k-means算法的简单示例备课讲稿

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9

Example

E

C

D

P(1.6,4.8)

A

B

F

G

H

Q(4.8,1.6)

I

J

A dPA 1

<

< B dPB 0.89

< C dPC 0.63 < D dPD 0.45

< E dPE 1.26 > F dPF 3.69

> G dPG 4.40 > H dPH 5.22

> I dPI 4.49 > J dPJ 5.10
3. Each cluster's center is recomputed as the average of the points in that cluster.
4. Iterate step 2 or more until the new center of cluster equals to the original center of cluster or less than a specified threshold,then clustering finished.

α , β as the centre and K=2.
Step 2 again.

So,we classify A,B,C,D,E as a cluster and F,G,H,I,J as another cluster.

8

Example

E

C

D

α(1,4.5)

A

B

cluster 1

β(3.75,2.875)

F

G

H

I

J

cluster 2

α , β as the centre and K=2.

Step 3 again.

cente(rxi ,yj)
ij
PA,B,C,D,E(1.6,4.8)
new center
Q F,G,H,I,J(4.8,1.6)
The new centers of the two clusters are P(1.6,4.8) and Q(4.8,1.6)
k-means算法的简单示例

3
Algorithm Procedure
1. Randomly select K points from complete samples as the initial center.(That's what k means in K-means)
2. Each point in the dataset is assigned to the closed cluster,based upon the Euclidean distance between each point and each cluster center.

The new centers of the two clusters are (1,4.5) and (3.75,2.875)

7

Example

E

C

D

α(1,4.5)

A

B

β(3.75,2.875)

F

G

H

I

J

< A dA 0.5 < B dB 1.12 < C dC 0.5 < D dD 1.12

10

Example

cluster 1
E

C

D

P(1.6,4.8)

A

B

cente(rxi ,yj)
ij
M A,B,C,D ,E(1.6,4.8)
new center
NF,G ,H,I,J(4.8,1.6)

F
cluster 2 I

G

H

Q(4.8,1.6)

J

P , Q as the centre and K=2.

12
Disadvantages

one of the main

disadvantages to k-means is

dQA 4.49 dQB 3.69 dQC 5.10 d QD 4.4
dQE 5.22 dQF 0.89 dQG 0.45 dQH 1.26 dQI 1 dQJ 0.63

Step 2 again.

So,we classify A,B,C,D,E as a cluster and F,G,H,I,J as another cluster.
Step 3 again.

The new centers of

the two clusters are

equal to the original

P(1.6,4.8)

and

Q(4.8,1.6)

11
Final

E CD

A

B

cluster 1

cluster 2

F

G

H

I

J

Clustering finished !

4

Example

E

C

D

A

B

F

G

H

I

J

How to cluster A,B...H,J into two clusters?

5

Example

E

CD

d AC

d BC

A(1,4) B(2,4)

F

G

H

I

J

Randomly choose A,B as the centre and K=2.
Step 1 and 2.

>

dBG 3.61 dBH 4.47
dBI 3.61 dBJ 4.24

d AB means distance A→B

So,we classify A,C as a cluster and B,E,D,F,G,H,I and J as another cluster.

6

Example

E CD A(1,4) B(2,4)
cluster 1

cluster 2

F

G

H

I

J

cente(rxi ,yj)
ij
A,C(1 21,4 25)(1,4.5)
new center
B,D ,E,F,G ,H ,I,J(3.7,2 5.87 )

Randomly choose A,B as the centre and K=2.
Swk.baidu.comep 3.
< E dE 1.8 > F dF 3.91
> G dG 4.72 > H dH 5.59
> I dI 4.61 > J dJ 5.32

d A 2.97 d B 2.08 dC 3.48 dD 2.75
d E 3.58 d F 0.91
dG 1.53 d H 2.41
d I 1.89 d J 2.25

A dAA 0

< dBA 1

B

dAB 1

>

dBB 0

C dAC 1

< dBC 1.41

> D dAD 1.41

dBD 1

> E dAE 2.24

dBE 2

> F dAF 3.61

dBF 2.83

> G dAG 4.47 > H dAH 5.39

> I dAI 4.24

J d AJ 5
相关文档
最新文档