七年级数学立体图形的表面展开图测试题

合集下载

初中数学苏科版七年级上册第五章 走进图形世界5.3 展开与折叠-章节测试习题(2)

初中数学苏科版七年级上册第五章 走进图形世界5.3 展开与折叠-章节测试习题(2)

章节测试题1.【答题】如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是()A. 丽B. 连C. 云D. 港【答案】D【分析】正方体的平面展开图中,相对面的特点是必须相隔一个正方形,据此作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“港”是相对面,“丽”与“连”是相对面,“的”与“云”是相对面.选D.2.【答题】如图,把下边的图形折叠起来,还原为正方体,它会变为()A.B.C.D.【答案】B【分析】利用正方体及其表面展开图的特点解题.【解答】A、有O的一面所对的面没记号,还有两个没记号的面相对,所以A选项错误;B、有O的一面与没记号的面和有横线的面相邻,所以B选项正确;C、有横线的两面相对,所以C选项错误;D、横线与O的位置关系不对,所以D选项错误.选B.3.【答题】把一个正方体展开,不可能得到的是()A.B.C.D.【答案】B【分析】根据平面图形的折叠及正方体的展开图解题.注意带“田”字的不是正方体的平面展开图.【解答】解: B选项带“田”字的不是正方体的平面展开图.选B.4.【答题】下列平面图形经过折叠不能围成正方体的是()A.B.C.D.【答案】C【分析】利用正方体及其表面展开图的特点解题.【解答】根据正方体展开的图形可得:A、B、D选项可以折叠成正方体,C选项不能.选C.【方法总结】能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.注意只要有“田”字格的展开图都不是正方体的表面展开图.5.【答题】如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A. 传B. 统C. 文D. 化【答案】C【分析】根据两个面相隔一个面是对面,再根据翻转的规律,可得答案.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“扬”与“统”相对,面“弘”与面“文”相对,“传”与面“化”相对.选C.6.【答题】如图1所示,将一个正四棱锥(底面为正方形,四条测棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是()A. PA,PB,AD,BCB. PD,DC,BC,ABC. PA,AD,PC,BCD. PA,PB,PC,AD【答案】A【分析】根据棱锥的展开图特点判断即可.【解答】由棱锥的展开特点知,被剪开的四条边有可能是PA,PB,AD,BC.选A.7.【答题】下列各图中,可以是一个正方体的表面展开图的是()A.B.C.D.【答案】B【分析】利用正方体及其表面展开图的特点解题.【解答】正方体的展开图形共有11种情况,如下图所示:选项中只有B选项符合;故选B.。

立体图形的表面展开图 课时练习-2022-2023学年 华东师大版七年级数学上册

立体图形的表面展开图 课时练习-2022-2023学年 华东师大版七年级数学上册

4.3立体图形的表面展开图(附解析)一、单选题(共10个小题)1.如图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是()A.B.C.D.2.图1、图2中的正方形的大小相同,将图1的正方形放在图2中的①、②、③、④的某个位置,与实线中的正方形所组成的图形能围成正方体的位置是()A.①B.②C.③D.④3.图中不是正方体的表面展开图的是()A.B.C.D.4.小红制做了一个正方体玩具,其展开图如图所示,原正方体中与“全”字所在的面上标的字相对的字应是()A.全B.国C.明D.城5.一个正方体的相对的表面上所标的数都是互为相反数的两个数,如图是这个正方体的表面展开图,那么图中x的值是()A.-8 B.-3 C.-2 D.36.如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()A.4 B.6 C.12 D.157.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.8.把一个底面半径是5厘米,高10厘米的圆柱底面分成许多相等的扇形(如下图),切开后,再拼起来,得到一个近似的长方体.拼成后这个长方体的表面积与原来的圆柱体表面积相比,结果().A.不变B.变小C.变大9.下列图形不能作为一个三棱柱的展开图的是()A. B. C.D.10.如图是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与4重合的数字是()A.9和13B.2和9C.1和13D.2和8二、填空题(共10个小题)11.如图是一个长方体的展开图,如果A面在底面,那么_______面在上面.12.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则3x+2y的值为__________.13.如果五棱柱的底面边长都是2 cm,侧棱长都是4 cm,那么它所有棱长的和是_______ cm,它的侧面展开图的面积是________ cm2.14.如图是一个长方体的表面展开图,其中四边形ABCD是正方形,根据图中标注的数据可求得原长方体的积是_______.15.如图可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小是________.16.在下图的网格中选择一个涂上阴影,使全部阴影图形经折叠后能够形成一个正方体,一共有________种不同的涂法.17.如图①是边长为2的六个小正方形组成的图形,它可以围成如图②所示的正方体,则图①中小正方形的顶点A,B在围成的正方体上的距离是_____.18.一个长方体包装盒展开后如图所示(单位:cm),则其容积为__________cm3.19.如图①是一个小正方体的侧面展开图,小正方体从如图②所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,这时小正方体朝上面的字是__________.20.如图,将3个同样的正方体重叠放置在桌面上,每个正方体的6个面上分别写有-3、-2、-1、1、2、3,相对的两面上写的数字互为相反数,现在有5个面的数字无论从哪个角度都看不到,这5个看不到的面上数字的乘积是________.三、解答题(共3个小题)21.如图所示的是一个正方体的展开图,它的每一个面上都写有一个自然数,并且相对的两个面的两个数字之和相等,求2a b c +-的值.22.把一个正方体的六个面分别标上字母A ,B ,C ,D ,E ,F 并展开如图所示,已知:2243A x xy y =-+ ,2232C x xy y =--,()12B C A =-,若正方体相对的两个面上的多项式的和都相等,试用含x ,y 的代数式表示多项式D ,并求当x =-1,y =-2时,多项式D 的值.23.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(画出一种情况即可)(3)小明说:他剪的所有棱中,最短的一条棱长为a,最长的一条棱是最短的一条棱的5倍.已知纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是88cm,求a的值及长方体纸盒的体积.4.3立体图形的表面展开图解析1.【答案】A【详解】解:A、折叠后才能围成一个正方体,故本选项符合题意;B、含有“田”字形,,故本选项不符合题意;C、折叠后有一行两个面无法折起来,而且都缺个面,折叠后才不能围成一个正方体,故本选项不符合题意;D、含有“田”字形,折叠后才不能围成一个正方体,故本选项不符合题意;故选:A2.【答案】C【详解】解:将图1的正方形放在图2中的①、②、④的位置出现重叠的面,所以不能围成正方体,只有放在图2中的③的位置,能围成正方体.故选:C.3.【答案】B【详解】解:A、符合一四一型,是正方体的表面展开图,则此项不符合题意;B、不符合正方体的展开图的几种模型图,不是正方体的表面展开图,则此项符合题意;C、符合三三型,是正方体的表面展开图,则此项不符合题意;D、符合二二二型,是正方体的表面展开图,则此项不符合题意;故选:B.4.【答案】C【详解】解:由正方体的展开图特点可得:与“全”字所在的面相对的面上标的字应是“明”.故选:C.5.【答案】D【详解】解:根据正方体表面展开图的特征可知,“-3”与“x”的面是相对的面,“y”与“8”的面是相对的面,“-2”与“2”的面是相对的面,相对的表面上所标的数是互为相反数,x=3,故选:D.6.【答案】B【详解】观察图形可知长方体盒子的长=3,宽=2,高=1,∴盒子的容积=3×2×1=6,故选:B.7.【答案】D【详解】根据展开图,可得空心圆与一个实心圆的面是相对的,只与一个实心圆面相邻,A、B、C都不符合题意,只有D符合题意,故选D.8.【答案】C【详解】解:把圆柱的底面平均分成许多相等的扇形后,拼成近似的长方体,切割前后表面积增加了两个以圆柱的高和底面半径为边长的长方形的面的面积, 即拼成后这个长方体的表面积变大.故选:C .9.【答案】A【详解】解:由图形可知作为一个三棱柱的展开图有B 、C 、D ;故不能作为一个三棱柱的展开图的是:A ;故选:A .10.【答案】D【详解】解:当把这个平面图形折成正方体时,与4重合的数字是2、8.故选:D .11.【答案】C【详解】解:由展开图可知,A 和C 相对,B 和D 相对,E 和F 相对,如果A 面在底面,那么C 面在上面.故答案为:C .12.【答案】-1【详解】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“5”与“23x -”是相对面,“y ”与“x ”是相对面,“-2”与“2”是相对面,∵相对的面上的数字或代数式互为相反数,∴2350x -+=,0x y +=,解得1x =-,1y =,∴32321x y +=-+=-.故答案为:-1.13.【答案】 40 40【详解】解:由题意,得棱长和为2×5×2+4×5=40, 侧面积为2×4×5=40. 故答案为:40,40.14.【答案】316cm ##16立方厘米【详解】解:根据题意得:原长方体的宽的4倍等于8cm,原长方体的高与长的和为6cm,∴原长方体的宽为82cm4=,∵四边形ABCD是正方形,∴原长方体的长等于2×2=4cm,∴原长方体的高等于6-4=2cm,∴原长方体的积是342216cm⨯⨯=.故答案为:316cm15.【答案】7【详解】解:观察图形的特点,动手折一折会更准确,知带数字1,2,4的面交于立方体的一个顶点,且和是最小的为7,故答案为:7.16.【答案】4【详解】如图,由四种不同的涂法.故答案为4.17.【答案】2【详解】解:将图①折成正方体后点A和点B为同一条棱的两个端点,故AB=2.故答案为:2.18.【答案】6000【详解】解:由题意可得,该长方体的高为:42﹣32=10(cm),宽为:32﹣10=20(cm),长为:(70﹣10)÷2=30(cm),故其容积为:30×20×10=6000(cm 3), 故答案为:6000.19.【答案】路【详解】解:由图1可知:“国”和“兴”是对面,“梦”和“中”是对面,“复”和“路”是对面, 再由图2可知,1、2、3、4、5分别对应的面是“兴”、“梦”、“中”、“兴”、“复”, 所以第5格朝上的字是“路”.所以答案是路.20.【答案】36【详解】最下面的正方体中,-3对面是3,-1对面是1,故上下两个面的数是2和-2, 中间正方体中,1对面是-1,-2对面是2,故上下两个面的数是3和-3,最上面的正方体中,2对面是-2,3对面是-3,1-对面是1,故无论从哪个角度都看不到的5个面的数字分别是2,-2,3,-3,1,∴它们的乘积是()()2233136⨯-⨯⨯-⨯=,故答案为:36.21.【答案】-2【详解】解:因为相对的两个面的两个数字之和相等,所以845a b c +=+=+,所以3a c -=-,1b c -=,所以2312a b c a c b c +-=-+-=-+=-.22.【答案】22374x xy y -+,5【详解】解:由图形可知A 与C 是相对的面,B 与D 是相对的面,由题意得:B +D =A +C ,∴D =(A +C )-B=(A +C )-()12C A - 1122A C C A =+-+ 3122A C =+ 222231(43)(32)22x xy y x xy y =-++--2222393162222x xy y x xy y =-++-- 22374x xy y =-+,当x =-1,y =-2时,23(1)7(1)(2)4D =⨯--⨯-⨯-+ 2(2)⨯-=5. 23.【答案】(1)8;(2)见解析;(3)2,200cm 3【详解】(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为a cm ,则长与宽相等为5a cm , ∵长方体纸盒所有棱长的和是88cm ,∴4(a +5a +5a )=88,解得a =2,∴这个长方体纸盒的体积为2×10×10=200(cm 3).。

【初中数学】人教版七年级上册第3课时 立体图形的表面展开图(练习题)

【初中数学】人教版七年级上册第3课时  立体图形的表面展开图(练习题)

人教版七年级上册第3课时立体图形的表面展开图(376)1.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱2.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来3.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功C.考D.祝4.如图是一个正方体,则它的表面展开图可以是()A. B. C. D.5.下列图形中,不是正方体的展开图的是()A. B. C. D.6.如图,是某种几何体表面展开图的图形.这个几何体是()A.圆锥B.球C.圆柱D.棱柱7.把图中第一行中的立体图形与第二行中它们各自的展开图连线.8.下列图形中可以作为一个三棱柱的展开图的是()A. B. C. D.参考答案1.【答案】:A【解析】:因为该几何体有4个面是三角形,一个面是四边形,所以这个几何体是四棱锥2.【答案】:D3.【答案】:B4.【答案】:B【解析】:A项,含有田字形,不能折成正方体,故A错误.B项,能折成正方体,故B正确.C项,含有凹字形,不能折成正方体,故C错误.D项,含有田字形,不能折成正方体.故D错误.故选 B5.【答案】:C6.【答案】:A【解析】:由圆锥的展开图特点作答.因为圆锥的展开图为一个扇形和一个圆形,故这个几何体是圆锥.故选A.7.【答案】:解:(1)B,(2)A,(3)D,(4)C8.【答案】:A【解析】:三棱柱展开后,侧面是三个长方形,上、下底面各是一个三角形.由此可得只有A是三棱柱的展开图.故选 A。

人教版七年级上第四章从不同的方向看物体及立体图形的展开与折叠(含答案)

人教版七年级上第四章从不同的方向看物体及立体图形的展开与折叠(含答案)
A.5B.4C.3D.2
7.某数学兴趣小组的同学探究用相同的小立方块搭成几何体的三视图及其变化规律,下面是他们画出的左视图与俯视图.由此可知,搭这个几何体时,最多需要的小立方块的个数是().
A.8B.9C.10D.11
二、解答题
8.图1是由7个小正方体(每个小正方体的棱长都是1)所堆成的几何体.请画出这个儿何体从正面、左面、上面三个方向看到的形状图;
14.24.
【详解】试题分析:长方体的左视图是一个矩形,因为它的面积为6,一边长为2,所以另一边长为3,从而得出长方体的高为3,因此长方体的体积等于2×4×3=24.故答案为24.
考点:由三视图判断几何体.
15.有
【分析】根据正方体展开图的性质即可求解.
【详解】解:由正方体的展开图可知,“☆”与“有”相对,“几”与“真”相对,“何”与“趣”相对.
10.如图是由10个大小相同的小立方体搭建的几何体,其中每个小立方体的棱长为1厘米.
(1)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图;
(2)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加个小正方体(直接填空).
11.如图,在 中, , , ,点 是 的中点,动点 从点 出发,以每秒 个单位长度的速度沿 运动.到点 停止.若设点 运动的时间是 秒( ).
人教版七年级上第四章
从不同的方向看物体及立体图形的展开与折叠
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.如图,根据三视图,这个立体图形的名称是()
A.长方体B.球体C.圆柱D.圆锥
2.如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是()

七年级数学上册 4.1.1第2课时从不同方向看立体图形与立体图形的展开图复习练习(新版)新人教版

七年级数学上册 4.1.1第2课时从不同方向看立体图形与立体图形的展开图复习练习(新版)新人教版

第2课时从不同方向看立体图形与立体图形的展开图1.[2017·台州]如图4-1-14所示的工件是由两个长方体构成的组合体,则从正面看到的图形是( )图4-1-142.[2017·襄阳]如图4-1-15所示的几何体是由6个大小完全一样的正方体组合而成的,它从上面看到的图形是( )图4-1-153.[2017·丽水]图4-1-16是底面为正方形的长方体,下面有关它的三个视图的说法正确的是( )图4-1-16A.从上面看到的图形与从正面看到的图形相同B.从左面看到的图形与从正面看到的图形相同C.从左面看到的图形与从上面看到的图形相同D.三个不同方向看到的平面图形都相同4.[2017·北京]图4-1-17是某个几何题的展开图,该几何体是( )图4-1-17A.三棱柱B.圆锥C.四棱柱D.圆柱5.[2017·舟山]一个立方体的表面展开图如图4-1-18所示,将其折叠成立方体后,“你”字对面的字是( )图4-1-18A.中B.考C.顺D.利6.如图4-1-19,从不同方向看一把茶壶,你认为从上面看到的图形是( )7.图4-1-20是一个正方体纸盒的外表面展开图,则这个正方体是( )8.若干个棱长为a的正方体摆放成如图4-1-21所示的几何体,回答下列问题:图4-1-21(1)有几个正方体?(2)表面积是多少?(3)当正方体的棱长为2时,它的表面积是多少?9.如图4-1-22,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小正方体,王亮所搭几何体的表面积为 .图4-1-22参考答案第2课时从不同方向看立体图形与立体图形的展开图【分层作业】1.A 2.A 3.B 4.A 5.C 6.A 7.C8.(1)7个(2)30a2(3)120 9.19 48。

华师大七年级上43立体图形的展开图2同步练习含答案解析

华师大七年级上43立体图形的展开图2同步练习含答案解析

2019年华师大版七年级数学上册同步测试:4.3 立体图形的展开图(02)一、选择题(共21小题)1.一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的面上的汉字是()A.建B.设C.和D.谐2.如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()A.大B.伟C.国D.的3.如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是()A.1 B.4 C.5 D.64.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“共”字一面的相对面上的字是()A.美B.丽C.家D.园5.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.云D.南6.如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是()A.中B.钓C.鱼D.岛7.一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()8.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有()A.1种B.2种C.3种D.6种9.如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对B.相邻C.相隔D.重合10.图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.梦B.水C.城D.美11.在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面相对的面上标的字应是()A.全B.明C.城D.国12.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦13.如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“魅”相对的面上的汉字是()A.我B.爱C.辽D.宁14.正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是()15.小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是()A. B.C.D.16.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦17.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功C.考D.祝18.右图是正方体的平面展开图,每个面上标有一个汉字,与“考”字相对的字是()A.祝B.你C.成D.功19.如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()A.创B.教C.强D.市20.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A.0 B.2 C.数D.学21.如图是某正方体的表面展开图,则展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友二、填空题(共5小题)22.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).23.如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是.24.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2019次后,骰子朝下一面的点数是.25.在右边的展开图中,分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a= ,b= ,c= .26.以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是.2019年华师大版七年级数学上册同步测试:4.3 立体图形的展开图(02)参考答案与试题解析一、选择题(共21小题)1.一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的面上的汉字是()A.建B.设C.和D.谐【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“和”与“岳”是相对面,“建”与“阳”是相对面,“谐”与“设”是相对面.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()A.大B.伟C.国D.的【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“伟”与面“国”相对,面“大”与面“中”相对,“的”与面“梦”相对.故选D.【点评】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.3.如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是()A.1 B.4 C.5 D.6【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“2”与“4”是相对面,“3”与“5”是相对面,“1”与“6”是相对面.故选B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“共”字一面的相对面上的字是()A.美B.丽C.家D.园【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“共”与“园”是相对面,“建”与“丽”是相对面,“美”与“家”是相对面.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.云D.南【考点】专题:正方体相对两个面上的文字.【分析】根据正方体的特点得出其中上面的和下面的是相对的2个面,即可得出正方体中与“建”字所在的面相对的面上标的字是“南”.【解答】解:由正方体的展开图特点可得:“建”和“南”相对;“设”和“丽”相对;“美”和“云”相对;故选D.【点评】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.6.如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是()A.中B.钓C.鱼D.岛【考点】专题:正方体相对两个面上的文字.【专题】常规题型.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“国”字相对的字是“鱼”.故选:C.【点评】本题考查了正方体相对的两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()A.记B.观C.心D.间【考点】专题:正方体相对两个面上的文字.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“值”字相对的字是“记”.故选:A.【点评】本题考查了正方体相对的两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有()A.1种B.2种C.3种D.6种【考点】专题:正方体相对两个面上的文字.【分析】由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况.【解答】解:一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况,故选:C.【点评】此题考查了正方体相对两个面上的数字,解决本题的关键是明确1~6中偶数有2,4,6三个.9.如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对B.相邻C.相隔D.重合【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面,“我”与“祖”是相对面,“爱”与“的”是相对面.故原正方体上两个“我”字所在面的位置关系是相邻.故选B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.10.图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.梦B.水C.城D.美【考点】专题:正方体相对两个面上的文字.【分析】根据两个面相隔一个面是对面,再根据翻转的规律,可得答案.【解答】解:第一次翻转梦在下面,第二次翻转中在下面,第三次翻转国在下面,第四次翻转城在下面,城与梦相对,故选:A.【点评】本题考查了正方体相对两个面上的文字,两个面相隔一个面是对面,注意翻转的顺序确定每次翻转时下面是解题关键.11.在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面相对的面上标的字应是()A.全B.明C.城D.国【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:由正方体的展开图特点可得:与“文”字所在的面上标的字应是“城”.故选:C.【点评】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.12.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.13.如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“魅”相对的面上的汉字是()A.我B.爱C.辽D.宁【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“力”是相对面,“爱”与“辽”是相对面,“魅”与“宁”是相对面.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是()A.1 B.5 C.4 D.3【考点】专题:正方体相对两个面上的文字.【分析】正方体的六个面分别标有1,2,3,4,5,6六个数字,这六个数字一一对应,通过三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,然后由第二个图和第三个图可看出与6相邻的数有1,2,3,4,所以与6相对的数是5.【解答】解:由三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,由第二个图和第三个图可看出与6相邻的数有1,2,3,4,所以与6相对的数是5.故选B.【点评】本题主要考查了正方体相对两个面上的文字,利用三个数相邻的两个图形进行判断即可.15.小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是()A. B.C.D.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,A、“油”与“子”是相对面,故本选项错误;B、“芦”与“子”是相对面,故本选项错误;C、“芦”与“子”是相对面,故本选项错误;D、“芦”与“学”是相对面,“山”与“子”想相对面,“加”与“油”是相对面,故本选项正确.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.16.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.故选:D.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.17.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“成”与面“功”相对,面“预”与面“祝”相对,“中”与面“考”相对.故选:B.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.18.右图是正方体的平面展开图,每个面上标有一个汉字,与“考”字相对的字是()A.祝B.你C.成D.功【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“祝”字相对的字是“试”字,“考”字相对的字是“成”字,“你”字相对的字是“功”字.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.19.如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“建”与“强”是相对面.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.20.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A.0 B.2 C.数D.学【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“数”相对的字是“1”;“学”相对的字是“2”;“5”相对的字是“0”.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.21.如图是某正方体的表面展开图,则展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题(共5小题)22.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱①③④(写出所有正确结果的序号).【考点】截一个几何体.【分析】当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三角形.【解答】解:①正方体能截出三角形;②圆柱不能截出三角形;③圆锥沿着母线截几何体可以截出三角形;④正三棱柱能截出三角形.故截面可能是三角形的有3个.故答案为:①③④.【点评】本题考查几何体的截面,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.23.如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是泉.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“力”与“城”是相对面,“香”与“泉”是相对面,“魅”与“都”是相对面.故答案为泉.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.24.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2019次后,骰子朝下一面的点数是3 .【考点】专题:正方体相对两个面上的文字;规律型:图形的变化类.【专题】规律型.【分析】观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.【解答】解:观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2019÷4=503…2,∴滚动第2019次后与第二次相同,∴朝下的点数为3,故答案为:3.【点评】本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.25.在右边的展开图中,分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a= 6 ,b= 2 ,c= 4 .【考点】专题:正方体相对两个面上的文字.【分析】根据正方体的展开图的特点,找到向对面,再由相对面上的数字之和相等,可得出a、b、c的值.【解答】解:1与a相对,5与b相对,3与c相对,∵1+a=5+b=3+c,六个面上的数字为分别1,2,3,4,5,6∴a=6,b=2,c=4;故答案为:6,2,4.【点评】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.26.以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是(1)(3).【考点】展开图折叠成几何体.【专题】压轴题.【分析】由平面图形的折叠及三棱锥的展开图解题.【解答】解:只有图(1)、图(3)能够折叠围成一个三棱锥.故答案为:(1)(3).【点评】本题考查了展开图折叠成几何体的知识,属于基础题型.。

12 展开与折叠(备作业)-2021-2022学年七年级数学上(北师大版)(解析版)

12 展开与折叠(备作业)-2021-2022学年七年级数学上(北师大版)(解析版)

1.2展开与折叠一、单选题1.下面四个图形中,不能做成一个正方体的是()A.B.C.D.【答案】D【解析】根据空间想象能力判断出四个选项中不能拼成正方体的那个.A、B、C选项都是正确的;D选项拼起来之后会有一个面重合,不正确.故选:D.【点睛】本题考查正方体展开图的识别,解题的关键是要通过空间想象能力进行判断.2.下列图形中,是正四棱柱展开图的是()A.B.C.D.【答案】C【解析】根据正四棱柱展开图的特点即可求解.A选项,正四棱柱的展开图中应该有两个正方形,故本选项错误;B选项,正四棱柱的展开图中,两个小正方形应该分别在上下两侧,故本选项错误;C选项,该图是正四棱柱的展开图,故本选项正确;D选项,正四棱柱的展开图中应该有四个长方形,故本选项错误.故选C.【点睛】此题主要考查几何体展开图的判断,解题的关键是熟知正四棱柱展开图的特点.3.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是().A.B.C.D.【答案】C【解析】根据几何体的展开图,可得答案.A选项,不能折成正方体,故该选项错误;B选项,不能折成圆锥,故该选项错误;C选项,能折成圆柱,故该选项正确;D选项,不能折成三棱柱,故该选项错误.故选C.【点睛】本题主要考查了展开图折叠成几何体,熟记常见几何体的展开图是解题的关键.4.用如图所示的纸片折成一个长方体纸盒,折得的纸盒是( ).A.B.C.D.【答案】C【解析】分别找出长方体的对面,进而可得答案.解:如图所示:根据题意可知,A的对面是A',B的对面是B',C的对面是C',A面阴影的短边与C面阴影的一边重合.故用如图所示的纸片折成一个长方体纸盒,折得的纸盒是C.故选:C.【点睛】本题考查了长方体的展开图,属于常见题型,注意从相对面入手是解题的关键.、都重合的点是()5.把下图形折叠成长方体后,与F NA.L点B.A点C.J点D.I点【答案】C【解析】根据长方体的展开图即可得.由长方体的展开图可知,矩形ABIJ、矩形HGNM、矩形DEFG是长方体的三IJ MN GF相交于一点个相邻面,边,,、都重合的点是J点则与F N故选:C.【点睛】本题考查了长方体的展开图,掌握理解长方体的展开图是解题关键.6.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是()A.丽B.连C.云D.港【答案】D【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“港”是相对面,“丽”与“连”是相对面,“的”与“云”是相对面.故选D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.圆锥,正方体,三棱柱,圆柱【答案】D【解析】根据常见的几何体的展开图进行判断,即可得出结果.根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:圆锥,正方体,三棱锥,圆柱;故选:D【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解决此类问题的关键.8.在课题学习中,老师要求用长为12厘米,宽为8厘米的长方形纸片制作一个无盖的长方体纸盒.三位同学分别以下列方式在长方形纸片上截去两角(图中阴影部分),然后沿虚线折成一个无盖的长方体纸盒.甲:如图1,盒子底面的四边形ABCD 是正方形;乙:如图2,盒子底面的四边形ABCD 是正方形;丙:如图3,盒子底面的四边形ABCD 是长方形,AB=2AD .将这三位同学所折成的无盖长方体的容积按从大到小的顺序排列,正确的是A .甲>乙>丙B .甲>丙>乙C .丙>甲>乙D .丙>乙>甲【答案】C【解析】 分别将甲乙丙三位同学折成的无盖长方体的容积计算出来,即可比较大小.甲:长方体的长为5cm ,宽为3 cm ,高为3 cm ,容积为353345cm ⨯⨯=乙:长方体的长为10 cm ,宽为2 cm ,高为2 cm ,容积为3102240cm ⨯⨯=丙:长方体的长为6 cm ,宽为4 cm ,高为2 cm ,容积为364248cm ⨯⨯=所以,丙>甲>乙故选C【点睛】本题主要考查了长方体的体积,掌握长方体的体积公式是解题的关键.9.将如图所示的几何体沿某些棱剪开,展开成一个平面图形,要剪开的棱数是( )A.4 条B.5 条C.6 条D.7 条【答案】B【解析】由平面图形的折叠以及立体图形的表面展开图的特点结合思考,即可得出答案.上下两个底面需要各剪开两条棱,侧面需要剪开一条棱,所以至少需要剪开5条棱,故答案选择B.【点睛】本题考查了几何体表面展开图的特征,易错易混点是学生对相关图的位置想象不准确.10.如图表示一个无盖的正方体纸盒,它的下底面标有字母“M”,沿图中的粗线将其剪开展成平面图形,这个平面展开图是()A.B.C.D.【答案】C【解析】根据无盖可知底面M没有对面,再根据图形粗线的位置,可知底面的正方形与侧面的四个正方形从左边数第2个正方形的下边,然后根据选项选择即可.解:∵正方体纸盒无盖,∴底面M没有对面,∵沿图中的粗线将其剪开展成平面图形,∴底面与侧面的从左边数第2个正方形相连,根据正方体的表面展开图,相对的面之间一定相隔一个正方形可知,只有C选项图形符合.故选C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.沿着其中的四条棱剪开后,得到的展开图如图2所示,则剪开的四条棱11.将如图1所示的四棱锥A BCDE可以为()A.AC,AD,BC,DE B.AB,BE,DE,CDC.AC,BC,AE,DE D.AC,AD,AE,BC【答案】A【解析】根据四棱锥的展开图特点即可判断.由四棱锥的展开图可知,需剪开两条侧棱与两条底面的棱,并且侧棱需剪掉共点顶点,底面为相对的棱,故A正确;【点睛】此题主要考查四棱锥的展开图,解题的关键是熟知根据四棱锥的展开图的特点.12.将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是()A.B.C.D.【答案】B观察图形可知,将选项中的四个正方体分别展开后,所得的平面展开图与上面展开图不同的是选项B.二、填空题13.下列图形中,不能折成正方体的有___(填序号).【答案】①②④【解析】利用正方体及其表面展开图的特点解题即可得出答案.解:③可以折成正方体;①、②、④折叠后有一个面重合,缺少一个底面,故不能折成正方体.故答案为:①、②、④.【点睛】此题考查了展开图折叠成几何体.解题的关键是明确能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.14.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图,若图中的“锦”表示正方体的右面,则“_______”表示正方体的左面.【答案】程.【解析】根据展开图得到“锦”的对面是“程”.由展开图得到“锦”的对面是“程”,故填:程.【点睛】此题考查正方体展开的平面图,需熟知正方体展开的形式,由此即可正确解答.15.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,则剪掉的这个小正方形是________【答案】丁【解析】能围成正方体的“一四一”,“二三一”,“三三”,“二二二”的基本形态要记牢.解题时,据此即可判断答案.解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁,故答案为:丁.【点睛】本题考查了展开图折叠成正方体的知识,解题关键是根据正方体的特征,或者熟记正方体的11种展开图,只要有“田”,“凹”字格的展开图都不是正方体的表面展开图.16.如图,把某直三棱柱的表面展开图围成三棱柱后与A 重合的字母是_____.【答案】D 和M【解析】根据直三棱柱展开图特点即可判断A、D、M重合.将图形沿BF,CG、BC折叠,可得A、D、M重合,故答案为D 和M.【点睛】本题考察多面体展开图,需要一定空间想象能力.17.一个立体图形的表面展开图如图所示,这个立体图形顶点的个数是_________.【答案】6【解析】由平面图形的折叠及常见立体图形的展开图解题;这个几何体是三棱柱,它的顶点个数为6个.【点睛】本题考查立体图形的展开图,根据展开图判断立体图形是解题的关键.18.如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为0,则2x y -=________.【答案】6试题分析:由图中正方体平面展开图可知:x 与2是对面,y 与4是对面,因为相对面上两个数之和为0,所以x=-2,y=-4,所以x -2y=-2-2×(-4)=-2+8=6.考点:1.正方体平面展开图;2.有理数的计算.19.将一个边长为10cm 正方形,沿粗黑实线剪下4个边长为_________cm 的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.【答案】2.5试题分析:利用剪下部分拼成的图形的边长等于棱柱的底面边长求解即可.解:设粗黑实线剪下4个边长为xcm 的小正方形,根据题意列方程2x=10÷2解得x=2.5cm ,故答案为2.5.考点:展开图折叠成几何体.20.如图所示的三个图中,不是三棱柱的展开图的是_____.(只填序号)【答案】③【解析】根据三棱柱的两底展开是在矩形两端各有一个三角形,侧面展开是三个矩形,可得答案.解:三棱柱的两底展开是在矩形两端各有一个三角形,侧面展开是三个矩形,所以不是三棱柱的展开图的是③.故答案为:③.【点睛】本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形. 21.有一个六个面分别标上数字1、2、3、4、5、6的正方体,甲、乙、丙三位同学从不同的角度观察的结果如图所示.如果记2的对面的数字为,3m 的对面的数字为n ,则方程1x m n +=的解x 满足1,k x k k <<+为整数,则k =________.【答案】0【解析】由图甲、乙、丙可看出看出2的相对面是4;再由图乙、丙可看出3的相对面是6,从而确定m、n的值后即可确定答案.解:从图可以看出2和6、1、3、5都相邻,所以2的对面只能是4,即m=43和1、2、5、4相邻,那么3的对面是6,即n=6,∵m x+1=n,∴4x+1=6,∴1<x+1<2,∵k<x<k+1,k为整数,∴k=0.故答案为:0.【点睛】本题考查灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.22.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置水平桌面上,如图1.在图2中,将骰子向右翻滚90︒,然后在桌面上按逆时针方向旋转90︒,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是__________.【答案】5【解析】先向右翻滚,然后再逆时针旋转叫做一次变换,那么连续3次变换是一个循环.本题先要找出3次变换是一个循环,然后再求10被3整除后余数是1,从而确定第1次变换的第1步变换.解:根据题意可知连续3次变换是一循环.所以10÷3=3…1.所以是第1次变换后的图形,即按上述规则连续完成10次变换后,骰子朝上一面的点数是5.故应填:5.【点睛】本题考查了正方体相对两个面上的文字,是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题23.如图,是一个正方体纸盒的两个表面展开图,请把-4,3,9,6,-1,2分别填入六个面中,使得折成正方体后,相对面上的两数之和与-5互为相反数.【答案】答案见解析【解析】根据相反数的性质,得与-5互为相反数的数为:5,再根据有理数加法运算和正方体展开图的性质分析,即可得到答案.与-5互为相反数的数为:5根据题意计算,展开图如下:.【点睛】本题考查了有理数和立方体展开图的知识;解题的关键是熟练掌握相反数、有理数加法运算、正方体展开图的性质,从而完成求解.24.如图是长方体的展开图,若图中的正方形边长为6cm,长方形的长为8cm,宽为6cm,请求出由展开图折叠而成的长方体的表面积和体积.【答案】表面积:264cm2,体积:288 cm3【解析】根据表面积公式,可得答案;根据长方体的体积,可得答案.解:根据题意,则表面积=6×8×4+62×2=192+72=264cm2.折叠而成的长方体的体积=6×8×6=288cm3.【点睛】本题考查了展开图折叠成几何题,利用长方体展开图中每个面都有一个全等的对面是解题关键.25.下面是一个多面体的表面展开图每个面上都标注了字母,(所有字母都写在这一多面体的外表面)请根据要求回答问题:(1)如果面F在前面,从左边看是B,那么哪一面会在上面?(2)如果从右面看是面C面,面D在后边那么哪一面会在上面?(3)如果面A在多面体的底部,从右边看是B,那么哪一面会在前面.【答案】(1)C面会在上面;(2)A面会在上面;(3)C面会在前面【解析】利用长方体及其表面展开图的特点解题.这是一个长方体的平面展开图,共有六个面,其中面“A”与面“F”相对,面“B”与面“D”相对,面“C”与面“E”相对.解:(1)由图可知,如果F面在前面,B面在左面,那么“E”面下面,∵面“C”与面“E”相对,∴C面会在上面;(2)由图可知,如果C面在右面,D面在后面,那么“F”面在下面,∵面“A”与面“F”相对,∴A面在上面.(3)由图可知,如果面A在多面体的底部,从右边看是B,那么“E”面在后面,∵面“C”与面“E”相对,∴C面会在前面【点睛】考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.26.李明同学设计了某个产品的正方体包装盒如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有种弥补方法;(2)任意画出一种成功的设计图(在图中补充);(3)在你帮忙设计成功的图中,要把-6,8,10,-10,-8,6这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得0.(直接在图中填上)【答案】(1)4;(2)见解析;(3)见解析【解析】(1)根据正方体展开图特点:中间4联方,上下各一个,中间3联方,上下各1,2,两个靠一起,不能出“田”字,符合第一种情况,中间四个连在一起,上面一个,下面有四个位置,所以有四种弥补方法;(2)利用(1)的分析画出图形即可;(3)想象出折叠后的立方体,把数字填上即可,注意答案不唯一.解:(1)根据正方体展开图特点:中间4联方,上下各一个,中间3联方,上下各1,2,两个靠一起,不能出“田”字,符合第一种情况,中间四个连在一起,上面一个,下面有四个位置,所以共有4种弥补方法,故答案为:4;(2)如图所示:;(3)如图所示:.【点睛】此题主要考查了立体图形的展开图,识记正方体展开图的基本特征是解决问题的关键.27.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:已知这个长方体纸盒高为20cm,底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.【答案】(1)8;(2)见解析;(3)200000立方厘米【解析】1)根据长方体总共有12条棱,有4条棱未剪开,即可得出剪开的棱的条数;(2)根据长方体的展开图的情况可知有4种情况;(3)设底面边长为acm,根据棱长的和是880cm,列出方程可求出底面边长,进而得到长方体纸盒的体积.解:(1)由图可得,小明共剪了8条棱,故答案为:8.(2)如图,粘贴的位置有四种情况如下:(3)∵长方体纸盒的底面是一个正方形,∴可设底面边长acm,∵长方体纸盒所有棱长的和是880cm,长方体纸盒高为20cm,∴4×20+8a=880,解得a=100,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.【点睛】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.28.如图是从三个方向看几何体得到的形状图.(1)说出这个几何体的名称;(2)画出它的一种表面展开图;(3)若从正面看到的形状图的宽为4 cm,长为7 cm,从左面看到的形状图的宽为3 cm,从上面看到的形状图中斜边长为5 cm,求这个几何体所有棱长的和,以及它的表面积和体积.【答案】(1)三棱柱;(2)见解析;(3)这个几何体所有棱长的和为45cm,它的表面积为96cm2,体积为42cm3【解析】(1)根据三棱柱的三视图特征即可解答;(2)根据三棱柱的三视图特征,画出其表面展开图即可,答案不唯一;(3)根据题意可知,侧棱为7,共3条,两个底面三角形的三边长为3、4、5,继而相加即可求得棱长的和,结合表面积等于三个侧面与两个底面的面积和求得表面积,根据体积=底面积×侧棱即可求解.解:(1)这个几何体是三棱柱,(2)表面展开图如图所示(答案不唯一):(3)棱长和为:7×3+(3+4+5)×2=45cm表面积为:S=S(底)+S(侧)=12×3×4×2+(3+4+5)×7=96cm2体积为:V=S(底)×h=12×3×4×7=42cm3故:这个几何体所有棱长的和为45cm,它的表面积为96cm2,体积为42cm3.【点睛】本题主要考查三棱柱有关知识,解题的关键是熟练掌握三棱柱的特征,三视图,表面积及体积计算公式.29.我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是_______.(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列图形中,可能是该长方体表面展开图的有______(填序号)(3)下列图是题(2)中长方体的一种表面展开图,它的外围周长为52,事实上,题(2)中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.【答案】(1)B;(2)①②③;(3)画出这个表面展开图见解析;外围周长为70.【解析】(1)由平面图形的折叠及立体图形的表面展开图的特点解题;(2)由平面图形的折叠及立体图形的表面展开图的特点解题;(3)画出图象,根据外围周长的定义计算即可.(1)A折叠后不可以组成正方体;B折叠后可以组成正方体;C都是“2-4”结构,出现重叠现象,不能折成正方体,即不是正方体的表面展开图,故错误;D折叠后不可以组成正方体;故答案为:B;(2)可能是该长方体表面展开图的有①②③.故答案为:①②③;(3)外围周长最大的表面展开图,如图:观察展开图可知,外围周长为6×8+4×4+3×2=48+16+6=70.【点睛】本题考查了几何体的展开图,解题的关键是熟练掌握几何体的展开图的特征,属于中考常考题型.30.在一次青少年模型大赛中,小高和小刘各制作了一个模型,小高制作的是棱长为acm的正方体模型,小刘制作的是棱长为acm的正方体右上角割去一个长为3cm,宽为2cm,高为1cm的长方体模型(如图2)(1)用含a的代数式表示,小高制作的模型的各棱长度之和是___________;(2)若小高的模型各棱长之和是小刘的模型各棱长之和的56,求a的值;(3)在(2)的条件下,①图3是小刘制作的模型中正方体六个面的展开图,图中缺失的有一部分已经很用阴影表示,请你用阴影表示出其余缺失部分,并标出边的长度.②如果把小刘的模型中正方体的六个面展开,则展开图的周长是________cm;请你在图方格中画出小刘的模型中正方体六个面的展开图周长最大时的图形.【答案】(1)12a;(2)5;(3)①见解析;②72,图见解析【解析】(1)根据正方体由12条等长的棱即可计算.(2)根据立体图形求出小刘的模型的棱长之和,再根据题意即可列出关于a的方程,求出a即可.(3)①由题意可知另两个阴影再第一行和第三行第一个正方形内,再根据所给出的阴影,画出在第一行和第三行第一个正方形内的阴影即可.②展开图周长最长时,此时有12个5cm的边在展开图的最外围,画出此时的展开图,计算即可.(1)12×a=12acm (2)小高的模型的棱长之和为12acm,小刘的模型有9条长度为acm的棱,1条长度为(a-1)cm的棱,1条长度为(a-2)cm的棱,1条长度为(a-3)cm的棱,3条长度为1cm的棱,3条长度为2cm的棱,3条长度为3cm的棱,故小刘的模型的棱长之和为:9(1)(2)(3)132333(1212)a a a a a cm+-+-+-+⨯+⨯+⨯=+,根据题意可列512(1212)6a a=+解得:5a=(3)①如下图②如下图,此时展开图的周长512(12)32(31)72cm=⨯++++++=【点睛】本题考查正方体及其平面展开图,掌握正方体的几种展开图是解答本题的关键.。

4.3立体图形的表面展开图 (原卷版)-2020-2021学年七年级数学上册课时同步练(华师大版)

4.3立体图形的表面展开图 (原卷版)-2020-2021学年七年级数学上册课时同步练(华师大版)

第4章图形的初步认识4.3立体图形的表面展开图一、选择题:1.如图是一个正方体展开图,把展开图折叠成正方体后,与“忆”字相对面上的字是()A.时B.月C.长D.安2.如图,是一个正方体的一种平面展开图,正方体的每个面上都有一个汉字,那么在原正方体中和“培”字相对面的汉字是()A.我B.爱C.北D.大3.下列图形中,不是正方体的展开图的是()A.B.C.D.4.如图是一颗普通的骰子,根据图中三种状态所显示的点数,可以推出“?”处的点数是()A.1B.2C.3D.65.如图是一个正方体盒的展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得它们折成正方体后相对的面上的两个数互为相反数,则填入正方形ABC内的三个数依次为()A.﹣2,1,0B.0,﹣2,1C.0,2,1D.﹣2,﹣1,0二、填空题:6.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是_____.7.如图是正方体的表面展开图,把它折成正方体后“细”字对面的字是_____.8.已知一个不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么3和4所在面的对面数字分别是__________.9.如右图是正方体的一个平面展开图,如果原正方体前面的字为“友”,则后面的字为____________.10.如图,将3个同样的正方体重叠放置在桌面上,每个正方体的6个面上分别写有-3、-2、-1、1、2、3,相对的两面上写的数字互为相反数,现在有5个面的数字无论从哪个角度都看不到,这5个看不到的面上数字的乘积是________.三、解答题:11.如图,是一个正方体的六个面的展开图形(汉字和数字在正方体外部),回答下列问题:(1)“0”所对的面是.(2)若将其折叠成正方体,如果“7”所在的面在底面,“国”所在的面在后面,则上面是;前面是;右面是.(3)若将其折叠成正方体,“周”所在的面在前面,则上面不可能是.12.某产品的形状是长方体,长为8cm,它的展开图如图所示,求长方体的体积.13.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)++的值.14.如图所示的平面图形折叠成正方体后,相对面上的两个数之和为10,求x y z15.综合与实践:某“综合与实践”小组开展了“正方体纸盒的制作”实践活动,他们利用长为acm ,宽为bcm 长方形纸板制作出两种不同方案的正方体盒子, 请你动手操作验证并完成任务.(纸板厚度及接缝处忽略不计)动手操作一:如图1,若a b =,按如图1所示的方式先在纸板四角剪去四个同样大小边长为ccm 的小正方形,再沿虚线折合起来就可以做成一个无盖的正方体纸盒.问题解决:(1)此时,你发现c 与b 之间存在的数量关系为 .动手操作二:如图2,若a b >,现在在纸板的四角剪去两个小正方形和两个小长方形恰好可以制作成一个有盖的正方体纸盒,其大小与(1)中无盖正方体大小一样.拓展延伸:(2)请你在图2中画出你剪去的两个小正方形和两个小长方形(用阴影表示),折痕用虚线表示; (3)此时,你发现a 与b 之间存在的数量关系为 ;若40a cm =,求有盖正方体纸盒的表面积.16.一个正方体的六个面分别标有字母A ,B ,C ,D ,E ,F ,从三个不同方向看到的情形如图.(1)A 对面的字母是 ,B 对面的字母是 ;(请直接填写答案)(2)已知A =x ,B =﹣x 2+3x ,C =﹣3,D =1,E =x 2019,F =6.①若字母A 表示的数与它对面的字母表示的数互为相反数,求E 的值;②若2A﹣3B+M=0,求出M的表达式.。

初中数学苏科版七年级上册第五章 走进图形世界5.3 展开与折叠-章节测试习题(3)

初中数学苏科版七年级上册第五章 走进图形世界5.3 展开与折叠-章节测试习题(3)

章节测试题1.【答题】一个正方体的6个面上分别写有6个连续的整数(如图所示),且每两个相对面上的数字和相等,则与5相对的数字是______.【答案】8【分析】【解答】2.【题文】一个长方体的两组对面如图所示.那么,这个长方体的另一组对面的长、宽分别是多少?【答案】长是5cm,宽是4cm.【分析】【解答】3.【题文】图①是一个正方体的表面展开图.将这个正方体从图②所示的位置依次翻到第1格、第2格、第3格、第4格,此时正方体朝上一面的字是哪一个字?【答案】富【分析】【解答】4.【题文】下列5种形状(阴影部分)的硬纸各有若干张,选择其中的哪几种,每种选几张,正好可以围成一个长方体?【答案】图①选2张,图③选2张,图④选2张.【分析】【解答】5.【题文】如图,这是一个正方体的表面展开图.这个正方体5号面的对面是几号面?【答案】3号面【分析】【解答】6.【答题】棱柱的侧面展开图是______形,它的长和宽分别是棱柱底面周长和棱柱的______.【答案】长方,高【分析】【解答】7.【答题】圆柱的侧面展开图是______形,它的长和宽分别是圆柱底面周长和圆柱的______.【答案】长方,高【分析】【解答】8.【答题】圆锥的侧面展开图是______形.【答案】扇【分析】【解答】9.【答题】下列图形中,可以折叠成棱柱的是()A. B. C. D.【答案】C【分析】【解答】10.【答题】圆柱的侧面展开图是()A. 圆B. 长方形C. 梯形D. 扇形【答案】B【分析】【解答】11.【答题】下列立体图形中,侧面展开图是扇形的是()A. B. C. D.【答案】B【分析】【解答】12.【答题】把如图所示的三棱柱的表面展开,所得的平面图形是()A. B. C. D.【答案】B【分析】【解答】13.【答题】下列图形中,为圆锥表面展开图的是()A. B. C. D.【答案】C【分析】【解答】14.【答题】一个四棱柱底面的每条边均为4cm,侧棱长为5cm,则这个四棱柱的侧面展开图的面积为______cm2.【答案】80【分析】【解答】15.【题文】某产品的形状是长方体,长为8cm.它的表面展开图如图所示,求该产品的体积.【答案】解:该产品的体积为3×6×8=144(cm3).【分析】【解答】16.【题文】如图,这是某长方体的表面展开图.如果未展开时C面是该长方体的顶面,则哪个面是该长方体的底面?【答案】E面【分析】【解答】17.【题文】观察如图所示的平面图形.(1)将它按虚线折叠后再黏合,可以得到一个什么几何体?(2)将能够黏合在一起的边分别写上相同的数字(图中已经写出了两组).(3)黏合后得到的几何体是长方体吗?【答案】(1)四棱柱(2)略(3)不是【分析】【解答】18.【题文】如图,这是一个棱柱形状的食品包装盒的表面展开图.(1)请写出这个包装盒的形状的名称;(2)根据图中所标的尺寸,计算这个包装盒的侧面积.【答案】(1)三棱柱(2)72【分析】【解答】19.【答题】(2019广东深圳中考改编)下列是正方体的展开图的是()A. B. C. D.【答案】B【分析】【解答】根据正方体展开图的11种情况判断即可.20.【答题】(2015山东济宁中考)一个正方体的每个面都有一个汉字,其平面展开图如图1-2-1所示,那么在该正方体中和“值”字相对的字是()A. 记B. 观C. 心D. 间【答案】A【分析】【解答】可以自己动手折一下.。

展开与折叠同步练习含试卷分析详解北师大版数学七年级上

展开与折叠同步练习含试卷分析详解北师大版数学七年级上

北师大版数学七年级上册第一章第2节展开与折叠课时练习一、单选题(共15小题)1、如图是一个长方体包装盒,则它的平面展开图是()A、B、C、D、2、下列四个图形中是正方体的平面展开图的是()A、B、C、D、3、如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A、B、C、D、4、下列图形中可以作为一个三棱柱的展开图的是()A、B、C、D、5、一个几何体的表面展开图如图所示,则这个几何体是()A、四棱锥B、四棱柱C、三棱锥D、三棱柱6、下列图形中,能通过折叠围成一个三棱柱的是()A、B、C、D、7、下面图形经过折叠不能围成棱柱的是()A、B、C、D、8、如图是一个正方体纸巾盒,它的平面展开图是()A、B、C、D、9、骰子可以看做是一个小立方体(如图),它相对两面之和的点数之和是7,下面展开图中符合规则的是()A、B、C、10、如图,把左边的图形折叠起来,它会变为右面的哪幅立体图形()A、B、C、D、11、下列图形经过折叠不能围成棱柱的是()A、B、C、D、12、下面四个图形中,经过折叠能围成如图所示的几何图形的是()B、C、D、13、如图是一个立方体图形的展开图,则这个立体图形是()A、四棱柱B、四棱锥C、三棱柱D、三棱锥14、一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()A、记B、观C、心D、间15、如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A、的B、中C、国D、梦二、填空题(共5小题)16、如图是正方体的一种展开图,其中每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是________.17、“仁义礼智信孝”是我们中华民族的传统美德,小明同学将这六个字分别写在一个正方体六个表面上,这个正方体的表面展开图如图所示,那么与“孝”所在面相对的面上的字是________.18、有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第次后,骰子朝下一面的点数是________.19、如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是________.20、有一个正方体的六个面上分别标有数字1、2、3、4、5、6,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字6的面所对面上的数字记为a ,2的面所对面上数字记为b ,那么a+b的值为________.三、解答题(共5小题)21、一个正方体6个面分别写着1、2、3、4、5、6,根据下列摆放的三种情况,那么每个数对面上的数是几?22、如图是一个正方体的展开图,标注了字母a的面是正方体的正面,如果正方体相对两个面上的整式的值相等,求整式(x+y)a的值.23、如图是一个正方体骰子的表面展开图,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果5点在下面,几点在上面?24、解答题(1)如图:是有一些相同小正方体搭建而成的几何体的俯视图,其中小正方形中的数字表示在这个位置小立方体的个数,请画出该几何体的主视图与左视图.(2)已知、b互为相反数,c、d互为倒数,m的绝对值等于2,p是数轴上到原点的距离为1的数,求:p ﹣cd+ 的值.25、回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f ,顶点个数为v ,棱数为e ,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.答案解析部分一、单选题(共15小题)1、【答案】A【考点】几何体的展开图【解析】【解答】由四棱柱四个侧面和上下两个底面的特征可知,A.可以拼成一个长方体;B.C.D.不符合长方体的展开图的特征,故不是长方体的展开图.【分析】考查了几何体的展开图,牢记长方体展开图的各种情形是解题关键.2、【答案】B【考点】几何体的展开图【解析】【解答】A.不是正方体的平面展开图;B.是正方体的平面展开图;C.不是正方体的平面展开图;D.不是正方体的平面展开图.【分析】考查了正方体展开图,熟练掌握正方体的表面展开图是解题的关键.3、【答案】D【考点】几何体的展开图【解析】【解答】根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,中间相隔一个正方形,故C错误,只有D选项符合条件.【分析】考查了几何体的展开图,注意从相对面入手.4、【答案】A【考点】几何体的展开图【解析】【解答】三棱柱展开后,侧面是三个长方形,上下底各是一个三角形由此可得:只有A是三棱柱的展开图.【分析】查了三棱柱表面展开图,注意上、下两底面应在侧面展开图长方形的两侧.5、【答案】A【考点】几何体的展开图【解析】【解答】如图所示:这个几何体是四棱锥.【分析】考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决问题的关键.6、【答案】C【考点】几何体的展开图【解析】【解答】A.折叠后少一面,故错误;B.折叠后两侧面重叠,不能围成三棱柱,故错误;C.折叠后能围成三棱柱,故正确;D.折叠后两侧面重叠,不能围成三棱柱,故错误.【分析】三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,.7、【答案】D【考点】几何体的展开图【解析】【解答】A.能围成四棱柱;B.能围成五棱柱;C.能围成三棱柱;D.经过折叠不能围成棱柱.【分析】常见立体图形的平面展开图的特征,是解决此题的关键.8、【答案】B【考点】几何体的展开图【解析】【解答】根据正方体的展开图可得【分析】根据正方体的展开图,训练了学生空间想象能力.9、【答案】C【考点】几何体的展开图【解析】【解答】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点与3点是相对面,4点与6点是相对面,2点与5点是相对面,所以不可以折成符合规则的骰子,故错误;B.3点与4点是相对面,1点与5点是相对面,2点与6点是相对面,所以不可以折成符合规则的骰子,故错误;C.4点与3点是相对面,5点与2点是相对面,1点与6点是相对面,所以可以折成符合规则的骰子,故正确;D.1点与5点是相对面,3点与4点是相对面,2点与6点是相对面,所以不可以折成符合规则的骰子,故错误.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形用排除法求解.10、【答案】B【考点】几何体的展开图【解析】【解答】圆面的相邻面是长方形,长方形不指向圆,【分析】根据相邻面、对面的关系,可得答案.11、【答案】B【考点】几何体的展开图【解析】【解答】A可以围成四棱柱,C可以围成五棱柱,D可以围成三棱柱,B选项侧面上多出一个长方形,故不能围成一个三棱柱.【分析】由平面图形的折叠及棱柱的展开图解题,熟记常见立体图形的表面展开图的特征是解决此题的关键.12、【答案】B【考点】几何体的展开图【解析】【解答】根据立体图形可得,展开图中三角形图案的顶点应与圆形的图案相对,而选项A,D与此不符,所以错误;三角形图案所在的面应与圆形的图案所在的面相邻,而选项C与此也不符,正确的是B.【分析】根据图中三角形,圆,正方形所处的位置关系可选出答案,考查了空间想象力.13、【答案】C【考点】几何体的展开图【解析】【解答】∵三棱柱的展开图侧面是长方形,上下面是三角形,∴上图应是三棱柱的展开图.【分析】根据立体图形的展开图是平面图形以及三棱柱的侧面展开图是长方形,上下面是三角形,可解此题.14、【答案】A【考点】几何体的展开图【解析】【解答】对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“值”字相对的字是“记”.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.15、【答案】D【考点】几何体的展开图【解析】【解答】正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.【分析】考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手作答.二、填空题(共5小题)16、【答案】4【考点】几何体的展开图【解析】【解答】这是一个正方体的平面展开图,共有六个面,其中面“2”与面“4”相对,面“3”与面“5”相对,“1”与面“6”相对.【分析】利用正方体及其表面展开图的特点解题.17、【答案】义【考点】几何体的展开图【解析】【解答】结合展开图可知,与“孝”相对的字是“义”.【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“孝”相对的字.18、【答案】3【考点】几何体的展开图,探索图形规律【解析】【解答】观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵÷4=503…2,∴滚动第次后与第二次相同,∴朝下的点数为3.【分析】观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,解题的关键是发现规律.19、【答案】的【考点】几何体的展开图【解析】【解答】正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“大”与“中”是相对面,“的”与“梦”是相对面.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形.20、【答案】7【考点】几何体的展开图【解析】【解答】由图可知,∵与1相邻的面的数字有2、3、4、6,∴1的对面数字是5,∵与4相邻的面的数字有1、3、5、6,∴4的对面数字是2,∴3的对面数字是6,∵标有数字6的面所对面上的数字记为a ,2的面所对面上数字记为b ,∴a=3,b=4,∴a+b=3+4=7.【分析】本题考查了正方体相对两个面上的文字,,由相邻面上的数字确定出相对面上的数字是解题的关键.三、解答题(共5小题)21、【答案】1对4,2对5,3对6.解答:根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对.1对4,2对5,3对6.【考点】几何体的展开图【解析】【分析】根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对22、【答案】81解答:根据题意得:y=3,x=6,a=2,故(x+y)a=(x+y)2=92=81.【考点】代数式求值,几何体的展开图,简单几何体的三视图【解析】【分析】由正方体的展开图的相对面和已知“相对两个面上的代数式的值相等”,可求得x、y、a 的值,再根据完全平方公式求解.23、【答案】(1)2点在前面,可知5点在后面解答:正方体的平面展开图,其中面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,(1)如果1点在上面,3点在左面,2点在前面,可知5点在后面;(2)如果5点在下面,那么2点在上面【考点】几何体的展开图【解析】【分析】本题考查了正方体的表面展开图,注意正方体的空间图形,从相对面入手,分析及解答.24、【答案】(1)解答:根据俯视图上小正方形的个数,主视图、左视图,(2)答案:0或-2解答:a、b互=相反数,c、d互为倒数,m的绝对值等于2,p是数轴上到原点的距离为1的数,得a+b=0,cd=1,m=±2,p=±1,p=1时,p﹣cd+=1﹣1+0=0,当p=﹣1时,p﹣cd+=﹣1﹣1+0=﹣2,综上所述:p﹣cd+=0,或p﹣cd+=﹣2.【考点】几何体的展开图【解析】【分析】(1)根据俯视图上小正方形的个数,可的主视图、左视图;(2)根据相反数的和为零,根据倒数的积为1,根据绝对值的意义,可得答案.25、【答案】(1)长方体和五棱锥解答:图甲折叠后底面和侧面都是长方形,所以是长方体;图乙折叠后底面是五边形,侧面是三角形,实际上是五棱锥的展开图,所以是五棱锥.(2)甲:f=6,e=12,v=8,f+v﹣e=2;乙:f=6,e=10,v=6,f+v﹣e=2;规律:顶点数+面数﹣棱数=2.(3)设这个多面体的面数为x ,则x+x+8﹣50=2解得x=22.【考点】认识平面图形,几何体的展开图【解析】【分析】(1)由长方体与五棱锥的折叠及长方体与五棱锥的展开图解题.(2)列出几何体的面数,顶点数及棱数直接进行计算即可;(3)考查了欧拉公式,展开图折叠成几何体.。

人教版初中七年级数学上册第四章《几何图形初步》模拟测试卷(含答案解析)(17)

人教版初中七年级数学上册第四章《几何图形初步》模拟测试卷(含答案解析)(17)

一、选择题1.(0分)[ID :68644]将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是( )A .B .C .D . 2.(0分)[ID :68641]如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2αB .45α︒-C .452α︒- D .90α︒-3.(0分)[ID :68634]如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A .美B .丽C .云D .南 4.(0分)[ID :68624]如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°5.(0分)[ID :68620]如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .66.(0分)[ID :68616]α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等 7.(0分)[ID :68611]如图,CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( ).A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转 8.(0分)[ID :68609]平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( )A .16B .22C .20D .189.(0分)[ID :68604]如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-110.(0分)[ID :68597]已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④ 11.(0分)[ID :68590]如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + 12.(0分)[ID :68569]线段10AB cm =,C 为直线AB 上的点,且2BC cm =,,M N 分别是,AC BC 中点,则MN 的长度是( )A .6cmB .5cm 或7cmC .5cmD .5cm 或6cm13.(0分)[ID :68562]下列图形中,是圆锥的表面展开图的是( )A .B .C .D . 14.(0分)[ID :68560]把一张长方形的纸片按如图所示的方式折叠,EM ,FM 为折痕,C 点折叠后的C '点落在MB '的延长线上,则EMF ∠的度数是( )A .85°B .90°C .95°D .100°15.(0分)[ID :68559]如图,点O 在直线AB 上,图中小于180°的角共有( )A .10个B .9个C .11个D .12个二、填空题16.(0分)[ID :68717]如图,点C 、D 在线段AB 上,D 是线段AB 的中点,AC =13AD ,CD=4cm ,则线段AB 的长为_____cm17.(0分)[ID :68701](1)375324'''°=________°;(2)1.45︒=________′.18.(0分)[ID :68698]如图,共有_________条直线,_________条射线,_________条线段.19.(0分)[ID :68709]如图,C 为线段AB 的中点,线段AB=12cm ,CD=2cm .则线段DB 的长为_______20.(0分)[ID :68706]如图,点C ,M ,N 在线段AB 上,且M 是AC 的中点,CN :NB=1:2,若AC=12,MN=15,则线段AB 的长是_______.21.(0分)[ID :68695]已知,如图,点M ,N 分别是线段AB ,BC 的中点,且9MN =,线段1143BD AB CD ==,则线段BD 的长为________.22.(0分)[ID :68687]分别指出图中截面的形状;23.(0分)[ID :68673]把一条长为20厘米的线段分成三段,如果中间一段长为8厘米,那么第一段中点到第三段中点间的距离等于________厘米.24.(0分)[ID :68659]如图,用边长为4cm 的正方形,做了一套七巧板,拼成如图所示的一幅图案,则图中阴影部分的面积为_____cm 2.25.(0分)[ID :68749]一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是_____立方厘米.(结果保留π)26.(0分)[ID :68740]在同一平面内,如果15AOB ∠=︒,75AOC ∠=︒,那么BOC ∠=_______.27.(0分)[ID :68736]已知线段MN=16cm ,点P 为任意一点,那么线段MP 与NP 和的最小值是_____cm .三、解答题28.(0分)[ID :68813]如图所示,A ,B 两条海上巡逻船同时在海面发现一不明物体,A 船发现该不明物体在他的东北方向(从靠近A 点的船头观测),B 船发现该不明物体在它的南偏东60︒的方向上(从靠近B 点的船头观测),请你试着在图中确定这个不明物体的位置.29.(0分)[ID :68809]如图,在数轴上有A ,B 两点,点A 在点B 的左侧.已知点B 对应的数为2,点A 对应的数为a .(1)若a=﹣1,则线段AB的长为;(2)若点C到原点的距离为3,且在点A的左侧,BC﹣AC=4,求a的值.30.(0分)[ID:68768]如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.C3.D4.B5.A6.D7.B8.B9.A10.C11.C12.C13.A14.B15.B二、填空题16.【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语17.8987【解析】【分析】根据1°=60′1′=60″计算即可【详解】(1)==3789°;(2)=145×60′=87′故答案为:3789°87′【点睛】本题考查了度分秒的运算注意度分秒是60进制18.63【解析】【分析】根据线段射线和直线的特点:线段有两个端点有限长可以测量;射线有一个端点无限长;直线无端点无限长;进行解答即可【详解】因为线段有两个端点射线只有一个端点所以由图可以看出:图中有1条19.4cm【分析】先由线段中点的定义得出BC=AB再根据DB=BC-CD即可求解【详解】∵C 为线段AB的中点线段AB=12cm∴BC=AB=6cm∵CD=2cm∴DB=BC-CD=6-2=4cm∴线段D20.39【分析】根据中点的定义可求出MC的长根据MN=MC+CN可得CN的长根据CN:NB=1:2可求出NB的长根据AB=AC+CN+NB即可得答案【详解】∵M是AC的中点AC=12∴MC=AC=6∵M21.3【分析】根据等式的性质可得AB与BD的关系CD与BD的关系根据线段中点的性质可得AM与BM的关系DN与NC的关系根据线段的和差可得BD的长根据线段的和差可得答案【详解】∵∴AB=4BDCD=3BD22.长方形;五边形;圆【解析】【分析】根据长方体各面的特点结合截面与一面平行可解第一图;根据五棱柱特点结合截面平行于底面可得第二图答案;由截面平行于圆锥的底面可得第三图解答【详解】①截面与长面平行可以得23.14【解析】【分析】先求出两边线段的长度之和第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和【详解】根据题意第一段与第三段长度之和=20-8=12cm所以第一段中点到第三段中点之间的24.9【解析】【分析】先求出最小的等腰直角三角形的面积=××42=1再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可【详解】解:阴影部分的面积=42-7×××42=125.或【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥再利用圆锥的体积公式进行计算即可【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥①当绕它的直角边为所在的直线旋转所形成几何体26.或【分析】分别讨论射线OBOC在射线OA同侧和异侧的情况问题可解【详解】解:如图(1)当OBOC在射线OA同侧时如图(2)当OBOC在射线OA异侧时故答案为或【点睛】本题考查了角的加减运算解答关键是27.16【分析】分两种情况:①点P在线段MN上;②点P在线段MN外;然后利用两点之间距离性质结合图形得出即可【详解】①点P在线段MN上MP+NP=MN=16cm②点P 在线段MN外当点P在线段MN的上部时三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【分析】根据题意作出图形,即可进行判断.【详解】将如图所示的直角三角形绕直线l旋转一周,可得到圆锥,故选B.【点睛】此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.2.C解析:C【分析】先利用角的和差关系求出∠AOB的度数,根据角平分线的定义求出∠BOD的度数,再利用角的和差关系求出∠COD的度数.【详解】解:∵∠AOC=90°,∠COB=α,∴∠AOB=∠AOC+∠COB=90°+α.∵OD平分∠AOB,∴∠BOD=12(90°+α)=45°+12α,∴∠COD=∠BOD-∠COB=45°-12α,故选:C.【点睛】本题综合考查了角平分线的定义及角的和差关系,熟练掌握是解题的关键.3.D解析:D【分析】如图,根据正方体展开图的11种特征,属于正方体展开图的“1-4-1”型,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.【详解】如图,根据正方体展开图的特征,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.故选D.4.B解析:B【解析】∵OC⊥OD,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.5.A解析:A【分析】根据题意可知BC=6,所以AC=18,由于D是AC中点,可得AD=9,从BD=AB-AD就可求出线段BD的长.【详解】由题意可知12AB =,且12BC AB =, 所以6BC =,18AC =.因为点D 是线段AC 的中点,所以1118922AD AC ==⨯=, 所以1293BD AB AD =-=-=.故选A .【点睛】本题考查了两点间的距离以及中点的性质,根据图形能正确表达线段之间的和差关系是解决本题的关键.6.D解析:D【分析】由α∠与β∠都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与β∠都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与β∠互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.7.B解析:B【分析】根据直角三角形的性质,只有绕斜边旋转一周,才可以得出组合体的圆锥,进而解答即可.【详解】将直角三角形ABC 绕斜边AB 所在直线旋转一周得到的几何体是:故选:B.【点睛】本题考查了点、线、面、体,培养学生的空间想象能力及几何体的三视图.8.B解析:B【分析】由题意可得7条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m,n的值,进而可得答案.【详解】解:根据题意可得:7条直线相交于一点时交点最少,此时交点为1个,即n=1;任意两直线相交都产生一个交点时,交点最多,此时交点为:7×(7﹣1)÷2=21,即m=21;则m+n=21+1=22.故选:B.【点睛】本题考查了直线的交点问题,注意掌握直线相交于一点时交点最少,任意n条直线两两相交时交点最多为12n(n﹣1)个.9.A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.10.C解析:C【分析】分三种情况: C在线段AB上,C在线段BA的延长线上以及C不在直线AB上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:当C在线段AB上时,BC=AB-AC= 8-6=2;当C在线段BA的延长线上时,BC=AB+AC =8+6=14;当C不在直线AB上时,AB、AC、BC三边构成三角形,则2<BC<14,综上所述①②④正确故选:C.【点睛】本题考查两点间的距离和三角形三边的关系,理解题意,进行正确的分类求解是关键.11.C解析:C【分析】由条件可知EC+DF=m-n,又因为E,F分别是AC,BD的中点,所以AE+BF=EC+DF=m-n,利用线段和差AB=AE+BF+EF求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E是AC的中点,F是BD的中点,∴AE=EC,DF=BF,∴AE+BF=EC+DF=m-n,∵AB=AE+EF+FB,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.12.C解析:C【分析】根据题意分两种情况,①C为线段AB延长线上的点,②C为线段AB上的点,利用中点的性质分别进行求解.【详解】如图1, ①C为线段AB延长线上的点,∵,M N分别是,AC BC中点,∴CM=12AC=12(AB+BC)=6cm,CN=12BC=1cm,∴MN=CM-CN=5cm;如图2,②C为线段AB上的点,∵,M N分别是,AC BC中点,∴CM=12AC=12(AB-BC)=4cm,CN=12BC=1cm,∴MN=CM+CN=5cm;故选C.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.A解析:A【分析】结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.【详解】解:圆锥的展开图是由一个扇形和一个圆形组成的图形.故选A.【点睛】本题考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.14.B解析:B【解析】【分析】根据折叠的性质:对应角相等,对应的线段相等,可得.【详解】解:根据图形,可得:∠EMB′=∠EMB,∠FMB′=∠FMC,∵∠FMC+∠FMB′+∠EMB′+∠BME=180°,∴2(∠EMB′+∠FMB′)=180°,∵∠EMB′+∠FMB′=∠FME,∴∠EMF=90°,故选B.【点睛】本题主要考查图形翻折的性质,解决本题的关键是要熟练掌握图形翻折的性质.15.B解析:B【解析】【分析】利用公式:()21n n - 来计算即可. 【详解】根据公式:()21n n - 来计算,其中,n 指从点O 发出的射线的条数.图中角共有4+3+2+1=10个,根据题意要去掉平角,所以图中小于180°的角共有10−1=9个.故选B.【点睛】此题考查角的的定义,解题关键在于掌握其定义性质.二、填空题16.【分析】根据AC=ADCD=4cm 求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm ∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC =13AD ,CD=4cm ,求出AD ,再根据D 是线段AB 的中点,即可求得答案. 【详解】 ∵AC =13AD ,CD=4cm , ∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.17.8987【解析】【分析】根据1°=60′1′=60″计算即可【详解】(1)==3789°;(2)=145×60′=87′故答案为:3789°87′【点睛】本题考查了度分秒的运算注意度分秒是60进制解析:89 87【解析】【分析】根据1°=60′,1′=60″,计算即可.【详解】(1)375324'''°=3753.4'°=37.89°;(2)1.45︒=1.45×60′=87′.故答案为:37.89°,87′.【点睛】本题考查了度分秒的运算.注意度分秒是60进制.18.63【解析】【分析】根据线段射线和直线的特点:线段有两个端点有限长可以测量;射线有一个端点无限长;直线无端点无限长;进行解答即可【详解】因为线段有两个端点射线只有一个端点所以由图可以看出:图中有1条 解析:6 3【解析】【分析】根据线段、射线和直线的特点:线段有两个端点,有限长,可以测量;射线有一个端点,无限长;直线无端点,无限长;进行解答即可.【详解】因为线段有两个端点,射线只有一个端点,所以由图可以看出:图中有1条直线,3条线段,有6条射线.故此题答案为:1,6,3.【点睛】此题主要考查直线、线段和射线的特点,此类型的题,在数时,应做到有顺序,做到不遗漏、不重复.19.4cm 【分析】先由线段中点的定义得出BC=AB 再根据DB=BC-CD 即可求解【详解】∵C 为线段AB 的中点线段AB=12cm ∴BC=AB=6cm ∵CD=2cm ∴DB=BC-CD=6-2=4cm ∴线段D解析:4cm【分析】先由线段中点的定义得出BC=12AB ,再根据DB=BC-CD 即可求解. 【详解】∵C 为线段AB 的中点,线段AB=12cm , ∴BC=12AB=6cm , ∵CD=2cm ,∴DB=BC-CD=6-2=4cm .∴线段DB 的长为4cm .故答案为:4cm【点睛】本题考查了线段的中点的概念及线段的和差计算.利用线段中点定义转化线段之间的倍分关系是解题的关键,20.39【分析】根据中点的定义可求出MC 的长根据MN=MC+CN 可得CN 的长根据CN :NB=1:2可求出NB 的长根据AB=AC+CN+NB 即可得答案【详解】∵M 是AC 的中点AC=12∴MC=AC=6∵M解析:39【分析】根据中点的定义可求出MC 的长,根据MN=MC+CN 可得CN 的长,根据CN :NB=1:2,可求出NB 的长,根据AB=AC+CN+NB 即可得答案.【详解】∵M 是AC 的中点,AC=12,∴MC=12AC=6, ∵MN=MC+CN ,MN=15,∴CN=15-6=9,∵CN :NB=1:2,∴NB=18,∴AB=AC+CN+NB=12+9+18=39.故答案为39【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.21.3【分析】根据等式的性质可得AB 与BD 的关系CD 与BD 的关系根据线段中点的性质可得AM 与BM 的关系DN 与NC 的关系根据线段的和差可得BD 的长根据线段的和差可得答案【详解】∵∴AB=4BDCD=3BD解析:3【分析】根据等式的性质,可得AB 与BD 的关系,CD 与BD 的关系,根据线段中点的性质,可得AM 与BM 的关系,DN 与NC 的关系,根据线段的和差,可得BD 的长,根据线段的和差,可得答案.【详解】 ∵1143BD AB CD ==,∴AB =4BD ,CD =3BD . 点M 、N 分别是线段AB 、BC 的中点,AM =BM =2BD ,DB =BN =NC .由线段的和差,得MN =MB +BN =3BD =9.所以BD=3.故答案为3.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质.22.长方形;五边形;圆【解析】【分析】根据长方体各面的特点结合截面与一面平行可解第一图;根据五棱柱特点结合截面平行于底面可得第二图答案;由截面平行于圆锥的底面可得第三图解答【详解】①截面与长面平行可以得解析:长方形;五边形;圆.【解析】【分析】根据长方体各面的特点,结合截面与一面平行可解第一图;根据五棱柱特点结合截面平行于底面可得第二图答案;由截面平行于圆锥的底面可得第三图解答.【详解】①截面与长面平行,可以得到长方形形截面;②截面与棱柱的底面平行,可得到五边形截面;③截面与圆锥底平行,可以得到圆形截面.故答案为:长方形、五边形、圆.【点睛】此题考查截一个几何体,解题的关键是要掌握截面的形状既与被截的几何体有关,还与截面的角度和方向有关.23.14【解析】【分析】先求出两边线段的长度之和第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和【详解】根据题意第一段与第三段长度之和=20-8=12cm所以第一段中点到第三段中点之间的解析:14【解析】【分析】先求出两边线段的长度之和,第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和.【详解】根据题意,第一段与第三段长度之和=20-8=12cm,所以第一段中点到第三段中点之间的距离=12÷2+8=6+8=14cm.【点睛】能正确找出“第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和”是解本题的关键.24.9【解析】【分析】先求出最小的等腰直角三角形的面积=××42=1再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可【详解】解:阴影部分的面积=42-7×××42=1解析:9【解析】【分析】先求出最小的等腰直角三角形的面积=18×12×42=1,再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可.【详解】 解:阴影部分的面积=42-7×18×12×42=16-7=9. 故答案为9.【点睛】本题考查七巧板、图形的拼剪,解题的关键是求出最小的等腰直角三角形的面积,学会利用分割法求阴影部分的面积. 25.或【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥再利用圆锥的体积公式进行计算即可【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥①当绕它的直角边为所在的直线旋转所形成几何体 解析:12π或16π【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥,再利用圆锥的体积公式进行计算即可.【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥,①当绕它的直角边为3cm 所在的直线旋转所形成几何体的的体积是:2134123ππ⨯⨯=, ②当绕它的直角边为4cm 所在的直线旋转所形成几何体的的体积是:2143163ππ⨯⨯=, 故答案为:12π或16π.【点睛】此题主要考查了点、线、面、体,关键是掌握圆锥的体积公式,注意分类讨论. 26.或【分析】分别讨论射线OBOC 在射线OA 同侧和异侧的情况问题可解【详解】解:如图(1)当OBOC 在射线OA 同侧时如图(2)当OBOC 在射线OA 异侧时故答案为或【点睛】本题考查了角的加减运算解答关键是解析:60︒或90︒【分析】分别讨论射线OB 、OC 在射线OA 同侧和异侧的情况,问题可解【详解】解:如图(1)当OB 、OC 在射线OA 同侧时,701560∠=∠-∠=︒-︒=︒BOC AOB AOC如图(2)当OB、OC在射线OA异侧时,BOC AOB AOC∠=∠+∠=︒+︒=︒701590故答案为60︒或90︒【点睛】本题考查了角的加减运算,解答关键是应用分类讨论思想,找到不同情况分别求解. 27.16【分析】分两种情况:①点P在线段MN上;②点P在线段MN外;然后利用两点之间距离性质结合图形得出即可【详解】①点P在线段MN上MP+NP=MN=16cm②点P在线段MN外当点P在线段MN的上部时解析:16【分析】分两种情况:①点P在线段MN上;②点P在线段MN外;然后利用两点之间距离性质,结合图形得出即可.【详解】①点P在线段MN上,MP+NP=MN=16cm,②点P在线段MN外,当点P在线段MN的上部时,由两点之间线段最短可知:MP+NP > MN =16,当点P在线段MN的延长线上时,MP+NP > MN =16.综上所述:线段MP和NP的长度的和的最小值是16,此时点P的位置在线段MN上,故答案为16.【点睛】本题考查的知识点是比较线段的长短,解题的关键是熟练的掌握比较线段的长短.三、解答题28.见解析【分析】根据题意这个不明物体应该在这两个方向的交叉点上,根据图示方向在A点向东北方向作一条线,在B点向南偏东60°方向作一条线,交点即是.【详解】根据题意,分别以A和B所在位置作出不明物体所在它们的方向上的射线,两线的交点D即为不明物体所处的位置.如图所示,点D即为所求:.【点睛】本题考查了方位角在生活中的应用,灵活运用所学知识解决问题是解题的关键.29.(1)3;(2)﹣2【分析】(1)根据点A、B表示的数利用两点间的距离公式即可求出AB的长度;(2)设点C表示的数为c,则|c|=3,即c=±3,根据BC﹣AC=4列方程即可得到结论.【详解】(1)AB=2﹣a=2﹣(﹣1)=3,故答案为:3;(2)∵点C到原点的距离为3,∴设点C表示的数为c,则|c|=3,即c=±3,∵点A在点B的左侧,点C在点A的左侧,且点B表示的数为2,∴点C表示的数为﹣3,∵BC﹣AC=4,∴2﹣(﹣3)﹣[a﹣(﹣3)]=4,解得a=﹣2.【点睛】本题主要考查数轴上两点之间的距离,解此题的关键在于熟练掌握其知识点.30.(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.。

七年级数学上册认识图形,展开与折叠练习题(附答案)

七年级数学上册认识图形,展开与折叠练习题(附答案)

北师版七年级数学上册——同步题型第一章丰富的图形世界专题1.1生活中的立体图形第2课时点、线、面的认识一、题型过关知识点❶点、线、面、体的关系1.笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为( )A.点动成线B.线动成面C.面动成体D.以上都不对2.下雨时汽车的雨刷把玻璃上的雨水刷干净属于下列哪个选项的实际应用( ) A.点动成线B.线动成面C.面动成体D.以上都不对3.把一张纸折叠,展开后得到一条折痕,这个现象用数学知识可解释为( ) A.面与面相交成线B.线动成面C.面动成体D.点动成线知识点❷立体图形的构成4.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是( )5.下列图形分别由几个面围成的,有几个平面和几个曲面.图①由______个面围成,分别有______个平面,_____个曲面;图②由_______个面围成,分别有______个平面,_____个曲面;图③由_____个面围成,分别有_____个平面,______个曲面.二、探索提升6.观察如图所示的棱柱,它的侧面和一个底面相交成( )A.3条线B.4条线C.5条线D.6条线7.一个几何体只有一个顶点,一个侧面,一个底面,则这个几何体可能是( ) A.棱柱B.棱锥C.圆锥D.圆柱8.下图中几何体没有曲面的是( )9.下列图形中,图(a)是正方体木块,把它切去一块,得到如图(b),(c),(d),(e)的木块.(1)我们知道,图(a)的正方体木块有8个顶点,12条棱,6个面.请你将图(b),(c),(d),(e)中木块的顶点数、棱数和面数填入下表:(2)根据上表中各种木块的顶点数、棱数、面数之间的数量关系可归纳出一个规律,请你试写出顶点数x、棱数y、面数z之间的数量关系.三、回顾与总结方法技能:1.图形是由点、线、面构成的;2.面与面相交得到线,线与线相交得到点;3.点动成线,线动成面,面动成体.易错提示:线分直线和曲线;面分平面和曲面.(参考答案)1. A2. B3. A4. A5.6,6,0,3,2,1,2,1,16. B7. C8. B9.解:(1)6 9 5 8 12 6 8 13 7 10 15 7(2)x+z-y=2北师版七年级数学上册——同步题型第一章丰富的图形世界专题1.2展开与折叠第1课时正方体的展开与折叠一、题型过关知识点❶正方体的展开与折叠1.(长春中考)下列图形中,可以是正方体表面展开图的是( )2.(达州期末)下列平面图形不能够围成正方体的是( )3.图1和图2中所有的正方形都相同,将图1的正方形放在图2中的①,②,③,④某一位置,所组成的图形不能围成正方体的位置是( )A.① B.② C.③ D.④4.(教材P9习题4改编)下面都是由五个相同的小正方形组成的图形,请你在各图中分别添加一个小正方形,使它们能折叠成小正方体.知识点❷利用正方体的展开图解答相关问题5.(达州期末)如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是( )A.伟 B.大 C.的 D.国6.(达州月考)如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是( )7.正方体的六个面上分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是( )A.1 B.5 C.4 D.38.如图是一个正方体的展开图,如果正方体相对的面上标注的值相等,那么x=_______,y=_______.9.在如图的展开图中,分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a=____,b=_____,c=______.二、探索提升10.将一正方体纸盒沿如图所示的裁剪线剪开,展开成平面图形,其展开图的形状为( )11.(淄博中考)将图①围成图②的正方体,则图②中的红心“♥”标志所在的正方形是正方体中的( )A.面CDHE B.面BCEF C.面ABFG D.面ADHG12.(无锡中考)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子表面展开(外表面朝上),展开图可能是( )13.将左图折叠起来围成一个正方体,应该得到( )14.图①是一个小正方体的表面展开图,小正方体从图②所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是( )A.梦 B.水 C.城 D.美15.(达州期中)在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是__________________.16.如图所示是一张3×5的方格纸,现将其剪为三部分,使每部分都可以拆成一个无盖的小方盒,请问该如何剪?在图中画出裁剪线.17.把立方体的六个面分别涂上六种不同颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见表:现将上述大小相同,颜色、花朵分布也完全相同的四个立方体拼成一个水平放置的长方体,如图所示.问长方体的下底面共有多少朵花?三、回顾与总结方法技能:将正方体沿不同的棱展开,共有11种展开图,141型6种,231型3种,33型1种,222型1种.易错提示:注意在正方体展开图中,对面相隔不相邻.北师版七年级数学上册——同步题型第一章丰富的图形世界专题1.2展开与折叠第1课时正方体的展开与折叠(参考答案)10.D11.B12.A13.解:14.A15.B16.B17.x=4,y=10.18.a=6,b=2,c=4.19.B20.A21.D22.D23.A24.剪去1号、2号或3号小正方形25.解:17.解:因为长方体是由大小相同,颜色、花朵分布也完全相同的四个立方体拼成,所以根据图中红色的面,可以确定出一个小立方体各个面的颜色为:红色面对绿色面,黄色面对紫色面,蓝色面对白色面,所以可知长方体下底面从左到右依次是紫色、黄色、绿色、白色,再由表格中花的朵数可知共有17朵.。

2021-2022学年人教版 七年级数学上展开图折叠成几何体同步练习课时作业含答案解析北京市最新试题

2021-2022学年人教版 七年级数学上展开图折叠成几何体同步练习课时作业含答案解析北京市最新试题

2022年01月08日展开图折叠成几何体一.选择题(共13小题)1.(2020秋•北京期末)下列几何体的展开图中,能围成圆柱的是()A.B.C.D.2.(2020秋•怀柔区期末)如图是正方体表面展开图,如果将其合成原来的正方体如图时,与点P重合的两个点应该是()A.S和Z B.T和Y C.T和V D.U和Y 3.(2021秋•舞钢市期中)下面那个图形经过折叠不能得到一个正方体()A.B.C.D.4.(2021秋•杏花岭区校级期中)有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再拼接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,在如图所示的A,B,C,D四个位置中,能够选择的位置有()A.1个B.2个C.3个D.4个5.(2021秋•沈河区校级月考)下列图形中,能围成正方体的是()A.B.C.D.6.(2021秋•于洪区期中)下列图形经过折叠不能围成棱柱的是()A.B.C.D.7.(2021秋•和平区期中)如图,下列图形中经过折叠可以围成一个直三棱柱的有()个.A.1B.2C.3D.4 8.(2021•栾川县三模)下列图形中,不能经过折叠围成正方体的是()A.B.C.D.9.(2021•河北模拟)用图1所示的平面图形可以围成图2所示的正方体,则与A点重合的点是()A.点B B.点C C.点D D.点E 10.(2021•越城区模拟)已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是()A.①B.②C.③D.④11.(2021•衡水模拟)下列四个正方体的展开图中,能折叠成如图所示的正方体的是()A.B.C.D.12.(2021•扬州)把如图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱13.(2021秋•即墨区期中)如图是某一品牌的牛奶包装盒,该包装盒可以近似的看成是长方体,则它的展开图不可能是()A.B.C.D.二.填空题(共6小题)14.(2019秋•石景山区期末)如图,①~④展开图中,能围成三棱柱的是.15.(2020秋•黄岛区期末)如图,在边长为100cm的正方形卡纸的四个角,各剪去一个边长为xcm的正方形,折成一个无盖的长方体盒子,则这个盒子的体积是cm3.16.(2021秋•崇川区校级月考)已知图1的小正方形和图2中所有的小正方形边长都相等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是能围成一个正方体的.那么安放的位置不能是.17.(2021秋•青岛期中)小华准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形.请在图中的拼接图形上再添加一个正方形,使新的图形经过折叠后能成为一个封闭的正方体盒子,试问共有种添加方法.18.(2021秋•莱阳市期中)已知图1的小正方形和图2中所有小正方形都完全一样,将图1的小正方形放在图2中的①、②、③、④的某一个位置,放置后所组成的图形不能围成一个正方体的位置是.19.(2021秋•沙坪坝区校级月考)如图,该展开图能折叠成的立体图形是.三.解答题(共5小题)20.(2020秋•石景山区期末)小石准备制作一个封闭的正方体盒子,他先用5个边长相等的正方形硬纸制作成如图所示的拼接图形(实线部分).请你在图中的拼接图形上再接上一个正方形,使得新拼接的图形经过折叠后能够成为一个封闭的正方体盒子(只需添加一个符合要求的正方形,并将添加的正方形用阴影表示).21.(2021秋•林州市期中)如图,一块长方形铁皮的长为(7a+b)米,宽为(6+2a+2b)米.将这块长方形铁皮的四个角都剪去一个边长为(a+b)米的正方形,然后沿虚线折成一个无盖的长方体盒子.(1)求这个盒子底部的长和宽(用含a、b的式子表示,要求化简);(2)求这块长方形铁皮的周长(用含a、b的式子表示,要求化简).22.(2021秋•沈河区校级期中)如图,用若干个正方形和长方形准备拼成一个长方体的展开图.(1)此拼图是否存在问题?若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长为3cm,长方形的长为5cm,宽为3cm,请直接写出修正后所叠而成的长方体的体积为cm3.23.(2021秋•青浦区月考)一块长方形硬纸片,长为(5a2+4b2)米、宽为6a2米,在它的四个角上分别剪去一个边长为a2米的小正方形,然后折成一个无盖的盒子.(1)这个盒子的长为,宽为,高为;(2)求这个无盖盒子的外表面积.24.(2021秋•临淄区期中)(1)如图1四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,并解答:四棱柱有个面,条棱,个顶点;六棱柱有个面,条棱,个顶点;由此猜想n棱柱有个面,条棱,个顶点.(2)如图2,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;若图中的正方形边长为2.1cm,长方形的长为3cm,宽为2.1cm,请直接写出修正后所折叠而成的长方体的体积:cm³.2022年01月08日展开图折叠成几何体参考答案与试题解析一.选择题(共13小题)1.(2020秋•北京期末)下列几何体的展开图中,能围成圆柱的是()A.B.C.D.【分析】直接利用展开图折叠乘几何体的形状,分析得出答案.【解答】解:A、可以围成长方体,故此选项不合题意;B、可以围成四棱锥,故此选项不合题意;C、可以围成圆锥,故此选项不合题意;D、可以围成圆柱,故此选项符合题意;故选:D.【点评】此题主要考查了展开图折叠成几何体,正确掌握基本图形与几何体的对应是解题关键.2.(2020秋•怀柔区期末)如图是正方体表面展开图,如果将其合成原来的正方体如图时,与点P重合的两个点应该是()A.S和Z B.T和Y C.T和V D.U和Y【分析】本题考查了正方体的平面展开图,与正方体的各部分对应情况,可以实际动手操作得出答案.【解答】解:结合图形可知,围成立方体后Q与S重合,P与T重合,又T与V重合,所以与点P重合的两点应该是T和V.故选:C.【点评】本题主要考查的是展开图折成几何体,解答本题需要同学们熟记四棱柱的特征及正方体展开图的各种情形.也可以动手操作一下,增强空间想象能力.3.(2021秋•舞钢市期中)下面那个图形经过折叠不能得到一个正方体()A.B.C.D.【分析】根据正方体展开图的常见形式作答即可.【解答】解:由展开图可知:选项A、B、C能围成正方体,不符合题意;选项D围成几何体时,有两个面重合,故不能围成正方体,符合题意.故选:D.【点评】本题考查了展开图折叠成几何体.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.4.(2021秋•杏花岭区校级期中)有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再拼接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,在如图所示的A,B,C,D四个位置中,能够选择的位置有()A.1个B.2个C.3个D.4个【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可.【解答】解:如图所示:根据立方体的展开图可知,不能选择图中A的位置接正方形.故选:C.【点评】此题主要考查了应用与设计作图.正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.5.(2021秋•沈河区校级月考)下列图形中,能围成正方体的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A、折叠后有两个面重合,缺少一个侧面,所以不能折叠成正方体,故此选项不符合题意;B、折叠后有两个面重合,缺少一个侧面,所以不能折叠成正方体,故此选项不符合题意;C、可以折叠成一个正方体,故此选项符合题意;D、是“凹”字格,故不能折叠成一个正方体,故此选项不符合题意.故选:C.【点评】本题考查了展开图折叠成几何体,只要有“田”“凹”字格的展开图都不是正方体的表面展开图.6.(2021秋•于洪区期中)下列图形经过折叠不能围成棱柱的是()A.B.C.D.【分析】由平面图形的折叠及棱柱的展开图解题.【解答】解:A可以围成四棱柱,B可以围成五棱柱,D可以围成三棱柱,C选项侧面上少了1个长方形,故不能围成一个四棱柱.故选:C.【点评】本题考查了立体图形的展开与折叠.熟记常见立体图形的表面展开图的特征是解决此类问题的关键.7.(2021秋•和平区期中)如图,下列图形中经过折叠可以围成一个直三棱柱的有()个.A.1B.2C.3D.4【分析】根据直三棱柱的特点作答.【解答】解:第一个图形围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成直三棱柱;第二、四个图形的两底面不是三角形,故也不能围成直三棱柱;只有第三个图形经过折叠可以围成一个直三棱柱.故选:A.【点评】本题考查了展开图折叠成几何体,棱柱表面展开图中,上、下两底面应在侧面展开图长方形的两侧.8.(2021•栾川县三模)下列图形中,不能经过折叠围成正方体的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A,B,C都可以围成正方体,D选项折叠后上面两个面重合,无法围成正方体,故选:D.【点评】本题主要考查正方体展开图的折叠,关键是要考虑折叠后是否有两个面重合,有重合的面,则不能围成正方体.9.(2021•河北模拟)用图1所示的平面图形可以围成图2所示的正方体,则与A点重合的点是()A.点B B.点C C.点D D.点E【分析】根据正方体的平面展开图与正方形的关系,正确找到与A点重合的点即可.【解答】解:将图1所示的平面图形可以围成图2所示的正方体,则与A点重合的点是点B.故选:A.【点评】本题考查了展开图折叠成几何体.能够正确的把展开图围成正方体是解题的关键.10.(2021•越城区模拟)已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是()A.①B.②C.③D.④【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体.故选:A.【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.11.(2021•衡水模拟)下列四个正方体的展开图中,能折叠成如图所示的正方体的是()A.B.C.D.【分析】根据展开图邻面间的关系,可得答案.【解答】解:由正方体图,得A面、B面、C面是邻面,故B符合题意,故选:B.【点评】本题考查了展开图折叠成几何体,利用正方体邻面间的关系是解题的关键.12.(2021•扬州)把如图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选:A.【点评】本题考查了几何体的展开图,掌握各立体图形的展开图的特点是解决此类问题的关键.13.(2021秋•即墨区期中)如图是某一品牌的牛奶包装盒,该包装盒可以近似的看成是长方体,则它的展开图不可能是()A.B.C.D.【分析】根据长方体的展开图特征即可得出答案.【解答】解:根据图象可得,其表面展开图不正确的是C.故选:C.【点评】此题主要考查了长方体的展开图,立意新颖,是一道不错的题,培养了学生的空间想象力.二.填空题(共6小题)14.(2019秋•石景山区期末)如图,①~④展开图中,能围成三棱柱的是②.【分析】依据展开图的特征,即可得到围成的几何体的类型.【解答】解:图①能围成圆锥;图②能围成三棱柱;图③能围成正方体;图④能围成四棱锥;故答案为:②.【点评】本题主要考查了展开图折成几何体,通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.15.(2020秋•黄岛区期末)如图,在边长为100cm的正方形卡纸的四个角,各剪去一个边长为xcm的正方形,折成一个无盖的长方体盒子,则这个盒子的体积是x(100﹣2x)2cm3.【分析】根据正方体的体积公式表示出这个盒子的体积即可.【解答】解:用含x的代数式表示这个盒子的体积是x(100﹣2x)2cm3.故答案为:x(100﹣2x)2.【点评】此题主要考查用代数式表示正方体的体积,需熟记公式,且认真观察图形,得出等量关系是解题的关键.16.(2021秋•崇川区校级月考)已知图1的小正方形和图2中所有的小正方形边长都相等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是能围成一个正方体的.那么安放的位置不能是①.【分析】根据正方体展开图的特征判断即可.【解答】解:将图1的小正方形安放在图2中的②.③.④的其中某一个位置,经过折叠均能围成正方体,放在图2中的①位置,折叠后有两个面重叠,不能围成正方体,故答案为:①.【点评】本题考查了展开图折叠成几何体,熟练掌握正方体展开图的特征是解题的关键.17.(2021秋•青岛期中)小华准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形.请在图中的拼接图形上再添加一个正方形,使新的图形经过折叠后能成为一个封闭的正方体盒子,试问共有4种添加方法.【分析】由平面图形的折叠及正方体的展开图解题,正方体共有11种表面展开图,识记正方体展开图的各种情形,即可轻松画图.【解答】解:共有4种添加方法,.故答案为:4.【点评】此题考查正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.18.(2021秋•莱阳市期中)已知图1的小正方形和图2中所有小正方形都完全一样,将图1的小正方形放在图2中的①、②、③、④的某一个位置,放置后所组成的图形不能围成一个正方体的位置是①.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体.故答案为:①.【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.19.(2021秋•沙坪坝区校级月考)如图,该展开图能折叠成的立体图形是圆锥.【分析】利用常见几何体的表面展开图的特点进行判断即可得出答案.【解答】解:可以折成圆锥.故答案为:圆锥.【点评】此题考查了展开图折叠成几何体,通过结合立体图形与平面图形的相互转化,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.三.解答题(共5小题)20.(2020秋•石景山区期末)小石准备制作一个封闭的正方体盒子,他先用5个边长相等的正方形硬纸制作成如图所示的拼接图形(实线部分).请你在图中的拼接图形上再接上一个正方形,使得新拼接的图形经过折叠后能够成为一个封闭的正方体盒子(只需添加一个符合要求的正方形,并将添加的正方形用阴影表示).【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可,答案不唯一.【解答】解:如图所示:答案不唯一,.【点评】此题考查了展开图折叠成几何体,正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.21.(2021秋•林州市期中)如图,一块长方形铁皮的长为(7a+b)米,宽为(6+2a+2b)米.将这块长方形铁皮的四个角都剪去一个边长为(a+b)米的正方形,然后沿虚线折成一个无盖的长方体盒子.(1)求这个盒子底部的长和宽(用含a、b的式子表示,要求化简);(2)求这块长方形铁皮的周长(用含a、b的式子表示,要求化简).【分析】(1)先根据题意列出算式,再根据整式的运算法则求出即可;(2)先根据题意列出算式,再根据整式的运算法则求出即可.【解答】解:(1)这个盒子底部的长:(7a+b)﹣2(a+b)=7a+b﹣2a﹣2b=(5a﹣b)米.这个盒子底部的宽:(6+2a+2b)﹣2(a+b)=6+2a+2b﹣2a﹣2b=6(米).答:这个盒子底部的长为(5a﹣b)米,宽为6米;(2)(7a+b+6+2a+2b)×2=(9a+3b+6)×2=(18a+6b+12)米,答:这块长方形铁皮的周长为(18a+6b+12)米.【点评】本题考查了展开图折叠成几何体,列代数式和整式的加减混合运算,能根据题意列出算式是解此题的关键.22.(2021秋•沈河区校级期中)如图,用若干个正方形和长方形准备拼成一个长方体的展开图.(1)此拼图是否存在问题?若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长为3cm,长方形的长为5cm,宽为3cm,请直接写出修正后所叠而成的长方体的体积为45cm3.【分析】(1)根据长方体展开图的特征求解即可;(2)根据长方体的体积公式计算即可求解.【解答】解:(1)拼图存在问题,如图:(2)3×3×5=45(cm3).答:长方体的体积为45cm3.故答案为:45.【点评】考查了展开图折叠成几何体,通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.23.(2021秋•青浦区月考)一块长方形硬纸片,长为(5a2+4b2)米、宽为6a2米,在它的四个角上分别剪去一个边长为a2米的小正方形,然后折成一个无盖的盒子.(1)这个盒子的长为(2a2+4b2)米,宽为3a2米,高为a2米;(2)求这个无盖盒子的外表面积.【分析】(1)盒子的长=长方形的长﹣小正方形边长的2倍,盒子的宽=长方形的宽﹣小正方形边长的2倍,盒子的高=小正方形边长;(2)利用纸片的面积减去剪去的4个小正方形的面积就是盒子的表面积.【解答】解:(1)盒子的长为:(5a2+4b2)﹣2×a2=5a2+4b2﹣3a2=(2a2+4b2)米;盒子的宽为:6a2﹣2×a2=6a2﹣3a2=3a2米;盒子的高为:a2米.故答案为:(2a2+4b2)米,3a2米,a2米;(2)纸片的面积是:(5a2+4b2)•6a2=(30a4+24a2b2)平方米;小正方形的面积是:(a2)2=a4平方米;则无盖盒子的外表面积是:(30a4+24a2b2)﹣4×a4=(21a4+24a2b2)平方米.【点评】本题考查了整式的运算,理解纸片的面积减去剪去的4个小正方形的面积就是盒子的表面积是关键.24.(2021秋•临淄区期中)(1)如图1四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,并解答:四棱柱有6个面,12条棱,8个顶点;六棱柱有8个面,18条棱,12个顶点;由此猜想n棱柱有(n+2)个面,3n条棱,2n个顶点.(2)如图2,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;若图中的正方形边长为2.1cm,长方形的长为3cm,宽为2.1cm,请直接写出修正后所折叠而成的长方体的体积:13.23cm³.【分析】(1)结合已知三棱柱、四棱柱、五棱柱和六棱柱的特点,可知n棱柱一定有(n+2)个面,3n条棱和2n个顶点;(2)由于长方体有6个面,且相对的两个面全等,所以展开图是6个长方形(包括正方形),而图中所拼图形共有7个面,所以有多余块,应该去掉一个;又所拼图形中有3个全等的正方形,结合平面图形的折叠可知,可将第二行最左边的一个正方形去掉,由题意可知,此长方体的长、宽、高可分别看作3厘米、2.1厘米和2.1厘米,将数据代入长方体的体积公式即可求解.【解答】解:(1)四棱柱有6个面,12条棱,8个顶点;六棱柱有8个面,18条棱,12个顶点;由此猜想n棱柱有(n+2)个面,3n条棱,2n个顶点.故答案为:6,12,8;8,18,12;(n+2),3n,2n;(2)拼图存在问题,如图:多了一个正方形.折叠而成的长方体的体积为:3×2.1×2.1=13.23(cm3).故答案为:13.23.【点评】此题考查了认识立体图形,熟记常见棱柱的特征,可以总结一般规律:n棱柱有(n+2)个面,3n条棱和2n个顶点,本题还考查了平面图形的折叠与长方体的展开图及其体积的计算第21页(共21页)。

人教版七年级数学上册第四章几何图形复习试题三(含答案) (57)

人教版七年级数学上册第四章几何图形复习试题三(含答案) (57)

人教版七年级数学上册第四章几何图形复习试题三(含答案) 如图是一个几何体的表面展开图,则该几何体的顶点有______个,棱有______条,共有_______个面.【答案】8 12 6【解析】解:观察图形可知:是四棱柱的表面展开图,∴有8个顶点,12条棱,6个面.62.已知三棱柱有5个面6个顶点9条棱,四棱柱有6个面8个顶点12条棱,五棱柱有7个面10个顶点15条棱,……,由此可以推测n棱柱有_____个面,____个顶点,_____条侧棱.【答案】n+2 2n 3n【解析】试题解析:结合三棱柱、四棱柱和五棱柱的特点,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱.63.将两个边长为2cm的正方体拼成一个长方体,表面积减少了__cm2.【答案】8【解析】试题解析:棱长为2cm的两个正方体拼成一个长方体,表面积减少两个面的面积.22⨯=228cm.故答案为:8.64.一个几何体的面数为12,棱数为30,它的顶点数为__.【答案】20【解析】试题解析:∵简单多面体的顶点数V、面数F及棱数E间的关系为:V+F−E=2,一个棱柱的面数为12,棱数是30,∴则其顶点数为:V+12−30=2,解得:V=20.故答案为:20.点睛:简单多面体的顶点数V、面数F及棱数E间的关系为:V+F−E=2.65.一个直棱柱有12条棱,则它是__棱柱.【答案】四【解析】试题解析:设该棱柱为n棱柱,根据题意得:3n=12.解得:n=4.所以该棱柱为四棱柱,故答案是:四.66.一个长方体的长、宽、高分别是12厘米、10厘米、8厘米,体积是________立方厘米,如果把它削成一个最大的圆柱,这个圆柱的体积是________立方厘米.【答案】960628【解析】已知一个长方体的长、宽、高分别是12厘米、10厘米、8厘米,根据长方体的体积公式可得,长方体的体积为:12×10×8=960cm3;以10厘米为底面直径,高是8厘米,所得圆柱体的体积为:3.14×(10÷2)2×8=3.14×25×8=78.5×8=628(立方厘米);以8厘米为底面直径,12厘米为高,所得圆柱体的体积为:3.14×(8÷2)2×12=3.14×16×12=602.88(立方厘米);以8厘米为底面直径,10厘米为高,所得圆柱体的体积为:3.14×(8÷2)2×10=3.14×16×10=502.4(立方厘米),所以最大圆柱体的体积为628立方厘米.点睛:本题的第一问较为简单,直接利用长方体的体积公式解答即可;解答第二问的关键是如何将一个长方体削成一个最大的圆柱,并找出它们之间的联系,再根据相应的公式解决问题.三、解答题67.已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)若从正面看的长为10cm,从上面看的圆的直径为4cm,求这个几何体的侧面积(结果保留π)。

解析卷人教版七年级数学上册第四章几何图形初步专项测试试题(含详解)

解析卷人教版七年级数学上册第四章几何图形初步专项测试试题(含详解)

人教版七年级数学上册第四章几何图形初步专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,河道l 的同侧有,M N 两个村庄,计划铺设一条管道将河水引至,M N 两地,下面的四个方案中,管道长度最短的是( )A .B .C .D .2、下面图形中,以直线l 为轴旋转一周,可以得到圆柱体的是( )A .B .C .D .3、如图,如果把原来的弯曲河道改直,关于两地间河道长度的说法正确的是( )A.变长了B.变短了C.无变化D.是原来的2倍4、下列判断正确的有()(1)正方体是棱柱,长方体不是棱柱;(2)正方体是棱柱,长方体也是棱柱;(3)正方体是柱体,圆柱也是柱体;(4)正方体不是柱体,圆柱是柱体.A.1个B.2个C.3个D.4个5、一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表6、①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择()A.①③B.②③C.③④D.①④7、如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cmA.4 B.3 C.2 D.18、下列展开图中,是正方体展开图的是()A.B.C.D.9、下列图形经过折叠不能围成棱柱的是()A.B.C.D.10、将如图所示的图形绕着给定的直线L旋转一周后形成的几何体是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,90AOC BOD∠=∠=︒,那么12∠=∠,理由是_____________.2、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图,若图中的“锦”表示正方体的右面,则“_______”表示正方体的左面.3、已知点M是线段AB上一点,且:2:3AM MB,MB比AM长2cm,则AB长为_______.=4、在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明_____________.︒,则这个角的补角是________.5、一个角的余角是2325'三、解答题(5小题,每小题10分,共计50分)1、(1)如图所示的长方体,长、宽、高分别为4,3,6.若将它的表面沿某些棱剪开,展成一个平面图形,则下列图形中,可能是该长方体表面展开图的有________(填序号).(2)图A,B分别是题(1)中长方体的两种表面展开图,求得图A的外围周长为52,请你求出图B 的外围周长.(3)第(1)题中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.2、已知一个角的余角比它的补角的14还多15 ,求这个角.3、如图,平面内有A、B、C、D四点.按下列语句画图.(1)画直线AB,射线BD,线段BC;(2)连接AC,交射线BD于点E.4、如图是一个正方体纸盒的表面展开图,纸盒中相对两个面上的数互为倒数.(1)填空:=a ______,b =_________;(2)先化简,再求值:()()2223252ab a b ab a ab ⎡⎤------⎣⎦.5、已知∠AOB 和∠COD 均为锐角,∠AOB >∠COD ,OP 平分∠AOC ,OQ 平分∠BOD ,将∠COD 绕着点O 逆时针旋转,使∠BOC =α(0≤α<180°)(1)若∠AOB =60°,∠COD =40°,①当α=0°时,如图1,则∠POQ = ;②当α=80°时,如图2,求∠POQ 的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ 的度数;(2)若∠AOB =m °,∠COD =n °,m >n ,则∠POQ = ,(请用含m 、n 的代数式表示).-参考答案-一、单选题1、A【解析】根据两点之间线段最短可判断方案A比方案C、D中的管道长度最短,根据垂线段最短可判断方案A 比方案B中的管道长度最短.【详解】解:四个方案中,管道长度最短的是A.故选:A.【考点】本题考查了垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.2、C【解析】【分析】直接根据旋转变换的性质即可解答.【详解】解:因为圆柱从正面看到的是一个长方形,所以以直线为轴旋转一周,可以形成圆柱的是长方形,故选:C.【考点】此题主要考查图形的旋转变换,发挥空间想象是解题关键.3、B【解析】【分析】根据两点之间线段最短解答.【详解】解:如果把原来的弯曲河道改直,根据两点之间线段最短可得到两地间河道长度变短了,【考点】此题考查线段的性质:两点之间线段最短.4、B【解析】【分析】根据棱柱的定义:有两个面平行,其余面都是四边形,并且相邻的两个四边形的公共边都互相平行;柱体的定义:一个多面体有两个面互相平行且相同,余下的每个相邻两个面的交线互相平行,进行判断即可.【详解】解:(1)正方体是棱柱,长方体是棱柱,故此说法错误;(2)正方体是棱柱,长方体也是棱柱,故此说法正确;(3)正方体是柱体,圆柱也是柱体,故此说法正确;(4)正方体是柱体,圆柱是柱体,故此说法错误.故选B.【考点】本题主要考查了棱柱和柱体的定义,解题的关键在于能够熟练掌握相关定义.5、A【解析】【分析】根据正方体展开图的对面,逐项判断即可.【详解】解:由正方体展开图可知,A的对面点数是1;B的对面点数是2;C的对面点数是4;∵骰子相对两面的点数之和为7,∴A代表,故选:A.【考点】本题考查了正方体展开图,解题关键是明确正方体展开图中相对面间隔一个正方形,判断哪两个面相对.6、D【解析】【分析】观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意【详解】解:观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意故选D【考点】本题考查了立体图形,应用空间想象能力是解题的关键.7、C【解析】【分析】由AB=10cm,BC=4cm.于是得到AC=AB+BC=14cm,根据线段中点的定义由D是AC的中点,得到AD,根据线段的和差得到MD=AD﹣AM,于是得到结论.【详解】解:∵AB=10cm,BC=4cm,∴AC=AB+BC=14cm,∵D是AC的中点,AC=7cm;∴AD=12∵M是AB的中点,AB=5cm,∴AM=12∴DM=AD﹣AM=2cm.故选:C.【考点】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.8、C【解析】【分析】根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.【详解】解:根据正方体展开图特点可得C答案可以围成正方体,故选:C.【考点】此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.9、D【分析】根据题意由平面图形的折叠及棱柱的展开图逐项进行判断即可.【详解】解:A可以围成四棱柱,B可以围成三棱柱,C可以围成五棱柱,D选项侧面上多出一个长方形,故不能围成一个三棱柱.故选:D.【考点】本题考查立体图形的展开图,熟记常见立体图形的表面展开图的特征是解决此类问题的关键.10、B【解析】【分析】根据面动成体的原理以及空间想象力可直接选出答案.【详解】解:将如图所示的图形绕着给定的直线L旋转一周后形成的几何体是圆台,故选:B.【考点】此题主要考查了点、线、面、体,关键是同学们要注意观察,培养自己的空间想象能力.二、填空题1、同角的余角相等【分析】由∠AOC+∠BOC=∠BOD+∠BOC=90°可以判断同角的余角相等.【详解】∵∠AOB+∠BOC=∠COD+∠BOC=90°,∠AOB和∠COD都与∠BOC互余,故同角的余角相等,故答案为:同角的余角相等.【点睛】本题主要考查补角与余角的基本知识,比较简单.2、程.【解析】【分析】根据展开图得到“锦”的对面是“程”.【详解】由展开图得到“锦”的对面是“程”,故填:程.【点睛】此题考查正方体展开的平面图,需熟知正方体展开的形式,由此即可正确解答.3、10cm【解析】【分析】由:2:3=AM MB,可得MB比AM多1份,MB比AM长2cm,从而可得每一份为2cm,于是可得答案.【详解】解:2(32)10cm32AB=⨯+=-.故答案为:10.cm【点睛】本题考查的是部分与总体的关系,线段的和差关系,理解题意弄清楚部分与整体的比值是解题的关键.4、点动成线.【解析】【分析】根据点动成线可得答案.【详解】解:“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明点动成线.故答案为:点动成线.【点睛】本题主要考查了点、线、面、体,从运动的观点来看:点动成线,线动成面,面动成体.5、11325'︒【解析】【分析】先根据题意求出这个角的度数,再根据补角的定义求解即可.【详解】∵一个角的余角的度数是23°25′,∴这个角为90°-23°25′=66°35′,∴这个角的补角的度数是180°-66°35′=113°25′.故答案为:113°25′.【点睛】本题考查了余角和补角的定义,解答本题的关键是掌握互余两角之和为90°,互补两角之和为180°.三、解答题1、(1)①②③;(2)28;(3)能,70【解析】【分析】(1)根据长方体展开图的特征可得解;(2)给图B标上尺寸,然后根据周长意义可得解;(3)为了使外围周长最大,可以沿着长方体长度为6的4条棱和长度为4的2条棱剪开即可得到解答.【详解】解:(1)根据长方体展开图的特征可得答案为:①②③;(2)由已知可以给图B标上尺寸如下:∴图B的外围周长为6×3+4×4+4×6=58.(3)能.如图所示.外围周长为6×8+4×4+3×2=48+16+6=70.【考点】本题考查长方体的应用,熟练掌握长方体的各种展开图是解题关键.2、这个角是40°.【解析】【分析】设这个角为x,则它的余角为(90°-x),补角为(180°-x),再根据题中给出的等量关系列方程即可求解.【详解】设这个角的度数为x,则它的余角为(90°-x),补角为(180°-x),依题意,得:1(90)(180)154x x︒--︒-=︒,解得x=40︒.答:这个角是40°.【考点】本题主要考查了余角、补角的定义以及一元一次方程的应用.解题的关键是能准确地从题中找出各个量之间的数量关系,列出方程,从而计算出结果.互为余角的两角的和为90°,互为补角的两角的和为180°.3、(1)见解析;(2)见解析【解析】【分析】(1)根据直线、射线、线段定义画出即可;(2)根据要求画出线段标出交点即可.【详解】解:(1)如图所示,直线AB,射线BD,线段BC即为所求(2)连接AC,点E即为所求【考点】本题考查了对直线、射线、线段定义的应用,主要考查学生的理解能力和画图能力.4、(1)1-,13-;(2)22242a ab b+-,289【解析】【分析】(1)先根据正方体的平面展开图确定a、b、c所对的面的数字,再根据相对的两个面上的数互为倒数,确定a、b、c的值;(2)先去括号,再合并同类项化简代数式后代入求值即可.【详解】解:(1)由长方体纸盒的平面展开图知,a与-1、b与-3、c与2是相对的两个面上的数字或字母,因为相对的两个面上的数互为倒数,所以111,,32a b c=-=-=.故答案为:1-,13-. (2)()()2223252ab a b ab a ab ⎡⎤------⎣⎦22233252ab a b ab a ab =-+-+-+22242a ab b =+- 将11,,3a b =-=-代入, 原式()()22112141233⎛⎫⎛⎫=⨯-+⨯-⨯--⨯- ⎪ ⎪⎝⎭⎝⎭ 42239=+- 289=. 【考点】本题考查了正方体的平面展开图、倒数及整式的加减化简求值,解决本题的关键是根据平面展开图确定a 、b 、c 的值.5、(1)①50°;②50°;③130°;(2)12m °+12n °或180°-12m °-12n °【解析】【分析】(1)根据角的和差和角平分线的定义即可得到结论;(2)根据角的和差和角平分线的定义即可得到结论.【详解】解:(1)①∵∠AOB =60°,∠COD =40°,OP 平分∠AOC ,OQ 平分∠BOD ,∴∠BOP =12∠AOB =30°,∠BOQ =12∠COD =20°,∴∠POQ=50°,故答案为:50°;②解:∵∠AOB=60°,∠BOC=α=80°,∴∠AOC=140°,∵OP平分∠AOC,∴∠POC=1∠AOC=70°,2∵∠COD=40°,∠BOC=α=80°,且OQ平分∠BOD,同理可求∠DOQ=60°,∴∠COQ=∠DOQ-∠DOC=20°,∴∠POQ=∠POC-∠COQ=70°-20°=50°;③解:补全图形如图3所示,∵∠AOB=60°,∠BOC=α=130°,∴∠AOC=360°-60°-130°=170°,∵OP平分∠AOC,∴∠POC=1∠AOC=85°,2∵∠COD=40°,∠BOC=α=130°,且OQ平分∠BOD,同理可求∠DOQ=85°,∴∠COQ=∠DOQ-∠DOC=85°-40°=45°,∴∠POQ=∠POC+∠COQ=85°+45°=130°;(2)当∠AOB=m°,∠COD=n°时,如图2,∴∠AOC= m°+ α°,∵OP平分∠AOC,∴∠POC=12(m°+ α°),同理可求∠DOQ=12(n°+ α°),∴∠COQ=∠DOQ-∠DOC=12(n°+ α°)- n°=12(-n°+ α°),∴∠POQ=∠POC-∠COQ=12(m°+ α°)-12(-n°+ α°)=1 2m°+12n°,当∠AOB=m°,∠COD=n°时,如图3,∵∠AOB=m°,∠BOC=α,∴∠AOC=360°-m°-α°,∵OP平分∠AOC,∴∠POC=12∠AOC=180°12-(m°+ α°),∵∠COD=n°,∠BOC=α,且OQ平分∠BOD,同理可求∠DOQ=12(n°+ α°),∴∠COQ=∠DOQ-∠DOC=12(n°+ α°)-n°=12(-n°+ α°),∴∠POQ=∠POC+∠COQ=180°12-(m°+ α°)+12(-n°+ α°)=180°-12m°-12n°,综上所述,若∠AOB=m°,∠COD=n°,则∠POQ=12m°+12n°或180°-12m°-12n°.故答案为:12m°+12n°或180°-12m°-12n°.【考点】本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.。

北师大版七年级数学上册《1.1生活中的立体图形》同步测试题及答案

北师大版七年级数学上册《1.1生活中的立体图形》同步测试题及答案

北师大版七年级数学上册《1.1生活中的立体图形》同步测试题及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列立体图形中,是圆锥的是()A.B.C.D.2.下列图形中是多面体的有()A.(1)(2)(4)B.(2)(4)(6)C.(2)(5)(6)D.(1)(3)(5)3.子弹从枪膛中射出去的轨迹像是一条线,这个现象可以用数学知识解释为()A.点动成线B.线动成面C.面动成体D.以上都不对4.一个印有“你要探索数学”字样的立方体纸盒表面展开图如图1所示,若立方体纸盒是按图2展开,则印有“索”字在几号正方形内()A.①B.①C.①D.①5.几何图形都是由点、线、面、体组成的,点动成线,线动成面,面动成体,下列生活现象中可以反映“线动成面”的是()A.笔尖在纸上移动划过的痕迹B.长方形绕一边旋转一周形成的几何体C.流星划过夜空留下的尾巴D.汽车雨刷的转动扫过的区域6.如图,下列图形中属于棱柱的有()A.2B.3C.4D.57.夜晚时,我们看到的流星划过属于()A.点动成线B.线动成面C.面动成体D.以上答案都不对8.一个直角三角形绕它的一边所在直线旋转一周所得到的几何体一定是()A.圆锥B.圆柱C.圆锥或圆柱D.以上都不对9.观察下面四个图形是圆锥的是()A.B.C.D.10.在①球体;①柱体;①锥体;①棱柱;①棱锥中,必是多面体的是() A.①~①B.①①C.①D.①①11.一个棱柱有18条棱,那么它的底面一定是()A.五边形B.六边形C.十边形D.十五边形12.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是().A.B.C.D.二、填空题13.一个正方体有个面,条棱,个顶点.14.今年十一国庆节当晚,香港以“富兴百业贺国庆,盈聚慧城耀香江”为主题,在维多利亚港举行国庆烟花汇演,庆祝中华人民共和国成立74周年.绚烂的焰火可以看成由点运动形成的,这个现象说明.15.如果长方形的长和宽分别为6和4,那么以长方形的一边为轴旋转一周所得的几何体的体积为(结果保留 ).16.如图的几何体有个面,条棱,个顶点,它是由简单的几何体和组成的.17.如图,有一个盛有水的正方体玻璃容器,从内部量得它的棱长为30 cm,容器内的水深为8 cm.现把一块长,宽,高分别为15 cm,10 cm,10 cm的长方体实心铁块平放进玻璃容器中,容器内的水将升高cm.三、解答题18.小明学习了“面动成体”之后,他用一个边长为6cm、8cm和10cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.请计算出几何体的体积.(锥体体积=13底面积×高)19.请把下图中的平面图形与其绕所画直线旋转一周之后形成的立体图形用线连接起来.20.将一个长方形分别沿它的长和宽所在的直线旋转一周,回答下列问题:(1)旋转后将得到什么几何体?(2)若长方形的长和宽分别为6cm和4cm,求旋转后两个几何体的体积.(结果保留π)21.请你观察下列几种简单多面体模型,解答下列问题:多面体面数(F)棱数(E)四面体46长方体612正八面体8(1)计算长方体棱数,可依据长方体有6个面,每个面均为四边形即有4条棱,得出总棱数为12;请你猜想多面体面数、形状、棱长之间的数量关系,完成以下计算:①如图所示,正八面体的每一个面都是三角形,则正八面体有__________条棱;①正十二面体的每一个面都是正五边形,则它共有__________条棱;(2)如下图,一种足球(可视作简单32面多面体)是由32块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长相等,已知图中足球有90条棱;某体育公司采购630张牛皮用于生产这种足球,已知一张牛皮可用于制作30个正五边形或者制作20个正六边形,要使裁剪后的五边形和六边形恰好配套,应怎样计划用料才能制作尽可能多的足球?22.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体44①长方体8612正八面体①812正十二面体201230(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(3)一个多面体的面数与顶点数相同,且有12条棱,则这个多面体的面数是.23.18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题.(1)根据上面的多面体模型,直接写出表格中的m,n的值,则m=______,n=______.多面体顶点数(V)面数(F)棱数(E)四面体446长方体m612正八面体n812正十二面体201230(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_______.(3)一个多面体的面数等于顶点数,且这个多面体有30条棱,求这个多面体的面数.参考答案1.A【分析】本题考查常见的几何体.熟记常见的几何体,是解题的关键.根据圆锥的特征,进行判断即可.【详解】解:A、是圆锥,符合题意;B、是球体,不符合题意;C、是圆柱体,不符合题意;D、是长方体,不符合题意;故选:A.2.B【分析】多面体指四个或四个以上多边形所围成的立体.【详解】解:(1)圆锥有2个面,一个曲面,一个平面,不是多面体;(2)正方体有6个面,故是多面体;(3)圆柱有3个面,一个曲面两个平面,不是多面体;(4)三棱锥有4个面,故是多面体;(5)球有1个曲面,不是多面体;(6)三棱柱有5个面,故是多面体.故是多面体的有(2)(4)(6)故选:B.【点睛】本题考查多面体的定义,关键点在于:多面体指四个或四个以上多边形所围成的立体.3.A【分析】根据“点动成线”的概念直接回答即可.【详解】解:子弹从枪膛中射出去的轨迹可以看作点动成线的实际应用;故选A【点睛】此题考查了点、线、面、体,正确理解点线面体的概念是解题的关键.4.A【详解】试题分析:正方体的表面展开图的特征:相对面展开后间隔一个正方形.由图可得印有“索”字在①号正方形内,故选A.考点:正方体的表面展开图点评:本题属于基础应用题,只需学生熟练掌握正方体的表面展开图的特征,即可完成.5.D【分析】根据点动成线,线动成面,面动成体即可一一判定.【详解】解:A.笔尖在纸上移动划过的痕迹,反映的是“点动成线”,故不符合题意;B.长方形绕一边旋转一周形成的几何体,反映的是“面动成体”,故不符合题意;C.流星划过夜空留下的尾巴,反映的是“点动成线”,故不符合题意;D.汽车雨刷的转动扫过的区域,反映的是“线动成面”,故符合题意.故选:D【点睛】本题考查了点动成线,线动成面,面动成体,理解和掌握点动成线,线动成面,面动成体是解决本题的关键.6.B【分析】根据有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱,由此可选出答案.【详解】解:根据棱柱的定义可得①符合棱柱定义的有第一、二、四个几何体都是棱柱,共3个,其余都不是棱柱.故选①B.【点睛】本题考查棱柱的定义,属于基础题,掌握基本的概念是关键.7.A【分析】把流星视为点,流星的轨迹是一条线,符合点动成线的原理.【详解】①把流星视为点,流星的轨迹是一条线,符合点动成线的原理①选A.【点睛】本题考查了点动成线的原理,正确理解题意是解题的关键.8.D【分析】此题考查面与体的关系,正确理解面与体的关系是解题的关键.由平面图形绕某条直线旋转一周可得到体,据此依次判断.【详解】解:将直角三角形绕一边所在的直线旋转一周形成的几何体不一定是圆锥,以斜边所在的直线为轴旋转一周所得到的几何体是两个圆锥组成的组合体,不是圆锥故选:D9.C【分析】根据圆锥的定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥,进行判断即可.【详解】解:A、不是圆锥,故错误;B、不是圆锥,故错误;C、是圆锥,故正确;D、不是圆锥,故错误;故选C.【点睛】本题主要考查了圆锥的定义,解题的关键在于能够熟练掌握圆锥的定义.10.D【详解】解:①球体只有一个曲面,故球体不是多面体;①柱体,圆柱有三个面,故柱体不一定是多面体;①锥体,圆锥有两个面,故锥体不一定是多面体;①棱柱至少有两个底面,三个侧面,故棱柱是多面体;①棱锥至少有一个底面,三个侧面,故棱锥是多面体.故选D.11.B【分析】根据题意利用n棱柱中棱的条数为3n,由棱的总条数为18,进行计算即可求出答案.【详解】解:n棱柱有3n条棱,又18÷3=6,因此底面是六边形.故选:B.【点睛】本题考查认识立体图形,熟练掌握棱柱的顶点、面数和棱的条数是正确判断的前提.12.B【分析】根据点动成线,线动成面,面动成体进行判断即可.【详解】解:绕轴旋转一周,可得到图中所示的立体图形的是:故选:B.【点睛】此题主要考查了点、线、面、体,关键是掌握面动成体.点、线、面、体的运动组成了多姿多彩的图形世界.13.612 8【分析】根据正方体的特征:正方体有6个面、12条棱、8个顶点,每个面都是正方形,而且面积相等,每条棱的长度都相等,正方体是特殊的长方体.据此解答.【详解】解:正方体有6个面,有12条棱,有8个顶点,一个正方体所有面的大小相等;每条棱长度都相等;故答案为6,12,8.【点睛】本题考查正方体,解题关键是理解并掌握正方体的特征.14.点动成线【分析】根据点,线,面,体的关系得出答案.【详解】绚烂的烟花可以看成由点运动形成的,这个现象说明了点动成线.故答案为:点动成线.15.96π或144π【分析】由题意易得可分两种情况进行求解,即①若以长方体的长为轴,旋转一周,则得到高为6,底面半径为4的圆柱,①若以长方体的宽4为轴,旋转一周,则得到高为4,底面半径为6的圆柱;然后进行求解即可.【详解】解:①若以长方体的长为轴,旋转一周,则得到高为6,底面半径为4的圆柱,其体积为24696ππ⨯⨯=;①若以长方体的宽4为轴,旋转一周,则得到高为4,底面半径为6的圆柱,其体积为264144ππ⨯⨯=.故答案为:96π或144π.【点睛】本题主要考查几何初步,关键是由平面图形得到几何体,进而求解即可.16.9 16 9 四棱锥四棱柱【详解】观察这个几何体可知,它有9个面,16条棱,9个顶点,它是由简单的几何体四棱锥和四棱柱组成的.17.315或1【分析】根据题意列出式子,进行计算即可【详解】解:设长方体浸入水面的高度为xcm,则水面升高了(x-8)cm 当以15 cm,10 cm为底面积浸入水中时:30308+1510x=3030x⨯⨯⨯⨯解得:3 x=95故水面升高了:339-8=155(cm)当以10 cm,10 cm为底面积浸入水中时:30308+1010x=3030x⨯⨯⨯⨯解得:x=9故水面升高了:9-8=1(cm)故答案为:315或1【点睛】此题主要考查了有理数乘除的应用,根据题意得出式子进行计算是解题关键.18.几何体的体积为:96πcm3或128πcm3或76.8πcm3.【分析】根据三角形旋转是圆锥,可得几何体;根据圆锥的体积公式,分类讨论可得答案.【详解】解:以8cm为轴,得:以8cm为轴体积为13×π×62×8=96π(cm3);以6cm为轴,得:以6cm为轴的体积为13×π×82×6=128π(cm3);以10cm为轴,得以10cm 为轴的体积为13×π(245)2×10=76.8π(cm 3). 故几何体的体积为:96πcm 3或128πcm 3或76.8πcm 3.【点睛】本题考查了点线面体,利用三角形旋转是圆锥是解题关键.19.见解析【分析】本题考查了点线面体,熟记各种图形旋转得出的立体图形是解题关键.直角三角形绕直角边旋转一周得到的立体图形是圆锥,长方形绕一边旋转一周得到的立体图形是圆柱,直角梯形绕如图所示的一边旋转一周得到的立体图形是圆台,半圆绕直径旋转一周得到的立体图形是球.【详解】解:如图所示:20.(1)圆柱(2)396cm π 3144cm π【分析】(1)根据平面图形中矩形旋转一周可得到圆柱求解即可;(2)根据绕长方形的长旋转一周得到圆柱的高为6cm ,圆柱底面半径为4cm ;绕长方形的宽旋转一周得到的圆柱的高为4cm ,底面半径为6cm ,分别利用圆柱的体积公式求解即可.【详解】(1)解:由题意可得,旋转后将得到圆柱答:旋转后将得到的几何体是圆柱;(2)解:由题意可得,绕长方形的长旋转一周得到圆柱的高为6cm ,圆柱底面半径为4cm①236496V cm ππ=⨯⨯=圆柱绕长方形的宽旋转一周得到的圆柱的高为4cm ,底面半径为6cm①2246144V cm ππ=⨯⨯=圆柱答:旋转后两个几何体的体积分别为396cm π 3144cm π.21.(1)12;30(2)用于制作30个正五边形的牛皮共180张,用于制作20个正六边形的牛皮共450张.【分析】本题考查了几何体中点、棱、面之间的关系以及二元一次方程组的应用与整除问题,解题的关键是审清题意.(1)根据每一个面有三条棱,每二个面共用一条棱即可求解,即:棱数=面数32⨯÷.(2)设一个足球有黑皮x 块,白皮y 块,根据二个面共用一条棱,结合题意可列方程组,求得每个足球黑皮块数与白皮块数;然后再设用于制作正五边形的需要m 张,用于制作正六边形的需要n 张,依据题意建立方程组,求得m 与n 的最大整数值,并检验是否符合题意即可得到答案.【详解】(1)解:①正八面体的每一个面都是三角形,则每一个面有三条棱,故八个面共有2438=⨯条棱,但每两个面共用一条棱,因此正八面体棱数是:24212÷=(条).①根据①的思路可知,正十二面体共有棱数:125302⨯=(条). 故答案为:12;30.(2)设一个足球有黑皮x 块,白皮y 块,根据题意得: 5690232x y x y +=⨯⎧⎨+=⎩,解得:1220x y =⎧⎨=⎩ 设630张牛皮中,用于制作正五边形的需要m 张,用于制作正六边形的需要n 张,依据题意得:63030201220m n m n +≤⎧⎪⎨=⎪⎩,解得:180450m n ≤⎧⎨≤⎩(m 、n 为整数) m 、n 取最大的整数并经过检验知,180,450m n ==正好符合题意①最多制作2045020n =(个)足球,且正好将630张牛皮全部用完. 答:用于制作30个正五边形的牛皮共180张,用于制作20个正六边形的牛皮共450张.22.(1)6,6;(2)V+F -E=2;(3)7.【分析】(1)观察图形即可得出结论;(2)观察可得:顶点数+面数-棱数=2;(3)代入(2)中的式子即可得到面数【详解】解:(1)观察图形,四面体的棱数为6;正八面体的顶点数为6;多面体顶点数(V)面数(F)棱数(E)四面体446长方体8612正八面体6812正十二面体201230(2)观察表格可以看出:顶点数+面数-棱数=2,关系式为:V+F-E=2;(3)由题意得:F+F-12=2,解得F=7.故答案为:(1)6,6;(2)V+F-E=2;(3)7.【点睛】本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.23.(1)8;6(2)V+F-E=2(3)这个多面体的面数为16【分析】(1)观察图形即可得出结论;(2)观察可得:顶点数+面数-棱数=2;(3)将所给数据代入(2)中的式子即可得到面数.【详解】(1)解:观察图形,长方体的定点数为8;正八面体的顶点数为6;多面体顶点数(V)面数(F)棱数(E)四面体446长方体8612正八面体6812正十二面体201230故答案为:8;6;(2)解:观察表格可以看出:顶点数+面数-棱数=2,关系式为:V+F-E=2;(3)解:由题意得:F+F-30=2解得F=16①这个多面体的面数为16.【点睛】本题主要考查多面体的顶点数,面数,棱数之间的关系及灵活运用,正确理解题意是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3立体图形的表面展开图
◆随堂检测
1、在下面的图形中,不可能是圆锥体的展开图的是( )
2、如图,在这些图形中,是四棱柱的侧面展开图的是________(填序号)。

3、如图中,( )不是正方体的展开图
4
、如图,下列图形是某些立体图形的平面展开图,说出这些立体图形的名称。

( ) (
) ( ) ( )
5、在图中添加一个小正方形,使该图形经过折叠后能围成一个四棱柱,不同的添法共有( )
A 、7种
B 、4种
C 、3种
D 、2种
◆典例分析
例:(1)如图所示,是正方体的一种表面展开图,各面都标有数字,则数字
为4-的面与其对面上的数字之积是( )
A、4 B、12 C、4- D、0
(2)把14个棱长为1的正方体,在地面上堆叠成如图所示的组合体,然后将露出的表面部分漆成红色,遮住的部分漆成黑色,那么红色部分的面积为比黑色部分多( )
A 、15
B 、17
C 、19
D 、27
解:(1)因为与数字为4-的面相对面上的数字为-3,所以两个数字之积为(4)(3)12-⨯-=,故选B 。

(2)露出的表面部分漆成红色,则红色部分的面积为12+8+4+5+3+1=33;遮住的部分漆成黑色,则黑色部分的面积为1+4+9=14。

那么红色部分的面积为比黑色部分多33-14=19,故选C 。

评析:(1)我们不妨将已知的这个正方体的表面展开图折叠成一个正方体,那么我们可以很容易发现数字为4-的面与其对面上的数字为-3,这两个数的积即可求出。

(2)解决本例的关键是理解哪些是“露出的表面部分”,哪些是“遮住的部分”,具体思考时,我们可以按每一层进行计算比较清楚。

◆课下作业
●拓展提高
1、如图,一个正方体的相对的表面上所标的两个数,都是互为相反数的两个数,右图是这个正方体的表面展开图,那么y x +的值为________。

2、下面图形A 、B 、C 、D 、E 中哪个是左边立方体的表面展开
图?
( )
A B C
D E
3、如图是一个正方体骰子,每个面分别标出1~6个黑点,根据图中A 、B 、C 三种状态所显示的黑点数,推算“?”处所示的黑点数应是__________。

4、如图,是一个正方体的展开图,每个面内都标注了字母,请根据要求回答问题。

(1)如果F 在前面,从左面看是面B ,那么哪一面会在上面?
(2)从右面看是面C ,面D 在后面,那么哪一面会在上面?
5、如图,小明用纸板折成了一个正方体的盒子,里面装了一瓶墨水,他把这个盒子与其他形状和大小完全一样,但图案有区别的三个空盒子混放在一起,共A 、B 、C 、D 四个盒子。

在这四个盒子中,请你分析判断,墨水瓶应该在哪个盒子中?为什么?
C
6、如图,是一个我们喜欢玩的魔方,它是由若干个小正方体组成的一个大正方体,在这个大正方体的六个面上,分别涂有6种不同的颜色.根据你的观察与想象回答下列问题:①有几个小正方体只有一个面被涂有颜色?②有几个小正方体有两个面
被涂有颜色?③有几个小正方体有三个面被涂有颜色?
●体验中考
1、(2009年内蒙古包头中考题)将一个正方体沿某些棱展开后,能够得到的平面图形是( )
2、(2009年四川遂宁中考题)一个正方体的表面展开图如图所示,每个面内都标注了字母,如果从正方体的右面看是面D ,面C 在后面,则正方体的上面是
( )
A 、面E
B 、面F
C 、面A
D 、面B
3、(2009年内蒙古呼和浩特中考题)右下图哪个是左下面正方体的展开图( )
4、(2009年河北省中考题)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是( )
A 、 B、 C、 D 、
A 、
B 、
C 、
D 、
A 、20
B 、22
C 、24
D 、26
5、(2009年四川南充中考题)某物体的展开图如图,它的左视图为( )
参考答案:
◆随堂检测 1、A 2、④ 3、D 4、四棱柱,三棱锥,三棱柱,五棱锥 5、B
◆课下作业
●拓展提高
1、—10
2、C
3、6
4、(1)面F ;(2)面C ;(3)面A 。

5、墨水瓶应该在B 盒子中。

理由:从展开图可以知道,两个阴影三角形有一个边相连,首先可以排除A 和D ;另外,小圆圈应该在两个相连的三角形“顶部”,C 也不符合。

故墨水瓶应该在B 盒子中。

6、①有6个;②有12个;③有8个。

●体验中考
1、C
2、A
3、D
4、C
5、B
A 、
B 、
C 、
D 、。

相关文档
最新文档