药物化学结构与药效的关系

合集下载

药物结构与药效关系

药物结构与药效关系

根据药物化学结构对生物活性的影响程度,或根据作用方式,宏观上将药物分为非特异性结构药物和特异性结构药物。

前者的药理作用与化学结构类型关系较少,主要受理化性质影响。

大多数药物属于后一类型,其活性与化学结构相互关联,并与物定受体的相互作用有关。

决定药效的主要因素有二:(1)药物必须以一定的浓度到达作用部位,才能产生应有的药效。

(2)药物和受体相互作用,形成复合物,产生生物化学和生物物理的变化。

依赖于药物的特定化学结构,但也受代谢和转运的影响。

第一节药物的基本结构和结构改造作用相似的药物结构也多相似。

在构效关系研究中,对具有相同药理作用的药物,剖析其化学结构中的相同部分,称为基本结构。

基本结构可变部分的多少和可变性的大小各不相同,有其结构的专属性。

基本结构的确定却有助于结构改造和新药设计。

第二节理化性质对药效的影响理化性质影响非特异性结构药物的活性,起主导作用。

特异性结构药物的活性取决于其与受体结合能力,也取决于其能否到达作用部位的性质。

药物到达作用部位必须通过生物膜转运,其通过能力有赖于药物的理化性质及其分子结构。

对药物的药理作用影响较大的性质,既有物理的,又有化学的。

一、溶解度、分配系数对药效的影响药物转运扩散至血液或体液,需有一定的水溶性(又称亲水性或疏脂性)。

通过脂质的生物膜转运,需有一定的脂溶性(又称亲脂性或疏水性)。

脂溶性和水溶性的相对大小一般以脂水分配系数表示。

即化合物在非水相中的平衡浓度Co 和水相中的中性形式平衡浓度Cw之比值:P=Co/Cw因P值效大,常用lgP。

非水相目前广泛采用溶剂性能近似生物膜、不吸收紫外光、可形成氢键及化学性质稳定的正辛醇。

分子结构的改变将对脂水分配系数发生显著影响。

卤原子增大4~20倍,—CH2—增大2~4倍。

以O代-CH2-,下降为1/5~1/20。

羟基下降为1/5~1/150。

脂氨基下降为1/2~1/100。

引入下列基团至脂烃化合物(R),其lgP的递降顺序大致为:C6H5 > CH3 > Cl > R > -COOCH3 > -N(CH3)2 > OCH3 > COCH3 > NO2 > OH > NH2 > COOH > CONH2引入下列基团至芳烃化合物(Ar),其lgP的递降顺序大致为:C6H5 > C4H9 >> I > Cl > Ar > OCH3> NO2 ≥COOH > COCH3> CHO > OH > NHCOCH3> NH2 > CONH2 > SO2NH2作用于中枢神经系统的药物,需通过血脑屏障,需较大的脂水分配系数。

药物化学结构和药效的关系

药物化学结构和药效的关系
式更易发挥作用。因此药物应有适宜的解离度.
例:
资料仅供参考,不当之处,请联系改正。
2.6 药物的电子云密度分布对药效的影响
如果药物分子中的电荷分布正好和其特定 受体相适应,药物与受体通过形成离子键、偶 极-偶极相互作用、范德华力、氢键等分子间引 力相互吸引,就容易形成复合物,而具有较高 活性。
资料仅供参考,不当之处,请联系改正。
下例为苯甲酸酯类局麻药分子与受体通过形成 离子键,偶极-偶极相互作用,范德华力相互作 用形成复合物的模型。
资料仅供参考,不当之处,请联系改正。
(2)增加药物分子的位阻:
抵抗青霉素酶得水解
资料仅供参考,不当之处,请联系改正。
(3)电性的影响:
资料仅供参考,不当之处,请联系改正。
2.卤素对药物生物活性的影响
强吸电子基,影响电荷分布
3.羟基、醚键对药物生物活性的影响
-OH增强与受体的结合力(氢键),增加水溶性,改变生物活性 -O-有利于定向排布,易于通过生物膜
资料仅供参考,不当之处,请联系改正。
药物的化学结构与生物活性(药效)间 的关系,通常称为构效关系(Structureactivity relationships, SAR),是药物化 学研究的主要内容之一。
资料仅供参考,不当之处,请联系改正。
本章内容
药物作用机制 受体学说 影响药物产生作用的主要因素 药物结构的官能团对药效的影响 药物的理化性质对药效的影响 药物的电子云密度分布对药效的影响 药物的立体结构对药效的影响
4.磺酸基、羧基与酯对药物生物活性的影响
-SO3H、-COOH使水溶性、解离度增大,不易通过生物膜, 生物活性减弱;
-COOR使脂溶性增大,生物活性增大
5.酰胺基与胺基对药物生物活性的影响

19章 药物的化学结构与药效关系

19章  药物的化学结构与药效关系
大多数药物属于后一种类型。
决定药效的主要因素
(一)药物发生药效的生物学基础
1、药物作用的体内靶点
与药物在体内发生相互作用的生物大分子被称为药物 的作用靶点,即致病基因编码的蛋白质和其他生物大 分子,如酶、受体、离子通道、核酸等。
2、药物发生药效的体内过程
药物的体内过程是吸收、分布、代谢和排泄,这中间 的每一个过程都影响药物的药效。 药物发生药效的决定因素有两个: 一:是药物必须以一定的浓度到达作用部位,药物的转 运过程(吸收、分布、排泄)将影响药物在作用部位的 浓度,而转运过程又受药物理化性质的影响。 二:是药物和受体的相互作用,这一因素与结构特异性 药物的生物活性有关。
根据药物在体内分子水平上的作用方式分类:
结构非特异性药物:生物活性主要受理化性质影响,与化学 结构关系不大。结构改变,对生物活性无明显影响。
结构特异性药物; 生物活性除与药物分子的理化性质相关外, 主要取决于药物的化学结构,即受药物分子和受体的相互作 用影响,药物结构稍加改变,就会直接产生药效学变化。
引入烷基、卤素、芳环、酯基和硝基等可以增加 药物的脂溶性。如要透过血脑屏障,作用于中枢 神经系统的药物,需要较强的亲脂性。
药物分子中如引入亲水性的磺酸基、羧基、羟基、 酰胺基、胺基等,一般导致水溶性增高。
2 解离度对药效的影响
多数药物具弱酸性或弱碱性,在体液中可部分解离。 药物的解离度取决于解离常数pKa和介质的pH。
第十九章
药物的化学结构与药效的关系
第一节
药物的构效关系概述
构效关系的概念
构效关系(Structure activity relationship SAR)是指药物的化学结构 与生物活性(包括药理与毒理作用)之间 的关系,是药物化学的中心内容之一,也 是药物化学和分子药理学长期以来所共同 探讨的问题。

药物的化学结构与药效

药物的化学结构与药效

第二章药物的化学结构与药效的关系本章以药物的化学结构为主线,重点介绍药物产生药效的决定因素、药物的构效关系、药物的结构与性质,药物的化学结构修饰和新药的开发途径及方法。

第一节药物化学结构的改造药物的化学结构与药效的关系(构效关系)是药物化学和分子药理学长期以来所探讨的问题。

由分子生物学、分子药理学、量子有机化学和受体学说等学科的进一步发展,促使药物构效关系的深入研究和发展一、生物电子等排原理在药物结构改造和构效关系的研究中,把具有外层电子相同的原子和原子团称为电子等排体,在生物领域里表现为生物电子等排,已被广泛用于药物结构的优化研究中。

所以把凡具有相似的物理性质和化学性质,又能产生相似生物活性的基团或分子都称为生物电子等排体。

利用药物基本结构的可变部分,以生物电子等排体的相互替换,对药物进行结构的改造,以提高药物的疗效,降低药物的毒副作用的理论称为药物的生物电子等排原理。

生物电子等排原理中常见的生物电子等排体可分为经典生物电子等排体和非经典生物电子等排体两大类。

(一)经典生物电子等排体1.一价原子和基团如F、Cl、OH、-NH2、-CH3等都有7个外层电子。

2.二价原子和基团如O、S、—NH—、—CH2—等都有6个外层电子。

3.三价原子和基团如—CH=、—N=等都有5个外层电子。

4.四价基团如=C=、=N+=、=P+=等都有四个外层电子。

这些电子等排体常以等价交换形式相互替换。

如普鲁卡因(3-1)酯键上的氧以NH取代,替换成普鲁卡因胺(3-2),二者都有局部麻醉作用和抗心律失常作用,但在作用的强弱和稳定性方面有差别。

(3-2)(3-1)O NHCH 2CH 2N(C 2H 5)2O C H 2N CH 2CH 2N(C 2H 5)2OCH 2N(二)非经典生物电子等排体常见可相互替代的非经典生物电子等排体,如—CH =、—S —、—O —、—NH —、—CH 2—在药物结构中可以通过基团的倒转、极性相似基团的替换、范德华半径相似原子的替换、开链成环和分子相近似等进行电子等排体的相互替换,找到疗效更高,毒性更小的新药。

药物的化学结构与药效的关系共28页文档

药物的化学结构与药效的关系共28页文档
7.胺类 –胺是碱性基团,易与蛋白质或核酸 的酸性基团发生作用,其氮原子上的未共用电 子对又可形成氢键,能与多种受体结合,表现 出多样的生物活性。
三、电子云密度分布对药效的影响
受体和酶都是以蛋白质为主要成分的生物大分子, 蛋白质分子从组成上来讲是由各种氨基酸经肽键结合 而成,在整个蛋白质的链上存在各种极性基团造成电 子云密度分布的不均匀,有些区域的电子云密度高, 形成负电荷或部分负电荷;有些区域的电子云密度低, 即带有正电荷或部分正电荷。如果药物分子中的电子 云密度分布正好和受体或酶的特定位点相适应时,由 于电荷产生的静电引力,有利于药物分子与受体或酶 结合,形成比较稳定的药物-受体或药物-酶的复合物。
和水相中平衡浓度CW之比值。 2.脂水分配系数表示方法 P值 LgP (因P数值较大) 3.数学表达式为:
4.意义
P C0 CW
4.意义: P值表示药物的脂溶性的大小。药物分子结构的
改变对脂水分配系数发生显著的影响;不同类 型的药物对脂水分配系数的要求不同,只有适 合的脂水分配系数,才能充分发挥药物的疗效。
导入新课:
药物的化学结构与药效这之间的关系,简称药 效关系。药物在体内的作用机制以及药物的化 学结构与药效之间的关系,已成为现代新药研 究和设计的基础。
影响药物产生药效的主要因素
影响药物产生药效的主要因素有两个方面: 1、药物到达作用部位的浓度 药物只有到达作用部位并具有一定的浓度,才能产
特异性结构药物:大多数药物属于特异性 结构药物,其生物活性与药物的理化性质 相关外,主要受药物的化学结构与受体相 互作用关系的影响。这类药物的化学结构 稍微改变,就可影响其药效。
第一节药物的理化性质与药效的关系
一、药物的溶解度和分配系数对药效的影响:

药物的化学结构与药效的关系—结构改造与药效的关系(药物化学课件)

药物的化学结构与药效的关系—结构改造与药效的关系(药物化学课件)

3.成酰胺修饰:含氨基药物常常被修饰成酰胺
O H2N
O
O
CH2OCNH2 H2N
O CH2OCNH2
OCH3
H3C
N
O
NH
OCH3
H3C
N
O
NCCH3
丝裂裂霉霉素素
O
乙乙酰酰丝丝裂裂霉素霉素
➢ 作用:成酰胺修饰后,可增加药物的化学稳定性,增加药物的 组织选择性,降低毒副作用,延长药物作用时间。
4.其他修饰
OCOCH3
COOH
阿司匹林
与赖氨酸成盐
OCOCH3 COO H3NCH(CH2)4NH3
COO -
赖氨匹林
水溶性增大,可制 成注射剂,避免胃 肠道副反应
CH3SO2
水溶性差 剂型受限
H NHCOCHCl2 CH2OR
OH H
R=H
甲甲砜砜霉霉素素
R=COCH2NH2 HCl 甲甲砜砜霉霉素素甘甘氨氨酸酯酸盐酯酸盐盐酸盐
成盐
苯海拉明
副作用: 使人困倦
茶苯海明
消除抗组胺 药的副作用
OCOCH3 成酯 COOH
阿司匹林
R
COO
OCOCH3
贝诺酯
NHCOCH3
对胃无刺激作用, 不良反应少,病 人易于耐受
OCOCH3 COOH
阿司匹林
成酰胺
OH
CONH2
水杨酰胺
对胃肠道几 乎无刺激
小结
1.使药物在特定部位发挥作用 2.提高药物的稳定性 3.延长药物作用时间 4.改善药物的吸收 ,提高生物利用度 5.改善药物的溶解性 6.消除药物的不良味觉 7.降低毒副作用
先与甘氨酸成酯,再 与盐酸成盐,水溶性 增大,可制成注射剂

药物的化学结构与治疗效果

药物的化学结构与治疗效果

药物的化学结构与治疗效果药物是指用于预防、诊断、治疗、缓解或控制疾病的物质。

药物的化学结构与治疗效果密切相关,不同的化学结构决定了药物的性质和作用机制,进而影响其治疗效果。

本文将从药物的化学结构与治疗效果的关系、药物分类以及药物研发等方面进行探讨。

一、药物的化学结构与治疗效果的关系药物的化学结构是指药物分子中各个原子的排列方式和连接方式。

药物的化学结构直接决定了药物的性质和作用机制,从而影响其治疗效果。

1. 结构与活性关系药物的活性通常与其分子结构密切相关。

药物分子中的不同基团、官能团以及它们之间的连接方式会影响药物与生物体内靶点的相互作用。

例如,药物分子中的特定官能团可以与靶点结合形成稳定的药物-靶点复合物,从而发挥治疗效果。

因此,通过调整药物的化学结构,可以改变药物与靶点的相互作用,进而调节药物的治疗效果。

2. 结构与药代动力学关系药物的化学结构还会影响药物在体内的吸收、分布、代谢和排泄等药代动力学过程。

药物分子的化学结构特征决定了药物在生物体内的溶解度、脂溶性、离子化程度等性质,进而影响药物的吸收和分布。

此外,药物的化学结构还会影响药物在体内的代谢和排泄速率,从而影响药物的药效持续时间和剂量调整。

二、药物的分类根据药物的化学结构和作用机制,药物可以分为多个不同的类别。

常见的药物分类包括以下几种:1. 化学药物化学药物是指通过化学合成得到的药物,其化学结构和活性成分是已知的。

化学药物通常具有明确的作用机制和治疗效果,如抗生素、抗癌药物等。

2. 生物制剂生物制剂是指通过生物技术手段制备的药物,如基因工程药物、蛋白质药物等。

生物制剂的化学结构复杂多样,其治疗效果通常与生物分子的相互作用有关。

3. 中药中药是指以天然药材为原料,通过炮制、提取等工艺制备的药物。

中药的化学结构复杂多样,其中的有效成分通常是多种多样的化合物混合物。

中药的治疗效果与其中的活性成分和药物组分的相互作用密切相关。

4. 药物类别根据药物的作用机制和治疗效果,药物还可以分为多个类别,如抗生素、抗炎药、抗癌药、心血管药等。

17药物的化学结构与药效的关系

17药物的化学结构与药效的关系

(2) 由带电荷的大分子层所组成的细胞膜, 能排斥或吸附离子,阻碍离子的通过 -----(如组成蛋白质的部分氨基酸可解离 为羟基负离子和铵基正离子)
计算公式
弱酸或弱碱类药物在体液中解离后,离 子与未解离分子的比率由酸(或碱的共轭 酸)的解离常数(pKa值)和体液介质的pH 值决定。
弱酸性药物在胃中的吸收
药物的化学结构与生物活性(包括 药理与毒理作用)之间的关系,简称构 效关系(structure-activity relationships SAR)。 研究药物的构效关系是药物化学的中 心内容之一。
根据药物化学结构对生物活性的影 响程度或药物在体内分子水平上的作用 方式,宏观上将药物分子分为两种类型: 结构非特异性药物 (structurally nonspecific drug) 结构特异性药物 (structurally specific drug)
分布 组织 血浆蛋白 排泄
(一)药物在作用部位的浓度
药物必须以一定的浓度到达作用部位, 才能产生应有的药效 ---该因素与药物的转运(吸收、分布、 排泄)密切相关,如
口服 抗疟药 人体 胃肠道粘膜
血流
红细胞膜
疟原虫体内
疟原虫细胞膜
(二)药物作用的体内靶点
• 药物的作用靶点:是指与药物在体内发生 相互作用的生物大分子,如酶、受体、离 子通道、核酸等。
• • 巴比妥酸的pKa值约为4.12, 在生理pH7.4时,有99%以上呈离子型, 不能通过血脑屏障进入中枢神经系统而起 作用。
O H R O R
5
OH NH N N OH OHH+ R
-O
ON N O-
N H
O
HO
苯巴比妥的生物活性

药物的化学结构与药效的关系—药物的结构因素与药效的关系(药物化学课件)

药物的化学结构与药效的关系—药物的结构因素与药效的关系(药物化学课件)
药物的结构因素与药效关系
1
官能团对 药效的关 系
目录
2
键合特性 对药效的 影响
3
药物的立 体异构对 药效的影 响
官能团对药效的影响
官能团 烷基 酯基 巯基 酰胺基 卤素 羟基 羧基 磺酸基 氨基
对药效的影响 增加脂溶性,降低解离度,增加空间位阻,增加稳定性,延长作用时间 增加脂溶性,影响生物活性,易吸收和转运 增加脂溶性,易吸收,影响代谢 易与生物大分子形成氢键,以与受体结合,显示结构特异性 强吸电子基,影响电荷分布,脂溶性,作用时间以及生物活性 可形成氢键,增加水溶性,影响生物活性,降低毒性 增加水溶性,影响生物活性 增加水溶性,影响生物活性,降低毒性 可形成氢键,增加水溶性,影响生物活性
键合特性对药效的影响
共价键
键能最大
金属螯合物
可形成金 属络合物
氢键 药物与受体最普遍的 结合方式
药物的立体异构对药效的影响
药理活性的差异类型 具有同等药效 具有相同药效但强弱不同 一个具有活性,一个无活性 具有相反的活性 具有不同类型的药理活性
药物举例 抗疟药氯唑 Vc 氯霉素 依托唑啉 索他洛尔
• 旋光异构:只 有手性药物存 在光学异构

药物化学结构与药效的关系

药物化学结构与药效的关系
药物化学结构与药物安全性 的关系
药物的毒副作用
肝毒性
某些药物在代谢过程中会产生有害物质,对 肝脏造成损害。
肾毒性
某些药物可能导致肾脏损伤,影响肾功能。
心脏毒性
某些药物可能对心脏产生不良影响,如心律 失常、心肌缺血等。
免疫毒性
一些药物可能影响免疫系统的正常功能,导 致免疫系统疾病的发生。
药物的抗药性
02
药物化学结构与药物活性的 关系
药物受体结合
药物受体结合
药物通过与靶点受体结合而发挥药效,药物的化学结构决定了其与受 体的结合能力,进而影响药物的亲和力、选择性和作用强度。
亲和力
药物的化学结构与受体结合的紧密程度,决定了药物作用的强弱。亲 和力越高,药物与受体结合越牢固,药效越强。
选择性
药物的化学结构决定其与特定受体的结合能力,选择性越高,药物对 特定靶点的选择性越强,副作用越小。
感谢您的观看
THANKS
临床试验
通过临床试验,观察患者的反应,评估药物的耐受性。
提高药物耐受性的策略
优化药物设计
通过优化药物的化学结构,提高其在体内的代谢 稳定性和分布特性,从而提高药物的耐受性。
联合用药
通过与其他药物联合使用,降低药物的剂量和不 良反应,从而提高药物的耐受性。
基因治疗
通过基因治疗,改变患者的代谢酶的表达,提高 药物的代谢和耐受性。
作用强度
药物的化学结构影响其与受体结合后引发的生理效应大小,作用强度 决定了药物治疗效果。
药物代谢
代谢稳定性
药物的化学结构影响其在体 内的代谢稳定性,代谢稳定 性高的药物在体内作用时间 长,疗效更持久。
代谢途径
药物的化学结构决定了其代 谢途径和代谢产物的性质, 影响药物在体内的分布、活 化及排泄。

药物化学结构与药效的关系

药物化学结构与药效的关系
拮抗药(antagonist)或阻断药(blocker):对受 体有强的亲和力而无内在活性的药物,反而因它 占据受体而妨碍了激动药与受体结合和效应的发 挥。
化学结构相似的药物,能与同一受体结合,引起相似 作用(激动药,拟似药)或相反的作用(拮抗药,阻断药).
例:
乙酰胆碱
(神经递质)
氨甲酰胆碱
(拟胆碱药)
D=药物;R=受体;DR=药物-受体复合物 E=药理效应;
药物-受体复合物的键合方式包括:共价键、 氢键、离子键、离子-偶极和偶极-偶极作用、 范德华力等。
5. 受体激动药与受体拮抗药
根据药物与受体结合后所产生效应的不同,将药 物分为受体激动药与受体拮抗药
激动药(agonist):对受体既有亲和力又有内在 活性的药物,它们与受体结合并激活受体产生效 应。
2.2 受体学说
1. 受体的概念
受体(Receptor,R)是指对生物活性物质具有 识别能力,并选择性与之结合,传递信息,引起 特定效应的生物大分子。
受体存在于细胞内,具有一定坚固性的三维结 构. 各种药物的受体是不相同的, 但是它们可能 都具有:
(1) 一个高度折叠的近似球状的肽链; (2) 有一个空穴,此空穴至少部分被多肽区域 所 包围.
2.1 药物的作用机制:
药物的作用机制(mechanism of drug action)是研究药物如何与机体不 同靶细胞结合,又如何发挥作用的。
一.药物的作用机制简介:
1、理化作用 2、参与或干扰细胞代谢 3、影响酶的活性 4、影响生理物质的合成、释放与转运 5、影响离子通道 6、影响核酸代谢 7、影响免疫机制 8、作用于受体
2.7 药物的立体结构对药效的影响
1.官能团间的距离对药效的影响

药物与药效

药物与药效

药物的化学结构与药效的关系提要药物的化学结构与药效的关系是药物化学研究的重要任务之一。

药物在体内能否产生药效,主要取决于药物作用的动力学时相和药效学时相。

药物动力相的构效关系,简要介绍药物的转运、影响药物到达作用部位的因素等。

药物能否到达作用部位,主要受三个因素的影响,即药物的吸收、分布和与蛋白的结合等。

而药物的分配系数、溶解度及解离度与上述三个因素密切相关。

药效相的构效关系,详细介绍药物-受体的相互作用和立体因素对药效的影响。

药物-受体如何相互作用,如何产生药效?主要取决于药物的结构、电子云密度分布、药物-受体的亲和力(即氢键、离子键、共价键、疏水作用及范德华力等)和药物分子的立体因素。

药物为什么会产生药效?药物的化学结构与药效存在什么样的关系?是人们一直在探索的重要问题。

研究这些从实践中提出的问题,有助于认识药物与机体的作用规律。

生物化学、生物物理学、理论有机化学和药理学等学科的发展,尤其是分子生物学、分子药理学、量子生物化学取得的一系列成果,使得人们对机体的认识从宏观进入到微观的分子水平。

药物对机体的作用,也可能在分子水平上进行探讨。

现在可以比较深入地阐明药物在体内的作用机制以及显示药物的化学结构与药物作用的构效关系。

根据药物的化学结构对生物活性的影响程度,或根据药物在分子水平上的作用方式,可把药物分成两种类型,即非特异性结构药物(Structurally Nonspecific Drug)和特异性结构药物(Structurally Specific Drug)。

前者的药理作用与化学结构类型的关系较少,主要受药物理化性质的影响。

如较典型的全身吸入麻醉药,这类药物的化学结构可有很大的差异,但其麻醉强度与分配系数(Partition Coefficient)成正比。

后者的作用依赖于药物分子特异的化学结构及其按某种特异的空间相互排列。

其活性与化学结构的关系密切,其作用与体内特定的受体的相互作用有关。

药物化学药物的化学结构与药效的关系

药物化学药物的化学结构与药效的关系

CH3
利多卡因
达克罗宁
普鲁卡因
H N
H
δ
CO

CH2CH2
C 2H 5 H
N
C 2H5
V
V
V
D
E
O
C 2H5
N O
CO O
CH2CH2
N C 2H5
无局麻作用
O
O
N .HCl
H2N
普鲁卡因的局麻作用似与分子极化有平行关系:
◆供e基甲氧基、乙氧基、二甲氨基取代-NH2, ED50减小 ◆吸e基硝基取代-NH2,ED50增大 ◆在苯环和碳基间嵌入乙撑基, 共轭效应被阻, ED50增大 ◆在苯环和碳基间嵌入乙烯基, 共轭效应不变, ED50不变
N-甲 酰 溶 肉 瘤 素
H
ClCH2CH2
N
Np O
C lC H 2C H 2
N
HO
尿嘧啶氮芥
ClCH2CH2
O
环磷酰胺
二、结构改造
结构变化带来新的物理性质,也改 变了分子化学反应性,可导致药物在细 胞与组织中分布的改变,进而改变对酶 及受体作用部位的结合,改变对这些部 位的反应速率及排泄方式。
四价
=C= =N+= =P+= =As+= =Sb+=
环 内 等 价 -CH =CH - -S- -O - -NH -
a. 一 价 原 子 或 基 团 的 取 代
H2N
S O2NHCONHC4H9 丁 磺 酰 脲
H3C
S O2NHCONHC4H9 甲 磺 丁 脲
氯磺丁脲
Cl
S O2NHCONHC4H9
延长半衰期
减低毒性
b. 二 价 原 子 或 基 团 的 交 换

药物化学药物的化学结构与药效的关系-1

药物化学药物的化学结构与药效的关系-1

第一章药物的化学结构与药效的关系本章提示:大多数药物的作用依赖于药物分子的化学结构,因此药物的药效和药物的理化性质,如疏水性、酸碱性、药物的解离度等有关;与药物结构的立体构型、空间构型、电子云密度等有关。

此外还与药物与生物分子的作用强弱有关。

第一节影响药物药效的因素和药效团药物从给药到产生药效是一个非常复杂的过程,包括吸收、分布、代谢、组织结合,以及在作用部位产生作用等等。

在这一过程中影响药物产生药效的主要因素有两个方面:1.药物到达作用部位的浓度。

对于静脉注射给药时,由于药物直接进入血液,不存在药物被吸收的问题。

而对于其它途径给药时都有经给药部位吸收进入血液的问题。

进入血液后的药物,随着血液流经各器官或组织,使药物分布于器官或组织之间,这需要药物穿透细胞膜等生物膜,最后到达作用部位。

而药物只有到达作用部位,才能产生药效。

在这一系列的过程中,药物的理化性质产生主要的影响。

此外药物随血液流经肝脏时会产生代谢,改变药物的结构和疗效,流经肾脏时产生排泄,减少了药物在体内的数量。

这些也与药物结构中的取代基的化学反应性有一定的联系。

2.药物与受体的作用。

药物到达作用部位后,与受体形成复合物,产生生理和生化的变化,达到调节机体功能或治疗疾病的目的。

药物与受体的作用一方面依赖于药物特定的化学结构,以及该结构与受体的空间互补性,另一方面还取决于药物和受体的结合方式,如化学的方式通过共价键结合形成不可逆复合物,或以物理的方式,通过离子键、氢键、离子偶极、范德华力和疏水性等结合形成可逆的复合物。

这二个影响因素都与药物的化学结构有密切的关系,是药物结构-药效关系(构-效关系)研究的主要内容。

但对于药物的作用方式来讲,又有两种不同类型。

一类是药物的药效作用主要受药物的理化性质影响而与药物的化学结构类型关系较少,如全身麻醉药,尽管这些药物的化学结构类型有多种,但其麻醉作用与药物的脂水分配系数有关,这类药物称为结构非特异性药物;另一类药物的作用依赖于药物分子特异的化学结构,该化学结构与受体相互作用后才能产生影响,因此化学结构的变化会直接影响其药效,这类药物称为结构特异性药物。

药物的化学结构与药效的关系—药物的基本结构与药效的关系(药物化学课件)

药物的化学结构与药效的关系—药物的基本结构与药效的关系(药物化学课件)

药理效应
药物和受体相互作用示意图
(二)药物基本结构对药效的影响
药物的基本结构
药物构效关系研究中,将 具有相同药理作用药物的 化学结构中相同或相似的 部分,称为相应类型药物 的基本结构或药效结构。
4
1
NH
SO2NH
磺胺类药物的基本结构
在药物的结构改造和新药设计中,基本 结构不能改变,只能在非基本结构不分 加以变化,以保证其衍生物既保持原有 药物的作用,又具有各自的特点。
课堂互动 根据你所学过的知识,写出两类药物的基本结构。
ROCHN
R1 H S
N O6-APACH来自 CH3 COOHR2
R3
6
Y
5
B
R4 7 X8 R5
O
4 COOH
3
A N1 2 R1
喹诺酮类抗菌药基本结构
药物的构效关系概述
药物的化学结 构与生物活性 之间的关系, 简称为构效关 系。

结构特异性药物和 结构非特异性药物

影响药效的主要因素
一、结构特异性药物和结构非特异性药物
1、结构特异性药物:大多数药物属于结构特异性药物
特点:生物活性与化学结构密切相关,其作用于体内 特定受体的相互作用有关,药物的化学结构稍加改变, 药物分子与受体的相互作用和相互匹配就会发生变化, 导致药效学性质发生改变。
钠通道阻滞剂 钙通道阻滞剂 钾通道阻滞剂 钾通道开放剂
药物名称
缬沙坦、依普沙坦 西咪替丁、雷尼替丁
吗啡、可待因
卡托普利、赖诺普利 洛伐他汀、氟伐他汀 吲哚美辛、双氯芬酸钠
氨力农、米力农
利多卡因、妥卡尼 尼莫地平、硝苯地平
胺碘酮、索他洛尔 米诺地尔、吡那地尔
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

药物化学结构与药效的关系
药物化学结构与药效之间存在密切的关系。

药物化学结构决定了药物
的物理化学性质、代谢途径和药效特点等。

药物的化学结构特点直接影响
了药物在体内的吸收、分布、代谢和排泄等方面的药代动力学过程,进而
影响药物在生物体内产生的药效。

首先,药物化学结构影响药物的吸收。

药物分子的溶解度、离子性以
及脂溶性等因素可以影响药物在胃肠道内的解离、溶解和吸收。

药物分子
的大小、电荷等特点也决定了药物是否能够穿透细胞膜,进而进入细胞内
发挥药效。

其次,药物化学结构影响药物在体内的分布。

药物分子的极性和非极
性部分、药物分子的离子性以及蛋白结合性等特点决定了药物在体内组织
和细胞内的分布情况。

药物分子的极性可影响药物通过血脑屏障或胎盘屏
障的能力,从而影响药物对中枢神经系统或胎儿的影响程度。

此外,药物化学结构还影响药物的代谢途径和代谢产物。

药物分子含
有特定的官能团和化学键,决定了药物在体内的代谢途径,如氧化、还原、羟基化、脱甲基化等。

药物的代谢产物可能具有不同的活性和药理效应,
药物化学结构对药物代谢过程的选择性和速度也有一定影响。

最后,药物化学结构决定药物的药效特点。

药物分子的化学结构与药
物与靶点之间的相互作用密切相关。

药物分子与靶点之间的相互作用方式
包括非共价作用和共价作用。

药物分子的大小、形状、电荷分布等特点决
定了药物与靶点之间的空间匹配程度,进而影响药物与靶点的亲和力和选
择性。

药物与靶点的结合对药物的治疗效果起到关键作用,药物化学结构
对药物的药效和副作用具有重要影响。

总之,药物化学结构与药效之间存在紧密的关系。

药物化学结构可以影响药物的吸收、分布、代谢和药效特点,对药物的药效产生直接影响。

因此,在药物研究与开发过程中,药物化学结构设计是重要的策略之一,通过合理设计药物分子的化学结构,可以调控药物的药代动力学过程和药效特点,以达到更好的药物治疗效果。

相关文档
最新文档