,请指出该电场是由哪种带电体产生的(E表示电场强度的大小, r表示离对称轴的距离)(A) “无限长”均匀带电直线;(B) 半径为R的“无限长”均匀带电圆柱体;(C) 半径为R的“无限长”均匀带电圆柱面;(D) 半径为R的有限长均匀带电圆柱面.5.如图所示,一个带电量为q 的点电荷位于立方体的A角上,则通过侧面a b c d 的电场强度通量等于:(A) q / 240.(B) q / 120.(C) q / 6 0 .(D) q / 480.二.填空题1.两块“无限大”的均匀带电平行平板,其电荷面密度分别为( 0)及2 ,如图所示,试写出各区域的电场强度EⅠ区E的大小,方向;Ⅱ区E的大小,方向;Ⅲ区E的大小,方向.2.如图所示,真空中两个正点电荷,带电量都为Q,相距2R,若以其中一点电荷所在处O点为中心,以R为半径作高斯球面S,则通过该球面的电场强度通量= ;若以r0表示高斯面外法线方向的单位矢量,则高斯面上a、b 两点的电场强度的矢量式分别为,.3.点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量= ,式中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和答:是.三.计算题1.厚度为d的无限大均匀带电平板,带电体密度为,试用高斯定理求带电平板内外的电场强度.2.半径为R的一球体内均匀分布着电荷体密度为的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O′ , 两球心间距离= d, 如图所示, 求:(1) 在球形空腔内,球心O处的电场强度E0;(2) 在球体内P点处的电场强度E.设O、O、P三点在同一直径上,且= d .练习四静电场的环路定理电势一.选择题1.真空中某静电场区域的电力线是疏密均匀方向相同的平行直线,则在该区域内电场强度E和电位U是(A) 都是常量.(B) 都不是常量.(C) E是常量, U不是常量.(D) U是常量, E不是常量.2.电量Q均匀分布在半径为R的球面上,坐标原点位于球心处,现从球面与X轴交点处挖去面元S, 并把它移至无穷远处(如图,若选无穷远为零电势参考点,且将S移走后球面上的电荷分布不变,则此球心O点的场强E0与电位U0分别为(注:i为单位矢量)(A)-i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(B) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(C) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(D) -i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].3.以下说法中正确的是(A) 沿着电力线移动负电荷,负电荷的电势能是增加的;(B) 场强弱的地方电位一定低,电位高的地方场强一定强;(C) 等势面上各点的场强大小一定相等;(D) 初速度为零的点电荷, 仅在电场力作用下,总是从高电位处向低电位运动;(E) 场强处处相同的电场中,各点的电位也处处相同.4.如图,在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为(A) .(B) .(C) .(D) .5.一电量为q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示,现将一试验电荷从A点分别移动到B、C、D各点,则(A) 从A到B,电场力作功最大.(B) 从A到各点,电场力作功相等.(C) 从A到D,电场力作功最大.(D) 从A到C,电场力作功最大.二.填空题1.电量分别为q1 , q2 , q3的三个点电荷分别位于同一圆周的三个点上,如图所示,设无穷远处为电势零点,圆半径为R, 则b点处的电势U = .2.如图,在场强为E的均匀电场中,A、B两点距离为d, AB连线方向与E方向一致, 从A点经任意路径到B点的场强线积分= .3.如图所示,BCD是以O点为圆心, 以R为半径的半圆弧, 在A点有一电量为+q的点电荷, O点有一电量为–q的点电荷, 线段= R, 现将一单位正电荷从B点沿半圆弧轨道BCD移到D点,则电场力所作的功为.三.计算题1.电量q均匀分布在长为2 l的细杆上, 求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点) .2.一均匀带电的球层, 其电荷体密度为, 球层内表面半径为R1 , 外表面半径为R2 ,设无穷远处为电势零点, 求空腔内任一点的电势.练习五场强与电势的关系静电场中的导体一.选择题1.以下说法中正确的是(A) 电场强度相等的地方电势一定相等;(B) 电势梯度绝对值大的地方场强的绝对值也一定大;(C) 带正电的导体上电势一定为正;(D) 电势为零的导体一定不带电2.以下说法中正确的是(A) 场强大的地方电位一定高;(B) 带负电的物体电位一定为负;(C) 场强相等处电势梯度不一定相等;(D) 场强为零处电位不一定为零.3. 如图,真空中有一点电荷Q及空心金属球壳A, A处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是(A) E M≠0, E N=0 ,Q在M处产生电场,而在N处不产生电场;(B) E M =0, E N≠0 ,Q在M处不产生电场,而在N处产生电场;(C) E M =E N =0 ,Q在M、N处都不产生电场;(D) E M≠0,E N≠0,Q在M、N处都产生电场;(E) E M =E N =0 ,Q在M、N处都产生电场.4.如图,原先不带电的金属球壳的球心处放一点电荷q1, 球外放一点电荷q2,设q2、金属内表面的电荷、外表面的电荷对q1的作用力分别为F1、F2、F3 , q1受的总电场力为F, 则(A) F1=F2=F3=F=0.(B) F1= q1 q2 / ( 4 0d2 ) ,F2 = 0 , F3 = 0, F=F1 .(C) F1= q1 q2 / ( 4 0d2 ) , F2 = 0,F3 = q1 q2 / ( 4 0d2 ) (即与F1反向), F=0 .(D) F1= q1 q2 / ( 4 0d2 ) ,F2 与F3的合力与F1等值反向,F=0 .(E) F1= q1 q2 / ( 4 0d2 ) , F2= q1 q2 / ( 4 0d2 ) (即与F1反向), F3 = 0, F=0 .5.如图,一导体球壳A,同心地罩在一接地导体B上,今给A球带负电Q, 则B球(A)带正电.(B) 带负电.(C) 不带电.(D) 上面带正电,下面带负电.二.填空题1.一偶极矩为P的电偶极子放在电场强度为E的均匀外电场中, P与E的夹角为角,在此电偶极子绕过其中心且垂直于P与E组成平面的轴沿角增加的方向转过180°的过程中,电场力作功为A = .2.若静电场的某个立体区域电势等于恒量, 则该区域的电场强度分布是;若电势随空间坐标作线性变化, 则该区域的场强分布是.3.一“无限长”均匀带电直线,电荷线密度为,在它的电场作用下,一质量为m,带电量为q 的质点以直线为轴线作匀速圆周运动,该质点的速率v = .三.计算题1.如图所示,三个“无限长”的同轴导体圆柱面A、B和C,半径分别为R A、R B、R C,圆柱面B上带电荷,A和C 都接地,求B的内表面上电荷线密度1,和外表面上电荷线密度之比值1/2.22.已知某静电场的电势函数U=-+ ln x(SI) ,求点(4,3,0)处的电场强度各分量值.练习六静电场中的导体(续)静电场中的电介质一.选择题1.一孤立的带正电的导体球壳有一小孔,一直导线AB穿过小孔与球壳内壁的B点接触,且与外壁绝缘,如图、D分别在导体球壳的内外表面上,A、C、D三点处的面电荷密度分别为A、C、D , 电势分别为U A、U C、U D ,其附近的电场强度分别为E A、E C、E D , 则:(A) A>D ,C = 0 , E A> E D , E C = 0 , U A = U C = U D .(B) A>D ,C = 0 , E A> E D , E C = 0 , U A > U C = U D .(C) A=C ,D≠0 , E A= E C=0, E D ≠0 , U A = U C =0 , U D≠0.(D) D>0 ,C <0 ,A<0 , E D沿法线向外, E C沿法线指向C ,E A平行AB指向外,U B >U C > U A .2.如图,一接地导体球外有一点电荷Q,Q距球心为2R,则导体球上的感应电荷为(A)0.(B) Q.(C) +Q/2.(D) –Q/2.3.导体A接地方式如图,导体B带电为+Q,则导体A(A) 带正电.(B) 带负电.(C) 不带电.(D) 左边带正电,右边带负电.4.半径不等的两金属球A、B ,R A = 2R B ,A球带正电Q ,B球带负电2Q,今用导线将两球联接起来,则(A) 两球各自带电量不变.(B) 两球的带电量相等.(C) 两球的电位相等.(D) A球电位比B球高.5. 如图,真空中有一点电荷q , 旁边有一半径为R的球形带电导体,q距球心为d ( d > R ) 球体旁附近有一点P ,P在q与球心的连线上,P点附近导体的面电荷密度为.以下关于P点电场强度大小的答案中,正确的是(A) / (20 ) + q /[40 ( d-R )2 ];(B) / (20 )-q /[40 ( d-R )2 ];(C) / 0 + q /[40 ( d-R )2 ];(D)/ 0-q /[40 ( d-R )2 ];(E)/ 0;(F) 以上答案全不对.二.填空题1.如图,一平行板电容器, 极板面积为S,,相距为d,若B板接地,,且保持A板的电势U A=U0不变,,如图, 把一块面积相同的带电量为Q的导体薄板C平行地插入两板中间, 则导体薄板C的电势U C = .2.地球表面附近的电场强度约为100N/C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面的电荷面密度= , 地面电荷是电荷(填正或负).3.如图所示,两块很大的导体平板平行放置,面积都是S,有一定厚度,带电量分别为Q1和Q2,如不计边缘效应,则A、B、C、D四个表面上的电荷面密度分别为、、、.三.计算题1.半径分别为r1 = cm 和r2 = cm 的两个球形导体, 各带电量q = ×108C, 两球心相距很远, 若用细导线将两球连接起来, 并设无限远处为电势零点,求: (1)两球分别带有的电量;(2)各球的电势.2.如图,长为2l的均匀带电直线,电荷线密度为,在其下方有一导体球,球心在直线的中垂线上,距直线为d,d大于导体球的半径R,(1)用电势叠加原理求导体球的电势;(2)把导体球接地后再断开,求导体球上的感应电量.练习七静电场中的电介质(续)电容静电场的能量一.选择题1.极化强度P是量度介质极化程度的物理量, 有一关系式为P = 0(r1)E , 电位移矢量公式为D = 0E + P ,则(A) 二公式适用于任何介质.(B) 二公式只适用于各向同性电介质.(C) 二公式只适用于各向同性且均匀的电介质.(D) 前者适用于各向同性电介质, 后者适用于任何电介质.2.电极化强度P(A) 只与外电场有关.(B) 只与极化电荷产生的电场有关.(C) 与外场和极化电荷产生的电场都有关.(D) 只与介质本身的性质有关系,与电场无关.3.真空中有一半径为R, 带电量为Q的导体球, 测得距中心O为r 处的A点场强为E A =Q r /(40r3) ,现以A为中心,再放上一个半径为,相对电容率为r的介质球,如图所示,此时下列各公式中正确的是(A) A点的电场强度E A=E A / r;(B) ;(C) =Q/0;(D) 导体球面上的电荷面密度= Q /( 4R2 ).4.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C, 极板间电压V,极板空间(不含插入的导体板)电场强度E以及电场的能量W将(↑表示增大,↓表示减小)(A) C↓,U↑,W↑,E↑.(B) C↑,U↓,W↓,E不变.(C) C↑,U↑,W↑,E↑.(D) C↓,U↓,W↓,E↓.5.如果某带电体电荷分布的体电荷密度增大为原来的2倍,则电场的能量变为原来的(A) 2倍.(B) 1/2倍.(C) 1/4倍.(D) 4倍.二.填空题1.一平行板电容器,充电后断开电源, 然后使两极板间充满相对介电常数为r的各向同性均匀电介质, 此时两极板间的电场强度为原来的倍, 电场能量是原来的倍.2.在相对介电常数r= 4 的各向同性均匀电介质中,与电能密度w e=2×106J/cm3相应的电场强度大小E = .3.一平行板电容器两极板间电压为U,其间充满相对介电常数为r的各向同性均匀电介质,电介质厚度为d , 则电介质中的电场能量密度w = .三.计算题1.一电容器由两个很长的同轴薄圆筒组成,内外圆筒半径分别为R 1=2cm ,R2= 5cm,其间充满相对介电常数为r的各向同性、均匀电介质、电容器接在电压U=32V的电源上(如图所示为其横截面),试求距离轴线R=处的A点的电场强度和A点与外筒间的电势差.2.假想从无限远处陆续移来微电荷使一半径为R的导体球带电.(1) 球上已带电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功(2) 使球上电荷从零开始加到Q的过程中,外力共作多少功练习八恒定电流一.选择题1.两个截面不同、长度相同的用同种材料制成的电阻棒,串联时如图(1)所示,并联时如图(2)所示,该导线的电阻忽略,则其电流密度J与电流I应满足:(A) I1 =I2 J1 = J2 I1 = I2 J1 = J2.(B) I1 =I2 J1 >J2 I1<I2 J1 = J2.(C) I1<I2 J1 = J2 I1 = I2 J1>J2.(D) I1<I2 J1 >J2 I1<I2 J1>J2.2.两个截面相同、长度相同,电阻率不同的电阻棒R1 、R2(1>2)分别串联(如上图)和并联(如下图)在电路中,导线电阻忽略,则(A) I1<I2 J1<J2 I1= I2 J1 = J2.(B)I1 =I2 J1 =J2 I1= I2 J1 = J2.(C)I1=I2 J1 = J2 I1<I2 J1<J2.(D)I1<I2 J1<J2 I1<I2 J1<J2.3.室温下,铜导线内自由电子数密度为n= × 1028个/米3,电流密度的大小J= 2×106安/米2,则电子定向漂移速率为:(A)×10-4米/秒.(B) ×10-2米/秒.(C) ×102米/秒.(D) ×105米/秒.4.在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大,在圆柱与圆筒之间充满电导率为的均匀导电物质,当在圆柱与圆筒上加上一定电压时,在长度为l的一段导体上总的径向电流为I,如图所示,则在柱与筒之间与轴线的距离为r 的点的电场强度为:(A) 2rI/ (l2).(B) I/(2rl).(C) Il/(2r2).(D) I/(2rl).5.在如图所示的电路中,两电源的电动势分别为1、2、,内阻分别为r1、r2,三个负载电阻阻值分别为R1、R2、R,电流分别为I1、I2、I3 ,方向如图,则由A到B的电势增量U B-U A为:(A) 2-1-I1 R1+I2 R2-I3 R .(B) 2+1-I1(R1 + r1)+I2(R2 + r2)-I3 R.(C) 2-1-I1(R1-r1)+I2(R2-r2) .(D) 2-1-I1(R1 + r1)+I2(R2 + r2) .二.填空题1.用一根铝线代替一根铜线接在电路中,若铝线和铜线的长度、电阻都相等,那么当电路与电源接通时铜线和铝线中电流密度之比J1:J2 = .(铜电阻率×106·cm , 铝电阻率×106 · cm , )2.金属中传导电流是由于自由电子沿着与电场E相反方向的定向漂移而形成, 设电子的电量为e , 其平均漂移率为v , 导体中单位体积内的自由电子数为n , 则电流密度的大小J = , J的方向与电场E的方向.3.有一根电阻率为、截面直径为d、长度为L的导线,若将电压U加在该导线的两端,则单位时间内流过导线横截面的自由电子数为;若导线中自由电子数密度为n,则电子平均漂移速率为.(导体中单位体积内的自由电子数为n)三.计算题1.两同心导体球壳,内球、外球半径分别为r a , r b,其间充满电阻率为的绝缘材料,求两球壳之间的电阻.2.在如图所示的电路中,两电源的电动势分别为1=9V和2 =7V,内阻分别为r1 = 3和r2= 1,电阻R=8,求电阻R两端的电位差.练习九磁感应强度洛伦兹力一.选择题1.一个动量为p电子,沿图所示的方向入射并能穿过一个宽度为D、磁感应强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A) =arccos(eBD/p).(B) =arcsin(eBD/p).(C) =arcsin[BD /(ep)].(D) =arccos[BD/(e p)].2.一均匀磁场,其磁感应强度方向垂直于纸面,两带电粒子在该磁场中的运动轨迹如图所示,则(A)两粒子的电荷必然同号.(B) 粒子的电荷可以同号也可以异号.(C) 两粒子的动量大小必然不同.(D) 两粒子的运动周期必然不同.3.一运动电荷q,质量为m,以初速v0进入均匀磁场,若v0与磁场方向的夹角为,则(A)其动能改变,动量不变.(B) 其动能和动量都改变.(C) 其动能不变,动量改变.(D) 其动能、动量都不变.4.两个电子a和b同时由电子枪射出,垂直进入均匀磁场,速率分别为v和2v,经磁场偏转后,它们是(A)a、b同时回到出发点.(B) a、b都不会回到出发点.(C) a先回到出发点.(D) b先回到出发点.5. 如图所示两个比荷(q/m)相同的带导号电荷的粒子,以不同的初速度v1和v2(v1v2)射入匀强磁场B中,设T1、T2分别为两粒子作圆周运动的周期,则以下结论正确的是:(A) T1 = T2,q1和q2都向顺时针方向旋转;(B) T1 = T 2,q1和q2都向逆时针方向旋转(C) T1T2,q1向顺时针方向旋转,q2向逆时针方向旋转;(D) T1 = T2,q1向顺时针方向旋转,q2向逆时针方向旋转;二.填空题1. 一电子在B=2×10-3T的磁场中沿半径为R=2×10-2m、螺距为h=×10-2m的螺旋运动,如图所示,则磁场的方向, 电子速度大小为.2. 磁场中某点处的磁感应强度B=-(T), 一电子以速度v=×106i+×106j (m/s)通过该点,则作用于该电子上的磁场力F= .3.在匀强磁场中,电子以速率v=×105m/s作半径R=的圆周运动.则磁场的磁感应强度的大小B= .三.计算题1.如图所示,一平面塑料圆盘,半径为R ,表面均匀带电,电荷面密度为,假定盘绕其轴线OO以角速度转动,磁场B垂直于轴线OO,求圆盘所受磁力矩的大小。
物理长江练习册全册答案
物理长江练习册全册答案第一章:力学基础1. 题目:一个质量为5kg的物体在水平面上,受到一个大小为20N的水平推力,求物体的加速度。
答案:根据牛顿第二定律,\[ F = ma \],其中\( F \)为推力,\( m \)为质量,\( a \)为加速度。
代入数值解得,\[ a =\frac{F}{m} = \frac{20N}{5kg} = 4m/s^2 \]。
2. 题目:一个物体从静止开始自由下落,求其在第2秒末的速度。
答案:自由下落的物体速度\( v \)与时间\( t \)的关系为\[ v = gt \],其中\( g \)为重力加速度,取9.8m/s²。
代入\( t = 2s \),得\[ v = 9.8m/s^2 \times 2s = 19.6m/s \]。
第二章:能量守恒与转换1. 题目:一个质量为2kg的物体从高度5m处自由落下,求其着地时的动能。
答案:物体的势能\( PE \)为\[ PE = mgh \],其中\( m \)为质量,\( g \)为重力加速度,\( h \)为高度。
代入数值,\[ PE = 2kg \times 9.8m/s^2 \times 5m = 98J \]。
由于能量守恒,物体着地时的动能\( KE \)等于其势能,\[ KE = 98J \]。
2. 题目:一个物体以10m/s的速度运动,求其动能。
答案:动能\( KE \)的公式为\[ KE = \frac{1}{2}mv^2 \],代入数值,\[ KE = \frac{1}{2} \times 2kg \times (10m/s)^2 = 100J \]。
第三章:电磁学1. 题目:一个导体两端的电压为12V,通过的电流为2A,求导体的电阻。
答案:根据欧姆定律,\[ V = IR \],其中\( V \)为电压,\( I \)为电流,\( R \)为电阻。
解得电阻\[ R = \frac{V}{I} =\frac{12V}{2A} = 6\Omega \]。
长江大学物理练习册答案1
2静 电 场 习 题 课说明:数学表达式中字母为黑体者表示矢量壹.内容提要一、电荷守恒定律(略) .二、库仑定律 : F=q 1q 2r /(4πε0r 3) . 三、电场强度E :1.定义:E=F /q 0 (F 为试验电荷q 0在电场E 中所受作用力);2. 电场叠加原理i E E ∑= (矢量叠加);点电荷系激发的电场:)4/(30r q i πεi r E ∑=;连续带电体激发的电场: E=∫ q r d q /(4πε0r 3) . 四、高斯定理: 1.电场线(略);2.电场强度通量 Фe =∫S E∙d S (计算电场强度通量时注意曲面S 的法线正方向);3.高斯定理(过闭合曲面的电场强度通量):真空中 0d εi S e qΦ∑=⋅=⎰S E ;介质中 iSq0d ∑=⋅⎰S D ;4.库仑电场为有源场. 五、环路定理: 1.表达式⎰=⋅l0d l E ;2. 静电场为保守场. 六、电势V :1.定义式 (场强与电势的积分关系.下式 中p 表示场点,(0) 表示电势零点):⎰⋅=)0(d pV l E ;2. 电势差 ⎰⋅=-=BAl E d B A AB V V V ;3. 电势叠加原理 V V i ∑=(标量叠加); 点电荷系激发的电势:)4/(0r q V i πε∑=; 连续带电体激发的电势()[]⎰=q r q V 04d πε.4.静电场力的功 W AB =qV AB ;5. 场强与电势的微分关系E=-grad V=[(∂V/∂x )i+(∂V/∂y )j+(∂V/∂z )k ] .七、电偶极子: 1.定义(略); 2.电矩 P e =q l ; 3.激发的电场:延长线上 E=[1/(4πε0)] (2P e /r 3); 中垂线上 E=[1/(4πε0)] (-P e /r 3); 4. 激发的电势 V =P e ·r / (4πε0r 3) ; 5. 在均匀电场中受力矩 M= P e ×E . 八、导体:1.静电平衡条件 导体内E=0, 导体表面附近外E 垂直表面;2.推论(1)导体为等势体,导体表面为等势面, (2)导体表面曲率半径小处面电荷密度大, (3) 导体表面外附近电场E=σ/ε0,3.静电屏蔽(1) 空腔导体内的物体不受腔外电场的影响,(2)接地空腔导体外物体不受腔内电场的影响. 九、电介质:1.有极分子取向极化,无极分子位移极化;2.极化强度 P=∑p e /ΔV ,在各向同性介质中P=χε0E ;3.电位移矢量 D=ε0E+P ,在各向同性介质中D=ε0εr E=εE ,εr =1+χ. 十、电容:1.定义式 C=Q/U=Q /(V 1-V 2);2.几种电容器的电容 (1)平行板电容器 C=εS/d , (2)圆柱形电容器 C=2πεl/ln(R 2/R 1), (3)球形电容器 C=4πεR 2R 1 /(R 2-R 1), (4)孤立导体球 C=4πεR ;3.并联 C=C 1+C 2+C 3+…;4串联 1/C=1/C 1+1/C 2+1/C 3+….2十一、静电场的能量:1.点电荷系相互作用能W e = (1/2)∑q i V i ;2.连续带电体的能量W e = (1/2)∫q V d q ;3.电容器电能W e =(1/2)qU=(1/2)CU 2=q 2/(2C ); 4.静电场的能量密度 w e =(1/2)D ·E ,W e =∫V w e d V=(1/2)∫V D ·E d V .十二、几种特殊带电体激发电场: 1.无限长均匀带电直线激发电场的场强E =λr /(2πε0r 2);2.均匀带电园环轴线上的场强与电势E=Qx/[4πε0 (x 2+R 2)3/2],V= Q/[4πε0 (x 2+R 2)1/2]; 3. 无限大均匀带电平面激发电场的场强E=σ/(2ε0);4. 均匀带电球面激发的场强与电势: 球面内 E =0, V= Q/(4πε0 R ) 球面外 E = Q r /(4πε0 r 3), V= Q/(4πε0 r );5. 均匀带电球体激发的场强与电势: 球体内E =Q r /(4πε0R 3), V=Q (3R 2-r )/(8πε0R 3); 球体外E = Q r /(4πε0 r 3), V= Q/(4πε0 r );6. 无限长均匀带电圆柱面激发的场强: 柱面内 E =0, 柱面外 E =λr /(2πε0r 2);7. 无限长均匀带电圆柱体激发的场强: 柱体内 E =λr /(2πε0R 2), 柱体外 E =λr /(2πε0r 2)贰、练习一至练习八答案及简短解答练习1 库伦定律 电场强度一、选择题 C B A C D 二、填空题1. λ1d/(λ1+λ2).2. 2qy j /[4πε0 (a 2+y 2)3/2] , ±a/21/2.3. M/(E sin θ).三、计算题1. 取环带微元d q =σd S=σ2π(R sin θ)R d θ =2πσR 2sin θd θ d E =d qx/[4πε0(r 2+x 2)3/2]=()3024cos d sin 2R R R πεθθθπσ=σsin θcos θd θ/(2ε0)()()0/204/2d cos sin εσεθθθσπ==⎰E方向x 轴正向.2.取园弧微元 d q=λd l=[Q/(πR )]R d θ=Q d θ/πd E =d q/(4πε0r 2) =Q d θ/(4π2ε0R 2)d E x =d E cos(θ+π)=-d E cos θ d E y =d E sin(θ+π)=-d E sin θE x =()⎰⎰-=2/32/2024d cos d ππεπθθR Q E x=Q/(2π2ε0R 2)E y =⎰d E y ()⎰-2/32/2024d sin ππεπθθR Q =0故 E=E x =()2022R Q επ 方向沿x 轴正向.练习2 电场强度(续)电通量一、选择题 D C D B A 二、填空题1. -p/(4πε0y 3), 2p/(4πε0x 3).2. λ/(πε0a ),3. 5.14⨯105N.三、计算题1. 取无限长窄条电荷元d x ,电荷线密度λ'=λd x/a它在P 点产生的电场强度为d E=λ'/(2πε0r )=λd x/(2πε0a 22x b +) d E x =d E cos α=-λx d x/[2πε0a (b 2+x 2)] d E y =d E sin α=λb d x/[2πε0a (b 2+x 2)]E x =()⎰⎰-+=2/2/2202a a x xb a xdxdE πελ3=()04ln 2/2/022=+-a a ax b πελE y =()⎰⎰-+=2/2/2202a a y xb a bdxdE πελba ab x b a b a a 2arctan arctan 1202/2/0πελπελ=⋅=- 2. 取窄条面元d S=a d x ,该处电场强度为 E=λ/(2πε0r ) 过面元的电通量为d Φe =E ⋅d S =[λ/(2πε0r )]a d x cos θ =λac d x/[2πε0(c 2+x 2)]Φe =⎰d Φe ()⎰-+=2/2/2202b b xc acdxπελ2/2/0arctan 12b b cx c ac -⋅=πελ=λa arctan[b /(2c )]/(πε0)练习3 高斯定理一、选择题 D A D C B二、填空题1. σ/(2ε0),向左;3σ/(2ε0),向左;σ/(2ε0),向右. 2 -Q/ε0, -2Q r 0/(9πε0R 2), -Q r 0/(2πε0R 2). 3 (q 1+ q 4)/ε0, q 1、q 2、q 3、q 4, 矢量和三、计算题1 因电荷分布以中心面面对称,故电场强度方向垂直于平板,距离中心相等处场强大小相等.取如图所示的柱形高斯面:两底面∆S以平板中心面对称,侧面与平板垂直.=⋅⎰S E d SQ /ε左边=⎰⋅左底S E d +⎰⋅右底S E d +⎰⋅侧面S E d =2∆SE(1)板内|x |<a Q=()[]⎰-∆xxSdx a x 2cos 0πρ=()()[]xx a x S a -∆2sin 20ππρ=4ρ0(a /π)∆S sin[πx /(2a )]得 E={2ρ0a sin[πx /(2a )]}/(πε0)(2)板外|x |>a Q=()[]⎰-∆aaSdx a x 2cos 0πρ=()()[]aa a x S a -∆2sin 20ππρ =4ρ0(a /π)∆S得 E=2ρ0a /(πε0)当x >0方向向右, 当x <0方向向左.2. 球形空腔无限长圆柱带电体可认为是均匀带正电(体电荷密度为ρ)无限长圆柱体与均匀带负电(体电荷密度为-ρ)球体组成.分别用高斯定理求无限长均匀带电圆柱体激发的电场E 1与均匀带电球体激发的电场E 2.为求E 1,在柱体内作同轴的圆柱形高斯面,有=⋅⎰S E d S02102ερπεπl r Q rlE ==E 1=ρr 1/(2ε0)方向垂直于轴指向外;为求E 2,在球体内外作同心的球形高斯面,有=⋅⎰S E d S0224πQ E r = 球内r<a Q=-ρ4πr 23/3 E 2=-πr 2/(3ε0) 球外r>a Q=-ρ4πa 3/3 E 2=-πa 3/(3ε0r 22) 负号表示方向指向球心.对于O 点 E 1=ρd/(2ε0), E 2=-πr 2/(3ε0)=0 (因r 2=0) 得 E O =ρa/(2ε0) 方向向右; 对于P 点E 1=ρd/(2ε0), E 2=-πa 3/(12ε0d 2) 得 E P =ρd/(2ε0)-πa 3/(12ε0d 2) 方向向左.练习4 静电场的环路定理 电势一、选择题 A C B D D 二、填空题1.)222(812310q q q R++πε. 2 Ed cos α. 3 .-q/(6πε0R )λ4三、计算题1.解:设球层电荷密度为ρ. ρ=Q/(4πR 23/3-4πR 13/3)=3Q/[4π(R 23-R 13)]球内,球层中,球外电场为E 1=0, E 2=ρ(r 3-R 13)/(3ε0r 2) , E 3=ρ(R 23-R 13)/(3ε0r 2)故⎰⎰⎰∞+=⋅=rR R R r211d d d 21r E r E r E ϕ⎰∞+2d 3R r E=0+{ρ(R 22-R 12)/(6ε0)+[ρR 13/(3ε0)(1/R 2-1/R 1)]}+ ρ(R 23-R 13)/(3ε0R 2) =ρ(R 22-R 12)/(2ε0) =3Q (R 22-R 12)/[8πε0(R 23-R 13)]2. (1)⎰⋅=-212d 2r r r r U U 1l E =⎰2102r rdr r πελ=(λ/2πε0)ln(r 2/r 1)(2)无限长带电直线不能选取无限远为势能零点,因为此时带电直线已不是无限长了,公式E=λ/(2πε0r )不再适用.练习5 电势梯度 静电能 静电场中的导体一、选择题 A A C D B 二、填空题1. 2U 0/3+2Qd/(9ε0S ).2. 会, 矢量.3. 是, 是, 垂直, 等于.三、计算题1. E x =-∂U/∂x=-C [1/(x 2+y 2)3/2+x (-3/2)2x /(x 2+y 2)5/2]= (2x 2-y 2)C /(x 2+y 2)5/2 E y =-∂U/∂y=-Cx (-3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2 x 轴上点(y =0) E x =2Cx 2/x 5=2C /x 3 E y =0E =2C i /x 3 y 轴上点(x =0) E x =-Cy 2/y 5=-C /y 3 E y =0E =-C i /y 32. B 球接地,有 U B =U ∞=0, U A =U BAU A =(-Q+Q B )/(4πε0R 3)U BA =[Q B /(4πε0)](1/R 2-1/R 1)得 Q B =QR 1R 2/( R 1R 2+ R 2R 3- R 1R 3) U A =[Q/(4πε0R 3)][-1+R 1R 2/(R 1R 2+R 2R 3-R 1R 3)]=-Q (R 2-R 1)/[4πε0(R 1R 2+R 2R 3-R 1R 3)]练习6 静电场中的导体(续)静电场中的电介质一、选择题 D D B A C 二、填空题1. 非极性, 极性.2. 取向, 取向; 位移, 位移.3. -Q/(2S ), -Q/(S )三、计算题1. 在A 板体内取一点A , B 板体内取一点B ,它们的电场强度是四个表面的电荷产生的,应为零,有E A =σ1/(2ε0)-σ2/(2ε0)-σ3/(2ε0)-σ4/(2ε0)=0 E A =σ1/(2ε0)+σ2/(2ε0)+σ3/(2ε0)-σ4/(2ε0)=0 而 S (σ1+σ2)=Q 1 S (σ3+σ4)=Q 2 有 σ1-σ2-σ3-σ4=0σ1+σ2+σ3-σ4=0 σ1+σ2=Q 1/S σ3+σ4=Q 2/S解得 σ1=σ4=(Q 1+Q 2)/(2S )=2.66⨯10-8C/m 2σ2=-σ3=(Q 1-Q 2)/(2S )=0.89⨯10-8C/m 2 两板间的场强 E=σ2/ε0=(Q 1-Q 2)/(2ε0S )V=U A -U B ⎰⋅=BAl E d=Ed=(Q 1-Q 2)d /(2ε0S )=1000V四、证明题1. 设在同一导体上有从正感应电荷出发,终止于负感应电荷的电场线.沿电场线ACB 作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l+⋅⎰ACBl E d ⎰⋅AB l E d 2=⎰⋅ACBl E d ≠0与静电场的环路定理=⋅⎰l E d l0相违背,故5在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习7 静电场中的电介质(续) 电容静电场的能量一、选择题 D C B C A二、填空题1. 1/εr , 1/εr .2.3.36×105N/C . 3 ε0εr U 2/(2d 2)三、计算题1. (1)因此电荷与介质均为球对称,电场也球对称,过场点作与金属球同心的球形高斯面,有iSq0d ∑=⋅⎰S D4πr 2D=∑q 0i当r=5cm <R 1, ∑q 0i =0得 D 1=0, E 1=0 当r=15cm(R 1<r <R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 2=Q /(4πr 2)=3.54×10-8C/m 2 E 2=Q /(4πε0εr r 2)=7.99×103N/C 当r=25cm(r >R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 3=Q /(4πr 2)=1.27×10-8C/m 2 E 3=Q /(4πε0r 2)=1.44×104N/C D 和E 的方向沿径向. (2) 当r=5cm <R 1时 U 1=⎰∞⋅rl E d⎰=R rr E d 1⎰++dR Rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr R )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=540V当r=15cm <R 1时 U 2=⎰∞⋅rl E d ⎰+=dR rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr r )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=480V当r=25cm <R 1时 U 3=⎰∞⋅rl E d ⎰∞=rr E d 3=Q/(4πε0r )=360V(3)在介质的内外表面存在极化电荷,P e =ε0χE=ε0(εr -1)E σ'= P e ·n r=R 处, 介质表面法线指向球心σ'=P e ·n =P e cos π=-ε0(εr -1)Eq '=σ'S =-ε0(εr -1) [Q /(4πε0εr R 2)]4πR 2=-(εr -1)Q /εr =-0.8×10-8Cr=R+d 处, 介质表面法线向外σ'=P e ·n =P e cos0=ε0(εr -1)Eq '=σ'S =ε0(εr -1)[Q /(4πε0εr (R+d )2]4π(R +d )2=(εr -1)Q /εr =0.8×10-8C2.球形电容器 C =4πε0RQ 1=C 1V 1= 4πε0RV 1 Q 2=C 2V 2= 4πε0RV 2 W 0=C 1V 12/2+C 2V 22/2=2πε0R (V 12+V 22)两导体相连后 C =C 1+C 2=8πε0RQ=Q 1+Q 2= C 1V 1+C 2V 2=4πε0R (V 1+V 2) W=Q 2/(2C )= [4πε0R (V 1+V 2)]2/(16πε0R ) =πε0R (V 1+V 2)2静电力作功 A=W 0-W=2πε0R (V 12+V 22)-πε0R (V 1+V 2)2=πε0R (V 1-V 2)2=1.11×10-7J练习8 静电场习题课一、选择题 D B A C A 二、填空题1. 9.42×103N/C, 5×10-9C .2.25.3 R 1/R 2, 4πε0(R 1+R 2), R 2/R 1.三、计算题1. (1)拉开前 C 0=ε0S/d W 0=Q 2/(2C 0)= Q 2d /(2ε0S ) 拉开后 C=ε0S/(2d )W=Q 2/(2C )=Q 2d /(ε0S )∆W=W -W 0= Q 2d /(2ε0S )(2)外力所作功A=-A e =-(W 0-W )= W -W 0= Q 2d /(2ε0S ) 外力作功转换成电场的能量 {用定义式解:A=⎰⋅l F d =Fd =QE 'd=Q [(Q/S )/(2ε0)]d= Q 2d /(2ε0S ) }2. 洞很细,可认为电荷与电场仍为球对称,由高斯定理可得球体内电场为6E =(ρ4πr 3/3)r /(4πε0r 3)=ρr /(3ε0)=Q r /(4πε0R 3)F =-q E =-qQ r /(4πε0R 3)F 为恢复力, 点电荷作谐振动-qQr /(4πε0R 3)=m d 2r/d t 2ω=[ qQ /(4πε0mR 3)]1/2因t =0时, r 0=a, v 0=0,得谐振动A=a ,ϕ0=0故点电荷的运动方程为()t mR qQ a r 304cos πε=叁、静电场部分测试题一.选择题1.真空中有一均匀带电球体和一均匀带电球面,如果它们的半径和所带的电量都相等,则它们的静电能之间的关系是(A) 均匀带电球体产生电场的静电能等于均匀带电球面产生电场的静电能. (B) 均匀带电球体产生电场的静电能大于均匀带电球面产生电场的静电能. (C) 均匀带电球体产生电场的静电能小于均匀带电球面产生电场的静电能. (D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能. 2.如图1所示,厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板两侧离板面距离均为h 的两点a 、b 之间的电势差为: (A) 零.(B) σ /2ε 0 (C) σ h /ε 0.(D) 2σ h /ε 0.3.如图2所示,一半径为a 的“无限长”圆柱面上均匀带电,其 电荷线密度为λ,在它外面同轴地套一半径为b 的薄金属圆筒,圆筒原先不带电,但与地连接,设地的电势为零,则在内圆柱面里面、距离轴线为r 的P 点的场强大小和电势分别为:(A) E =0,U =raln 20πελ. (B) E =0,U =abln 20πελ. (C) E =r02πελ,U =r b ln 20πελ. (D) E =r02πελ,U =a b ln 20πελ. 4.质量均为m ,相距为r 1的两个电子,由静止开始在电力作用下(忽略重力作用)运动至相距为r 2 ,此时每一个电子的速率为(A) ⎪⎪⎭⎫⎝⎛-2101142r r m e πε.图27(B)⎪⎪⎭⎫ ⎝⎛-2101142r r m eπε. (C) ⎪⎪⎭⎫ ⎝⎛-2101142r r m eπε . (D) ⎪⎪⎭⎫ ⎝⎛-2101141r r m eπε. 5. 如图3所示,在真空中半径分别为R 和2R 的两个同心球面,其上分别均匀地带有电量+q 和-3q ,今将一电量为+Q 的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动能为:(A) R Qq 04πε. (B) RQq 02πε.(C) RQq 08πε.(D)RQq083πε. 6.关于试验电荷以下说法正确的是 (A) 试验电荷是电量极小的正电荷; (B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).6.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E 处处不等;(B) 球面上的电场强度矢量E 处处相等,故球面上的电场是匀强电场; (C) 球面上的电场强度矢量E 的方向一定指向球心;(D) 球面上的电场强度矢量E 的方向一定沿半径垂直球面向外. 8.关于高斯定理的理解有下面几种说法,其中正确的是 (A) 如高斯面上E 处处为零,则该面内必无电荷; (B) 如高斯面内无电荷,则高斯面上E 处处为零; (C) 如高斯面上E 处处不为零,则高斯面内必有电荷; (D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零;9.如图4,在点电荷+q 的电场中,若取图中P 点处为电势零点,则M 点的电势为3q 图3 +图48(A) ()a q 04πε. (B) ()a q 08πε. (C) ()a q 04πε-. (D) )a q 08πε-.10.如图5,一导体球壳A,同心地罩在一接地导体B 上,今给A 球带负电-Q , 则B 球(A) 带正电.(B) 带负电. (C) 不带电.(D) 上面带正电,下面带负电.二.填空题1.一均匀带电直线长为d ,电荷线密度为+λ,以导线中点O 为球心,R 为半径(R >d/2 ) 作一球面,如图86所示,则通过该球面的电场强度通量为 , 带电直线的延长线与球面交点P 处的电场强度的大小为 , 方向 .2.一空气平行板容器,两板相距为d ,与一电池连接时两板之间相互作用力的大小为F ,在与电池保持连接的情况下,将两板距离拉开到2d ,则两板之间的相互作用力的大小是 .3. 图7所示为某电荷系形成的电场中的电力线示意图,已知A 点处有电量为Q 的点电荷,则从电力可判断B 处存在一 (填正、负)的点电荷;其电量 | q |(填> ,< ,= )Q .4. 在相对介电常数ε r = 4 的各向同性均匀介质中,与电能密度w e=2×106J/cm 3相应的电场强度大小E = .5.如图8,一平行板电容器, 极板面积为S ,,相距为d , 若B 板接地,,且保持A 板的电势 U A =U 0不变,,如图, 把一块面积相同的带电量为Q 的导体薄板C 平行地插入两板中间, 则导体薄板C 的电势U C = .6.如图9所示,一电荷线密度为λ 的无限长带电直线垂直通过图面上的A 点,一电荷为Q 的均匀球体,其球心为O 点,ΔAOP 是边长为a 的等边三角形,为了使P 点处场强方向垂直于OP, 则λ和Q 的数量之间应满足 关系,且λ与Q 为 号电荷 (填同号或异号) .7. 点电荷q 1 、q 2、q 3和q 4在真空中的分布如图10所示,图中S 为闭合曲面,则通过该闭合曲面的电通量S E d ⋅⎰S= ,式图6-Q图5AC BU U 图8图9 ∙q 1 ∙q 2 ∙q 3 ∙q 4S图10AQ 图7中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和?答:是.8.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度, 可将园盘分成无数个同心的细园环, 园环宽度为d r,半径为r,此面元的面积d S= ,带电量为d q = ,此细园环在中心轴线上距圆心x的一点产生的电场强度E = .9.电量分别为q1 , q2 , q3的三个点电荷分别位于同一圆周的三个点上,如图11所示,设无穷远处为电势零点,圆半径为R, 则b点处的电势U = .10.若静电场的某个立体区域电势等于恒量, 则该区域的电场强度分布是;若电势随空间坐标作线性变化, 则该区域的场强分布是.三.计算题1.如图12所示,一电荷面密度为σ的“无限大”平面,在距离平面a米远处的一点的场强大小的一半是由平面上的一个半径为R的圆面积范围内的电荷所产生的,试求该圆半径的大小2.两平行的无限长半径均为r0的圆柱形导线相距为d(d>> r0 ) ,求单位长度的此两导线间的电容.3.半径为R的一球体内均匀分布着电荷体密度为ρ的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O´ , 两球心间距离OO = d, 如图13所示, 求:(1) 在球形空腔内,球心O'处的电场强度E0;(2) 在球体内P点处的电场强度E.设O'、O、P三点在同一直径上,且OP= d.4.一均匀带电的球层, 其电荷体密度为ρ, 球层内表面半径为R1, 外表面半径为R2,设无穷远处为电势零点, 求球层内任一点(R1<r0<R2)的电势.图12q q3图11图13910肆、静电场部分测试题解一.选择题 B A B D C D A D D A 二.填空题1. λd/ε0, λd/[4πε0(R 2-d 2/4)],水平向左2. 负,<.3. F /4. 4. 3.36×1011V/m.5. U 0/2+Qd/(4ε0S ).6. Q=a λ, 异.7. (q 2+q 4)/ε0, q 1、q 2、q 3、q 4. 8. 2πr d r , 2πr σd r , σd r .9.)22(812310q q q R++πε.10. E =0,匀强电场.三.计算题1. 该均匀带电圆在距平面a 米处产生场强为[]{}⎰⎰+==qa r adq E E 3220)(4d πε]{}⎰+=Ra r r a 023220)(4d 2πεπσ=[σ/(2ε0)][1-a /(R 2+a 2)1/2]“无限大”均匀带电平面在该点产生的场强为E '=σ/(2ε0),由题意E '=2 E .故σ/(2ε0) =2[σ/(2ε0)][1-a /(R 2+a 2)1/2]a /(R 2+a 2)1/2=1/2 解得 a R 3= 2. 设两无限长导线带电线密度为λ±,取坐标如图,由叠加原理可求得两导体间的场强: E =λ/(2πε0x )+λ/[2πε0(d -x )]⎰⋅=∆baU l E d()[]()[]⎰--+=000112r d r x r d x d πελ=[λ/(πε0)]ln[(d -r 0)/r 0]≈[λ/(πε0)]ln(d /r 0) 取导线长度L ,则所带电量Q=λL ,则此段导线的电容为 C L =Q/∆U=πε0L/ln(d /r 0) 单位长度电容为 C 0=C L /L =πε0/ln(d /r 0)3. 此带电体可认为是实心均匀带正电(电荷密度ρ)的大球和均匀带负电(电荷密度-ρ,位置在原空腔处)的小球组成.Q 1=ρ(4πR 3/3), Q 2=-ρ(4πa 3/3),用高斯定理可求Q 1在大球内(r 1<R )产生的场.E 1= Q 1r 1/(4πε0R 3)=ρr 1/(3ε0)Q 2在小球内(r 2<a )外(r 2>a )产生的场.E 2内= Q 2r 2/(4πε0a 3)=-ρr 2/(3ε0) E 2外= Q r 2/(4πε0r 23)=-ρa 3r 2/(3ε0r 3) (1)O ' 点处:r 1=d ,r 2=0. E 1=ρd 1/(3ε0), E 2=0E 0=E 1+E 2=ρd 1/(3ε0) 方向向右(2)P 点处:r 1=d ,r 2=2d. E 1=ρd 1/(3ε0), E 2=-ρa 3/(12ε0d 2) E 0=E 1+E 2=ρd 1/(3ε0) -ρa 3/(12ε0d 2)= ρ (4d 3-a 3)/(12ε0d 2)方向向左4一法,用电势定义求因电荷球对称,电场球对称,作与带电体对称的球形高斯面,有0int 2/4d επq E rS==⋅⎰S E球内,r<R 1: q int =0 E 1=0 球层中R 1<r<R 2, q int =ρ4π( r 3-R 13)/3E 2=ρ( r 3-R 13)/3ε0r 2球外r>R 2: q int =ρ4π( R 23-R 13)/3E 2=ρ( R 23-R 13)/3ε0r 2 故⎰∞⋅=rU l E d ⎰⎰∞⋅+⋅=2232R R r l E l E d d()()[]+⋅-⎰2120313R r 3r r R r d ερ ()()[]⎰∞⋅-+2231323R r r R R d ερ[ρ/(3ε0)][( R 22-r 02)/2- R 13(1/r 0-1/R 2)]++[ρ/(3ε0)]( R 23-R 13)/R 2) =ρ(3R 2-r 02-2R 13/r 0)/(6ε0)二法,用电势叠加求取同心的薄球壳微元d q ==4πr 2ρd r ,它在球层内产生的电势:当r<r 0时, d U =d q/(4πε0r 0)= ρr 2d r/(ε0r 0), 当r>r 0时, d U =d q/(4πε0r )= ρr d r/ε0, 所以()[]⎰⎰⎰+==20010002R r r R r r r r r U U ερερd d d =[ρ/(3ε0)]( r 02-R 13/r 0)+[ ρ/(2ε0)]( R 22-r 02)=ρ(3R 2-r 02-2R 13/r 0)/(6ε0)11。
长江大学大学物理上重点习题答案选择填空
4. 如图所示为某种气体的速率分布曲线,则 v2 f vdv v1
表示速率介于 v1 到 v2 之间的 C
f(v )
(A) 分子数.
(B) 分子的平均速率. (C) 分子数占总分子数的百分比. (D) 分子的方均根速率.
O
v v1 v2
图
1. 下面各种情况中可能存在的是 B (A) 由 pV=(M/Mmol)RT 知,在等温条件下,逐渐增大压强,当 p→∞时,V→0; (B) 由 pV=(M/Mmol)RT 知,在等温条件下,逐渐让体积膨胀,当 V→∞时,p→0; (C) 由 E=(M/Mmol)iRT/2 知,当 T→0 时,E→0;
3. 有 A、B 两个半径相同,质量相同的细圆环.A 环的质量均匀分布,B 环的质量不均匀 分布,设它们对过环心的中心轴的转动惯量分别为 IA 和 I B,则有 D
(D) IA=IB.
1. 以下说法错误的是: (A) 角速度大的物体,受的合外力矩不一定大; (B) 有角加速度的物体,所受合外力矩不可能为零; (C) 有角加速度的物体,所受合外力一定不为零; (D) 作定轴(轴过质心)转动的物体,不论角加速度多大,所受合外力一定为零.
2. 如图(A)所示,mA > mB 时,算出 mB 向右的加速度为 a,今去掉 mA 而代之以拉力 T= mAg,
如图(B)所示,算出 mB 的加速度 a ,则 C (C) a < a .
mB
mB
mA (A)
图
T (B)
4. 如图所示,弹簧秤挂一滑轮,滑轮两边各挂一质量
为 m 和 2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩 擦忽略不计,在 m 及 2m 的运动过程中,弹簧秤的读数为 D
(C) pV /(RT) . (D) pV/(mT) .
长江大学2008─2009学年B第一期《 大学物理A》(上)考试试卷(B卷)
B 卷第 1 页共 3 页2008─2009学年第一学期 《 大学物理A 》(上)考试试卷( B 卷)注意:1、本试卷共4页, 答题纸2页; 2、考试时间: 120分钟; 3、姓名、序号必须写在指定地方; 4、考试为闭卷考试; 5、可用计算器,但不准借用; 6、考试日期:2008.12.31.7、答题答在答题纸上有效, 答在试卷上无效.一.选择题(每小题3分,共30分)1.有两个半径相同,质量相等的细圆环A 和B,A 环的质量分布均匀, B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B , 则(A) J A >J B . (B) J A =J B .(C) J A <J B . (D) 不能确定J A 、J B 哪个大.2.一定量某理想气体所经历的循环过程是:从初态(V 0 ,T 0)开始,先经绝热膨胀使其体积增大1倍,再经等容升温回复到初态温度T 0, 最后经等温过程使其体积回复为V 0 , 则气体在此循环过程中(A) 对外作的净功为负值. (B) 对外作的净功为正值.(C) 内能增加了. (D) 从外界净吸收的热量为正值.3.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为:(A) pV/m . (B) pV /(mT ). (C) pV /(RT ) . (D) pV / (kT ).4. 一平面简谐波沿x 轴负方向传播,已知x=x 0处质点的振动方程为y=A cos(ω t+ϕ0). 若波速为u ,则此波的波动方程为(A) y=A cos{ω [t -(x 0-x )/u ]+ ϕ0} . (B)y=A cos{ω [t -(x -x 0)/u]+ ϕ0} . (C) y=A cos{ω t -[(x 0-x )/u ]+ ϕ0} . (D) y=A cos{ω t +[(x 0-x )/u ]+ ϕ0} .5.对于一个物体系来说,在下列条件中,哪种情况下系统的机械能守恒? (A) 合外力为零. (B) 合外力不作功.(C) 外力和保守内力都不作功. (D) 外力和非保守内力都不作功.6. 图1所列各图表示的速率分布曲线,哪一图中的两条曲线能是同一温度下氮气和氦气的分子速率分布曲线?(A)(C)(B)(D)图1B 卷第 2 页共 3 页7.在波长为λ的驻波中,两个相邻波腹之间的距离为(A) λ/2 . (B) λ/4 . (C) 3λ/4 . (D) λ .8.单色平行光垂直照射在薄膜上, 经上下两表面反射的两束光发生干涉,如图2所示,若薄膜的厚度为e , 且n 1<n 2 <n 3 , λ1 为入射光在n 1 中的波长,则两束光的光程差为: (A) 2 n 2e -(1/2)n 1λ1. (B) 2 n 2 e -λ1 / (2 n 1) . (C) 2 n 2 e .(D) 2 n 2e -(1/2)n 2λ1 .9.在单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射到宽度为a =6λ的单缝上,屏上第三级暗纹对应于衍射角为:(A) 60o . (B) 45o . (C) 30o . (D) 75o .10.有一劲度系数为k 的轻弹簧,原长为l 0,将它吊在天花板上.当它下端挂一托盘平衡时,其长度变为l 1.然后在托盘中放一重物,弹簧长度变为l 2,则由l 1伸长至l 2的过程中,弹性力所作的功为:(A) ⎰-21d l l x kx . (B)⎰---0201d l l l l x kx (C)⎰21d l l x kx . (D)⎰--0201d l l l l x kx .二.填空题(每空2分,共30分).1. 如图3所示,质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2/12).开始时棒静止,现有一子弹,质量是m 3,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度=________.2.一质点在二恒力的作用下, 位移为∆r =3i +8j (SI), 在此过程中,动能增量为28J, 已知其中一恒力F 1=12i -3j (SI), 则另一恒力所作的功为 .3. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的) 由空气搬入折射率为1.33的水中,则反射光形成的干涉条纹中心点是 .(填明斑或暗斑)4.一飞轮以初角速度ω 0绕轴旋转, 飞轮对轴的转动惯量为J ;另一静止飞轮突然被同轴地啮合到转动的飞轮上,啮合后整个系统的角速度变为初角速度ω 0的2/5,则后一个飞轮对轴的转动惯量为前者的 倍。
大学物理课后习题答案(全册)
《大学物理学》课后习题参考答案习题11-1. 已知质点位矢随时间变化函数形式为)ωtsin ωt(cos j i R r其中为常量.求:(1)质点轨道;(2)速度和速率。
解:1)由)ωtsin ωt(cos j i R r知t cos R x ωtsin R yω消去t 可得轨道方程222Ryx2)jr vt Rcos sin ωωt ωR ωdtd iRωt ωR ωt ωR ωv2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j ir )t 23(t 42,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0t到1t 秒的位移;(3)0t 和1t 秒两时刻的速度。
解:1)由j ir)t 23(t 42可知2t 4x t23y消去t 得轨道方程为:2)3y(x2)jir v 2t 8dtd jij i v r 24)dt2t 8(dt101Δ3)jv 2(0)jiv 28(1)1-3. 已知质点位矢随时间变化的函数形式为j ir t t 22,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:1)ji r v2t 2dtd iv a2dtd 2)212212)1t(2]4)t 2[(v1tt 2dtdv a 2t22221nta aat 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121att v y (1)图 1-420221gttv h y (2)21y y (3)解之2d tg a 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的td dr ,td dv ,tv d d .解:(1)t v x 0式(1)2gt21hy 式(2)jir )gt 21-h (t v (t)20(2)联立式(1)、式(2)得22v 2gx hy (3)ji r gt -v td d 0而落地所用时间gh 2t所以j i r 2gh -v t d d 0jv g td d 2202y2x)gt (vvvv 211222222[()](2)g ghg t dv dtvgt vgh 1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。
【VIP专享】长江大学物理练习册答案3
练习 19 互感(续)自感 磁场的能量
一、选择题 D C B C A
二、填空题
1. 1.
1. 0.
2. AB=BA. 3. 0I2L / (16). 三、计算题
I 1. 取如图所示的坐标,设 回路有电流为 I,则两导线 间磁场方向向里,大小为
2. ②, ③, ①. 3. 1.33×102 W/m2 , 2.51×10-6J/m3.
g sin vB2l 2 cos2 mR
0
v mgRsin 1 e B2l2 cos2 t mR B2l 2 cos 2
(2)
导线
ab
的 2l 2 cos 2
.
练习 18 感生电动势 互感
一、选择题 A D C B B 二、填空题
1.er1(dB/dt)/(2m),向右;eR2(dB/dt)/(2r2m),向下.
F= l (Iidl×B)= vB2l2cos/R F 在导轨上投影沿导轨向上,大小为
F = Fcos =vB2l2cos2/R
重力在导轨上投影沿导轨向下,大小为
mgsin mgsin vB2l2cos2/R=ma=mdv/dt dt=dv/[gsin vB2l2cos2/(mR)]
t
v
dv
故
εi=R2(dB/dt)/4
N 点的电势高.
2. .等效于螺线管
B 内=0 nI=0 [Q /(2)]/L=0 Q /(2L)
B 外=0 =SBdS=Ba2=0Q a2 /(2 L) εi =-d/dt=-[0Q a2 /(2 L)]d /dt
=0 0Q a2 /(2 L t0) Ii=εi /R=0 0Q a2 /(2 LR t0)
长江大学油层物理习题解答
第一篇 储层流体的高压物性第一章 天然气的高压物理性质 一、名词解释。
1.天然气视分子量(gas apparent molecular weight ):2.天然气的相对密度g(gas relative density ) :3.天然气的压缩因子Z(gas compressibility factor) :4.对应状态原理(correlation state principle) :5.天然气压缩系数Cg (gas compressive coefficient ):6.天然气体积系数Bg (gas formation volume factor):二.判断题。
√×× ×√√××1.体系压力愈高,则天然气体积系数愈小。
(√ ) 2.烃类体系温度愈高,则天然气压缩因子愈小。
(× ) 3.体系压力越大,天然气等温压缩率越大。
(× ) 4.当二者组分相似,分子量相近时,天然气的粘度增加。
( ) 5.压力不变时,随着温度的增加,天然气的粘度增加。
(× ) 6.天然气水合物形成的有利条件是低温低压。
(√ ) 7.温度不变时,压力增加,天然气体积系数减小。
(√ ) 8.温度不变时,压力增加,天然气分子量变大。
(× ) 9. 当压缩因子为1时,实际气体则成为理想气体。
(× )三.选择题。
ACACBDB1.理想气体的压缩系数与下列因素有关1.理想气体的压缩系数与下列因素有关 A.压力 B.温度C.体积D.组成 ( A ) 2.在相同温度下,随着压力的增加,天然气压缩因子在低压区间将 在高压区间将A.上升,上升B.上升,下降C.下降,上升D.下降,下降 ( C ) 3.对于单组分烃,在相同温度下,若C 原子数愈少,则其饱和蒸气压愈 其挥发性愈A.大,强B.小,弱C.小,强D.大,弱 ( A ) 4.地层中天然气的密度 地面天然气的密度。
长江大学物理练习册答案
1长江大学物理练习册答案壹.内容提要一、狭义相对论 1. 基本原理(1)爱因斯坦相对性原理; (2)光速不变原理. 2.洛伦兹坐标变换式⎪⎪⎩⎪⎪⎨⎧='='='='2222211/c v -vx/c -t t z z y y /c v -vt-x x ⎪⎪⎩⎪⎪⎨⎧'+'='='='+'=2222211/c v -/c x v t t z z y y /c v -t v x x 3. 时空观 (1).同时的相对性∆t=()2221/c v -/c x v t '∆+'∆(2). 长度收缩 l=2201/c v -l (3). 时间延缓 ∆t=2201Δ/c v -t4. 相对论力学(1).相对论质量 2201/c v -m m = (2).相对论动量 2201/c v -m m v v p ==(3).质能关系式①静能 E 0=m 0c 2 ②运动的能量 E=mc 2=22201/c v -c m③动能 E k =E -E 0=22201/c v -c m -m 0c 2④ E k =∆mc 2 ∆E =∆mc 2 (4). 动量能量关系式E 2=E 02+p 2c 2 . 二.光的粒子性1.普朗克黑体辐射公式(1).普朗克的量子假设(略) (2).普朗克黑体辐射公式M ν(T )d ν=()1e d 223-kT h c h νννπ M λ(T )d λ =()1ed 252-λλλπkT c h hc(3)斯特藩-玻耳兹曼定律 M (T )=σT 4(4)维恩位移定律 λm T = b 2. 光子 能量ε=h ν 动量p=h/λ 3.光电效应(1)爱因斯坦方程 h ν=mv 2/2+A (2)红限频率 ν0=A /h(3)遏止电势差 U c =( h ν-A )/e 4.康普顿效应 ∆λ=()[]()2sin 220θc m h 三、量子物理1.氢原子的玻尔理论 (1)三条假设 ①定态假设,②量子化条件 L=nħ=nh /(2π) ③频率条件 h ν=E i -E f(2)氢原子中电子轨道半径 r n =n 2r 1 (玻尔半径r 1为电子第一轨道半径n=1) (3)氢原子能级公式 E n =E 1/n 2氢原子的基态能量( n=1) E 1=-13.6eV (3)能级跃迁时辐射光子的频率和波长公式 ν=Rc (1/n f 2-1/n i 2) 1/λ= R (1/n f 2-1/n i 2) 2.德布罗意波 能量E=h ν 动量p=h/λ 德布罗意波长 λ=h/p=h/ (mv )3.不确定关系 ∆x ∆p x ≥h ∆y ∆p y ≥h∆z ∆p z ≥h ∆E ∆t ≥h4.量子力学简介2(1)波函数自由粒子的波函数 ()()px -Et h t x Ψπψ2i-0e,=找到粒子的概率密度为⎪ψ⎪2=ψψ*;波函数必须是单值、有界、连续并满足归一化条件:⎰∞∞-=1d 2V Ψ(1) 薛定谔方程①一维含时薛定谔方程t Ψh U Ψx Ψm h ∂∂=+∂∂-ππ2i 82222②一维定态薛定谔方程()()()08d d 2222=+x ψU -E hmx x ψπ ③三维定态薛定谔方程()08222=+∇ΨU -E h mΨπ (3)一维无限深势阱 08d d 2222=+ψh mE x ψπ 一维方垒势的隧道效应。
2020年湖北省荆州市长江大学附属中学高一物理测试题带解析
2020年湖北省荆州市长江大学附属中学高一物理测试题含解析一、选择题:本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意1. (多选)下列实例属于超重现象的是()A.汽车驶过拱形桥顶端B.荡秋千的小孩通过最低点C.跳水运动员被跳板弹起,离开跳板向上运动D.火箭点火后加速升空参考答案:BD2. (多选题)如图所示,四中情境中物体A均处于静止状态,它与外界的接触面(点)均光滑,其中物体A所受弹力示意图正确的是()A.两球完全相同且接触,O为A球的球心B.O为A球的球心,C为A球重心C.O为A球的球心,墙壁竖直D.O为半球形的球心,A为一根均匀直棒参考答案:BC【考点】物体的弹性和弹力.【分析】弹力产生在接触面上,常见的支持力或压力是弹力,它们的方向是垂直接触面指向受力物体.对于A项,可运用假设法判断两球之间有无弹力.【解答】解:A、A球只受到水平面的弹力F1,右侧的球对A没有弹力,否则A球将向左运动,与题意矛盾,故A 错误.B、A球受到两个支持力,这两个支持力都与接触面垂直,即通过球心,故B正确.C、A球受到墙的弹力F1,方向垂直于墙壁向右;斜面的支持力F2,方向与斜面垂直向上,故C正确.D、F2方向不对,应通过球心,故D错误.故选:BC3. 上海世博会举行了盛大的烟花晚会,如图所示,燃放礼花弹时,要先将礼花弹放入竖直的炮筒中,然后点燃发射部分,通过火药剧烈燃烧产生高压燃气,将礼花弹由筒底射向空中。
若礼花弹在由筒底发至筒口的过程中,克服重力做功为W1,克服炮筒阻力及空气阻力做功为W2,高压燃气对礼花弹做功为W3,则礼花弹在筒中运动的过程中(设它的质量不变)()A.动能变化量为W3-W2-W1 B.动能变化量为W1+W2+W3C.机械能增加量为W3-W2-W1 D.机械能增加量为W3+W1参考答案:A4. (单选题)以下划线上的数字指时间(即时间间隔)的是()A.某中学的作息表上写着,第四节:10:20-11:00B.刘翔跨栏记录为12.91sC.浙江卫视《中国好声音》每周五晚21:00准时与您见面D.下午第一节课从14:20开始参考答案:B5. 做平抛运动的物体,每秒钟的速度增量是:()A.大小相等,方向相同B.大小不等,方向不同C.大小相等,方向不同D.大小不等,方向相同参考答案:A二、填空题:本题共8小题,每小题2分,共计16分6. 一个人从A井竖直向下运动了10m到井底,在井底又沿着水平隧道向东走了40m,然后又从B井竖直向上返回地面.若A、B两个井口恰在同一水平面上,则:此人发生的位移是_______方向_________通过的路程是___________。
2021-2022学年湖北省荆州市长江大学附属中学高一物理下学期期末试卷含解析
2021-2022学年湖北省荆州市长江大学附属中学高一物理下学期期末试卷含解析一、选择题:本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意1. 对于两个相互接触的物体,下列说法正确的是()A.有弹力一定有摩擦力B.有摩擦力一定有弹力C.静止的物体所受的摩擦力叫静摩擦力D.运动的物体所受的摩擦力叫动摩擦力参考答案:B2. 下列各物理量中,都属于矢量的是( )A.位移,路程B.速度,平均速度C.瞬时速度,加速度D.路程,平均速度参考答案:BC3. 如图所示,小船以大小为υ1、方向与上游河岸成θ的速度(在静水中的速度)从O处过河,经过一段时间,正好到达正对岸的Oˊ处。
现要使小船在更短的时间内过河并且也正好到达正对岸Oˊ处,在水流速度不变的情况下,可采取下列方法中的A.只要增大υ1大小,不必改变θ角B.只要增大θ角,不必改变υ1大小C.在增大υ1的同时,也必须适当增大θ角D.在增大υ1的同时,也必须适当减小θ角参考答案:D 4. 在国际单位制中,力学基本单位有三个,这三个基本单位是()A.m、kg、NB. m、kg、sC. m、s、ND.kg、s、N参考答案:B5. (单选)如图所示,质量为m的小车在水平恒力F推动下,从山坡底部A处由静止开始运动至高为h 的坡顶B处,此时速度为,已知A、B间的水平距离为,A、B间的路程为s。
则小车从A运动到B 的过程中A.克服重力所做的功是mgxB.克服重力所做的功是mgsC.推力对小车做的功是FxD.推力对小车做的功是Fs参考答案:C二、填空题:本题共8小题,每小题2分,共计16分6. 如图所示,将打点计时器固定在铁架台上,使重物带动纸带从静止开始自由下落,利用此装置可以测定重力加速度。
(1)所需器材有:电磁打点计时器、纸带、复写纸、带铁夹的铁架台和带夹子的重物,此外还需_________(填字母代号)中的器材。
A.直流电源 B.天平及砝码 C.4至6V交流电源 D.毫米刻度尺(2)下列实验操作步骤正确的是________A.实验所用的重物可用实心泡沫球B.应调整打点计时器,使其两限位孔连线在竖直方向C.实验时应先使重物靠近打点计时器D.实验时先释放小球后再接通电源(3)实验中得到的一条纸带如下图所示,从比较清晰的点起,每2个点取一个计数点(打点计时器所接电源频率为50Hz),分别标明0、1、2、3、4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.取园弧微元
dq=dl
=[Q/(R)]Rdθ=Qdθ/
dE=dq/(40r2)
=Qdθ/(4π20R2)
dEx=dEcos(θ+)
=-dEcosθ
dEy=dEsin(θ+)
=-dEsinθ
Ex=
=Q/(220R2)
Ey=dEy =0
方向沿x轴正向.
练习2电场强度(续)
一、选择题D C D B A
I2dl=I2Rd
该处磁场为
B=0I1/(2Rcos)
I2dl与B垂直,有
dF= I2dlBsin(/2)
dF=0I1I2d/(2cos)
dFx=dFcos=0I1I2d/(2)
dFy=dFsin=0I1I2sind/(2cos)
=0I1I2/2
因对称Fy=0.
故F=0I1I2/2方向向右.
练习12物质的磁性
而S(1+2)=Q1S(3+4)=Q2
有1234=0
1+2+34=0
1+2=Q1/S
3+4=Q2/S
解得1=4=(Q1+Q2)/(2S)=2.66108C/m2
2=3=(Q1Q2)/(2S)=0.89108C/m2
两板间的场强E=2/0=(Q1Q2)/(20S)
V=UA-UB
=Ed=(Q1Q2)d/(20S)=1000V
E1=r1/(20)
方向垂直于轴指向外;为求E2,在球体内外作同心的球形高斯面,有
球内r<aQ=4r23/3E2=r2/(30)
球外r>aQ=4a3/3E2=a3/(30r22)
负号表示方向指向球心.对于O点
E1=d/(20),E2=r2/(30)=0 (因r2=0)
得EO=a/(20)
方向向右;
对于P点
2.0I/(4R1)+0I/(4R2),垂直向外;
(0I/4)(1/R12+1/R22)1/2,+arctan(R1/R2).
3. 0.
三、计算题
1.取宽为dx的无限长电流元
dI=Idx/(2a)
dB=0dI/(2r)
=0Idx/(4ar)
dBx=dBcos=[0Idx/(4ar)](a/r)
=0Idx/(4r2)=0Idx/[4(x2+a2)]
练习1库伦定律电场强度
一、选择题C B A C D
二、填空题
1.1d/(1+2).
2. 2qyj /[40(a2+y2)3/2] ,±a/21/2.
3.M/(Esin).
三、计算题
1.取环带微元
dq=dS
=2(Rsin)Rd=2R2sind
dE=dqx/[40(r2+x2)3/2]
=
=sincosd/(20)
1.(1)螺绕环内的磁场具有轴对称性,故在环内作与环同轴的安培环路.有
=2rB=0Ii=0NI
=(/20)ln(r2/r1)
(2)无限长带电直线不能选取无限远为势能零点,因为此时带电直线已不是无限长了,公式E=/(20r)不再适用.
练习5静电场中的导体
一、选择题A A C D B
二、填空题
1. 2U0/3+2Qd/(90S).
2.会,矢量.
3.是,是,垂直,等于.
三、计算题
1.Ex=U/x
=C[1/(x2+y2)3/2+x(3/2)2x/(x2+y2)5/2]
A=Ae=(W0W)=WW0=Q2d/(20S)
外力作功转换成电场的能量
{用定义式解:A= =Fd=QEd
=Q[(Q/S)/(20)]d
= Q2d/(20S) }
2.洞很细,可认为电荷与电场仍为球对称,由高斯定理可得球体内的电场为
E=(4r3/3)/(40r2)(r/r)
=r/(30)=Qr/(40R3)
E1=d/(20),E2=a3/(120d2)
得EP=d/(20)a3/(120d2)
方向向左.
练习4静电场的环路定理电势
一、选择题A C B D D
二、填空题
1. .
2Edcos.
3.q/(60R)
三、计算题
1.解:设球层电荷密度为.
=Q/(4R23/34R13/3)=3Q/[4(R23R13)]
UA=(Q+QB)/(40R3)
UAB=[QB/(40)](1/R21/R1)
得QB=QR1R2/(R1R2+R2R3R1R3)
UA=[Q/(40R3)][1+R1R2/(R1R2+R2R3R1R3)]
=Q(R2R1)/[40(R1R2+R2R3R1R3)]
练习6静电场中的电介质
一、选择题D D B A C
练习10安培环路定理
一、选择题B C C D A
二、填空题
1.环路L所包围的电流,环路L上的磁感应强度,内外.
2.0I, 0,20I.
3.0IS1/(S1+S2),
三、计算题
1.此电流可认为是由半径为R的无限长圆柱电流I1和一个同电流密度的反方向的半径为R的无限长圆柱电流I2组成.
I1=JR2I2=JR2J=I/[(R2R2)]
一、选择题D B D A C
二、填空题
1.7.96×105A/m, 2.42×102A/m.
2.见图
3.矫顽力Hc大,永久磁铁.
三、计算题
1.设场点距中心面为x,因磁场面对称以中心面为对称面过场点取矩形安培环路,有
=ΣI02LH=ΣI0
(1)介质内,0<x<b/2. ΣI0=2xlJ=2xlE,有
H=xE B=0r1H=0r1xE
dB=0NIsin2d/(R)
=0NI/(4R)
练习9毕—萨定律(续)
一、选择题D B C A D
二、填空题
1.0.16T.
2.0Qv/(8l2),z轴负向.
3.0nIR2.
三、计算题
1.取窄条面元dS=bdr,
面元上磁场的大小为
B=0I/(2r),面元法线与磁场方向相反.有
1=
2=
1/2=1
2.在圆盘上取细圆环电荷元dQ=2rdr,
二、填空题
1.2p/(40x3),-p/(40y3).
2./(0a), 0
3. 5.14105.
三、计算题
1.取无限长窄条电荷元dx,电荷线密度
=dx/a
它在P点产生的电场强度为
dE=/(20r)=dx/(20a )
dEx=dEcos=xdx/[20a(b2+x2)]
dEy=dEsin=bdx/[20a(b2+x2)]
(2)平衡即磁力矩与重力矩等值反向
Mm=PmBsin(/2-)=Ia2Bcos
MG= MG1+ MG2+ MG3
=mg(a/2)sin+mgasin+mg(a/2)sin
=2(Sa)gasin=2Sa2gsin
Ia2Bcos=2Sa2gsin
tan=IB/(2Sg)=0.2694
=15
2.在圆环上取微元
[=Q/(R2) ],等效电流元为
dI=dQ/T=2rdr/(2/)=rdr
(1)求磁场,电流元在中心轴线上激发磁场的方向沿轴线,且与同向,大小为
dB=0dIr2/[2(x2+r2)3/2]=0r3dr/[2(x2+r2)3/2]
=
=
=
(2)求磁距.电流元的磁矩
dPm=dIS=rdrr2=r2dr
=R4/4=QR2/4
dBy=dBsin=0Ixdx/[4a(x2+a2)]
=[0I/(4)](1/a)arctan(x/a) =0I/(8a)
=[0I/(8a)]ln(x2+a2) =0
2.取宽为dL细圆环电流, dI=IdN=I[N/(R/2)]Rd
=(2IN/)d
dB=0dIr2/[2(r2+x2)3/2]
r=Rsinx=Rcos
(2)介质外,x>b/2. ΣI0=blJ=blE,有
H=bE/2B=0r2H=0r2bE/2
2.因磁场柱对称取同轴的圆形安培环路,有 =ΣI0
在介质中(R1rR2),ΣI0=I,有
2rH=IH=I/(2r)
介质内的磁化强度
M=mH=mI/(2r)
介质内表面的磁化电流
JSR1=MR1×nR1=MR1=mI/(2R1)
2Q/0,2Qr0/(90R2),Qr0/(20R2).
3(q1+q4)/0,q1、q2、q3、q4,矢量和
三、计算题
1因电荷分布以中心面面对称,故电场强度方向垂直于平板,距离中心相等处场强大小相等.取如图所示的柱形高斯面:两底面S以平板中心面对称,侧面与平板垂直.
/0
左边= + + =2SE
(1)板内x<a
球内,球层中,球外电场为
E1=0,E2=(r3R13)/(30r2) ,
E3=(R23R13)/(30r2)
故
=0+{(R22R12)/(60)+[R13/(30)(1/R21/R1)]}+(R23R13)/(30R2)
=(R22R12)/(20)
=3Q(R22R12)/[80(R23R13)]
2. (1) =
练习11安培力洛仑兹力
一、选择题D B C A B
二、填空题
1IBR.
2 10-2,/2
30.157N·m ; 7.85×10-2J.
三、计算题
1. (1)Pm=IS=Ia2