基于ZEMAX的工程光学课程设计

合集下载

应用光学(工程光学)课程设计指导书(ZEMAX)

应用光学(工程光学)课程设计指导书(ZEMAX)
D=10mm; f ' =50mm; 2ω = 10° ;工作波段:0.486~0.656 μm 。
第一步骤:打开并熟悉 ZEMAX 软件
通过鼠标左键双击桌面的图标快捷键 次打开后的界面如图 1 所示,它是软件的主窗口。
标题框
打开 ZEMAX-EE 软件。首
菜单框
编辑窗口
工具框
图 1 主窗口界面 如图 1 所示,标题为“Lens Data Editor”的窗口为透镜数据编辑窗口。该 窗口可用来编辑透镜组的很多参数,如曲面面型(Type)、曲率半径(Radius)、透 镜厚度(Thickness)、玻璃材料(Glass)、径向半径(Semi-Diameter)等参数。
图 27 第一次优化后的结构
图 28 第一次优化后的 FFT MTF 从上面的两个图中可知,结构趋于合理化,FFT MTF 值得到大大提高,有的
择波长(段)并点击
图标确定。退出时,需点击“ok”,如图 10 所示。
图 9 工作波长编辑窗口 图 10 选择工作波长下拉菜单
四、设定评价函数和 EFFL 有效焦距值
按下快捷键 F6 或通过“Editors\Merit Function”路径打开“Merit Function Editor:”窗口,通过“Tools\Default Merit Function”路径打开“Default Merit Function” 默认评价函数对话框窗口如图 12 所示。
图 24 优化前的结构
图 25 优化前的 FFT MTF
选中“Semi-Diameter”列中的第一个“15.000000”,当出现
黑色背
景时,按一下快捷键“ctrl+Z”,则该单元格数值由系统自动改变。用同样的方法 对下面的两个数也各操作一次。

工程光学课程设计zemax

工程光学课程设计zemax

工程光学课程设计 zemax一、教学目标本课程的目标是让学生掌握工程光学的基本原理和应用技能,能够使用Zemax等光学设计软件进行简单的光学系统设计和分析。

知识目标包括了解光的传播、反射、折射等基本特性,掌握透镜、镜片等光学元件的设计和计算方法;技能目标包括能够运用Zemax进行光学系统的设计和仿真,分析光学系统的性能和优化方法;情感态度价值观目标包括培养学生的创新意识、团队合作能力和解决问题的能力。

二、教学内容教学内容主要包括光的传播、反射、折射等基本特性,透镜、镜片等光学元件的设计和计算方法,以及Zemax等光学设计软件的使用技巧。

具体的教学大纲如下:1.光的传播和反射:介绍光的基本特性,包括光的传播速度、传播方向等,以及光的反射定律和反射镜的设计方法。

2.光的折射和透镜:介绍光的折射定律和透镜的分类,包括凸透镜、凹透镜等,以及透镜的设计和计算方法。

3.光学系统设计:介绍光学系统的基本构成和设计方法,包括透镜组的设计、光学系统的性能分析等。

4.Zemax使用技巧:介绍Zemax的基本操作和功能,包括光学系统的建立、参数设置、仿真分析和优化方法。

三、教学方法为了激发学生的学习兴趣和主动性,将采用多种教学方法相结合的方式进行教学。

包括:1.讲授法:通过讲解光的传播、反射、折射等基本原理和透镜、镜片等光学元件的设计方法,使学生掌握基本概念和理论知识。

2.案例分析法:通过分析实际的光学系统设计案例,使学生能够将理论知识应用到实际问题中,培养学生的实际操作能力。

3.实验法:通过实验室的实践操作,使学生能够亲手搭建光学系统,观察光学现象,加深对光学原理的理解和掌握。

四、教学资源为了支持教学内容和教学方法的实施,将选择和准备以下教学资源:1.教材:《工程光学》教材,用于学生学习和复习基本理论知识。

2.参考书:《光学设计手册》等参考书籍,供学生深入学习和参考。

3.多媒体资料:制作相关的教学PPT和视频资料,用于课堂讲解和复习。

zemax课程设计南邮

zemax课程设计南邮

zemax课程设计南邮一、教学目标本课程的教学目标是使学生掌握Zemax的基本原理和操作方法,能够运用Zemax进行简单的光学系统设计和分析。

具体目标如下:1.掌握Zemax的基本概念和术语。

2.了解Zemax的光学系统设计和分析原理。

3.熟悉Zemax的用户界面和操作流程。

4.能够建立和编辑光学系统模型。

5.能够进行光学系统性能分析。

6.能够优化光学系统设计。

情感态度价值观目标:1.培养学生的创新意识和问题解决能力。

2.增强学生对光学设计和分析的兴趣和热情。

二、教学内容本课程的教学内容主要包括Zemax的基本原理、操作方法和应用实例。

具体内容包括以下几个方面:1.Zemax基本概念和术语:光的传播、光学元件、光路等。

2.Zemax用户界面和操作流程:菜单栏、工具栏、视图窗口等。

3.光学系统建模:建立光学元件、调整光学参数等。

4.光学系统性能分析:像差分析、灵敏度分析、公差分析等。

5.光学系统设计优化:目标函数、优化算法、设计结果等。

三、教学方法为了达到本课程的教学目标,将采用多种教学方法进行教学,包括:1.讲授法:讲解Zemax的基本原理和操作方法。

2.案例分析法:分析实际的光学系统设计案例,引导学生运用Zemax进行分析和优化。

3.实验法:学生进行实验操作,亲身体验光学系统设计和分析的过程。

4.讨论法:学生进行小组讨论,分享学习心得和经验,促进学生的互动和合作。

四、教学资源为了支持本课程的教学内容和教学方法的实施,将准备以下教学资源:1.教材:选用《Zemax教程》作为主教材,系统介绍Zemax的基本原理和操作方法。

2.参考书:提供《光学设计手册》等参考书籍,供学生深入研究光学设计的相关知识。

3.多媒体资料:制作Zemax的操作视频教程,帮助学生更好地理解和掌握Zemax的使用方法。

4.实验设备:准备光学实验器材和相关设备,供学生进行实验操作和实践。

通过以上教学资源的支持,将能够丰富学生的学习体验,提高学生的学习效果。

zemax光学设计案例

zemax光学设计案例

zemax光学设计案例
Zemax光学设计案例。

在光学设计领域,Zemax是一个非常优秀的光学设计软件,它能够帮助工程师
们进行光学系统的设计、优化和分析。

下面,我们将介绍一个使用Zemax进行光
学设计的案例,以便更好地了解Zemax软件的应用和优势。

在这个案例中,我们需要设计一个具有特定光学性能的摄像头透镜系统。

首先,我们需要明确设计要求和约束条件,然后利用Zemax软件进行光学系统的建模和
优化。

在建模过程中,我们需要考虑透镜的曲率、厚度、材料等参数,同时还需要考虑系统的光路布局、光学元件的位置和角度等因素。

利用Zemax的光学设计工具,我们可以对透镜系统进行快速而准确的建模和分析。

通过Zemax的光学优化算法,我们可以对系统的光学性能进行优化,以满足
设计要求。

同时,Zemax还提供了丰富的光学分析工具,可以对系统的像差、光学传递函数、热像模拟等进行全面的分析和评估。

在这个案例中,我们利用Zemax软件成功设计出了一个具有优秀光学性能的摄像头透镜系统。

通过对系统的建模、优化和分析,我们实现了对系统光学性能的精确控制和调节,最终达到了设计要求。

这充分展示了Zemax软件在光学设计领域
的强大功能和广泛应用价值。

总的来说,Zemax是一款非常优秀的光学设计软件,它能够帮助工程师们实现
复杂光学系统的设计、优化和分析。

通过这个案例,我们可以更好地了解Zemax
软件的应用和优势,相信在未来的光学设计工作中,Zemax将会发挥越来越重要的作用,为光学工程领域的发展做出更大的贡献。

zemax课程设计实验报告

zemax课程设计实验报告

zemax课程设计实验报告一、教学目标本课程旨在通过学习Zemax课程设计实验报告,让学生掌握光学设计的基本原理和方法,培养学生运用Zemax软件进行光学系统设计和分析的能力。

1.掌握光学基本概念和原理,如透镜、镜片、光路等。

2.熟悉Zemax软件的操作界面和功能。

3.了解光学系统设计的基本步骤和方法。

4.能运用Zemax软件进行简单光学系统的设计和分析。

5.能根据设计要求,优化光学系统性能。

6.能撰写简单的Zemax课程设计实验报告。

情感态度价值观目标:1.培养学生对光学学科的兴趣和好奇心。

2.培养学生团队合作精神和自主学习能力。

3.培养学生关注实际问题,运用所学知识解决实际问题的意识。

二、教学内容本课程的教学内容主要包括光学基本概念、Zemax软件操作、光学系统设计方法和实验报告撰写。

1.光学基本概念:包括透镜、镜片、光路等基本知识。

2.Zemax软件操作:学习Zemax软件的操作界面、功能和基本操作。

3.光学系统设计方法:学习光学系统设计的基本步骤和方法,如系统需求分析、光学元件选型、光学设计等。

4.实验报告撰写:学习如何撰写Zemax课程设计实验报告,包括实验目的、原理、过程、结果和结论等。

三、教学方法本课程采用讲授法、讨论法、案例分析法和实验法等多种教学方法,以激发学生的学习兴趣和主动性。

1.讲授法:用于讲解光学基本概念、原理和Zemax软件操作方法。

2.讨论法:用于探讨光学系统设计方法和实验报告撰写技巧。

3.案例分析法:分析实际案例,让学生了解光学系统设计的应用和实际意义。

4.实验法:让学生动手实践,培养实际操作能力和解决实际问题的能力。

四、教学资源本课程所需教学资源包括教材、参考书、多媒体资料和实验设备。

1.教材:选用《Zemax课程设计实验报告》教材,用于指导学生学习光学基本概念和Zemax软件操作。

2.参考书:提供相关光学设计和Zemax软件使用的参考书籍,丰富学生的知识储备。

ZEMAX光学设计报告

ZEMAX光学设计报告

ZEMAX光学设计报告一、引言ZEMAX是一种广泛应用于光学设计和仿真的软件工具,它提供了一系列功能强大的工具和算法,可以帮助光学工程师进行光学系统的设计、优化和分析。

本报告将介绍使用ZEMAX进行的光学设计,并详细阐述设计的目的、方法和结果。

二、设计目的本次光学设计的目的是设计一种能够产生高质量成像的透镜系统。

通过使用ZEMAX软件进行光学设计和优化,我们希望能够在保持高分辨率和低畸变的同时,尽可能减小像差和光能损失,实现最佳成像效果。

三、设计方法1.初始设计:根据设计要求和限制条件,我们首先进行了初步的系统设计。

选取了适当的光学元件,如凸透镜、凹透镜、平面镜等,通过摆放和调整位置来搭建初始的光学系统。

2. Ray Tracing:使用ZEMAX的Ray Tracing功能,我们可以模拟光线在光学系统中的传播和反射。

通过调整折射率、半径和曲率等参数,我们可以对光线进行控制和优化,实现所需的成像效果。

3. Aberration Analysis:使用ZEMAX的Aberration Analysis功能,我们可以对系统的像差进行分析。

通过查看球差、色差、像散、畸变等参数,我们可以对光学系统进行调整和优化,以提高成像的质量和准确性。

4. Optimization:在初步设计和光线追迹分析的基础上,我们使用ZEMAX的优化功能来调整光学系统的各个参数,以达到最佳的成像效果。

通过设置目标函数和约束条件,优化算法可以在设计空间中最优解,帮助我们找到最佳的设计方案。

5. Iterative Refinements:根据优化结果,我们进行了反复的调整和优化,以进一步改善光学系统的成像效果。

通过多次迭代,我们逐渐接近最优解,达到了设计要求。

四、设计结果通过使用ZEMAX进行光学设计和优化,我们成功地设计出了一种可以产生高质量成像的透镜系统。

经过多次优化和迭代,我们达到了如下设计目标:1.高分辨率:经过系统优化,我们成功降低了球差和色差等像差,提高了光学系统的分辨率。

光学设计课程设计zemax

光学设计课程设计zemax

光学设计课程设计zemax一、教学目标本课程旨在通过学习Zemax软件的使用,让学生掌握光学设计的基本原理和方法,培养学生运用光学知识解决实际问题的能力。

具体目标如下:1.知识目标:学生能够理解光学设计的基本概念,掌握Zemax软件的操作方法和技巧,了解光学系统的设计流程。

2.技能目标:学生能够熟练运用Zemax软件进行光学系统的设计和分析,具备独立完成光学设计项目的能力。

3.情感态度价值观目标:培养学生对光学设计的兴趣和热情,提高学生创新意识和团队合作精神,使学生在解决实际问题时,能够秉持科学的态度和方法。

二、教学内容本课程的教学内容主要包括光学设计的基本原理、Zemax软件的操作方法、光学系统的设计流程及案例分析。

具体安排如下:1.光学设计基本原理:介绍光学系统的基本概念、光学元件的特性及光学设计的数学模型。

2.Zemax软件操作方法:讲解Zemax软件的界面布局、操作技巧及常用功能模块。

3.光学系统设计流程:阐述光学系统设计的步骤、方法及注意事项。

4.案例分析:分析实际光学设计项目,让学生通过实践加深对光学设计原理和方法的理解。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行授课,包括:1.讲授法:讲解光学设计的基本原理、Zemax软件的操作方法和光学系统设计流程。

2.案例分析法:分析实际光学设计案例,让学生通过案例学习光学设计的技巧和方法。

3.实验法:让学生动手操作Zemax软件进行光学设计实践,提高学生的实际操作能力。

4.讨论法:学生进行小组讨论,培养学生的团队协作能力和创新思维。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:《光学设计》及相关参考书籍。

2.多媒体资料:制作精美的PPT课件,为学生提供直观的学习材料。

3.实验设备:提供Zemax软件的安装环境及相应的硬件设备,让学生进行实际操作。

4.在线资源:为学生提供丰富的在线学习资源,如视频教程、论坛交流等,方便学生自主学习和交流。

(完整版)光学设计zemax

(完整版)光学设计zemax
➢ Tighten 2x 将现有各项Operands 的Min 及Max 值缩 小一倍
➢ Sort by Surface 将现有各项Operands 以 Surface number 排序(递增)
➢ Sort by Type 将现有各项Operands 以其类型排序 (递增)
➢ Save 将现有的Tolerance Data 存入一个文件
差) ➢TSTX,TSTY(光学零件表面允许倾斜偏心公
差)
2014.9
光学系统设计
公差操作数(续)
➢TIRR(球差的一半与象散的一半表示的表 面不规则度,单位是光圈单位)
➢TIND(d光折射率允许偏差) ➢TABB(阿贝常数允许偏差)
2014.9
光学系统设计
➢上述设定完成之后,即可进行公差分析 ➢Tools---Tolerancing
2014.9
光学系统设计
➢每个镜片加工公司都有自己的样板库,如 “changchun.tpd”是长春理工某附属工厂 (可见光镜片)、“beijing.tpd”是北京蓝斯 泰克光电(红外镜片)的样板库等。
➢将这些tpd文件拷入“C:\ZEMAX\Testplat”目 录即可进行相应的比对
2014.9
2014.9
光学系统设计
2014.9
光学系统设计
➢Fast Tolerance Mode:
• 此项仅对近轴后焦偏差视为补偿器 (Compensator) 时有效。即在 Tolerances Data Editor 中存在一行有关后焦的补 偿器设定。在Default Tolerance 中选中 Use Focus Comp 就可以生成此补偿器的设定。 此模式比一般模式(没有选中此项)的运算模 式快50 倍。

光学工程课程设计——照相物镜的ZEMAX设计

光学工程课程设计——照相物镜的ZEMAX设计

光学工程课程设计班级:T1003-3班学号:20100030305姓名:李金鑫一.光学设计软件ZEMAX 的使用设计要求:1. 镜头镜片数小于10片2. 图像传感器(CCD)指标像素:1200×960,像元:3.8 3.8m m μμ? 。

3. 物镜定焦,焦距28.0mm ,畸变 < 3.5%焦距280.2f mm mm '=±,相对孔径/1/3.5D f '=轴上点100/lp mm 的MTF 值在0.3以上,轴外0.707视场100/lp mm 的MTF 值在0.15以上, 渐晕:中心相对照度 > 65 %在可见光波段设计(取d 、F 、C 三种色光,d 为主波长)。

4.计算过程:成像面积:(1200*3.8)*(960*3.8)=4.56*3.648mm 2 对角线长度:22648.356.4+=5.84mm像高:5.84/2=2.92mm 无限远入射光线的半视场角为: 96.5)arctan(''==fy w CCD 的特征频率为:1/(2*0.038)=131.6 lp/mm 有效焦距长度:'f =28mm 由于相对孔径'13.5D f =,所以8D mm =。

软件设计结果:1.透镜结构参数,视场、孔径等光学特性参数:GENERAL LENS DATA:Surfaces : 12Stop : 6System Aperture : Entrance Pupil Diameter = 8Glass Catalogs : SCHOTTRay Aiming : OffApodization : Uniform, factor = 0.00000E+000Effective Focal Length : 28.0008(in air at system temperature and pressure) Effective Focal Length : 28.0008(in image space)Back Focal Length : 17.49979Total Track : 40.26Image Space F/# : 3.499992Paraxial Working F/# : 3.499992Working F/# : 3.498718Image Space NA : 0.1414217Object Space NA : 4e-010Stop Radius : 2.446367Paraxial Image Height : 2.92315Paraxial Magnification : 0Entrance Pupil Diameter : 8Entrance Pupil Position : 17.94124Exit Pupil Diameter : 9.552524Exit Pupil Position : -33.42397Field Type : Angle in degrees Maximum Field : 5.96 Primary Wave : 0.5875618Lens Units : MillimetersAngular Magnification : 0.837475Fields: 4Field Type: Angle in degrees# X-Value Y-Value Weight1 0.000000 0.000000 1.0000002 0.000000 3.440000 1.0000003 0.000000 4.860000 1.0000004 0.000000 5.960000 1.000000Vignetting Factors# VDX VDY VCX VCY VAN1 0.000000 0.000000 0.000000 0.000000 0.0000002 0.000000 0.000000 0.000000 0.000000 0.0000003 0.000000 0.000000 0.000000 0.000000 0.0000004 0.000000 0.000000 0.000000 0.000000 0.000000 Wavelengths: 3Units: Microns# Value Weight1 0.486133 1.0000002 0.587562 1.0000003 0.656273 1.000000 Surface 6 Data Summary Title:Date : WED JAN 9 2012 Lens units: 毫米Thickness : 3.71 Diameter : 4.93475 Edge Thickness:Y Edge Thick: 3.0744 X Edge Thick: 3.0744 Index of Refraction: Glass:# Wavelength Index1 0.48613 1.00000000002 0.58756 1.00000000003 0.65627 1.0000000000Surface Powers (as situated):Surf 5 : -0.096255Surf 6 : 0Power 5 6 : -0.096255EFL 5 6 : -10.389F/# 5 6 : -1.6343Surface Powers (in air):Surf 5: 0Surf 6: 0Power 5 6 : 0EFL 5 6 : 0Shape Factor: 1SURFACE DATA SUMMARY:Surf Type Radius Thickness Glass Diameter Conic OBJ STANDARD 无限远无限远 0 01 STANDARD 17.412 2.21 SSK4A 11.54063 02 STANDARD 44.806 0.54 10.92813 03 STANDARD 10.871 5.05 N-SK16 10.21084 04 STANDARD 无限远 0.87 F14 7.583943 05 STANDARD 6.248 4.05 6.356952 0 STO STANDARD 无限远 3.71 4.9347557 STANDARD -6.576 0.84 F14 5.641057 08 STANDARD 无限远 2.78 N-SK16 6.386702 09 STANDARD -8.484 0.54 7.365621 010 STANDARD 40.196 2.18 N-SK16 7.733431 011 STANDARD -22.428 17.49 7.845499 0 IMA STANDARD 无限远 5.836295 0EDGE THICKNESS DATA:Surf Edge1 1.5604792 1.4790143 3.7765684 1.7388935 3.181107STO 3.0744047 1.4755968 1.9389819 1.56743310 1.64786811 17.835717IMA 0.000000INDEX OF REFRACTION DATA:Surf Glass Temp Pres 0.486133 0.587562 0.6562730 20.00 1.00 1.00000000 1.00000000 1.000000001 SSK4A 20.00 1.00 1.62546752 1.61764975 1.614266422 20.00 1.00 1.00000000 1.00000000 1.000000003 N-SK16 20.00 1.00 1.62755635 1.62040997 1.617271664 F14 20.00 1.00 1.61249349 1.60140055 1.596763175 20.00 1.00 1.00000000 1.00000000 1.000000006 20.00 1.00 1.00000000 1.00000000 1.000000007 F14 20.00 1.00 1.61249349 1.60140055 1.596763178 N-SK16 20.00 1.00 1.62755635 1.62040997 1.617271669 20.00 1.00 1.00000000 1.00000000 1.0000000010 N-SK16 20.00 1.00 1.62755635 1.62040997 1.6172716611 20.00 1.00 1.00000000 1.00000000 1.0000000012 20.00 1.00 1.00000000 1.00000000 1.00000000 THERMAL COEFFICIENT OF EXPANSION DATA:Surf Glass TCE *10E-60 0.000000001 SSK4A 6.100000002 0.000000003 N-SK16 6.300000004 F14 7.900000005 0.000000006 0.000000007 F14 7.900000008 N-SK16 6.300000009 0.0000000010 N-SK16 6.3000000011 0.0000000012 0.00000000F/# DATA:F/# calculations consider vignetting factors and ignore surface apertures.Wavelength: 0.486133 0.587562 0.656273 # Field Tan Sag Tan Sag Tan Sag1 0.0000 deg: 3.4999 3.4999 3.4987 3.4987 3.5003 3.50032 3.4400 deg: 3.5059 3.5034 3.5047 3.5022 3.5063 3.50383 4.8600 deg: 3.5115 3.5068 3.5105 3.5056 3.5121 3.50714 5.9600 deg: 3.5169 3.5102 3.5160 3.5090 3.5176 3.5105 CARDINAL POINTS:Object space positions are measured with respect to surface 1.Image space positions are measured with respect to the image surface.The index in both the object space and image space is considered.Object Space Image SpaceW = 0.486133Focal Length: -28.009159 28.009159Focal Planes: -5.396361 0.018674Principal Planes: 22.612798 -27.990486Anti-Principal Planes : -33.405520 28.027833Nodal Planes: 22.612798 -27.990486Anti-Nodal Planes: -33.405520 28.027833W = 0.587562 (Primary)Focal Length: -28.000842 28.000876Focal Planes: -5.508010 0.009789Principal Planes: 22.491928 -27.990148Anti-Principal Planes : -33.507947 28.009727Nodal Planes: 22.491928 -27.990148Anti-Nodal Planes: -33.507947 28.009727W = 0.656273Focal Length: -28.011708 28.011708Focal Planes: -5.572853 0.025235Principal Planes: 22.438855 -27.986473Anti-Principal Planes : -33.584560 28.036943Nodal Planes: 22.438855 -27.986473Anti-Nodal Planes: -33.584560 28.0369432.像质指标实际值目标值'= 28f mm28.0008畸变:0.28% ﹤3.5% MTF:100lp/mm 70.29% >30%(轴上) 100lp/mm 66.4% >15%(轴外)3.公差数据分析结果:Analysis of TolerancesUnits are 毫米.Paraxial Focus compensation is on. In this mode, allcompensators are ignored, except paraxial back focus change.WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. WARNING: Boundary constraints on compensators are ignored whenusing fast mode or user-defined merit functions.Criteria : RMS Spot Radius in 毫米Mode : SensitivitiesSampling : 3Nominal Criteria : 0.00090019Test Wavelength : 0.6328Fields: Y Symmetric Angle in degrees# X-Field Y-Field Weight VDX VDY VCX VCY1 0.000E+000 0.000E+000 2.000E+000 0.000 0.000 0.000 0.0002 0.000E+000 4.172E+000 1.000E+000 0.000 0.000 0.000 0.0003 0.000E+000 -4.172E+000 1.000E+000 0.000 0.000 0.000 0.0004 0.000E+000 5.960E+000 1.000E+000 0.000 0.000 0.000 0.0005 0.000E+000 -5.960E+000 1.000E+000 0.000 0.000 0.000 0.000 Worst offenders:Type Value Criteria ChangeTIRY 7 -0.200000000 0.020355900 0.019455709TIRY 7 0.200000000 0.020355900 0.019455709TSDY 7 -0.200000000 0.017442564 0.016542373TSDY 7 0.200000000 0.017442564 0.016542373TIRX 7 -0.200000000 0.017321649 0.016421459TIRX 7 0.200000000 0.017321649 0.016421459TIRY 9 -0.200000000 0.016494937 0.015594747TIRY 9 0.200000000 0.016494937 0.015594747TIRX 9 -0.200000000 0.015405686 0.014505496TIRX 9 0.200000000 0.015405686 0.014505496Estimated Performance Changes based upon Root-Sum-Square method: Nominal RMS Spot Radius : 0.000900Estimated change : 0.055470Estimated RMS Spot Radius: 0.056370Compensator Statistics:Change in back focus:Minimum : -1.006356 Maximum : 1.112564 Mean : 0.000982 Standard Deviation : 0.183198Monte Carlo Analysis:Number of trials: 20Initial Statistics: Normal DistributionTrial Criteria Change1 0.010973013 0.0100728222 0.055717068 0.0548168783 0.018735173 0.0178349824 0.014194669 0.0132944785 0.037745158 0.0368449676 0.019405575 0.0185053847 0.032397994 0.0314978048 0.007928807 0.0070286179 0.035414796 0.03451460610 0.028473194 0.02757300411 0.016118938 0.01521874812 0.013851098 0.01295090713 0.043797393 0.04289720314 0.018751552 0.01785136215 0.027123362 0.02622317216 0.026825230 0.02592504017 0.028410049 0.02750985818 0.024295827 0.02339563719 0.022359906 0.02145971520 0.024840539 0.023940348Nominal 0.000900191Best 0.007928807 Trial 8 Worst 0.055717068 Trial 2 Mean 0.025367967 Std Dev 0.011350176Compensator Statistics:Change in back focus:Minimum : -1.962392Maximum : 1.332779Mean : -0.175784Standard Deviation : 0.90742990% <= 0.03774515850% <= 0.02429582710% <= 0.010973013End of Run.Tolerance Data SummaryRadius and Thickness data are in 毫米.Power and Irregularity are in double pass fringes at 0.6328 祄Only spherical and astigmatism irregularity tolerances are listedin the "SURFACE CENTERED TOLERANCES";Zernike irregularity tolerances are listed under "OTHER TOLERANCES".Surface Total Indicator Runout (TIR) are in 毫米.Index and Abbe tolerances are dimensionlessSurface and Element Decenters are in 毫米.Surface and Element Tilts are in degrees.SURFACE CENTERED TOLERANCES:Surf Radius Tol Min Tol Max Power Irreg Thickness Tol Min Tol Max1 17.412 -0.2 0.2 - 0.2 2.21 -0.2 0.22 44.806 -0.2 0.2 - 0.2 0.54 -0.2 0.23 10.871 -0.2 0.2 - 0.2 5.05 -0.2 0.24 Infinity - - 1 0.2 0.87 -0.2 0.25 6.248 -0.2 0.2 - 0.2 4.05 -0.2 0.26 Infinity - - - - 3.71 -0.2 0.27 -6.576 -0.2 0.2 - 0.2 0.84 -0.2 0.28 Infinity - - 1 0.2 2.78 -0.2 0.29 -8.484 -0.2 0.2 - 0.2 0.54 -0.2 0.210 40.196 -0.2 0.2 - 0.2 2.18 -0.2 0.211-22.428 -0.2 0.2 - 0.2 17.49 - -12Infinity - - - - 0 - -SURFACE DECENTER/TILT TOLERANCES:Surf Decenter X Decenter Y Tilt X Tilt Y TIR X TIR Y1 0.2 0.2 - - 0.2 0.22 0.2 0.2 - - 0.2 0.23 0.2 0.2 - - 0.2 0.24 0.2 0.2 - - 0.2 0.25 0.2 0.2 - - 0.2 0.26 - - - - - -7 0.2 0.2 - - 0.2 0.28 0.2 0.2 - - 0.2 0.29 0.2 0.2 - - 0.2 0.210 0.2 0.2 - - 0.2 0.211 0.2 0.2 - - 0.2 0.212 - - - - - - GLASS TOLERANCES:Surf Glass Index Tol Abbe Tol1 SSK4A 0.001 0.551423 N-SK16 0.001 0.603244 F14 0.001 0.382327 F14 0.001 0.382328 N-SK16 0.001 0.6032410 N-SK16 0.001 0.60324ELEMENT TOLERANCES:Ele# Srf1 Srf2 Decenter X Decenter Y Tilt X Tilt Y1 12 0.2 0.2 0.2 0.22 3 5 0.2 0.2 0.2 0.23 7 9 0.2 0.2 0.2 0.24 10 11 0.2 0.2 0.2 0.2二.简易望远镜的组装1.原理图2零件清单零件清单物镜零件名称数量名称数量物镜 2 物镜推杆 2 物镜座 2 卡环 2 物镜压圈 2 物镜盖2目镜零件右目镜座 1 左目镜座 1 右目镜内筒 1 左目镜内筒 1 目镜盖 2 场栏 2 隔圈 2 挡圈 2 视度调节圈 1 目镜套 1 目镜 2棱镜零件上棱镜 2 下棱镜 2 棱镜座 2 压盖 2 隔片 2整体零件镜筒 2 滚珠 4 导向杆 2 小拖板 1 大拖板 1 调焦螺钉 1 调焦螺母 1 铰链螺钉 23.装配3.1目镜的组装(1)装配目镜1.将胶合目镜放在下面,凸面朝上,再放隔圈,将单片目镜放在隔圈上,凸面向下,保证凸面对凸面。

zemax光学课程设计

zemax光学课程设计

zemax光学课程设计一、教学目标本课程旨在通过学习Zemax光学软件的使用,让学生掌握光学设计的基本原理和方法,培养学生解决实际光学问题的能力。

具体的教学目标如下:1.知识目标:使学生了解Zemax光学软件的基本功能和操作方法,掌握光学系统的设计原理,包括光路追迹、像质评价等。

2.技能目标:培养学生运用Zemax软件进行光学设计和分析的能力,能独立完成简单的光学系统设计,并进行像质评估。

3.情感态度价值观目标:培养学生对光学设计的兴趣,增强解决实际问题的信心,培养团队合作精神和创新意识。

二、教学内容本课程的教学内容主要包括Zemax光学软件的基本操作、光学系统设计原理及方法。

具体的教学大纲如下:1.第一章:Zemax软件概述,介绍软件的功能、界面及基本操作。

2.第二章:光学基础,讲解光学基本概念、定律和像差理论。

3.第三章:光学系统设计原理,阐述光学系统设计的方法和步骤。

4.第四章:光路追迹与像质评价,介绍光路追迹的概念和方法,分析像质评价指标。

5.第五章:Zemax案例实践,通过实际案例使学生掌握光学系统设计的方法。

三、教学方法为提高学生的学习兴趣和主动性,本课程将采用多种教学方法,包括:1.讲授法:讲解光学基本概念、定律和设计原理。

2.案例分析法:分析实际案例,使学生掌握光学系统设计的方法。

3.实验法:引导学生进行Zemax软件操作,培养实际设计能力。

4.讨论法:学生讨论,激发创新思维和团队合作精神。

四、教学资源为实现教学目标,我们将准备以下教学资源:1.教材:《Zemax光学设计手册》2.参考书:光学基本原理相关书籍3.多媒体资料:Zemax软件操作视频教程4.实验设备:计算机、投影仪等通过以上教学资源的支持,为学生提供丰富的学习体验,提高教学质量。

五、教学评估为全面、客观地评估学生在Zemax光学课程中的学习成果,我们将采用以下评估方式:1.平时表现:评估学生在课堂上的参与度、提问与回答问题的积极性等,占比20%。

zemax光学课程设计

zemax光学课程设计

zemax光学课程设计一、课程目标知识目标:1. 让学生掌握Zemax软件的基本操作和界面功能,理解光学设计的基本原理。

2. 使学生了解光学系统中的像差类型及其影响,掌握像差校正的方法。

3. 帮助学生理解光学元件的优化和评价方法,提高光学系统设计能力。

技能目标:1. 培养学生运用Zemax软件进行光学系统建模、分析和优化的能力。

2. 培养学生运用光学知识解决实际问题的能力,提高创新意识和实践操作技能。

情感态度价值观目标:1. 培养学生对光学科学的兴趣和热情,激发探索精神。

2. 培养学生严谨的科学态度,注重团队合作,提高沟通与协作能力。

3. 培养学生关注光学技术在实际应用中的价值,增强社会责任感和使命感。

课程性质:本课程为选修课,旨在帮助学生掌握光学设计的基本方法,提高实践操作能力。

学生特点:学生具备一定的光学基础知识,对光学设计感兴趣,但缺乏实际操作经验。

教学要求:结合学生特点,注重理论与实践相结合,充分调动学生的主观能动性,提高光学设计能力。

将课程目标分解为具体的学习成果,以便进行教学设计和评估。

二、教学内容本课程教学内容分为五个部分,确保学生系统地学习和掌握光学设计相关知识。

第一部分:Zemax软件入门1. Zemax软件界面及基本操作。

2. 光学系统建模与元件添加。

第二部分:光学系统基本原理1. 光的传播原理及成像规律。

2. 像差类型及其产生原因。

第三部分:像差校正与优化1. 像差校正方法及策略。

2. 光学元件优化技巧。

第四部分:光学元件评价与分析1. 光学元件性能指标。

2. 光学系统性能评价方法。

第五部分:实践操作与案例分析1. 实际光学系统建模、分析和优化。

2. 案例分析,总结光学设计经验。

教学内容安排与进度:1. 第一至第四部分,每部分分配2个课时,共计8个课时。

2. 第五部分,分配4个课时,进行实践操作与案例分析。

教材章节及内容:1. 第一章:光学设计概述,涵盖第一部分内容。

2. 第二章:光学系统基本原理,涵盖第二部分内容。

ZEMAX现代光学课程设计

ZEMAX现代光学课程设计

ZEMAX现代光学课程设计一、教学目标通过学习ZEMAX现代光学课程,学生将掌握光学设计的基本原理和方法,能够运用ZEMAX软件进行光学系统设计和分析。

具体目标如下:1.知识目标:•了解光学基本概念和原理,如光线传播、反射、折射等。

•掌握光学系统的组成和功能,如透镜、镜片、光栅等。

•学习ZEMAX软件的基本操作和功能,如建立光学模型、设置参数、分析结果等。

2.技能目标:•能够运用ZEMAX软件进行光学系统设计和优化。

•能够分析光学系统的性能指标,如焦距、成像质量、光斑等。

•能够进行光学系统的故障排查和解决方案设计。

3.情感态度价值观目标:•培养对光学科技的兴趣和热情,提高科学思维和创新能力。

•培养团队合作和沟通能力,提高解决问题的综合能力。

二、教学内容本课程的教学内容主要包括光学基本原理、光学系统和ZEMAX软件操作。

具体安排如下:1.光学基本原理:•光线传播和反射定律。

•折射定律和透镜的焦距。

•光栅和衍射原理。

2.光学系统:•透镜和镜片的设计和应用。

•光学镜头和光路的分析。

•光学系统的性能评估和优化。

3.ZEMAX软件操作:•ZEMAX软件的基本操作和界面熟悉。

•建立光学模型和设置参数的方法。

•分析光学系统性能和优化方案的技巧。

三、教学方法为了提高学生的学习兴趣和主动性,将采用多种教学方法相结合的方式进行教学:1.讲授法:通过讲解光学基本原理和概念,让学生掌握光学基础知识。

2.讨论法:通过小组讨论和互动,培养学生的思考和表达能力。

3.案例分析法:通过分析实际光学设计案例,培养学生解决实际问题的能力。

4.实验法:通过实验操作和数据分析,让学生亲手体验光学现象和设计过程。

四、教学资源为了支持教学内容和教学方法的实施,将准备以下教学资源:1.教材:《现代光学设计》一书,提供光学基本原理和设计方法的学习。

2.参考书:提供光学科技的最新发展和应用案例。

3.多媒体资料:通过PPT、视频等形式,生动展示光学现象和设计过程。

zemax光学课程设计

zemax光学课程设计

zemax光学课程设计一、教学目标本课程旨在通过学习Zemax光学设计软件,使学生掌握光学系统设计的基本原理和方法,培养学生运用光学知识解决实际问题的能力。

具体目标如下:1.知识目标:使学生了解光学基本概念、光学元件的性质及光学系统的设计方法;掌握Zemax软件的基本操作和功能,能够独立进行光学系统的设计和分析。

2.技能目标:培养学生运用光学知识进行光学系统设计的能力,提高学生运用Zemax软件进行光学设计和分析的技能。

3.情感态度价值观目标:培养学生对光学学科的兴趣,增强学生自主学习、合作交流、勇于创新的精神。

二、教学内容本课程的教学内容主要包括光学基本原理、光学元件、光学系统设计方法和Zemax软件操作。

具体安排如下:1.光学基本原理:光的传播、反射、折射、衍射等基本现象,光学系统的成像原理。

2.光学元件:透镜、反射镜、光栅等常见光学元件的性质和应用。

3.光学系统设计方法:几何光学设计方法、光学传递函数、像差校正等。

4.Zemax软件操作:基本操作、光学系统设计流程、光学分析功能等。

三、教学方法为提高教学效果,本课程将采用多种教学方法相结合的方式,包括:1.讲授法:系统讲解光学基本原理、光学元件性质、光学系统设计方法和Zemax软件操作。

2.案例分析法:分析典型光学系统设计案例,使学生掌握光学系统设计的方法和技巧。

3.实验法:安排光学实验,让学生亲自动手操作,提高学生运用Zemax软件进行光学设计和分析的能力。

4.讨论法:学生进行小组讨论,分享学习心得,培养学生的合作交流精神。

四、教学资源为支持本课程的教学,我们将准备以下教学资源:1.教材:《Zemax光学设计教程》及相关辅助资料。

2.参考书:光学基本原理、光学系统设计等领域的相关书籍。

3.多媒体资料:光学实验视频、案例分析PPT等。

4.实验设备:计算机、Zemax软件许可证、光学实验器材等。

五、教学评估为全面、客观地评估学生的学习成果,本课程将采用以下评估方式:1.平时表现:考察学生在课堂上的参与程度、提问回答等情况,占总评的20%。

zemax课程设计

zemax课程设计

zemax 课程设计一、教学目标本课程旨在通过学习Zemax软件的使用,使学生掌握光学设计的基本原理和方法,培养学生运用Zemax进行光学系统设计和分析的能力。

1.掌握Zemax软件的基本操作和功能。

2.了解光学设计的基本原理和概念。

3.熟悉光学系统的性能评价指标。

4.能够独立完成光学系统的设计和分析。

5.能够运用Zemax进行光学系统的优化和调整。

6.能够对光学系统的性能进行评价和分析。

情感态度价值观目标:1.培养学生的创新意识和实践能力。

2.培养学生团队合作和沟通交流的能力。

3.培养学生对光学科技的兴趣和热情。

二、教学内容本课程的教学内容主要包括Zemax软件的基本操作、光学设计的基本原理、光学系统的性能评价等。

具体的教学大纲如下:1.Zemax软件的基本操作:包括软件的安装和卸载、菜单栏和工具栏的使用、文件的基本操作等。

2.光学设计的基本原理:包括透镜的焦距和曲率、光线的传播和反射、像的形成和放大等。

3.光学系统的性能评价:包括像差、分辨率、对比度等指标的定义和计算方法。

4.光学系统的设计和分析:包括光学系统的初步设计、优化和调整等步骤。

5.实例讲解和练习:通过实际案例的讲解和练习,使学生更好地理解和掌握光学设计的原理和方法。

三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法相结合的方式进行教学。

1.讲授法:通过教师的讲解,使学生了解光学设计的原理和方法。

2.案例分析法:通过实际案例的分析和讨论,使学生更好地理解和掌握光学设计的原理和方法。

3.实验法:通过实验操作和数据分析,使学生亲身体验光学设计的实践过程。

4.讨论法:通过小组讨论和交流,培养学生的团队合作和沟通交流的能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:选用《Zemax光学设计教程》作为主要教材,为学生提供光学设计的基本知识和方法。

2.参考书:提供《光学设计手册》等参考书籍,供学生进一步深入学习和参考。

伽利略望远镜zemax课程设计

伽利略望远镜zemax课程设计

伽利略望远镜zemax课程设计一、教学目标本课程旨在通过学习伽利略望远镜的相关知识,使学生掌握望远镜的基本原理、结构和设计方法。

在知识目标方面,学生需要了解伽利略望远镜的历史背景、光学原理、光学元件及其作用。

在技能目标方面,学生能够运用光学设计软件Zemax进行简单的望远镜设计,分析并优化光学系统性能。

在情感态度价值观目标方面,学生将培养对科学探索的兴趣,增强创新意识和实践能力。

二、教学内容本课程的教学内容主要包括四个方面:望远镜的基本原理、望远镜的光学设计、望远镜的制造与测试、望远镜的应用。

其中,望远镜的基本原理包括伽利略望远镜的历史背景、光学原理等;望远镜的光学设计主要介绍光学元件及其作用,如透镜、镜片等;望远镜的制造与测试涉及望远镜的组装、调试及性能评估;望远镜的应用则主要包括天文观测、地理观测等。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式。

如讲授法、讨论法、案例分析法和实验法等。

在讲授法中,教师将系统地讲解望远镜的基本原理、光学设计等知识;在讨论法中,学生将针对实际问题进行探讨,培养解决问题的能力;在案例分析法中,教师将引导学生分析典型望远镜设计案例,提高学生的实践能力;在实验法中,学生将动手组装、调试望远镜,培养实际操作能力。

四、教学资源为了支持教学内容的实施,我们将准备以下教学资源:教材《伽利略望远镜光学设计》、参考书《光学原理与应用》、多媒体资料(包括视频、图片等)、实验设备(如望远镜、光学仪器等)。

这些资源将有助于丰富学生的学习体验,提高学习效果。

五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面、客观、公正地评价学生的学习成果。

平时表现主要考察学生的课堂参与度、提问回答等情况,占总评的20%;作业分为练习题和设计项目,占总评的30%;考试包括期中考试和期末考试,占总评的50%。

此外,还将设置优秀作业展示、设计竞赛等活动,鼓励学生展示自己的成果。

zemax课程设计感受

zemax课程设计感受

zemax课程设计感受一、教学目标本课程的教学目标是使学生掌握Zemax的基本原理和操作方法,能够运用Zemax进行光学系统的设计和分析。

具体分为以下三个部分:1.知识目标:学生需要了解Zemax软件的发展历程、基本功能和应用领域;掌握Zemax的基本操作,如建立光学系统、添加元件、调整参数等。

2.技能目标:学生能够独立完成光学系统的设计和分析,掌握Zemax软件的各种工具和功能,如光斑图、MTF图、光学传递函数等。

3.情感态度价值观目标:培养学生对光学设计的兴趣和热情,提高学生的问题解决能力和创新意识,使学生认识到光学技术在现代科技领域的重要地位。

二、教学内容本课程的教学内容主要包括以下几个部分:1.Zemax软件的基本原理和功能介绍:介绍Zemax软件的发展历程、应用领域和基本功能,使学生对Zemax有一个整体的认识。

2.Zemax软件的基本操作:详细讲解Zemax软件的界面布局、操作方式,以及如何建立光学系统、添加元件、调整参数等。

3.光学系统设计方法:介绍光学系统设计的基本方法,如几何光学、波动光学等,并通过实例讲解如何运用Zemax进行光学系统的设计和分析。

4.Zemax软件的高级功能:讲解Zemax软件的高级功能,如光斑图、MTF图、光学传递函数等,以及如何利用这些功能进行光学性能分析。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式,包括:1.讲授法:讲解Zemax软件的基本原理、操作方法和光学系统设计技巧,使学生掌握光学设计的基本知识。

2.案例分析法:通过分析实际案例,使学生了解光学系统设计的具体过程,提高学生的问题解决能力。

3.实验法:让学生亲自动手操作Zemax软件,进行光学系统的设计和分析,培养学生的实践能力。

4.讨论法:学生进行小组讨论,分享学习心得和设计经验,激发学生的创新意识。

四、教学资源为了保证教学的顺利进行,我们将准备以下教学资源:1.教材:《Zemax光学设计手册》等相关教材,为学生提供理论知识的支持。

zemax的课程设计

zemax的课程设计

zemax的课程设计一、课程目标知识目标:1. 学生能理解Zemax软件的基本原理和光学设计概念。

2. 学生能够掌握Zemax软件的操作流程,包括建立模型、设置参数、运行仿真和结果分析。

3. 学生能够运用Zemax软件解决实际的光学问题,如透镜设计、光学系统优化等。

技能目标:1. 学生能够独立操作Zemax软件,完成基本的光学设计任务。

2. 学生能够运用Zemax软件进行光学系统的性能分析和优化。

3. 学生通过实践操作,培养解决复杂光学问题的能力。

情感态度价值观目标:1. 学生通过学习Zemax软件,培养对光学工程的兴趣和热情。

2. 学生在团队协作中,学会分享和交流,培养合作精神。

3. 学生通过光学设计实践,认识到科学技术在现实生活中的应用,增强创新意识和实践能力。

课程性质:本课程为实践性较强的学科,结合光学原理和计算机辅助设计,培养学生实际操作能力。

学生特点:学生处于高年级阶段,具备一定的光学基础和计算机操作能力。

教学要求:教师需结合学生特点,采用案例教学和任务驱动教学法,引导学生主动参与实践,培养其光学设计和分析能力。

同时,注重培养学生的团队合作意识和创新思维。

通过本课程的学习,使学生在光学设计和分析方面达到具体的学习成果,为未来的学术研究或工作实践打下坚实基础。

二、教学内容1. Zemax软件概述- 软件基本原理和功能介绍- 光学设计基本流程和概念2. Zemax软件操作基础- 软件界面及工具栏功能介绍- 建立光学系统模型的方法- 设置光学系统参数和求解器配置3. 光学系统设计实例- 透镜设计原理及方法- 光学系统优化技巧- 实际案例分析与讨论4. 光学系统性能分析- 像差分析及控制方法- 光学系统MTF曲线绘制与分析- 光学系统杂散光分析5. Zemax软件综合应用- 非序列光学系统设计- 光学系统与机械结构的协同设计- 光学系统性能评估与优化教学内容安排与进度:第一周:Zemax软件概述及光学设计基本流程第二周:Zemax软件操作基础及建立光学系统模型第三周:透镜设计实例与光学系统优化第四周:光学系统性能分析及杂散光分析第五周:非序列光学系统设计及综合应用教材章节关联:本教学内容与教材中光学设计、光学系统性能分析等相关章节紧密关联,结合实际案例,帮助学生更好地理解和掌握光学设计原理和方法。

zemax专业综合课程设计

zemax专业综合课程设计

zemax专业综合课程设计一、课程目标知识目标:1. 理解Zemax软件的基本原理和操作流程,掌握光学设计的核心概念;2. 学习并掌握Zemax中光学系统建模、优化及分析的基本方法;3. 了解光学设计在实际工程中的应用,掌握相关行业标准和规范。

技能目标:1. 能够运用Zemax软件进行光学系统设计,具备解决实际光学问题的能力;2. 熟练操作Zemax软件,完成光学系统建模、优化、分析等任务;3. 能够运用所学知识,对光学系统进行创新设计,提高系统性能。

情感态度价值观目标:1. 培养学生对光学设计的兴趣,激发其探究精神和创新意识;2. 培养学生严谨的科学态度,使其认识到光学设计在实际应用中的重要性;3. 培养团队合作精神,提高沟通与协作能力。

本课程针对高年级学生,结合学科特点和学生需求,注重理论与实践相结合。

课程旨在通过Zemax软件的学习,使学生在掌握光学设计基本知识的同时,能够运用所学技能解决实际问题,培养具备创新意识和实际操作能力的优秀光学设计人才。

课程目标明确、具体,便于教学设计和评估。

二、教学内容1. Zemax软件概述:介绍Zemax软件的发展历程、功能特点及其在光学设计领域的应用;2. 光学设计基本原理:讲解光学系统设计的基础知识,如几何光学原理、光学元件及其性能参数;3. Zemax操作基础:学习软件界面、菜单、工具栏等基本操作,熟悉Zemax 环境;4. 光学系统建模:学习如何建立光学系统模型,包括光学元件的添加、位置调整、参数设置等;5. 光学系统优化:学习优化方法,掌握如何对光学系统进行优化以提高性能;6. 光学系统分析:学习分析光学系统性能的方法,如MTF、点扩散函数等;7. 实际工程应用案例:分析典型光学设计案例,了解行业标准和规范;8. 创新设计实践:结合所学知识,进行光学系统创新设计,提高学生实际操作能力。

教学内容参考教材相关章节,结合课程目标进行合理安排。

教学大纲包括以上内容,按照以下进度进行:1-2周:Zemax软件概述及光学设计基本原理;3-4周:Zemax操作基础及光学系统建模;5-6周:光学系统优化;7-8周:光学系统分析;9-10周:实际工程应用案例及创新设计实践。

zemax_课程设计报告书

zemax_课程设计报告书

目录1第一章引言 ............................................................................................2第二章镜头结构的设计指标 ..................................................................2.1相关规格的确定 (2)2.2镜头总像素与COMS像素的匹配 (2)2.3透镜材料及结构的选择 (2)2.4材料的厚度 (3)2.5 设计指标 (3)第三章 zemax软件 ...................................................................................33.1 zemax软件简介 (3)3.1.1软件特色 (4)3.2zemax软件界面介绍 (4)3.2.1 Lens Data Editor(LDE) (4)3.2.2 Aperture(光圈) (5)3.2.3 Wavelength Data(波长设定) (5)3.3 zemax软件功能简介 (6)第四章 500万像素手机镜头设计 (6)4.1初始结构选择 (6)4.1.1 500万像素手机镜头4P专利结构简介 (7)4.2设计结果 (7)4.2.1光路图 (7)4.2.2详细参数 (8)第五章结果分析,误差调试 ..................................................................95.1误差调试 (9)5.2优化后的分析 (10)5.2.1场曲和畸变 (10)5.2.2球差 (10)5.2.3.色差 (11)5.2.4 RMS Radius(均方根半径) (12)5.2.5 MTF(光学调制传递函数) (13)5.2.6 本设计达到指标 (14)第六章结论 ............................................................................................1516参考文献 ..................................................................................................第一章引言从手机开始配备拍照功能以来,手机摄像头的像素以很快的速度上涨,从最初的10万像素到30万像素、100万像素、200万像素、300万像素、500万像素,再到现在的800万像素,1000万像素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以下为本次课程设计作业报告的格式和范例,要求同学们结合自己所做工作进行改动,不得摘抄范例!在相机镜头作业完成后附录上入门教学中所有例子的report graphic 6 (见zemax>reports menu),在完成以上作业情况下,感兴趣的同学可做《光设ZEMAX_实验讲义》中的范例和本次课程设计中相机镜头的公差分析,可进一步实质性的学习光学设计,学习结果也可附录在报告后面。

《Zemax软件设计教程_1》和《光学设计实例-黄惠杰》,是上光和长光的培训课件,同学们可做进一步了解光学设计的理论知识和设计思路。

有什么问题,欢迎同学们提问!
工程光学课程设计
名称:工程光学课程设计
院系:电子科学与应用物理学院
班级:应用物理10- 学号:
学生姓名:
指导教师:
2013 年 07 月日
设计过程
2.1初始结构的选择
照相物镜属于大视场大孔径系统, 因此需要校正的像差也大大增加, 结构也比较复杂, 所以照相物镜设计的初始结构一般都不采用初级像差求解的方法来确定, 而是根据要求从手册、资料或专利文献中找出一个和设计要求比较接近的系统作为原始系统。

在选择初始结构时, 不必一定找到和要求相近的焦距, 一般在相对孔径和视场角达到要求时, 我们就可以将此初始结构进行整体缩放得到要求的焦距值。

原设计要求:1、焦距:f’=12mm;
2、相对孔径D/f’不小于1/2.8;
3、图像传感器为1/2.5英寸的CCD,成像面大小为4.29mm×5.76mm;
4、后工作距>6mm
5、在可见光波段设计(取d、F、C三种色光,d为主波长);
6、成像质量,MTF 轴上>40% @100 lp/mm,轴外0.707 >35%@100 lp/mm。

7、最大畸变<1%
照相物镜的视场角和有效焦距决定了摄入底片或图
像传感器的空间范围, 镜头所成的半像高y 可用公式y = -
f tanw计算, 其中f 为有效焦距, 2w 为视场角。

半像高y
应稍大于图像传感器CCD 或CMO S 的有效成像面对角
线半径, 防止CMO S 装调偏离光轴而形成暗角。

经过简单计算:y’=sqrt(4.29^2+5.76^2)/2≈3.6mm,w=atan(y’/f)≈16.66°
视场角2w=33.32°。

在光学技术手册查询后选定初始结构为后置光阑的三片物镜(如图1),初始参数为:焦距分f’=42.12mm;相对孔径1:2.8;视场角2w=54°,其余参数见表1-2。

表1-2
2.2输入参数和缩放
将参数输入zemax:其中第六面设为光阑面,厚度设为marginal ray height,移动光标到STO光阑面(中间一个面)的“无穷(Infinity)”之上,按INSERT键。

这将会在那一行插入一个新的面,并将STO光阑面往下移。

新的面被标为第2面。

再按按INSERT键两次。

移动光标到IMA像平面,按INSERT键两次。

在LDE曲率半径(Radius)列,顺序输入表1-2中的镜片焦距(注意OBJ面不做任何操作);在镜片厚度(Thickness)列顺序输入表1-2中的镜片厚度;在第七个面厚度处单击右键,选择面型为Marginal Ray Height。

在镜片类型(Class)列输入镜片参数,方法是:在表中点右键对话框Solve Type选中Model,Index nd中输入n 值Abbe Vd中输入v值。

结果如下图2-1在system-general-aperture中输入相对孔径值2.8,在system-wavelength中输入所选波段,根据要求选d光为主波长。

然后在tools-make focus 中该改焦距为12mm进行缩放。

图1:后置光阑三片物镜原始结构
输入初始参数:
设置相对孔径值和波段:
输入焦距12mm进行缩放:
缩放后得到我们所设计的焦距f’=12mm的初始参数(如图2所示),现在开始定义视场,我们根据
之前所得像高y’=3.6mm,依次乘以0,0.3,0.5,0.707,1得到所选孔径光束的Y-field,即0,1.08,1.8,2.5452,输入到system-field中,类型选择真值高度。

图2 到这里,初始结构及其参数已经完成。

2.3在ZEMAX中进行优化
利用ZEMAX得到初始结构的M TF 曲线(如图8 所示)可看出成像质量很差, 因此需要校正像差。

图8
该结构可以用作优化变量的的数据有:6个曲率半径,2个空气间隔,3个玻璃厚度。

首先使用Default Merit Function建立缺省评价函数进行优化,选择Editors-Merit Function,在第一行中先输入EFFL,目标值设为12,权重设为1。

在输入SPHA,在Target中输入0.4,在Weight中输入1。

第二个BLNK改为MTFT并Enter,在Freq中输入100,在Target中输入0.04,在Weight中输入1。

同理输入MTFA和MTFS(如图9所示)。

再选择Tools-Default Merit Function,设置玻璃厚度以及空气间隔,start设为2,再选择OK,建立缺省评价函数。

注:EFFL:Effective focal length的缩写,指定波长号的有效焦距。

SPHA:指球差,如果Surf=0,则指整个系统的球差总和。

MTF:指子午调制传递函数。

图9
然后在Analysis-Aberration Coefficients-Seidel Coefficients中查看,找出对赛得和数影响大的面,将这些面的曲率半径设为变量,优先优化。

发现第一面和光阑面影响较大,优先优化。

先将STO面的类型改为Even Asphere,并将此行的4th term、6th term、8th term设为变量。

将1、6面曲率半径设为变量,选择快捷选项Opt,然后进行优化,优化后取消变量,将剩余面的曲率半径设为变量,再次优化,完毕后取
消变量。

再将透镜间隔和玻璃厚度先后进行优化。

到这一步后发现已经基本符合设计要求,再根据2D图适当调整曲率半径和厚度,每次调整后再次优化实时关注MTF图的曲线变化,最后使各个参数都在可接受范围之内。

2.4优化结果
结论与思考
本文配套一款1/2.5英寸的CCD传感器进行照相物镜中的远距物镜的设计。

采用1片非球面塑料, 3片球面玻璃透镜, 在ZEMAX 中使用合适的优化函数和权重对像差进行校正, 逐步消除了基本像差、高级像差, 并进行了像差平衡, 获得了实际焦距11.953mm照相镜头, 各个市场畸变控制在1%以内,M TF 曲线也比较理想, 镜头总长为14.3602 mm。

该镜头不仅体积小, 结构紧凑, 而且像质较好。

在此次设计中,我们发现光阑面使用非球面能够很好的平衡像差,同时我们只进行了对玻璃厚度和曲率的简单优化,查阅相关资料后设想如果将第一面的透镜换为鼓形透镜,第二面换为弯月透镜或换成折射率更高的玻璃,还可以进一步做出深度优化,使之获得更好的表现。

相关文档
最新文档