九年级数学下册期中考试试题1
初三数学期中考试试卷及答案
初三数学期中考试试卷及答案第一卷:选择题(共80分)一、选择题(每小题1分,共40分)1. 下列各组函数中,相等的是()a) y = x^2 - 2x + 1,y = (x - 1)^2b) y = |2x - 1|,y = -(2x - 1)c) y = |2x - 1|,y = 2|x| - 1d) y = 2|x + 1|,y = -2|x + 1|2. 单项式 2x^3 y z^2 的次数是()a) 2 b) 3 c) 4 d) 53. 若 a:b = 7:5,b:c = 4:3,求 a:b:c =a) 7:5:3 b) 7:4:5 c) 7:10:12 d) 28:20:154. 圆心坐标为 (-4, 2),半径为 5 的圆方程是()a) (x + 4)^2 + (y - 2)^2 = 5^2b) (x - 4)^2 + (y + 2)^2 = 5^2c) (x + 4)^2 + (y + 2)^2 = 5^2d) (x - 4)^2 + (y - 2)^2 = 5^2...第二卷:非选择题(共70分)五、计算题(共30分)1. 化简:(3a^2b)^3 / (6a^5b^2) =2. 解方程:4x - 5 = 3x + 73. 已知图中三角形 ABC,其中∠B = 90°,AC = 8cm,BC = 6cm。
求 sin A 和 cos C 的值。
...八、解答题(共20分)1. 某商店购进一批相同的商品,第一天卖出了商品总数的 1/4,第二天又卖出了剩余商品总数的1/3 ,已知最后剩下的商品总数是60 件,求原先购进的商品总数。
2. 一辆汽车从 A 地开往 B 地,全程 300 km,开了 4 个小时到达终点。
第二天,汽车原路返回,回到 A 地用了 6 个小时。
求汽车在去程和返程时的平均速度。
...第三卷:答题卡(共10分)请将你的答案填写在答题卡上。
注意事项:1. 请认真核对试卷上的题号和试卷形式,确保填涂无误。
人教版九年级数学下册期中考试题及答案【完整版】
人教版九年级数学下册期中考试题及答案【完整版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的相反数是()A. B. C. D.2.将直线向右平移2个单位, 再向上平移3个单位后, 所得的直线的表达式为()A. B. C. D.3. 抛物线y=3(x﹣2)2+5的顶点坐标是()A. (﹣2, 5)B. (﹣2, ﹣5)C. (2, 5)D. (2, ﹣5)4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题: ”一百馒头一百僧, 大僧三个更无争, 小僧三人分一个, 大小和尚各几丁?”意思是: 有100个和尚分100个馒头, 如果大和尚1人分3个, 小和尚3人分1个, 正好分完, 试问大、小和尚各多少人?设大和尚有x人, 依题意列方程得()A. =100 B. =100C. D.5.体育测试中, 小进和小俊进行800米跑测试, 小进的速度是小俊的1.25倍, 小进比小俊少用了40秒, 设小俊的速度是米/秒, 则所列方程正确的是()A. B.C. D.6.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(, m), 则不等式组mx﹣2<kx+1<mx的解集为()A. x>B. <x<C. x<D. 0<x<7.在以下绿色食品、回收、节能、节水四个标志中, 是轴对称图形的是()A. B. C. D.8.如图, 下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD.9.扬帆中学有一块长, 宽的矩形空地, 计划在这块空地上划出四分之一的区域种花, 小禹同学设计方案如图所示, 求花带的宽度.设花带的宽度为, 则可列方程为()A. B.C. D.10.如图, 二次函数的图象经过点, , 下列说法正确的是()A. B.C. D. 图象的对称轴是直线二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算( -)×+2 的结果是_____________.2. 分解因式: _______.3. 已知、为两个连续的整数, 且, 则=________.4. 如图, 矩形ABCD面积为40, 点P在边CD上, PE⊥AC, PF⊥BD, 足分别为E,F. 若AC=10, 则PE+PF=__________.5. 如图, 某高速公路建设中需要测量某条江的宽度AB, 飞机上的测量人员在C 处测得A, B两点的俯角分别为和若飞机离地面的高度CH为1200米, 且点H, A, B在同一水平直线上, 则这条江的宽度AB为______米结果保留根号.6. 如图, 在平面直角坐标系中, 已知点A(1, 0), B(1﹣a, 0), C(1+a, 0)(a>0), 点P在以D(4, 4)为圆心, 1为半径的圆上运动, 且始终满足∠BPC=90°, 则a的最大值是__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1.x2.(1)求k的取值范围;(2)若x1+x2=1﹣x1x2, 求k的值.3. 如图, 矩形ABCD中, AB=6, BC=4, 过对角线BD中点O的直线分别交AB,CD边于点E, F.(1)求证: 四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时, 求EF的长.4. 如图, 在平面直角坐标系中, 的三个顶点坐标分别为、、, 平分交于点, 点、分别是线段、上的动点, 求的最小值.5. 抚顺某中学为了解八年级学生的体能状况, 从八年级学生中随机抽取部分学生进行体能测试, 测试结果分为A, B, C, D四个等级. 请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数, 并补全条形图;(3)若该中学八年级共有700名学生, 请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生, 做为该校培养运动员的重点对象, 请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.6. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元, 甲种图书每本的售价是乙种图书每本售价的1.4倍, 若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者, 决定甲种图书售价每本降低3元, 乙种图书售价每本降低2元, 问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.A3.C4.B5.C6.B7、D8、D9、D10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1.2.3.114.45.6.6三、解答题(本大题共6小题, 共72分)1、x=3.2.(1);(2)3、(1)略;(2).4.5.(1)50;(2)16;(3)56(4)见解析6、(1)甲种图书售价每本28元, 乙种图书售价每本20元;(2)甲种图书进货533本, 乙种图书进货667本时利润最大.。
人教版数学九年级(下)期中质量测试卷1(附答案)
九年级(下)期中数学试卷一、选择题。
(本大题共10小题.每小题3分.共30分.每小题给出四个答案.其中只有一个是正确的.请把选出的答案填在答题卷上。
) 1.-3的倒数是( )。
A .13B .13-C .-3D .32.下列图形中.既是轴对称图形又是中心对称图形的是( )。
A .B .C .D .3.数据2.6.8.6.10的众数和中位数分别为( )。
A .6和6B .6和8C .8和7D .10和74.一个多边形每一个外角都等于18°.则这个多边形的边数为( )。
A .10B .12C .16D .205.式子x 有意义的x 的取值范围是( )。
A .12≥-x 且1≠x B .x ≠1C .12≥-xD .12>-x 且1≠x 6.把二次函数且()213=--y x 的图象向左平移3个单位.向上平移4个单位后.得到的图象所对应的二次函数表达式为( )。
A .()221=-+y x B .()221=++y x C .()241=-+y xD .()241=++y x7.关于x 的不等式组382122>-+≥⎧⎪⎨+⎪⎩x x x 的解集是( )。
A .2≥xB .5>xC .25-≤<xD .23-≤<x8.如图.点A .B .C .D 在O 上.⊥OA BC .若50∠=︒B .则∠D 的度数为( )。
A .20°B .25°C .30°D .40°9.如图.在正方形ABCD 中.点E 、F 分别是边BC 和CD 上的两点.若1=AB .AEF △为等边三角形.则=CE ( )。
A.2B.3C.2D110.在平面直角坐标系中.如图是二次函数()20=++≠y ax bx c a 的图象的一部分.给出下列命题:①0++=a b c ;②2>b a ;③方程20++=ax bx c 的两根分别为-3和1;④240->b ac .其中正确的命题有( )。
九年级(下)期中数学试卷含答案
九年级(下)期中数学试卷一、选择题1.﹣3的相反数是()A.3 B.﹣3 C.D.2.如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15°B.30°C.45°D.60°3.若a﹣b+c=0,则关于x的一元二次方程ax2+bx+c=0必有一根为()A.0 B.1 C.﹣1 D.24.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4 B.3 C.D.25.如图,△ABO的面积为3,且AO=AB,双曲线y=经过点A,则k的值为()A.B.3 C.6 D.96.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1二、填空题7.因式分解3x2﹣3y2=.8.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是.9.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为.10.在函数y=中,自变量x的取值范围是.11.小明用S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=.12.当﹣1≤x≤2时,二次函数y=(x﹣m)2+m2有最小值3,则实数m的值为.三、解答题13.(1)解方程:=﹣(2)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB,求证:∠A=∠E.14.先化简,再求代数式(﹣)÷的值,其中a=+1.15.如图,AB是⊙O的直径,点C在⊙O上,点D在AB延长线上,且∠BCD=∠A.(1)求证:DC是⊙O的切线;(2)若∠A=30°,AC=2,求图中阴影部分的面积.16.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?17.如图,已知矩形OABC中,OA=3,AB=4,双曲线y=(k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD(1)求k的值和点E的坐标;(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.四、解答题18.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.19.利用直尺画图(先用铅笔画图,然后再用墨水笔将符合条件的图形画出).(1)利用图1中的网格,过P点画直线AB的平行线和垂线;(2)平移图(2)网格中的三条线段AB、CD、EF,使平移后三条线段首尾顺次相接组成一个三角形;(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于.20.如图,一个书架上的方格中放着四本厚度和长度相同的书,其中左边两边上紧贴书架方格内侧竖放,右边两本书自然向左斜放,支撑点为C,E,右侧书角正好靠在方格内侧上,若书架方格长BF=40cm,∠DCE=30°.(1)设一本书的厚度为acm,则EF=cm;(2)若书的长度AB=20cm,求一本书的厚度(结果保留根号)五、解答题21.如图,抛物线C1:y=x2+4x﹣3与x轴交于A、B两点,将C1向右平移得到C2,C2与x轴交于B、C两点.(1)求抛物线C2的解析式.(2)点D是抛物线C2在x轴上方的图象上一点,求S△ABD的最大值.(3)直线l过点A,且垂直于x轴,直线l沿x轴正方向向右平移的过程中,交C1于点E交C2于点F,当线段EF=5时,求点E的坐标.22.如图,△AOB是等腰直角三角形,直线BD∥OA,OB=OA=1,P是线段AB上一动点,过P点作MN∥OB,分别交OA、BD于M、N,PC⊥PO,交BD于点C.(1)求证:OP=PC;(2)当点C在射线BN上时,设AP长为m,四边形POBC的面积为S,请求出S 与m间的函数关系式,并写出自变量m的取值范围;(3)当点P在线段AB上移动时,点C也随之在直线BN上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形时的PM的值;如果不可能,请说明理由.六、解答题23.问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下,AP+BP的最小值为.(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB的最小值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.3 B.﹣3 C.D.【考点】14:相反数.【分析】由相反数的定义容易得出结果.【解答】解:﹣3的相反数是3,故选:A.2.如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15°B.30°C.45°D.60°【考点】JA:平行线的性质.【分析】根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补解答.【解答】解:如图,∠3=∠1=60°(对顶角相等),∵AB∥CD,EG⊥EF,∴∠3+90°+∠2=180°,即60°+90°+∠2=180°,解得∠2=30°.故选B.3.若a﹣b+c=0,则关于x的一元二次方程ax2+bx+c=0必有一根为()A.0 B.1 C.﹣1 D.2【考点】A3:一元二次方程的解.【分析】由a﹣b+c=0求得b=a+c,将其代入方程ax2+bx+c=0中,可得方程的一个根是﹣1.【解答】解:∵a﹣b+c=0,∴b=a+c,①把①代入方程ax2+bx+c=0中,ax2+(a+c)x+c=0,ax2+ax+cx+c=0,ax(x+1)+c(x+1)=0,(x+1)(ax+c)=0,∴x1=﹣1,x2=﹣(非零实数a、b、c).故选:C.4.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4 B.3 C.D.2【考点】KX:三角形中位线定理;KO:含30度角的直角三角形.【分析】先由含30°角的直角三角形的性质,得出BC,再由三角形的中位线定理得出DE即可.【解答】解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选D.5.如图,△ABO的面积为3,且AO=AB,双曲线y=经过点A,则k的值为()A.B.3 C.6 D.9【考点】G5:反比例函数系数k的几何意义;KH:等腰三角形的性质.【分析】过点A作OB的垂线,垂足为点C,根据等腰三角形的性质得OC=BC,再根据三角形的面积公式得到OB•AC=3,易得OC•AC=3,设A点坐标为(x,y),即可得到k=xy=OC•AC=3.【解答】解:过点A作OB的垂线,垂足为点C,如图,∵AO=AB,∴OC=BC=OB,∵△ABO的面积为3,∴OB•AC=3,∴OC•AC=3.设A点坐标为(x,y),而点A在反比例函数y=(k>0)的图象上,∴k=xy=OC•AC=3.故选B.6.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1【考点】H4:二次函数图象与系数的关系;H5:二次函数图象上点的坐标特征;HA:抛物线与x轴的交点;HC:二次函数与不等式(组).【分析】由抛物线与x轴有两个交点则可对A进行判断;由于抛物线开口向上,有最小值则可对B进行判断;根据抛物线上的点离对称轴的远近,则可对C进行判断;根据二次函数的对称性可对D进行判断.【解答】解:A、图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b2﹣4ac>0所以b2>4ac,故A选项正确;B、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax2+bx+c ≥﹣6,故B选项正确;C、抛物线的对称轴为直线x=﹣3,因为﹣5离对称轴的距离大于﹣2离对称轴的距离,所以m<n,故C选项错误;D、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,故D选项正确.故选C.二、填空题7.因式分解3x2﹣3y2=3(x+y)(x﹣y).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3x2﹣3y2=3(x2﹣y2)=3(x+y)(x﹣y).故答案为:3(x+y)(x﹣y).8.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是5.【考点】U3:由三视图判断几何体.【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数,即可得出这个几何体的体积.【解答】解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.故答案为:5.9.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为25.【考点】MO:扇形面积的计算.【分析】根据扇形面积公式:S=•L•R(L是弧长,R是半径),求出弧长BD,根据题意=CD+BC,由此即可解决问题.【解答】解:由题意=CD+BC=10,S扇形ADB=••AB=×10×5=25,故答案为25.10.在函数y=中,自变量x的取值范围是x≥1.【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.11.小明用S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=30.【考点】W7:方差.【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.【解答】解:∵S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2],∴平均数为3,共10个数据,∴x1+x2+x3+…+x10=10×3=30,故答案为:30.12.当﹣1≤x≤2时,二次函数y=(x﹣m)2+m2有最小值3,则实数m的值为或.【考点】H7:二次函数的最值.【分析】根据二次函数的最值问题列出方程求出m的值,再根据二次项系数大于0解答.【解答】解:∵二次函数y=(x﹣m)2+m2有最小值3,二次项系数a=1>0,故图象开口向上,对称轴为x=m,当m<﹣1时,最小值在x=﹣1取得,此时有(m+1)2+m2=3,求得m=,∵m<﹣1,∴m=;当﹣1≤m≤2时,最小值在x=m时取得,即有1﹣m2=﹣2求得m=或m=﹣(舍去)当m>2时,最小值在x=2时取得,即(2﹣m)2+m2=3求得m=(舍去)故答案为:或.三、解答题13.(1)解方程:=﹣(2)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB,求证:∠A=∠E.【考点】KD:全等三角形的判定与性质;B3:解分式方程.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)由BC与DE平行得到一对同位角相等,利用SAS得到三角形ABC与三角形EDB全等,利用全等三角形对应角相等即可得证.【解答】解:(1)去分母得:2=2x﹣1﹣3,解得:x=3,经检验x=3是分式方程的解;(2)∵BC∥DE,∴∠ABC=∠D,在△ABC和△EDB中,,∴△ABC≌△EDB,∴∠A=∠E.14.先化简,再求代数式(﹣)÷的值,其中a=+1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•(a+1)=,当a=+1时,原式=.15.如图,AB是⊙O的直径,点C在⊙O上,点D在AB延长线上,且∠BCD=∠A.(1)求证:DC是⊙O的切线;(2)若∠A=30°,AC=2,求图中阴影部分的面积.【考点】MD:切线的判定;MO:扇形面积的计算.【分析】(1)连结OC,如图,根据圆周角定理得∠ACB=90°,再利用等腰三角形的性质得∠A=∠OCA,∠OBC=∠OCB,则∠A+∠BCO=90°,加上∠BCD=∠A,所以∠BCD+∠BCO=90°,于是根据切线的判定方法可判断DC是⊙O的切线;(2)根据含30度的直角三角形三边的关系,在Rt△ACB中计算出BC=AC=2,AB=2BC=4,再计算出∠AOC=120°,然后根据扇形面积公式,利用图中阴影部分的面积=S扇形AOC ﹣S△AOC进行计算.【解答】(1)证明:连结OC,如图,∵AB是⊙O的直径,∴∠ACB=90°,∵OA=OC,OB=OC,∴∠A=∠OCA,∠OBC=∠OCB,∴∠A+∠BCO=90°,∵∠BCD=∠A,∴∠BCD+∠BCO=90°,即∠OCD=90°,∴OC⊥CD,∴DC是⊙O的切线;(2)在Rt△ACB中,∵∠A=30°,∴BC=AC=2,AB=2BC=4,∵∠AOC=180°﹣∠A﹣∠ACO=120°,∴图中阴影部分的面积=S扇形AOC ﹣S△AOC=S扇形AOC﹣S△ABC=﹣••2•2=π﹣.16.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?【考点】AD:一元二次方程的应用;L5:平行四边形的性质;L8:菱形的性质.【分析】(1)让根的判别式为0即可求得m,进而求得方程的根即为菱形的边长;(2)求得m的值,进而代入原方程求得另一根,即易求得平行四边形的周长.【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5,故当m=1时,四边形ABCD是菱形,菱形的边长是0.5;(2)把AB=2代入原方程得,m=2.5,把m=2.5代入原方程得x2﹣2.5x+1=0,解得x1=2,x2=0.5,∴C▱ABCD=2×(2+0.5)=5.17.如图,已知矩形OABC中,OA=3,AB=4,双曲线y=(k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD(1)求k的值和点E的坐标;(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.【考点】GB:反比例函数综合题.【分析】(1)由矩形OABC中,AB=4,BD=2AD,可得3AD=4,即可求得AD的长,然后求得点D的坐标,即可求得k的值,继而求得点E的坐标;(2)首先假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m,由∠APE=90°,易证得△AOP∽△PCE,然后由相似三角形的对应边成比例,求得m的值,继而求得此时点P的坐标.【解答】解:(1)∵AB=4,BD=2AD,∴AB=AD+BD=AD+2AD=3AD=4,∴AD=,又∵OA=3,∴D(,3),∵点D在双曲线y=上,∴k=×3=4;∵四边形OABC为矩形,∴AB=OC=4,∴点E的横坐标为4.把x=4代入y=中,得y=1,∴E(4,1);(2)假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m.∵∠APE=90°,∴∠APO+∠EPC=90°,又∵∠APO+∠OAP=90°,∴∠EPC=∠OAP,又∵∠AOP=∠PCE=90°,∴△AOP∽△PCE,∴,∴,解得:m=1或m=3,∴存在要求的点P,坐标为(1,0)或(3,0).四、解答题18.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由题意可得:王老师一共调查学生:(2+1)÷15%=20(名);(2)由题意可得:C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.【解答】解:(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为:20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2…女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:=.19.利用直尺画图(先用铅笔画图,然后再用墨水笔将符合条件的图形画出).(1)利用图1中的网格,过P点画直线AB的平行线和垂线;(2)平移图(2)网格中的三条线段AB、CD、EF,使平移后三条线段首尾顺次相接组成一个三角形;(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于3.5.【考点】Q4:作图﹣平移变换;JA:平行线的性质.【分析】(1)根据网格结构的特点,利用直线与网格的夹角的关系找出与AB平行的格点以及垂直的格点作出即可;(2)根据网格结构的特点,过点E找出与AB、CD位置相同的线段,过点F找出与AB、CD位置相同的线段,作出即可;(3)根据S△=S正方形﹣三个角上的三角形的面积即可得出结论.【解答】解:(1)、(2)如图所示;=3×3﹣×1×2﹣×2×3﹣×1×3(3)S△EFH=9﹣1﹣3﹣=3.5.故答案为:3.5.20.如图,一个书架上的方格中放着四本厚度和长度相同的书,其中左边两边上紧贴书架方格内侧竖放,右边两本书自然向左斜放,支撑点为C,E,右侧书角正好靠在方格内侧上,若书架方格长BF=40cm,∠DCE=30°.(1)设一本书的厚度为acm,则EF=a cm;(2)若书的长度AB=20cm,求一本书的厚度(结果保留根号)【考点】T8:解直角三角形的应用.【分析】(1)根据三角形的内角和得到∠CED=60°,根据三角函数的定义即可得到结论;(2)设一本书的厚度为acm,根据BF=40cm,列方程即可得到结论.【解答】解:(1)如图,∵∠DCE=30°,∴∠CED=60°,∴∠GEH=30°,∴EH==a,∴HF=acos30°=a;∴EF=EH+HF=a故答案为:a;(2)设一本书的厚度为acm,则BD=2a,∴DE=CE=10cm,∵BF=40cm,∴2a+10+a=40,解得:a≈7.4.答:一本书的厚度7.4cm.五、解答题21.如图,抛物线C1:y=x2+4x﹣3与x轴交于A、B两点,将C1向右平移得到C2,C2与x轴交于B、C两点.(1)求抛物线C2的解析式.(2)点D是抛物线C2在x轴上方的图象上一点,求S△ABD的最大值.(3)直线l过点A,且垂直于x轴,直线l沿x轴正方向向右平移的过程中,交C1于点E交C2于点F,当线段EF=5时,求点E的坐标.【考点】HF:二次函数综合题.【分析】(1)先依据配方法求得抛物线C1的顶点坐标,然后令y=0,求得点A、B的坐标,从而可判断出C1平移的方向和距离,于是得到抛物线C2的顶点坐标,从而得到C2的解析式;(2)根据函数图象可知,当点D为C2的顶点时,△ABD的面积最大;(3)设点E的坐标为(x,﹣x2+4x﹣3),则点F的坐标为(x,﹣x2+8x﹣15),然后可求得EF长度的解析式,最后根据EF=5,可列出关于x的方程,从而可求得x的值,于是的得到点E的坐标.【解答】解:(1)∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴抛物线C1的顶点坐标为(2,1).令y=0,得﹣(x﹣2)2+1=0,解得:x1=1,x2=3.∵C2经过B,∴C1向右平移了2个单位长度.∵将抛物线向右平移两个单位时,抛物线C2的顶点坐标为(4,1),∴C2的解析式为y2=﹣(x﹣4)2+1,即y=﹣x2+8x﹣15.(2)根据函数图象可知,当点D为C2的顶点时,纵坐标最大,即D(4,1)时,△ABD的面积最大.S△ABD=AB•|y D|=×2×1=1.(3)设点E的坐标为(x,﹣x2+4x﹣3),则点F的坐标为(x,﹣x2+8x﹣15).EF=|(﹣x2+4x﹣3)﹣(﹣x2+8x﹣15)|=|﹣4x+12|.∵EF=5,∴﹣4x+12=5或﹣4x+12=﹣5.解得:x=或x=.∴点E的坐标为(,)或(,﹣)时,EF=5.22.如图,△AOB是等腰直角三角形,直线BD∥OA,OB=OA=1,P是线段AB上一动点,过P点作MN∥OB,分别交OA、BD于M、N,PC⊥PO,交BD于点C.(1)求证:OP=PC;(2)当点C在射线BN上时,设AP长为m,四边形POBC的面积为S,请求出S 与m间的函数关系式,并写出自变量m的取值范围;(3)当点P在线段AB上移动时,点C也随之在直线BN上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形时的PM的值;如果不可能,请说明理由.【考点】LO:四边形综合题.【分析】(1)首先利用矩形的判定得出四边形OBNM 为矩形,即可得出∠CPN=∠POM ,进而得出△OPM ≌△PCN ,求出即可;(2)利用S=S △OPB +S △PBC 进而得出S 与m 的函数关系;(3)利用①当点P 与点A 重合时,PC=BC=1,②如图②,当点C 在OB 下方,且PB=CB 时,分别求出即可.【解答】(1)证明:如图①,△AOB 是等腰直角三角形,AO=BO=1,∴∠A=45°,∠AOB=90°,直线BN ∥OA ,MN ∥OB ,∴四边形OBNM 为矩形,∴MN=OB=1,∠PMO=∠CNP=90°而∠AMP=90°,∠A=∠APM=∠BPN=45°,∴OM=BN=PN ,∵∠OPC=90°,∴∠OPM +∠CPN=90°,又∵∠OPM +∠POM=90°,∴∠CPN=∠POM ,在△OPM 和△PCN 中,∴△OPM ≌△PCN (ASA ),∴OP=PC ,(2)解:∵AM=PM=APsin45°=m , ∴NC=PM=m ,∴BN=OM=PN=1﹣m ;∴BC=BN ﹣NC=1﹣m ﹣m=1﹣m , S=S △OPB +S △PBC =BO•MO +BC•PN ,=m 2﹣m +1(0≤m );(3)解:△PBC可能为等腰三角形,①当点P与点A重合时,PC=BC=1,此时PM=0,②如图②,当点C在OB下方,且PB=CB时,有OM=BN=PN=1﹣m,∴BC=PB=PN=﹣m,∴NC=BN+BC=1﹣m+﹣m,由(2)知:NC=PM=m,∴1﹣m+﹣m=m,∴m=1.∴PM=m=;∴使△PBC为等腰三角形时的PM的值为0或.六、解答题23.问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下,AP+BP的最小值为.(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB的最小值.【考点】MR:圆的综合题.【分析】(1)利用勾股定理即可求出,最小值为AD=;(2)连接CP,在CA上取点D,使CD=,则有,可证△PCD∽△ACP,得到PD=AP,即:AP+BP=BP+PD,从而AP+BP的最小值为BD;(3)延长OA到点E,使CE=6,连接PE、OP,可证△OAP∽△OPE,得到EP=2PA,得到2PA+PB=EP+PB,当E、P、B三点共线时,得到最小值.【解答】解:(1)如图1,连结AD,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为,故答案为:;(2)如图2,连接CP,在CA上取点D,使CD=,∴,∵∠PCD=∠ACP,∴△PCD∽△ACP,∴,∴PD=AP,∴AP+BP=BP+PD,∴同(1)的方法得出AP+BP的最小值为BD==.故答案为:;(3)如图3,延长OA到点E,使CE=6,∴OE=OC+CE=12,连接PE、OP,∵OA=3,∴,∵∠AOP=∠AOP,∴△OAP∽△OPE,∴,∴EP=2PA,∴2PA+PB=EP+PB,∴当E、P、B三点共线时,取得最小值为:BE==13.。
九年级(下)期中数学试卷附答案
九年级(下)期中数学试卷一、选择题(本题共14个小题,每小题3分,共42分)1.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣2.如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°3.下列运算正确的是()A.a2•a3=a6 B.(a3)2=a9C.(﹣)﹣2=4 D.(sin30°﹣π)0=04.不等式组的解集在数轴上表示为()A.B.C.D.5.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最大值()A.6 B.7 C.8 D.96.如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.B.C.D.7.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是()A.10% B.20% C.30% D.40%8.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小9.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用时间与乙搬运8000kg所用时间相等,求甲、乙两人每小时分别搬运多少kg货物,设甲每小时搬运xkg货物,则可列方程为()A.B.C.D.10.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2 B.C.π﹣4 D.11.任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A .△EGH 为等腰三角形B .△EGF 为等边三角形C .四边形EGFH 为菱形D .△EHF 为等腰三角形12.二次函数y=x 2﹣2x +4化为y=a (x ﹣h )2+k 的形式,下列正确的是( ) A .y=(x ﹣1)2+2 B .y=(x ﹣1)2+3 C .y=(x ﹣2)2+2 D .y=(x ﹣2)2+4 13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为 ( )A .y=xB .y=xC .y=xD .y=x14.反比例函数y=(a >0,a 为常数)和y=在第一象限内的图象如图所示,点M 在y=的图象上,MC ⊥x 轴于点C ,交y=的图象于点A ;MD ⊥y 轴于点D ,交y=的图象于点B ,当点M 在y=的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是( )A .0B .1C .2D .3二、填空题(本大题共5小题,每小题3分,共15分)15.在实数范围内分解因式:x4﹣36=.16.计算:﹣(a+1)=.17.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.19.已知以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y﹣b)2=r2.例如:以A(2,3)为圆心,半径为2的圆的标准方程为(x﹣2)2+(y﹣3)2=4,则以原点为圆心,过点P(1,0)的圆的标准方程为.二、填空题(本大题共7小题,共63分)20.计算:20170+|1﹣sin30°|﹣()﹣1+.21.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a=%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.22.禁渔期间,我渔政船在A处发现正北方向B处有一艘可以船只,测得A、B 两处距离为200海里,可疑船只正沿南偏东45°方向航行,我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).23.如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.(1)求证:AB是圆的切线;(2)若点E是BC上一点,已知BE=4,tan∠AEB=,AB:BC=2:3,求圆的直径.24.孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.25.【问题背景】如图1,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD 之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图2),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD【简单应用】(1)在图1中,若AC=,BC=2,则CD=.(2)如图3,AB是⊙O的直径,点C、D在⊙O上,=,若AB=13,BC=12,求CD的长.【拓展规律】(3)如图4,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)26.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线和直线BC的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本题共14个小题,每小题3分,共42分)1.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣【考点】15:绝对值.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.2.如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°【考点】JA:平行线的性质.【分析】如图,由平行线的性质可求得∠1=∠C,再根据三角形外角的性质可求得∠A.【解答】解:如图,∵a∥b,∴∠1=∠C=50°,又∠1=∠A+∠B,∴∠A=∠1﹣∠B=50°﹣22°=28°,故选:B.3.下列运算正确的是()A.a2•a3=a6 B.(a3)2=a9C.(﹣)﹣2=4 D.(sin30°﹣π)0=0【考点】47:幂的乘方与积的乘方;46:同底数幂的乘法;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】结合选项分别进行幂的乘方和积的乘方、负整数指数幂、零指数幂等运算,然后选项正确选项.【解答】解:A、a2•a3=a5,原式计算错误,故本选项错误;B、(a3)2=a6,原式计算错误,故本选项错误;C、(﹣)﹣2=4,原式计算正确,故本选项正确;D、(sin30°﹣π)0=1,原式计算错误,故本选项错误.故选C.4.不等式组的解集在数轴上表示为()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可【解答】解:由x﹣1≥0,得x≥1,由4﹣2x>0,得x<2,不等式组的解集是1≤x<2,故选:D.5.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最大值()A.6 B.7 C.8 D.9【考点】I8:专题:正方体相对两个面上的文字.【分析】根据相对的面相隔一个面得到相对的2个数,相加后比较即可.【解答】解:易得2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最大的是8.故选C.6.如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.B.C.D.【考点】X5:几何概率;MI:三角形的内切圆与内心.【分析】由AB=15,BC=12,AC=9,得到AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC为直角三角形,于是得到△ABC的内切圆半径==3,求得直角三角形的面积和圆的面积,即可得到结论.【解答】解:∵AB=15,BC=12,AC=9,∴AB2=BC2+AC2,∴△ABC为直角三角形,∴△ABC的内切圆半径==3,=AC•BC=×12×9=54,∴S△ABCS圆=9π,∴小鸟落在花圃上的概率==,故选B.7.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是()A.10% B.20% C.30% D.40%【考点】AD:一元二次方程的应用.【分析】如果价格每次降价的百分率为x,降一次后就是降到价格的(1﹣x)倍,连降两次就是降到原来的(1﹣x)2倍.则两次降价后的价格是150×(1﹣x)2,即可列方程求解.【解答】解:设平均每次降价的百分率为x,由题意得150×(1﹣x)2=96,解得:x1=0.2,x2=1.8(不符合题意,舍去).答:平均每次降价的百分率是20%.故选:B.8.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.【解答】解:A、==8,==8,故此选项正确;B、甲得分次数最多是8分,即众数为8分,乙得分最多的是9分,即众数为9分,故此选项正确;C、∵甲得分从小到大排列为:7、8、8、8、9,∴甲的中位数是8分;∵乙得分从小到大排列为:6、7、9、9、9,∴乙的中位数是9分;故此选项错误;D、∵=×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=×2=0.4,=×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]=×8=1.6,∴<,故D正确;故选:C.9.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用时间与乙搬运8000kg所用时间相等,求甲、乙两人每小时分别搬运多少kg货物,设甲每小时搬运xkg货物,则可列方程为()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】设甲搬运工每小时搬运x千克,则乙搬运工每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【解答】解:设甲搬运工每小时搬运x千克,则乙搬运工每小时搬运(x+600)千克,由题意得,故选B10.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2 B.C.π﹣4 D.【考点】M5:圆周角定理;MO:扇形面积的计算.【分析】先证得△OBC是等腰直角三角形,然后根据S阴影=S扇形OBC﹣S△OBC即可求得.【解答】解:∵∠BAC=45°,∴∠BOC=90°,∴△OBC是等腰直角三角形,∵OB=2,∴S阴影=S扇形OBC﹣S△OBC=π×22﹣×2×2=π﹣2.故选A.11.任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形 D.△EHF为等腰三角形【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据等腰三角形的定义、菱形的定义、等边三角形的定义一一判断即可.【解答】解:A、正确.∵EG=EH,∴△EGH是等腰三角形.B、错误.∵EG=GF,∴△EFG是等腰三角形,若△EFG是等边三角形,则EF=EG,显然不可能.C、正确.∵EG=EH=HF=FG,∴四边形EHFG是菱形.D、正确.∵EH=FH,∴△EFH是等腰三角形.故选B.12.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+3 C.y=(x﹣2)2+2 D.y=(x﹣2)2+4【考点】H9:二次函数的三种形式.【分析】根据配方法,可得顶点式函数解析式.【解答】解:y=x2﹣2x+4配方,得y=(x﹣1)2+3,故选:B.13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=x B.y=x C.y=x D.y=x【考点】FI:一次函数综合题.【分析】设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B过A 作AC⊥OC于C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标即可得到该直线l的解析式.【解答】解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B 过A作AC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l 将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO 面积是5,∴OB•AB=5,∴AB=, ∴OC=,由此可知直线l 经过(,3), 设直线方程为y=kx ,则3=k ,k=, ∴直线l 解析式为y=x ,故选C .14.反比例函数y=(a >0,a 为常数)和y=在第一象限内的图象如图所示,点M 在y=的图象上,MC ⊥x 轴于点C ,交y=的图象于点A ;MD ⊥y 轴于点D ,交y=的图象于点B ,当点M 在y=的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是( )A.0 B.1 C.2 D.3【考点】G2:反比例函数的图象;G4:反比例函数的性质.【分析】①由反比例系数的几何意义可得答案;②由四边形OAMB的面积=矩形OCMD面积﹣(三角形ODB面积+面积三角形OCA),解答可知;③连接OM,点A是MC的中点可得△OAM和△OAC的面积相等,根据△ODM 的面积=△OCM的面积、△ODB与△OCA的面积相等解答可得.【解答】解:①由于A、B在同一反比例函数y=图象上,则△ODB与△OCA的面积相等,都为×2=1,正确;②由于矩形OCMD、三角形ODB、三角形OCA为定值,则四边形MAOB的面积不会发生变化,正确;③连接OM,点A是MC的中点,则△OAM和△OAC的面积相等,∵△ODM的面积=△OCM的面积=,△ODB与△OCA的面积相等,∴△OBM与△OAM的面积相等,∴△OBD和△OBM面积相等,∴点B一定是MD的中点.正确;故选:D.二、填空题(本大题共5小题,每小题3分,共15分)15.在实数范围内分解因式:x4﹣36=(x2+6)(x+)(x﹣).【考点】58:实数范围内分解因式.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x2+6)(x2﹣6)=(x2+6)(x+)(x﹣),故答案为:(x2+6)(x+)(x﹣)16.计算:﹣(a+1)=.【考点】6B:分式的加减法.【分析】根据分式的运算即可求出答案.【解答】解:原式=﹣=故答案为:17.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.【考点】LE:正方形的性质;KW:等腰直角三角形;T7:解直角三角形.【分析】作EF⊥BC于F,如图,设DE=CE=a,根据等腰直角三角形的性质得CD= CE=a,∠DCE=45°,再利用正方形的性质得CB=CD=a,∠BCD=90°,接着判断△CEF为等腰直角三角形得到CF=EF=CE=a,然后在Rt△BEF中根据正切的定义求解.【解答】解:作EF⊥BC于F,如图,设DE=CE=a,∵△CDE为等腰直角三角形,∴CD=CE=a,∠DCE=45°,∵四边形ABCD为正方形,∴CB=CD=a,∠BCD=90°,∴∠ECF=45°,∴△CEF为等腰直角三角形,∴CF=EF=CE=a,在Rt△BEF中,tan∠EBF===,即tan∠EBC=.故答案为.18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 1.2.【考点】PB:翻折变换(折叠问题).【分析】如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到=求出FM即可解决问题.【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴=,∵CF=2,AC=6,BC=8,∴AF=4,AB==10,∴=,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.19.已知以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y﹣b)2=r2.例如:以A(2,3)为圆心,半径为2的圆的标准方程为(x﹣2)2+(y﹣3)2=4,则以原点为圆心,过点P(1,0)的圆的标准方程为x2+y2=1.【考点】D5:坐标与图形性质.【分析】根据以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y ﹣b)2=r2进行判断即可.【解答】解:∵以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y﹣b)2=r2,∴以原点为圆心,过点P(1,0)的圆的标准方程为(x﹣0)2+(y﹣0)2=12,即x2+y2=1,故答案为:x2+y2=1.二、填空题(本大题共7小题,共63分)20.计算:20170+|1﹣sin30°|﹣()﹣1+.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:20170+|1﹣sin30°|﹣()﹣1+=1+﹣3+4=221.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了50名学生,a=30%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为36度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由赞同的人数20,所占40%,即可求出样本容量,进而求出a的值;(2)由(1)可知抽查的人数,即可求出无所谓态度的人数,即可将条形统计图补充完整;(3)求出不赞成人数的百分数,即可求出圆心角的度数;(4)求出“赞同”和“非常赞同”两种态度的人数所占的百分数,用样本估计总体的思想计算即可.【解答】解:(1)20÷40%=50(人),无所谓态度的人数为50﹣10﹣20﹣5=15,则a=×100%=30%;(2)补全条形统计图如图所示:(3)不赞成人数占总人数的百分数为×100%=10%,持“不赞同”态度的学生人数的百分比所占扇形的圆心角为10%×360°=36°,(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为×100%=60%,则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800(人).故答案为(1)50;30;(3)36.22.禁渔期间,我渔政船在A处发现正北方向B处有一艘可以船只,测得A、B 两处距离为200海里,可疑船只正沿南偏东45°方向航行,我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).【考点】TB:解直角三角形的应用﹣方向角问题.【分析】先过点C作CD⊥AB,垂足为点D,设BD=x海里,得出AD=海里,在Rt△BCD中,根据tan45°=,求出CD,再根据BD=CD求出BD,在Rt△BCD中,根据cos45°=,求出BC,从而得出答案.【解答】解:过点C作CD⊥AB,垂足为点D,设BD=x海里,则AD=海里,∵∠ABC=45°,∴BD=CD=x,∵∠BAC=30°,∴tan30°=,在Rt△ACD中,则CD=AD•tan30°=,则x=,解得,x=100﹣100,即BD=100﹣100,在Rt△BCD中,cos45°=,解得:BC=100﹣100,则÷4=25(﹣)(海里/时),则该可疑船只的航行速度约为25(﹣)海里/时.23.如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.(1)求证:AB是圆的切线;(2)若点E是BC上一点,已知BE=4,tan∠AEB=,AB:BC=2:3,求圆的直径.【考点】MD:切线的判定.【分析】(1)欲证明AB是圆的切线,只要证明∠ABC=90°即可.(2)在RT△AEB中,根据tan∠AEB=,求出BC,在RT△ABC中,根据=求出AB即可.【解答】(1)证明:∵BC是直径,∴∠BDC=90°,∴∠ACB+∠DBC=90°,∵∠ABD=∠ACB,∴∠ABD+∠DBC=90°∴∠ABC=90°∴AB⊥BC,∴AB是圆的切线.(2)解:在RT△AEB中,tan∠AEB=,∴=,即AB=BE=,在RT△ABC中,=,∴BC=AB=10,∴圆的直径为10.24.孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B 两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.【考点】FH:一次函数的应用;9A:二元一次方程组的应用.【分析】(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B 种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为a棵,则购买B种树木为棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得a的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.【解答】解:(1)设A种树每棵x元,B种树每棵y元,依题意得:,解得.答:A种树每棵100元,B种树每棵80元;(2)设购买A种树木为a棵,则购买B种树木为棵,则a≥3,解得a≥75.设实际付款总金额是y元,则y=0.9[100a+80],即y=18a+7200.∵18>0,y随a的增大而增大,∴当a=75时,y最小.75+7200=8550(元).即当a=75时,y最小值=18×答:当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.25.【问题背景】如图1,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD 之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图2),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD【简单应用】(1)在图1中,若AC=,BC=2,则CD=3.(2)如图3,AB是⊙O的直径,点C、D在⊙O上,=,若AB=13,BC=12,求CD的长.【拓展规律】(3)如图4,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)【考点】MR:圆的综合题.【分析】(1)代入结论:AC+BC=CD,直接计算即可;(2)如图3,作辅助线,根据直径所对的圆周角是直角得:∠ADB=∠ACB=90°,由弧相等可知所对的弦相等,得到满足图1的条件,所以AC+BC=CD,代入可得CD的长;(3)介绍两种解法:解法一:作辅助线,构建如图3所示的图形,由AC+BC=D1C,得D1C=,在直角△CDD1,利用勾股定理可得CD的长;解法二:如图5,根据小吴同学的思路作辅助线,构建全等三角形:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处,得△BCD≌△AED,证明△CDE是等腰直角三角形,所以CE=CD,从而得出结论.【解答】解:(1)由题意知:AC+BC=CD,∴+2=CD,∴CD=3;故答案为:3;(2)如图3,连接AC、BD、AD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵=,∴AD=BD,∵AB=13,BC=12,∴由勾股定理得:AC=5,由图1得:AC+BC=CD,5+12=CD,∴CD=;(3)解法一:以AB为直径作⊙O,连接DO并延长交⊙O于点D1,连接D1A、D1B、D1C、CD,如图4,由(2)得:AC+BC=D1C,∴D1C=,∵D1D是⊙O的直径,∴∠D1CD=90°,∵AC=m,BC=n,∴由勾股定理可求得:AB2=m2+n2,∴D1D2=AB2=m2+n2,∵D1C2+DC2=D1D2,∴CD2=m2+n2﹣=,∵m<n,∴CD=;解法二:如图5,∵∠ACB=∠DB=90°,∴A、B、C、D在以AB为直径的圆上,∴∠DAC=∠DBC,将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处,∴△BCD≌△AED,∴CD=ED,∠ADC=∠ADE,∴∠ADC﹣∠ADC=∠ADE﹣∠ADC,即∠ADB=∠CDE=90°,∴△CDE是等腰直角三角形,所以CE=CD,∵AC=m,BC=n=AE,∴CE=n﹣m,∴CD=.26.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线和直线BC的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)设交点式y=a(x+1)(x﹣4),然后把C点坐标代入求出a的值即可得到抛物线解析式;然后利用待定系数法求直线BC的解析式;(2)易得△ABE只能是以E点为直角顶点的三角形,利用勾股定理的逆定理可证明ACB=90°,再证明△ACB∽△COB,所以当点E在点C时满足条件;当E为点C在抛物线上的对称点时也满足条件,然后利用对称性写出E点坐标即可.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣4),把C(0,2)代入得a•1•(﹣4)=2,解得a=﹣,∴抛物线解析式为y=﹣(x+1)(x﹣4),即y=﹣x2+x+2;设直线BC的解析式为y=mx+n,把C(0,2),B(4,0)代入得,解得,∴直线BC的解析式为y=﹣x+2;(2)存在.由图象可得以A或B点为直角顶点的△ABE不存在,∴△ABE只能是以E点为直角顶点的三角形,∵AC2=12+22=5,BC2=42+22=20,AB2=52=25,∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°,∵∠ABC=∠CBO,∴△ACB∽△COB∴当点E在点C时,以A、B、E为顶点的三角形与△COB相似;∵点C关于直线x=的对称点的坐标为(3,2),∴点E的坐标为(3,2)时,以A、B、E为顶点的三角形与△COB相似,综上所述,点E的坐标为(0,2)或(3,2).。
初中数学九年级下期中经典测试卷(含答案解析)(1)
一、选择题1.(0分)[ID:11125]如图,△ABC的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O为位似中心,将△ABC扩大得到△A1B1C1,且△ABC 与△A1B1C1的位似比为1 :3.则下列结论错误的是 ( )A.△ABC∽△A1B1C1B.△A1B1C1的周长为6+32C.△A1B1C1的面积为3D.点B1的坐标可能是(6,6)2.(0分)[ID:11124]若反比例函数kyx=(x<0)的图象如图所示,则k的值可以是()A.-1B.-2C.-3D.-43.(0分)[ID:11112]在Rt△ABC中,∠ACB=90°,AB5tan∠B=2,则AC的长为()A.1B.2C5D.54.(0分)[ID:11104]如图,在△ABC中,DE∥BC ,12ADDB=,DE=4,则BC的长是()A.8 B.10 C.11 D.125.(0分)[ID:11099]已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=512-BC D.BC=512-AC6.(0分)[ID:11092]在△ABC中,若|cosA−12|+(1−tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°7.(0分)[ID:11089]如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.43B.42C.6D.48.(0分)[ID:11072]下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:99.(0分)[ID:11067]如图,在△ABC中,cos B=22,sin C=35,AC=5,则△ABC的面积是()A.212B.12C.14D.2110.(0分)[ID:11061]如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.15B.25C.215D.811.(0分)[ID:11050]如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.C.8sin20°D.8cos20°12.(0分)[ID:11044]如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE 与旗杆顶点A在同一直线上,已知DE=0.5m,EF=0.25m,目测点D到地面的距离DG=1.5m,到旗杆的水平距离DC=20m,则旗杆的高度为( )A.5B.(105 1.5) mC.11.5m D.10m13.(0分)[ID:11041]在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O 为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,4)C.(2,﹣1)D.(8,﹣4)14.(0分)[ID:11033]给出下列函数:①y=﹣3x+2;②y=3x;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③15.(0分)[ID:11036]如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2B.x<﹣3或x>2C.﹣3<x<0或x>2D.0<x<2二、填空题16.(0分)[ID:11202]如图,P(m,m)是反比例函数9yx=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.17.(0分)[ID:11171]△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是_____.18.(0分)[ID:11164]已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣4x图象上的两个点,则y1与y2的大小关系为__________.19.(0分)[ID:11161]将三角形纸片(ABC∆)按如图所示的方式折叠,使点B落在边AC上,记为点'B,折痕为EF,已知3AB AC==,4BC=,若以点'B,F,C为顶点的三角形与ABC∆相似,则BF的长度是______.20.(0分)[ID:11139]如图,在平行四边形ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为_____.21.(0分)[ID:11137]已知AB∥CD,AD与BC相交于点O.若BOOC=23,AD=10,则AO=____.22.(0分)[ID:11226]如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别相交于点A、B、C和点D、E、F.若AB=3,DE=2,BC=6,则EF=______.23.(0分)[ID:11224]如图,矩形ABCD的顶点,A C都在曲线kyx=(常数0k≥,x>)上,若顶点D的坐标为()5,3,则直线BD的函数表达式是_.24.(0分)[ID:11181]若关于x的分式方程33122x mx x+-=--有增根,则m的值为_____.25.(0分)[ID:11222]如果a c eb d f===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.三、解答题26.(0分)[ID:11310]如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,3).(1)画出△ABC 绕点B 逆时针旋转90°得到的△A 1BC 1.(2)以原点O 为位似中心,位似比为2:1,在y 轴的左侧,画出将△ABC 放大后的△A 2B 2C 2,并写出A 2点的坐标 .27.(0分)[ID :11297]已知:如图,四边形ABCD 的对角线AC 和BD 相交于点E ,AD=DC ,DC 2=DE•DB ,求证:(1)△BCE ∽△ADE ;(2)AB•BC=BD•BE .28.(0分)[ID :11277]已知如图,ADBE CF ,它们依次交直线a ,b 于点A 、B 、C和点D 、E 、F.(1)如果6AB =,8BC =,21DF =,求DE 的长.(2)如果:2:5DE DF =,9AD =,14CF =,求BE 的长.29.(0分)[ID :11257]如图:已知▱ABCD ,过点A 的直线交BC 的延长线于E ,交BD 、CD 于F 、G .(1)若AB =3,BC =4,CE =2,求CG 的长;(2)证明:AF 2=FG ×FE .30.(0分)[ID:11239]如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.C3.B4.D5.D6.C7.B8.B9.A10.C11.A12.C13.A14.B15.C二、填空题16.【解析】【详解】如图过点P作PH⊥OB于点H∵点P(mm)是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m>0解得m=3∴PH=OH=3∵△PAB是等边三角形∴∠PAH=60°∴根据锐角三17.12【解析】【分析】根据位似是相似的特殊形式位似比等于相似比其对应的面积比等于相似比的平方进行解答即可【详解】解:∵△ABC与△A′B′C′是位似图形位似比是1:2∴△ABC∽△A′B′C′相似比是18.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y随x的增大而增大∵A(-4y1)B(-1y2)19.或2【解析】【分析】由折叠性质可知BF=BF△BFC与△ABC相似有两种情况分别对两种情况进行讨论设出BF=BF=x列出比例式方程解方程即可得到结果【详解】由折叠性质可知BF=BF设BF=BF=x故20.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB=CD=12AE∥BCAB∥CD∴∠CFB=∠FBA∵B21.【解析】∵AB∥CD解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键22.4【解析】【分析】利用平行线分线段成比例定理列出比例式求出EF结合图形计算即可【详解】∵∥∥∴又DE=2∴EF=4故答案为:4【点睛】本题考查的是平行线分线段成比例定理灵活运用定理找准对应关系是解题23.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A(3)C (5)所以B()然后利用待定系数法求直线BD的解析式【详解】∵D(53)∴A(3)C (5)∴B()设直线BD的解析式为y=m24.3【解析】【分析】把分式方程化为整式方程进而把可能的增根代入可得m的值【详解】去分母得3x-(x-2)=m+3当增根为x=2时6=m+3∴m=3故答案为3【点睛】考查分式方程的增根问题;增根问题可按25.3【解析】∵=k∴a=bkc=dke=fk∴a+c+e=bk+dk+fk=k(a+b+c)∵a+c+e=3(b+d+f)∴k=3故答案为:3三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可.【详解】A. △ABC∽△A1B1C1,故A正确;B. 由图可知,AB=2-1=1,BC=2-1=1,,所以△ABC的周长为,由周长比等于位似比可得△A1B1C1的周长为△ABC周长的3倍,即6+B正确;C. S△ABC=1111=22⨯⨯,由面积比等于位似比的平方,可得△A1B1C1的面积为△ABC周长的9倍,即19=4.52⨯,故C 错误; D. 在第一象限内作△A 1B 1C 1时,B 1点的横纵坐标均为B 的3倍,此时B 1的坐标为(6,6),故D 正确;故选C.【点睛】本题考查位似三角形的性质,熟练掌握位似的定义,以及位似三角形与相似三角形的关系是解题的关键.2.C解析:C 【解析】【分析】由图像可知,反比例函数与线段AB 相交,由A 、B 的坐标,可求出k 的取值范围,即可得到答案.【详解】如图所示:由题意可知A (-2,2),B (-2,1),∴1-2⨯2<<-2⨯k ,即4-<<-2k故选C.【点睛】本题考查反比例函数的图像与性质,由图像性质得到k 的取值范围是解题的关键.3.B解析:B【解析】【分析】根据正切的定义得到BC=12AC ,根据勾股定理列式计算即可. 【详解】在Rt △ABC 中,∠ACB=90°,tan ∠B=2,∴AC BC =2,∴BC=12AC ,由勾股定理得,AB 2=AC 2+BC 2)2=AC 2+(12AC )2, 解得,AC=2,故选B .【点睛】本题考查的是锐角三角函数的定义、勾股定理,掌握锐角A 的对边a 与邻边b 的比叫做∠A 的正切是解题的关键.4.D解析:D【解析】【分析】 根据AD DB =12,可得AD AB =13,再根据DE ∥BC ,可得DE BC =AD AB ; 接下来根据DE=4,结合上步分析即可求出BC 的长.【详解】 ∵AD DB =12, ∴AD AB =13, ∵在△ABC 中,DE ∥BC , ∴DE BC =AD AB =13. ∵DE=4,∴BC=3DE=12.故答案选D.【点睛】 本题考查了平行线分线段成比例的知识,解题的关键是熟练的掌握平行线分线段成比例定理.5.D解析:D【解析】【分析】根据黄金分割的定义得出BC AC AC AB ==,从而判断各选项. 【详解】∵点C 是线段AB 的黄金分割点且AC >BC ,∴12BC AC AC AB ==,即AC 2=BC•AB,故A 、B 错误;AB ,故C 错误;AC ,故D 正确; 故选D .【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.6.C解析:C【解析】【分析】根据非负数的性质可得出cosA 及tanB 的值,继而可得出A 和B 的度数,根据三角形的内角和定理可得出∠C 的度数.【详解】由题意,得 cosA=12,tanB=1, ∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C .7.B解析:B【解析】【分析】由已知条件可得ABC DAC ~,可得出AC BC DC AC =,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC= 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 8.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.9.A解析:A【解析】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【详解】解:过点A作AD⊥BC,∵△ABC中,cosB=22,sinC=35,AC=5,∴cosB=22=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴2253,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选:A.【点睛】此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.10.C解析:C【解析】【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA-AP=2,接着在Rt△OPH中根据含30°的直角三角形的性质计算出OH=12OP=1,然后在Rt△OHC中利用勾股定理计算出CH=15,所以CD=2CH=215.【详解】作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,∴22=15OC OH∴15故选C.【点睛】本题主要考查圆中的计算问题,熟练掌握垂径定理、含30°的直角三角形的性质以及勾股定理等知识点,掌握数形结合的思想是解答的关键11.A解析:A【解析】【分析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20°.【详解】设木桩上升了h 米,∴由已知图形可得:tan20°=8h , ∴木桩上升的高度h =8tan20°故选B. 12.C解析:C【解析】【分析】确定出△DEF 和△DAC 相似,根据相似三角形对应边成比例求出AC ,再根据旗杆的高度=AC+BC 计算即可得解.【详解】解:∵∠FDE=∠ADC ,∠DEF=∠DCA=90°,∴△DEF ∽△DAC , ∴CDE CD EF A = , 即:0.50.2520AC = , 解得AC=10,∵DF 与地面保持平行,目测点D 到地面的距离DG=1.5米,∴BC=DG=1.5米,∴旗杆的高度=AC+BC=10+1.5=11.5米.故选:C .【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,准确确定出相似三角形是解题的关键.13.A解析:A【解析】【分析】利用位似比为1:2,可求得点E 的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【详解】∵E (-4,2),位似比为1:2,∴点E 的对应点E′的坐标为(2,-1)或(-2,1).故选A .【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.14.B解析:B【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.详解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确.故选B.点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.15.C解析:C【解析】【分析】一次函数y1=kx+b落在与反比例函数y2=cx图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.二、填空题16.【解析】【详解】如图过点P作PH⊥OB于点H∵点P(mm)是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m>0解得m=3∴PH=OH=3∵△PAB是等边三角形∴∠PAH=60°∴根据锐角三.【解析】【详解】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△P AB是等边三角形,∴∠P AH=60°.∴根据锐角三角函数,得3∴OB3∴S△POB=12OB•PH933.17.12【解析】【分析】根据位似是相似的特殊形式位似比等于相似比其对应的面积比等于相似比的平方进行解答即可【详解】解:∵△ABC与△A′B′C′是位似图形位似比是1:2∴△ABC∽△A′B′C′相似比是解析:12【解析】【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是12,故答案为12.【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.18.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y随x的增大而增大∵A(-4y1)B(-1y2)解析:y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y2)是反比例函数y=-4x图象上的两个点,-4<-1,∴y1<y2,故答案为:y1<y2.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.19.或2【解析】【分析】由折叠性质可知BF=BF△BFC与△ABC相似有两种情况分别对两种情况进行讨论设出BF=BF=x列出比例式方程解方程即可得到结果【详解】由折叠性质可知BF=BF设BF=BF=x故解析:127或2【解析】【分析】由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有'B F CFAB BC=,得到方程434x x-=,解得x=127,故BF=127;当△FB’C∽△ABC,有'B F FCAB AC=,得到方程433x x-=,解得x=2,故BF=2;综上BF的长度可以为127或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论. 20.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB =CD=12AE∥BCAB∥CD∴∠CFB=∠FBA∵B解析:【解析】【分析】首先证明CF=BC=12,利用相似三角形的性质求出BF,再利用勾股定理即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=12,AE∥BC,AB∥CD,∴∠CFB =∠FBA ,∵BE 平分∠ABC ,∴∠ABF =∠CBF ,∴∠CFB =∠CBF ,∴CB =CF =8,∴DF =12﹣8=4,∵DE ∥CB ,∴△DEF ∽△CBF , ∴EF BF =DF CF , ∴2BF =48, ∴BF =4,∵CF =CB ,CG ⊥BF ,∴BG =FG =2,在Rt △BCG 中,CG =故答案为【点睛】本题考查平行四边形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.21.【解析】∵AB∥CD 解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键解析:【解析】∵AB ∥CD ,223103AO BO AO OD OC AO ∴===-,即, 解得,AO=4,故答案是:4.【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 22.4【解析】【分析】利用平行线分线段成比例定理列出比例式求出EF 结合图形计算即可【详解】∵∥∥∴又DE=2∴EF=4故答案为:4【点睛】本题考查的是平行线分线段成比例定理灵活运用定理找准对应关系是解题解析:4【解析】【分析】利用平行线分线段成比例定理列出比例式,求出EF ,结合图形计算即可.【详解】∵1l ∥2l ∥3l ,∴36DE AB EF BC == 又DE=2,∴EF=4,故答案为:4.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.23.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3)C (5)所以B ()然后利用待定系数法求直线BD 的解析式【详解】∵D(53)∴A(3)C (5)∴B()设直线BD 的解析式为y=m 解析:35y x =【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3k ,3),C (5,5k ),所以B (3k ,5k ),然后利用待定系数法求直线BD 的解析式. 【详解】∵D (5,3),∴A (3k ,3),C (5,5k ), ∴B (3k ,5k ), 设直线BD 的解析式为y=mx+n , 把D (5,3),B (3k ,5k )代入得 5335m n k k m n ==+⎧⎪⎨+⎪⎩,解得350m n ⎧⎪⎨⎪⎩==, ∴直线BD 的解析式为35y x =. 故答案为35y x =. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x (k 为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了矩形的性质.24.3【解析】【分析】把分式方程化为整式方程进而把可能的增根代入可得m 的值【详解】去分母得3x-(x-2)=m+3当增根为x=2时6=m+3∴m=3故答案为3【点睛】考查分式方程的增根问题;增根问题可按解析:3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.25.3【解析】∵=k∴a=bkc=dke=fk∴a+c+e=bk+dk+fk=k(a+b+c)∵a+c+e=3(b+d+f)∴k=3故答案为:3解析:3【解析】∵a c eb d f===k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),∵a+c+e=3(b+d+f),∴k=3,故答案为:3.三、解答题26.(1)见解析;(2)(﹣4,2).【解析】【分析】(1)根据网格结构找出点A、B、C以点B为旋转中心逆时针旋转90°后的对应点,然后顺次连接即可.(2)利用位似图形的性质得出对应点位置即可得出答案.【详解】解:(1)如图所示,△A1BC1即为所求;(2)如图,△A2B2C2,即为所求,A2(﹣4,2);故答案是:(﹣4,2).【点睛】此题主要考查旋转与位似图形的作图,解题的关键是熟知旋转的性质及位似的定义. 27.(1)见解析;(2)见解析.【解析】【分析】(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.【详解】证明:(1)∵AD=DC,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE ∽△BDA , ∴=,∴AB•BC=BD•BE .【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.28.(1)DE 的长为9;(2)BE 的长为11;【解析】【分析】(1)由果6AB =,8BC =,可得AC=14,然后根据平行线等分线段定理得到6=14DE AB DF AC =,然后将已知条件代入即可求解; (2)过D 作DH∥AC,分别交BE,CF 于H ,说明四边形ABGD 和四边形BCHG 是平行四边形,然后根据平行四边形的性质得CH=BG=AD=9;进一步说明FH=CF-DH=5,然后再按照平行线等分线段定理得到:2:5DE DF =,最后代入已知条件求解即可.【详解】(1)∵6AB =,8BC =,∴AC=AB+BC=14∵ADBE CF ∴6=14DE AB DF AC = ∴662191414DE DF ==⨯= (2)过D 作DH∥AC,分别交BE,CF 于H.∵AD BE CF∴四边形ABGD和四边形BCHG是平行四边形,∴CH=BG=AD=9∴FH=CF-DH=5∵:2:5DE DF=∴:2:5GE HF=∴225255GE HF==⨯=∴BE=BG+GE=9+2=11.【点睛】本题主要考查平行线分线段成比例的知识,关键是掌握三条平行线截两条直线,所得的对应线段成比例.29.(1)1;(2)证明见解析【解析】【分析】(1)根据平行四边形的性质得到AB∥CD,证明△EGC∽△EAB,根据相似三角形的性质列出比例式,代入计算即可;(2)分别证明△DFG∽△BFA,△AFD∽△EFB,根据相似三角形的性质证明.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴△EGC∽△EAB,∴CG ECAB EB=,即2324CG=+,解得,CG=1;(2)∵AB∥CD,∴△DFG∽△BFA,∴FG DF FA FB=,∴AD∥CB,∴△AFD∽△EFB,∴AF DF FE FB=,∴FG AFFA FE=,即AF2=FG×FE.【点睛】本题考查的是平行四边形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.30.证明见解析.【解析】【分析】由∠BAE=∠CAD知∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,再根据线段的长得出65AB ACAE AD==,据此即可得证.【详解】∵∠BAE=∠CAD,∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,∵AB=18,AC=48,AE=15,AD=40,∴65 AB ACAE AD==,∴△ABC∽△AED.【点睛】本题主要考查相似三角形的判定,解题的关键是掌握两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似.。
初三数学期中试题及答案
初三数学期中试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333B. πC. 4.5D. 0.5答案:B2. 一个数的平方等于它本身,这个数可能是:A. 1B. -1C. 0D. 1或-1答案:D3. 如果一个三角形的两边长分别为3和4,那么第三边的长度可能是:A. 1B. 2C. 7D. 5答案:D4. 以下哪个图形是轴对称图形?A. 正方形B. 圆C. 正三角形D. 所有选项答案:D5. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 负数C. 零D. 正数或零答案:D6. 以下哪个选项是二次根式?A. √2B. √(-1)C. √(0)D. √(4/9)答案:A7. 一个数的立方等于它本身,这个数可能是:A. 1B. -1C. 0D. 1或-1或0答案:D8. 在一个直角三角形中,如果一个锐角是30度,那么另一个锐角是:B. 90度C. 120度D. 30度答案:A9. 以下哪个选项是不等式?A. x + 3 = 7B. x - 5 > 2C. 4x = 16D. 3x ≤ 9答案:B10. 一个数的相反数是它本身,这个数是:A. 1B. -1C. 0D. 任何数答案:C二、填空题(每题4分,共20分)1. 一个数的相反数是-5,那么这个数是_______。
答案:52. 如果一个数的绝对值是8,那么这个数可能是_______或_______。
答案:8,-83. 一个数的平方根是4,那么这个数是_______。
4. 一个三角形的两边长分别为5和12,根据三角形的三边关系,第三边的长度应该大于_______而小于_______。
答案:7,175. 如果一个数的立方是27,那么这个数是_______。
答案:3三、解答题(每题10分,共50分)1. 已知一个数的平方是25,求这个数。
答案:这个数是±5。
2. 一个直角三角形的两条直角边长分别为6和8,求斜边的长度。
人教版九年级期中考试数学试题1及答案
人教版九年级期中考试数学试题一、选择题(每题3分,共24分)1.要使二次根式1x-有意义,那么χ的取值范围是()A.χ>-1B.χ<1C.≥1D.χ≤12.在下面4个图案中,中心对称图形为()A B C D3.平面直角坐标系内一点P(-2,3)关于原点的坐标是()A.(3,-2)B.(2,3)C.(-2,-3)D.(2,-3)4.把代数式1xx-根号外的因式移入根号内,则原式等于()A.x- B.x-- C.x D.x-5.如图,圆心角080AOB∠=,则圆周角ACB∠的度数为()A.080 B.040 C.060 D.045(第5题图)6.在半径为5cm的圆中,两条平行弦的长度分别是6cm和8cm,这两条弦间的距离是()cm。
7.若实数χ满足222()4()120x x x x----=,则代数式21x x--的值为()A.5B.-3C.5或3D.6或-28.如图,在0中,半径00A B⊥,C、D为弧AB的三等分点,AB分别交OC、OD于点E、F。
下列结论:①030AOC∠=,②CE=DF;③0105AEO∠=;④23EF OB=,其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共27分)9.化简2(32)-=_________。
10.点A(-3,m)和点B(n,2)关于原点对称,则m+n=______.11.若221210x y y-+++=,则x y+=______。
ABCABCDEF12.一种药品经过两次降价后,每盒的价格由原来的60元,降至48元,若设平 均每次降价的百分率为x ,可列方程为__________。
13.三角形两边长分别是8和6,第三边长是一元二次方程216600x x -+=一个 实数根,则该三角开的面积是____________。
14.设1x ,2x 是一元二次方程22510x x -+=的两个根,那么12(3)(3)x x --=_____ 15.如图,D 是等腰直角ABC ∠ 内的一点,BC 是斜边,如果将ABD ∆绕点A 按逆 时针方向转到AC D '的位置,则ADD '∠的度数为______。
九年级数学下册期中试卷【及参考答案】
九年级数学下册期中试卷【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 2.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±13.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .()3,6--B .()3,0-C .()3,5--D .()3,1--4.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .66.用配方法解方程2x 2x 10--=时,配方后所得的方程为( )A .2x 10+=()B .2x 10-=()C .2x 12+=()D .2x 12-=()7.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC8.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.29.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E 在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°10.如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.2539+B.2539+C.18253+D.25318+二、填空题(本大题共6小题,每小题3分,共18分)116__________.2.因式分解:x3﹣4x=_______.3.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图,反比例函数y=kx的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=_________.6.如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,23).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:122 11xx x+= -+2.先化简,再求值(32m++m﹣2)÷2212m mm-++;其中m2+1.3.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.5.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、C5、B6、D7、C8、B9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、x (x+2)(x ﹣2)3、84、10.5、-36、(,6)三、解答题(本大题共6小题,共72分)1、3x =2、11m m +-,原式=.3、(1) 65°;(2) 25°.4、(1)(m ,2m ﹣5);(2)S △ABC =﹣82a a +;(3)m 的值为72或.5、(1)215;(2)39件;仅从工资收入的角度考虑,小明应到乙公司应聘.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。
苏科版九年级下册数学期中试卷1
苏科版九年级下册数学期中试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一个是正确的,请将正确的选项编号填写在答卷纸相应的位置处)1.(3分)﹣15的相反数是( )A.15B.﹣15C.D.2.(3分)函数y=中,自变量x的取值范围是( )A.x>2B.x≥2C.x≠2D.x≤23.(3分)下列运算正确的是( )A.a3﹣a2=a B.(﹣x2)3=x6C.x2+x3=x5D.x3÷x2=x4.(3分)某组数据﹣5,3,﹣8,9,0,3的极差和众数分别是( )A.﹣8,9B.17,9C.17,3D.0,35.(3分)若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是( )A.7B.8C.9D.106.(3分)下列图形:线段、等边三角形、平行四边形、圆,其中是中心对称图形的个数为( )A.1B.2C.3D.47.(3分)已知某圆锥的底面半径为3cm,母线长5cm,则它的侧面展开图的面积为( )A.30cm2B.15cm2C.30πcm2D.15πcm28.(3分)若双曲线y=与直线y=x+1的一个交点的横坐标为﹣2,则k的值为( )A.﹣1B.1C.﹣2D.29.(3分)如图,点E、F、G、H分别为▱ABCD四边的中点,连接AG、BH、CE、DF,分别相交于点M、N、P、Q,若四边形MNPQ的面积为4,则▱ABCD的面积为( )A.16B.20C.24D.2510.(3分)如图,AB是⊙O的直径,AB=4,C为半圆AB的中点,P为弧AC上一动点,连接PC并延长,作BQ⊥PC于点Q,若点P从点A运动到点C,则点Q运动的路径长为( )A.πB.πC.D.4二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案填写在答卷纸的相应位置处)11.(2分)8的立方根是.12.(2分)分解因式:2x2﹣18= .13.(2分)春节假期,无锡市某影院共接待观众约18000人次,将数18000用科学记数法表示为.14.(2分)如图,已知a∥b,∠1=68°,则∠2= .15.(2分)已知二次函数y=x2+2x﹣3与坐标轴交于A、B、C三点,则△ABC的面积为.16.(2分)命题“四边相等的四边形是菱形”的逆命题是 .17.(2分)中国古代数学名著《孙子算经》中有个问题,原文:今有四人共车,二车空;三人共车,五人步,问人与车各几何?译文为:今有若干人乘车,每4人共乘一车,最终剩余2辆车,若每3人共乘一车,最终剩余5个人无车可乘,问共有辆车.18.(2分)如图,在▱ABCD中,∠B=135°,AB=BC,将△ABC沿对角线AC翻折至△EAC,AE与CD相交于点F,连接DE,则的值为 .三、解答题(本大题共10小题,共84分.请在答卷纸上指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)(1)计算:2sin45°﹣+()﹣1;(2)化简:(a+2b)(a﹣2b)+(a﹣2b)2.20.(8分)(1)解方程:﹣=1;(2)解不等式:3x﹣5<2(2+3x).21.(8分)如图,AD=CB,AB=CD,BE⊥AC,垂足为E,DF⊥AC,垂足为F.求证:(1)△ABC≌△CDA;(2)BE=DF.22.(8分)为推动实施健康中国战略,树立国家健康形象.手机APP推出多款健康运动软件,如“微信运动”.王老师随机调查了我校50名教师某日“微信运动”中的步数,并进行统计整理,绘制了如下的统计图表.请根据以上信息,解答下列问题:(1)a= ,b= ,c= ;(2)补全频数分布直方图;(3)若某人一天的走路步数不低于16000步,将被“微信运动”评为“运动达人”.我市市区约有4000名初中教师,根据此项调查请估计市区被评为“运动达人”教师有多少名?23.(8分)语文老师要求学生们在寒假期间精读四大名著中的一本.(1)小明选择精读《水浒传》的概率是;(2)求小明与小刚选择精读同一本名著的概率.(请用“画树状图”或“列表”等方法写出分析过程)24.(8分)如图,在平面直角坐标系中,以线段AB为直径作⊙C,与x轴相交于A(2,0)、B(8,0)两点,在第一象限内的圆上存在一点D,使得△ACD为等边三角形.(1)求⊙C过点D的切线l的函数关系式;(2)求由线段AE、DE、劣弧AD围成的图形面积.25.(8分)在一次趣味数学的社团活动中,有这样的一道数学探究性问题.(1)问题情境:如图1,在△ABC中,∠A=30°,BC=4,则△ABC的外接圆的半径为;(2)操作实践:如图2,用无刻度直尺与圆规在矩形ABCD的内部作出一点P,使得∠BPC=∠BEC,且PB=PC(不写作法,保留作图痕迹);(3)迁移应用:已知,在△ABC中,∠A>∠B,∠C=60°,AB=6,求BC的取值范围.26.(8分)疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,当0≤x≤10时,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(10,500);当10<x≤12时,累计人数保持不变.(1)求y与x之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测棚,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在8分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?27.(10分)如图,已知菱形ABCD的三个顶点A(﹣2,0),B(2,0),D(0,2),连接AC,P为AC的中点,点E为AD延长线上(异于点D)一动点,连接EP并延长与CD、AB分别交于G、F两点.(1)P点的坐标为 ;(2)求+的值;(3)连接EC,若∠CEF=60°,求ED的长.28.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4a经过A(﹣1,0),C(0,4)两点,与x轴交于另一点B,点D为该抛物线的顶点.(1)顶点D的坐标为;(2)将该抛物线向下平移单位长度,再向左平移m(m>0)个单位长度,得到新抛物线.若新抛物线的顶点D′在△ABC内,求m的取值范围;(3)若点P、点Q(n,n+1)为该抛物线上两点,连接BQ,且tan∠QBP=2,求点P 的坐标.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一个是正确的,请将正确的选项编号填写在答卷纸相应的位置处)1.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣15的相反数是15,故选:A.2.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣2>0,解得:x>2,故选:A.3.【分析】直接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别判断得出答案.【解答】解:A、a3﹣a2,无法计算,故此选项错误;B、(﹣x2)3=﹣x6,故此选项错误;C、x2+x3=x5,无法计算,故此选项错误;D、x3÷x2=x,正确.故选:D.4.【分析】根据极差和众数的定义分别进行解答即可得出答案.【解答】解:这组数据的极差是:9﹣(﹣8)=17,3出现了2次,出现的次数最多,则众数是3;故选:C.5.【分析】根据多边形外角和定理求出正多边形的边数.【解答】解:∵正多边形的每一个外角都等于36°,∴正多边形的边数==10.故选:D.6.【分析】根据中心对称图形的概念求解.【解答】解:线段是中心对称图形;等边三角形不是中心对称图形;平行四边形是中心对称图形;圆是中心对称图形;则是中心对称图形的有3个.故选:C.7.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故选:D.8.【分析】先利用一次函数解析式确定交点坐标,然后把交点坐标代入y=中可求出k的值.【解答】解:当x=﹣2时,y=x+1=﹣2+1=﹣1,所以两函数图象的交点坐标为(﹣2,﹣1),把(﹣2,﹣1)代入y=得k=﹣2×(﹣1)=2.故选:D.9.【分析】连接CN,NQ,AQ,首先根据平行四边形的性质和判定证明四边形MNPQ是平行四边形,则S△PNQ=2,由三角形中位线定理可知:点P为CQ的中点,S△CNP=2,设S△BNG=x,则S△CNG=x,再根据,求出x的值,从而得出S▱AECG=10,即可解决问题.【解答】解:如图,连接CN,NQ,AQ,∵点H、F分别是CD、AB的中点,∴DH=CD,BF=AB,∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,∴DH=BF,DH∥BF,∴四边形DFBH是平行四边形,∴BH∥DF,同理可证CE∥AG,∴四边形MNPQ是平行四边形,∵BH∥DF,∴点P为CQ的中点,∴S△PNQ=S△CNP=2,设S△BNG=x,则S△CNG=x,∵NG∥CE,G点为BC的中点,∴△BNG∽△BPC,∴,∴,∴x=1,∴s四边形CPNG=3,同理S四边形AMQE=3,∴S▱AECG=10,∴S▱ABCD=2S▱AECG=20,故选:B.10.【分析】由P点的运动特点可知Q点轨迹是以BC为直径圆上的弧CQ',求出BC的长以及圆心角∠COQ'=90°,即可求的长.【解答】解:∵点P从点A运动到点C,BQ⊥PC,∴Q点轨迹是以BC为直径圆上的弧CQ',∵C为半圆AB的中点,∴P点从点运动到C点的过程中,∠ABC=45°,∴∠CBQ'=45°,∴∠COQ'=90°,∵AB=4,∴BC=2,∴OC=,∴==π,故选:A.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案填写在答卷纸的相应位置处)11.【分析】利用立方根的定义计算即可得到结果.【解答】解:∵23=8,∴8的立方根为2,故答案为:2.12.【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)13.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:18000=1.8×104.故答案为:1.8×104.14.【分析】根据题意作出图形构造∠3,根据平行线的性质得到∠1=∠3=68°,结合图形根据邻补角的性质得到∠3+∠2=180°,从而求得∠2的度数.【解答】解:如下图所示,∵a∥b,∴∠1=∠3,又∠1=68°,∴∠3=68°,∵∠3+∠2=180°,∴∠2=180°﹣68°=112°,故答案为:112°.15.【分析】先根据抛物线y=x2+2x﹣3找到与坐标轴的三个交点,则该三角形的面积可求.【解答】解:∵抛物线y=x2+2x﹣3=(x﹣1)(x+3),∴它与坐标轴的三个交点分别是:(1,0),(﹣3,0),(0,﹣3);∴该三角形的面积为×4×3=6.故答案是:6.16.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:命题“四边相等的四边形是菱形”的逆命题是菱形的四条边相等,故答案为:菱形的四条边相等.17.【分析】设共有x人乘车,共有y辆车,由题意:今有若干人乘车,每4人共乘一车,最终剩余2辆车,若每3人共乘一车,最终剩余5个人无车可乘,列出方程组,解之即可.【解答】解:设共有x人乘车,共有y辆车,根据题意得:,解得:,即共有39人乘车,共有13辆车,故答案为:13.18.【分析】如图,过点C作CT⊥AB交AB的延长线于点T,连接BE交AC于点J,过点D作DK⊥AC于K.设BT=CT=m,想办法求出DE,AC(用m表示)即可解决问题.【解答】解:如图,过点C作CT⊥AB交AB的延长线于点T,连接BE交AC于点J,过点D作DK⊥AC于K.∵∠ABC=135°,∴∠CBT=45°,∵CT⊥BT,∴CT=BT,设CT=BT=m,则BC=m,∵AB=BC,∴AB=2m,∴AT=AB+BT=3m,∴AC==m,∵∠BAJ=∠CAT,∠AJB=∠T=90°,∴△AJB∽△ATC,∴=,∴=,∴AJ=m,∴CJ=AC﹣AJ=m,在△AKD和△CJB中,,∴△AKD≌△CJE(AAS),∴AK=CJ=m,∵四边形DEJK是矩形,∴DE=JK=AC﹣AK﹣CK=m,∴==,故答案为:.三、解答题(本大题共10小题,共84分.请在答卷纸上指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.【分析】(1)先计算特殊角的三角函数值、化简二次根式、负整数指数幂,然后计算加减法;(2)利用完全平方公式和平方差公式进行解答.【解答】解:(1)2sin45°﹣+()﹣1=2×﹣2+2=﹣2+2=﹣+2;(2)(a+2b)(a﹣2b)+(a﹣2b)2=a2﹣4b2+a2﹣4ab+4b2=2a2﹣4ab.20.【分析】(1)方程两边同时乘以x(x﹣2)化成整式方程,解方程检验后,即可得到分式方程的解;(2)通过去括号、移项、合并同类项、系数化成1,即可得到不等式的解.【解答】解:(1)方程两边同时乘以x(x﹣2)得:(x+3)(x﹣2)﹣2x=x(x﹣2),解得:x=6,检验:当x=6时,x(x﹣2)≠0,∴x=6是原分式方程的解;(2)3x﹣5<2(2+3x)3x﹣5<4+6x3x﹣6x<9﹣3x<9x>﹣3.21.【分析】(1)根据SSS可得出答案;(2)由全等三角形的性质得出∠ACB=∠DAC,证明△AFD≌△CEB(AAS),可得出BE=DF.【解答】证明:(1)在△ABC和△CDA中,,△ABC≌△CDA(SSS).(2)∵△ABC≌△CDA,∴∠ACB=∠DAC,∵BE⊥AC,DF⊥AC,∴∠BEC=∠DF A=90°,在△AFD和△CEB中,,∴△AFD≌△CEB(AAS),∴BE=DF.22.【分析】(1)根据各个频数之和等于样本容量50,可求出b的值,根据频数、频率总数之间的关系可求出a的值,所有各组频率之和为1,求出c的值;(2)补全频数分布直方图如图所示:(3)样本估计总体,样本中“被评为运动达人”的占10%,估计总体4000人的10%被评为运动达人.【解答】解:(1)50﹣2﹣3﹣10﹣15﹣8=12(人),a=8÷50=0.16,c=1.00故答案为:0.16,12,1.00;(2)如图所示;(3)4000×(0.06+0.04)=4000×0.1=400(名),答:我市4000名初中教师中被评为“运动达人”有400名.23.【分析】(1)直接根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)小明选择精读《水浒传》的概率是,故答案为:;(2)将四大名著分别记作A、B、C、D,列表如下:两人选择的方案共有16种等可能的结果,其中选择精读同一本名著的有4种,所以小明与小刚选择精读同一本名著的概率为=.24.【分析】(1)根据题意,分别求出E(﹣1,0),C(5,0),过点D作DG⊥x轴,交于点G,可求D(,),再由待定系数法求直线l的解析式即可;(2)求出△CDE的面积,再求扇形ACD的面积,则所求图形面积等于△CDE的面积减去扇形ACD的面积即可.【解答】解:(1)∵A(2,0)、B(8,0),∴AB=6,∵以线段AB为直径作⊙C,∴AC=3,∵△ACD为等边三角形.,∴CD=3,∠DCA=∠DAC=60°,∵l是圆C过点D的切线,∴∠CDE=90°,∴∠DEC=30°,∴∠DEA=30°,∴AE=AD=3,∴E(﹣1,0),∵AC=3,A(2,0),∴C(5,0),过点D作DG⊥x轴,交于点G,在Rt△AGD中,DG=AD•sin60°=3×=,AG=AD•cos60°=3×=,∴D(,),设直线l的解析式为y=kx+b,则,∴,∴y=x+;(2)∵A(2,0),E(﹣1,0),D(,),C(5,0),∴CD=3,ED=3,∴S△CDE=×DE×DE=×3×3=,∵∠ACD=60°,∴S扇形ACD==,∴线段AE、DE、劣弧AD围成的图形面积为﹣.25.【分析】(1)连接OB、OC,根据圆周角定理及等边三角形的性质可得答案;(2)作BC的垂直平分线,交BE于点O,以O为圆心,OB为半径画圆,交垂直平分线于点P,可得图;(3)作△ABC的外接圆,利用特殊直角三角形的性质及等边三角形的性质可得答案.【解答】解:(1)连接OB、OC,∵∠A=30°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=4,∴△ABC的外接圆的半径为4.故答案为:4.(2)如图,作BC的垂直平分线,交BE于点O,以O为圆心,OB为半径画圆,交垂直平分线于点P,(3)如图,作△ABC的外接圆,∵∠BAC>∠ABC,AB=6,当∠BAC=90°时,BC为最长直径,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB=AC=6,∴AC=2,∴BC=2AC=4,当∠BAC=∠ABC时,△ABC是等边三角形,∴BC=AC=AB=6,∵∠BAC>∠ABC,∴BC的取值范围为:6<BC≤4.26.【分析】(1)①当0≤x≤10时由顶点坐标为(10,500),可设y=a(x﹣10)2+500,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;②当10<x≤12时,根据等候的人数不变得出函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y﹣40x及(1)中所得的y与x之间的函数解析式,可得w关于x的二次函数和一次函数,按照二次函数和一次函数的性质可得答案;(3)设从一开始就应该增加m个监测点,根据在8分钟内让全部学生完成体温检测得到关于m的不等式解不等式即可.【解答】解:(1)①当0≤x≤10时,∵顶点坐标为(10,500),∴设y=a(x﹣10)2+500,将(0,0)代入,得:100a+500=0,解得a=﹣5,∴y=﹣5(x﹣10)2+500=﹣5x2+100x(0≤x≤10),②当10<x≤12时,y=500(10<x≤12),∴y与x之间的函数表达式为y=;(2)设第x分钟时的排队等待人数为w人,由题意可得w=y﹣40x,①0≤x≤10时,w=﹣5x2+100x﹣40x=﹣5x2+60x=﹣5(x﹣6)2+180,∵﹣5<0,∴当x=6时,w的最大值是180;②当10<x≤12时,w=500﹣40x,∵﹣4<0,∴w随x的增大而减小,∴20≤w<100,∴排队人数最多是180人;要全部学生都完成体温检测,根据题意得:500﹣40x=0,解得:x=12.5,∴要全部学生都完成体温检测需要12.5分钟;(3)设从一开始就应该增加m个监测点,由题意得8×20(m+2)≥500,解得:m≥∴m的最小整数是2,即从一开始就应该增加2个监测点.27.【分析】(1)求出AB=4,根据菱形的性质可得AB∥CD,AB=CD,可得点C的坐标,根据中点坐标公式即可得P点的坐标;(2)利用待定系数法求出直线AD的解析式,设点E(m,m+2),再求出直线EP 的解析式,可得点F的坐标,求出AE、AF的长,即可得+的值;(3)取CD中点Q,以Q为圆心,CD为直径作圆,可得点E在⊙Q上,根据圆周角定理以及含30°角的直角三角形的性质即可求解.【解答】解:(1)∵四边形ABCD为菱形,∴AB∥CD,AB=CD,∵A(﹣2,0),B(2,0),D(0,2),∴AB=4,C(4,2),∵P为AC的中点,设P(x,y),∴x==1,y==,∴P(1,),故答案为:(1,);(2)∵A(﹣2,0),D(0,2),∴直线AD的解析式为y=x+2,∵点E为AD延长线上(异于点D)一动点,设点E(m,m+2),∵P(1,),∴直线EP的解析式为y=x﹣,y=0时,x=,∴点F(,0),∴AE==2(m+2),AF=+2=,∴+=+=;(3)取CD中点Q,以Q为圆心,CD为直径作圆,∵A(﹣2,0),D(0,2),∴∠DAB=60°,∵四边形ABCD为菱形,∴AB∥CD,∴∠ADC=120°,∠EDC=60°,∵P为AC的中点,点Q为CD中点,∴PQ∥AD,∴∠PQC=120°,∵∠CEF=60°,∴点E在⊙Q上,∵CD为直径,∴∠CED=90°,∴∠DCE=30°,∴DE=CD,∵AB=CD=4,∴ED=2.28.【分析】(1)把A,C两点的坐标分别代入抛物线解析式中,求出a和b的值,化成顶点式即可;(2)在顶点式基础上,按照“左加右减,上加下减”表达出新抛物线解析式,由点D′在△ABC内可得出关于m的不等式,求出m的取值范围;(3)把点Q的坐标代入抛物线,可求出n的值,分情况讨论,画出对应图形,解直角三角形可得出点P的坐标.【解答】解:(1)∵抛物线y=ax2+bx﹣4a经过A(﹣1,0),C(0,4)两点,∴,解得,∴y=﹣x2+3x+4=﹣(x﹣)2+,∴B(4,0),∵点D为该抛物线的顶点,∴D(,).故答案为:(,).(2)将抛物线y=﹣(x﹣)2+向下平移单位长度,再向左平移m(m>0)个单位长度,得到新抛物线为y=﹣(x﹣+m)2+,∴D′(﹣m,),∵A(﹣1,0),C(0,4),B(4,0),∴直线AC的解析式为:y=4x+4,直线BC的解析式为:y=﹣x+4,把y=分别代入直线AC和BC的解析式,可得m=0和m=,∴0<m<.(3)∵点Q(n,n+1)为该抛物线上两点,∴﹣n2+3n+4=n+1,解得n=﹣1或n=3,当n=﹣1时,Q(﹣1,0),此时点Q和点A重合,取点E(0,8),则tan∠ABE=2,连接BE与抛物线交于点P1,∵B(4,0),∴BE所在直线的表达式:y=﹣2x+8,联立,解得,或(舍),∴P1(1,6);同理,取点F(0,﹣8),则tan∠ABF=2,连接BF与抛物线交于点P2,则BF所在直线的表达式:y=2x﹣8,则(﹣3,﹣14),或(4,0)(舍).∴P2(﹣3,﹣14).当n=3时,Q(3,4),过点Q作QM⊥x轴于点M,则QM=4,BM=1,由勾股定理可得,BQ=,设线段QM上存在点G,使tan∠QBG=2,过点G作GH⊥BQ于点H,则GH:BH=2:1,GH:QH=1:4,设BH=m,则GH=2m,QH=8m,∴GH+QH=BQ,即8m+m=,∴m=,∴QG=,GM=4﹣=,∴BG所在直线的解析式:y=﹣(x﹣4),联立直线和抛物线的表达式可得,﹣(x﹣4)=﹣(x+1)(x﹣4),解得x=﹣,∴P3(﹣,).∴符合题意的点P的坐标为:(1,6),(﹣3,﹣14),(﹣,).。
九年级(下)期中数学试卷(含解析)
九年级(下)期中数学试卷一.选择题(共12小题)1.﹣的倒数是()A.3B.﹣3C.D.﹣2.下列计算正确的一个是()A.a3+a3=a6B.a3•a2=a6C.(a+b)2=a2+b2D.(a2)3=a63.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠1=65°,则∠2的度数是()A.25°B.35°C.45°D.65°4.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4B.c﹣b>0C.ac>0D.a+c>05.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2D.a2﹣b2=(a+b)(a﹣b)8.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE =1,则DE的长是()A.B.2C.2D.9.如果a=b+2,那么代数式(﹣b)•的值为()A.B.2C.3D.410.如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5C.D.511.如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米12.如图是二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)图象的一部分,它与x轴的一个交点A在点(2,0)和点(3,0)之间,图象的对称轴是x=1,对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二.填空题(共6小题)13.因式分解:a3﹣2a2b+ab2=.14.已知关于x的分式方程的解是非正数,则m的取值范围是.15.如图,ABCDEF为⊙O的内接正六边形,AB=2,则图中阴影部分的面积是.16.将全体正奇数排成一个三角形数阵13 57 9 1113 15 17 1921 23 25 27 29…根据以上排列规律,数阵中第25行的第20个数是.17.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE 与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.18.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为.三.解答题(共4小题)19.计算:20.阅读理解题在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0(A2+B2≠0)的距离公式为:d=,例如,求点P(1,3)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知:A=4,B=3,C=﹣3所以P(1,3)到直线4x+3y﹣3=0的距离为:d==2根据以上材料,解决下列问题:(1)求点P1(0,0)到直线3x﹣4y﹣5=0的距离.(2)若点P2(1,0)到直线x+y+C=0的距离为,求实数C的值.21.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.22.如图,在平面直角坐标系中,Rt△AOB的斜边OA在x轴的正半轴上,∠OBA=90°,且tan∠AOB=,OB=2,反比例函数y=的图象经过点B.(1)求反比例函数的表达式;(2)若△AMB与△AOB关于直线AB对称,一次函数y=mx+n的图象过点M、A,求一次函数的表达式.23.已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠F AB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留π);(2)求证:CD是⊙O的切线.24.【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,P A=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,P A=3,PB=1,PC=,求∠APB的度数.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N 从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.﹣的倒数是()A.3B.﹣3C.D.﹣【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣的倒数是﹣3,故选:B.2.下列计算正确的一个是()A.a3+a3=a6B.a3•a2=a6C.(a+b)2=a2+b2D.(a2)3=a6【分析】根据合并同类项的法则,同底数幂的乘法,完全平方公式以及积的乘方的性质,即可求得答案.【解答】解:A、a3+a3=2a3,故本选项错误;B、a3•a2=a5,故本选项错误;C、(a+b)2=a2+2ab+b2,故本选项错误;D、(a2)3=a6,故本选项正确.故选:D.3.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠1=65°,则∠2的度数是()A.25°B.35°C.45°D.65°【分析】过点C作CD∥l1,再由平行线的性质即可得出结论.【解答】解:如图,过点C作CD∥l1,则∠1=∠ACD.∵l1∥l2,∴CD∥l2,∴∠2=∠DCB.∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°.故选:A.4.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4B.c﹣b>0C.ac>0D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵c>b,∴c﹣b>0,∴B正确;又∵a<0,c>0,∴ac<0,∴C不正确;又∵a<﹣3,c<3,∴a+c<0,∴D不正确;故选:B.5.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.【分析】首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k﹣1、1﹣k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k﹣1)x+1﹣k的图象可能是哪个即可.【解答】解:∵式子+(k﹣1)0有意义,∴解得k>1,∴k﹣1>0,1﹣k<0,∴一次函数y=(k﹣1)x+1﹣k的图象可能是:.故选:A.6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.7.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2D.a2﹣b2=(a+b)(a﹣b)【分析】利用正方形的面积公式和矩形的面积公式分别表示出阴影部分的面积,然后根据面积相等列出等式即可.【解答】解:第一个图形阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b).则a2﹣b2=(a+b)(a﹣b).故选:D.8.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE =1,则DE的长是()A.B.2C.2D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.9.如果a=b+2,那么代数式(﹣b)•的值为()A.B.2C.3D.4【分析】直接将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【解答】解:(﹣b)•=•=•=,∵a=b+2,∴a﹣b=2,∴原式==.故选:A.10.如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5C.D.5【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB 即可.【解答】解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为的中点,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故选:D.11.如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米【分析】利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得HF的长即为边AD的长.【解答】解:∵∠HEM=∠AEH,∠BEF=∠FEM,∴∠HEF=∠HEM+∠FEM=×180°=90°,同理可得:∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形,∴GH EF,∴∠GHN=∠EFM,在△GHN和△EFM中,∴△GHN≌△EFM(AAS),∴HN=MF=HD,∴AD=AH+HD=HM+MF=HF,HF===20,∴AD=20厘米.故选:C.12.如图是二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)图象的一部分,它与x轴的一个交点A在点(2,0)和点(3,0)之间,图象的对称轴是x=1,对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当x=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.二.填空题(共6小题)13.因式分解:a3﹣2a2b+ab2=a(a﹣b)2.【分析】原式提取a,再利用完全平方公式分解即可.【解答】解:原式=a(a2﹣2ab+b2)=a(a﹣b)2.故答案为:a(a﹣b)2.14.已知关于x的分式方程的解是非正数,则m的取值范围是m≤3且m≠2.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为非正数确定出m的范围即可.【解答】解:分式方程去分母得:m﹣2=x+1,解得:x=m﹣3,由分式方程的解为非正数,得到m﹣3≤0,且m﹣3≠﹣1,解得:m≤3且m≠2,故答案为:m≤3且m≠2.15.如图,ABCDEF为⊙O的内接正六边形,AB=2,则图中阴影部分的面积是﹣.【分析】利用圆的面积公式和三角形的面积公式求得圆的面积和正六边形的面积,阴影面积=(圆的面积﹣正六边形的面积)×,即可得出结果.【解答】解:∵正六边形的边长为2,∴⊙O的半径为2,∴⊙O的面积为π×22=4π,∵空白正六边形为六个边长为a的正三角形,∴每个三角形面积为×2×2×sin60°=,∴正六边形面积为6,∴阴影面积为(π×22﹣6)×=﹣,故答案为:﹣.16.将全体正奇数排成一个三角形数阵13 57 9 1113 15 17 1921 23 25 27 29…根据以上排列规律,数阵中第25行的第20个数是639.【分析】由三角形数阵,知3+5=8=23,7+9+11=27=33,13+15+17+19=64=43,21+23+25+27+29=125=53,进而得出方程可得答案.【解答】解:根据三角形数阵可知,3+5=8=23,7+9+11=27=33,13+15+17+19=64=43,21+23+25+27+29=125=53,设第25行中间的数是x,可得:253=25x,解得:x=625,即第13个数是625,第20个数=x+2×7=625+14=639,故答案为:639.17.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE 与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D =90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE =∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.18.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为.【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a DE•AD=a∴DE=2,当点F从D到B时,用,∴BD=,Rt△DBE中,BE==1,∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=.故答案为:三.解答题(共4小题)19.计算:【分析】直接利用负指数幂的性质以及特殊角的三角函数值、零指数幂的性质分别化简得出答案.【解答】解:原式=3﹣+2﹣2﹣+1=3.20.阅读理解题在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0(A2+B2≠0)的距离公式为:d=,例如,求点P(1,3)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知:A=4,B=3,C=﹣3所以P(1,3)到直线4x+3y﹣3=0的距离为:d==2根据以上材料,解决下列问题:(1)求点P1(0,0)到直线3x﹣4y﹣5=0的距离.(2)若点P2(1,0)到直线x+y+C=0的距离为,求实数C的值.【分析】(1)根据点到直线的距离公式即可求解;(2)根据点到直线的距离公式,列出方程即可解决问题.【解答】解:(1)d==1;(2)=,∴|C+1|=2,∴C+1=±2,∴C1=﹣3,C2=1.21.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).22.如图,在平面直角坐标系中,Rt△AOB的斜边OA在x轴的正半轴上,∠OBA=90°,且tan∠AOB=,OB=2,反比例函数y=的图象经过点B.(1)求反比例函数的表达式;(2)若△AMB与△AOB关于直线AB对称,一次函数y=mx+n的图象过点M、A,求一次函数的表达式.【分析】(1)过点B作BD⊥OA于点D,设BD=a,通过解直角△OBD得到OD=2BD.然后利用勾股定理列出关于a的方程并解答即可;(2)欲求直线AM的表达式,只需推知点A、M的坐标即可.通过解直角△AOB求得OA=5,则A(5,0).根据对称的性质得到:OM=2OB,结合B(4,2)求得M(8,4).然后由待定系数法求一次函数解析式即可.【解答】解:(1)过点B作BD⊥OA于点D,设BD=a,∵tan∠AOB==,∴OD=2BD.∵∠ODB=90°,OB=2,∴a2+(2a)2=(2)2,解得a=±2(舍去﹣2),∴a=2.∴OD=4,∴B(4,2),∴k=4×2=8,∴反比例函数表达式为:y=;(2)∵tan∠AOB=,OB=2,∴AB=OB=,∴OA===5,∴A(5,0).又△AMB与△AOB关于直线AB对称,B(4,2),∠ABO=90°,∴∠ABM=∠ABO=90°,∴O、B、M共线,∴OM=2OB,∴M(8,4).把点M、A的坐标分别代入y=mx+n,得,解得,故一次函数表达式为:y=x﹣.23.已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠F AB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留π);(2)求证:CD是⊙O的切线.【考点】KF:角平分线的性质;M5:圆周角定理;MD:切线的判定;MO:扇形面积的计算.【专题】15:综合题.【分析】(1)由扇形的面积公式即可求出答案.(2)易证∠F AC=∠ACO,从而可知AD∥OC,由于CD⊥AF,所以CD⊥OC,所以CD 是⊙O的切线.【解答】解:(1)∵AB=4,∴OB=2∵∠COB=60°,∴S扇形OBC==(2)∵AC平分∠F AB,∴∠F AC=∠CAO,∵AO=CO,∴∠ACO=∠CAO∴∠F AC=∠ACO∴AD∥OC,∵CD⊥AF,∴CD⊥OC∵C在圆上,∴CD是⊙O的切线24.【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,P A=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,P A=3,PB=1,PC=,求∠APB的度数.【考点】LO:四边形综合题.【专题】15:综合题.【分析】(1)思路一、先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;思路二、同思路一的方法即可得出结论;(2)同(1)的思路一的方法即可得出结论.【解答】解:(1)思路一、如图1,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=2,AP'=CP=3,在Rt△PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,PP'=BP=2,∵AP=1,∴AP2+PP'2=1+8=9,∵AP'2=32=9,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°;(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=1,AP'=CP=,在Rt△PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,PP'=BP=,∵AP=3,∴AP2+PP'2=9+2=11,∵AP'2=()2=11,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N 从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)把点A、B、C的坐标分别代入抛物线解析式,列出关于系数a、b、c的解析式,通过解方程组求得它们的值;(2)设运动时间为t秒.利用三角形的面积公式列出S△MBN与t的函数关系式S△MBN=﹣(t﹣1)2+.利用二次函数的图象性质进行解答;(3)根据余弦函数,可得关于t的方程,解方程,可得答案.【解答】解:(1)∵点B坐标为(4,0),抛物线的对称轴方程为x=1.∴A(﹣2,0),把点A(﹣2,0)、B(4,0)、点C(0,3),分别代入y=ax2+bx+c(a≠0),得,解得,所以该抛物线的解析式为:y=﹣x2+x+3;(2)设运动时间为t秒,则AM=3t,BN=t.∴MB=6﹣3t.由题意得,点C的坐标为(0,3).在Rt△BOC中,BC==5.如图1,过点N作NH⊥AB于点H.∴NH∥CO,∴△BHN∽△BOC,∴,即=,∴HN=t.∴S△MBN=MB•HN=(6﹣3t)•t=﹣t2+t=﹣(t﹣1)2+,当△MBN存在时,0<t<2,∴当t=1时,S△MBN最大=.答:运动1秒使△MBN的面积最大,最大面积是;(3)如图2,在Rt△OBC中,cos∠B==.设运动时间为t秒,则AM=3t,BN=t.∴MB=6﹣3t.当∠MNB=90°时,cos∠B==,即=,化简,得17t=24,解得t=,当∠BMN=90°时,cos∠B===(在图2中,当∠BM'N'=90°时,cos∠B=)化简,得19t=30,解得t=,综上所述:t=或t=时,△MBN为直角三角形.。
2024年人教版九年级数学下册期中考试卷(附答案)
2024年人教版九年级数学下册期中考试卷(附答案)一、选择题(每题1分,共5分)1.下列哪个数是质数?A. 11B. 12C. 13D. 142.下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 梯形D. 圆3.下列哪个比例是正确的?A. 3:5 = 6:10B. 2:3 = 4:6C. 5:7 = 10:14D. 8:9 = 16:184.下列哪个函数是二次函数?A. y = 3x + 2B. y = x^2 + 2xC. y = 2x^3 + 3D. y = 4x^4 + 55.下列哪个数是实数?A. 3iB. 2iC. 5D. 4i二、判断题(每题1分,共5分)1.一个数的平方根是唯一的。
()2.等腰三角形的底角相等。
()3.分数的分子和分母同时乘以或除以同一个非零数,分数的值不变。
()4.二次函数的图像是抛物线。
()5.平行四边形的对角线互相平分。
()三、填空题(每题1分,共5分)1.一个数的立方根是指这个数的______。
2.两个相似三角形的对应边长之比叫做______。
3.一个数的平方根的平方等于这个数,这个数是______。
4.一个二次函数的一般形式是______。
5.一个实数的平方根有两个,一个是______,另一个是______。
四、简答题(每题2分,共10分)1.简述平行线的性质。
2.简述二次函数的顶点坐标。
3.简述等腰三角形的性质。
4.简述分数的化简方法。
5.简述实数的分类。
五、应用题(每题2分,共10分)1.一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。
2.一个二次函数的顶点坐标为(2, 3),求这个函数的一般形式。
3.一个分数的分子为6,分母为8,求这个分数的简化形式。
4.一个实数的平方根为3,求这个实数。
5.一个平行四边形的对角线长度分别为10cm和12cm,求这个平行四边形的面积。
六、分析题(每题5分,共10分)1.分析二次函数的图像特征。
初三数学期中试题及答案
初三数学期中试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程x^2 - 4x + 4 = 0的解?A. x = 2B. x = -2C. x = 1D. x = -12. 如果一个数的平方根是2,那么这个数是多少?A. 4B. 2C. -4D. -23. 计算下列表达式的结果:(2x + 3)(2x - 3) = ?A. 4x^2 - 9B. 4x^2 + 9C. 4x^2 + 6x - 9D. 4x^2 - 6x + 94. 一个矩形的长是宽的两倍,如果宽是3厘米,那么矩形的周长是多少?A. 18厘米B. 12厘米C. 24厘米D. 30厘米5. 一个圆的半径是5厘米,那么这个圆的面积是多少?A. 78.5平方厘米B. 25π平方厘米C. 100π平方厘米D. 78.5π平方厘米6. 如果一个等腰三角形的底边长为6厘米,两腰长为5厘米,那么这个三角形的周长是多少?A. 16厘米B. 21厘米C. 26厘米D. 31厘米7. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 08. 下列哪个选项是不等式3x - 2 > 5的解?A. x > 3B. x > 7/3C. x < 3D. x < 7/39. 计算下列表达式的结果:(a + b)^2 = ?A. a^2 + b^2B. a^2 + 2ab + b^2C. a^2 - 2ab + b^2D. a^2 + ab + b^210. 如果一个数的立方根是2,那么这个数是多少?A. 8B. 2C. -8D. -2二、填空题(每题3分,共15分)11. 一个数的相反数是-5,那么这个数是_________。
12. 一个数的倒数是2,那么这个数是_________。
13. 一个数的平方是9,那么这个数是_________或_________。
14. 一个数的立方是-27,那么这个数是_________。
2024九年级数学期中考卷及答案
2024九年级数学期中考卷及答案一、选择题(每题2分,共20分)1. 下列各数中,是无理数的是:A. √3B. 0.333...C. 2/3D. √4答案:A2. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 25D. 16答案:C3. 下列等式中,正确的是:A. √(2+√3) = √2 + √3B. √(2+√3) = √2 - √3C. √(2-√3) = √2 - √3D. √(2-√3) = √2 + √3答案:C4. 已知函数f(x) = 2x + 1,那么f(-1)的值是:A. -1B. 0C. 1D. -2答案:A5. 下列哪个数是函数f(x) = 3x² - 2x + 1的零点:A. 1B. 2C. 3D. 4答案:A6. 在直角坐标系中,点(2,3)关于y轴的对称点是:A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)答案:B7. 若平行四边形ABCD的对角线交于点E,已知BE=4,CE=6,那么BD的长度是:A. 5B. 10C. 12D. 20答案:B8. 已知等腰三角形的底边长为10,腰长为13,那么这个三角形的高是:A. 6.5B. 10C. 13D. 26答案:A9. 若圆的半径为5,则圆的面积是:A. 25πB. 50πC. 75πD. 100π答案:B10. 已知直线的斜率为2,过点(1,3),那么这条直线的方程是:A. y=2x+1B. y=2x-1C. y=-2x+1D. y=-2x-1答案:A二、填空题(每题2分,共20分)1. 若a=3,b=4,则a²+b²的值是______。
答案:252. 已知函数f(x) = 2x + 1,那么f(-1)的值是______。
答案:-13. 下列哪个数是函数f(x) = 3x² - 2x + 1的零点:______。
答案:14. 在直角坐标系中,点(2,3)关于y轴的对称点是______。
2024年人教版初三数学下册期中考试卷(附答案)
2024年人教版初三数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在平面直角坐标系中,点P(2,3)关于x轴的对称点是?A. P'(2,3)B. P'(2,3)C. P'(2,3)D. P'(2,3)3. 下列哪个选项是平行四边形的性质?A. 对角线相等B. 对角线互相垂直C. 对角线互相平分D. 对角线互相平行4. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cC. y = ax^2 + bx + dD. y = ax^3 + bx + d5. 下列哪个选项是圆的面积公式?A. A = πr^2B. A = 2πrC. A = πrD. A = 2πr^2二、判断题5道(每题1分,共5分)1. 一个等腰三角形的底角是60度,则顶角也是60度。
()2. 一个数的平方根只有一个。
()3. 任何两个圆都是相似的。
()4. 两个相似的三角形,它们的对应边长之比相等。
()5. 一个二次函数的图像是一个抛物线。
()三、填空题5道(每题1分,共5分)1. 勾股定理中,斜边的长度是直角边的长度的平方和的平方根。
2. 在平面直角坐标系中,点P(x,y)关于y轴的对称点是P'( , )。
3. 平行四边形的对角线互相_________。
4. 二次函数的一般形式是y = ________。
5. 圆的面积公式是A = ________。
四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。
2. 简述平行四边形的性质。
3. 简述二次函数的一般形式。
4. 简述圆的面积公式。
5. 简述两个相似的三角形的性质。
五、应用题:5道(每题2分,共10分)1. 一个直角三角形的两条直角边分别是3cm和4cm,求斜边的长度。
九年级数学下册期中考试题及答案【完整】
九年级数学下册期中考试题及答案【完整】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.比较2, , 的大小, 正确的是()A. B.C. D.2.若点A(1+m, 1﹣n)与点B(﹣3, 2)关于y轴对称, 则m+n的值是()A. ﹣5B. ﹣3C. 3D. 13. 下列计算正确的是()A. a2+a3=a5B.C. (x2)3=x5D. m5÷m3=m24.已知一个多边形的内角和为1080°, 则这个多边形是()A. 九边形B. 八边形C. 七边形D. 六边形5.将抛物线y=﹣5x2+1向左平移1个单位长度, 再向下平移2个单位长度, 所得到的抛物线为()A. y=﹣5(x+1)2﹣1B. y=﹣5(x﹣1)2﹣1C. y=﹣5(x+1)2+3D. y=﹣5(x﹣1)2+36.已知二次函数y=x2﹣x+ m﹣1的图象与x轴有交点, 则m的取值范围是()A. m≤5B. m≥2C. m<5D. m>27.如图, 将矩形ABCD沿GH折叠, 点C落在点Q处, 点D落在AB边上的点E 处, 若∠AGE=32°, 则∠GHC等于()A. 112°B. 110°C. 108°D. 106°8.如图, 点P是边长为1的菱形ABCD对角线AC上的一个动点, 点M, N分别是AB, BC边上的中点, 则MP+PN的最小值是()A. B. 1 C. D. 29.如图, 将正方形OABC放在平面直角坐标系中, O是原点, 点A的坐标为(1, ), 则点C的坐标为()A. (-, 1)B. (-1, )C. ( , 1)D. (-, -1) 10.下列所给的汽车标志图案中, 既是轴对称图形, 又是中心对称图形的是()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: 的结果是__________.2. 因式分解: __________.3. 已知、为两个连续的整数, 且, 则=________.4.如图, 矩形ABCD中, AB=3, BC=4, 点E是BC边上一点, 连接AE, 把∠B沿AE折叠, 使点B落在点处, 当为直角三角形时, BE的长为________.5. 如图, 直线l为y= x, 过点A1(1, 0)作A1B1⊥x轴, 与直线l交于点B1, 以原点O为圆心, OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2, 以原点O为圆心, OB2长为半径画圆弧交x轴于点A3;……, 按此作法进行下去, 则点An的坐标为__________.6.如图, 在矩形ABCD中, 对角线AC、BD相交于点O, 点E、F分别是AO、AD的中点, 若AB=6cm, BC=8cm, 则AEF的周长=__________cm.三、解答题(本大题共6小题, 共72分)1. 解分式方程:2. 已知A-B=7a2-7ab, 且B=-4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b-2)2=0, 求A的值.3. 已知: 如图, 点A.D.C.B在同一条直线上, AD=BC, AE=BF, CE=DF, 求证:AE∥BF.4. 如图, 甲、乙两座建筑物的水平距离为, 从甲的顶部处测得乙的顶部处的俯角为, 测得底部处的俯角为, 求甲、乙建筑物的高度和(结果取整数).参考数据: , .5. 某区域为响应“绿水青山就是金山银山”的号召, 加强了绿化建设. 为了解该区域群众对绿化建设的满意程度, 某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查, 得到如下不完整统计图.请结合图中信息, 解决下列问题:(1)此次调查中接受调查的人数为多少人, 其中“非常满意”的人数为多少人;(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访, 已知这4位群众中有2位来自甲片区, 另2位来自乙片区, 请用画树状图或列表的方法求出选择的群众来自甲片区的概率.6. 小刚去超市购买画笔, 第一次花60元买了若干支A型画笔, 第二次超市推荐了B型画笔, 但B型画笔比A型画笔的单价贵2元, 他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后, 决定以后使用B型画笔, 但感觉其价格稍贵, 和超市沟通后, 超市给出以下优惠方案:一次购买不超过20支, 则每支B型画笔打九折;若一次购买超过20支, 则前20支打九折, 超过的部分打八折. 设小刚购买的B型画笔x支, 购买费用为y元, 请写出y关于x的函数关系式.(3)在(2)的优惠方案下, 若小刚计划用270元购买B型画笔, 则能购买多少支B型画笔?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、D3、D4、B5、A6、A7、D8、B9、A10、B二、填空题(本大题共6小题, 每小题3分, 共18分)122、()2 x x y-3、114.3或.5、2n﹣1, 06、9三、解答题(本大题共6小题, 共72分)1.x=32.(1)3a2-ab+7;(2)12.3、略.4.甲建筑物的高度约为, 乙建筑物的高度约为.5、(1)50, 18;(2)选择的市民均来自甲区的概率为.6、(1)超市B型画笔单价为5元;(2), 其中x是正整数;(3)小刚能购买65支B型画笔.。
九年级(下)期中数学试卷含答案
九年级(下)期中数学试卷一、选择题(本题共10个小题,每小题3分,满分30分.下面每小题给出的四个选项中,只有一个是正确的.)1.﹣的相反数是()A.﹣ B.C.﹣3 D.32.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.3.某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣84.如图,与∠1是同旁内角的是()A.∠2 B.∠3 C.∠4 D.∠55.抛物线y=2x2﹣2x+1与x轴的交点个数是()A.0 B.1 C.2 D.36.下列计算正确的是()A.3a+4b=7ab B.(ab3)3=ab6C.(a+2)2=a2+4 D.x12÷x6=x67.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分8.如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5 B.7 C.9 D.119.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A. B.C.D.10.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8 B.10 C.12 D.14二、填空题(本题共6个小题,每小题3分,共18分.)11.若在实数范围内有意义,则x的取值范围是.12.不等式组的解集是.13.反比例函数y=,在每一象限内,y随x的增大而减小,则m的取值范围.14.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为cm2.15.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是.16.⊙O的半径为1,弦AB=,弦AC=,则∠BAC度数为.三、解答题(本题共9个小题,共102分,解答要求写出文字说明,证明过程或计算步骤.)17.(9分)解方程:x2﹣8x﹣9=0.18.(9分)先化简,再求值:(1+)÷,其中a是小于3的正整数.19.(10分)已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)相交于A和B两点,且A点坐标为(1,3),B点的横坐标为﹣3.(1)求反比例函数和一次函数的解析式;(2)根据图象直接写出使得y1>y2时,x的取值范围.20.(10分)如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C 处,则小明的行走速度是多少?21.(12分)中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图1、图2补充完整;(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).22.(12分)某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:购买学校购买型号及数量(个)购买支出款项(元)A B甲38622乙54402(1)求A、B两种型号的篮球的销售单价;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,求A种型号的篮球最少能采购多少个?23.(12分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.(1)利用尺规,以AB为直径作⊙O,交BC于点D;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求证:AC2=CD•CB.24.(14分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做等邻边四边形.(1)如图1,四边形ABCD中,AC平分∠BAD,∠B=∠D.求证:四边形ABCD 为等邻边四边形.(2)如图2,Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB′的方向平移,得到△A′B′C′,连接AA′、BC′,若平移后的四边形ABC′A′是等邻边四边形,且满足BC′=AB,求平移的距离.(3)如图3,在等邻边四边形ABCD中,AB=AD,∠BAD+∠BCD=90°,AC和BD 为四边形对角线,△BCD为等边三角形,试探究AC和AB的数量关系.25.(14分)如图,抛物线的顶点坐标为C(0,8),并且经过A(8,0),点P 是抛物线上点A,C间的一个动点(含端点),过点P作直线y=8的垂线,垂足为点F,点D,E的坐标分别为(0,6),(4,0),连接PD,PE,DE.(1)求抛物线的解析式;(2)猜想并探究:对于任意一点P,PD与PF的差是否为固定值?如果是,请求出此定值;如果不是,请说明理由;(3)求:①当△PDE的周长最小时的点P坐标;②使△PDE的面积为整数的点P 的个数.参考答案与试题解析一、选择题(本题共10个小题,每小题3分,满分30分.下面每小题给出的四个选项中,只有一个是正确的.)1.﹣的相反数是()A.﹣ B.C.﹣3 D.3【解答】解:﹣的相反数是.故选:B.2.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.【解答】解:如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是,故选D3.某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣8【解答】解:0.00000095=9.5×10﹣7,故选:A.4.如图,与∠1是同旁内角的是()A.∠2 B.∠3 C.∠4 D.∠5【解答】解:A、∠1和∠2是对顶角,不是同旁内角,故本选项错误;B、∠1和∠3是同位角,不是同旁内角,故本选项错误;C、∠1和∠4是内错角,不是同旁内角,故本选项错误;D、∠1和∠5是同旁内角,故本选项正确;故选D.5.抛物线y=2x2﹣2x+1与x轴的交点个数是()A.0 B.1 C.2 D.3【解答】解:根据题意得△=(2)2﹣4×2×1=0,所以抛物线与x轴只有一个交点.故选B.6.下列计算正确的是()A.3a+4b=7ab B.(ab3)3=ab6C.(a+2)2=a2+4 D.x12÷x6=x6【解答】解:A、3a+4b,无法计算,故此选项错误;B、(ab3)3=a3b9,故此选项错误;C、(a+2)2=a2+4a+4,故此选项错误;D、x12÷x6=x6,故此选项正确.故选:D.7.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【解答】解:由加权平均数的公式可知===86,故选D.8.如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5 B.7 C.9 D.11【解答】解:由题意可得,OA=13,∠ONA=90°,AB=24,∴AN=12,∴ON=,故选A.9.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A. B.C.D.【解答】解:在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a <0,b<0,故选项A错误;在B中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b<0,故选项B错误;在C中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b<0,故选项C错误;在D中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,故选项D正确;故选D.10.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8 B.10 C.12 D.14【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=6,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=6,同理可证:DE=DC=6,∵EF=AF+DE﹣AD=2,即6+6﹣AD=2,解得:AD=10;故选:B.二、填空题(本题共6个小题,每小题3分,共18分.)11.若在实数范围内有意义,则x的取值范围是x≥﹣2.【解答】解:∵二次根式在实数范围内有意义,∴被开方数x+2为非负数,∴x+2≥0,解得:x≥﹣2.故答案为:x≥﹣2.12.不等式组的解集是﹣1<x<5.【解答】解:,解①得x>﹣1,解②得x<5.则不等式组的解集是﹣1<x<5.故答案是:﹣1<x<5.13.反比例函数y=,在每一象限内,y随x的增大而减小,则m的取值范围m>3.【解答】解:∵反比例函数y=,在每一象限内,y随x的增大而减小,∴m﹣3>0,解得m>3.故答案为:m>3.14.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为4πcm2.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为3cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2.故答案为:4π.15.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是2.【解答】解:过M作M N′⊥OB于N′,交OC于P,则MN′的长度等于PM+PN的最小值,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,∵∠ON′M=90°,OM=4,∴MN′=OM•sin60°=2,∴点P到点M与到边OA的距离之和的最小值为2.16.⊙O的半径为1,弦AB=,弦AC=,则∠BAC度数为75°或15°.【解答】解:有两种情况:①如图1所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=,AF=CF=,cos∠OAE==,cos∠OAF==,∴∠OAE=30°,∠OAF=45°,∴∠BAC=30°+45°=75°;②如图2所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=,AF=CF=,cos∠OAE═=,cos∠OAF==,∴∠OAE=30°,∠OAF=45°,∴∠BAC=45°﹣30°=15°;故答案为:75°或15°.三、解答题(本题共9个小题,共102分,解答要求写出文字说明,证明过程或计算步骤.)17.(9分)解方程:x2﹣8x﹣9=0.【解答】解:(x+1)(x﹣9)=0,x+1=0或x﹣9=0,所以x1=﹣1,x2=9.18.(9分)先化简,再求值:(1+)÷,其中a是小于3的正整数.【解答】解:原式=•=a+2,∵a是小于3的正整数,∴a=1或a=2,∵a﹣2≠0,∴a=1,当a=1时,原式=1+2=3.19.(10分)已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)相交于A和B两点,且A点坐标为(1,3),B点的横坐标为﹣3.(1)求反比例函数和一次函数的解析式;(2)根据图象直接写出使得y1>y2时,x的取值范围.【解答】解:(1)把点A(1,3)代入y2=,得到m=3,∵B点的横坐标为﹣3,∴点B坐标(﹣3,﹣1),把A(1,3),B(﹣3,﹣1)代入y1=kx+b得到解得,∴y1=x+2,y2=.(2)由图象可知y1>y2时,x>1或﹣3<x<0.20.(10分)如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C 处,则小明的行走速度是多少?【解答】解:过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,∵∠A=45°,CD⊥AB,∴AD=CD=x米,∴AC=x.在Rt△BCD中,∵∠B=30°,∴BC===2x,∵小军的行走速度为米/秒.若小明与小军同时到达山顶C处,∴=,解得a=1米/秒.答:小明的行走速度是1米/秒.21.(12分)中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图1、图2补充完整;(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).【解答】解:(1)100÷50%=200,所以调查的总人数为200名;故答案为200;(2)B类人数=200×25%=50(名);D类人数=200﹣100﹣50﹣40=10(名);C类所占百分比=×100%=20%,D类所占百分比=×100%=5%,如图:(3)画树状图为:共有12种等可能的结果数,其中两名学生为同一类型的结果数为4,所以这两名学生为同一类型的概率==.22.(12分)某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:购买学校购买型号及数量(个)购买支出款项(元)A B甲38622乙54402(1)求A、B两种型号的篮球的销售单价;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,求A种型号的篮球最少能采购多少个?【解答】解:(1)设A型号篮球的价格为x元、B型号的篮球的价格为y元,由题意得,,解得:.答:A种型号的篮球销售单价为26元,B种型号的篮球销售单价为68元.(2)设最少买A型号篮球m个,则买B型号篮球球(20﹣m)个,由题意得,26m+68(20﹣m)≤1000,解得:m≥8,∵m为整数,∴m最小取9.∴最少购买9个A型号篮球.答:若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,A种型号的篮球最少能采购9个.23.(12分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.(1)利用尺规,以AB为直径作⊙O,交BC于点D;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求证:AC2=CD•CB.【解答】(1)解:如图,(2)证明:连接AD,如图,∵AB是直径,∴∠ADB=90°,∴∠ADB=∠CAB,∵∠C=∠C,∴△CAD∽△CBA,∴CA:CB=CD:CA,∴AC2=CD•CB.24.(14分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做等邻边四边形.(1)如图1,四边形ABCD中,AC平分∠BAD,∠B=∠D.求证:四边形ABCD 为等邻边四边形.(2)如图2,Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB′的方向平移,得到△A′B′C′,连接AA′、BC′,若平移后的四边形ABC′A′是等邻边四边形,且满足B C′=AB,求平移的距离.(3)如图3,在等邻边四边形ABCD中,AB=AD,∠BAD+∠BCD=90°,AC和BD 为四边形对角线,△BCD为等边三角形,试探究AC和AB的数量关系.【解答】解:(1)∵∠BAC=∠DAC,∠B=∠D,AC=AC,∴△ABC≌△ADC,∴AB=AD,∴四边形ABCD是等邻边四边形.(2)如图2,延长C′B′交AB于点D,∵△A′B′C′由△ABC平移得到,∴A′B′∥AB,∠A′B′C′=∠ABC=90°,C′B′=CB=1,∴B′D⊥AB,∵BB′平分∠ABC,∴∠B′BD=45°,即B′D=BD设B′D=BD=x,∴C′D=1+x,∵BC′=AB=2,∴Rt△BDC′中,x2+(1+x)2=4,解得x1=,x2=(不合题意,舍去),∴等腰Rt△BB′D中,BB′=x=,∴平移的距离为,(3)AC=AB,理由:如图3,过A作AE⊥AB,且AE=AB,连接ED,EB,∵AE⊥AB,∴∠EAD+∠BAD=90°,又∵∠BAD+∠BCD=90°,△BCD为等边三角形,∴∠EAD=∠DCB=60°,∵AE=AB,AB=AD,∴AE=AD,∴△AED为等边三角形,∴AD=ED,∠EDA=∠BDC=60°∴∠BDE=∠CDA,∵ED=AD,BD=CD,∴△BDE≌△CDA,∴AC=BE∵AE=BE,∠BAE=90°,∴BE=AB,∴AC=AB.25.(14分)如图,抛物线的顶点坐标为C(0,8),并且经过A(8,0),点P 是抛物线上点A,C间的一个动点(含端点),过点P作直线y=8的垂线,垂足为点F,点D,E的坐标分别为(0,6),(4,0),连接PD,PE,DE.(1)求抛物线的解析式;(2)猜想并探究:对于任意一点P,PD与PF的差是否为固定值?如果是,请求出此定值;如果不是,请说明理由;(3)求:①当△PDE的周长最小时的点P坐标;②使△PDE的面积为整数的点P 的个数.【解答】解:(1)设抛物线的解析式为y=ax2+8.∵经过点A(8,0),∴64a+8=0,解得a=﹣.抛物线的解析式为:y=﹣x2+8.(2)PD与PF的差是定值.理由如下:设P(a,﹣a2+8),则F(a,8),∵D(0,6),∴PD===a2+2,PF=8﹣()=.∴PD﹣PF=2.(3)①当点P运动时,DE大小不变,则PE与PD的和最小时,△PDE的周长最小,∵PD﹣PF=2,∴PD=PF+2,∴PE+PD=PE+PF+2,∴当P、E、F三点共线时,PE+PF最小,此时点P,E的横坐标都为4,∵将x=4代入y=﹣x2+8,得y=6,∴P(4,6),此时△PDE的周长最小.②如图1所示:过点P做PH⊥x轴,垂足为H.设P(a ,﹣a2+8)∴PH=﹣a2+8,EH=a﹣4,OH=aS△DPE=S梯形PHOD﹣S△PHE﹣S△DOE =a (﹣a2+8+6)﹣(+8)(a﹣4)﹣×4×6=﹣a2+3a+4=﹣(a﹣6)2+13.∵点P是抛物线上点A,C间的一个动点(含端点),∴0≤a≤8,∴当a=6时,S△DPE 取最大值为13.当a=0时,S△DPE取最小值为4.即4≤S△DPE≤13,其中,当S△DPE=12时,有两个点P.∴共有11个令S△DPE为整数的点.21。
九年级数学下册期中考试卷(附答案)
九年级数学下册期中考试卷(附答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .502.下列说法中正确的是 ( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( ) A .a >3 B .a <3 C .a ≥3 D .a ≤36.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是( )A .m ≥2B .m >2C .m <2D .m ≤27.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .6410.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .24二、填空题(本大题共6小题,每小题3分,共18分)1.计算:3816-+=_____.2.因式分解:2()4()a a b a b ---=_______.3.函数132y x x =--+中自变量x 的取值范围是__________. 4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为__________.5.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y <0时,x 的取值范围是________.6.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .4.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?5.益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:品种 A B原来的运45 25费现在的运30 20费(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、B5、D6、C7、A8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、()()()22a b a a -+-3、23x -<≤4、72°5、﹣3<x <16、5三、解答题(本大题共6小题,共72分)1、4x =2、3.3、(1)略(2)略4、(1) 1.8(015)2.49(15)x x x x >≤≤⎧⎨-⎩(2)该用户二、三月份的用水量各是12m 3、28m 3 5、(1)每次运输的农产品中A 产品有10件,每次运输的农产品中B 产品有30件,(2)产品件数增加后,每次运费最少需要1120元.6、(1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.。
2022-2023年部编版九年级数学下册期中考试题及答案(1)
2022-2023年部编版九年级数学下册期中考试题及答案(1) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( )A .2±B .2C .2±D .22.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k < 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.下列图形中,是中心对称图形的是()A.B.C.D.9.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A为60︒角与直尺交点,3AB=,则光盘的直径是()A.3 B.33C.6D.6310.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)116__________.2.分解因式:x3﹣16x=_____________.3.已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是__________.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30,底部C 点的俯角是45︒,则教学楼AC 的高度是__________米(结果保留根号).6.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=__________cm .三、解答题(本大题共6小题,共72分)1.解分式方程:3213x x x --=-2.先化简,再求值:2211(1)m m m m +--÷,其中3.3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.4.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.105阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、B6、A7、A8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、x (x +4)(x –4).3、k <44、125.5、)6、9三、解答题(本大题共6小题,共72分)1、95x =2 3、(1)抛物线的解析式为y=﹣13x 2+23x+1;(2)点P 的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)抛物线解析式为213222y x x =-++;(2)点D 的坐标为(3,2)或(-5,-18);(3)当t=85时,有S 1-S 2有最大值,最大值为165.5、(1)5,20,80;(2)图见解析;(3)3 5.6、(1)120件;(2)150元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学期中试题
(时间100分钟 满分100 分 )
班级 __________________ 姓名 _______________
一、选择题(每题3分 共15分 ) 1、下列方程是一元二次方程的是( ) A
051
2=+-x x
B ()312-=-x x x
C 012
=-+y x D 5
1
33122-=+x x 2、关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( ) A m <-
43 B m ≤ 43 C m > 43 且 m ≠2 D m ≥4
3
且 m ≠2 3、已知一个等腰三角形两内角的度数比为1:4,则这个等腰三角形顶角的度数为( ) A 20° B120° C 20°或 120° D 36°
4、如果△ABC 的三边分别为3, 5 , 7,△DEF 的三边分别为3 ,3x-2 ,2x-1 .若这两个
三角形全等,则x 等于( ) A
3
7
B 4
C 3
D 不能确定 5、有三条公路321l l l 两两相交,交点为A 、B 、C
( )
A 1处
B 2处
C 3处
D 4处 二、填空题(每题3分 共21分)
6、如图所示,在△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC 于若BC=9,则BD= ______________.
7、某等腰三角形两边长分别为4㎝和9㎝,则第三边长为8、某小区有一块草坪如图所示,已知AB=3 m ,BC=4 m ,CD=12 m,DA=13 m ,且AB ⊥BC ,则这快草坪的面积为________.
9、已知关于x 的方程5x 2
+ kx-6=0 的一根是2,则k 为
______________.
10、 通过估算确定方程x 2
-3x+1=0的较大根的整数部分为 ______________. 11、如果x 1 、x 2是方程3x 2+4x-9=0的两个根,()()1121++x x = __________.
12、实数x 、y 满足()()062
=----y x y x ,则x —y = __________.
三、解答题(24+6+6+6+6+6+5+5=64) 13、解下列方程:
(1)x x 62
= (2)1872
=-x x
(3)26x -x -12=0(配方法) (4)(x —1)(x —2)=2
(5))12(3)12(2
+=+x x (6)2
2
)1()32(x x -=+
14、如图所示,在△ABC 中,∠C=90°,AD 是∠BAC 的平分线,若DC=6,AB=20, 求△ABD 的面积
15、某公司计划用两年的时间把某种型号的电脑成本降低19%,若每年下降的百分数相同。
求这个百分数.
16、要设计一幅长15㎝, 宽10㎝的长方形图案, 其中有一横一竖两个彩条, 横竖彩条宽度比为3 :2, 如果要使彩条所占面积为原长方形面积的3
1
, 求每个彩条的宽度.
17、如图,在Rt △ABC 中,∠C=90°,AC=8㎝,AB 的垂直平分线MN 交AC 于点D,连接BD,若DC :
BD=3 :5, 求BC 的长.
18、已知实数a 、b 是方程x 2
+2x-2010=0的两根,求a 2
+3a+b 的值。
19、已知关于x 的方程kx 2
+(k +2)x +4
k
=0有两个不相等的实数根 (1) 求k 的取值范围
(2) 是否存在实数k 使方程的两个实数根的倒数和等于0?若存在 求出k 的值。
若不存在 说明理由。
20、求证:有两个角相等的三角形是等腰三角形(要求:画出图形、写出已知、求证、证明过程)
初三数学答案(仅供大家参考) 一、1 D 2D 3C 4C 5D
二、6 、 3 7 、 9㎝ 8、 36 9、 6 10、 2 11 、310
- 12 、3或 2 三、13(1)6021==x x (2) 2921-==x x (3)3
4
2321-==x x
(4)3021==x x (5)12121=-
=x x (6)43
2
21-=-=x x 14、60 15、设这个百分数为 由题意得:(1-x )2
=(1-19%) 解这个方程得:10
19
10121==
x x (不合题意舍去)所以x=10% 16、解设横竖彩条的宽分别为3x ㎝、2x ㎝ 由题意得:(15-2x )(10-3x )=
3
2
×10×15 651021=
=x x x=10不合题意舍去 2x=3
5
3x=2.5 17、4㎝ 18、2008
19、(1)且1- k k 0≠
(2)若两根倒数和为0 则k=-2 由(1)知原方程无实数根 所以不存在符合条件的实数k 。
20、略。