心脏电生理基础知识
心脏电生理学基础
心肌细胞膜内外离子的不均匀分布 源于细胞膜中存在着一种------钠-钾泵结构(简称钠泵), 是镶嵌在细胞膜中的一种特殊蛋白质(Na+-K+依赖式ATP酶), 作用是分解ATP使之释放能量,并利用此能量将细胞内的Na+逆浓度转移至细胞外,同时把细胞外的K+度转移至细胞内,从而形成和维持细胞内高K+细胞外高Na+的不均匀的离子分布状态。 ;
除极化过程“0”时相是动作电位的主要部分,也就是“兴奋”(扩布性兴奋)。 膜电位的急剧变化起一种“引发”作用, 可以引起细胞的其他机能活动, 如肌细胞的收缩 腺细胞的分泌 兴奋的传导等。
除极化(“0”时相)主要是钠内流形成, 受到膜对Na+的通透性 膜内外钠的浓度差 电位差(静息电位)的影响。 膜外Na+的通透性降低,膜内外的钠浓度差或静息电位减少,均可使“0”时相除极化的幅度和速度降低。 “0”时相的后期还有钙电流成分在内。 钙电流是慢电流(Isi),也有快成分。钙电流由Ca2+携带,从Ca2+通道内流,Ca2+通道的开放始于“0”时相,但在“0”时相动作电位中辨认不出钙电流。
静息电位的形成原理
浓差电势有抵制K+继续外流的作用,随着K+外流的增多,浓差电势继续增大,它阻止K+扩散的力也愈大。当驱动K+外流的浓差电势能与阻止K+外流的电位差势达到平衡时,净的钾外流停止,膜电位保持相对稳定,此时即----------K+平衡电位, 所以静息电位主要是K+平衡电位组成。
形成原理
“0”时相的Na+内流:所经过的Na+通道称快钠通道或快通道,其离子电流称为快钠内向电流。 快钠通道不但激活开放速度快,而且失活也快,当膜除极到膜内的负度<-60mV以后,于几毫秒之内即失活而关闭,中止了Na+继续内流。此时快钠通道尽管已关闭,但除极化仍在进行,在快通道开放时大量流入细胞内的Na+内流电流,其电荷平衡在当时还来不及表现出来,需要以后慢慢的表现。快钠通道失活后,膜电位需要复极做到膜内电位绝对值>-60mV以上,Na+通道才恢复到能再被激活开放的备用状态(或静息状态)。 Na+通道的恢复过程称复活。 快Na+通道是电压依从性通道,可被河豚毒阻断。 由于快Na+通道激活开放速度快,Na+内流快,故心肌细胞”0”时相除极速度快,动作电位升肢陡峭。
心脏的电生理学基础资料
心脏的电生理学基础一、心肌细胞的分类心肌细胞按生理功能分为两类:一类为工作细胞,包括心房肌及心室肌,胞浆内含有大量肌原纤维,因而具有收缩功能,主要起机械收缩作用。
除此以外,还具有兴奋性、传导性而无自律性。
另一类为特殊分化的心肌细胞,包括分布在窦房结、房间束与结间束、房室交界、房室束和普肯耶纤维中的一些特殊分化的心肌细胞,胞浆中没有或很少有肌原纤维,因而无收缩功能,主要具有自律性,有自动产生节律的能力,同时具有兴奋性、传导性。
无论工作细胞还是自律细胞,其电生理特性都与细胞上的离子通道活动有关,跨膜离子流决定静息膜电位和动作电位的形成。
根据心肌电生理特性,心肌细胞又可分为快反应细胞和慢反应细胞。
快反应细胞快反应细胞包括心房肌细胞、心室肌细胞和希-普细胞。
其动作电位0相除极由钠电流介导,速度快、振幅大。
快反应细胞的整个APD中有多种内向电流和外向电流参与。
慢反应细胞慢反应细胞包括窦房结和房室结细胞,其动作电位0相除极由L-型钙电流介导,速度慢、振幅小。
慢反应细胞无I k1控制静息膜电位,静息膜电位不稳定、易除极,因此自律性高。
有关两类细胞电生理特性的比较见表1。
表1 快反应细胞和慢反应细胞电生理特性的比较参数快反应细胞慢反应细胞静息电位-80~-95mV -40~-65mV0期去极化电流I Na I Ca0期除极最大速率200~700V/s 1~15V/s超射+20~+40mV -5~+20mV阈电位-60~-75mV -40~-60mV传导速度0.5~4.0m/s 0.02~0.05m/s兴奋性恢复时间3期复极后10~50ms 3期复极后100ms以上4期除极电流I f I k, I Ca, I f二、静息电位的形成静息电位(resting potential, RP)是指安静状态下肌细胞膜两侧的电位差,一般是外正内负。
利用微电极测量膜电位的实验,细胞外的电极是接地的,因此RP是指膜内相对于零的电位值。
提纲-心脏电生理基础
心心肌细胞的类型
工工作细胞
心心房肌、心心室肌细胞——快反应细胞 特殊传导系统
窦房结、房室交界——慢反应细胞 房室束、左右束支支、浦肯野纤维——快反应细胞
8.4 心心电图
肢体导联 心心电向量量、心心电向量量环、肢体导连心心电图之间的相互关系 正常心心电图 加压导联及向量量的空间投影 前胸导联 十十二二导联系统
根据它们的组织学特点、电生生理理特性以及功能上的区别,可以粗略略地分为两大大类型, 两类心心肌细胞分别实现一一定的职能,互相配合,完成心心脏的整体活动。
工工作细胞:一一类是普通的心心肌细胞,包括心心房肌和心心室肌,含有丰富的肌原纤 维,执行行行收缩功能,故又又称为工工作细胞。工工作细胞不不能自自动地产生生节律律性兴 奋,即不不具有自自动节律律性;但它具有兴奋性,可以在外来刺刺激作用用下产生生兴 奋;也具有传导兴奋的能力力力,但是,与相应的特殊传导组织作比比较,传导性较 低。 自自律律细胞:另一一类是一一些特殊分化的心心肌细胞,组成心心脏的特殊传导系统;其 中主要包括P细胞和浦肯野细胞,它们除了了具有兴奋性和传导性之外,还具有自自 动产生生节律律性、兴奋的能力力力,故称为自自律律细胞,它们含肌原纤维甚小小或完全缺 乏,故收缩功能已基本丧失。还有一一种细胞位于特殊传导系统的结区,既不不具 有收缩功能,也没有自自律律性。只保留留了了很低的传导性,是传导系统中的非非自自律律 细胞,特殊传导系统是心心脏内发生生兴奋和传播兴奋的组织,起着控制心心脏节律律 性活动的作用用。 结构特征:
8. 心心脏电生生理理基础
8.1 生生物电现象的简要历史回顾
8.2 生生物电现象的形成机理理
心心机细胞动作电位(AP) 0相为快速去极 1相为快速复极初期 2相平台期为缓慢复极 3相为快速复极末期 4相为静息期
心脏电生理
心脏电生理的研究意义
心脏电生理的研究对于理解心脏功能、诊断和治疗心律失常等心脏疾病具有重要 意义。通过研究心脏电生理,医生可以更好地理解心律失常的机制,从而制定有 效的治疗方案。
心脏电生理学不仅对心脏病学和生理学领域有重要意义,还对药物研发和医学工 程等领域产生了深远影响。例如,对心脏电生理的研究有助于开发新的抗心律失 常药物或设计更有效的起搏器。
室性心动过速
是一种严重的室性心律失常,表现为 连续三个或以上的室性期前收缩,可 能导致心悸、气促、晕厥等症状,甚 至引发室性停搏和猝死。
心脏传导阻滞
窦房传导阻滞
是指窦房结发出的电信号无法正常传导至心房的现象,可能导致心房停搏和阿-斯综合征等严重后果 。
房室传导阻滞
是指心房的电信号无法正常传导至心室的现象,根据阻滞程度可分为一度、二度和三度房室传导阻滞 ,严重时可导致阿-斯综合征和猝死等严重后果。
心律失常的导管消融治疗是一种微创 的手术方式,通过导管将能量传递到 引起心律失常的病灶,从而消除异常 的电信号。
导管消融治疗需要在专业的心脏电生 理中心进行,由经验丰富的医生操作 ,确保治疗的安全性和有效性。
该治疗方法适用于多种心律失常疾病 ,如房颤、室性早搏等,治疗效果显 著,复发率较低。
人工心脏起搏器植入术
05
心脏电生理疾病的治疗
药物治疗
药物治疗是心脏电生理疾病常见的治疗方式之一,主要通过口服药物来控制病情。
常见的药物包括抗心律失常药物、抗凝药物、降脂药物等,这些药物能够改善症状 、降低并发症的发生率。
药物治疗需要遵循医生的指导,根据患者的具体情况制定个性化的治疗方案,并定 期进行评估和调整。
心脏基础电生理
2. 窦性停搏和窦房阻滞 3. 窦房阻滞与房室传导阻滞并存 4. 心动过缓—心动过速综合征(慢-快综合征)
第十八页,共87页。
病态窦房结综合征
临床表现: 与心动过缓相关的心脑脏器供血不足的表现。
诊 断:
• 典型ECG表现
• 临床症状与心电图改变存在明确的相关性
第三十三页,共87页。
心房颤动
心电图:
1. P波消失,代之以小而不规则的f波; 2. 心室率极不规则; 3. QRS波形态正常或畸形(差传)。
第三十四页,共87页。
心房颤动
治 疗:
一、急性房颤:处理原发病和诱发因素、控制心室率并尽可 能转复窦律。
1. 明显血流动力学障碍:同步直流电复律。
2. 无血流动力学障碍:减慢心室率,随后复律 减慢心室率药物:洋地黄、β阻滞剂、胺碘酮、普 罗帕酮、维拉帕米等 复律:可同步电复律或药物(IA、IC、III类) 。
第三十二页,共87页。
心房颤动
病因: 阵发性:可见于正常人,在运动、手术后。
心肺疾患发生急性缺氧时, 持续性:多见于风心、冠心、高心、甲亢。
临床表现: 房颤的症状与心室率的快慢有关。
心室率慢时,可无症状 心室率快时可出现心绞痛与充血性心衰。
房颤病人体循环栓塞的危险较高。
体检:◆第一心音强弱不一; ◆ 心律绝对不整; ◆脉搏短绌。
II类 阻断β肾上腺素能受体,减慢动作电位上
升速率,抑制4相除极。
代表药:普萘洛尔、美托洛尔等 主要用于:室上性心律失常
第十二页,共87页。
抗心律失常药物分类
III类 延长动作电位时程
代表药:胺碘酮、溴苄铵
常见心脏电生理现象讲解材料
室性心律失常
传导阻滞
包括室性早搏、室性心动过速、室扑和室 颤等,是由于心室肌细胞电信号异常引起 的。
心脏的电信号在传导过程中受到阻碍,导 致心脏的节律异常,常见的有窦房传导阻 滞、房内传导阻滞、室内传导阻滞等。
对心脏电生理现象的展望
深入研究心脏电生理机制 随着医学研究的深入,未来将进 一步揭示心脏电生理机制,为预 防和治疗心律失常提供更有效的 方案。
心电综合
不同部位的心肌细胞产生 的电位变化综合起来形成 心电图。
心脏电生理现象的发生机制
心肌细胞的电兴奋
心肌细胞受到刺激时,细胞膜上的离子通道开放,导致细胞膜电 位发生变化,引发心电信号。
心脏传导系统的调控
心脏内部的传导系统对心电信号进行调控,确保心脏按照一定的节 律跳动。
神经体液调节
神经和体液因素对心脏电生理现象产生影响,如肾上腺素、去甲肾 上腺素等激素对心脏的兴奋作用。
避免诱发因素
避免诱发因素是预防心律失常 的重要措施,如避免过度劳累
、情绪激动、饮食过饱等。
05 结论
CHAPTER
总结常见的心脏电生理现象
窦性心律
房性心律失常
窦房结自动产生电信号,控制心脏的节律 性跳动,是正常的心脏电生理现象。
包括房性早搏、房性心动过速、心房扑动 和心房颤动等,是由于心房肌细胞电信号 异常引起的。
常见心脏电生理现象讲解材料
目录
CONTENTS
• 引言 • 心脏电生理现象的原理 • 常见的心脏电生理现象 • 心脏电生理现象的诊断与治疗 • 结论
01 引言
CHAPTER
心脏电生理现象的定义
01
心脏电生理现象是指心脏电信号 的产生、传导和分布的规律和特 征,是心脏正常功能的基础。
心脏电生理
06
心脏电生理的未来发展
心脏电生理的科研进展
基因与心脏电生理
研究心脏电生理相关的基因变异和功能,探索遗传因素对心脏电 生理的影响。
细胞与心脏电生理
研究心肌细胞、心脏神经元等细胞在心脏电生理中的作用,揭示心 脏电活动的细胞机制。
离子通道与心脏电生理
深入研究心脏电生理过程中涉及的离子通道结构和功能,为药物研 发和疾病治疗提供新思路。
心脏的传导系统
心脏的传导系统包括窦房结、房室结 、希氏束和浦肯野纤维等,这些组织 协调心脏的节律和兴奋传导。
心脏电信号的整理
不同部位的电信号整合
在心房和心室,来自不同部位的电兴奋信号经过整合,形成综合电信号,协调 心房和心室的收缩和舒张。
自主神经对心脏电信号的影响
自主神经通过释放不同的神经递质,影响心脏电信号的整理和传导,调节心率 和心律。
心律失常
01
02
03
04
心律失常是指心脏电信号的产 生和传导出现异常,导致心脏 不规则跳动或心脏停搏等症状
。
心律失常的原因有多种,包括 心脏疾病、内分泌失调、药物
作用等。
心律失常的症状包括心悸、胸 闷、头晕、乏力等,严重时可
导致晕厥或猝死。
治疗心律失常的方法包括药物 治疗、电刺激治疗和导管消融
等。
智能化医疗设备
将人工智能、物联网等技 术与心脏电生理医疗设备 相结合,实现设备的智能 化和远程监控。
便携式医疗设备
研发便携式的心脏电生理 监测设备,方便患者在家 中或户外进行实时监测。
感谢观看
THANKS
心脏电生理的重要性
心脏电生理是心脏病学领域的重要分支,对于理解心脏疾病 的发病机制、诊断和治疗具有重要意义。
心脏的电生理学
心脏的电生理学心脏是人体最重要的器官之一,它承担着泵血的功能,使血液能够循环到全身各个器官和组织,为身体提供所需的氧气和营养物质。
而心脏的正常功能离不开电生理学的控制和调节。
本文将深入探讨心脏的电生理学原理及相关研究。
一、心脏的电活动心脏的电活动是由心脏自身的电生理性质驱动的。
心脏的电活动可以通过心电图(ECG)进行观测和记录。
正常情况下,心脏的电活动包括起搏细胞的自动除极过程、心房和心室的兴奋过程以及心房和心室的收缩过程。
1. 起搏细胞的自动除极过程起搏细胞是心脏中特殊的细胞类型,它具有自律性和传导性。
自律性是指起搏细胞可以自发地生成和传导电信号,而传导性是指起搏细胞能够将电信号传导给心脏的其他细胞。
在自动除极过程中,起搏细胞的细胞膜电位快速从负值逐渐升高,直到达到阈值,细胞膜电位发生快速反转,形成除极。
2. 心房和心室的兴奋过程心房和心室的兴奋过程是指除极过程后的细胞膜电位迅速升高,达到高峰,然后逐渐恢复。
这个过程是由电压门控型离子通道的开闭调节所控制的。
其中,钠离子通道的快速开放引起快速上升阶段,而钙离子通道的慢速开放和钾离子通道的慢速关闭则引起缓慢下降阶段。
3. 心房和心室的收缩过程心脏的收缩过程受到细胞内钙离子浓度的调节。
当细胞内钙离子浓度增加时,钙离子与肌凝蛋白结合,促使肌纤维产生收缩。
收缩过程随之产生的张力将使心脏的血液推向全身。
二、心脏电活动的调节与心律失常心脏电活动的调节涉及多种离子通道和离子泵的调节作用。
其中,钠离子、钾离子和钙离子是调控心脏电活动的主要离子。
当这些离子通道和泵的功能出现异常时,就会导致心律失常的发生。
心律失常是指心脏的节律发生改变,包括心搏过缓、心搏过速、早搏和心房颤动等。
心律失常可以由多种原因引起,如心肌缺血、药物毒性、电解质紊乱等。
心律失常的发生不仅会影响心脏的有效泵血功能,还可能导致血液循环不畅,引发心脑血管意外等严重后果。
三、心脏电生理学的研究及应用心脏电生理学的研究与应用为心脏病的诊断和治疗提供了重要的手段。
心电生理入门资料
心电生理入门资料目录心脏解剖与电传导 (2)基础电生理及心电图 (14)心脏电生理检查 (25)快速型心律失常简介 (34)射频消融原理 (43)导管室构成 (47)电生理相关英文 (49)心脏解剖与电传导心脏解剖与电传导是学习电生理的基石!一、心脏解剖1.心脏的位置心脏位于胸腔纵隔内,2/3在正中线左侧,1/3在正中线右侧。
左右与肺相邻,前对应2-6肋,后对应5-8胸椎。
注:正常情况下,人的心脏呈顺时针转位(足头看),轴向为右后上至左前下。
2.心脏的形态心脏的形态可描述为一尖(心尖)、一底(心底)、两面(胸肋面和膈面)、三缘(左缘、右缘和下缘)、三沟(冠状沟、前室间沟和后室间沟)。
注:1)一尖:指向左前下方,在第5肋间隙、左锁骨中线内侧1~2cm处可触及心尖的搏动。
2)一底:指向右后上方,连有出入心脏的大血管。
3)两面:胸肋面:与胸骨和肋软骨相对;膈面:与膈肌相邻。
4)三缘:左缘:主要由左心室构成;右缘:主要由右心房构成;下缘:主要由右心室和心尖构成。
5)三沟:冠状沟:心脏表面的环形沟,是心房和心室的分界;前室间沟:左、右心室在心前面的分界线;后室间沟:左、右心室在心后面的分界线。
3.心脏的结构心脏有四个腔,分别是左、右心房(LA和RA)和左、右心室(LV和RV)。
心房为薄壁、低压心腔,左右心房之间有房间隔,导管从右心房到左心房需行房间隔穿刺术,经卵圆窝通路进入左心房。
心室为厚壁心腔,输送血液至肺循环和体循环,其左右心室之间有室间隔。
IVC SV1) 右心房接受来自上腔静脉(SVC )、下腔静脉(IVC )和冠状窦(CS )的静脉血,再通过三尖瓣(TV )将血液输送到右心室(RV )。
上腔静脉(SVC ,Superior Vena Cava ):收集头、颈和上肢的血液进入右心房下腔静脉(IVC ,Inferior Vena Cava ):收集足、下肢和脏器的血液进入右心房冠状窦(CS ,Coronary Sinus ):位于心后面的冠状沟内,左侧起点是心大静脉和心房斜静脉注入处,起始处有静脉窦,右侧终端是冠状窦口,位于下腔和三尖瓣环之间。
生理学 心肌电生理
生理学心肌电生理
生理学中心肌电生理主要研究心肌细胞的电活动规律,包括心肌细胞的兴奋性、自律性、传导性和收缩性等。
心肌细胞的电活动是心脏跳动和泵血的基础,对于维持人体正常生理功能至关重要。
心肌细胞在受到刺激时,会产生动作电位,这是心肌细胞兴奋的标志。
动作电位分为0期、1期、2期、3期和4期五个时相,每个时相都有不同的离子通道开放和关闭,从而形成电位的峰值和转折。
心肌细胞的自律性是指心肌细胞在没有外来刺激的情况下,能够自动产生节律性的兴奋和收缩。
自律性的产生依赖于心肌细胞的膜电位和特殊的离子通道。
心肌细胞的传导性是指兴奋在心肌细胞之间的传递速度和传递方向。
传导的速度和方向受到多种因素的影响,包括细胞内外的离子浓度差、细胞膜的通透性和特殊通道的开放状态等。
心肌细胞的收缩性是指心肌细胞在受到刺激时,能够通过兴奋-收缩耦联机制,将电兴奋转化为肌肉的机械收缩,从而推动血液的流动。
总之,心肌电生理是生理学中研究心肌细胞电活动规律的重要领域,对于理解心脏的正常生理功能和疾病的发生机
制具有重要意义。
医学课件心脏电生理基础
心电生理基 础
心律失常的电生理机制
冲动形成异常
延迟后除极
发生于4相,基础是细胞Ca++浓度升高,
激活非选择性阳离子通道,Na+ 、K+内流(INa、K), 促进Na+ -Ca++交换,
3 Na+进入、1 Ca++外出形成内向电流
心电生理基 础
心律失常的电生理机制
冲动传导异常 干
扰 生理性 病理性
心电生理基 础
心脏起搏和传导系统
旁路 Kent和Mahaim束 RFCA实践中证实
心电生理基 础
心肌细胞电生理
心肌细胞膜内外离子分布特点 膜外 K+ Na+ ClCa++
心电生理基 础
膜内 5 145 120 2 K+ Na+ ClCa++ < 150 15 6 10
-4
心肌细胞电生理
心肌细胞膜生物学特性
1相 Ito电流
3相 K+外流
2相
4相
Ca++内流 K+外流
离子转运
心电生理基 础
心肌细胞电生理
慢反应电位细胞动作电位特点
最大舒张期电位负值:
-60∼-70mv(K通道数少)
0相上升速度慢,幅度小 1相不明显,无明显平台,
2、3相界限不清,复极是
Ca++内流减少,K+外流增加
4相自动除极,K外流衰减
阈电位水平
心电生理基 础
心律失常的电生理机制
冲动形成异常
正常心律:窦律、窦速、窦缓、窦性心律不齐 异位心律:异位节律 触发活动:膜电位震荡,或称后除极 • 早期后除极
心脏电生理学
心电信号的个性化治疗研究
总结词
个性化治疗是根据患者的个体差异制定治疗 方案的方法,通过心电信号的个性化治疗研 究,有望实现心脏疾病的精准治疗。
详细描述
心电信号是心脏功能的重要指标,通过心电 信号的个性化治疗研究,可以了解不同个体 心电信号的特点和差异。这将有助于根据患 者的具体情况制定个性化的治疗方案,提高 治疗效果。此外,心电信号的个性化治疗研 究还有助于发现新的治疗靶点和药物作用机
心电信号的干细胞治疗研究
总结词
干细胞治疗是一种新兴的治疗方法,通过心电信号的干细胞治疗研究,有望为心脏疾病 的治疗提供新的途径。
详细描述
干细胞治疗具有自我更新和多向分化的潜力,可以用于修复和再生受损的心肌组织。通 过心电信号的干细胞治疗研究,科学家们可以了解干细胞对心脏电生理特性的影响,优 化干细胞治疗的方案,提高治疗效果。此外,心电信号的干细胞治疗研究还有助于探索
窦性心动过缓
窦房结发放冲动的频率异常减慢,导 致心跳过慢。
房性心律失常
01
02
03
房性早搏
心房肌细胞提前发放冲动 ,引起心跳提前。
心房扑动
心房肌细胞发放冲动的频 率异常增加,导致心跳过 快。
心房颤动
心房肌细胞发放冲动的频 率异常减慢或紊乱,导致 心跳不规律。
室性心律失常
室性早搏
心室肌细胞提前发放冲动 ,引起心跳提前。
远程诊断能够提高医疗服务的效率和质量,降低医疗成本,缓解医疗资源紧张的问题。
05
心脏电生理疾病的治 疗
药物治疗
抗心律失常药物
用于治疗心律失常,如房颤、室 性早搏等,通过抑制心肌细胞的
《心脏电生理学基础》课件
未来研究方向与展望
未来心脏电生理学的研究将更加注重基础与临床的结合,推动科研成果的转化和应 用。
随着人工智能和大数据技术的发展,心脏电生理学将借助这些技术手段对海量数据 进行处理和分析,以揭示心脏疾病的发病规律和预测模型。
未来心脏电生理学的研究将更加关注心脏疾病的预防和早期干预,通过改善生活方 式和药物治疗等手段降低心脏疾病的发生率和死亡率。
心脏电生理学面临的挑战
01
心脏电生理学的实验研究需要 高度专业化的技术和设备,实 验成本较高,限制了研究的广 泛开展。
02
目前对心脏电生理活动的理解 仍不够深入,对一些复杂的心 律失常机制仍不清楚,需要进 一步探索。
03
心脏电生理学的研究需要跨学 科的合作,如何有效整合不同 学科的资源和技术是面临的挑 战之一。
代谢功能
心脏通过分泌心房钠尿肽等激素,参与水盐代谢 和血压调节。
心脏的电生理特性
01
02
03
心电的产生
心肌细胞膜电位变化产生 心电,心电通过心脏组织 和导电溶液传导。
心电的传导路径
心电从窦房结传至心房, 再传至心室,最后传至身 体各部位。
心电的生理意义
心电的生理意义在于驱动 心脏肌肉收缩,维持血液 循环。
指导治疗
根据电生理检查结果,医 生可以制定个性化的治疗 方案,如药物治疗、射频 消融或起搏器植入等。
心脏起搏器植入术
治疗心动过缓
对于严重心动过缓的患者,植入心脏 起搏器可以改善心脏的泵血功能,提 高生活质量。
预防猝死
改善症状
植入心脏起搏器后,患者的心悸、乏 力、头晕等症状可以得到明显改善。
对于有猝死风险的患者,植入心脏起 搏器可以预防恶性心律失常的发生。
心脏电生理基础相关知识
心脏电生理基础相关知识第一节心肌细胞的生物电现象一、心肌细胞的分类根据组织学和生理学特点,可将心肌细胞分为两类。
1、普通心肌细胞包括心房肌和心室肌细胞,含有丰富的肌原纤维,具有兴奋性、传导性和收缩性,但一般不具有自律性。
这类心肌细胞具有稳定的静息电位,主要执行收缩功能,故又称为工作细胞。
2、自律细胞是一类特殊分化的心肌细胞,主要包括P细胞和浦肯野细胞,组成心脏的特殊传导系统。
这类细胞除了具有兴奋性、传导性外,大多没有稳定的静息电位,但可自动产生节律性兴奋,控制整个心脏的节律性活动。
由于很少含或完全不含肌原纤维,基本不具有收缩功能。
二、心肌细胞的跨膜电位及其形成机制心肌细胞膜内外的离子浓度不同(见表1-1-1),安静状态下细胞膜对不同离子的通透性也不同,这是心肌细胞跨膜电位形成的主要离子基础。
1、静息电位人类心室肌细胞的静息电位为-90 mV,其形成机制与静息时细胞膜对不同离子的通透性和离子的跨膜浓度差有关。
在静息状态下心室肌细胞膜上的内向整流Ik1通道开放,其通透性远大于其他离子通道的同透性,因此,K+顺其浓度梯度由膜内向膜外扩散,造成膜内带负电,膜外带正电,从而形成了膜内外的电位差。
这种在静息状态下,心肌细胞膜内外的电位差就称为膜的静息电位。
此时,心肌细胞处于极化状态。
2、动作电位刺激心室肌细胞使其兴奋,膜内外的电位就会发生突然转变,膜内电位由负电位转变为正电位,而膜外则由正电位转变为负电位。
这种膜电位的变化称为动作电位。
通常将心室肌细胞动作电位分为0期、1期、2期、3期、4期五个时相(图1-1-1)。
(1)去极化过程。
心室肌细胞的去极化过程又称动作电位0期。
心室肌细胞在外来刺激作用下,首先引起部分电压门控式Na+通道(INa通道)开放和少量Na+内流,造成细胞膜部分去极化。
当膜电位由静息水平(膜内-90mV)去极化到阈电位水平(膜内-70mV)时,细胞膜上INa通道的开放概率明显增加,于是Na+顺其浓度梯度和电位梯度由膜外快速进入膜内,使细胞膜进一步去极化,膜内电位迅速上升到正电位(+30mV)。
心电物理知识
心电物理知识
1.心肌细胞电生理特性:
心脏肌肉细胞(心肌细胞)具有独特的电生理特性,当细胞膜内外离子浓度发生变化时,会产生电位变化。
静息状态下,心肌细胞膜内外存在稳定的电位差,即静息电位,通常是细胞膜外正电,膜内负电。
当细胞受到刺激时,膜电位会发生瞬时的反转,即除极过程,随后通过离子泵的作用回到静息状态,这个过程称为复极。
心肌细胞的这种电位变化会形成一系列的动作电位,依次传播,使得心脏得以有序地收缩和舒张。
2.心电向量:
心脏每次搏动产生的电活动,可以看作是一个三维空间的电流源,形成一个心电向量。
这个向量随着心脏各部位的激动顺序和方向不断变化。
心电向量的合成就是心肌细胞动作电位在空间上的总体表现。
3.心电信号记录:
通过在人体体表放置多个电极,可以检测到心脏电活动在体表的投影。
当心脏各部位依次除极和复极时,体表电位随之变化,形成的心电图波形反映了心脏激动的顺序和时间间隔。
心电图上的P波、QRS波群、T波和U波分别对应了心房除极、心室除极、心室复极早期和晚期复极过程。
4.心电图波形解读:
心电图上的波形提供了丰富的信息,包括心率、心律、心肌除极和复极的顺序、时间、幅度以及各波形间的时间间隔等,这些参数可用于诊断各种心脏疾病,如心律失常、心肌梗死、心室肥大、心肌炎、电解质紊乱等。
5.心电生理传导系统:
心脏内部有一个特化的传导系统,包括窦房结、房室结、希氏束、浦肯野纤维等,这些结构保证了心脏电激动的有序传递。
心电图能反映出这个传导系统的功能状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载心脏电生理基础知识地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容心脏电生理检查及射频消融基本操作知识目前,射频消融术(RFCA)已成为心动过速的主要非药物治疗方法,因此相应的心脏电生理检查实际上是RFCA中的重要部分。
在此将心脏电生理检查和RFCA作为一个诊疗整体逐一描述其基本操作步骤。
病人需常规穿刺锁骨下静脉,股静脉,必要时穿动脉,常规放置心内电生理电极导管,最长的为高位右房(HR),HIS束,冠状窦CS,和右室心尖(RV)和射频导管熟称“大头”常规投照体位位左前斜位(LAO)右前斜位(RAO)前后位(AP)和后前位(PA)一、基本操作需知病人选择及术前检查:2002射频消融指南血管穿刺:股静脉、股动脉、颈内静脉、锁骨下静脉心腔置管:HRA、CS、HBE、RVA、LA、PV、LV体表和心脏内电图:HRA、CSd…CSp、HBEd…HBEp、RVA、PV、Abd、Abp 电生理检查:刺激部位:RA、CS、LA、RV、LV刺激方法:S1S1、S1S2、S1S2S3、RS2↓消融靶点定位:激动顺序、起搏、靶标记录、拖带、特殊标测↓消融+消融方式:点消融、线消融能量控制:功率、温度、时间消融终点:电生理基础、心动过速诱发、异常途径阻滞、折返环离断、电隔离、其它二、血管穿刺术经皮血管穿刺是心脏介入诊疗手术的基本操作,而FCA则需要多部血管穿刺。
心动过速的类型或消融方式决定血管刺激的部位。
一般而言,静脉穿刺(右例或双侧)常用於右房、希氏束区、右室、左房及肺静脉置管;颈内静脉或锁骨下静脉穿刺则是右房、右室和冠状静脉窦(窦状窦)置管的途径;股颈脉穿刺是左室和左房的置管途径。
例如房室结折返性心运过速的消融治疗需常规穿刺股静脉(放置HRA、HBE、RVA和消融导管)和颈内或锁骨下静脉(放置CS导管);左侧旁道消融则需穿刺股动脉放置左室消融导管。
三、心腔内置管及同步记录心电信号根据电生理检查和RFCA需要,选择不同的穿刺途径放置心腔导管。
右房导管常用6F4极(极间距0.5~1cm)放置於右房上部,记录局部电图为HRA1,2和HRA3,4图形特点为高大A波,V波较小或不明显。
希氏束导管常用6F4极(极间距0.5~1cm)放置於三尖瓣膈瓣上缘,记录局部电图为HBE1,2和HBE3,4,HBE1,2的H波高大,HBE3,4的A/V≥1,H波清楚。
右房导管常用6F4极(极间距0.5~1cm),放置於右室尖部,局部电图为大V波,无A波。
冠状窦电极可用6F 4极(极间距1cm),但目前常用专用塑形的6F 10极(极间距2-8-2mm)导管,经股静脉、颈内静脉或锁骨下静脉插管易於进入CS,理想位置应将导管最近端电极放置在其口部(CSO),局部电图特点多数病人A>V,少数病人A<V。
左室导管常用7F 4极大头电极,主要同於标测消融,其部位取决於消融的靶点部位。
此外,左房房速、肺静脉肌袖房性心律失常和部分左侧旁道需经股静脉穿刺房间隔放置导管。
以上各部位的局部电图与体表心电图同步记录,心腔内局部电图的滤波范围为30~400Hz。
同步记录由上而下的顺序为体表心电图、HRA、HBE、CS、RVA和消融电极局部电图(Ab)。
部分特殊病例或置入特殊导管(如Hallo导管、laso导管等)需调整记录顺序。
四、心脏程控刺激心脏电生理检查中常选择高位右房和右室尖作为心房和心室的刺激部位,特殊情况下可选择心脏任一部位进行刺激。
程控刺激的主要目的在於评价心脏起搏和传导系统的电生理特征,诱发和终止心动过速。
刺激强度常选择1.5~2.0倍刺激阈(恰好夺获心房或心室的刺激强度)。
常规刺激方法为S1S1增频(递减周期)刺激和S1S2单早搏或多早搏(S1S2S3、S1S2S3S4)刺激。
五、药物试验用於心动过速诊断和评价的药物试验有Atropine、lsoprenaline(异丙肾上腺素)激发试验和ATP(腺苷)抑制试验。
主要用於消融消融前后以评价消融效果。
1.Atropnie试验:多用於PSVT病人,尤其是AVNRT基础电生理检查不能诱发心动过速者。
静脉注射0.02~0.04mg/kg后重复心脏程控刺激以促发心动过速或对比用药前后的电生理变化。
2.Lsoprenaline试验:多用於PSVT和室速病人。
用於促发心动过速和评价消融疗效。
0.5~1mg加入250ml液体内静脉滴注,以心率增加20~40%时心脏程控刺激。
3.ATP试验:用以抑制AVN传导以评价旁道和DAVNP消融效果。
AVNRT病人注射ATP(10~20mg)后可显示AH和PR突然延长以证实DAVNP,而慢径消融后注射ATP可证实消融效果。
旁道(尤其是间隔旁道)消融后在心室起搏心律下注射ATP可根据VA传导是否受抑制而判断室房传导途径是AVN或旁道。
宽QRS心动过速时注射ATP可根据AV或VA阻滞与否及与心动过速的关系确定心动过速的性质。
六、分析心电生理资料对心电生理资料的分析的目的是确定心动过速的性质和消融靶部位。
倒如PSVT病人,分析时应明确心动过速是AVNRT抑或是AVRT,然后确定消融慢径(AVNRT)或旁道(AVRT)。
1.心房程控刺激:分析房室传导和心动过速诱发的特点。
正常房室传导:递减传导性能,即随着S1S1间期或S1S2间期缩短,AH间期逐渐延长;房室旁道前传特点:房室传导间期恒定并伴有心室预激是;AVN双径的表现:随着S1S2间期缩短,AH间期跃增性延长,为AVNRT的电生理基础。
房性心动过速和室性心动过速:与房室传导没有关系。
折返有关:心房刺激、重复性诱发心动过速常提示与折返有关的室上性心动过速。
2.心室程控刺激:分析室房传导和心动过速的诱发特点。
正常室房传导具有递减传导性能:与前传一样,即随S1S1和S1S2间距缩短,VA间期逐渐延长;隐匿性旁道:室房传导间期恒定常提示旁道传导,伴心房激动顺序异常则旁道位於激离型,而心房激动顺序正常则提示旁道位於间隔部。
室房递减传导伴心房激动顺序异常则提示游离至慢旁道。
心室刺激不仅可诱发室性心动过速,也可诱发AVRT、AVNRT和房性心动过速。
与折返有关的心动过速,常有临界性的心室刺激间期。
3.分析心动过速的特点分析心动过速的心腔电图特点是确定心动过速性性质的主要方法。
(1)房室和室房关系:房速可共存不同比例的房室传导,AVNRT可共存2:1房室传导;AVRT仅为1:1房室传导;室性心动过速可共存室房分离。
(2)房波和室波关系:房速A波常位於V波前、AVNRT则A波常与V波重叠;AVRT的 A波常位於V之后;室性心动过速A波和V波无关,或A波位於V 波之后。
(3)心房和心室激动顺序:房性心动过速的心房激动顺序取决於心动过速的部位,越邻近心动过速病灶则心房激动越早。
AVNRT和AVRT心房均为逆向传传激动,而AVNRT心房激动顺序类同正常室房传导,但A波重叠於V波以至难以分析。
AVRT为旁道逆传,其心房激动顺序取决旁道部位。
宽QRS波心动过速时呈典型的左、右束支阻滞常提示PSVT伴功能性束支阻滞或特发性室速,QRS 波呈完全性心室预激形多提示逆向型AVRT或房扑伴旁道前传。
(4)心房预激:对有1:1房室和/或室房关系的心动过速,心房预激现象是确定室房途径为旁道的可靠方法。
心动过速时以H波同步刺激心室,观察A 波是否提前激动,即AAS间期是否缩短(>30ms)。
与H波同步刺激心室时,其逆传激动恰遇希氏束的不应期而不能逆传至心房,如引起心房激动则只能通过旁道逆传。
(5)对ATP的反应:心动过速时静脉注射ATP10~20mg,观察心动过速的房室或室房关系是确定心动过速性质的重要方法。
ATP常使AVRT、AVNRT及部分房速终止。
室速病人应用ATP后可出现室房分离,部分房速则出现房室阻滞。
七、确定消融的靶部位根据电生理检查确定心动过速性质后,选择心动过速的关键部位为消融的靶部位。
AVNRT和AVRT分别消融慢径和旁道,即慢径和旁道是靶部位。
房扑则以峡部为靶部位,与肺静脉肌袖有关的房性心律失常则应消融电隔离相关肺静脉口部。
与手术疤痕或梗死疤痕有关的心动过速应采用更复杂的标测消融该区域。
局灶性房速和室速,则直接消融心动过速的起源点。
八、消融能量控制—温控大头消融能量常以功率或温度控制。
有效损伤靶部位的能量常为20~50W×60~90秒,或50℃~60℃连续放电60~90秒。
目前越来越多的采用温度控制能量输出。
九、消融终点1.心动过速终止和不能诱发再诱发消融中心动过速终止和消融后心动过速不能诱发几乎是所有心动过速消融有效的指标之一,尤其是房速和室速。
2.靶部位传导阻滞消融后靶部位传导阻滞是消融有效的客观指标。
如AVNRT的慢径阻滞,AVRT的旁道阻断,房扑的狭部阻滞等。
3.电隔离消融造成局部(邻近心动过速灶)的电隔离是部分心动过速的治疗终点。
例如与静脉袖有关的房性心律失常,已往直接消融肺静脉不仅疗效低,复发率高,而且并发症较多,而“环状”电隔离相关肺静脉口部,即能达到安全有效消融的目的。
4.药物试验评价消融疗效的药物试验主要有异丙肾上腺素试验和ATP试验。
心脏电生理检查基础详细的EPS检查是射频消融手术成功的重要保证,尤其是对于刚刚开展射频消融术的心内科医生来说就更重要子,一步一步做,不去抢时间,只有这样才能保证心律失常诊断的准确性,并且最好至少放三根标测电极。
然而,由于国情的原因,为了替患者省钱,目前国内许多医生用二根电极就搞定(一根CS 电极,一根HRA和RVA电极)了,甚至许多经验丰富的医生有时在单导管的情况下也可以解决一些显性旁道,当然,术后检测还是需要再加一根电极的。
对于刚开展的医生,我觉得最好还是用三根标测电极的好,有一条HIS电极,对于诊断及鉴别诊断帮助非常大,尤其是在不能确定是否是旁道还是房室结折返性心动过速时。
此外,对于CS电极,目前主要是四极的十极,其中十极的是专门的CS电极,十极的CS电极有它的优点,对于左侧旁道不能确定是游离壁还是间隔部的时候,十极的CS电极就比较好判断了,而四极的就较难判断,尤其是对初学者来说。
但是十极的CS电极也有它的缺点,它的前端比较软(减少损伤冠状窦静脉的机会),有时候放入冠状窦静脉比较困难,或者总是进入某一个分支静脉,位置过浅,从而导致误诊右侧旁道为左侧旁道,即使在经验丰富的电生理中心,仍然会出现这种情况,对于刚刚开展的医生来说就更加容易误诊。
而四极电极比较硬,有可能增加心包填塞的风险,但对于十极CS电极不能到位时,换用四极电极有时候常常到位比较理想。