物质代谢的整合与调节
代谢的整合与调节
(一)肝是维持血糖相对稳定的重要器官
A、肝内生成的葡糖-6-磷酸是糖代谢的枢纽
B 肝 是 糖 异 生 的 重 要 场 所
C 、肝内进行的糖酵解途径能够为其他代谢提供合成原料
不同营养状态下肝内如何进行糖代谢 ?
1. 饱食状态 肝糖原合成 ↑ 过多糖则转化为脂肪,以VLDL形式输出
2. 空腹状态 肝糖原分解↑
(四)、脂肪组织是储存和动员甘油三酯的重要组织
A、机体将从膳食中摄取的能量主要储存于脂肪组织
膳食脂肪:以CM形式运输至脂肪组织储存。 膳食糖:主要运输至肝转化成脂肪,以VLDL形式运输至脂肪组织
储存。部分在脂肪细胞转化为脂肪储存。
B、饥饿时主要靠分解储存于脂肪组织的脂肪供能
(五)、肾可进行糖异生和酮体生成
激素的灭活 ( inactivation ) 激素主要在肝中转化、降解或失去活性的过程称为激素的灭活
主要方式:生物转化作用
二、肝外重要组织器官的物质代谢及联系
(一)脑主要利用葡萄糖供能且耗氧量大
A、葡萄糖和酮体是脑的主要能量物质
脑没有糖原,也没有作为能量储存的脂肪及蛋白质 用于分解代谢,葡萄糖是脑主要的供能物后每天消 耗葡萄糖约100g,主要由血糖供应。脑组织具有很 高的己糖激酶活性,即使在血糖水平较低动也能有 效利用葡萄糖。长期饥饿血糖供应不足时,脑主要 利用由肝生成的酮体供能。饥饿3-4天时,脑每天耗 用约50g酮体。饥饿2周后,脑每天消耗的酮体可 达100g。
(二)、心肌可利用多种能源物质
(三)、骨骼肌以肌糖原和脂肪酸作为主要能量来源
A、不同类型骨骼肌产能方式不同
红肌:耗能多,富含肌红蛋白及细胞色素体系,具有较强氧化磷酸化能力。 白肌:耗能少,主要靠酵解供能。 B、骨骼肌适应不同耗能状态选择不同能源 直接能源:ATP 磷酸肌酸:可快速转移能量,生成ATP 静息状态:以有氧氧化肌糖原、脂肪酸、酮体为主 剧烈运动:糖无氧酵解供能大大增加 乳酸循环:整合糖异生与肌糖酵解途径
生化第十二章物质代谢的整合与调节
第九章物质代谢的整合与调节本章要点一、物质代谢的特点1.体内各种物质代谢过程互相联系形成一个整体2.机体物质代谢不断受到精细调节3.各组织、器官物质代谢各具特色4.体内各种代谢物都具有共同的代谢池5.ATP是机体储存能量和消耗能量的共同形式6.NADPH提供合成代谢所需的还原当量二、物质代谢的相互联系1.各种能量物质的代谢相互联系相互制约2.糖、脂和蛋白质代谢通过中间代谢物而相互联系①葡萄糖可转变为脂肪酸②葡萄糖与大部分氨基酸可以相互转变③氨基酸可转变为多种脂质但脂质几乎不能转变为氨基酸④一些氨基酸、磷酸戊糖是合成核苷酸的原料三、肝在物质代谢中的作用1.肝是维持血糖水平相对稳定的重要器官①肝内生成的葡糖-6-磷酸是糖代谢的枢纽②肝是糖异生的主要场所2.肝在脂质代谢中占据中心地位①肝在脂质消化吸收中具有重要功能②肝是甘油三酯和脂肪酸代谢的中枢器官③肝是维持机体胆固醇平衡的主要器官④肝是血浆磷脂的主要来源3.肝的蛋白质合成及分解代谢均非常活跃①肝合成多数血浆蛋白②肝内氨基酸代谢十分活跃③肝是机体解“氨毒”的主要器官4.肝参与多种维生素和辅酶的代谢①肝在脂溶性维生素吸收和血液运输中具有重要作用②肝储存多种维生素③肝参与多数维生素的转化5.肝参与多种激素的灭活四、肝外重要组织器官的物质代谢特点及联系1.心肌优先利用脂肪酸氧化分解供能①心肌可利用多种营养物质及其代谢中间产物为能源②心肌细胞分解营养物质供能方式以有氧氧化为主2.脑主要利用葡萄糖供能且耗氧量大①葡萄糖和酮体是脑的主要能量物质②脑耗氧量高达全身耗氧总量的四分之一③脑具有特异的氨基酸及其代谢调节机制3.骨骼肌主要氧化脂肪酸,强烈运动产生大量乳酸①不同类型骨骼肌产能方式不同②骨骼肌适应不同耗能状态选择不同能源4.糖酵解是成熟红细胞的主要供能途径5.脂肪组织是储存和释放能量的重要场所①机体将从膳食中摄取的能量主要储存于脂肪组织②饥饿时主要靠分解储存于脂肪组织的脂肪供能6.肾能进行糖异生和酮体生成五、物质代谢调节的主要方式(一)、细胞水平的物质代谢调节主要调节关键酶活性②别构效应通过改变酶分子构象改变酶活性③别构调节使一种物质的代谢与相应的代谢需求和相关物质的代谢协调4.化学修饰调节通过酶促共价修饰调节酶活性②酶的化学修饰调节具有级联放大效应▲化学修饰调节的特点:a.绝大多数受化学修饰调节的关键酶都具无活性(或低活性)和有活性(或高活性)两种形式,它们可分别在两种不同酶的催化下发生共价修饰,互相转变。
代谢组学和代谢
代谢组学和代谢
代谢组学是对生物体内所有代谢物进行全面分析的一门学科。
代谢物是细胞代谢过程中产生的小分子化合物,它们反映了生物体的生理状态和病理变化。
代谢组学的研究方法包括质谱分析、核磁共振等技术,可以高通量地检测和鉴定代谢物。
通过对代谢物的定性和定量分析,代谢组学可以提供关于生物体代谢途径、代谢网络和代谢调控的信息。
代谢是生物体维持生命活动的基本过程,包括物质的合成、分解和转化。
代谢途径涉及多种生物化学反应,这些反应受到基因、环境和其他因素的调节。
代谢组学与代谢密切相关。
通过代谢组学的研究,可以揭示不同生物体、组织或细胞在不同条件下的代谢特征和变化。
这对于理解疾病的发生机制、药物的作用机制、生物标志物的发现以及个性化医疗等具有重要意义。
例如,代谢组学可以用于研究疾病状态下代谢物的异常变化,为疾病的诊断和治疗提供线索。
它还可以用于药物研发中,帮助筛选有效的药物靶点和评估药物的安全性和药效。
此外,代谢组学也可以与其他组学技术(如基因组学、转录组学和蛋白质组学)相结合,提供更全面的生物系统信息。
这种多组学整合的研究方法有助于深入理解生物体的复杂生物学过程。
总的来说,代谢组学和代谢的研究相互关联,代谢组学为研究代谢提供了一种高效的手段,而对代谢的深入理解又为代谢组学的应用提供了基础。
它们的结合将为生命科学和医学领域带来更多的研究机遇和创新。
生物化学与细胞生物学考试大纲
深圳大学2019年硕士研究生入学考试大纲、参考书目(初试科目只提供考试大纲,复试科目只提供参考书目)命题学院/部门(盖章):医学部考试科目代码及名称:[725]生物化学与细胞生物学或免疫与病理生理学说明:基础医学学术型硕士研究生初试科目大纲包含第一部分-生物化学与细胞生物学(总分300分),第二部分-免疫与病理生理学(总分300分)。
试卷内两部分试题二选一作答,卷面分数不前后合计,只计算其中一门的分值。
第一部分生物化学与细胞生物学一、考试基本要求1.掌握生物化学的基本理论和基础知识,从分子层次、细胞层次认识生物界发生发展的规律,掌握生物分子结构与功能、物质代谢及调节以及遗传信息的传递及调控。
2.掌握医学细胞生物学的基本理论和基础知识,从分子层次、细胞层次认识生物界发生发展的规律,掌握细胞各部分的基本结构与功能的相关性及细胞重大生命活动如细胞增殖、分化、衰老、死亡的过程及其调控机制。
二、考试内容和考试要求:1. 蛋白质结构与功能【重点掌握】蛋白质结构与功能的关系。
【了解内容】了解蛋白质的分类、分离纯化方法及步骤、多肽链中氨基酸序列分析测定的程序和基本方法。
2.核酸的结构与功能【重点掌握】核酸、蛋白质的化学组成、结构特点及功能【一般掌握】DNA的紫外吸收性质,变性、复性和分子杂交、增色效应、DNA的解链温度(Tm)、等概念【了解内容】了解几种核酸的分子式3.酶【重点掌握】掌握酶的概念和分子组成,酶的活性中心,酶促反应特点,变构酶和酶的共价修饰调节、酶原及酶原激活、同工酶的概念、米氏方程、酶Km。
【一般掌握】单纯酶、结合酶、酶蛋白、辅酶、辅基的概念,辅酶等。
【了解内容】了解酶促反应过渡态学说,米氏方程的推导,酶的分类与命名。
4.糖代谢【重点掌握】糖酵解途径,糖的有氧氧化反应、糖异生等。
【一般掌握】糖的生理功能,血糖的来源与去路,胰岛素、胰高血糖素调节血糖的机制,糖代谢紊乱与血糖水平异常。
【了解内容】了解其它单糖可转变成糖酵解的中间产物。
生物化学第一节 物质代谢的特点
小节练习第一节物质代谢的特点2015-07-07 71896 0第十二章物质代谢的整合与调节框12-1 代谢整体性认识的形成和发展1941年F.Lipmann提出ArIP循环学说,1948年E.Kennedy和A.Lehninger发现电子传递链,确立了物质代谢与能量代谢的联系。
20世纪上叶,科学家在解析物质分解、合成代谢途径时,结合酶促反应机制,揭示了底物、代谢产物对代谢的调节作用。
1922年F.G.Banting发现胰岛素,其他激素也陆续被发现。
1959年A.V.Schally发明放射免疫分析技术,该技术及其他相关技术的应用促进了激素作用机制研究,揭示了神经,激素在物质代谢调节中的核心地位。
1963年Monod等提出的别构调节和1979年E.G.Krebs和J.A.Beavo提出的化学修饰调节理论将酶活性调节与激素等的信号转导途径相联系。
至20世纪80 ~90年代,大量的科学研究发现将机体内外环境刺激、神经内分泌改变、细胞信号转导、酶/蛋白质结构变化、基因表达改变、物质及能量代谢变化联系在一起,形成复杂的代谢及其调节网络。
随着当代“组学”研究的开展,将会更加深入地认识机体组织器官之间、各种物质代谢之间的联系和协调及其随内外环境变化而变化的规律。
第一节物质代谢的特点一、体内各种物质代谢过程互相联系形成一个整体在体内进行代谢的物质各种各样,不仅有糖、脂、蛋白质这样的大分子营养物质,也有维生素这样的小分子物质,还有无机盐、甚至水。
它们的代谢不是孤立进行的,同一时间机体有多种物质代谢在进行,需要彼此间相互协调,以确保细胞乃至机体的正常功能。
事实上,人类摄取的食物,无论动物性或植物性食物均同时含有蛋白质、脂类、糖类、水、无机盐及维生素等,从消化吸收开始、经过中间代谢、到排泄,这些物质的代谢都是同时进行的,且互有联系、相互依存。
如糖、脂在体内氧化释出的能量可用于核酸、蛋白质等的生物合成,各种酶蛋白合成后又催化糖、脂、蛋白质等物质代谢按机体的需要顺利进行。
青岛大学2022年硕士研究生招生考试自命题科目考试大纲638生物化学及分子生物学
考试科目代码及名称:638生物化学以及分子生物学一、考试要求重点考查与医学相关的生物化学以及分子生物学的基本知识、要求考生系统掌握相关的基本理论和基本技能,能够运用所学的基本理论、基本知识和基本技能综合分析、判断和解决有关理论问题和实际问题。
二、考试内容第一章、蛋白质的结构与功能组成人体蛋白质的 20 种氨基酸的结构和分类。
氨基酸的理化性质蛋白质的一级结构以及测定原理氨基酸与多肽(氨基酸结构与分类;肽链与肽键)蛋白质的结构(一、二、三、四级结构;α螺旋与其他数种二级结构)蛋白质结构与功能关系(一级结构与功能的关系;高级结构与功能的关系;蛋白质的空间结构,模体和结构域。
)蛋白质的理化性质(蛋白质变性与复性)盐溶与盐析的原理蛋白质各种分离技术与纯化方法的基本原理第二章、核酸的结构与功能核酸的化学组成核酸的基本组成单位-核苷酸(核苷酸分子组成;DNA;RNA)主要碱基(嘌呤、嘧啶)的化学结构DNA 的结构与功能(碱基组成规律;一级结构,双螺旋结构;高级结构;功能);RNA 与其它非编码 RNA 的分类与功能。
核酸的理化性质;DNA 变性及其应用(变性和复性概念;核酸杂交)RNA 的结构与功能(mRNA;tRNA;rRNA)第三章、酶与酶促反应酶的基本概念,全酶,辅助因子(参与组成的维生素),酶的活性中心。
酶的催化作用(分子结构与催化作用;酶促反应特点;酶-底复合物)辅酶与酶辅助因子(维生素与辅酶;辅酶作用;金属离子作用)酶促反应动力学(Km 与 Vmax;最适 pH 与最适温度)酶的工作原理,酶促反应动力学,酶抑制的类型和特点。
抑制剂对酶促反应的抑制作用(可逆抑制;不可逆抑制)酶的调节,活性和含量的主要调节方式(别构调节;共价修饰;酶原激活;同工酶)。
核酶(概念)酶在医学上的应用。
第五章、糖代谢糖的分解代谢(糖酵解基本途径关键酶,调节及生理意义;糖有氧氧化基本途径及供能)糖有氧氧化过程、意义及调节,能量的产生;糖有氧化与无氧酵解的关系。
高中生物选择性必修一第二章代谢调节知识梳理
高中生物选择性必修一第二章代谢调节知
识梳理
代谢调节的基本概念
- 代谢调节是指在稳定环境条件中,生物体能够通过调节代谢
过程保持一定的内部稳定状态。
- 生物体内代谢调节的作用体现在物质合成和降解的平衡上,
从而影响生物体内能源的储备和利用。
代谢调节的方式
- 代谢调节可以通过神经体液调节和内分泌调节两种方式实现。
神经体液调节
- 神经体液调节主要是指人体通过神经系统和体液调节机制来
达到代谢平衡的方式。
- 在神经体液调节中,神经元通过将信息传递到靶细胞上,从
而影响靶细胞的代谢状态。
内分泌调节
- 内分泌调节是指通过内分泌腺体分泌激素来调节代谢平衡的方式。
- 内分泌腺体分泌的激素经过血液循环到达靶细胞,影响其代谢状态。
代谢调节的实例
- 食物摄入量:人体通过调节进食量来达到对营养成分的摄入平衡。
- 血糖调节:胰岛素和胰高血糖素的分泌调节是人体维持血糖平衡的关键。
- 体温调节:人体通过调节代谢过程以及出汗等方式来维持体温平衡。
物质代谢的整合与调节
学习材料
30
〔一〕肝在脂质消化汲取中具有重要作用
肝细胞合成和分泌的胆汁酸,是脂质消化 汲取必不可少的物质。
肝功能下降 胆道堵塞
厌油腻、脂肪泻等
学习材料
31
〔二〕肝是甘油三酯和脂肪酸代谢的中枢器官
• 饱食后合成甘油三酯、 胆固醇 、磷脂,并以
VLDL形式分泌入血,供其他组织器官摄取与
利用;
• 饥饿时,肝脂肪酸β-氧化产生的大量乙酰辅酶
乳酸循环:整合糖异生与肌糖酵解途径
学习材料
45
四、糖酵解是成熟红细胞的供能主要途径
成熟红细胞没有线粒体, 不能进行营养物质的有氧氧化, 不能利用脂肪酸和其他非糖物 质作为能源。葡萄糖酵解是其 主要能量X。
学习材料
46
五、脂肪组织是储存和释放能量的重要 园地
〔一〕机体将从膳食中摄取的能量主要储存于脂 肪组织
甘油激酶 甘油
磷酸-甘油
葡 萄
肝、肾、肠
脂
糖
肪
脂酸
乙酰CoA
葡萄糖
学习材料
18
3. 脂肪的分解代谢受糖代谢的影响 饥饿、糖供给缺少或糖代谢障碍时:
脂肪大量动员
酮体生成增加
糖不足
草酰乙酸 相对不足
高酮血症
氧化受阻
学习材料
19
〔二〕葡萄糖与大局部氨基酸可以相互转变
1. 大局部氨基酸脱氨基后,生成相应的α-酮酸, 可转变为糖
例如:
脱氨基
丙氨酸
丙酮酸
糖异生 葡萄糖
学习材料
20
2. 糖代谢的中间产物可氨基化生成某些非必需 氨基酸
丙氨酸
天冬氨酸
糖
丙酮酸
草酰乙酸
乙酰CoA
物质代谢的调节
肝 酮体
脂肪酸 甘油
氧化供能
六、肾能进行糖异生和酮体生成
肾髓质无线粒体,主要由糖酵 解供能;肾皮质主要由脂酸、酮体 有氧氧化供能。
一般情况下,肾糖异生只有肝 糖异生葡萄糖量的10%。长期饥饿 (5~6周),肾糖异生可达每天40g ,与肝糖异生的量几乎相等。
第五节
物质代谢调节的主要方式
The main way for Regulation of Metabolism
(一)肝内生成的葡糖-6-磷酸是糖代谢的枢纽
G(补充血糖)
6-磷酸葡萄糖内酯 (进入磷酸戊糖途径)
G-6-P
F-6-P
脂肪
(进入酵解途径)
G-1-P
其他单糖 UDPG
葡糖醛酸 (进入葡糖醛酸途径)
Gn(合成糖原)
( 二 ) 肝 是 糖 异 生 的 主 要 场 所
不同营养状态下肝内如何进行糖代谢?
(脂酸合成关键酶)
二、糖、脂和蛋白质代谢通过中间 代谢物而相互联系
糖、脂、蛋白质和核酸通过共同的中间代 谢物、柠檬酸循环、生物氧化等彼此联系且相 互转变。一种物质代谢障碍可引起其他物质代 谢的紊乱。
(一)葡萄糖可转变为脂肪酸
1. 摄入的糖量超过能量消耗时:
合成糖原储存(肝、肌肉)
葡
萄 糖
乙酰CoA
五、脂肪组织是储存和释放能量的重要 场所
(一)机体将从膳食中摄取的能量主要储存于脂 肪组织
膳食脂肪:以CM形式运输至脂肪组织储存。 膳食糖:主要运输至肝转化成脂肪,以VLDL形式 运输至脂肪组织储存。部分在脂肪细胞转化为脂肪 储存。
(二)饥饿时主要靠分解储存于脂肪组织的脂 肪供能
饥饿
脂解激素↑
HSL↑ 脂肪动员↑
南开大学2019年医学院基础医学科学学位硕士研究生入学考试《基础医学综合》(704)考试大纲
南开大学医学院2019年基础医学科学学位硕士研究生入学考试《基础医学综合》(704)考试大纲Ⅰ. 考试范围医学院校的基础医学科目,包括生理学、生物化学与分子生物学、细胞生物学、病理生理学等学科的基本理论和专业知识。
Ⅱ. 考试目标要求要求考生系统掌握基础医学科目中的生理学、生物化学与分子生物学、细胞生物学、病理生理学的基础理论和专业知识,并能运用所学理论分析问题、解决问题,具备攻读硕士学位研究生的专业知识和素质,达到研究生入学水平。
Ⅲ. 答题方式及时间:闭卷,笔试,180分钟Ⅳ. 题型结构及比例:1.比例:生理学约30%生物化学与分子生物学约30%细胞生物学约20%病理生理学约20%2.题型:选择题:共50题名词解释:共12题问答题:共12题生理学一、绪论1.生命活动基本特征(新陈代谢、兴奋性、适应性、生殖)2.机体的内环境和稳态3.生理功能的神经调节、体液调节和自身调节4.体内反馈控制系统二、细胞的基本功能1.物质跨细胞膜转运:被动转运、主动转运、胞吐和胞吞2.跨膜信息转导的几种主要方式3.静息电位和动作电位及其产生机制4.局部电位及其特性,动作电位的传导5.受体和配体,细胞的跨膜信号转导6.神经-骨骼肌接头处的兴奋传递7.横纹肌的收缩机制、兴奋-收缩偶联和影响收缩效能的因素三、血液1.血液的基本组成、血量和理化特性2.血细胞(红细胞、白细胞和血小板)的数量、生理特性和功能3.红细胞的生成与破坏4.生理性止血,血液凝固、体内抗凝系统和纤维蛋白的溶解5.ABO 和Rh 血型系统及其临床意义6.输血和交叉配血四、血液循环1.心肌细胞的跨膜电位及其简要的形成机制2.心肌的生理特性:兴奋性、自律性、传导性和收缩性3.心脏的泵血功能:心动周期,心脏泵血的过程和机制,心音,心脏泵血功能的评定,影响心输出量的因素4.动脉血压的形成和影响因素5.静脉血压、中心静脉压及影响静脉回流的因素6.微循环的组成及血流动力学,组织液和淋巴液的生成与回流7.心脏和血管的神经支配,心血管活动的中枢调节,心血管反射8.心血管活动的调节9.动脉血压的短期调节和长期调节10.冠脉循环和脑循环的特点和调节五、呼吸1.肺通气的动力和阻力,胸膜腔内压,肺表面活性物质2.肺容积和肺容量,肺通气量和肺泡通气量3.肺换气的基本原理、过程和影响因素,气体扩散速率,通气/血流比值及其意义4.氧和二氧化碳在血液中的运输方式,氧和二氧化碳的解离曲线及其影响因素5.中枢和外周化学感受器。
植物物质代谢的机制和调控
植物物质代谢的机制和调控在自然界中,植物通过吸收太阳能、水分和营养物质,利用光合作用将这些成分转化为植物体内的有机物及生命能量,而这个过程就被称作植物物质代谢。
在植物中,物质的合成、分解和转化陆续进行,但是这个过程不是被动的,而是需要一系列的调控机制来确保植物能够适应环境的变化,并完成自身的生长、发育和繁殖等生命活动。
本文将从植物物质代谢的机制和调控两个方面来进行探讨。
一、植物物质代谢的机制植物物质代谢是由一系列相互连续的生物化学反应组成的。
植物体内的合成和分解反应是环环相扣,其中合成反应是通过一系列酶催化下的化学反应,将碳、氢、氧、氮、磷等原始元素与无机物转化为无机盐、糖类、脂类、蛋白质等有机物,供给植物正常的生长及生理代谢所需的物质。
不过在实际生长发育中,植物代谢过程并不是一成不变的,因为植物需要随时对环境变化作出反应,以适应自身生长发育的需要。
例如,植物在遇到环境压力时,会通过转录因子的核转移调节基因表达来改变代谢途径;在生长旺盛时,植物会通过增大葡萄糖的利用和构建纤维素的合成等途径来支持生物量增加;在当前物质供应过剩时,植物会通过下调酶基因的表达来降低反应速率。
这些事实表明:植物代谢过程是一种高度调节的体系。
二、植物物质代谢的调控机制植物物质代谢具有高度复杂的代谢调控机制。
代谢调控是指在代谢合成过程中,细胞针对环境条件发出的内在信号,以调控代谢途径的选择、调整代谢速率、改变产物比例等过程。
植物代谢调控机制主要包括调节酶活性的磷酸化、合成酶的基因表达、代谢通路的隔离、酶促反应的体系调控以及代谢生成物对一系列基因表达的调控等。
(一)调节酶活性的磷酸化磷酸化作为化学反应的一种,常用于酶的活性调控中。
植物细胞内的磷酸化过程与糖类、氨基酸等代谢过程密切相关,可以调节调节诸如糖酵解、异黄酮合成等反应的速率。
磷酸化是一个多互相作用的网络,可以被不同的输入信号如光、温度、激素等所调节。
(二)基因表达调节植物的代谢水平是高度负责基因表达的调控的。
第十章 代谢调节
R C
R C
R C R R C
R C
R C 酶分子
R C
C
酶活性增加/降低
--生理小分子物质:代谢产物、底物、其他 和调节基团非共价、可逆结合
果糖-1,6二磷酸酶的变构效应
酶亚基上的催化部位 X:酶亚基上的调节部位 FDP:果糖-1,6-二磷酸
3.变构酶的酶促反应动力学不符合米曼氏方程 式,酶促反应速率和作用物浓度的关系曲线 不呈矩形而常常呈S形。
糖原
I
脂肪 脂肪酸+甘油
乙酰CoA
蛋白质 氨基酸
葡萄糖
II
III
三羧酸循环
CO2,H2O,ATP
三大营养物分解代谢的三个阶段
联系枢纽
葡糖-6-磷酸酶
果糖-1,6-二磷酸酶
磷酸烯醇式丙酮酸羧激酶
细胞浆
丙酮酸羧化酶
线粒体
糖
脂肪
磷酸丙糖
α —磷酸甘油
脂肪酸
磷酸烯醇式丙酮酸 丙氨 酸 半胱氨酸 甘氨 酸 苏氨 酸 ○ 色氨 酸 丙酮酸 酮体 ▲亮氨酸 ○ 异亮氨酸 ○ 色氨酸 乙酰乙酰CoA ▲亮氨 酸 ▲赖氨 酸 ○ 异亮 氨酸 ○ 色氨 酸 ○ 苯丙 氨酸 ○ 酪氨 酸 谷氨 酸 谷氨 酰胺 精氨 酸 组氨 酸 脯氨 酸
3. 耗能少 4. 按需调节,是体内酶活性的经济、高 效的调节方式
酶别构调节与化学修饰调节的比较
某些酶同时存在两种调节方式 别构调节是细胞的基本调节方式 化学修饰调节是高效的调节方式
三、细胞内酶含量的调节
属于酶的迟缓调节。
迟缓调节:通过对酶蛋白分子的合成或降 解来改变细胞内酶的含量的调节方式,一 般需要数小时或数天才能实现。
磷酸果糖激酶I
2023年研究生招生《生物化学》考试大纲
佛山科学技术学院2023年硕士研究生招生考试大纲科目名称:生物化学一、考查目标《生物化学》是佛山科学技术学院生物技术与工程专业硕士研究生入学考试的科目。
生物化学主要研究生命的化学组成及其在生命活动中变化规律,是生物类、工程类、医学类及药学类众多学科的基础性课程,并在工业、农业和医药产业的发展中发挥出越来越明显的促进作用。
要求考生比较系统地理解和掌握生物化学的基本概念和基本理论;掌握各类生化物质的结构、性质、功能及其合成代谢和分解代谢的基本途径和调控方法;能综合运用所学的知识分析问题和解决问题。
二、考试形式与试卷结构1.考试形式:生物化学考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。
2.试卷结构:考查内容,基础知识占50%,简答、分析题占30%,创造性思维题占20%。
试卷主要由选择题、名词解释、简答题、论述题等组成。
其中选择题分值为70分,判断题分值为10分,名词解释分值为20分,简答题分值为30分,论述题分值为20分。
(1)选择题:共计70分。
其中单项选择题共50道题,1分/题,共计50分;多项选择题共10道题,2分/题,共计20分。
(2)判断题:共计10分,10道题,1分/题。
(3)名词解释:共计20分,5道题,4分/题。
(4)简答题:共计30分,3道题,10分/题。
(5)论述题:共计20分,1道题,20分/题。
说明:选择题,判断题名词解释主要考察内容为概念和基本知识,主要覆盖本门课程的各部分知识点;简答题主要考察各部分重要知识点的理解和分析;论述题主要考察各部分重要知识点的理解,分析和综合运用。
三、考查范围第一章蛋白质的结构与功能一、蛋白质的分子组成蛋白质的元素组成特点,基本结构单位氨基酸的结构特点、分类及三字英文缩写符号,一字符号,等电点;氨基酸的理化性质;肽键和肽的概念。
二、蛋白质的分子结构蛋白质一级、二级、三、四级结构的概念、结构特点和维持其稳定的化学键;α-螺旋,β-折叠,β-转角与无规卷曲,α-螺旋,β-折叠的结构特点;肽单元、模序、超二级结构、结构域、分子伴侣、结构域和亚基的概念,蛋白质结构与功能的关系。
新陈代谢与体内能量平衡过程描述
新陈代谢与体内能量平衡过程描述新陈代谢是一种生命过程,通过这个过程,生物体可以将食物转化为能量,并维持其正常的生命功能。
体内能量平衡是指摄入的能量和消耗的能量之间的平衡状态。
在这篇文章中,我们将详细描述新陈代谢的过程以及体内能量平衡的调节。
新陈代谢是指在细胞内进行的化学反应的总和。
它包括两个主要过程:合成代谢和分解代谢。
合成代谢是指通过化学反应合成复杂分子的过程,例如合成蛋白质、脂肪和碳水化合物等。
分解代谢是指将复杂分子分解为简单分子并释放能量的过程,例如分解葡萄糖和脂肪。
新陈代谢的过程需要能量的参与。
这些能量来自于食物的摄入,主要是蛋白质、脂肪和碳水化合物。
当食物被消化吸收后,它们进入血液,被运送到各个细胞中。
在细胞内,这些分子被分解,释放出能量。
其中最主要的分解过程是糖的氧化。
在糖的氧化过程中,葡萄糖分子被分解成为乙酰辅酶A,并生成一定数量的ATP(三磷酸腺苷)。
ATP是细胞内能量的主要形式,它可以用于执行细胞功能、肌肉收缩、神经传递等。
此外,糖的氧化过程还会产生二氧化碳和水作为副产物。
除了糖的氧化过程,脂肪的氧化过程也是产生能量的重要途径。
当体内糖分供应不足时,身体会转向分解脂肪来提供能量。
在脂肪的氧化过程中,脂肪分子被分解成为乙酰辅酶A,进而被氧化生成ATP。
相较于糖的氧化,脂肪的氧化可以提供更多的能量,因为脂肪分子中的碳-碳键含有更多的能量。
虽然新陈代谢是体内能量平衡的核心过程,但能量平衡并不仅仅取决于新陈代谢过程本身。
体内能量平衡还受到一系列的因素调节,包括饮食摄入、运动消耗和基础代谢率等。
饮食摄入是指通过食物摄入获得的能量。
食物的摄入量和种类会影响体内能量平衡。
例如,高热量、高脂肪和高糖分的饮食会导致能量摄入超过消耗,从而导致能量过剩和体重增加。
相反,低热量、低脂肪和高纤维的饮食可以帮助控制体重和维持能量平衡。
运动消耗是通过体育锻炼和日常活动消耗的能量。
体育锻炼可以增加能量消耗,并帮助维持体重和体内能量平衡。
《代谢的调节控制》课件
负反馈是指某一生理指标出现偏差时,调节机构会发出纠正指令,使该指标向正常范围回归;正反馈 是指某一生理指标未达到正常范围时,调节机构会发出指令,使该指标继续升高或降低;前馈是在生 理过程发生异常变化时,通过前馈控制预先采取措施防止异常继续发展。
代谢调节控制的类型
总结词
代谢调节控制主要分为酶的调节、激素调节和神经调节三种类型。
蛋白质对代谢的调节
总结词
蛋白质在代谢调节中发挥重要作用。
VS
详细描述
蛋白质是细胞生长和修复所必需的,同时 也是多种激素和酶的组成成分。例如,胰 岛素是一种蛋白质激素,对糖代谢具有重 要调节作用。此外,蛋白质还参与了细胞 信号转导和基因表达等复杂过程,对代谢 的精细调控至关重要。
维生素和矿物质对代谢的调节
激素对脂肪代谢的调节控制
胰岛素
促进脂肪细胞对葡萄糖的摄取和利用,同时抑制脂肪 分解和酮体生成。
胰高血糖素
促进脂肪分解和酮体生成,同时抑制脂肪细胞对葡萄 糖的摄取。
肾上腺素
促进脂肪分解和脂肪酸氧化,同时抑制脂肪细胞对葡 萄糖的摄取。
激素对蛋白质代谢的调节控制
胰岛素
促进蛋白质合成,同时抑制蛋白质分解。
胰高血糖素
促进蛋白质分解,同时抑制蛋白质合成。
糖皮质激素
促进蛋白质分解,同时抑制蛋白质合成,同时参 与炎症反应和免疫应答等生理过程。
03
神经系统对代谢的调节控 制
神经系统的结构与功能
神经元
是神经系统的基本单位,具有感受刺激、传递 信息、处理信息的功能。
神经胶质细胞
支持、保护、营养神经元的作用,还参与构成 髓鞘和神经纤维。
《代谢的调节控制 》ppt课件
目 录
查锡良《生物化学与分子生物学》(第8版)笔记和考研真题详解
第五章维生素与无机盐
5.1复习笔记 5.2考研真题详解
第六章糖代谢 第七章脂质代谢
第八章生物氧化 第九章氨基酸代谢
第十一章非营养物 质代谢
第十章核苷酸代谢
第十二章物质代谢 的整合与调节
第六章糖代谢
6.1复习笔记 6.2考研真题详解
第七章脂质代谢
7.1复习笔记 7.2考研真题详解
第八章生物氧化
8.1复习笔记 8.2考研真题详解
第九章氨基酸代谢
9.1复习笔记 9.2考研真题详解
第十章核苷酸代谢
10.1复习笔记 10.2考研真题详解
第十一章非营养物质代谢
11.1复习笔记 11.2考研真题详解
第十二章物质代谢的整合与调节
12.1复习笔记 12.2考研真题详解
第十四章 DNA的生 物合成
查锡良《生物化学与分子生物 学》(第8版)笔记和考研真题
详解
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
知识
技术
分子生物 学
精华
分子
复习
代谢
笔记
真题
教材 复习
生物
第版
笔记
结构
真题
功能
基因
物质
内容摘要
内容摘要
第十三章真核基因 与基因组
第十五章 DNA损伤 与修复
第十六章 RNA的生 物合成
第十七章蛋白质的生 物合成
第十八章基因表达调 控
第十九章细胞信号转 导的分子机制
第十三章真核基因与基因组
生物化学第五节 物质代谢调节的主要方式
第五节物质代谢调节的主要方式2015-07-07 71910 0为适应内外环境的变化、实现细胞的各种生物学功能,需对代谢进行精细调节,使各种物质的代谢井然有序,相互协调进行。
这是生物体的基本特征,是在生物进化过程中形成的一种适应能力。
代谢调节的复杂程度随进化程度增加而增高。
单细胞生物主要通过细胞内代谢物浓度的变化,对酶的活性及含量进行调节,即所谓原始调节或细胞水平代谢调节。
高等生物不仅细胞水平代谢调节更为精细复杂,还出现了内分泌细胞及内分泌器官,形成了通过激素发挥代谢调节作用的激素水平代谢调节。
高等动物的代谢调节还涉及复杂的神经系统,形成了在中枢神经系统控制下,多种激素相互协调,对机体代谢进行综合调节的所谓整体水平代谢调节。
上述三级代谢调节中,细胞水平代谢调节是基础,激素及神经对代谢的调节需通过细胞水平代谢调节实现。
一、细胞水平的物质代谢调节主要调节关键酶活性(一)各种代谢酶在细胞内区隔分布是物质代谢及其调节的亚细胞结构基础在同一时间,细胞内有多种物质代谢进行。
参与同一代谢途径的酶,相对独立地分布于细胞特定区域或亚细胞结构(表12-2),形成所谓区隔分布,有的甚至结合在一起,形成多酶复合体。
酶的这种区隔分布,能避免不同代谢途径之间彼此干扰,使同一代谢途径中的系列酶促反应能够更顺利地连续进行,既提高了代谢途径的进行速度,也有利于调控。
表12-2 主要代谢途径(多酶体系)在细胞内的分布(二)关键酶活性决定整个代谢途径的速度和方向每条代谢途径由一系列酶促反应组成,其反应速率和方向由其中一个或几个具有调节作用的关键酶活性决定。
这些在代谢过程中具有调节作用的酶称为关键酶( key enzyme),特点包括:①常常催化一条代谢途径的第一步反应或分支点上的反应,速度最慢,其活性能决定整个代谢途径的总速度。
②常催化单向反应或非平衡反应,其活性能决定整个代谢途径的方向。
③酶活性除受底物控制外,还受多种代谢物或效应剂调节。
生物化学与分子生物学(人卫第九版)-10代谢的整合与调节
2. 别构效应剂通过改变酶分子构象改变酶活性
别构酶
催化亚基 调节亚基
别构效应剂: 底物、终产物 其他小分子代谢物
别构效应剂 + 酶的调节亚基
疏松
紧密
酶的构象改变
亚基聚合
亚基解聚
酶分子多聚化
酶的活性改变 (激活或抑制 )
※ 别构效应的机制有两种:
(1)调节亚基含有一个“假底物”(pseudosubstrate)序列 “假底物”序列能阻止催化亚基结合底物,抑制酶活性;效应剂结合调
F-2,6-BP、AMP、ADP、F-1,6-BP F-1,6-BP、ADP、AMP
AMP、CoA、NAD+、ADP、AMP 乙酰CoA、草酰乙酸、ADP
ADP、AMP AMP
乙酰CoA 乙酰CoA、柠檬酸、异柠檬酸 ADP、GDP PRPP
柠檬酸、ATP ATP、丙氨酸 葡糖-6-磷酸 ATP、乙酰CoA、NADH 柠檬酸、NADH、ATP 琥珀酰CoA、NADH ATP ATP、葡糖-6-磷酸 葡萄糖、F-1,6-BP、F-1-P AMP 软脂酰CoA、长链脂酰CoA ATP、GTP IMP、AMP、GMP UMP
节亚基导致“假底物”序列构象变化,释放催化亚基,使其发挥催化作用。 如cAMP激活PKA。
(2)别构效应剂与调节亚基结合,能引起酶分子三级和/或四级结构在“T” 构象(紧密态、无活性/低活性)与“R”构象(松弛态、有活性/高活性) 之间互变,从而影响酶活性。如氧调节Hb。
3. 别构调节使一种物质的代谢与相应的代谢需求和相关物质的代谢协调 别构效应剂(底物、终产物、其他小分子代谢物)
(二)关键酶活性决定整个代谢途径的速度和方向
※ 关键酶(key enzymes) 代谢过程中具有调节作用的酶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 脂肪的分解代谢受糖代谢的影响 饥饿、糖供应不足或糖代谢障碍时:
脂肪大量动员 糖不足
酮体生成增加 草酰乙酸 相对不足 氧化受阻
高酮血症
基础医学院生物化学教研室
(二)体内糖与大部分氨基酸碳架部分可以 相互转变
1. 大部分氨基酸脱氨基后,生成相应的α-酮酸, 可转变为糖 例如:
丙氨酸
脱氨基
丙酮酸
废物排泄
各种物质代谢之间互有联系,相互依存。
基础医学院生物化学教研室
二、机体物质代谢不断受到精细调节
内外环境 不断变化 影响机体代谢
适应环境 的变化
基础医学院生物化学教研室
机体有精细的调节 机制,调节代谢的 强度、方向和速度
三、各组织、器官物质代谢各具特色
结构不同 不同的组 织、器官 酶系的种类、 含量不同 代谢途径不同、 功能各异
基础医学院生物化学教研室
2
教学目标
能力目标: 1.通过变构调节的学习能解释机体根据需 求产生能量,避免产能过多造成浪费; 2.通过化学修饰调节的学习能解释血液凝 固级联酶促反应,形成级联放大效应。
基础医学院生物化学教研室
3
教学目标
情感目标: 1.注重职业素质教育,培养学生良好的职 业道德,树立全心全意为病人服务的医德医风; 2.培养学生实事求是的科学态度; 3.提高分析问题和解决问题的能力; 4.培养学生沟通、团结协作的整体观念。
例如: ATP 增多 ATP/ADP 比值增高
脂肪分解增强
糖分解被抑制
基础医学院生物化学教研室
6-磷酸果糖激酶-1被抑制 (糖分解代谢限速酶之一)
饥饿时:
肝糖原分解 ,肌糖原分解
1~2天 肝糖异生,蛋白质分解
3~4周
以脂酸、酮体分解供能为主 蛋白质分解明显降低
基础医学院生物化学教研室
二、糖、脂和蛋白质代谢通过中间代 谢物而相互联系
糖异生
葡萄糖
基础医学院生物化学教研室
2. 糖代谢的中间产物可氨基化生成某些非必需 氨基酸
丙氨酸
糖 丙酮酸
天冬氨酸
草酰乙酸 α-酮戊二酸 谷氨酸
乙酰CoA
柠檬酸
基础医学院生物化学教研室
(三)脂类不能转变成氨基酸,但氨基酸能 转变成脂肪
1. 蛋白质可以转变为脂肪 氨基酸 乙酰CoA 脂肪
2. 氨基酸可作为合成磷脂的原料 丝氨酸 磷脂酰丝氨酸
第四节
重要组织、器官的代谢特点 及联系
Metabolic Specialty & Interrelationships of Important Tissues & Apparatus in the Body
基础医学院生物化学教研室
讲授新课
◆细胞水平的调节 ◆自学激素和整体水平 的调节
基础医学院生物化学教研室
第一节
物质代谢的特点
The Specialty of Metabolism
基础医学院生物化学教研室
一、体内各种物质代谢过程互相联系 形成一个整体
脂类
糖类 蛋白质 水 无机盐
消化吸收
中间代谢
维生素
(一)体内糖可转变脂肪,但(偶数)脂肪酸 不能转变成糖
1. 摄入的糖量超过能量消耗时: 合成糖原储存(肝、肌肉) 葡 萄 糖 合成脂肪 (脂肪组织)
乙酰CoA
基础医学院生物化学教研室
2. 脂肪的甘油部分能在体内转变为糖
甘油
甘油激酶
肝、肾、肠
磷酸-甘油
脂 肪
脂酸
葡 萄 糖
乙酰CoA
葡萄糖
基础医学院生物化学教研室
基础医学院生物化学教研室
四、各种代谢物均具有各自共同的 代谢池
例如: 消化吸收的糖 肝糖原分解 糖异生 糖 各 种 组 织
血
基础医学院生物化学教研室
五、ATP是机体储存能量和消耗能量 的共同形式
营养物 分解
释放 能量
ADP+Pi
直 接 供 能
ATP
基础医学院生物化学教研室
六、NADPH提供合成代谢所需的还原当量
甘氨酸
合成嘌呤 2. 磷酸核糖由磷酸戊糖途径提供
基础医学院生物化学教研室
合成嘧啶
葡萄糖、糖原
Ala Trp Ser Gly Thr Cys
脂肪 甘油
脂酸
丙酮酸 乙酰CoA
胆固醇、酮体
Leu、Lys
Asp
草酰乙酸
α- 酮戊二酸
Glu
Val, Ile, Met, Thr
Arg His Pro
Tyr 延胡索酸 Pro 基础医学院生物化学教研室 琥珀酸
例如: 磷酸戊糖途径
NADPH + H +
乙酰CoA
基础医学院生物化学教研室
脂酸、胆固醇
第二节 物质代谢的相互联系
Metabolic Interrelationships
基础医学院生物化学教研室
一、各种能量物质的代谢相互联系 相互制约
三大营养素可在体内氧化供能。 三大营养素 糖 脂肪 乙酰CoA
胆胺
胆碱
基础医学院生物化学教研室
脑磷脂
卵磷脂
3. 脂肪的甘油部分可转变为非必需氨基酸 脂肪 甘油 磷酸甘油醛
糖酵解途径
丙酮酸 某些非必需氨基酸 其他α-酮酸 —— 但不能说,脂类可转变为氨基酸。
基础医学院生物化学教研室
(四)某些氨基酸是核苷酸/核酸合成的前体
1. 氨基酸是体内合成核酸的重要原料
天冬氨酸 谷氨酰胺 一碳单位
第12章
物质代谢的整合与调节
Metabolic Interrelationships & Regulation
基础医学院生物化学教研室
教学目标
知识目标: 1.掌握细胞水平的调节,包括变构调节和化学 修饰调节的概念。 2.熟悉变构调节的机理及生理意义和化学修 饰调节的特点。 3.了解激素水平的代谢调节,糖、脂和蛋白 质代谢之间的相互关系;了解酶含量的调节、 整体水平的调节。
2H
共同中 间产物
共同最终 代谢通路
TAC
CO2Βιβλιοθήκη 蛋白质基础医学院生物化学教研室
ATP
从能量供应的角度看,三大营养素可以
互相代替,并互相制约。
一般情况下,机体优先利用燃料的次序
是糖原、脂肪和蛋白质。供能以糖及脂为主
,并尽量节约蛋白质的消耗。
基础医学院生物化学教研室
任一供能物质的代谢占优势,常能抑制 和节约其他物质的降解。
基础医学院生物化学教研室
4
教学重点、难点
重点:细胞水平调节——酶的变构调节、 化学修饰调节。 难点:物质代谢的特点与联系。
基础医学院生物化学教研室
5
学时分配
根据教学大纲,本章节为2学时:
归纳总结:5分钟 反馈练习:5分钟 教学内容:80分钟
基础医学院生物化学教研室
导入新课:10分钟
6
导入新课
从复习物质代谢特点及联系入手,设计与细胞水平调 节有关的问题,引发学生的思考。 如教师提问: ①例举学习过的酶缺乏和疾病的关系? ②糖、脂、蛋白质、核苷酸主要是怎样调节的?