中考数学专题复习模拟演练图形的平移与旋转0709480【含解析】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的平移与旋转
一、选择题
1.下列图形中不是中心对称图形的是( )
A. 矩形
B. 菱
形 C. 平行四边
形 D. 正五边形
【答案】D
2.俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以先进行以下哪项操作
A. 先逆时针旋转90°,再向左平
移 B. 先顺时针旋转90°,再向左平移C. 先逆时针旋转90°,再向右平
移 D. 先顺时针旋转90°,再向右平移【答案】A
3.(2016•辽宁模拟)在平面直角坐标系中,点P(1,2)关于原点对称的点的坐标是()
A. (﹣1,﹣2)
B. (﹣1,
2) C. (1,﹣
2) D. (2,1)
【答案】A
4.如图,用19颗心组成的“大”字图案中不包含的变换是()
A.位似
B.旋转
C.平移
D.轴对称
【答案】C
5.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是()
A. 点E
B. 点
F C. 点
G D. 点H
【答案】C
6.如图,将直线l1沿AB的方向平移得到l2,若∠1=40°,则∠2=()
A. 40°
B. 50°
C. 90°
D. 140°
【答案】A
7.以下四个函数,其图像一定关于原点对称的是()
A. y=2016x+m
B. y= +
C. y=x2﹣
2016 D. y=
【答案】B
8.如图,直线与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO'B',则点B'的坐标是( )
A. (7,3)
B. (4,
5) C. (7,
4) D. (3,4)
【答案】A
9.如图,在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是()
A. (﹣2,﹣3)
B. (﹣2,
6) C. (1,
3) D. (﹣2,1)
【答案】C
10.如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B 逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()
A. a
B. a
C.
D.
【答案】D
二、填空题(共8题;共8分)
11.如图,该图形至少绕圆心旋转________度后能与自身重合.
【答案】40
12.如图,把一块等腰直角三角板△ABC,∠C=90°,BC=5,AC=5.现将△ABC沿CB方向平移到△A′B′C′的位置,若平移距离为x(0≤x≤5),△ABC与△A′B′C′的重叠部分的面积y,则y=________(用含x 的代数式表示y).
【答案】
13. 如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=________
【答案】5
14.某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为________m.
【答案】200
15.如图,在Rt△ABC中,∠ACB=90°,AC=2 ,以点C为圆心,CB的长为半径画弧,与AB边交于点D,
将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为________
【答案】
16.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为________度.
【答案】15
17.如图,矩形ABCD中,AB=5,BC=7,则图中五个小矩形的周长之和为________.
【答案】24
18.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是________.
【答案】60°
三、解答题
19.如图,△ABC在直角坐标系中,
(1)请写出△ABC各点的坐标.
(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.
(3)求出三角形ABC的面积.
【答案】解:(1)A(﹣2,﹣2),B (3,1),C(0,2);
(2)△A′B′C′如图所示,
A′(﹣3,0)、B′(2,3),C′(﹣1,4);
(3)△ABC的面积=5×4﹣×2×4﹣×5×3﹣×1×3,
=20﹣4﹣7.5﹣1.5,
=20﹣13,
=7.
20.已知点A(a﹣2b,﹣2)与点A′(﹣6,2a+b)关于坐标原点对称,求a、b的值.
【答案】解:由题意得:,
解得:.
答:a的值是2,b的值是﹣2.
21.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题:
(1)写出△ABC三个顶点的坐标;
(2)画出△ABC向右平移6个单位后的图形△A1B1C1;
(3)求△ABC的面积.
【答案】解;(1)如图所示:A(﹣1,8),B(﹣5,3),C(0,6);
(2)如图所示:
(3)△ABC的面积为:×(5+1)×5﹣×1×2﹣×3×5=6.5.
22.如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.
(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.求证:△AGE≌△AFE;
(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.
【答案】(1)解:由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,
∴∠BAD=90°.
又∵∠EAF=45°,
∴∠BAE+∠DAF=45°.
∴∠BAG+∠BAE=45°.
∴∠GAE=∠FAE.
在△GAE和△FAE中,
∴△GAE≌△FAE(SAS);
(2)解:如图所示:将△ABM逆时针旋转90°得△ADM′.
∵四边形ABCD为正方形,
∴∠ABD=∠ADB=45°.
由旋转的性质可知:∠ABM=∠ADM′=45°,BE=DM′.
∴∠NDM′=90°.
∴NM′2=ND2+DM′2.
∵∠EAM′=90°,∠EAF=45°,
∴∠EAF=∠FAM′=45°.
在△AMN和△ANM′中,,
∴△AMN≌△ANM′(SAS).
∴MN=NM′.
又∵BM=DM′,
∴MN2=ND2+BM2.
23.正方形ABCD中,E是CD边上一点,
(1)将△ADE绕点A按顺时针方向旋转,使AD,AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是________,∠AFB=∠________
(2)如图2,正方形ABCD中,P,Q分别是BC,CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ
(3)在(2)题中,连接BD分别交AP,AQ于M,N,你还能用旋转的思想说明BM2+DN2=MN2.
【答案】(1)BF;AED
(2)解:将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,如图2,
则∠D=∠ABE=90°,
即点E、B、P共线,∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,
∵∠PAQ=45°,
∴∠PAE=45°,
∴∠PAQ=∠PAE,
在△APE和△APQ中
∵,
∴△APE≌△APQ(SAS),
∴PE=PQ,
而PE=PB+BE=PB+DQ,
∴DQ+BP=PQ
(3)解:∵四边形ABCD为正方形,
∴∠ABD=∠ADB=45°,
如图,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,
则∠ABK=∠ADN=45°,BK=DN,AK=AN,
与(2)一样可证明△AMN≌△AMK,得到MN=MK,
∵∠MBA+∠KBA=45°+45°=90°,
∴△BMK为直角三角形,
∴BK2+BM2=MK2,
∴BM2+DN2=MN2.
11。