初一数学下册《 整式的运算》知识点归纳

合集下载

七年级下册数学整式的运算知识点

七年级下册数学整式的运算知识点

七年级下册数学整式的运算知识点在数学中,整式的运算是一个非常基础且重要的概念。

整式是由多项式相加或相减得到的,其中每一项都是由常数和变量的乘积得到的。

整式的运算知识点包括加法、减法、乘法、除法等。

一、整式的加法:整式的加法是指将两个或多个整式相加得出一个新的整式。

加法的原则是将同类项合并,并将系数相加。

同类项指的是含有相同变量的项,如2x和5x就是同类项,而2x和3y就不是同类项。

例子1:将2x²+3x+4和5x²-2x+7进行加法运算。

解答:2x²+3x+4+5x²-2x+7=(2+5)x²+(3-2)x+(4+7)=7x²+x+11例子2:将3a³+5a²+2a和2a³+4a²+7a进行加法运算。

解答:3a³+5a²+2a+2a³+4a²+7a=(3+2)a³+(5+4)a²+(2+7)a=5a³+9a²+9a二、整式的减法:整式的减法是指将一个整式从另一个整式中减去得到一个新的整式。

减法的原则是将减数的各项分别乘上-1,然后再与被减数进行加法运算。

例子1:将5x²+4x-3和3x²-2x+8进行减法运算。

解答:5x²+4x-3-(3x²-2x+8)=5x²-3x²+4x-(-2x)-3-8=2x²+6x-11例子2:将4y³-2y²-5y-1和3y³+2y²+4进行减法运算。

解答:4y³-2y²-5y-1-(3y³+2y²+4)=4y³-3y³-2y²-2y²-5y-4-1=y³-4y²-5y-5三、整式的乘法:整式的乘法是指将两个整式相乘得到一个新的整式。

整式的运算知识点

整式的运算知识点

整式的运算知识点整式是数学中的一个重要概念,是指由常数、变量及它们的乘积和幂次构成的代数式。

在代数运算中,我们常常需要对整式进行加减乘除的运算。

下面将分别介绍整式运算中的加法、减法、乘法和除法知识点。

一、加法运算在整式的加法运算中,我们对同类项进行合并。

所谓同类项,指的是具有相同的字母部分和相同的指数部分的项。

例如,对于整式3x² + 2xy + 5x² - 4xy,我们可以将其中的同类项合并,得到3x² + 2xy + 5x² - 4xy = 8x² - 2xy。

二、减法运算整式的减法运算与加法运算类似,仍然需要对同类项进行合并。

例如,对于整式3x² + 2xy - 5x² + 4xy,我们可以将其中的同类项合并,得到3x² + 2xy - 5x² + 4xy = -2x² + 6xy。

三、乘法运算整式的乘法运算是将一个整式与另一个整式相乘,需要运用分配律和同底数幂相乘的法则。

例如,对于整式(2x + 3)(4x - 5),我们可以使用分配律展开式子,得到8x² - 10x + 12x - 15 = 8x² + 2x - 15。

四、除法运算整式的除法运算需要使用长除法的方法进行。

例如,对于整式12x³ + 6x² - 4x + 8除以3x + 2,我们可以按照长除法的步骤进行计算:先将被除式按照指数从高到低的顺序排列:12x³ + 6x² - 4x + 8。

再将除式按照指数从高到低的顺序排列:3x。

将被除式的第一项与除式的第一项相除,得到4x²。

将4x²与除式相乘,得到12x³ + 8x²。

将被除式减去12x³ + 8x²,得到-2x² - 4x + 8。

重复以上步骤,直到被除式的所有项都被除尽或次数不够减为止。

初一下册数学知识点整式的运算

初一下册数学知识点整式的运算

初一下册数学知识点整式的运算整式是由常数项、变量和它们的乘积以及乘方运算构成的,其中的常数项、变量和它们的乘积分别称为整式的常数项、单项式和多项式。

在整式的运算中,我们主要关注的是整式的加减乘除运算。

1.整式的加法运算:将两个整式的同类项相加即可。

同类项是具有相同的字母幂次的项。

例如:(2x²+3x+1)+(4x²-2x+5)=6x²+x+6注意,相加时应遵循交换律和结合律。

2.整式的减法运算:将两个整式的同类项相减即可。

例如:(5x³+2x²+3x+4)-(3x³+4x²-x-5)=2x³-2x²+4x+9减法运算可以转化为加法运算,即将减法转换为加法,然后将减数取负数。

3.整式的乘法运算:乘法运算需要用到分配律,即将一个整式的每一项与另一个整式的每一项相乘,然后将乘积相加。

例如:(2x+3)(4x-5)=8x²-10x+12x-15=8x²+2x-154.整式的除法运算:整式的除法运算涉及到整式的除法算法,需要注意除法运算时应遵循整除和长除法的步骤。

除此之外- 交换律:加法和乘法的运算可以交换,即 a + b = b + a, ab = ba。

- 结合律:加法和乘法的运算可以结合,即 (a + b) + c = a + (b + c), (ab)c = a(bc)。

- 分配律:乘法运算对加法运算具有分配律,即 a(b + c) = ab + ac。

此外,在整式的除法运算中,还有一个重要的知识点是多项式的因式分解。

因式分解可以将多项式表示为多个因子的乘积。

例如:4x²+12x=4x(x+3)以上就是初一下册数学整式的运算知识点的详细介绍。

整式的运算是初中数学的基础内容,掌握了这些知识,相信你能够顺利解决整式的加减乘除运算问题。

整式的运算知识点总结

整式的运算知识点总结

整式的运算知识点总结整式是由字母、数字和运算符号组成的多项式,是代数学中常见的基本表达形式。

整式的运算是代数学中较为基础的内容之一,掌握整式的运算方法对于解决代数问题至关重要。

本文将对整式的运算知识点进行总结,包括整式的加减乘除以及相关的运算性质。

一、整式的加法和减法运算整式的加法和减法是最基础的运算,需要注意以下几点:1. 相同项的加减:对于相同的字母和指数的项,可以直接按照系数相加减的原则进行合并。

例如:3x^2 + 4x^2 = 7x^2;5y - 2y = 3y。

2. 不同项的加减:对于不同的项,无法进行合并。

可以将它们按照字母和指数的大小进行排列。

例如:2x^2 + 3x - 5x^2 - 2x = 2x^2 - 5x^2 + 3x - 2x = -3x^2 + x。

二、整式的乘法运算整式的乘法是将两个整式相乘得到一个新的整式,需要注意以下几点:1. 乘法的分配律:对于整式乘以一个数,可以将这个数分别乘以每一项,并将结果相加。

例如:3(2x^2 + 3x) = 6x^2 + 9x。

2. 乘法的合并同类项:乘法运算时,需要合并同类项,即将相同的字母和指数的项合并。

例如:(2x + 3)(4x - 2) = 8x^2 + 4x - 12x - 6 = 8x^2 - 8x - 6。

三、整式的除法运算整式的除法是将一个整式除以另一个整式得到商式和余式的运算,需要注意以下几点:1. 整式的除法并不总是能够完全除尽,有可能存在余数。

2. 设被除式为A(x),除式为B(x),商式为Q(x),余式为R(x),则A(x) = B(x)Q(x) + R(x)。

3. 除法的过程涉及到带余除法的计算步骤,可以利用这个过程来进行整数和多项式的除法。

四、整式的运算性质整式的运算有以下几个基本性质:1. 交换律:加法和乘法都满足交换律,即a + b = b + a,ab = ba。

2. 结合律:加法和乘法都满足结合律,即a + (b + c) = (a + b) + c,a(bc) = (ab)c。

整式的运算知识点整理

整式的运算知识点整理

整式的运算知识点整理整式是由常数、字母和乘方运算所组成的代数式。

对于整式的运算,我们需要掌握以下几个知识点:一、整式的加减运算:1.同类项的加减法:对于整式中的同类项,可以对它们的系数进行相加或相减,而字母部分保持不变。

例如,对于3x²+4x²-2x²,可以合并同类项得到5x²。

2.对于加减运算中的多项式,我们可以先按照同类项进行合并,然后再进行相加或相减。

例如,对于3x²+4x-2x²+5,可以合并同类项得到x²+4x+5二、整式的乘法运算:1.利用分配律进行乘积的展开:对于整式的乘法运算,我们可以利用分配律将其展开,然后再进行合并同类项的操作。

例如,对于(x+2)(x+3),可以先利用分配律展开得到x²+3x+2x+6,然后合并同类项得到x²+5x+62.乘方的运算:对于整式的乘法,其中可能会涉及到字母的乘方运算,如x²、y³等。

对于这些情况,我们需要掌握乘方运算的规则。

例如,(x+2)²可以展开为(x+2)(x+2),然后利用乘法运算的知识得到x²+4x+4三、整式的除法运算:1.对于整式的除法,我们需要用到长除法的方法。

首先需要确定被除式和除式的次数,然后根据次数进行长除法的运算。

例如,对于x³+2x²-3x+1÷x+1,我们可以进行长除法运算得到商式x²+x-4,余式为52.求商与余数的方法:对于整式的除法运算中,我们需要根据长除法的运算找到商式和余式。

商式可以通过比较被除式和除式的次数得到,而余式是指除法的结果中除不尽的部分。

对于上述例子,商式为x²+x-4,余式为5四、整式的因式分解:1.对于整式的因式分解,我们需要将整式表示为多个不可再分解的因式相乘的形式。

其中要用到的方法有公因式提取法、提公因式法、平方差公式等。

整式的运算》知识点总结

整式的运算》知识点总结

整式的运算》知识点总结一、整式的加减运算整式的加减运算是指对两个或多个整式进行加法或减法运算。

整式的加减运算可以分为以下几种情况:1. 同类项的加减运算同类项是指含有相同字母的变量,并且这些变量的指数相同的项。

同类项的加减运算可按如下步骤进行:a) 把括号内的加减式化简为同类项;b) 把同类项的系数相加或者相减;c) 合并同类项。

例如:(2x^2 + 3x + 5) + (4x^2 + 2x - 3)合并同类项得:(2x^2 + 4x^2) + (3x + 2x) + (5 - 3) = 6x^2 + 5x + 22. 整式的加法整式的加法是指对两个或多个整式进行加法运算。

a) 把各个整式的同类项相加;b) 将合并后的结果写在一起。

例如:(2x^2 + 3x + 5) + (4x^2 + 2x - 3)合并同类项得:(2x^2 + 4x^2) + (3x + 2x) + (5 - 3) = 6x^2 + 5x + 23. 整式的减法整式的减法是指对两个整式进行减法运算。

a) 把被减式变成它的相反数;b) 将变号后的被减式写成加法;c) 把变号后的被减式和减数进行加法运算;d) 把同类项相加。

例如:(2x^2 + 3x + 5) - (4x^2 + 2x - 3)变号得:(2x^2 - 3x - 5) + (4x^2 + 2x - 3)合并同类项得:(2x^2 + 4x^2) + (3x + 2x) + (5 - 3) = 6x^2 + 5x + 2二、整式的乘法运算整式的乘法运算是指对两个整式进行乘法运算。

整式的乘法运算是比较复杂的,需要遵循以下规则进行计算:1. 同类项的乘法同类项的乘法是指对两个同类项进行乘法运算。

乘法运算时,同类项的系数相乘,变量的指数相加。

例如:(2x^2)(3x^2) = 6x^42. 乘法分配律整式的乘法运算满足乘法分配律,即a(b + c) = ab + ac。

其中a为整式,b和c为单项式或者多项式。

整式的运算知识点

整式的运算知识点

整式的运算知识点整式指的是由整数常数、变量以及它们的乘积和加减运算组成的式子。

在数学中,我们经常会进行整式的运算,包括合并同类项、展开和因式分解等操作。

下面将介绍整式运算的相关知识点。

一、合并同类项合并同类项是指将同一变量的幂相同的项相加或相减。

在合并同类项时,首先要确定变量的幂是否相同,然后将系数相加即可。

例如,对于表达式3x + 4x + 2x - 5x,我们可以合并同类项得到(3 + 4 + 2 - 5)x= 4x。

二、展开式展开式是指将括号内的整式按照乘法规则展开。

当括号里只有两项时,展开式可以直接应用“先乘后加”的规则。

例如,对于表达式2(x + 3),我们可以将2乘以x和3分别得到2x + 6。

当括号里有多项时,我们需要用“分配律”来展开。

例如,对于表达式3(x + 2y - z),我们需要将3分别乘以x、2y和-z,得到3x + 6y - 3z。

三、因式分解因式分解是将一个整式写成几个因式的乘积。

因式分解有很多不同的方法,以下介绍两种常用的方法:1. 公因式提取法:当一个整式的每一项都有一个公因式时,我们可以将这个公因式提取出来,并将剩下的部分进行合并。

例如,对于表达式6x + 9y,我们可以提取公因式3,得到3(2x + 3y)。

2. 分组分解法:当一个整式可以进行分组分解时,我们可以将其中的项按照一定的规则分组,并利用公因式提取法进行因式分解。

例如,对于表达式2xy + 4x + 3y + 6,我们可以将其分为(2xy + 4x) + (3y + 6),然后分别提取公因式2x和3,得到2x(y + 2) + 3(y + 2)。

以上就是整式的运算知识点的简要介绍。

通过合并同类项、展开式和因式分解等操作,我们可以简化整式、求解方程和化简复杂的数学问题。

熟练掌握这些知识点,并灵活运用于实际问题中,不仅有助于提高数学计算的准确性,也能够增强数学思维和解决问题的能力。

整式的运算知识点

整式的运算知识点

整式的运算知识点整式是指由字母和数字之间用加减乘除的运算符连接而成的算式。

它是代数学中最基本的表达式形式,运算过程中涉及到多种知识点和规则。

本文将从整式的基本概念、加法运算、减法运算、乘法运算和除法运算等几个方面介绍整式的运算知识点。

一、整式的基本概念整式由常数项和各种字母的乘积项通过加减运算符连接而成。

其中,常数项可以是正数、负数或零,字母的乘积项由字母和指数两部分构成,指数为正整数。

整式的字母部分可以包含一个或多个字母,字母间的乘积可以是相同字母的乘积项,也可以是不同字母的乘积项。

二、加法运算整式的加法运算遵循交换律和结合律。

将同类项进行合并,即将字母部分相同、指数相同的项合并为一项。

例如,将3x^2 +2x^2合并为5x^2。

同时,将常数项相加得到最终的结果。

三、减法运算整式的减法运算可以通过转化为加法运算来进行。

对于减法式子a - b,可以将其改写为a + (-b)的形式,然后按照加法运算的规则进行计算。

四、乘法运算整式的乘法运算遵循乘法分配律和乘法结合律。

将每一个乘积项中的字母部分相乘,同时将指数相加得到新的指数。

不同乘积项之间通过加法运算符连接。

五、除法运算整式的除法运算可以通过乘法的逆运算来实现,即将除法转化为乘法。

例如,将a/b转化为a * (1/b)的形式,然后按照乘法运算的规则进行计算。

需要注意的是,除法运算中,被除数和除数都必须是整式,除数不能为0。

六、展开与提取公因式展开是指将一个整式按照乘法运算的规则进行计算,化简为最简整式的过程。

提取公因式是指将多个整式中的公共部分提取出来,得到最简整式的过程。

七、综合运算整式的运算可以综合应用前面所述的加法、减法、乘法和除法运算进行。

先进行括号内的运算,然后按照加法、减法、乘法和除法的顺序进行,最后合并同类项和化简得到最终结果。

结语整式的运算是代数学中的基础知识,掌握整式的运算方法对于理解和解决代数问题具有重要意义。

通过本文的介绍,希望能够对整式的运算知识点有一个更加清晰和全面的了解,从而在学习和应用中能够更加得心应手。

整式的运算知识点

整式的运算知识点

整式的运算知识点整式是指由常数、变量和它们的积或幂次构成的代数表达式。

在代数学中,我们经常需要对整式进行运算,掌握整式的运算知识是解决代数问题的关键。

以下是整式运算的主要知识点:一、加法和减法运算1. 同类项的加法:将系数相同、幂次相同的项相加,例如:3x^2 + 2x^2 = 5x^22. 同类项的减法:将系数相同、幂次相同的项相减,例如:4a^3 - 2a^3 = 2a^33. 非同类项的加减法:对于系数不同或幂次不同的项,无法直接相加减,必须先化简为同类项再进行运算,例如:2x^2 + 3x - 4x^2 + 5 = -2x^2 + 3x + 5二、乘法运算1. 两个整式相乘:将每一项都与另一个整式中的每一项相乘,再将结果相加,例如:(2x + 3)(4x + 5) = 8x^2 + 22x + 152. 多个整式相乘:按照分配律和结合律,逐步进行乘法运算,例如:(a + b)(c + d)(e + f) = ace + acf + ade + adf + bce + bcf + bde + bdf三、指数运算1. 幂的乘法:同一个底数的幂相乘,指数相加,例如:x^2 * x^3 = x^(2+3) = x^52. 幂的除法:同一个底数的幂相除,指数相减,例如:x^4 ÷ x^2 = x^(4-2) = x^23. 幂的乘方:一个幂的指数再次求幂,指数相乘,例如:(x^2)^3 = x^(2*3) = x^6四、分配律1. 乘法与加法的分配律:整式乘以一个因式后再加减,可先分别将整式与因式相乘,再进行加减运算,例如:2x(3x + 4y) = 6x^2 + 8xy2. 乘法与减法的分配律:整式乘以一个因式后再减去,可先分别将整式与因式相乘,再进行减法运算,例如:3a(4b - 2c) = 12ab - 6ac以上是整式的主要运算知识点,掌握了这些知识点,就能够灵活运用整式进行代数计算,并解决各类代数问题。

七年级数学下册_第一章《整式的运算》知识点总结_北师大版

七年级数学下册_第一章《整式的运算》知识点总结_北师大版

第一章《整式的运算》知识点总结 一、单项式:数字与字母的乘积组成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数。

注意:π是数字,而不是字母,它的系数是π,次数是0.二、多项式几个单项式的代数和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法: 整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质:1、同底数幂的乘法:),(都是正整数n m a a a n m n m +=∙2、幂的乘方: ),(都是正整数)(n m a a m n n m =3、积的乘方:)()(都是正整数n b a ab n n n =4、同底数幂的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数 六、零指数幂和负整数指数幂:1、零指数幂:);0(10≠=a a2、负整数指数幂:),0(1是正整数p a aap p ≠=- 七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式: 法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

5、多项式除以单项式: 多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

八、整式乘法公式:1、平方差公式: 22))((b a b a b a -=-+2、完全平方公式: 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-七年级数学(下)第一章《整式的运算》一、 知识点:1、都是数与字母的乘积的代数式叫做单项式(单独的一个数或一个字母也是单项式);几个单项式的和叫做多项式;单项式和多项式统称整式。

七年级整式的运算知识点

七年级整式的运算知识点

七年级整式的运算知识点在初中数学的学习中,整式是一个重要的知识点。

在学习整式的过程中,掌握整式的运算方法也是必不可少的。

本文将为大家详细介绍七年级整式的运算知识点。

一、整式的定义整式是指只有加减乘运算,没有除法运算的多项式。

其中每一项都是若干个常数与未知量的乘积,并且指数均为整数。

例如:$3x^2y+4xy^2-2x+5y$就是一个整式。

二、整式的加减运算1.同类项相加减原则同类项是指,由相同的字母表达式组成的项,其中字母和字母指数都相同。

例如:$2x^2y$和$3x^2y$就是同类项,而$2x^2y$和$3xy^2$就不是同类项。

同类项相加减原则:对于两个整式相加减,首先要将其中的同类项合并。

例如:$4x^2y-3xy^2+2x^2y+5xy^2$,将其合并同类项后可得$6x^2y+2xy^2$。

2.整式加减的步骤整式加减的步骤就是:先合并同类项,然后将系数与字母表达式分别相加减,得到最终结果。

例如:$(3x+4y-2)+(5x-3y+1)$,先将其中的同类项合并,得到$8x+y-1$。

三、整式的乘法运算整式的乘法运算中,我们只需将其中的每一项都乘以另一个整式的每一项,然后将结果相加即可。

例如:$(3x+2y)(2x+5)$,将其进行乘法运算后得到$6x^2+19xy+10y$。

四、整式的整除运算在整式的整除运算中,除式和被除式都是整式。

对于一般的整除式,我们需要通过长除法来计算。

例如:$\dfrac{3x^2+5xy}{x}$,通过长除法可得到商式为$3x+5y$,余数为$0$。

五、整式运算的特殊情况1.平方差公式在整式运算中,我们经常会遇到平方差公式。

它的公式为$(a+b)(a-b)=a^2-b^2$。

例如:$(3x+2)^2=(3x)^2+2\times3x\times2+2^2=9x^2+12x+4$。

2.完全平方公式完全平方公式是指,两个完全平方数的和可以用公式$(a+b)^2=a^2+2ab+b^2$表示。

七年级数学下册全部知识点归纳

七年级数学下册全部知识点归纳
2、尺规作图是最基本、最常见的作图方法,通常叫基本作图。
3、尺规作图中直尺的功能是:
(1)在两点间连接一条线段;
(2)将线段向两方延长。
4、尺规作图中圆规的功能是:
(1)以任意一点为圆心,任意长为半径作一个圆;
(2)以任意一点为圆心,任意长为半径画一段弧;
5、熟练掌握以下作图语言:
(1)作射线××;
2、余角、补角只有数量上的关系,与其位置无关。
3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。
4、对顶角既有数量关系,又有位置关系。
五、平行线的判定方法
1、同位角相等,两直线平行。
2、内错角相等,两直线平行。
3、同旁内角互补,两直线平行。
4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。
(2)在射线上截取××=××;
(3)在射线××上依次截取××=××=××;
(4)以点×为圆心,××为半径画弧,交××于点×;
(5)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点×;
(6)过点×和点×画直线××(或画射线××);
(7)在∠×××的外部(或内部)画∠×××=∠×××;
6、在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
七、积的乘方

初中数学整式运算知识点

初中数学整式运算知识点

初中数学整式运算知识点初中数学整式运算知识点1.同类项所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。

同类项与系数无关,与字母排列的顺序也无关。

2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。

即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

3.整式的加减:有括号的先算括号里面的,然后再合并同类项。

4.幂的运算:5.整式的乘法:1)单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。

2)单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。

3)多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

6.整式的除法1)单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

2)多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。

四、因式分解把一个多项式化成几个整式的积的形式1)提公因式法:(公因式多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。

取各项系数的最大公约数作为因式的系数,取相同字母最低次幂的积。

公因式可以是单项式,也可以是多项式。

2)公式法:A.平方差公式;B.完全平方公式1.同类项所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。

同类项与系数无关,与字母排列的顺序也无关。

2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。

即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

3.整式的加减:有括号的先算括号里面的,然后再合并同类项。

4.幂的运算:5.整式的乘法:1)单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。

2)单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。

七下期末复习第一章《整式的运算》知识点复习

七下期末复习第一章《整式的运算》知识点复习

第一章《整式的运算》知识点复习知识要点:第1节整式:单项式和多项式统称为整式。

能辨别是否是整式,指出单项式的系数、次数,多项式的项数、次数。

第2节整式的加减:实质就是合并同类项。

能辨认是否是同类项,合并时要特别注意去括号时,括号前面是负号时要变号。

类型有:单加单、单加多、多加多、减转化为加。

第3节同底数幂的乘法:a m ∙a n =a m+n 同底数幂相乘,底数不变,指数相加。

第5节同底数幂的除法:a m ÷a n =a m-n 同底数幂相乘,底数不变,指数相减。

零次幂:a 0=1(条件:a ≠0) 负指数次幂:1p p a a-=(条件:a ≠0) 也就是 a p ∙a -p =1 第4节幂的乘方:(a m )n =a mn 幂的乘方,底数不变,指数相乘。

积的乘方:(a ∙b )n =a n ∙b n 积的乘方等于积中各因式的相同次方。

第6节整式的乘法:类型有:单乘单、单乘多、多乘多。

方法:多乘多→单乘多→单乘单单项式乘以单项式是把系数相乘作系数(要注意符号),相同字母按同底数幂的乘法,其余字母连同它的指数不变。

单项式乘以多项式就是运用分配律→单项式乘以单项式。

第7节平方差公式:(a +b )∙(a -b )=a 2-b 2第8节完全平方公式:(a ±b )2=a 2±2ab +b 2第9节整式的除法:类型有:单除以单、多除以单。

方法:多除以单→单除以单单除以单是把系数相除作系数,相同字母按同底数幂的除法。

多项式除以单项式就是用多项式里的每一项分别除以单项式。

注意公式的变形:①a 2+b 2=(a +b )2-2ab ②a 2+b 2=(a -b )2+2ab③(a +b )2=(a -b )2+4ab ④(a -b )2=(a +b )2-4ab⑤(a -b )=-(b -a ) ⑥(a -b )2=(b -a )2 ⑦(a -b )3=-(b -a )3(-a -b )(-a +b )是可以用平方差公式的。

整式运算知识点总结

整式运算知识点总结

整式运算知识点总结一、整式的基本概念1.整数:整数是自然数、0、负整数的总称,它们可以进行加、减、乘、除、乘方、开方等数学运算,是整式的基本元素。

2.字母:字母通常用来代表数,它可以代表任意一个数,字母在整式中可以表示一个未知数或者变量。

3.整式:由整数、字母和运算符(加减乘除)组成的代数表达式称为整式。

例如,3x^2+2xy-5是一个整式。

4.项:整式中的每一个部分称为项,项由系数和字母的乘积组成。

例如,在3x^2+2xy-5中,3x^2、2xy、-5都是整式的项。

5.同类项:整式中的项如果具有相同的字母部分,就称为同类项。

同类项可以相加或者相减。

例如,在3x^2+2xy-5中,3x^2和2xy是同类项。

6.系数:整式中字母的系数是指字母的前面的数字,它表示字母的数量。

例如,在3x^2+2xy-5中,3、2、-5分别是x^2、xy、1的系数。

二、整式的基本运算法则1.整式的加法和减法运算整式的加法和减法运算就是将同类项相加或者相减。

首先将整式中的同类项合并,然后将系数相加或者相减,不同类项保持不变。

例如:3x^2+2xy-5 + 2x^2-xy+3 = 5x^2+xy-2在这个例子中,首先将同类项3x^2和2x^2合并得到5x^2,然后将2xy和-xy合并得到xy,最后将-5和3相加得到-2。

2.整式的乘法运算整式的乘法运算是分配率的运用,将一个整式中的每一项分别乘以另一个整式中的每一项,然后将所得乘积相加。

例如:(3x+2)(2x-1) = 6x^2-3x+4x-2 = 6x^2+x-2在这个例子中,首先将(3x+2)分别乘以2x和-1,然后将所得乘积相加得到6x^2-3x+4x-2。

3.整式的除法运算整式的除法运算就是求商和余数,将被除式除以除式,然后将所得商和余数相加得到原式。

例如:(6x^2-3x+4x-2) ÷ (3x+2) = 2x-1在这个例子中,首先将6x^2-3x+4x-2除以3x+2得到2x-1。

整式运算笔记知识点总结

整式运算笔记知识点总结

整式运算笔记知识点总结一、整式的基本概念1. 整式的定义整式是由常数和变量按照代数运算法则所组成的式子,包括单项式、多项式和零项式。

例如,3x² + 2xy - 5、a²b + 4ab - 7ab²等都是整式。

2. 单项式和多项式单项式是由常数与变量的乘积所构成的代数式,例如3x²、-4ab、5cd等都是单项式。

而多项式是由多个单项式经过加减运算所得的代数式,例如3x² + 2xy - 5、a²b + 4ab - 7ab²等都是多项式。

3. 同类项同类项是指具有相同字母及其指数的代数式,可以通过合并同类项简化整式的表示形式。

例如,3x²和-5x²就是同类项,可以合并为-2x²。

4. 零项式零项式是不含有任何非零项的多项式,也称为零多项式,通常用0来表示。

5. 整式的次数整式的次数是指整式中变量的最高次幂,如3x² + 2xy - 5的次数是2,a²b + 4ab - 7ab²的次数是3。

二、整式运算的基本法则1. 加法和减法整式的加法和减法遵循交换律和结合律,可以对同类项进行合并,最终得到一个简化的整式。

例如:3x² + 2xy - 5 + 4x² - 3xy + 7 = 7x² - xy + 22. 乘法整式的乘法遵循分配律和结合律,可以通过展开式子,找到各项之间的关系,然后合并同类项。

例如:(3x + 2)(4x - 5) = 12x² - 15x + 8x - 10 = 12x² - 7x - 103. 除法整式的除法通常通过因式分解或长除法来进行,目的是将整式分解成乘法的形式,进而进行简化或化简。

例如:(12x² - 7x - 10) ÷ (3x + 2) = 4x - 5三、整式运算的应用整式运算在代数学中有着广泛的应用,尤其是在解决代数方程、不等式、函数等问题时起着至关重要的作用。

七年级下整式运算知识点

七年级下整式运算知识点

七年级下整式运算知识点整式是高中数学学习的重要内容,而对于初中生来说,也需要了解一些整式的基础知识,以便更好地掌握高中数学内容。

本文将介绍七年级下整式运算的知识点,希望能够帮助学生更好地理解整式运算。

一、整式的定义整式是由变量和常数的有限个代数和乘商式构成的代数式,其中每个代数式称为整式的项,同类项之间可以进行加减运算。

例如,3x²+4x+5就是一个整式,其中3x²、4x、5就是整式的三个项。

二、整式的加法对于两个整式f(x)和g(x),它们的加法可以表示为:(f+g)(x)=f(x)+g(x),即将f(x)和g(x)的同类项进行加和,然后再合并。

例如,将3x²+4x+5和2x²+3x+6进行相加,我们可以将同类项进行加和,得到5x²+7x+11。

三、整式的减法对于两个整式f(x)和g(x),它们的减法可以表示为:(f-g)(x)=f(x)-g(x),即将f(x)和g(x)的同类项进行减法,然后再合并。

例如,将3x²+4x+5和2x²+3x+6进行相减,我们可以将同类项进行减法,得到x²+x-1。

四、整式的乘法对于两个整式f(x)和g(x),它们的乘法可以表示为:(f×g)(x)=f(x)×g(x),即将f(x)和g(x)的每一项进行乘法,然后再合并同类项。

例如,将3x²+4x+5和2x+1进行相乘,我们可以将3x²、4x和5分别乘以2x和1,然后合并同类项,得到6x³+11x²+14x+5。

五、整式的约分当整式中存在相同的因式时,可以进行约分,以简化整式。

例如,将4x²+8x进行约分,可以得到4x(x+2)。

六、整式的乘方对于一个整数n,整式f(x)的n次幂可以表示为:fⁿ(x)=f(x)×f(x)×…×f(x) (共n个f(x))。

初一数学下册《整式的运算》知识点归纳

初一数学下册《整式的运算》知识点归纳

初一数学下册《整式的运算》知识点归

初一数学下册《整式的运算》知识点归纳
一、整式
单项式和多项式统称整式。

a)由数与字母的积组成的代数式叫做单项式。

单独一个
数或字母也是单项式。

b)单项式的系数是这个单项式的数字因数,作为单项式
的系数,必须连同数字前面的性质符号,如果一个单项式只
是字母的积,并非没有系数,系数为1或-1。

)一个单项式中,所有字母的指数和叫做这个单项式的
次数
a)几个单项式的和叫做多项式。

在多项式中,每个单项
式叫做多项式的项。

其中,不含字母的项叫做常数项。

一个
多项式中,次数最高项的次数,叫做这个多项式的次数
b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。

多项式的每一项都是单项式,一个多项式
的项数就是这个多项式作为加数的单项式的个数。

多项式中
每一项都有它们各自的次数,但是它们的次数不可能都作是
为这个多项式的次数,一个多项式的次数只有一个,它是所。

整式的运算知识点总结

整式的运算知识点总结

第一章整式的运算一、单项式:数与字母的乘积叫做单项式;单项式中的数字因数叫做单项式的系数;一个单项式中,所有字母的指数和叫做这个多项式的次数。

注意:①.单独的一个数字或者字母也是单项式.②.单项式中不含“+”或“-”③.形如的代数式不是单项式.④.单项式的系数包括数字因数前面的符号.⑤.单独一个非零数的次数是⑥0.π是常数,不是字母.二、多项式:几个单项式的和叫做多项式(例如:ab-mn,)多项式的项:每个单项式叫做多项式的项;不含字母的项叫做常数项.多项式的项数:多项式中单项式的个数叫做多项式的项数.多项式的次数:多项式里次数最高项的次数叫做这个多项式的次数.三、整式:单项式与多项式统称为整式.(不是多项式的就不是整式,同样,不是单项式的也不是整式)四、整式的加减:就是将整式中的同类项进行合并,如果有括号应先去括号,再合并同类项.五、同底数幂的乘法:同底数幂相乘,底数不变,指数相加,表示为:(m、n都是正整数)六、幂的乘方:指几个相同的幂相乘。

法则:底数不变,指数相乘,表示为:=(其中m、n为正整数)七、积的乘方:先把积中各因式分别乘方,再把所得的幂相乘。

表示为:(n为正整数)八、同底数幂除法:同底数幂相除,底数不变,指数相减,表示为:(a≠0,m、n为正整数,且m>n);另外,(a≠0,p是正整数)九、整式的乘法.1.单项式与单项式相乘.2.单项式与多项式相乘:m(a+b+c)=ma+mb+mc(m、a、b、c都是单项式)3.多项式与多项式相乘:(m+n)(a+b+c)=ma+mb+mc+na+nb+nc十、平方差公式:两个数的和与这两个数的差的乘积,等于这两个数的平方差,表示为:.(a+b)(a-b)=十一、完全平方公式:十二、多项式的除法:单项式与单项式相除,多项式与单项式相除.典型例题:例1、下列说法中正确的是()A.单项式的系数是-2.B.单项式a的次数是0C.多项式D.单项式的系数是,次数是3.例2、多项式A.3B.4C.5D.6例3、如果多项式不含x和项,求a、b的值.例4、(2009太原)已知一个多项式与,则这个多项式是()A.-5x-1 B.5x+1 C.-13x-1 D.13x+1例5、下列计算不正确的是()A. B. C. D.例6、若例7、(1)(2)计算27×_____=例8、下列计算正确的是()A.(B.C.例9、计算:例10、若3x+5y-3=0,求例11、已知例12、下列计算正确的是()A.(x+2)(x-2)=B.(-3a-2)(3a-2)=C.(1+)(1-)=1-D.(2a-1)(1+2a)=例13、计算:(x+y-1)(x-y-1) 例14、若x+y=3,xy=1,则例15、若代数式可化为例16、化简:(2007广西) (,b=-1例17、已知,求例18、已知a,b,c是有理数,且a+b+c=1,例19、证明:当x、y取任何值时,多项式20、已知。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学下册《整式的运算》知识点归

初一数学下册《整式的运算》知识点归纳
一、整式
单项式和多项式统称整式。

a)由数与字母的积组成的代数式叫做单项式。

单独一个数或字母也是单项式。

b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。

)一个单项式中,所有字母的指数和叫做这个单项式的次数
a)几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项。

其中,不含字母的项叫做常数项。

一个多项式中,次数最高项的次数,叫做这个多项式的次数
b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。

多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。

多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所
含各项的次数中最高的那一项次数
a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式
b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。

二、同底数幂的乘法
是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
a)法则使用的前提条是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
b)指数是1时,不要误以为没有指数;
)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
d)当三个或三个以上同底数幂相乘时,法则可推广为;
e)公式还可以逆用:
a)幂的乘方法则:是幂的乘法法则为基础推导出来的,但两者不能混淆。

b)
)底数有负号时,运算时要注意,底数是a与时不是同底,但可以利用乘方法则化成同底,如将3化成-a3
d)底数有时形式不同,但可以化成相同。

e)要注意区别n与n意义是不同的,不要误以为n=an+bn。

f)积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即n=anbn。

g)幂的乘方与积乘方法则均可逆向运用。

五、同底数幂的除法
a)同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即
b)在应用时需要注意以下几点:
1)法则使用的前提条是“同底数幂相除”而且0不能做除数,所以法则中a0。

2)任何不等于0的数的0次幂等于1,即a0=1,如100=1,,则00无意义。

)任何不等于0的数的-p次幂,等于这个数的p的次幂的倒数,即,而0-1,0-3都是无意义的;当a>0时,a-p 的值一定是正的,当a<0时,a-p的值可能是正也可能是负的,如,d)运算要注意运算顺序。

六、整式的乘法
单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:
a)积的系数等于各因式系数积,先确定符号,再计算绝对值。

这时容易出现的错误的是,将系数相乘与指数相加混淆;
b)相同字母相乘,运用同底数幂的乘法法则;
)只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
d)单项式乘法法则对于三个以上的单项式相乘同样适用;
e)单项式乘以单项式,结果仍是一个单项式。

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:
a)单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;
b)运算时要注意积的符号,多项式的每一项都包括它前面的符号;
)在混合运算时,要注意运算顺序。

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项相乘,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:
a)多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;
b)多项式相乘的结果应注意合并同类项;
)对含有同一个字母的一次项系数是1的两个一次二项式相乘=x2+x+ab,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。

对于一次项系数不为1的两个一次二项式和相乘可以得到。

七平方差公式
两数和与这两数差的积,等于它们的平方差,即。

其结构特征是:
a)公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;
b)公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

八、完全平方公式
两数和的平方,等于它们的平方和,加上它们的积的2倍,即;
口诀:首平方,尾平方,2倍乘积在中央;
a)公式左边是二项式的完全平方;
b)公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

)在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。

九、整式的除法
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

相关文档
最新文档