工程光学基础教程
工程光学基础-第三章
第一节 平面镜成像
P
三
、
双
I1
平
面
的 O2 I2
成 像
I2
A
I1
O1
q
P 由O1O2M 外角定理: 2I2 2I1 2 2(I1 I2 )
由O1O2N 外角定理:
I1 I2 q q (I1 I2 )
q
N
β=2θ
q
M
β≤90
P
第一节 平面镜成像
双平面镜的应用(两次反射棱镜)
两次反射棱镜就是双平面镜
作用:与屋脊垂直的坐标单独改变一次方向,相当于增加一次反射
第三节 反射棱镜
屋脊面的成像特性:
位于主截面内的物体,经屋 脊面后,其像与无屋脊面时所成 像一样,垂直于主截面的物体, 其像与无屋脊面时所成像相反 。增加一次反射,使系统总的 反射次数由奇数变成偶数,从 而达到物像相似的要求。
第三节 反射棱镜
2、二次反射棱镜
第三节 反射棱镜
1)半五角棱镜(α=22.5,β=45) 2)30直角棱镜(α=30,β=60) 以上两种多用于显微镜的转像系统
第三节 反射棱镜
——相当于夹角为 α的双平面镜系统,成一致像,入射光线与出射光线
夹角为2α x 光轴转1800
z y
z′ y′ x′
(a)等腰直角棱镜
(b)五角棱镜
(一)基本定义 第三节 反射棱镜
工作面 入射面、出射面、反射面
棱
工作面的交线
主截面 垂直于棱的截面 (光轴截面:主截面与光轴重合)
棱镜光轴:光学系统的光轴在 棱镜中的部分,如ABC
C
A
B
光轴长度:棱镜光轴的几何长度; 如AB+BC
工程光学基础4演示模板.ppt
像物镜的某个空气间隔中,如图4-6所示。 (2)在照像光学系统中,感光底片的框子就
是视场光阑。
(3)孔径光阑的形状一般为圆形,而视场光 阑的形状为圆形或矩形等。
0.0
11
对转向棱镜、一个分划板和一组目镜构成的, 如图4-7所示。有关光学数据如下:
片框 B1B2 的大小确定的。超出底片框的范
围,光线被遮拦,底片就不能感光。
0.0
5
或者是限制成像范围的光孔或框,都统称为 “光阑”。
限制进入光学系统的成像光束口径的光阑 称为“孔径光阑” ,例如照像系统中的可 变光阑 A 就是孔径光阑。
限制成像范围的光阑称为“视场光阑” ,
例如照像系统中的底片框B1B2 就是视场光
16
(2)
30
31.5> D棱>16
16
(3) 31.6
31.5> D棱>16
16
0.0
D目 23.5 23.7 24.0
22
由表可见,物镜的通光口径无论在何种
光阑位置情况下都是最大的;出瞳距lz '相
差不大,且能满足预定要求。
所以选择使物镜口径最小的光阑位置是 适宜的,故取第二种情况将物境框作为系 统孔径光阑。
(4)可放分划板的望远系统中,分划板 框是望远系统的视场光阑。
0.0
26
与分析
由前面两节的分析知道,光学系统中的光束 选择一定要具体对象具体分析。这里再以显微 镜系统为例,介绍一些光束选择的考虑与分析。
0.0
27
一、简单显微镜系统中的光束限制:
中成像光束的口径往往由物镜框限制,物镜 框是孔径光阑。位于目镜物方焦面上的圆孔 光阑或分划板框限制了系统的成像范围,成 为系统的视场光阑,如下图所示。
工程光学基础教程习题答案完整
第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。
2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。
3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学基础教程第一章
工程光学
添加标题
添加标题
添加标题
添加标题
添加标题
添加标题
上篇 几何光学与光学设计
第一节 几何光学的基本定律和原理 一、光波与光线 1、光的本质 光和人类的生产、生活密不可分; 人类对光的研究分为两个方面:光的本性,以此来研究各种光学现象,称为物理光学;光的传播规律和传播现象称为几何光学。 1666年牛顿提出的“微粒说” 1678年惠更斯的“波动说” 1871年麦克斯韦的电磁场提出后,光的电磁波 1905年爱因斯坦提出了“光子”说 现代物理学认为光具有波、粒二象性:既有波动性,又有粒子性。
光的直线传播定律
光线的独立传播定律
在各向同性的均匀介质中,光线按直线传播。例子:影子的形成、日食、月蚀等。
不同的光线以不同的方向通过某点时,彼此互不影响,在空间的这点上,其效果是通过这点的几条光线的作用的叠加。 利用这一规律,使得对光线传播情况的研究大为简化。
3.光的折射定律和反射定律
如图所示,入射光线AO入射到两种介质的分界面PQ上,在O点发生折反射,其中,反射光线为OB,折射光线为OC, 为界面上O点处的法线。入射光线、反射光线和折射光线与法线的夹角 、 和 分别称为入射角、反射角和折射角,它们均以锐角度量,由光线转向法线,顺时针方向旋转形成的角度为正,反之为负。
光程为极大、常值的实例
研究一个凹球面镜和一个椭球面: 凹球面镜反射是一个光程为极大值的例子:APB>AQB; 椭球面是光程为常数的例子
人们在研究光的各种传播现象的基础上,设计和制造了各种各样的光学仪器为生产和生活服务,如显微镜、望远镜。 所有的光学仪器中都是应用不同形状的曲面和不同介质做各种光学 零件——反射镜、透镜和棱镜等,如图所示。
《工程光学》课件
光学信号处理原理
光学信号处理概述 简要介绍了光学信号处理的基本 概念和原理,包括光波的干涉、 衍射、傅里叶变换等方面的知识 。
全息术与光学信息处理 简要介绍了全息术的基本原理和 应用,以及光学信息处理技术的 发展和应用前景。
干涉测量技术 详细介绍了干涉测量技术的基本 原理和应用,包括干涉仪的结构 和工作原理、干涉图样的分析和 解释等方面的知识。
的发展提供了新的机遇和挑战。
工程光学在各领域的应用
能源领域
太阳能利用、激光焊接、激光切割等 。
通信领域
光纤通信、光网络技术等。
环境监测领域
光谱分析、大气污染监测等。
生物医学领域
医学成像、光谱诊断、激光医疗等。
CHAPTER 02
工程光学基础知识
光的本质与传播
光的本质
光是一种电磁波,具有波粒二象性。 其电磁场振动方向与传播方向垂直, 表现出横波的特征。
显微镜
介绍了显微镜的基本原理和结构,包括透射光显微镜和反 射光显微镜等类型,以及显微镜的性能参数和选择方法。
激光器
简要介绍了激光器的基本原理和结构,包括气体激光器、 固体激光器、光纤激光器等类型,以及激光器的性能参数 和应用领域。
光学系统设计原理
光学系统设计基础
介绍了光学系统设计的基本概念和原则, 包括光学材料、光学镀膜、光学元件加工
光学信息处理实验
研究光学信息处理技术,如傅里叶 变换、光学图像处理等,掌握光学 信息处理系统的基本构成和操作方 法。
光学系统设计与制造实践
光学系统设计实践
通过实践了解光学系统设计的基本原理和方法,掌握光学设 计软件的使用技巧,熟悉光学元件的选择和加工工艺。
光学制造工艺实践
工程光学基础教程第一章
工程光学基础教程第一章工程光学是一门研究光学现象和光学器件在工程领域中应用的学科。
它涵盖了光学基础知识、光学器件和系统设计、光学测量和测试、光学传感和图像处理等方面的内容。
本文将以工程光学基础教程的第一章为主题,讨论工程光学的基本概念和原理。
第一章介绍了光的物理性质和光的波动理论。
光是一种电磁波,具有波动性和粒子性的特点。
光波动的基本特性包括波长、频率、振幅和相位。
光的波动可以通过实验来验证,例如干涉、衍射和折射等实验。
干涉是指两束光波相遇时发生的干涉现象。
干涉可以分为同相干和非相干干涉两种情况。
同相干干涉是指两束光波的相位差为整数倍的情况下发生的干涉。
非相干干涉是指两束光波的相位差不是整数倍的情况下发生的干涉。
衍射是指光通过一个小孔或经过不规则边缘时发生的衍射现象。
衍射可以用赫兹普龙原理来描述,即波的传播过程中每个波前都可以看作是一系列波源发出的球面波。
折射是指光从一种介质传播到另一种介质时发生的折射现象。
光的折射是由介质的折射率引起的,折射率是光在介质中传播速度与真空中传播速度的比值。
光的粒子性可以通过光的能量传播和光的吸收来解释。
光的能量在空间中传播时遵循能量守恒定律和动量守恒定律。
光的吸收是指光被物质吸收并转换为其他形式的能量,例如热能。
本章还介绍了光的能量和功率的计算方法。
光的能量可以通过光的强度和面积来计算,光的功率可以通过光的能量和时间来计算。
光的强度可以用辐射亮度和辐射通量来描述。
此外,本章还介绍了坐标系和光的传播方向。
坐标系是研究物体位置和光传播方向的基本工具。
光的传播方向可以用传播矢量和波矢量来描述,传播矢量指示光的传播方向,波矢量指示光的传播速度和方向。
综上所述,工程光学基础教程的第一章主要介绍了光的物理性质和光的波动理论。
通过学习这些基本概念和原理,我们可以更好地理解和应用工程光学知识。
工程光学是一门应用广泛的学科,对于光学器件和系统的设计、光学测量和测试、光学传感和图像处理等方面都有很大的意义和价值。
工程光学基础教程(第2版)课件10-4
1、定域面的位置和定域 深度
1)定域面的位置由=0确定 2)光源与楔板位置不同时的定域面位置
S
S
S
P
P
a)
b)
P c)
图11-16 用扩展光源时楔行平板产生的定域条纹 a)定域面在板上方 b) 定域面在板内 c) 定域面在板下方
10
3)楔板的角度越小,定域面离板越远,当平 行时,定域面在无限远处;
n2 n2 sin2 1
2
4
Since the interval between the two surfaces may be an actual plate or film, or it may be a gap between plates. We have four possibilities, as the following.
第四节 平板的双光束干涉
分光性质:振幅分割 S
P
工作原理:
M1
两个干涉的点源:
n
M2
两个反射面对S点
的像S1和S2
S1
S2
1
一、干涉条纹的定域
1.条纹定域:能够得到清晰干涉条纹的区域。
非定域条纹:在空间任何区域都能得到的干涉条纹。 定域条纹:只在空间某些确定的区域产生的干涉条纹。
2.平板干涉的优点,取 =0 ,用面光源。
C
n
θ2
n'
B
图11-18 楔形平板的干涉
12
用平行平板公式近似:垂度直h 入的射函时数,,光在程同差一是厚厚度
2nhcos 2
2
的位置形成同一级条纹。
垂直入射时: 2nh
2
3、实验装置:
l'
工程光学基础教程
光学系统的空间像
光学系统的空间像
光学系统的空间像
光学系统的空间像
将物空间中的物点在同一个像平面上所成的像称为空间像。
光学系统的景深
当弥散斑直径小于人眼的鉴别能 力,实际像产生的模糊是无法辨 认的,可视为清晰像。此时,这 个弥散斑称为容许弥散圆。
在对焦点前后各有一个容许弥散圆,这两个弥散圆在 物空间对应的物平面之间的距离就叫景深。
工具显微镜
孔径光阑为物镜镜框的情况
孔径光阑移至物镜镜框后焦平面出的情况
由于光学系统物方主光线平行于光轴主光线的会聚 中心位于物方无限远,故称为物方远心光路。
孔径光阑 测量显微镜物方远心光路。
像方远心光路
另一类光学仪器是把标尺放在不同的位置,通过改 变光学系统的放大率而使标尺像等于一个已知值, 以求得仪器到标尺之间的距离。
解决的方法:在物镜的成像面位置放置一个薄透镜。
场镜的应用
场镜的应用
加入薄透镜不会改变原成像系统的特性。 加入薄透镜也不会改变轴上点光束的行进走向。
这种与像面重合或紧靠像面的薄透镜称为场镜。
场镜具有可以辅助延长光学系统长度且 不增大后续透镜的孔径的功能!
光学系统的景深
前面讨论的只是在垂直于光轴的平面上点的成像问 题,属于这种情况的光学系统有照相制版物镜,电影 放映物镜等。实际上,有很多仪器需要把空间中的物 点成像在一个像面上,如望远镜和照相机等。这就存 在着空间物在平面上成像的清晰度问题。
D'3
l'3 l3
D3
45 180
10
2.5mm
A
D1=4mm D3=10mm D3 D2=12mm
O1
F2
工程光学基础教程 习题答案(完整)
第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。
2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。
3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学基础(机械工业出版社郁道银主编)课本-第一节资料精
第一章几何光学基本原理与成像概念在工农业,科学技术以及人类生活的各个领域,使用着种类繁多的的光学仪器,如望远镜,显微镜,投影仪等。
光学系统:千差万别但是其基本功能是共同的:传输光能或对所研究的目标成像。
研究光的传播和光学成像的规律对于设计光学仪器具有本质的意义!§1 光波和光线第一节几何光学的基本定律•从本质上讲,光是电磁波,按照波动理论进行传播。
•但是按照波动理论来讨论光经透镜和光学系统是的传播规律或成像问题时将会造成计算和处理上的很大困难,在实际解决问题时也不方便。
好累!太不方便了!•按照近代物理学的观点,光具有波粒二象性,那么如果只考虑光的粒子性,把光源发出的光抽象成一条条射线,然后来研究光学系统成像。
问题变得简单而且实用!几何光学:以光线为基础,用几何的方法来研究光在介质中的传播规律及光学系统的成像特性。
•点:光源、焦点、物点、像点•线:光线、法线、光轴•面:物面、像面、反射面、折射面由于光具有波动性,因此这种只考虑粒子性的研究方法只是一种对真实情况的近似处理方法。
必要时要辅以波动光学理论。
几何上的点:既无大小,又无体积。
当光源的大小与其作用距离相比可以忽略不计时,也可认为是一个点。
天体遥远的距离观察者一. 发光点任何被成像的物体,也是由无数个发光点组成。
1.本身发光。
2. 反射光。
因此研究物体成像时,可以用某些特征点的成像规律来推断整个物体的成像。
二、光线•发光点向四周辐射光能量,在几何光学中将发光点发出的光抽象为带有能量的射线,它代表光的传播方向。
三、光束一个位于均匀介质中的发光点,它所发出的光向四周传播,形成以发光点为球心的球面波。
某一时刻相位相同的点构成的面称为波面波面上某一点的法线就是这一点上光的传播方向,波面上的法线束称为光束•同心光束:发自一点或会聚于一点,为球面波•平行光束:光线彼此平行,是平面波•像散光束:光线既不平行,又不相交,波面为曲面。
在几何光学中研究成像时,主要要搞清光线在光学元件中的传播途径,这个途径称为光路。
工程光学讲稿(平面)(完整)课件
折射望远镜使用透镜作为主反射镜,能够观测可见光波段的天体。反射望远镜使用凹面反射镜作为主反射镜,能够观测红外线和射电波段的天体。射电望远镜则专门用于观测射电波段的天体。
01
02
03
04
总结词
摄影镜头是一种光学仪器,用于拍摄照片或录制视频。
总结词
摄影镜头的种类繁多,根据用途和功能可分为多种类型,如定焦镜头、变焦镜头、鱼眼镜头等。
光的衍射
平面镜与透镜
平面镜是反射面为平面的镜子,具有反射光线的能力,且入射角等于反射角。
用于日常生活、光学仪器和科学实验中,如化妆镜、眼镜、显微镜、望远镜等。
平面镜的用途
平面镜的性质
中间厚边缘薄的透镜,具有汇聚光线的能力,可以用于制作放大镜、显微镜、望远镜等。
凸透镜Βιβλιοθήκη 凹透镜透镜的焦距中间薄边缘厚的透镜,具有发散光线的能力,可以用于制作近视眼镜、散光眼镜等。
光学仪器在科研领域的应用也十分广泛,主要用于物理、化学、生物等学科的研究。例如,利用光谱仪研究物质的结构和性质,使用干涉仪测量微小距离和角度,以及通过光学仪器观测天体和微观粒子等。
科研中常用的光学仪器还包括分光仪、干涉仪、光谱分析仪等,这些仪器在推动学科发展和科技进步方面发挥着重要作用。
光的干涉与衍射实验
通过双缝干涉实验,观察光波的干涉现象,了解干涉的条件和特点。
双缝干涉实验是研究光波干涉现象的基础实验之一。在实验中,通过调整光源、双缝和屏幕的距离,观察到明暗相间的干涉条纹。通过测量干涉条纹的间距和双缝的间距,可以计算出光波的波长。
通过圆孔衍射实验,观察光波的衍射现象,了解衍射的条件和特点。
工程光学应用
光学仪器在工业中应用广泛,主要用于检测、测量和控制等方面。例如,利用光学显微镜对产品表面进行微观检测,使用激光测量仪对生产线上的产品进行高精度测量,以及通过光束控制系统实现自动化生产。
工程光学完整课件1
光学测量技 术的特点与 优势 光学 测量技术的
应用
光学测量技术的应 用
光学测量技 术在工业领
域的应用
输入你的正文,文 字是您思想提炼请 尽量言简意赅的阐
述观点
光学测量技 术在医疗领
域的应用
输入你的正文,文 字是您思想提炼请 尽量言简意赅的阐
述观点
光学测量技 术在军事领
域的应用
输入你的正文,文 字是您思想提炼请 尽量言简意赅的阐
实践环节的安排与要求
实验课程设置:包括实验项目、 实验内容、实验目的等
实验要求:实验前的准备、实验 过程中的注意事项、实验报告的 撰写等
添加标题
添加标题
添加标题
添加标题
实验时间安排:每周实验时间、 实验周期等
实践环节的考核方式:考核内容、 考核方式、评分标准等
YOUR LOGO
THANK YOU
实验设备:光学仪器、光 源、光电探测器等
实验步骤:搭建实验装置、 调整光学参数、记录实验 数据、分析实验结果
注意事项:遵守实验室规 定,注意安全操作,保护 光学仪器
实验设备与操作方法
实验设备介绍:包括光学实验箱、显微镜、望远镜等 操作方法演示:通过图文并茂的方式展示实验步骤和操作技巧 注意事项提醒:强调实验过程中的安全问题和注意事项 实验报告撰写:说明实验报告的撰写方法和要求
述观点
光学检测技术的种类与特点
干涉测量技术:利用光的干涉现象进行测量,具有高精度、高分辨率 和高灵敏度的特点。
衍射测量技术:利用光的衍射现象进行测量,具有测量范围广、测 量精度高和抗干扰能力强的特点。
光学显微技术:利用光学显微镜对微小物体进行观察和测量,具有直 观、快速和简便的特点。
工程光学基础教程第一 二章
第一节 几何光学的基本定律
一、光波与光线 二、几何光学的基本定律 三、费马原理 四、马吕斯定律
21292B
一、光波与光线
21292B
图1-1 电磁波谱
一、光波与光线
图1-2 光束与波面的关系 a)平行光束 b)发散同心光束 c)会聚同心光束 d)像散光束 21292B
二、几何光学的基本定律
(一)光的直线传播定律 (二)光的独立传播定律 (三)光的折射定律与反射定律 (四)光的全反射现象 (五)光路的可逆性原理
21292B
一、基本概念与符号规则
图1-10 光线经过单个折射球面的折射 21292B
二、实际光线的光路计算
21292B
图1-11 轴上点成像的不完善性
三、近轴光线的光路计算
在近轴区内,对一给定的l值,不论u为何值,l′均为定值。这表明, 轴上物点在近轴区内以细光束成像是完善的,这个像通常称为高斯像。 通过高斯像点且垂直于光轴的平面称为高斯像面,其位置由l′决定。 这样一对构成物像关系的点称为共轭点。
21292B
(二)光的独立传播定律
不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传 播,这就是光的独立传播定律。在各光束的同一交会点上,光的强度 是各光束强度的简单叠加,离开交会点后,各光束仍按原来的方向传 播。 光的独立传播定律没有考虑光的波动性质。当两束光是由光源上同一 点发出、经过不同途径传播后在空间某点交会时,交会点处光的强度 将不再是二束光强度的简单叠加,而是根据两束光所走路程的不同, 有可能加强,也有可能减弱。这就是光的“干涉”现象。
21292B
第二节 成像的基本概念与完善成像条件
一、光学系统与成像概念 二、完善成像条件 三、物、像的虚实
工程光学基础教程_习题参考答案
工程光学基础教程_习题参考答案工程光学基础教程_习题参考答案第一章光学基本知识与技术1.1 什么是光学?光学在人类生活中有哪些应用?答:光学是研究光的行为和性质的物理学科。
它涉及到光的产生、传播、变换、干涉、衍射、偏振以及光在介质中的行为等问题。
光学在人类生活中有着广泛的应用,如眼镜、镜头、显示器、照明、医疗器械、天文望远镜等。
1.2 光的波动性是如何描述的?答:光的波动性是指光是一种电磁波,具有振幅、频率、波长等特征。
它可以在空间中传播,并且可以表现出干涉、衍射等波动性质。
光的波动性可以通过波长、频率、振幅等参数进行描述。
1.3 什么是光的干涉?举例说明其应用。
答:光的干涉是指两列或两列以上的光波在空间中叠加时,由于光波的叠加产生明暗相间的干涉条纹的现象。
光的干涉在很多领域都有应用,例如光学干涉仪、双缝干涉实验、全息照相、光学通信等。
1.4 什么是光的衍射?举例说明其应用。
答:光的衍射是指光在遇到障碍物或孔径时,会绕过障碍物或孔径边缘,产生明暗相间的衍射图案的现象。
光的衍射在很多领域也有应用,例如光学透镜、衍射光学器件、全息照相、光学存储等。
1.5 什么是光的偏振?举例说明其应用。
答:光的偏振是指光波的电矢量在振动时,只在某个方向上振动,而在其他方向上振动为零的现象。
光的偏振在很多领域也有应用,例如偏振眼镜、偏振片、偏振光学器件等。
第二章光学透镜与成像2.1 什么是透镜?列举几种常见的透镜及其特点。
答:透镜是一种光学器件,它由一块透明材料制成,可以聚焦或发散光线。
常见的透镜包括凸透镜、凹透镜、平凸透镜、平凹透镜等。
2.2 凸透镜的成像原理是什么?如何计算凸透镜的焦距?答:凸透镜的成像原理是光线经过凸透镜后,平行于主轴的光线会聚于一点,这个点称为焦点。
焦距是指从透镜中心到焦点的距离。
凸透镜的焦距可以通过公式 f=1/v+1/u 进行计算,其中f为焦距,u为物距,v为像距。
2.3 凹透镜的成像原理是什么?如何计算凹透镜的焦距?答:凹透镜的成像原理是光线经过凹透镜后,平行于主轴的光线会朝透镜中心方向会聚于一点,这个点称为虚焦点。
第五章工程光学基础
望远镜系统中成像光束的选择
为满足出瞳在目镜之外的要求,孔径光阑 要放在分划板以左的地方。 假定孔径光阑分别 安放在如下三个地方,通过分析比较三组像方 数据来确定孔径光阑的位置: (1)物镜左侧10mm (2)物镜上 (3)物镜右侧10mm
望远镜系统中成像光束的选择
根据望远镜系统性质可知,若要求双目望远镜 的出瞳直径 D ' = 5 mm ,则入瞳直径为
显微镜系统中的光束限制与分析
显微镜系统中的光束限制与分析
1.像方焦阑(物方远心)光路 将光阑放在像方焦面上,则入瞳在 无穷远处。 此时可消除测量误差(调焦不准时也 不会带来测量误差)。
显微镜系统中的光束限制与分析
显微镜系统中的光束限制与分析
孔径光阑在像方焦点上,所以称作像方焦阑光路。主 光线(中心光线)平行于光轴,交光轴于物空间无 穷远处,称为“物方远心”光路;或者理解成入瞳 在无穷远处。 正是利用了“主光线方向不变”,因为主光线决 定了像点或中心的位置。 焦阑光路(远心光路)的缺点是透镜的口径大。 2.物方焦阑(像方远心)光路 图与分析都和像方焦阑光路类似,只是孔径光阑 放在物方焦面上,其他略
望远镜系统中成像光束的选择
由表可见,物镜的通光口径无论在何种光阑位 置情况下都是最大的;出瞳距 l z ' 相差不大,且能 满足预定要求。 所以选择使物镜口径最小的光阑位置是适宜的, 故取第二种情况将物境框作为系统孔径光阑。 下面通过图所示,看看上述三种情况下光阑位置 对于轴外点光束位置的选择。为图示清晰,只画出 三种情况时的入瞳位置。
照相系统和光阑
三、孔径光阑与视场光阑的确定
孔径光阑的确定: 孔径光阑的确定: 由作图法或解析法在物空间或像空间求得实际光阑 像位置和大小,然后做轴上物点对这些光阑像边缘的 连线,这些连线与光轴夹角最小的光阑像所对应的共 轭光阑就是实际光组的孔径光阑 视场光阑的确定: 由作图法或解析法求出物空间实际光阑像位置和大 小,再由入瞳中心向各光阑在物空间所成的象的边缘 引光线,找出其中对入瞳中心张角最小的那个光阑的 象,其所对应的共轭光阑就是实际光组的孔径光阑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
孔径光阑
2、入射光瞳和出射光瞳
P''1
P'1
B
-U
A
P''
P1
Q1
U'
O1
P O2
P'
P2
Q2
P''2
出射光瞳
孔径光阑
P'2
入射光瞳
P1P2孔径光阑经 后方光学系统 所成的像 P‘1P’2 称为出射光瞳, 简称出瞳,出 瞳边缘对物点A 的张角称为像 方孔径角2U’.
当孔径光阑后 方无光学系统, 则孔径光阑就 是出瞳。
光阑位置对成像光束的影响
光阑位置对成像光束的影响
光阑位置对成像光束的影响
孔径光阑位置移动,对轴外成像光束有明显影响。
常见照相系统的光阑位置
渐晕光阑
渐晕光阑
渐晕光阑
渐晕光阑
渐晕光阑
渐晕光阑
渐晕光阑
轴外物点充满孔径光阑的光束被部分地拦截,称为 “渐晕”。该光阑称为“渐晕光阑”,渐晕光阑多为 透镜框。渐晕光阑的作用是参与限制轴外点成像光束。
物方远心光路
光学仪器中的很大部分仪器用来测量长度。 有一类光学仪器要求以“恒定放大率” 使被测物之 像与一刻尺相比,以求得一被测物之长度。
按工具显微镜的工作台的大 小和可移动的距离、测量精 度的高低以及测量范围的宽 窄,一般分为小型,大型和 万能型及重型。它们的测量 精度和测量范围不同,但基 本结构、测量方法大致相同
p1
2ap 2a Z1
p2
2ap 2a Z2
Δ1
p1
p
pZ1 2a Z1
Δ2
p
p2
pZ2 2a Z2
人眼极限 分辨角
通常容许弥散圆可表示为: Z1 Z2 Z p
远景深 近景深 景深
Δ1
p1
p
p 2 2a p
Δ2
p
p2
p 2 2a p
p2 p
P1
光圈值发生变化
Z'
焦深
Z'
焦 深
对于固定焦距和拍摄距离,使用光圈越小,景深越大
B1
Z1
2a
Z2
B2
1
2
p2 p
p1
p'1 p' p'2
Z1
2a
p1 p1
p
Z2
2a
p
p2 p2
由相似三角形关系可得
Z1
2a
p1 p1
p
Z2
2a
p
p2 p2
远近点 远景深 近景深
工程光学基础教程
第4章 光学系统中的光束限制
光阑 照相系统中的光阑 望远系统中成像光束的选择 显微镜系统中的光束限制与分析 光学系统的景深
本章重点
孔径光阑、视场光阑的确定方法 远心光路 景深
孔径光阑
1、孔径光阑的定义与作用 限制轴上物点光束大小的光孔,也称为“有效光阑” P1P2是孔径光阑,主要用于控制成像面的光能!
入射窗边缘对入瞳中心的张角为物方视场角 2 ,同
时也决定了视场边缘点。视场光阑经后面光学零件所 成的像即为出射窗,出射窗对出瞳中心的张角即为像 方视场角 2' 。 视场光阑是对一定位置的孔径光阑而言的。
孔径光阑为无限小时,物面范围由入窗边缘与入瞳中 心连线决定。
入 射 窗
A
O'2
ω
出孔 射径 光光 瞳阑
大小和位置?
A
D1=4mm D3=10mm D3 D2=12mm
O1
F2
O2
45
180
195
A
D1=4mm D3=10mm D3 D2=12mm
O1
F2
O2
45
180
195
解:光孔D3经O1成像
l'3
l3 f l3
'1 f '1
180 180
36 36
45mm
在O1左方与物点重合
12
2.72 mm
A
D1=4mm D3=10mm D3 D2=12mm
O1
F2
O2
45
180
195
(1)求孔径光阑、入瞳、出瞳
2 tgU1 45 0.044
tgU 2
2.72 / 2 45 44.15
1.6
2.5 / 2 tgU3 0
U1最小,故物镜框O1是入瞳,也是孔径光阑。它经 O2的像为出瞳。
U'
P'
Q2
Q'1Q'2为入射窗; Q1Q2 本 身 也 为 出射窗。
通常设置在系统
的实像平面或物
P'2
平面
入射光瞳
确定视场光阑的方法: (1)把孔径光阑以外的所有光孔经前面的光学系统成 像到物空间,确定入瞳中心位置 (实际上在确定孔径 光阑时这一步骤已完成)。
(2)计算这些像的边缘对入瞳中心的张角大小。张角最 小者即为入射窗,入射窗对应的光学零件视场光阑.
经纬仪
像方远心光路
这种情况如果孔径光阑仍为物镜框,由于调焦不准, 标尺的像不与分划板刻线平面重合,使读数产生误 差而影响测量精度。
像方远心光路
为消除或减小这种误差,可以在物镜的物方焦平面 上设置一个孔径光阑。
因为这种光学系统的像方主光线平行于光轴,其 会聚中心在像方无限远处,故称为像方远心光路。
B
-U
A
P1
O1
P O2
P2
U' A’
B射光瞳
主光线
B
-U
A
P1
O2
O1
P
P2
孔径光阑
P'1
Q1
U'
P' Q2
P'2
P1P2孔径光阑经 前方光学系统 所成的像 P'1P'2 称为入射光瞳, 简称入瞳,入 瞳边缘对物点A 的张角称为物 方孔径角2U.
当孔径光阑前 方无光学系统, 则孔径光阑就 是入瞳。
照相系统中的光阑
照相系统组成
f/1 f/1.4 f/2 f/2.8 f/4 f/5.6 f/8 f/11 f/16 f/22 f/32 f/45 f/64
光阑位置对成像光束的影响
光阑位置对成像光束的影响
光阑位置对成像光束的影响
孔径光阑位置移动,对轴上成像光束并无影响。
光阑位置对成像光束的影响
望远镜系统的光阑位置
实际系统中,物镜框前后10mm左右放置孔径光阑;分 划板为视场光阑;孔径光阑对目镜成的像距即为出瞳 距离lz>6mm
照相系统中的光阑
简单显微系统中的光束限制
远心光路
物方远心光路 像方远心光路
物方远心光路
光学仪器中的很大部分仪器用来测量长度。 有一类光学仪器要求以“恒定放大率” 使被测物之 像与一刻尺相比,以求得一被测物之长度。
解决的方法:在物镜的成像面位置放置一个薄透镜。
场镜的应用
场镜的应用
加入薄透镜不会改变原成像系统的特性。 加入薄透镜也不会改变轴上点光束的行进走向。
这种与像面重合或紧靠像面的薄透镜称为场镜。
场镜具有可以辅助延长光学系统长度且 不增大后续透镜的孔径的功能!
光学系统的景深
前面讨论的只是在垂直于光轴的平面上点的成像问 题,属于这种情况的光学系统有照相制版物镜,电影 放映物镜等。实际上,有很多仪器需要把空间中的物 点成像在一个像面上,如望远镜和照相机等。这就存 在着空间物在平面上成像的清晰度问题。
入瞳的大小是由光学系统对成像光能的要求或者 对物体细节的分辨能力(分辨率)的要求来确定的。常 以入瞳直径和焦距之比值来表示,D / f ' 称为相对孔径, 它是光学系统的一个重要的性能指标。
孔径光阑
3、关于孔径光阑需要注意的几个问题 孔径光阑的安放要遵循一定原则。
对于目视光学系统,出瞳必须在目镜外,便于与 其衔接。 在投影计量光学中,要求入瞳或出瞳位于无穷远。
孔径光阑
3、关于孔径光阑需要注意的几个问题
O'2 A
孔径光阑的确定方法
P'1
P1
O1
O2 P'
F'1
P2
P'2
首先,将系统中所有零件的光孔成像到物空间, 用计算方法确定其位置和大小 。
第二步,由物面中心A点对各个像的边缘引直线,入 射光瞳是其中张角最小者,对应的物为孔径光阑。
孔径光阑
3、关于孔径光阑需要注意的几个问题
0.0278
tg 2
6 195
0.0307
故光孔O3为视场光阑,入窗与物平面重合,大 小为2.5mm,出窗在无穷远
作业 B
F1 F2
O'4
A F1
O1
O3
O2
A' F'2 O4
B'
如 图 所 示 , 有 一 光 学 透 镜 组 O1,O2 的 口 径 D1=D2=50mm,焦距f’1=f’2=150,两透镜间距为300mm, 并 在 中 间 置 以 光 孔 O3, 口 径 D3=20mm, 透 镜 O2 右 侧 150mm出置一光孔O4,孔径D4=40mm,平面物体处于 透镜O1左侧150mm处。1)求孔径光阑和入瞳出瞳 的大小和位置?2)求视场光阑和入窗出窗的大小和 位置?
工具显微镜
孔径光阑为物镜镜框的情况
孔径光阑移至物镜镜框后焦平面出的情况