牛顿第二定律整体法隔离法专题分析
整体法与隔离法
2、五个质量相等的物体置于光滑的水平面上,如 图所示.现向右施加大小为F、方向向右的水平恒力, 则第3个物体对第4个物体的作用力等于( B )
1
2ห้องสมุดไป่ตู้
A.5F
B.5F
考点二 整体法和隔离法
1、连接体与隔离体
两个或两个以上物体相互连接组成的系统称为连接体。
如果把其中某个物体隔离出来,该物体即为隔离体.
2、外力和内力
如果以系统为研究对象,受到系统以外的力,这些 力就是该系统受到的外力,而系统内相互作用的力则 称为内力。(举例)
应用牛顿第二定律求系统的加速度时,不考虑系统 的内力。如果把某物体隔离出来作为研究对象,则这 些力将转化为隔离体的外力。
3
4
C.5F
D.5F
3、如图所示,不计绳的质量及绳与滑轮的摩擦,物体A 的质量为M,水平面光滑,当在绳B端挂一质量为m的重物时, 物体A的加速度为a1.当在B端施以F=mg的竖直向下的拉力作 用时,A的加速度为a2.则a1与a2的大小关系是( C )
A.a1=a2 C.a1<a2
B.a1>a2 D.无法确定
5、如下图所示,用一根细线通过一只无摩擦、无 质量的滑轮,把静止在斜面上和悬挂在斜面边缘高 处的两块木块连接起来.悬挂木块的质量为M=16.0 kg,斜面上的木块的质量为m=8.0 kg.已知木块与斜 面间的动摩擦因数为μ=0.2.这两木块从静止释 放.(sin37°=0.6,cos37°=0.8,g=10 m/s2)
(1)木块的加速度为多大? (2)连接两木块的细线的张力为多大?
牛顿第二定律的整体法
牛顿第二定律的整体法、隔离法应用牛顿第二定律是力学的基本规律,是力学的核心知识,在整个物理学中占有非常重要的地位,是高考命题的热点。
整体法和隔离法则是牛顿运动定律中常用的方法。
一、隔离法和整体法1、隔离法和整体法是解决动力学有关问题的一种常用方法,尤其是对于连接体而言,运用隔离法和整体法是很有必要。
2、隔离法是指当我们所研究的问题涉及多个物体组成的系统时,需要求连接体内各部分间的相互作用力,从研究方便出发,把某个物体从系统中隔离出来,作为研究对象,分析受力情况,再利用牛顿第二定律列方程求解。
3、所谓整体法,就是指对物理问题的整个系统或整个过程进行分析的方法。
通过对物理问题的整体分析,可以弄清系统的整体受力情况和全过程的运动情况,整体揭示事物的本质和变化规律而不必追究系统内各物体的相互作用和每个运动阶段的细节。
从而避开了中间量的繁琐计算,简捷巧妙的解决问题,这在高考应试中更显得重要。
4、隔离法和整体法的选择求各部分加速度相同的连接体的加速度或合外力时,优先考虑“整体法”。
如果还要求物体之间的作用力,再用隔离法,且一定要从要求作用力的那个作用面将物体进行隔离。
如果连接体中各部分加速度不相同,一般选用“隔离法”。
5、用整体法时,只需考虑整体所受的各个外力,不考虑系统内各物体间的“内力”;用隔离法时,必须分析隔离体所受到的各个力,也就是说,在利用整体法和隔离法解决问题时,一定要把外力和内力区分清楚。
二、典型例题(一)利用整体法、隔离法求解平衡类问题题当系统整体处于平衡状态时,可对系统整体受力分析,只分析系统所受的外力,不考虑内力,平衡条件为:∑F=0(∑F表示系统整体所受到的合外力)【例1】有一个直角支架AOB,AO是水平放置,表面粗糙.OB竖直向下,表面光滑.OA上套有小环P,OB套有小环Q,两环质量均为m,两环间由一根质量可以忽略.不可伸长的细绳相连,并在某一位置平衡,如图所示.现将P环向左移一小段距离,两环再次达到平衡,那么移动后的平衡状态和原来的平衡状态相比较,AO杆对P的支持力F N和细绳上的拉力F的变化情况是:()A.F N不变,F变大B.F N不变,F变小C.F N变大,F变大D.F N变大,F变小【例2】用轻质细线把两个质量未知的小球悬挂起来,如右图所示.今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右偏上30°的同样大的恒力,最后达到平衡.请在右图的方框中画出表示平衡状态示意图【针对性练习】1、如图,在粗糙的水平面上放一三角形木块a,若物体b在a的斜面上匀速下滑,则()(A)a保持静止,而且没有相对于水平面运动的趋势(B)a保持静止,但有相对于水平面向右运动的趋势(C)a保持静止,但有相对于水平面向左运动的趋势(D)因未给出所需数据,无法对a是否运动或有无运动趋势作出判断2.A、B、C三物块质量分别为M、m和m0,作如图所示的联结。
牛顿第二定律的应用-整体法与隔离法
解题过程
首先确定整体受到的重力 和支持力,然后根据牛顿 第二定律求出加速度。
03 隔离法应用
定义与特点
定义
隔离法是将研究对象从其周围物体中 隔离出来,对它进行受力分析,研究 其运动状态变化规律的方法。
特点
隔离法可以单独地分析每个物体的受 力情况,从而简化问题,易于理解和 掌握。
适用范围与条件
适用范围
公式
F=ma,其中F表示作用力,m表示 物体的质量,a表示物体的加速度。
适用范围与条件
适用范围
适用于宏观低速的物体,即物体的速 度远小于光速,此时物体的运动状态 变化符合牛顿第二定律。
条件
作用力必须是物体受到的合外力,且 物体具有质量。
牛顿第二定律的重要性
基础性
牛顿第二定律是经典力学的基础,是研究物体运动规律和作用力的基本公式。
汽车加速与刹车
当汽车加速或刹车时,乘客会受到一个向心或离心的力,这是由于牛顿第二定律中加速度与力之间的 关系。
电梯载人
当电梯加速上升或减速下降时,乘客会感到超重或失重,这是因为牛顿第二定律中加速度与力之间的 关系。
在工程中的应用
桥梁设计
桥梁设计需要考虑重力、风载、地震等外力作用,通过牛顿第二定律可以计算出桥梁的 承载能力和稳定性。
适用于需要单独分析某个物体的受力情况,或者需要排除其他物体的影响,单独研究某个物体的运动状态变化。
条件
隔离法的使用需要满足一定的条件,如物体间的相互作用力较小,可以忽略不计;或者需要将复杂的系统分解为 若干个简单的子系统进行研究等。
实例分析:连接体问题
问题描述
两个或多个物体通过轻绳、轻弹簧等 连接在一起,共同运动,求各物体的 加速度和运动状态。
整体法与隔离法的应用详解
再选取物体B为研究对象, 受力分析如图所示, 根据牛顿第二定律:
FN - F2 ma
F2
FN
FN
F2
ma
F2
m F1 F2 2m
F1
F2 2
.
变式1:物块m和M用轻绳连接,在M上施加恒力 F,使两
物块作匀加速直线运动,地面光滑。求绳中张力。
解:(1)由牛顿第二定律,
课程内容
一、整体法:在研究物理问题时,把所研究的 对象作为一个整体来处理的方法称为整体法。 采用整体法不需要考虑内力的影响,可以避免 对整体内部进行繁锁的分析,常常使问题解答 更简便、明了。
二、隔离法:把所研究对象从整体中隔离出来 进行研究,最终得出结论的方法称为隔离法。 采用隔离物体法一般用来求内力,能排除与研 究对象无关的因素,使事物的特征明显地显示 出来,从而进行有效的处理。
(2)在使用隔离法解题时,所选取的隔离对象可以使连接体 中的某一部分物体,也可以使连接体中的某一个物体(包含两 个或两个以上的单个物体),而这“某一部分”的选取,也应根 据问题的实际情况,灵活处理.
平面上,其质量为M,它的斜面是光滑的,
在它的斜面上有一质量为m的物体,在用
水平力推斜面体沿水平面向左运动过程中,
物体与斜面体恰能保持相对静止,则下列 说法中正确的是( )
m
F
A.斜面体对物体的弹力大小为mgcosθ
B.斜面体对物体的弹力大小为mg/cosθ C.物体的加速度大小为gsinθ
θ
M
D.水平推力大小为(M+m)gtanθ
[解析]隔离m,由平行四边形定则可得:
FN=mg/cosθ
FN
F合=mgtanθ
θ
整体法与隔离法解题原理及技巧
方法 整体法
隔离法
研究对象 系统:将相互作用的几个 物体作为研究对象 物体:将系统中的某一物 体为研究对象
选择原则 求解物体系整体的 加速度和所受外力 求解物体之间的内 力或加速度
二、系统牛顿第二定律 对系统运用牛顿第二定律的表达式为:
F合 m1a1 m2a2 m3a3 mn an
即系统受到的合外力(系统以外的物体对系统内物体作用 力的合力)等于系统内各物体的质量与其加速度乘积的矢 量和。
若系统内物体具有相同的加速度,表达式为:
F合 (m1 m2 mn ) a
练习2 (2004年全国)如图所示,两个用轻线相连的位于
光滑水平面上的物块,质量分别为m1和m2,拉力F1和F2 方向相反,与轻线沿同一水平直线,且F1>F2。试求在两 个物块运动过程中轻线的拉力T。
解析:设两物块一起运动的加速度为a,则有 F1-F2=(m1+m2)a ① 根据牛顿第二定律,对质量为m1的物块有 F1-T=m1a ②
加速度为( )
A.gsiห้องสมุดไป่ตู้α/2
B.Gsinα
C.3gsinα/2 D.2gsinα
[解析]方法一、隔离法 此题可先分析猫的受力情况,再分析 木板的受力情况,再用牛顿第二定律 求得结果。
对猫由力的平衡条件可得: f= mgsinα 对木板由牛顿第二定律可得: f +Mgsinα=Ma 式中M=2m,联立解得,木板的 加速度a=3gsinα/2
(M+m)gsinα=Ma+0
(M+m)g
第三章 第3课时 专题强化:牛顿第二定律的综合应用
第3课时 专题强化:牛顿第二定律的综合应用 目标要求 1.知道连接体的类型以及运动特点,会用整体法、隔离法解决连接体问题。
2.理解几种常见的临界极值条件,会用极限法、假设法、数学方法解决临界极值问题。
考点一 动力学中的连接体问题多个相互关联的物体连接(叠放、并排或由绳子、细杆、弹簧等联系)在一起构成的物体系统称为连接体。
系统稳定时连接体一般具有相同的速度、加速度(或速度、加速度大小相等)。
1.共速连接体两物体通过弹力、摩擦力作用,具有相同的速度和相同的加速度。
(1)绳的拉力(或物体间的弹力)相关类连接体(2)叠加类连接体(一般与摩擦力相关)例1 如图所示,水平面上有两个质量分别为m 1和m 2的木块1和2,中间用一条轻绳连接,两木块的材料相同,现用力F 向右拉木块2,当两木块一起向右做匀加速直线运动时,已知重力加速度为g ,下列说法正确的是( )A .若水平面是光滑的,则m 2越大,绳的拉力越大B .若木块和地面间的动摩擦因数为μ,则绳的拉力为m 1F m 1+m 2+μm 1g C .绳的拉力大小与水平面是否粗糙无关D .绳的拉力大小与水平面是否粗糙有关答案 C解析 若设木块和地面间的动摩擦因数为μ,以两木块整体为研究对象,根据牛顿第二定律有F -μ(m 1+m 2)g =(m 1+m 2)a ,得a =F -μ(m 1+m 2)g m 1+m 2,以木块1为研究对象,根据牛顿第二定律有T -μm 1g =m 1a ,得a =T -μm 1g m 1,系统加速度与木块1加速度相同,联立解得T =m 1m 1+m 2F ,可知绳子拉力大小与动摩擦因数μ无关,与两木块质量大小有关,无论水平面是光滑的还是粗糙的,绳的拉力大小均为T =m 1m 1+m 2F ,且m 2越大,绳的拉力越小,故选C 。
拓展 (1)两个质量分别为m 1和m 2的木块1和2,中间用一条轻绳连接。
①如图甲所示,用力F 竖直向上拉木块时,绳的拉力T =__________;②如图乙所示,用力F 沿光滑斜面向上拉木块时,绳的拉力为__________;斜面不光滑时绳的拉力T =__________。
系统牛顿第二定律与整体法详解
F 2F 12F 1F 21 211 2 3...)a 系统的牛顿第二定律与整体法详解在静力学、动力学问题中,涉及到系统外力时,我们往往采用整体法处理,但是很多资料并没有讲清 楚整体法的适用条件,以及背后的理论基础,甚至限定只允许在几个物体相对静止时使用整体法,使得整 体法的适用范围大大缩小。
本文则从系统的牛顿第二定律入手,奠定整体法解决静力学、动力学问题的理 论基础,并通过实例展示整体法的广阔应用空间。
一、系统的牛顿第二定律 1、推导如图所示,两个物体组成一个系统,外界对系统内物体有力的作用(系统外力),系统内物体之间也 有相互作用(系统内力),则对 1: F 1 + F 21 m 1a 1 对 2: F + F =2 12m 2a 2其中, F 21 = -F 12联立,得: F 1 + F 2= m 1a 1 +m 2a 2这个方程中,等式左边只剩下系统外力,等式右边则是各个部分的质量乘以相应的加速度然后矢量相 加。
上述推导中,研究对象只有两个,但是很容易将上述结论推广到任意多个研究对象,方法仍然是分别 对各个物体列动力学方程,然后相加——由于内力总是成对出现,且每对内力总是等大反向,因此相加的结果仍然是:等式左边只剩下系统外力,等式右边则是各个部分的质量乘以相应的加速度然后矢量相加。
这个结论就是系统的牛顿第二定律,其通式为:或者: ∑ F = ∑ F 外 = m 1a 1 + m 2a 2 + m 3a 3 + ..., ∑2、理解外xm 1a 1x + m 2a 2 x + m 3a 3 x + ... F 外y = m 1a 1 y + m 2a 2 y + m 3a 3 y + ... 系统的牛顿第二定律表达式左边只有系统外力,因此它只适用于处理系统外力相关问题,一旦涉及系 统内力,则只能用隔离法。
系统的牛顿第二定律表达式右边为“各个部分的质量乘以相应的加速度然后矢 量相加”,因此并不要求各个部分相对静止——各个部分有相对速度、相对加速度时,仍然可以选系统为 研究对象,使用整体法处理问题。
牛顿第二定律应用整体法隔离法
适用范围
系统内各物体间相互作用力较小,可忽略不计的 情况。 需要分析系统内各物体运动状态的情况。
需要对系统内各物体进行逐一分析的情况。
实例分析
分析一个由滑轮和重物组成的简 单机械系统,当重物被提升时, 分析滑轮和重物的加速度大小和
方向。
分析一个由斜面和滑块组成的简 单机械系统,当滑块沿斜面下滑 时,分析斜面和滑块的加速度大
当系统中的各个物体之间的相互作用 力和加速度关系较为简单时,也可以 使用隔离法进行分析。
实例分析
两个物体在光滑水平面上做匀加速运动,通过整体法可以求 出整体的加速度,再根据牛顿第二定律求出物体之间的相互 作用力。
一个斜面静止在水平面上,斜面上放一个物体,通过整体法 可以求出斜面的支持力和摩擦力,再根据牛顿第二定律求出 物体的重力。
03
隔离法应用
定义与特点
定义
隔离法是牛顿第二定律在分析系统内各物体运动状态时常用的一种方法,即将系统中的物体逐一隔离出来,单独 分析其运动状态,再根据牛顿第二定律列出相应的方程。
特点
隔离法能够将复杂的系统问题简化为多个简单的问题,便于理解和分析。同时,隔离法能够避免对系统整体进行 分析,简化计算过程。
轨道调整
卫星在运行过程中可能需要进行轨道调整,以应对外部干扰因素,如太阳辐射压和地球 引力扰动等。这些调整需要依据牛顿第二定律计算出合适的加速度和速度变化。
轨道衰减预测
卫星轨道会受到大气阻力的影响而逐渐衰减,根据牛顿第二定律可以预测轨道衰减的速 度和时间,从而提前进行轨道维持或卫星回收。
机器人运动控制
火箭发射
火箭发射时,牛顿第二定律解释了 火箭需要足够的推力才能克服地球 引力,将卫星或飞船送入太空。
牛顿第二定律的应用整体法与隔离法
牛顿第二定律的应用(一)——整体法与隔离体法 专题2.知道什么是内力和外力。
例1如图所示,A 、B 两木块的质量分别为m A 、m B ,在水平推力F 作用下沿光滑水平面匀加速向右运动,求A 、B 间的弹力F N 。
解析:这里有a 、F N 两个未知数,需要要建立两个方程,要取两次研究对象。
比较后可知分别以B 、(A +B )为对象较为简单(它们在水平方向上都只受到一个力作用)。
可得F m m m F BA BN +=例2如图所示,m A =1kg ,m B =2kg ,A 、B 间静摩擦力的最大值是5N ,水平面光滑。
用水平力F 拉B ,当拉力大小分别是F =10N 和F =20N 时,A 、B 的加速度各多大?解析:先确定临界值,即刚好使A 、B 发生相对滑动的F 值。
当A 、B 间的静摩擦力达到5N 时,既可以认为它们仍然保持相对静止,有共同的加速度,又可以认为它们间已经发生了相对滑动,A 在滑动摩擦力作用下加速运动。
这时以A 为对象得到a =5m/s 2;再以A 、B 系统为对象得到 F =(m A +m B )a =15N(1)当F =10N<15N 时, A 、B 一定仍相对静止,所以2BA B A 3.3m/s =+==m m Fa a(2)当F =20N>15N 时,A 、B 间一定发生了相对滑动,用质点组牛顿第二定律列方程:B B A A a m a m F +=,而a A =5m/s 2,于是可以得到a B =7.5m/s 2例3如图所示,质量分别为M 、m 的滑块A 、B 叠放在固定的、 倾角为θ的斜面上,A 与斜面间、A 与B 之间的动摩擦因数 分别为μ1,μ2,当A 、B 从静止开始以相同的加速度下滑时, B 受到摩擦力( .BC )A.等于零B.方向平行于斜面向上C.大小为μ1mgcos θD.大小为μ2mgcos θ例4.如图,质量为m 的物体A 放置在质量为M 的物体B 上,B 与弹簧相连,它们一起在光滑水平面上做简谐振动,振动过程中A 、B 之间无相对运动,设弹簧的劲度系数为k ,当物体离开平衡位置的位移为x 时,A 、B 间摩擦力的大小等于(D )A .0B .k xC .(Mm)k xD .(mM m+)k xB例5如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑, 木板上站着一个质量为m 的人,问(1)为了保持木板与斜面相 对静止,计算人运动的加速度?(2)为了保持人与斜面相对静止, 木板运动的加速度是多少?解(1)为了使木板与斜面保持相对静止,必须满足木板在斜面上的合力为零,所以人施于木板的摩擦力F 应沿斜面向上,故人应加速下跑。
第四章牛顿第二定律(整体法与隔离法)
第四章牛顿第二定律(整体法与隔离法)牛顿第二定律的应用(整体法与隔离法)【知识方法】:1、连接体:如果两个物体具有相同的速度和加速度大小,我们就称之为连接体,常见的有上下叠放、绳子连接、弹簧连接、定滑轮模型等2、若要求出连接体内各物体具有的加速度和求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.【典型例题】:如图所示,在光滑水平地面上,水平恒力F拉动小车和木块一起做无相对滑动的匀加速运动.小车质量为M,木块质量为m,它们共同的加速度大小为a,木块和小车之间的动摩擦因数为μ,则在这个过程中,木块受到的摩擦力大小是( )A.μmg B.mamF M+m D.F-Ma【跟踪练习1】如图所示,在光滑的水平面上,水平恒力F拉动小车和木块一起做无相对滑动的匀加速运动.小车质量为M,木块质量为m,它们共同的加速度大小为a,木块和小车之间的动摩擦因数为μ,则在这个过程中,()A.木块受到的摩擦力大小一定为μmg B.木块受到的合力大小为maC.小车受到的摩擦力大小为如图所示,静止在动摩擦因数为μ的水平地面上的两个物体A、B,质量分别为m1、m2,现用一个水平力F推物体A做匀加速运动,求:(1)此时A的加速度(2)A对B的作用力的大小mF D.小车受到的合力大小为(m+M)a M+m【能力提升】如图所示,光滑水平面上放置质量分别为m、2m和3m的三个木块,其中质量为2m和3m的木块间用一不可伸长的轻绳相连,轻绳能承受的最大拉力为FT.现用水平拉力F拉质量为3m的木块,使三个木块以同一加速度运动,则以下说法正确的是( )A.质量为2m的木块受到四个力的作用B.当F逐渐增大到FT时,轻绳刚好被拉断C.当F逐渐增大到1.5FT时,轻绳还不会被拉断D.当轻绳刚要被拉断时,质量为m和2m的木块间的摩擦力为FT 在北京残奥会开幕式上,运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚韧不拔的意志和自强不息的精神.为了探求上升过程中运动员与绳索和吊椅间的作用,可将过程简化如下:一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一吊椅,另一端被坐在吊椅上的运动员拉住,如图所示.设运动员的质量为65 kg,吊椅的质量为15 kg,不计定滑轮与绳子间的摩擦,重力加速度取g=10 m/s2.当运动员与吊椅一起以加速度a=1 m/s2上升时,试求:(1)运动员竖直向下拉绳的力;(2)运动员对吊椅的压力.【跟踪练习2】用力F提起用细绳连在一起的A、B两物体,并以5.0m/s2的加速度匀加速竖直上升,如图所示。
牛顿第二定律整体法、隔离法专题分析
A.F1<F2 B.F1=F2 C.F1>F2 D.无法比较大小 A
有相互作用力的系统
整体法与隔离法
练习:如图所示,物体A放在物体B上,物体B放在光滑 的水平面上,已知mA=6kg,mB=2kg,A、B间动摩擦因数 =0.2.A物上系一细线,细线能承受的最大拉力是20N, 水平向右拉细线,假设A、B之间最大静摩擦力等于滑动 摩擦力.在细线不被拉断的情况下,下述中正确的是 (g=10m/s2) (CD)
A.当拉力F<12N时,A静止不动 B.当拉力F>12N时,A相对B滑动 C.当拉力F=16N时,B受A摩擦力等 于4N D.无论拉力F多大,A相对B始终静 止
有相互作用力的系统
整体法与隔离法
【解析】要判断A、B是否有相对滑动,可假设 F=F0时,A、B间的摩擦力达到最大值,求出此 时拉力的数值F0,若F>F0,则A、B有相对滑 动;若F<F0,则A、B无相对滑动. A、B间的最大静摩擦力为 f0=mAg=0.2×6×10=12N. 当A、B间的静摩擦力f=f0时,由牛顿第二定律 得: 对B: mAg=mBa, a=mAg/mB=0.2×6×10/2=6m/s2;
有相互作用力的系统
整体法与隔离法
• 因三物体加速度相同,本题可用整 体法。 • 解: 研究整体 F=(m1+m2+m3)a 为求a再研究m1: m1的受力图如右。 T= m1 a 为求T研究m2 T= m2g
故a= m2 g/ m1 F=(m1+m2+m3)a F =(m1+m2+m3) m2 g/ m1
m AmB g T g m A mB 1 / m A 1 / mB
对于C、D选项: (mA +mB)为恒量, 只有当mA=mB 时, mA· mB才最大, C、D错。
专题辅导 牛顿第二定律连接体问题(整体法与隔离法)
专题辅导:牛顿第二定律——连接体问题(整体法与隔离法)一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法系统运动状态相同整体法问题不涉及物体间的内力 使用原则系统各物体运动状态不同 隔离法问题涉及物体间的内力 三、连接体题型:1、连接体整体运动状态相同:(这类问题可以采用整体法求解)【例1】如图所示,木块A 、B 质量分别为m 、M ,用一轻绳连接,在水平力F 的作用下沿光滑水平面加速运动,求A 、B 间轻绳的张力T。
【练1】如图,用力F 拉A 、B 、C 三个物体在光滑水平面上运动,现在中间的B 物体上加一个小物体,它和中间的物体一起运动,且原拉力F 不变,那么加上物体以后,两段绳中的拉力F a 和F b 的变化情况是( ) A.T a 增大 B.T b 增大 C.T a 变小D.T b 不变【例2】两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( ) A.F m m m 211+ B.F m m m 212+ C.FD.F m 21【练2】如图所示,五个木块并排放在水平地面上,它们的质量相同,与地面的摩擦不计。
当用力F 推第一块使它们共同加速运动时,第2块对第3块的推力为__________。
【练3】A、B两物体靠在一起,放在光滑水平面上,它们的质量分别为kgmA3=,kgmB6=,今用水平力NFA6=推A,用水平力NFB3=拉B,A、B间的作用力有多大?【例3】如图所示,质量为M的斜面A置于粗糙水平地面上,动摩擦因数为μ,物体B与斜面间无摩擦。
在水平向左的推力F作用下,A与B一起做匀加速直线运动,两者无相对滑动。
已知斜面的倾角为θ,物体B的质量为m,则它们的加速度a及推力F的大小为()A.)sin()(,sinθμθ++==gmMFga B. θθcos)(,cos gmMFga+==C.)tan()(,tanθμθ++==gmMFga D. gmMFga)(,cot+==μθ【练4】如图所示,质量为2m的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为1m的物体,与物体1相连接的绳与竖直方向成θ角,则()A. 车厢的加速度为θsing B. 绳对物体1的拉力为θcos1gmC. 底板对物体2的支持力为gmm)(12- D. 物体2所受底板的摩擦力为θtan2gm【练5】如图所示,物体M、m紧靠着置于摩擦系数为μ的斜面上,斜面的倾角为θ,现施加一水平力F作用于M,M、m共同向上作加速运动,求它们之间相互作用力的大小。
牛顿第二定律的应用之整体法与隔离法
碰撞问题
总结词
碰撞问题是指两个或多个物体在短时间 内发生高速碰撞,导致物体运动状态发 生急剧变化的问题。通过牛顿第二定律 ,可以求解碰撞后的运动状态和运动规 律。
VS
详细描述
碰撞问题中,物体之间的相互作用力会在 极短的时间内使物体的运动状态发生急剧 变化。通过分析碰撞过程中物体的受力情 况和运动状态的变化,结合牛顿第二定律 ,可以求解碰撞后物体的速度、加速度和 位移等物理量的变化。
牛顿第二定律只适用于惯性参考系,即没有加速度的参考系。在非惯性参考系中,物体的运动规律会 受到额外的力作用,这些力无法通过牛顿第二定律来描述。
在研究天体运动、相对论效应等非惯性参考系问题时,需要使用更复杂的理论框架,如广义相对论。
只适用于单一物体的运动状态改变问题
牛顿第二定律适用于描述单一物体在 受到外力作用时运动状态的改变,不 适用于涉及多个物体相互作用的问题。
05
牛顿第二定律的局限性
只适用于宏观低速物体
牛顿第二定律只适用于描述宏观低速物体的运动规律,对于微观高速的粒子运动,如光子、电子等,需要使用量子力学和相 对论等其他理论。
在宏观低速的范围内,牛顿第二定律能够很好地描述物体的加速度与作用力之间的关系,但在高速或微观领域,这种描述会 失效。
只适用于惯性参考系
适用条件
当多个物体之间的相互作用力远大于 外界对整体的作用力时,使用整体法 更为简便。
在分析物体的加速度和受力情况时, 如果多个物体之间的运动状态相同或 相近,整体法也适用。
应用实例
当一个斜面静止在水平地面上时,可以将斜面和斜面上放置 的物体视为一个整体,分析受到的重力和地面对整体的静摩 擦力,从而得出斜面是否会滑动。
总结词
连接体问题是指两个或多个物体通过相互作用力而连接在一起的问题。通过整体法和隔离法,可以求解连接体的 运动状态和运动规律。
牛二专题:整体法和隔离法
(1)系统的合力
隔离M
F a1 M m MF FN 1 Ma1 M m
F (M m)a1
F
(2)系统的合力
F (M m)a2
F a2 M m mF ma2 M m
(1)当地面光滑时,A,B作为一个整体,根据牛顿第二定律得:
F (m1 m2 )a
F 求得: a m1 m2 对B受力分析:
水平方向:
FAB m2 a
m2 F m1 m2
联立以上各式得: FAB
(2)当地面粗糙时,A,B作为一个整体,根据牛顿第二定律得:
F (m1 m2 ) g (m1 m2 )a
对m,由牛顿第二定律得:
M
m
mgT ma
对滑块M,由牛顿第二定律得:
T Mg Ma
联立以上两式子得:
mg Mg a M m
( 1) M T mg M m
例4.如图所示,用轻质绝缘细线把两个带等 量异种电荷的小球悬挂起来.今将该系统移至 与水平方向成30°角斜向右上方向的匀强电场 中,达到平衡时,表示平衡状态的图可能是 (上面球带正电,下面的带负电):( )
C
例5将质量为m的小球用轻质细绳拴在质量为M的倾 角为θ的楔形木块B上,如右图所示.已知B的倾斜 面光滑,底面与水平地面之间的摩擦因数为μ.
(1)若对B施加向右的水平拉 力,使B向右运动,而A不离 开B的斜面,这个拉力不得 超过多少? (2)若对B施以向左的水平推 力,使B向左运动,而A不致 在B上移动,这个推力不得 超过多少?
联立求解可得: F
整体法与隔离法解(牛顿第二定律的应用)
例3:5个质量相同的木块并排放在光滑水平桌面上, 当用水平向右推力F推木块1,使它们共同向右加 速运动时,求第2与第3块木块之间弹力及第4与 第5块木块之间的弹力.
F
1
2
3
4
5
练习4.如图所示,置于水平面上的相同材料的m和M 用轻绳连接,在M上施一水平恒力力F,使两物体作 匀加速直线运动,对两物体间细绳拉力正确的说法是: ( A) B (A)水平面光滑时,绳拉力等于mF/(M+m); (B)水平面不光滑时,绳拉力等于m F/(M+m); (C)水平面不光滑时,绳拉力大于mF/(M+m); (D)水平面不光滑时,绳拉力小于mF/(M+m)。
实验:
θ
打点计时器
1、首先平衡摩擦。µ =tanθ
2、m砝《m车 ,可以认为砝码的重车≈F拉,
其实砝码和小车一起匀加速直线运动 时,砝码重力大于绳子拉力.
例2:如图,质量都为m的两物体A和B,中间用一弹性 系数为K的轻弹簧连接着,把它们置于光滑水平 面上,若水平恒力F1和F2分别作用在A和B上,方 向如图示,且F1> F2,则弹簧的压缩量为多少?
【例4】如图所示,A、B两物体通过两 个轻滑轮连接,其质量分别为M和m, 光滑斜面的倾角为α ,绳的C端固定在 斜面上.释放后,A向下运动.求A、B两 物体的加速度.
对B:T-mg=maB 对A:Mgsin-2T=MaA aB=2a
A
aA=(Msinα -2m)g/(M+4m), aB=2(Msin α -2m)g/(M+4m)
C D
【例1】如图所示,物体A放在物体B上,物体B放在光滑的水平面上, 已知mA=6kg,mB=2kg,A、B间动摩擦因数=0.2.A物上系一细线, 细线能承受的最大拉力是20N,水平向右拉细线,假设A、B之间最 大静摩擦力等于滑动摩擦力.在细线不被拉断的情况下,下述中正 确的是(g=10m/s2)( ) A.当拉力F<12N时,A静止不动 B.当拉力F>12N时,A相对B滑动 C.当拉力F=16N时,B受A摩擦力等于4N D.无论拉力F多大,A相对B始终静止