近似数
近似数
近似数一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数,如:我国的人口无法计算准确数目,但是可以说出一个近似数.比如说我国人口有13亿,13亿就是一个近似数.一个近似数四舍五入到哪一位,那么就说这个近似数精确到哪一位,从左边第一个不是0的数字起到精确的数位止的所有数止。
如:我国的人口无法计算准确数目,但是可以说出一个近似数.比如说我国人口有15亿,15亿就是一个近似数.近似数的四则计算加法和减法在通常情况下,近似数相加减,精确度最低的一个已知数精确到哪一位,和或者差也至多只能精确到这一位。
示例例如,一个同学去年体重30.4千克,今年体重比去年增加了3.18千克。
求今年体重时要把这两个近似数加起来。
因为30.4只精确到十分位,比3.18的精确度(精确到百分位)低,所以加得的和最多也只能精确到十分位。
为了容易看出计算结果的可靠程度,我们在竖式中每一个加数末尾添上一个“?”,用来表示被截去的数字。
30.4?+ 3.18 33.5?可以看到,因为第一个加数从百分位起的数就不能确定,所以加得的和从百分位起数字也不能确定。
近似数的加减一般可按下列法则进行:(1)确定计算结果能精确到哪一个数位。
(2)把已知数中超过这个数位的尾数“四舍五入”到这个数位的下一位。
(3)进行计算,并且把算得的数的末一位“四舍五入”。
例1 求近似数2.37与5.4258的和。
先把5.4258“四舍五入”到千分位,得5.426,再做加法。
2.37 +5.426 7.796 把7.796“四舍五入”到百分位,得7.80。
例2 求近似数0.075与0.001263的差。
先把0.001263“四舍五入”到万分位。
0.075 -0.0013 0.0737 把0.0737“四舍五入”到千分位,得0.074。
例3 求近似数25.3、0.4126、2.726的和。
25.3 0.41 + 2.73 28.44 把28.44“四舍五入”到十分位,得28.4。
近似数
3202 1872
1960
2000
2000
最高位的下一位的数比5小,最高位上的数不变。 最高位的下一位的数比5大,最高位上的数加1。
最高位是百,近似数常常是整百。
说出下列数的近似数: 588 120 600 100 400 230 709 391 613 906 200 700 400 600 900
407 897
680
900
700
最高位的下一位的数比5小,最高位上的数不变。 最。
说出下列数的近似数: 2781 3089 3000 3000 6000 哪种近似数更容易记住? 2800 3100 6200 4800 8900 2780 只有一个数不 3090 是“0”的近似 数最容易记住 4810 8930
6203 4809
8928
5000
9000
最高位的下一位的数比5小,最高位上的数不变。 最高位的下一位的数比5大,最高位上的数加1。
近似数 整百 、 整十 来表示。 可以用整千、
30 3000 700 4000 90 200 8003
4900 4050 1100
6500 5000 760 706
整千的数有:
整百的数有:
整十的数有:
最高位是千,近似数常常是整千。
说出下列数的近似数: 4008 1002 4000 1000 3000 6200 7098 6870 4005 9753 6000 7000 7000 4000 10000
近似数及其计算方法
近似数及其计算方法江苏省泗阳县李口中学沈正中一、求近似数的三种方法1.四舍五入法这是一种最常用的求近似数的方法,就是看确定保留数位的下一位数字,比5小的(即0、1、2、3、4),就把这个数字以及后面的所有数字舍去;如果这个数字比4大(即5、6、7、8、9),就把这个数字以及后面的所有数字舍去后,向前一位进一。
如64.96283,保留到万分位写为64.9628,即64.96283≈64.9628(以下类推),保留到千分位写作64.963,保留到百分位写作68.96,保留到十分位写作64.0,保留到整数写作64。
由此可以看出:“四舍”时,近似数比准确值小,“五入”时,近似数比准确值大。
在实际生活中,有时把一个数的留存数位确认后,只要下一位数字或后面的数字存有不以0的(即1、2、3、……、9),都必须向前一位入一。
例如:同学们同时回去独木舟,每只船上最多可载7个同学,17个同学至少须要几只船?17÷7≈2.4,就是说17个同学须要2只船还余3人,这3人还须要一只船,所以一共须要3只船。
即17÷7=≈3(只)。
由此可知:用进一法获得的对数数总比精确值大。
在实际生活中,有时把一个数的保留数位确定后,不管下一位数字或后面的数字是几(即0、1、2、3、……、9),都不要向前一位进一。
例如:用一根5m米短水管制成一批27cm长相同规格的水管,可以制成多少根?500÷27=≈18(根)由此可知:Weinreb尾法获得的对数数总比精确数大。
二、近似数的四则混合运算1.对数数的加减法在一般情况下,近似数相加减的和或差精确到哪一位,与已知数中精确度最低的一个相同,计算法则:(1)确认结果准确至哪一个数位(与已知数中精确度最高那个数准确数位相同);(2)把已知数中的其它数,四舍五入到已知数中精确度最低那个数数位的下一位;(3)展开排序,并且把配得的数的末位数字四舍五入。
【例1】求近似数25.4、0.456、8.738和56的和。
《近似数》教学设计(9篇)
《近似数》教学设计(9篇)近似数教学教案篇一一、教学目标(一)知识与技能1、认识“四舍五入”法是截取积的近似数的一般方法。
2、掌握求小数乘法的积的近似数的方法。
(二)过程与方法经历求小数乘法的积的`近似数的过程,体验迁移的学习方法,培养学生应用数学知识解决实际问题的能力。
(三)情感态度与价值观在学习活动中,激发学生的学习兴趣,感受知识源于生活。
二、教学重点会用“四舍五入”法截取积是小数的近似数。
三、教学难点能根据生活实际灵活截取积是小数的近似数。
四、新授(一)导入(复习导入)师:在开始新课程之前,我们先回顾一下之前小数乘法学习了哪些内容?生:小数成整数和小数成小数。
师:今天学习积的近似数。
一说到求近似乎,想一想,我们四年级学过求什么数的近似数?生:求小数的近似数。
师:还都记得怎么做吗?生:记得(忘了)。
师:让我们先来热热身,看看谁掌握的最为牢固。
(PPT展示题目)求下列小数的近似数,并说出你的思考过程。
要求:1、(精确到十分位)2、省略百分位后面的尾数。
通过做题,总结规律:1、先确定保留的数位,在要保留的数位下划条横线;2、将下一位上的数同“5”作比较,如果小于5,则舍掉;如果大于5或者等于5,则向前进1。
(四舍五入法)3、取近似数时,若末尾的“0”起到占位的作用,则不能去掉(二)情景导入例:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少亿个嗅觉细胞?(得数保留一位小数)找同学读题两遍,让同学自己提取信息、列式,让同学到黑板上做题板书,并说出思考过程。
0.049×45=2.205≈2.2(亿个)竖式略答:此处强调两点,一个单位,一个答句不能丢。
(三)经典练习0.95×0.95(得数保留一位小数)0.95×0.95=0.9025≈0.9(竖式略)想一想,若此题改为保留两位小数,怎么做?(做在练习本上)0.95×0.95=0.9025≈0.90(取近似数)(四)做一做(书上)P11现学现练,加深印象。
近似数和近似值
近似数、近似值
同实际数相接近的一个数,称为近似数.例如,某省有3800万人,“3800万”就是该省人口数的近似数.因为一个省的人口,有出生、有死亡,经常有变动,很难得到一个准确的实际数.
近似等于精确值的值,称为近似值.例如,除法运算的商,求至某位上四舍五入,所得到的值,都是这个商的近似值,如果是四舍,则所得的值称为过剩近似值.
不足近似值﹤精确值﹤过剩近似值
由此可知,近似数指的是根据实际情况,不可能得到或很难得到的一个不甚准确的数.而近似值是对精确值而言的,这个精确值是可能得到的.。
近似数
近似数导学案学习目标:1、了解近似数与有效数字的概念,能按精确度的要求取近似数,能根据近似数的不同形式确定其精确度和有效数字。
2、体会近似数在生活中实际应用。
重点:近似数的求法,精确度有效数的确定难点:精确度及有效数字的确定一、自主学习:1、回顾四舍五入法取近似值如:π≈3 (精确到个位)π≈3.1 (精确到0.1或精确到十分位)π≈3.14 (精确到或精确到)π≈(精确到万分位或精确到)2、近似数(1)生活中有的量很难或没有必要用准确数表示,而是用一个有理数近似地表示出来,我们称这个有理数为这个量的近似数。
如长江的长约为6300㎞,这里的6300㎞就是近似数。
因此,我们把接近准确数而不等于准确数的数,叫做这个数的近似数或近似值。
(2)304.35精确到个位的近似数为。
(3)精确度是指近似数与准确数的。
一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,保留两位小数,精确到0.01,精确到百分位等说法的含义相同。
按括号要求取近似数①12341000(精确到万位)②2.715万(精确到百位)(4)有效数字:在四舍五入后的近似数中,从一个数的左边起,到末位数字止,所有的数字都是这个数的。
例1:近似数0.03050,最前面的两个0不是有效数字,而3后面的0和5后面的0都是这个数的有效数字。
用科学记数法表示的近似数a×10n,有效数字只与a有关,如3.12×510的有效数字为3,1,2。
当近似数后面有单位时,有效数字与单位无关,只与单位前面的数有关,如2.35万,有三个有效数字为2,3,5。
所以按照有效数字个数的要求对一个数取近似数,如:1.804(保留两个有效数字)的近似值为1.8。
例2:下列由四舍五入得到的近似数,它们精确到哪一位,有几个有效数字?①0.01020 ②1.20 ③1.50万④-2.30×410例3:用四舍五入法,按括号要求取近似值①607500 (保留两个有效数字)②0.030549 (保留三个有效数字)注意例2中③和④的精确度的确定:对于a×10n精确度由还原后的数字a的末位数字所在的数位决定;对于含有文字单位的近似值,精确度也是由还原后的数字中近似数的末位数字所在的位数决定的。
近似数
典例分析:
例2、用四舍五入法,按括号中的要求对下列 各数取近似数。 (1)64.8 (精确到个位) (2)0.34082 (精确到0.001) (3)0.9541 (精确到十分位) (4)130542 (精确到千位) (5)2345817 (精确到万位) (6)160400 (保留两个有效数字) (7)2150783 (保留4个有效数字)
情景导入:
生活中,我们会接触到形形色色的数字,有些要求准 确无误,有些则不需要完全符合实际。 例如: (1)一小时等于60分钟。 (2)珠穆朗玛峰的海拔高度约为8844米。 (3)一次数学考试中,有4个人得100分。 (4)小明的身高约为151cm,体重为43千克。 在这些例子中,哪些数据是准确无误的?哪些数 据是接近实际的?你能找出来吗?
本节课你学会了什么? 有哪些收获?
思考:
(1)小明的身高为1.60米,可是在记录时 体育委员记成了1.6米,请你利用这堂课所 学的知识进行分析,你认为正确吗? (2)若6尺布可做一件上衣,则9尺布能做 多少件这样的上衣? (3)若每条船能坐3个人,则10个人需要 几条船?
能力提升
1、小亮打算把自己的房间美化一下, 在墙壁上涂彩色颜料,他测量了房间墙 壁长16米,高2.5米,然后到商店来选 购涂料,一桶涂料可涂6.5平方米,你 能帮小亮计算一下,需要购买几桶这种 彩色涂料?
典例分析:
(1)64.8 ≈ 65 (2)0.34082 ≈0.341 (3)0.9541 ≈ 1.0 5 1 . 31 10 (4)130542 ≈ (5)2345817 ≈ 2.35106 (6)160400 ≈ 1.6 105 (7)2150783 ≈ 2.151106
求近似数有哪几种方法?
求近似数有哪几种方法?
求近似数有哪几种方法?一般有3种:
1.四舍五入法这是最常用的求近似数的方法。
当省略的尾数的最高位上的数是4或比4小的时候,就把尾数舍去;当省略的尾数最高位上的数是5或比5大时,把尾数去掉后,要向前一位进1。
举例(45000≈5万,612000≈61万)
2.进一法在实际生活中,有时把一个数的尾数省略后,不管尾数最高位上的数是几,都要向它的前一位进一。
用进一法得到的近似数总比准确值大。
举例(45000≈5万,612000≈62万)
3.去尾法在实际生活中,有时把一个数的尾数省略后,不管尾数最高位上的数字是几,都不要向它的前一位进一。
用去尾法得到的近似数总比准确值小。
举例(45000≈4万,612000≈61万)。
近似数(精选7篇)
近似数(精选7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!近似数(精选7篇)近似数篇一课题:教学目标1.使学生理解并掌握近似数的概念。
近似数
二、关于近似数——精确度
π=3.1415926……
π≈3 精确到( 个位 ) π≈3.1精确到( 0.1 )或叫精确到( 十分位 ) π≈3.14精确到( 0.01 )或叫精确到( 百分位 ) π≈3.142 精 确 到 0.001 , 或 叫 精 确 到 千分位 ) π≈3.1416(精确到 0.0001,或叫精确 到 万分位 )
练习:按要求对下列各数取近似数。 (1) 0.33448 (精确到千分位) (2) 64.8 (精确到个位) (3) 1.5952 (精确到0.01)
(4) 0.5039 (精确到0.1)
(5) 84960 (精确到百位) (6) 2.03×104 (精确到千位)
这节课我们主 要学习了哪些知识? 有何体会和收获?
π=3.1415926……
二、关于近似数——精确度
带有万、亿等单位的数及科学记数法表 示的数的精确度问题
带有万、亿等单位的数表示的数的 精确度由单位前面的数决定的;
如:2.4亿
科学记数法表示的数的精确度由“×” 号前面的数决定的;
4 1.60×10
应用举例
例1下面由四舍五入得到的近似数,各精确到哪一位? 哪一位是四舍五入得到的?
一、准确数与近似数
(1)、什么叫准确数(精确数)? 准确数-- 与实际完全符合的数 (2)、什么叫近似数? 近似数-- 与实际非常接近的数
生活中哪些地方用到 准确数和近似数?
答一答:看谁答的准
• • • • • • • 下列各数,哪些是近似数?哪些是准确数? ⑴ 一小时有60分。 ⑵绿化队今年植树约2万棵。 ⑶小明到书店买了10本书。 ⑷一次数学测验中,有2人得100分。 ⑸某区在校中学生近75万人。 ⑹七年级二班有56人。
四年级数学近似数知识点
四年级数学近似数知识点
一、近似数的概念
近似数是指与准确数相近的一个数。
准确数:即这个数的最原始数据,没有经过约分、化简、或者四
舍五入等任何运算之前的表达方法。
近似数:经过四舍五入、进一法或者去尾法等方法得到的一个与
原始数据相差不大的一个数。
二、四舍五入法
1. 如果尾数的最高位数字是 4 或者比 4 小,就把尾数去掉。
例如:54321 近似到万位,因为千位是 4,所以54321 ≈ 50000
2. 如果尾数的最高位数是 5 或者比 5 大,就把尾数舍去并且在它的前一位进 1。
例如:65890 近似到万位,因为千位是 5,所以65890 ≈ 70000
三、进一法
进一法是去掉多余部分的数字后,在保留部分的一个数字上加
1。
例如:一堆货物需要装 3.2 个箱子,实际需要 4 个箱子才能装完。
四、去尾法
去尾法是去掉数字的小数部分,取其整数部分。
例如:用一匹布做衣服,每件衣服用布 2.5 米,这匹布可以做 8 件衣服。
五、求近似数的应用
在实际生活中,经常会用到近似数来描述一些数量。
比如:描述城市的人口数量、统计商品的销售额等。
在计算时,要根据具体情况选择合适的方法求近似数。
近似数和精确度
精确的程度. 【知识拓展】 取某数近似数常见的方法:
(1)精确到某位或精确到小数点后某位,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位.如:近似 数0.25 精确到百分位或精确到0.01 . (2)对较大的数取近似数时,结果一般要用科学记数法表示.如:8903000(精确到万位)的近似数为8.90 × 10 .
5
18
/0Leabharlann 三、精确度.6/
12
6
1
3.14159
(精确到0.001 )
爱
智
康
近似数与准确数的接近程度可以用精确度表示,一个近似数四舍五入到哪一位就称这个数精确到哪一位,精确度是
20
2
下列说法正确的是( ). A. 2.46 万精确到万位,有三个有效数字 B. 近似数6百和600精确度是相同的 C. 317500精确到千位可以表示为31.8 万,也可表示为3.18 × 10 D. 0.0502 共有5个有效数字,它精确到万分位
近似数和精确度
一、准确数
在日常生活和实际生产中,能准确地表示一些量的数,成为准确数.例如:三班共50人,小樱养了3条金鱼,数字50 和3就是准确数.
二、近似数
与实际接近但存在一定偏差的数称为近似数.例如:π 取3.14 ,体重约54kg ,这里3.14 、54都是近似数. 【注意】求一个数的近似数,应按题目要求取近似数. 【易错点津】 (1)近似数与准确数不相等,有误差. (2)近似数小数点后的末位数是0的,不能去掉0. 用四舍五入法,求1.549 的近似值(保留两个有效数字)是 .
近似数规则
近似数规则
嘿,朋友们!今天咱来聊聊近似数规则呀!你知道吗,近似数在我们生活中可太常见了。
比如说去买东西,那个东西价格是元,咱不就会说大概20 块嘛,这就是近似数啊!
近似数规则就像是一个神奇的魔法,能让复杂的数字变得简单易懂。
咱先来看看“四舍五入”这个规则,比如说这个数,如果要精确到小数点后
一位,那就是呀,因为 4 比 5 小,就得舍去,这不是很有意思吗?就好像你有一堆糖果,你要挑出几个差不多的给朋友,你会舍去那些不完美的呀!
还有进一法,哎呀呀,这个可有用啦!就好比你去坐公交车,车里最多能装 50 人,现在有 51 个人要坐,那肯定得再安排一辆车呀,不能把那一
个人落下吧,这可不地道!这时候就得用进一法啦。
那舍弃法呢,也挺神奇的。
像计算一堆东西的大概数量,有些小数部分就直接不要了,多干脆!比如说有个苹果,咱就说大概 100 个苹果就行啦,那个苹果也没啥用呀,是不?
你说说,近似数规则是不是超级实用?它们就像生活中的小助手,能帮我们快速处理数字,让一切变得简单明了。
咱可不能小瞧了这些规则呀,它
们能在很多时候给我们带来方便呢!所以呀,要好好掌握近似数规则哟,真的超级重要的!。
近似数及其计算方法
近似数及其计算方法集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)近似数及其计算方法江苏省泗阳县李口中学沈正中一、求近似数的三种方法1. 四舍五入法这是一种最常用的求近似数的方法,就是看确定保留数位的下一位数字,比5小的(即0、1、2、3、4),就把这个数字以及后面的所有数字舍去;如果这个数字比4大(即5、6、7、8、9),就把这个数字以及后面的所有数字舍去后,向前一位进一。
如64.96283,保留到万分位写为64.9628,即64.96283≈64.9628(以下类推),保留到千分位写作64.963,保留到百分位写作68.96,保留到十分位写作64.0,保留到整数写作64。
由此可以看出:“四舍”时,近似数比准确值小,“五入”时,近似数比准确值大。
2. 进一法在实际生活中,有时把一个数的保留数位确定后,只要下一位数字或后面的数字有不为0的(即1、2、3、……、9),都要向前一位进一。
如:同学们同时去划船,每只船上最多能载7个同学,17个同学至少需几只船?17÷7≈2.4,就是说17个同学需要2只船还余3人,这3人还需一只船,所以一共需要3只船。
即17÷7=≈3 (只)。
由此可知:用进一法得到的近似数总比准确值大。
3. 去尾法在实际生活中,有时把一个数的保留数位确定后,不管下一位数字或后面的数字是几(即0、1、2、3、……、9),都不要向前一位进一。
如:用一根5m米长水管做成一批27cm长相同规格的水管,可以做成多少根?500÷27=≈18(根)由此可知:用去尾法得到的近似数总比准确数小。
二、近似数的四则混合运算1. 近似数的加减法在一般情况下,近似数相加减的和或差精确到哪一位,与已知数中精确度最低的一个相同,计算法则:(1)确定结果精确到哪一个数位(与已知数中精确度最低那个数精确数位相同);(2)把已知数中的其它数,四舍五入到已知数中精确度最低那个数数位的下一位;(3)进行计算,并且把算得的数的末位数字四舍五入。
二年级关于近似数的说明
近似数都有以下特点:1、取的近似数要方便计算。
2、近似数要取整千、整百、整十的数。
3、近似数不唯一。
现在最难理解的是第三点。
举例说明:1、两位数取近似数(四舍五入)其实我到是觉得,四舍五入也不难理解,讲明白了反而有助于孩子估数。
两位数取近似数,原则上按四舍五入,如,36≈40,42≈40,35≈40。
但是,估算时,仍可以具体情况具体分析,如,45+36≈?按四舍五入法,是90,但孩子们可能觉得,如果把45中的5舍去,结果“80”更接近准确数“81”,这样更好。
2、三位数取近似数(取整百或整百整十的数)分为以下几种情况:a、十位上是8、9或0、1,不管个位上是几,都可以取整百的数,如,382≈400,991≈1000,209≈200,318≈300。
(这种情况实际上是从十位向百位的四舍五入,鼓励用此方法,方便估算)。
有些同学觉得,如果取整百整十的数其结果会更接近近似数,于是把个位向十位四舍五入,变成:382≈380,991≈990,,209≈210,318≈320,这样也很好。
但是,如果要取整百整十的数,就取最接近准确数的那个,比如,382不要估成390,要按四舍五入法去取。
特别说明的是,像九百九十几这样的数,干脆直接约成1000。
b、十位上是3——7的数,取整百整十的数,严格按照四舍五入,如,371 ≈370,567 ≈570。
3、四位数取近似数(取整千或整千整百的数)同理,百位上是0、1或8、9,则可以取整千的数,如:3098≈3000,2156≈2000,3849≈4000,3912≈4000。
根据具体情况取整千整百也行,如3098≈其他情况要严格按照从十位向百位四舍五入,如,3789≈3800,2643≈2600.(实际上,像2643这种情况,估成2700也可以,几十个数对于上千的数来说,舍掉或进上去,都无所谓。
但为了让孩子们不迷惑,所以我就这样规定了。
)需要说明的是,四位数不要估成整千整百整十的数,比如,8952不能估成8950,没意义,可以估成8900,也可以直接估成9000.像9992,直接估成10000。
找近似数的方法
找近似数的方法
找近似数的方法有很多种,其中比较常见的是四舍五入、截尾和进一法。
四舍五入是指将小数点后第一位小于5的数字舍去,大于等于5的数字进位,例如3.46四舍五入到小数点后一位为3.5。
截尾是指将小数点后面的数字全部舍去,例如3.46截尾到小数点后一位为3.4。
进一法是指将小数点后第一位非零的数字进位,例如3.46进一到小数点后一位为3.5。
除了这些方法,还有一些比较特殊的近似数方法,例如科学记数法、分数近似等。
选择哪种近似数方法要根据具体情况来决定,需要考虑到精度要求、数值大小等因素。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近似数
班级:姓名:课型:新授课
教学目标:
1、理解近似数、精确度的意义
2、能准确的说出精确位
3、按要求进行四舍五入取近似数。
一、探究新知
1、预习课本68页,思考:下列各题中的数值,哪些是近似数?哪些是准确数?
(1)初一(4)班有42名同学;
(2)每个三角形都有3个内角。
(3)我国的领土面积约为960万平方千米;
(4)王强的体重是约49千克。
2、说说什么是近似数?什么是准确数?什么是精确度?
3、如何取近似数?(以 为例)
二、知识应用
例1 按括号内的要求用四舍五入法对下列各数取近似数。
⑪270.18(精确到个位)⑫0.0376(精确到0.001)
⑬27.04(精确到0.1)⑭0.518 (精确到0.01)
⑮426500(精确到万位)⑯489(精确到百位)
难点讲解:较大数取近似数,一般换成或表示。
例2下列四舍五入得到的近似数,各精确到哪一位?
① 3 ②10 ③204 ④1.8 ⑤25.7
⑥1.80 ⑦0.4040 ⑧10.3万⑨1.60×104 ⑩ 1.23亿
难点讲解:带大单位或科学计数法表示的数,所在的位,即精确到的位。
三、巩固练习
1、按要求用四舍五入法对下列各数取近似数:
(1)69.5(精确到个位);(3)5803300(精确到万位);
(2)3.99501(精确到0.001);(4)305万(精确到百万位).
2、下列由四舍五入得到的近似数,各精确到哪一位?
(1)8200;(2)630万;(3)0.090;(4)7.3×103;(5)3.0万;(6)6.50×105.
四、回顾与总结
这节课你学会了什么?还有什么疑问?
五、作业。