计算机存储器的容量与扩展方式
第4章 存储器
2.数据总线匹配和存储器接口
奇 存 储 体 (512KB) 偶 存 储 体 (512KB)
00001H 00003H 00005H · · ·
00000H 00002H 00004H · · ·
FFFFFHH
FFFFEHH
A19~A1
D15~D8
BHE
D7~D0
A0
图4.23 8086的存储体组织
字选择线
。
位 线
T1
C
D
图4.8
单管动态存储元
2. DRAM存储芯片实例(见图4.9)
4.2.3 存储器芯片的读/写时序
tCYC tRAS RAS
CAS
tCAS
地址
行地址 tRCS
列地址 tRCH
tCYC:读周期时间 tRAS:RAS脉冲宽度 tCAS:CAS脉冲宽度 tRCS:读命令建立时间 tRCH:读命令保持时间 tDOH:数据输出保持时间
4.1 存储器系统概述
4.1.0 存储器系统的Cache—主存层次结构
硬件管理
CPU
Cache
主存储器
图4.0 Cache—主存存储层次
4.1.1 存储器分类
1.按存储介质分类 (1)半导体存储器 (2)磁表面存储器 (3)光盘存储器 2.按存取方式分类 (1)随机存储器RAM (2)只读存储器ROM (3)顺序存储器SAM (4)相联存储器 3. 按在计算机中的作用分类 (1)主存储器 (2)外存储器 (3)高速度缓冲存储器(Cache) (4)控制存储器 4. 按信息的可保存性分类
R/W 32K×8
D7~D0
R/W D7 ~D0
图4.26
内存与CPU的连接框图
存储器扩展仿真实验报告
一、实验目的1. 理解存储器扩展的基本原理和方法。
2. 掌握位扩展和字扩展的技巧。
3. 利用仿真软件实现存储器扩展,并验证其功能。
二、实验环境1. 仿真软件:Logisim2. 硬件设备:电脑三、实验原理1. 存储器扩展的基本原理存储器扩展是指将多个存储器芯片组合在一起,以实现更大的存储容量或更高的数据位宽。
存储器扩展主要有两种方式:位扩展和字扩展。
(1)位扩展:当存储芯片的数据位小于CPU对数据位的要求时,可以通过位扩展方式解决。
位扩展时,将所有存储芯片的地址线、读写控制线并联后与CPU的地址线和读写控制线连接,各存储芯片的数据总线汇聚成更高位宽的数据总线与CPU的数据总线相连。
(2)字扩展:当存储芯片的存储容量不能满足CPU对存储容量的要求时,可以通过字扩展方式来扩展存储器。
字扩展时,将所有存储芯片的数据总线、读写控制线各自并联后与CPU数据总线、读写控制线相连,各存储芯片的片选信号由CPU高位多余的地址线译码产生。
2. 存储器扩展的方法(1)位扩展:选择合适的存储芯片,将多个存储芯片的数据总线并联,连接到CPU的数据总线上。
(2)字扩展:选择合适的存储芯片,将多个存储芯片的数据总线、读写控制线分别并联,连接到CPU的数据总线和读写控制线上。
同时,使用译码器产生片选信号,连接到各个存储芯片的片选端。
四、实验步骤1. 创建一个新的Logisim项目。
2. 在项目中添加以下模块:(1)存储芯片模块:选择合适的存储芯片,如RAM或ROM。
(2)译码器模块:根据存储芯片的数量和地址线的位数,选择合适的译码器。
(3)数据总线模块:根据位扩展或字扩展的要求,设置数据总线的位数。
(4)地址线模块:根据存储芯片的数量和地址线的位数,设置地址线的位数。
3. 连接各个模块:(1)将存储芯片的数据总线连接到数据总线模块。
(2)将存储芯片的地址线连接到地址线模块。
(3)将译码器的输出连接到各个存储芯片的片选端。
(4)将存储芯片的读写控制线连接到CPU的读写控制线上。
了解计算机存储器的分类与特点
了解计算机存储器的分类与特点计算机存储器是计算机系统中非常重要的组成部分,它用于存储和读取数据和程序。
根据其特点和功能,计算机存储器可以被分为主存储器和辅助存储器两类。
本文将详细介绍这两类存储器的分类和特点。
一、主存储器主存储器又称为内存(Memory),是计算机中用于存放当前正在运行的程序和数据的地方。
它具有以下特点:1. 随机访问性(Random Accessibility):主存储器中的数据可以被随机访问,即可以直接读取或写入任意单元的数据。
这使得计算机可以非常快速地对数据进行操作。
2. 容量有限:主存储器的容量相对较小,通常以字节(Byte)为单位进行计量。
对于个人计算机而言,主存储器的容量通常在几十GB到几百GB之间。
3. 临时性:主存储器中的数据是临时存放的,当计算机断电或者重新启动后,主存储器中的数据将会被清空。
因此,我们需要将重要的数据及时保存到辅助存储器中,以防数据的丢失。
二、辅助存储器辅助存储器又称为外存储器(External Storage),主要用于长期存储数据、程序和文件等。
辅助存储器具有以下特点:1. 非随机访问性:与主存储器不同,辅助存储器的数据访问不是随机的,而是按照存储的物理位置进行顺序访问。
这也导致了辅助存储器的访问速度相对较慢。
2. 容量较大:相对于主存储器来说,辅助存储器的容量要大得多。
常见的辅助存储器设备有硬盘、固态硬盘(SSD)、光盘、蓝光盘、磁带等。
3. 永久性:辅助存储器中的数据是永久存储的,即使计算机断电或者重新启动,数据也不会丢失。
这使得我们可以长期保存应用程序、文件以及操作系统等数据。
总结:计算机存储器根据其功能和特点被分为主存储器和辅助存储器两类。
主存储器具有随机访问性、容量有限和临时性等特点;而辅助存储器则具有非随机访问性、容量较大和永久性等特点。
这两类存储器在计算机系统中互相配合,共同完成计算机的存储功能。
存储器扩展-
A9~ A0
WE CS R A M2 2114
I /O1~ I /O4
A9~ A0
WE CS R A M3 2114
I /O1~ I /O4
D7~ D4 WR
字位同时扩展连接图
I /O1~ I /O4 WE CS
R A M4 2114 A9~ A0
A9~ A0 WE CS
R A M4 2114 I /O1~ I /O4
RAM1 2114 I/O1~I/O4
I/O1~I/O4 WE CS
RAM2 2114 A9~A0
A9~A0 WE CS
RAM2 2114 I/O1~I/O4
I/O1~I/O4 WE CS
RAM3 2114 A9~A0
A9~A0 WE CS
RAM3 2114 I/O1~I/O4
I/O1~I/O4 WE CS
A11
A10
译码器
1
2
3
4
A9~A0 CPU
1 CS
1K×4
WE I/O1~4
2 CS
1K×4
WE I/O1~4
D7~D4
D3~D0
1 CS
1K×4
WE I/O1~4
2 CS
1K×4
WE I/O1~4
D7~D4
D3~D0
WE D7~D0
D7~D0
D7~D0
D7~D0
字位同时扩展构成4K×8存储器电路连接示意图
3
2. 字扩展(地址范围)
字扩展用于存储芯片的位数满足要求而字数不够的情况,是
对存储单元数量的扩3 展。
A15
2-4 译
2
码1
《计算机组成原理》第7章:存储系统
/webnew/
7.1 存储系统概论
所谓速度,通常用存取时间(访问时间)和存取周期 来表示。存取时间是指从启动一次存取操作到完成 该操作所经历的时间;存取周期是指对存储器进行 连续两次存取操作所需要的最小时间间隔。由于有 些存储器在一次存取操作后需要有一定的恢复时间, 所以通常存取周期大于或等于取数时间。单位容量 的价格是指每位的价格。数据传输率是指在单位时 间内可以存取的二进制信息的位数,在数值上等于 存储器总线宽度除以存取周期,所以又可称为存储 器总线带宽或频宽。除此之外,存储器件还有一个 十分重要的性能,就是它是否是挥发性的。
图7-6 2114的读/写周期波形图
/webnew/
7.2.2 静态MOS RAM芯片举例
4. 静态存储器的组织 1)位扩展
图7-7 位扩展连接方式
/webnew/
/webnew/
性 能 存储信息 破坏性读出 需要刷新 行列地址 运行速度
SRAM 触发器 否 否 同时送 快 电容 是 需要 分两次送 慢
DRAM
集成度
发热量 存储成本
低
大 高
高
小 低
表7-1 静态存储器和动态存储器性能比较
/webnew/
7.2 主 存 储 器
7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7
基本概念 静态MOS RAM芯片举例 动态MOS RAM 2164芯片 动态MOS RAM 4116芯片 动态RAM的刷新 只读存储器举例 主存储器与CPU的连接
/webnew/
/webnew/
7.2.2 静态MOS RAM芯片举例
3. 读写时序 为了使芯片正常工作,必须按所要求的时序关系 提供地址信息、数据信息和有关控制信号,2114 的读/写周期波形图如图7-6所示。 1) 读周期 2) 写周期
主存储器容量扩展的方法
主存储器容量扩展的方法主存储器容量是计算机系统中重要的组成部分,它直接影响着计算机的运行速度和能力。
在现代计算机系统中,随着计算机应用场景的不断扩展,对主存储器容量的需求也越来越大。
为了满足这一需求,人们提出了各种方法来扩展主存储器容量。
本文将系统地介绍主存储器容量扩展的方法。
主存储器容量扩展的方法可以分为物理方法和逻辑方法两大类。
物理方法主要包括增设内存条、使用高密度存储器件和分布式存储系统等;逻辑方法则主要包括虚拟存储和页面置换等。
一、增设内存条增设内存条是增加主存储器容量的最简单也是最直接的方法之一。
通过增加内存条的数量,就可以扩展主存储器的容量。
这种方法的优点是简单、成本低,但也存在一定的限制,因为主板的插槽数量和支持的内存条容量有限。
二、使用高密度存储器件随着半导体技术的发展,高密度存储器件如DRAM(动态随机存储器)和NAND 闪存逐渐成为了一种常见的主存储器扩展方法。
DRAM是一种非常快速的主存储器,但它的存储密度有限;而NAND闪存具有非常高的存储密度和可擦写性,但速度相对较慢。
使用高密度存储器件扩展主存储器容量的方法有多种。
一种常见的方法是通过内存芯片的堆叠来增加DRAM芯片的存储密度。
例如,3D XPoint技术可以将多个DRAM芯片堆叠在一起,从而实现更高的存储密度。
另一种常见的方法是采用闪存作为主存储器。
闪存具有非常高的存储密度和较低的功耗,因此它在嵌入式系统和移动设备中得到了广泛的应用。
在这种方案中,计算机系统将数据从主存储器复制到闪存中,在需要时再将数据从闪存中读取到主存储器中。
这种方法的优点是可以显著提高主存储器的容量,但其缺点是速度相对较慢,并且需要额外的控制逻辑。
三、分布式存储系统分布式存储系统是一种通过网络将多个计算机的存储资源组合起来形成一个虚拟的存储系统,从而扩展主存储器容量的方法。
在分布式存储系统中,多个计算机通过网络连接在一起,彼此共享各自的存储资源。
存储器的扩展实验总结
存储器的扩展实验总结:
一、实验目的
本次实验旨在通过实际操作,深入了解存储器的扩展原理和方法,掌握存储器扩展的基本技能,提高对计算机存储系统的认识和理解。
二、实验原理
存储器扩展主要涉及地址线的扩展和数据线的扩展。
通过增加地址线和数据线的数量,可以增加存储器的容量。
此外,还可以采用位扩展、字扩展和字位同时扩展的方法来扩展存储器。
三、实验步骤
1.准备实验材料:包括存储器芯片、地址线、数据线等。
2.搭建实验电路:将存储器芯片与地址线和数据线连接,形成完整的存储器扩展电路。
3.初始化存储器:对存储器进行初始化操作,设置初始地址和数据。
4.读取和写入数据:通过地址线和数据线,对存储器进行读取和写入操作。
5.验证结果:比较写入的数据与读取的数据,确保数据的正确性。
四、实验结果
通过实验,我们成功实现了存储器的扩展,并验证了数据的正确性。
实验结果表明,通过增加地址线和数据线的数量,可以有效地扩展存储器的容量。
五、实验总结
通过本次实验,我们深入了解了存储器的扩展原理和方法,掌握了存储器扩展的基本技能。
同时,我们也认识到在实际应用中,需要根据具体需求选择合适的扩展方法,以确保存储器的容量和性能满足要求。
此外,我们还应注意数据的正确性和稳定性,确保存储器的可靠性和稳定性。
存储器芯片的容量通常用的方式表示,其中为字数,为每个字的位数
(2) 每块 4 字。 9. 对于下述访存地址序列(字地址) : 1,4,8,5,20,17,19,56,9,11,4,43,5,6,9,17 假定 cache 是全相联映像的,cache 的容量都是 16 字,初始时 cache 为空。在下列情况 下,标出每次访存的 cache 命中情况以及最后 cache 的内容: (1) 每块一字,采用 FIFO 替换策略。 (2) Cache 是全相联映像,每块 4 字,采用 FIFO 替换策略。 (3) Cache 是全相联映像每块 4 字,采用 LRU 替换策略。 10. 对于下述访存地址序列(字地址) : 1,4,8,5,20,17,19,56,9,11,4,43,5,6,9,17 假定 cache 的容量都是 16 字, 初始时 cache 为空。 在下列情况下, 标出每次访存的 cache 命中情况以及最后 cache 的内容: (1) Cache 是 4 路组相联映像,每块 1 字,采用 FIFO 替换策略。 (2) Cache 是 2 路组相联映像,每块 4 字,采用 LRU 替换策略。 11. 设 2 路组相联映像的 cache 容量为214 块,每块是一个 32 位的字,主存容量是 cache 的 256 倍,其中有如表 5-5 所示数据(地址和数据均采用十六进制表示) 地址 数据 000000 13579246 000008 87654321 010000 7777777 010004 11235813 00FFFC 12345678 FFFFF8 11223344 FFFFFC 24682468
存储器芯片的容量通常用的方式表示其中为字数为每个字的位数大容量存储器大容量存储器驱动下载虚拟存储器的最大容量大容量存储器驱动异常大容量存储器驱动存储器容量内存储器的容量是指存储器容量单位内部大容量存储器
计算机总复习知识点整理
第三章存储器1、SRAM读写时序●读过程●写过程2、DRAM读写时序●读过程●写过程3、DRAM刷新方式●原因:DRAM存储位元是基于电容器上的电荷量存储。
整个刷新间隔内,前一段时间用于正常的读/写操作。
而在后一段时间停止读/写操作,逐行进行刷新。
一个存储周期的时间分为两段,前一段时间tM用于正常的读/写操作,后一段时间tR用于刷新操作上述两种方式结合起来构成异步刷新。
●CPU在取指周期后的译码时间内,插入刷新操作。
●有单独的刷新控制器,刷新由单独的时钟、行计数与译码独立完成。
4、存储器容量扩充的方式①位扩展:用几片位数少的存储器芯片,构成具有给定字长的存储器;②字扩展:字扩展是容量的扩充,位数不变。
5、多模交叉存储器一个由若干模块组成的主存储器是线性编址的。
这些地址在各个模块中有两种安排方式:①顺序方式:特点:(优点)某个模块进行存取时,其它模块不工作,某一模块出现故障时,其它模块可以照常工作,通过增添模块来扩充存储器容量比较方便,(缺点)但各模块串行工作,存储器的带宽受到了限制。
②交叉方式:特点:地址码的低位字段经过译码(片选,非门)选择不同的模块,而高位字段指向相应模块内的存储字。
连续地址分布在相邻的不同模块内,同一模块内的地址是不连续的;(优点)对连续字的成块传送可实现多模块并行存取,提高了存储器的带宽。
6、存储器系统的层次结构存储系统的层次结构就是把各种不同容量和不同存取速度的存储器按一定的结构有机地组织在一起;7、缓存的基本工作原理数据交换:♦Cache原理图中,cache的容量为16字,分为4行,每行4个字。
♦拷贝到cache的块的地址存放在一个相联存储器中地址映射以及和主存数据交换机构全由硬件实现,并对程序员透明。
补充:Cache的工作原理是基于程序访问的局部性。
根据程序的局部性原理,可以在主存和CPU通用寄存器之间设置一个高速的容量相对较小的存储器,把正在执行的指令地址附近的一部分指令或数据从主存调入这个存储器,供CPU在一段时间内使用。
存储器扩展实验报告
一、实验目的1. 了解存储器的结构及其与CPU的连接方式。
2. 掌握存储器的位扩展、字扩展和字位扩展方法。
3. 通过实际操作,加深对存储器扩展原理的理解,提高动手实践能力。
二、实验原理存储器扩展是计算机硬件设计中常见的技术,目的是为了满足系统对存储容量的需求。
存储器扩展主要分为位扩展、字扩展和字位扩展三种方式。
1. 位扩展:当存储芯片的数据位小于CPU对数据位的要求时,可以通过位扩展来解决。
位扩展是将多个存储芯片的数据总线并联,形成一个更高位宽的数据总线,与CPU的数据总线相连。
2. 字扩展:当存储芯片的存储容量不能满足CPU对存储容量的要求时,可以通过字扩展来解决。
字扩展是将多个存储芯片的数据总线、读写控制线并联,形成一个更大容量的存储器,与CPU的数据总线、读写控制线相连。
3. 字位扩展:字位扩展是位扩展和字扩展的结合,既能扩展存储容量,又能扩展数据位宽。
三、实验设备1. 实验箱2. 逻辑分析仪3. 逻辑门电路4. 实验指导书四、实验步骤1. 搭建存储器扩展电路(1)根据实验要求,选择合适的存储芯片,如SRAM、ROM等。
(2)根据存储芯片的规格,确定存储器的容量、数据位宽和地址线位数。
(3)根据存储器的容量和位宽,计算所需的存储芯片数量。
(4)搭建存储器扩展电路,包括存储芯片、地址译码器、数据线、读写控制线等。
2. 仿真实验(1)使用逻辑分析仪观察存储器扩展电路的信号波形。
(2)通过实验指导书提供的测试程序,对存储器进行读写操作。
(3)观察逻辑分析仪的信号波形,分析存储器扩展电路的工作情况。
3. 分析实验结果(1)根据实验结果,验证存储器扩展电路是否满足实验要求。
(2)分析存储器扩展电路的优缺点,提出改进措施。
五、实验结果与分析1. 实验结果通过实验,搭建了存储器扩展电路,实现了存储器的位扩展、字扩展和字位扩展。
逻辑分析仪的信号波形显示,存储器扩展电路工作正常,满足实验要求。
2. 实验分析(1)位扩展:通过位扩展,实现了存储器数据位宽的增加,满足了CPU对数据位宽的要求。
计算机存储器的层次结构与特点
计算机存储器的层次结构与特点计算机存储器是计算机系统中与处理器并行工作的重要组成部分。
它的层次结构是由多层存储器构成的,每一层都有自己的特点和作用。
本文将对计算机存储器的层次结构和特点进行详细介绍。
第一层:寄存器寄存器是位于处理器内部的最快速的存储器,它的容量非常有限。
寄存器的主要作用是存储指令和数据,以便于处理器快速访问和运算。
由于寄存器本身体积小、成本高,因此容量有限,常常用来存储一些频繁使用的数据和指令。
第二层:高速缓存存储器高速缓存存储器是位于处理器与主存之间的存储器,对于提高计算机的性能起着重要的作用。
它的特点是速度快、容量适中,能够存储处理器经常使用的数据和指令。
高速缓存存储器根据离处理器的距离可以分为一级缓存和二级缓存,一级缓存离处理器最近,速度较快,容量较小,二级缓存离处理器较远,速度稍慢,容量较大。
第三层:主存储器主存储器是计算机系统中存储数据和指令的主要存储设备,也是计算机与外部设备交换数据的桥梁。
主存储器的特点是容量大、访问速度相对较慢。
在主存储器中,每个存储单元都有唯一的地址,可以按照地址进行读写操作。
主存储器通常采用半导体存储器,如动态随机存取存储器(DRAM)和静态随机存取存储器(SRAM)。
第四层:辅助存储器辅助存储器是计算机系统中与主存储器相对应的存储设备,用来扩展计算机的存储容量。
辅助存储器的特点是容量大、相对较慢。
常见的辅助存储器包括硬盘、光盘、固态硬盘等。
辅助存储器的数据在需要时可以从主存储器中加载,从而满足计算机对大容量数据存储的需求。
计算机存储器的特点:1. 速度与容量的矛盾计算机存储器的速度越快,容量往往就越小;容量越大,速度往往就越慢。
这是因为存储器的速度和容量受到制造工艺和成本的限制。
为了在速度和容量之间达到平衡,计算机系统采用了层次化的存储结构。
2. 成本与性能的矛盾存储器的成本与性能之间也存在矛盾。
寄存器和高速缓存存储器的成本较高,但性能出色;主存储器的成本适中,性能较一般;辅助存储器的成本较低,但性能相对较慢。
第六章 存储器系统 微机原理 第2版 课后答案
第六章存储器系统本章主要讨论内存储器系统,在介绍三类典型的半导体存储器芯片的结构原理与工作特性的基础上,着重讲述半导体存储器芯片与微处理器的接口技术。
6.1 重点与难点本章的学习重点是8088的存储器组织;存储芯片的片选方法(全译码、部分译码、线选);存储器的扩展方法(位扩展、字节容量扩展)。
主要掌握的知识要点如下:6.1.1 半导体存储器的基本知识1.SRAM、DRAM、EPROM和ROM的区别RAM的特点是存储器中信息能读能写,且对存储器中任一存储单元进行读写操作所需时间基本上是一样的,RAM中信息在关机后立即消失。
根据是否采用刷新技术,又可分为静态RAM(SRAM)和动态RAM(DRAM)两种。
SRAM是利用半导体触发器的两个稳定状态表示“1”和“0”;DRAM是利用MOS管的栅极对其衬间的分布电容来保存信息,以存储电荷的多少,即电容端电压的高低来表示“1”和“0”;ROM的特点是用户在使用时只能读出其中信息,不能修改和写入新的信息;EPROM可由用户自行写入程序和数据,写入后的内容可由紫外线照射擦除,然后再重新写入新的内容,EPROM可多次擦除,多次写入。
一般工作条件下,EPROM 是只读的。
2.导体存储器芯片的主要性能指标(1)存储容量:存储容量是指存储器可以容纳的二进制信息量,以存储单元的总位数表示,通常也用存储器的地址寄存器的编址数与存储字位数的乘积来表示。
(2)存储速度:有关存储器的存储速度主要有两个时间参数:TA:访问时间(Access Time),从启动一次存储器操作,到完成该操作所经历的时间。
TMC:存储周期(Memory Cycle),启动两次独立的存储器操作之间所需的最小时间间隔。
(3)存储器的可靠性:用MTBF—平均故障间隔时间(Mean Time Between Failures)来衡量。
MTBF越长,可靠性越高。
(4)性能/价格比:是一个综合性指标,性能主要包括存储容量、存储速度和可靠性。
计算机的内存知识点总结
计算机的内存知识点总结在计算机科学中,内存是一个关键的概念。
它是计算机中用来存储数据和程序的地方,为计算机的计算和运行提供支持。
了解内存的工作原理和特点对于理解计算机系统的工作方式和优化程序性能至关重要。
本文将对计算机的内存知识点进行总结,包括内存的类型、内存的层次结构、内存的组织和访问、内存管理技术等方面。
1. 内存的类型在计算机中,内存可以根据其容量和性能特点进行分类。
根据容量的不同,内存可以分为主存储器和辅助存储器。
主存储器是计算机中用来存储数据和程序的地方,它直接与中央处理器(CPU)相连,用于存放当前运行的程序和数据。
辅助存储器则用于存放大容量的数据和程序,如硬盘、固态硬盘、光盘等。
根据性能特点的不同,内存可以分为随机存取存储器(RAM)和只读存储器(ROM)。
RAM是一种临时存储器,它的内容可以被随机访问和修改,用于存放程序的运行数据。
ROM则是一种只读存储器,存放了计算机系统的基本程序和数据,不允许随机访问和修改。
2. 内存的层次结构内存的层次结构是计算机系统中的重要概念,它描述了不同速度和容量的内存之间的关系。
通常情况下,计算机系统中包含多层内存,从速度最快和容量最小的寄存器,到速度最慢和容量最大的辅助存储器。
这些内存层次按照速度和容量递减的顺序排列,构成了内存的层次结构。
寄存器是最快的存储器,用于存储CPU执行指令时需要的数据和地址。
高速缓存(Cache)是位于CPU和主存储器之间的一级存储器,用于提高主存储器的访问速度。
主存储器是计算机主要的内存设备,用于存放当前运行的程序和数据。
辅助存储器则是用来存储大容量的数据和程序,用于扩展主存储器的存储容量。
3. 内存的组织和访问内存的组织和访问是指计算机如何将数据和程序存储到内存中,并如何对其进行访问和操作。
内存的组织包括了内存地址空间的划分、内存单元的编址和数据存储方式的设定等方面。
内存地址空间是内存中可供程序访问的地址范围,通常由内存地址寻址位数决定。
计算机原理第三章存储器
解:(1)需要26根地址线。
(2)有24根地址线
(3)共用8片。
(4)连线图如下图所示。
〔例6〕半导体存储器容量为7K×8位,其中固化区为4k×8 位,可选用 EPROM芯片:2K×8/片。随机读/写区为3K×8, 可选SRAM芯片:2K×4/片和1K×4/片。地址总线为A15~A0,
为“0”。
★ 注意:读出 “1” 信息后,电容Cs上无电荷,不能再 维持“1”,这种现象称为“破坏性读出”,须进行“恢复”操 作。
(3) 保持,字选线为“0”,T截止,电容Cs无放电 回路,其电荷可暂存数毫秒,即维持“1”数毫秒;无电荷 则保持“0”状态。
★ 注意:保持“1”信息时,电容Cs也要漏电,导致Cs上 无电荷,须定时“刷新”。
写1:数据线I/O=1、 I / O =0,使位线D=1、 D =0;
推出T1截止,T2导通使Q=1、 Q =0,写入“1”。
(2)读出
行选线xi,列选线yj加高电平,使T5 、T6导通和V1 、V2导通。
如果原存信息Q=0,则T1导通,从位线D将通过T5、T1到地 形成放电回路,有电流经D流入T1,使I/O线上有电流流过,经放 大为“0”信号,表明原存信息为“0”。而此时因T2截止,所以D 上无电流。
〔例〕32位地址线的计算机: 232=220×210×22=4千兆=4G 但现在实际配的主存假设为512兆,
即 512兆=220×29
所以,32 位地址线寻址的是逻辑地址, 29位地址线寻址的是物理地址。
3.1.3 存储器的分类
一、根据存储介质来分
1. 半导体存储器:
静态存储器 动态存储器
2. 磁表面存储器:磁盘、磁带等。(磁性材料)
计算机存储器的分类和存储原理
计算机存储器的分类和存储原理计算机存储器(Computer Memory)是计算机中用于存储和读取数据的设备,它可以被视为计算机的"大脑",起到了存储和检索信息的重要作用。
在计算机存储器的分类方面,主要可以分为以下几个方面:1.主存储器(Main Memory):主存储器是计算机中最重要、最常用的存储器,它是计算机运行时的工作空间。
主存储器由RAM(Random Access Memory)和ROM(Read-Only Memory)两部分组成。
RAM是一种临时存储器,它可以被读取和写入数据,并且读写速度很快。
而ROM则是一种只读存储器,其中的数据只能被读取,无法被写入或修改。
2.辅助存储器(Secondary Memory):辅助存储器主要用于长期存储数据,它的容量比主存储器大得多。
辅助存储器有很多种形式,比如硬盘驱动器(HardDisk Drive)、固态硬盘(Solid State Drive)、光盘(CD/DVD)、U盘(USB Flash Drive)等。
辅助存储器的特点是存储容量大、价格相对低廉,但读写速度相对较慢。
3.高速缓存存储器(Cache Memory):高速缓存存储器位于主存储器和中央处理器(CPU)之间,它是为了解决CPU与主存储器之间速度差异而设计的。
高速缓存存储器的访问速度远高于主存储器,它能够存储CPU频繁访问的数据和指令,从而提高计算机的运行效率。
接下来,让我们来了解计算机存储器的存储原理:1.位和字节(Bit and Byte):计算机中最小的存储单位是位(Bit),它只能表示0或1两种状态。
以8个位为一个组合单位,我们可以得到一个字节(Byte),一个字节能够表示256个不同的状态。
2.地址和寻址(Address and Addressing):计算机存储器中的每一个存储单元都有一个唯一的地址,通过地址我们可以精确地找到并访问存储单元中的数据。
计算机存储器的分类及性能比较
计算机存储器的分类及性能比较一、引言计算机存储器作为计算机系统中的关键部件,承担着数据存储和读写的重要任务。
根据存储介质、访问速度和成本等因素的不同,存储器可以分为多种类型。
本文就计算机存储器的分类及其性能进行详细介绍和比较。
二、主存储器1. 内存条(RAM)- 分为动态RAM(DRAM)和静态RAM(SRAM)- DRAM容量大、成本低,但速度慢- SRAM速度快、耗电量少,但成本高2. 虚拟内存(Virtual Memory)- 是主存容量扩展的一种技术- 将较少使用的数据存放在硬盘,节省主存空间- 读写速度较慢,但是大大扩展了主存的实际容量三、辅助存储器1. 硬盘- 常见的机械硬盘(HDD)和固态硬盘(SSD)- HDD容量大、成本低,但读写速度较慢,机械结构易损坏- SSD读写速度快、反应时间小,但容量相对较小且成本高2. 光盘- CD、DVD和蓝光光盘等- 容量较小,适合存储音视频文件,但读写速度相对较慢3. U盘- 轻便、易用,适合携带和传输数据- 容量较小,读写速度受到USB接口限制,但价格相对较低四、性能比较1. 访问速度- 内存条的访问速度最快,几纳秒级别- SSD访问速度较快,毫秒级别- 光盘和U盘的访问速度较慢,几秒到几十秒级别2. 容量- 辅助存储器的容量相对较大,可达数TB- 内存条的容量相对较小,一般几GB至几十GB不等3. 成本- 内存条相对较便宜,按单位容量计算价格相对较低- SSD价格逐年下降,但相对较高- 光盘和U盘价格相对较低,但容量有限五、应用场景和总结1. 内存条适用于运行中的程序和数据存储,适合对速度和实时性要求高的计算任务2. SSD适用于需要快速启动和读写的场景,如操作系统、数据库等3. 光盘和U盘适用于传输、备份和存储一些小型文件和个人资料综上所述,计算机存储器的分类及性能表现各有优劣,根据实际需求选择合适的存储设备,能够满足不同场景的需求。
存储器容量的基本单位
存储器容量的基本单位随着计算机技术的不断发展,计算机存储器的容量也在不断提高,从最初的几十个字节到现在的几百GB,TB甚至PB,存储器容量的单位也随之不断扩大和变化。
在计算机存储器中,容量是一个非常重要的指标,它决定了计算机可以存储多少数据,也是评估计算机存储器性能的一个重要指标。
而作为计算机存储器容量的基本单位,字节是我们必须要了解的概念。
一、字节的定义字节(Byte)是计算机存储容量的基本单位,表示计算机存储器中的一个存储单元。
一个字节通常由8个二进制位(bit)组成,每个二进制位只能存储0或1,因此一个字节可以表示256种不同的状态。
字节是计算机中最小的可寻址存储单元,也是计算机存储器容量的基本计量单位。
在计算机中,所有的数据都是以字节的形式存储和传输的。
二、字节的历史字节这个概念最早出现在20世纪50年代,当时的计算机存储器容量非常有限,通常只有几千个字,因此需要一种较小的存储单元来处理数据。
在当时,一个字节通常由6个或7个二进制位组成,但随着计算机技术的不断发展,8位字节逐渐成为了计算机存储器的标准。
三、字节的应用字节是计算机存储器中最基本的存储单元,它可以存储各种类型的数据,包括数字、字符、图像、声音等等。
在计算机中,所有的数据都是以二进制形式存储的,通过字节的组合来表示不同的数据类型。
例如,一个整数通常由4个字节组成,一个浮点数通常由8个字节组成,一个字符通常由1个或2个字节组成。
不同的数据类型需要不同的字节数来存储,这也是计算机存储器容量的重要指标之一。
四、字节的进一步扩展随着计算机存储器容量的不断提高,字节的单位也逐渐扩展到了KB、MB、GB、TB、PB等级别。
其中,KB表示千字节,MB表示兆字节,GB表示吉字节,TB表示太字节,PB表示拍字节。
这些单位的换算关系如下:1KB=1024B1MB=1024KB1GB=1024MB1TB=1024GB1PB=1024TB这些单位的扩展,使得计算机存储器的容量可以更加精确地进行描述和计量。
存储器的工作原理
存储器的工作原理引言概述:存储器是计算机系统中非常重要的组成部分,它用于存储和检索数据以及程序。
存储器的工作原理涉及到数据的存储、读取和写入等过程,对于理解计算机系统的运作原理至关重要。
一、存储器的种类1.1 内存:内存是计算机系统中最常见的存储器,用于临时存储数据和程序。
它可以分为主存储器(RAM)和辅助存储器(ROM)。
1.2 缓存:缓存是一种高速存储器,用于暂时存储频繁访问的数据,以提高数据访问速度。
1.3 辅助存储器:辅助存储器用于长期存储数据和程序,如硬盘、固态硬盘(SSD)等。
二、存储器的工作原理2.1 数据存储:存储器通过电子信号将数据存储在存储单元中,每个存储单元代表一个位(0或1)。
2.2 数据读取:当计算机需要读取数据时,存储器通过地址信号找到对应的存储单元,并将数据传输到CPU中。
2.3 数据写入:当计算机需要写入数据时,存储器接收CPU发送的数据,并将其存储在指定的存储单元中。
三、存储器的访问速度3.1 存取时间:存储器的访问速度通常用存取时间来衡量,存取时间越短,速度越快。
3.2 缓存命中率:缓存命中率是指在缓存中找到所需数据的概率,命中率越高,访问速度越快。
3.3 存储器层次结构:存储器层次结构包括多级存储器,每一级存储器速度逐渐增加,容量逐渐减少,以提高数据访问速度。
四、存储器的容量和扩展4.1 存储器容量:存储器的容量通常以字节为单位,可以通过增加存储单元数量来扩展容量。
4.2 存储器扩展:存储器可以通过扩展插槽或外部设备来扩展容量,如内存条、硬盘等。
4.3 存储器管理:操作系统负责管理存储器的分配和释放,以确保程序能够正确访问存储器。
五、存储器的故障和修复5.1 存储器故障:存储器可能出现故障,如硬件损坏、数据丢失等,导致数据访问错误。
5.2 存储器修复:存储器故障可以通过替换损坏的存储器模块或进行数据恢复来修复。
5.3 存储器备份:为了避免数据丢失,建议定期对存储器中的重要数据进行备份,以防止意外发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机存储器的容量与扩展方式
计算机存储器是计算机硬件中的一个重要组成部分,用于保存和处理数据。
随着计算机应用的不断发展,存储器的容量也在不断扩展,以满足对大量数据的存储和处理需求。
本文将详细介绍计算机存储器的容量与扩展方式,包括存储器的基本概念、计算机存储器的分类以及存储器扩展的不同方式。
一、存储器的基本概念
1. 存储器的定义:存储器是计算机中用于保存数据的设备,它具有读写功能,可以实现对数据的存储和读取操作。
2. 存储单元:存储器是由许多存储单元组成的,每个存储单元可以存储一个字节(8位)的数据。
3. 存储器的访问速度:存储器的访问速度快,是因为它与计算机的主控制器之间通过总线相连,数据传输的速度较快。
二、计算机存储器的分类
1. 内部存储器:也称为主存储器或随机访问存储器(RAM),它是计算机中最常用的存储器。
内存的容量直接决定了计算机可以同时处理的数据量大小。
2. 外部存储器:也称为辅助存储器或外部存储器(ROM),它一般用于长期存储数据,不易丢失。
常见的外部存储器包括硬盘、磁带等。
三、计算机存储器的扩展方式
1. 增加存储芯片:通过增加存储芯片的数量,可以扩展计算机的存储容量。
这种方式适合于内部存储器的扩展,可以通过在计算机主板上增加内存插槽来实现。
但是,增加存储芯片的方式不适用于外部存储器的扩展。
2. 使用存储扩展卡:存储扩展卡是一种插入计算机主板上扩展槽的卡片,可以增加计算机的存储容量。
这种方式适合于用于扩展计算机的内部存储器,例如添加额外的硬盘。
3. 利用网络存储:通过网络连接,将计算机与其他设备连接起来,可以利用其他设备的存储空间。
这种方式适合于扩展计算机的外部存储空间,例如使用网络存储设备(NAS)。
4. 使用云存储:云存储是一种将数据存储在互联网上的方式,可以通过互联网将数据上传到云存储服务提供商的服务器上,实现数据的存储和访问。
这种方式适合于扩展计算机的外部存储空间,可以随时随地访问数据。
5. 存储器分级:存储器分级是一种将不同速度和容量的存储器组合起来使用的方式。
例如,将高速但容量较小的缓存存储器与低速但容量较大的主存储器结合起来使用,可以提高计算机的运行效率。
总结:
计算机存储器的容量与扩展方式是计算机领域中的一个重要问题。
了解存储器的基本概念和分类,以及不同的存储器扩展方式,对于提高计算机的存储和处理能力具有重要意义。
未来随着科技的发展,存储器的容量将会进一步扩展,为计算机应用提供更加强大的支持。