初中数学易错题分类汇编 精品
(易错题精选)初中数学命题与证明的易错题汇编及答案解析
(易错题精选)初中数学命题与证明的易错题汇编及答案解析一、选择题1.下列命题中真命题是()A.若a2=b2,则a=b B.4的平方根是±2C.两个锐角之和一定是钝角 D.相等的两个角是对顶角【答案】B【解析】【分析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.2.下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0【答案】A【解析】【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选A.【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.3.下列命题中正确的是().A.所有等腰三角形都相似B.两边成比例的两个等腰三角形相似C.有一个角相等的两个等腰三角形相似D.有一个角是100°的两个等腰三角形相似【答案】D【解析】【分析】根据相似三角形进行判断即可.【详解】解:A、所有等腰三角形不一定都相似,原命题是假命题;B、两边成比例的两个等腰三角形不一定相似,原命题是假命题;C、有一个角相等的两个等腰三角形不一定相似,原命题是假命题;D、有一个角是100°的两个等腰三角形相似,是真命题;故选:D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.4.下列结论中,不正确的是()A.两点确定一条直线B.两点之间,直线最短C.等角的余角相等D.等角的补角相等【答案】B【解析】【分析】根据直线线段的性质和余角、补角的定义逐项分析可得出正确选项.【详解】A.两点确定一条直线,正确;B.两点之间,线段最短,所以B选项错误;C.等角的余角相等,正确;D.等角的补角相等,正确.故选B考点:定理5.现给出下列四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°.其中不正确的命题的个数是()A.1个 B.2个 C.3个 D.4个【答案】C【解析】①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误; ③根据菱形的面积公式,错误;④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确. 综合以上分析,不正确的命题包括①②③.故选C .6.下列命题中,是假命题的是( )A .若a>b ,则-a<-bB .若a>b ,则a+3>b+3C .若a>b ,则44a b > D .若a>b ,则a 2>b 2【答案】D【解析】【分析】 利用不等式的性质分别判断后即可确定正确的选项.【详解】A 、若a >b ,则-a <-b ,正确,是真命题;B 、若a >b ,则a+3>b+3,正确,是真命题;C 、若a >b ,则44a b >,正确,是真命题; D 、若a >b ,则a 2>b 2,错误,是假命题;故选:D .【点睛】 此题考查命题与定理的知识,解题的关键是了解不等式的性质,难度不大.7.下列命题正确的是( )A .在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.B .两个全等的图形之间必有平移关系.C .三角形经过旋转,对应线段平行且相等.D .将一个封闭图形旋转,旋转中心只能在图形内部.【答案】A【解析】【分析】根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.【详解】解:A、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;B、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;C、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;D、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误.故选:A.【点睛】本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.8.下列命题中,正确的命题是()A.度数相等的弧是等弧B.正多边形既是轴对称图形,又是中心对称图形C.垂直于弦的直径平分弦D.三角形的外心到三边的距离相等【答案】C【解析】【分析】根据等弧或垂径定理,正多边形的性质一一判断即可;【详解】A、完全重合的两条弧是等弧,错误;B、正五边形不是中心对称图形,错误;C、垂直于弦的直径平分弦,正确;D、三角形的外心到三个顶点的距离相等,错误;故选:C.【点睛】此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9.下列命题中①等腰三角形底边的中点到两腰的距离相等②如果两个三角形全等,则它们必是关于直线成轴对称的图形③如果两个三角形关于某直线成轴对称,那么它们是全等三角形④等腰三角形是关于底边中线成轴对称的图形⑤一条线段是关于经过该线段中点的直线成轴对称的图形正确命题的个数是()A.2个B.3个C.4个D.5个【答案】A【解析】【分析】根据等腰三角形的性质、轴对称图形的定义、全等三角形的判定逐个判断即可.【详解】根据等腰三角形的三线合一可知,底边中点在顶角角平分线上,再根据角平分线的性质可知,其到两腰的距离相等,则命题①正确全等的三角形不一定是成轴对称,则命题②错误成轴对称的两个三角形一定全等,则命题③正确等腰三角形是以底边中线所在直线为对称轴的轴对称图形,则命题④错误成轴对称的图形必须是两个,一个图形只能是轴对称图形,则命题⑤错误综上,正确命题的个数是2个故选:A.【点睛】本题考查了等腰三角形的性质、轴对称图形的定义、全等三角形的判定等知识点,掌握理解各定义与性质是解题关键.10.下列各命题的逆命题成立的是()A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等【答案】C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A、逆命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45°,错误.故选C.11.下列命题是假命题的是()A.三角形的外心到三角形的三个顶点的距离相等B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限D.若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.12.下列命题中,其中真命题的个数是()①平面直角坐标系内的点与实数对一一对应;②内错角相等;③平行于同一条直线的两条直线互相平行;④对顶角相等A.1个B.2个C.3个D.4个【答案】B【解析】【分析】正确的命题是真命题,根据真命题的定义依次进行判断.【详解】①平面直角坐标系内的点与有序实数对一一对应,是假命题;②两直线平行,内错角相等,是假命题;③平行于同一条直线的两条直线不一定相互平行,是真命题;④对顶角相等,是真命题;故选:B.【点睛】此题考查真命题的定义,正确掌握坐标与图形,平行线的性质,平行公理,对顶角性质是解题的关键.13.下列命题正确的是()A.矩形对角线互相垂直B.方程214x x=的解为14x=C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等【答案】D【解析】【分析】由矩形的对角线互相平分且相等得出选项A不正确;由方程x2=14x的解为x=14或x=0得出选项B不正确;由六边形内角和为(6-2)×180°=720°得出选项C不正确;由直角三角形全等的判定方法得出选项D正确;即可得出结论.【详解】A.矩形对角线互相垂直,不正确;B.方程x2=14x的解为x=14,不正确;C.六边形内角和为540°,不正确;D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选D.【点睛】本题考查了命题与定理、矩形的性质、一元二次方程的解、六边形的内角和、直角三角形全等的判定;要熟练掌握.14.下列命题是假命题的是()A.有一个角是60°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.线段垂直平分线上的点到线段两端的距离相等【答案】C【解析】【分析】根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.【详解】A.正确;有一个角是60°的等腰三角形是等边三角形;B.正确.等边三角形有3条对称轴;C.错误,SSA无法判断两个三角形全等;D.正确.线段垂直平分线上的点到线段两端的距离相等.故选:C.【点睛】本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.15.已知下列命题:①若a>b,则ac>bc;②若a=1;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是( )A .1个B .2个C .3个D .4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a >b ,则ac >bc 是假命题,逆命题是假命题;②若a=1是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A .点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.16.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为( ) A .1m =-B .0m =C .4m =D .5m =【答案】D【解析】【分析】利用m=5使方程x 2-4x+m=0没有实数解,从而可把m=5作为说明命题“关于x 的方程x 2-4x+m=0一定有实数根”是假命题的反例.【详解】当m=5时,方程变形为x 2-4x+m=5=0,因为△=(-4)2-4×5<0,所以方程没有实数解,所以m=5可作为说明命题“关于x 的方程x 2-4x+m=0一定有实数根”是假命题的反例. 故选D .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.17.已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设( )A .AB ∠=∠B .AB BC = C .B C ∠=∠D .A C ∠=∠【答案】C【解析】【分析】反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.【详解】已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设B C ∠=∠,由“等角对等边”可得AB=AC,这与已知矛盾,所以.B C ∠≠∠故选C【点睛】本题考核知识点:反证法. 解题关键点:理解反证法的一般步骤.18.下列命题中,真命题的序号为( )①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A .①②B .①③C .①②④D .②④【答案】D【解析】【分析】根据对顶角的性质、平行线的判定、平行线的性质、角平分线的性质判断即可.【详解】①相等的角不一定是对顶角,是假命题;②在同一平面内,若a ∥b ,b ∥c ,则a ∥c ,是真命题;③两直线平行,同旁内角互补; 是假命题;④互为邻补角的两角的角平分线互相垂直,是真命题;故选:D .【点睛】此题考查命题的真假判断,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.19.下面说法正确的个数有( )①方程329x y +=的非负整数解只有13x y ==,;②由三条线段首尾顺次连接所组成的图形叫做三角形;③如果1122A B C ∠=∠=∠,那么ABC V 是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A .0个B .1个C .2个D .3个 【答案】A【解析】【分析】根据二元一次方程的解的定义可对①进行判断;根据三角形的定义对②进行判断;根据直角三角形的判定对③进行判断;根据正多边形的定义对④进行判断;根据钝角三角形的定义对⑤进行判断.【详解】解:①二元一次方程329x y +=的非负整数解是x=3,y=0或x=1,y=3,原来的说法错误;②由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形,原来的说法错误;③如果3672=72A B C ∠=︒∠=︒∠︒,,,那么ABC V 不是直角三角形,故错误; ④各边都相等,各角也相等的多边形是正多边形,故错误.⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故错误,故选A.【点睛】此题考查命题与定理的知识,解题的关键是了解二元一次方程的解的定义、三角形的定义、直角三角形的判定、正多边形的定义及钝角三角形的定义等知识,难度不大.20.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设( )A .三角形的三个外角都是锐角B .三角形的三个外角中至少有两个锐角C .三角形的三个外角中没有锐角D .三角形的三个外角中至少有一个锐角【答案】B【解析】【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故选B .【点睛】考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.。
(易错题精选)初中数学有理数分类汇编附答案解析
(易错题精选)初中数学有理数分类汇编附答案解析一、选择题1.如图,数轴上每相邻两点距离表示1个单位,点A ,B 互为相反数,则点C 表示的数可能是( )A .0B .1C .3D .5 【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C 表示的数.【详解】∵点A ,B 互为相反数,∴AB 的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C 在正半轴距原点3个单位长度, ∴点C 表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键.2.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.3.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数,且m <n ,|m|<|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选:C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.4.下列说法错误的是( )A .2 a 与()2a -相等B ()2a -2a -C .3 a 3a -D .a 与a -互为相反数【答案】D【解析】【分析】根据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、()2a -=2 a ,故A 正确;B ()22a a -=()2a -2a -B 正确;C 、3 a 3a -C 正确;D 、a a -=,故D 说法错误;故选:D.【点睛】本题考查了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的关键是熟练掌握所学的定义进行解题.5.已知整数1a ,2a ,3a ,4a ⋯满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+⋯依此类推,则2017a 的值为( )A .1007-B .1008-C .1009-D .2016- 【答案】B【解析】【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -;然后把n 的值代入进行计算即可得解. 【详解】解:10a =,21|1|011a a =-+=-+=-,32|2|121a a =-+=--+=-,43|3|132=-+=--+=-a a ,54|4|242=-+=--+=-a a ,……∴n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -; ∴20172017110082a -=-=-; 故选:B .【点睛】此题考查数字的变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.6.如图是张小亮的答卷,他的得分应是( )A .40分B .60分C .80分D .100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.7.在数轴上,点A,B在原点O的两侧,分别表示数a和3,将点A向左平移1个单位=,则a的值为().长度,得到点C.若OC OBA.3-B.2-C.1-D.2【答案】B【解析】【分析】先用含a的式子表示出点C,根据CO=BO列出方程,求解即可.【详解】解:由题意知:A点表示的数为a,B点表示的数为3, C点表示的数为a-1.因为CO=BO,所以|a-1| =3, 解得a=-2或4,∵a<0,∴a=-2.故选B.【点睛】本题主要考查了数轴和绝对值方程的解法,用含a的式子表示出点C,是解决本题的关键.8.下面说法正确的是()A.1是最小的自然数;B.正分数、0、负分数统称分数C.绝对值最小的数是0;D.任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A错误;0是整数,B错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C正确;0无倒数,D错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在9.2019-的倒数是()A.2019 B.-2019 C.12019D.12019-【答案】C【解析】【分析】先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果.【详解】2019-=2019,2019的倒数为1 2019故选C【点睛】本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.10.下列说法中不正确的是()A.-3 表示的点到原点的距离是|-3|B.一个有理数的绝对值一定是正数C.一个有理数的绝对值一定不是负数D.互为相反数的两个数的绝对值一定相等【答案】B【解析】【分析】根据绝对值的意义以及相反数的意义逐项进行分析即可得答案.【详解】A、根据绝对值的意义|-3|表示在数轴上表示-3的点到原点的距离,故A选项正确,不符合题意;B、若这个有理数为0,则0的绝对值还是0,故B选项错误,符合题意;C、根据绝对值的意义,|a|的绝对值表示在数轴上表示a的点到原点的距离,故任意有理数的绝对值都为非负数,所以不可能为负数,故C选项正确,不符合题意;D、根据相反数的定义可知:只有符号不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,即互为相反数的两个数的绝对值相等,故D选项正确,不符合题意,故选B.【点睛】本题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a 的这个点到原点的距离,熟练掌握绝对值的意义是解本题的关键.11.不论a 取什么值,下列代数式的值总是正数的是( )A .1a +B .1a +C .2aD .2(1)a + 【答案】B【解析】【分析】直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.12.2019的倒数的相反数是( )A .-2019B .12019-C .12019D .2019 【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是12019, 12019的相反数为12019-, 所以2019的倒数的相反数是12019-, 故选B .【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.13.数轴上A ,B ,C 三点所表示的数分别是a ,b ,c ,且满足||||||c b a b a c ---=-,则A ,B ,C 三点的位置可能是( )A .B .C .D .【答案】C【解析】【分析】由A 、B 、C 在数轴上的位置判断出a 、b 、c 的大小关系,根据绝对值性质去绝对值符号,判断左右两边是否相等即可.【详解】当a c b <<时,||||c b a b b c a b a c ---=-+-=-,180°-66?38=113?22′′,此选项错误;B 、当a <b <c 时,||||2c b a b c b a b c a b ---=-+-=+-,44A-mB=,此项错误;C 、当c <a <b 时,||||c b a b b c a b a c ---=-+-=-,||a c a c -=-,此项正确D 、当c <b <a 时,||||2c b a b b c a b c a b ---=--+=--+,||a c a c -=-,此选项错误;故选C.【点睛】本题主要考查绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.14.若320,a b -+=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.15.实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a b >B .0a b +>C .0ac >D .a c > 【答案】D【解析】【分析】根据数轴的特点:判断a 、b 、c 正负性,然后比较大小即可.【详解】根据数轴的性质可知:a <b <0<c ,且|c|<|b|<|a|;所以a >b ,0a b +>,ac >0错误;|a|>|c|正确;故选D . 【点睛】本题考查实数与数轴的关系,关键是根据实数在数轴上的位置判断字母的正负性,根据实数在数轴上离原点的距离判断绝对值的大小.16.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b -【答案】A【解析】【分析】2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a b Q <<> 0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.17.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣c|+7b-=0,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b-=0,∵且|a-c|++7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.18.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“6cm”分别对应数轴上表示﹣2和实数x的两点,那么x的值为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x之间的距离为6,∴x表示的数为:﹣2+6=4,故选:B.【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.19.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误; ∵a c >,∴C 错误; ∵d c >,c>0, ∴c d <D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.20.下列语句正确的是( )A .近似数0.010精确到百分位B .|x-y |=|y-x |C .如果两个角互补,那么一个是锐角,一个是钝角D .若线段AP=BP ,则P 一定是AB 中点【答案】B【解析】【分析】A 中,近似数精确位数是看小数点后最后一位;B 中,相反数的绝对值相等;C 中,互补性质的考查;D 中,点P 若不在直线AB 上则不成立【详解】A 中,小数点最后一位是千分位,故精确到千分位,错误;B 中,x -y 与y -x 互为相反数,相反数的绝对值相等,正确;C 中,若两个角都是直角,也互补,错误;D 中,若点P 不在AB 这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的。
(易错题精选)初中数学代数式分类汇编及答案
(易错题精选)初中数学代数式分类汇编及答案一、选择题1.已知a +b +c =1,22223+-+=a b c c ,则ab 的值为( ).A .1B .-1C .2D .-2 【答案】B【解析】【分析】将a +b +c =1变形为a +b =1- c ,将22223+-+=a b c c 变形为222221+=+--a b c c ,然后利用完全平方公式将两个式子联立即可求解.【详解】∵22223+-+=a b c c∴()222221=12+=--+-a b c c c∵a +b +c =1∴1+=-a b c∴()()221+=-a b c∴()2222+=+-a b a b展开得222222++=+-a b ab a b∴1ab =-故选B .【点睛】本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.2.下列运算正确的是( )A .3a 3+a 3=4a 6B .(a+b )2=a 2+b 2C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A .3a 3+a 3=4a 3,故A 错误;B .(a +b )2=a 2+b 2+2ab ,故B 错误;C .5a ﹣3a =2a ,故C 正确;D .(﹣a )2•a 3=a 5,故D 错误;故选C .【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.3.下列运算或变形正确的是( )A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;故选:C .【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.4.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅= 【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【详解】解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.5.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32【答案】C【解析】 试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .6.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【答案】C【解析】【分析】根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a +2a +22a + (250)=a +(2+22+…+250)a ,∵232222+=-, 23422222++=-,2345222222+++=-,…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a +(2+22+…+250)a=a +(251-2)a=a +(2 a -2)a=2a 2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.7.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C【答案】A【解析】分析:利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm(称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm,所以它停的位置是F点.详解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2014÷8=251……6,所以当电子甲虫爬行2014cm时停下,它停的位置是F点.故选A.点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.8.下列计算正确的是()A.2x2•2xy=4x3y4B.3x2y﹣5xy2=﹣2x2yC.x﹣1÷x﹣2=x﹣1D.(﹣3a﹣2)(﹣3a+2)=9a2﹣4【答案】D【解析】A选项:2x2·2xy=4x3y,故是错误的;B选项:3x2y和5xy2不是同类项,不可直接相加减,故是错误的;C.选项:x-1÷x-2=x ,故是错误的;D选项:(-3a-2)(-3a+2)=9a2-4,计算正确,故是正确的.故选D.9.一种微生物的直径约为0.0000027米,用科学计数法表示为()A.6-⨯D.72.7102.710⨯2.710-⨯C.6⨯B.72.710-【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.10.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( ) A .p =5,q =18B .p =-5,q =18C .p =-5,q =-18D .p =5,q =-18【答案】A【解析】试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A .11.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1【答案】B【解析】【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,,…,, 下边三角形的数字规律为:1+2,,…,, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.12.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.13.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.14.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .224a a a +=【答案】B【解析】【分析】根据积的乘方运算法则和同底数幂的运算法则分别计算即可解答.【详解】解:A. 235a a a ⋅=,故A 错误;B. 222()ab a b =,正确;C. ()326a a =,故C 错误;D. 2222a a a +=,故D 错误.故答案为B .【点睛】本题主要考查了积的乘方和同底数幂的运算运算法则,掌握并灵活运用相关运算法则是解答本题的关键.15.有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A ,B 的面积之和为( )A .7B .12C .13D .25【答案】C【解析】【分析】 设正方形A 的边长为a ,正方形B 的边长为b ,根据图形列式整理得a 2+b 2−2ab =1,2ab =12,求出a 2+b 2即可.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,由图甲得:a 2−b 2−2(a−b )b =1,即a 2+b 2−2ab =1,由图乙得:(a +b )2−a 2−b 2=12,即2ab =12,所以a 2+b 2=13,即正方形A ,B 的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.16.若3,2x y xy +==, 则()()5235x xy y +--的值为( ) A .12B .11C .10D .9【答案】B【解析】【分析】 项将多项式去括号化简,再将3,2x y xy +==代入计算.【详解】 ()()5235x xy y +--=235()xy x y -++,∵3,2x y xy +==,∴原式=2-6+15=11,故选:B.【点睛】此题考查整式的化简求值,正确去括号、合并同类项是解题的关键.17.若代数式()212323aa x y xy -+-是五次二项式,则a 的值为( ) A .2B .2±C .3D .3± 【答案】A【解析】【分析】根据多项式的次数与项数的定义解答.【详解】∵()212323a a x y xy -+-是五次二项式,∴2125a -+=,且20a +≠,解得a=2,故选:A.【点睛】此题考查多项式的次数与项数的定义,熟记定义是解题的关键.18.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .19.已知112x y+=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+= ∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.20.若35m =,34n =,则23m n -等于( ) A .254 B .6C .21D .20 【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.。
七年级数学试卷错题集
一、选择题1. 错题:3 + 2 × 4 = 20正确答案:3 + 2 × 4 = 11错误原因:未正确运用乘法优先级原则。
2. 错题:8 ÷ 2 + 2 = 7正确答案:8 ÷ 2 + 2 = 6错误原因:未正确运用除法和加法的顺序。
3. 错题:5 × (3 + 2) = 25正确答案:5 × (3 + 2) = 25错误原因:题目本身正确,但误以为题目有误。
4. 错题:0.5 × 0.5 = 0.25正确答案:0.5 × 0.5 = 0.25错误原因:题目本身正确,但误以为题目有误。
5. 错题:(-2) × (-3) = 6正确答案:(-2) × (-3) = 6错误原因:题目本身正确,但误以为题目有误。
二、填空题1. 错题:一个数的3倍加上4等于24,这个数是()正确答案:8错误原因:未正确运用代数方法解方程。
2. 错题:如果a = 5,那么a - 2 =()正确答案:3错误原因:未正确进行变量替换。
3. 错题:一个长方形的长是6厘米,宽是3厘米,它的面积是()正确答案:18平方厘米错误原因:未正确运用长方形面积公式。
4. 错题:一个数的平方根是5,那么这个数是()正确答案:±5错误原因:未考虑平方根的正负。
5. 错题:一个数的倒数是2,那么这个数是()正确答案:1/2错误原因:未正确理解倒数的概念。
三、解答题1. 错题:解方程:2x - 5 = 11正确答案:x = 8错误原因:未正确运用等式性质解方程。
2. 错题:计算:(-3) × 4 + 2 × (-5)正确答案:-14错误原因:未正确运用有理数混合运算规则。
3. 错题:求长方体的体积,长是8厘米,宽是4厘米,高是6厘米。
正确答案:192立方厘米错误原因:未正确运用长方体体积公式。
4. 错题:计算三角形面积,底是10厘米,高是6厘米。
数学九年级上册易错题
数学九年级上册易错题一、选择题(1 - 10题)1. 一元二次方程x^2-2x - 3 = 0的根的情况是()- A. 有两个相等的实数根。
- B. 有两个不相等的实数根。
- C. 没有实数根。
- D. 无法确定。
- 解析:对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。
在方程x^2-2x - 3 = 0中,a = 1,b=-2,c=-3,则Δ=(-2)^2-4×1×(-3)=4 + 12=16>0。
当Δ>0时,方程有两个不相等的实数根,所以答案是B。
2. 若关于x的一元二次方程(m - 1)x^2+5x+m^2-3m + 2 = 0的常数项为0,则m的值等于()- A. 1.- B. 2.- C. 1或2。
- D. 0.- 解析:因为方程的常数项为0,所以m^2-3m + 2 = 0,即(m - 1)(m - 2)=0,解得m = 1或m = 2。
又因为方程是一元二次方程,二次项系数m - 1≠0,即m≠1,所以m = 2,答案是B。
3. 二次函数y = x^2-2x + 3的顶点坐标是()- A. (1,2)- B. (-1,2)- C. (1, - 2)- D. (-1,-2)- 解析:对于二次函数y=ax^2+bx + c(a≠0),其顶点坐标的横坐标x =-(b)/(2a),纵坐标y=frac{4ac - b^2}{4a}。
在y = x^2-2x + 3中,a = 1,b=-2,c = 3,x =-(-2)/(2×1)=1,y=frac{4×1×3-(-2)^2}{4×1}=(12 - 4)/(4)=2,所以顶点坐标是(1,2),答案是A。
4. 已知二次函数y = ax^2+bx + c(a≠0)的图象如图所示,则下列结论中正确的是()- A. a>0- B. c<0- C. 3是方程ax^2+bx + c = 0的一个根。
初中数学易错题集
初中数学易错题集1. 分母为0的数学计算错误- 示例题目:计算 3 ÷ 0 的值。
解析:分母为0的情况下,计算是没有意义的,因为任何数除以0都没有定义。
因此,这道题是没有解的,答案是无解。
2. 乘除法运算次序错误- 示例题目:计算 2 + 3 × 4 的值。
解析:根据数学运算法则,乘法和除法的优先级高于加法和减法。
所以,首先计算3 × 4,得到12,再加上2,最后的答案是14。
3. 幂运算有括号错误- 示例题目:计算 2^3 × 4 的值。
解析:幂运算的优先级高于乘法和除法,但低于括号。
根据数学运算法则,先计算幂运算,再进行乘法运算。
所以,首先计算2的3次方,得到8,再乘以4,最后的答案是32。
4. 直角三角形定理应用错误- 示例题目:已知直角三角形的一条直角边长为3cm,斜边长为5cm,求另一条直角边的长度。
解析:根据直角三角形的定理(勾股定理),直角边的平方加上直角边的平方等于斜边的平方。
所以,设另一条直角边的长度为x,则有x^2 + 3^2 = 5^2。
解这个方程可以得到 x = 4。
5. 百分数转换错误- 示例题目:将0.6转化为百分数。
解析:百分数是以百分号(%)表示的,表示数值的百分之几。
将小数转化为百分数时,将小数乘以100,并在后面加上百分号。
所以,0.6转化为百分数是60%。
6. 未转化单位导致计算错误- 示例题目:汽车以60千米/小时的速度行驶了2小时,求汽车行驶的总距离。
解析:速度乘以时间等于距离。
但是在计算之前,要将速度和时间转化为相同的单位。
由于速度单位是千米/小时,时间单位是小时,所以无需转化单位,直接乘起来就可以,答案为 60 × 2 = 120 千米。
7. 数字精度错误- 示例题目:计算 0.2 × 0.3 的值。
解析:在计算浮点数(小数)时,由于计算机的二进制表示有限,不是所有的小数都能精确表示。
所以,计算结果可能有一定的误差。
(易错题精选)初中数学有理数分类汇编含答案
(易错题精选)初中数学有理数分类汇编含答案一、选择题1.下列各组数中,互为相反数的组是( )A .2-B .2-C .12-与2D . 【答案】A【解析】【分析】根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2=2,符合相反数的定义,故选项正确;B 、-2不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.2.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.3.在﹣3,﹣1,1,3四个数中,比2大的数是( )A .﹣3B .﹣1C .1D .3【答案】D【解析】【分析】根据有理数比较大小的方法解答即可.【详解】解:比2大的数是3.故选:D .【点睛】本题考查了有理数比较大小,掌握有理数比较大小的比较方法是解题的关键.4.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.5.已知整数1a ,2a ,3a ,4a ⋯满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+⋯依此类推,则2017a 的值为( )A .1007-B .1008-C .1009-D .2016- 【答案】B【解析】【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -;然后把n 的值代入进行计算即可得解. 【详解】解:10a =,21|1|011a a =-+=-+=-,32|2|121a a =-+=--+=-,43|3|132=-+=--+=-a a ,54|4|242=-+=--+=-a a ,……∴n是奇数时,结果等于12n--;n是偶数时,结果等于2n-;∴2017201711008 2a-=-=-;故选:B.【点睛】此题考查数字的变化规律,根据所求出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键.6.在数轴上,点A,B在原点O的两侧,分别表示数a和3,将点A向左平移1个单位长度,得到点C.若OC OB=,则a的值为().A.3-B.2-C.1-D.2【答案】B【解析】【分析】先用含a的式子表示出点C,根据CO=BO列出方程,求解即可.【详解】解:由题意知:A点表示的数为a,B点表示的数为3, C点表示的数为a-1.因为CO=BO,所以|a-1| =3, 解得a=-2或4,∵a<0,∴a=-2.故选B.【点睛】本题主要考查了数轴和绝对值方程的解法,用含a的式子表示出点C,是解决本题的关键.7.下列各数中,最大的数是()A.12-B.14C.0 D.-2【答案】B【解析】【分析】将四个数进行排序,进而确定出最大的数即可.【详解】112024-<-<<,则最大的数是14,故选B.【点睛】此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.8.如果x 取任意实数,那么以下式子中一定表示正实数的是( )A .xB .C .D .|3x +2| 【答案】C【解析】【分析】利用平方根有意义的条件以及绝对值有意义的条件进而分析求出即可.【详解】A.x 可以取全体实数,不符合题意;B.≥0, 不符合题意; C.>0, 符合题意; D. |3x +2|≥0, 不符合题意.故选C.【点睛】本题考查了平方根和绝对值有意义的条件,正确把握平方根和绝对值有意义的条件是解题关键.9.若x <2,化简()22x -+|3-x|的正确结果是( ) A .-1B .1C .2x -5D .5-2x 【答案】C【解析】分析:本题利用绝对值的化简和二次根式()2a a = 的化简得出即可. 解析:∵x <2,∴()22x -+|3﹣x|=2352x x x -+-=- .故选D.10.如图数轴所示,下列结论正确的是( )A .a >0B .b >0C .b >aD .a >b【答案】A【解析】【分析】根据数轴,可判断出a 为正,b 为负,且a 距0点的位置较近,根据这些特点,判定求解【详解】∵a 在原点右侧,∴a >0,A 正确;∵b在原点左侧,∴b<0,B错误;∵a在b的右侧,∴a>b,C错误;∵b距离0点的位置远,∴a<b,D错误【点睛】本题是对数轴的考查,需要注意3点:(1)在0点右侧的数为正数,0点左侧的数为负数;(2)数轴上的数,从左到右依次增大;(3)离0点越远,则绝对值越大11.下列各组数中互为相反数的一组是()A.3与13B.2与|-2| C.(-1) 2与1 D.-4与(-2) 2【答案】D【解析】考点:实数的性质.专题:计算题.分析:首先化简,然后根据互为相反数的定义即可判定选择项.解答:解:A、两数数值不同,不能互为相反数,故选项错误;B、2=|-2|,两数相等,不能互为相反数,故选项错误.C、(-1)2=1,两数相等;不能互为相反数,故选项错误;D、(-2)2=4,-4与4互为相反数,故选项正确;故选D.点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.12.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D.若线段AP=BP,则P一定是AB中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的13.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .14.下列各组数中互为相反数的是( )A .52(5)-B .2--和(2)-C .38-38-D .﹣5和15 【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案. 【详解】解:A 、5()25-,两数相等,故此选项错误;B 、22和-(2)2互为相反数,故此选项正确;C 、38=-238-,两数相等,故此选项错误;D 、-5和15,不互为相反数,故此选项错误. 故选B .【点睛】 本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.15.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.16.-14的绝对值是( ) A .-4B .14C .4D .0.4【答案】B【解析】【分析】直接用绝对值的意义求解.【详解】 −14的绝对值是14. 故选B .【点睛】 此题是绝对值题,掌握绝对值的意义是解本题的关键.17.在﹣6,0,﹣1,4这四个数中,最大的数是( )A .4B .﹣6C .0D .﹣1【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A .【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.18.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D .【点睛】本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.19.已知整数01234,,,,,L a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+L a a a a a a a 以此类推,2019a 的值为( ) A .1007-B .1008-C .1009-D .1010-【答案】D【解析】【分析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:00a =, 101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a =-+=--+=-,545253a a =-+=--+=-,656363a a=-+=--+=-,767374a a=-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2019+1)÷2=1010,故20191010a=-,故选:D.【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.20.已知一个数的绝对值等于2,那么这个数与2的和为()A.4 B.0 C.4或—4 D.0或4【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a,则这个为±a。
(易错题精选)初中数学有理数易错题汇编及答案
(易错题优选)初中数学有理数易错题汇编及答案一、选择题1.方程 |2x+1|=7的解是()A. x=3B. x=3 或 x=﹣3C. x=3 或 x=﹣ 4D. x=﹣ 4【答案】 C【分析】【剖析】依据绝对值的意义,将原方程转变为两个一元一次方程后求解.【详解】解:由绝对值的意义,把方程2x+1=7 变形为:2x+ 1= 7 或 2x+1=- 7,解得 x= 3 或 x=- 4应选 C.【点睛】本题考察了绝对值的意义和一元一次方程的解法,对含绝对值的方程,一般是依据绝对值的意义,去除绝对值后再解方程.2.以下四个数中,是正整数的是()1 A.﹣ 2B.﹣ 1C.1D.2【答案】 C【分析】【剖析】正整数是指既是正数又是整数,由此即可判断求解.【详解】A、﹣ 2 是负整数,应选项错误;B、﹣ 1 是负整数,应选项错误;C、 1 是正整数,应选项正确;1D、不是正整数,应选项错误.2应选: C.【点睛】考察正整数观点,解题主要掌握既是正数仍是整数两个特色.3.1的绝对值是 () 6A.﹣ 6B. 611 C.﹣D.66【答案】 D【分析】【剖析】利用的定解答即可.【解】1的是1,66故 D.【点睛】本考了得定,理解定是解的关.4.- 6 的是()A. -6B. 611 C. -D.66【答案】 B【分析】【剖析】在数上,表示一个数的点到原点的距离叫做个数的.【解】数的等于它的相反数,因此-6 的是 6故 B【点睛】考点: .5. 3 的是()A. 3B. 311 C. -D.33【答案】 B【分析】【剖析】依据数的是它的相反数,可得出答案.【解】依据的性得:|-3|=3 .故 B.【点睛】本考的性,需要掌握非数的是它自己,数的是它的相反数.6.如,在数上,点 A 表示 1,将点 A 沿数做以下移,第一次将点 A 向左移3个位度抵达点A1,第二次将点A1向右移 6 个位度抵达点A2,第三次将点A2向左移9 个位度抵达点A3,⋯依照种移律行下去,第51 次移到点A51,那么点 A51所表示的数()A. 74B. 77C. 80D. 83【答案】B【分析】【剖析】序号奇数的点在点 A 的左,各点所表示的数挨次减少3,序号偶数的点在点 A 的右,各点所表示的数挨次增添 3 ,即可解答.【解】解:第一次点 A 向左移3个位度至点A1, A1表示的数,1-3=-2 ;第 2 次从点 A1 向右移 6 个位度至点A2, A2表示的数- 2+6=4;第 3次从点 A2向左移9 个位度至点A3, A3表示的数4-9=-5 ;第 4次从点 A3向右移12个位度至点A4, A4表示的数- 5+12=7;第 5次从点 A4向左移15个位度至点A5, A5表示的数7-15=-8;⋯;点 A51表示:51131263178 1 77,2故 B.7.在- 3,- 1, 0, 3 四个数中,比- 2 小的数是()A.- 3B.- 1C. 0D. 3【答案】 A【分析】【剖析】依据两个数比大小,大的数反而小,正数比数大,逐一判断与-2 的大小关系即可.【解】解:∵-32 1 03∴比- 2 小的数是 -3故: A【点睛】本考有理数的大小比,掌握数比大小的方法是关.28.在–2, +3.5,0,,–0.7, 11 中.分数有( )3A. l 个B.2 个C.3 个D.4 个【答案】B依据负数的定义先选出负数,再选出分数即可.解:负分数是﹣2,﹣ 0.7,共 2 个.3应选 B.9.数轴上表示数 a 和数 b 的两点之间的距离为6,若 a 的相反数为2,则 b 为()A.4B.4C.8D.4或8【答案】 D【分析】【剖析】依据相反数的性质求出 a 的值,再依据两点距离公式求出 b 的值即可.【详解】∵a 的相反数为2∴a 2 0解得 a2∵数轴上表示数 a 和数 b 的两点之间的距离为6∴a b 6解得 b 4 或8故答案为: D.【点睛】本题考察了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的重点.10. 2019 的倒数的相反数是()A. -20191C.1B.D. 2019 20192019【答案】 B【分析】【剖析】先求 2019 的倒数,再求倒数的相反数即可.【详解】1,2019 的倒数是20191的相反数为1,20192019因此 2019 的倒数的相反数是1,2019应选 B.本题考察了倒数和相反数,娴熟掌握倒数和相反数的求法是解题的重点.a b c abc11.已知 a、 b、c 都是不等于0 的数,求a b c的全部可能的值有 ()abc个.A.1B. 2C. 3D. 4【答案】 C【分析】【剖析】依据 a、 b、 c 的符号分状况议论,再依据绝对值运算进行化简即可得.【详解】由题意,分以下四种状况:①当 a、b、c 全为正数时,原式1 1 114②当 a、b、c 中两个正数、一个负数时,原式11110③当 a、b、c 中一个正数、两个负数时,原式11110④当 a、b、c 全为负数时,原式1 1 114综上所述,所求式子的全部可能的值有 3 个应选: C.【点睛】本题考察了绝对值运算,依照题意,正确分状况议论是解题重点.12.7 的绝对值是()A.11D. 7 B.C. 777【答案】 C【分析】【剖析】负数的绝对值为这个数的相反数.【详解】|-7|=7, 即答案选 C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的重点.13. 2 的相反数是()11 A.2B.2C.D.22【答案】 B【分析】依据相反数的性质可得结果.【详解】因为 -2+2=0,因此﹣ 2 的相反数是2,应选 B.【点睛】本题考察求相反数,熟记相反数的性质是解题的重点.14.已知点c|+b7P 的坐标为( a, b)( a> 0),点 Q 的坐标为( c, 3),且 |a ﹣=0,将线段PQ 向右平移 a 个单位长度,其扫过的面积为20,那么a+b+c 的值为()A.12B. 15C. 17D. 20【答案】 C【分析】【剖析】由非负数的性质获得a=c, b=7, P( a, 7),故有PQ∥ y 轴, PQ=7-3=4,因为其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且 | a -c|++ b 7 =0,∴a=c, b=7,∴P( a, 7), PQ∥ y 轴,∴P Q=7-3=4,∴将线段PQ 向右平移 a 个单位长度,其扫过的图形是边长为 a 和 4 的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,应选 C.【点睛】本题主要考察了非负数的性质,坐标的平移,矩形的性质,能依据点的坐标判断出 PQ∥y 轴,从而求得 PQ 是解题的重点.15.有理数a,b在数轴上的地点以下图,以下说法正确的选项是()A.a b 0B.a b 0C.ab0D.b a 【答案】 D【剖析】由图可判断a、 b 的正负性, a、 b 的绝对值的大小,即可解答.【详解】依据数轴可知:-2<a< -1,0< b< 1,∴a+b< 0, |a| >|b| , ab<0, a-b< 0.因此只有选项 D 建立.应选: D.【点睛】本题考察了数轴的相关知识,利用数形联合思想,能够解决此类问题.数轴上,原点左侧的点表示的数是负数,原点右侧的点表示的数是正数.16.实数a,b在数轴上对应点的地点以下图,则以下结论正确的选项是(). a b. a b. a b 0. a b 0A B C D【答案】 A【分析】【剖析】依据数轴得 a<0<b,且a b ,再依据实数的加法法例,减法法例挨次判断即可.【详解】由数轴得 a<0<b,且a b ,∴a+b<0, a-b<0,故 A 正确, B、 C、D 错误,应选: A.【点睛】本题考察数轴,实数的大小比较,实数的绝对值的性质,加法法例,减法法例.17.以下各数中,绝对值最大的数是()A.1B.﹣ 1C. 3.14D.π【答案】D【分析】剖析:先求出每个数的绝对值,再依据实数的大小比较法例比较即可.详解:∵ 1、 -1、 3.14、π的绝对值挨次为1、1、 3.14、π,∴绝对值最大的数是π,应选 D.点睛:本题考察了实数的大小比较和绝对值,能比较实数的大小是解本题的重点.18. 以下各组数中互为相反数的一组是( )A .3 与1 C .(-1) 2与 1D . -4 与 (-2) 2B . 2 与|-2|3【答案】 D【分析】考点:实数的性质.专题:计算题.剖析:第一化简,而后依据互为相反数的定义即可判断选择项. 解答:解: A 、两数数值不一样,不可以互为相反数,应选项错误; B 、 2=|-2| ,两数相等,不可以互为相反数,应选项错误. C 、( -1) 2=1,两数相等;不可以互为相反数,应选项错误; D 、( -2)2 =4,-4 与 4 互为相反数,应选项正确; 应选 D .评论:本题主要考察相反数定义:互为相反数的两个数相加等于0.19. 1 是 0.01 的算术平方根, ③ 错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④ 错误应选:A【点睛】本题考察观点的理解,解题重点是注意观点的限制性,如④ 中,一定有限制条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.20. 已知直角三角形两边长 x 、y 知足 x 24( y 2) 21 0 ,则第三边长为 ( )A .B . 13C . 5或 13D .,5或 13【答案】 D【分析】【剖析】【详解】解:∵ |x 2-4| ≥0,( y2)2 1 ≥0,∴ x 2-4=0, ( y 2) 2 1=0,∴x=2 或 -2(舍去), y=2 或 3,分 3 种状况解答:① 当两直角边是 2 时,三角形是直角三角形,则斜边的长为:22222 2;② 当 2, 3 均为直角边时,斜边为223213;③ 当 2 为向来角边, 3 为斜边时,则第三边是直角,长是225 .3 2应选 D .考点: 1.非负数的性质; 2.勾股定理.。
初中数学题集(易错题)易错题
初中数学易错题一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( )A 、2aB 、2bC 、2a-2bD 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( )A 、2千米/小时B 、3千米/小时C 、6千米/小时D 、不能确定4、方程2x+3y=20的正整数解有( )A 、1个B 、3个C 、4个D 、无数个5、下列说法错误的是( )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线不是平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交点 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( ) A 、内切B 、外切C 、内切或外切D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( )9、有理数中,绝对值最小的数是( )A 、-1B 、1C 、0D 、不存在10、21的倒数的相反数是( ) A 、-2B 、2C 、-21D 、2111、若|x|=x ,则-x 一定是( ) A 、正数B 、非负数C 、负数D 、非正数bA B C C B A C A B B A C12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( ) A 、互为相反数B 、互为倒数C 、互为相反数且不为0D 、有一个为013、长方形的周长为x ,宽为2,则这个长方形的面积为( ) A 、2xB 、2(x-2)C 、x-4D 、2·(x-2)/214、“比x 的相反数大3的数”可表示为( ) A 、-x-3B 、-(x+3)C 、3-xD 、x+315、如果0<a<1,那么下列说法正确的是( ) A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( ) A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( ) A 、12cm B 、10cm C 、8cm D 、4cm18、21-的相反数是( )A 、21+ B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是( ) A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++x x x x 时,若设y xx =+1,则原方程可化为( )A 、3y 2+5y-4=0B 、3y 2+5y-10=0C 、3y 2+5y-2=0D 、3y 2+5y+2=021、方程x 2+1=2|x|有( ) A 、两个相等的实数根 B 、两个不相等的实数根 C 、三个不相等的实数根D 、没有实数根22、一次函数y=2(x-4)在y 轴上的截距为( ) A 、-4B 、4C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>ax a x ,正确的结论是( )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( )A 、y ≤32B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( ) A 、0.2B 、±0.2C 、510 D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( )27n 的平均数与方差分别是( ) A 、k x , k 2s 2 B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( )A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( ) A 、线段 B 、正三角形 C 、平行四边形 D 、等腰梯形30、已知dc ba =,下列各式中不成立的是( )A 、dc b a dc b a ++=--B 、db c a d c 33++=C 、bd a c b a 23++=D 、ad=bc31、一个三角形的三个内角不相等,则它的最小角不大于( ) A 、300B 、450C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( ) A 、三角形的外心 B 、三角形的重心C 、三角形的内心D 、三角形的垂心33、下列三角形中是直角三角形的个数有( ) ①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个B 、2个C 、3个D 、4个34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( )A 、3πcmB 、32πcmC 、6πcmD 、2πcm35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( ) A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( ) A 、AE=CDB 、AE>CDC 、AE>CDD 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( ) A 、矩形B 、梯形C 、两条对角线互相垂直的四边形D 、两条对角线相等的四边形38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是( ) A 、AB=2CDB 、AB>2CDC 、AB<2CDD 、AB 与CD 不可能相等39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( ) A 、300B 、600C 、1500D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300 (2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( ) A 、0B 、1BBC 、2D 、343、不等式6322+>+x x 的解是( )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( ) A 、m ≤1B 、m ≤1且m ≠1C 、m ≥1D 、-1<m ≤145、函数y=kx+b(b>0)和y=xk -(k ≠0),在同一坐标系中的图象可能是( )46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( ) A 、1个B 、2个C 、3个D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上,则下列结论中正确的是( ) A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 248、下列根式是最简二次根式的是( ) A 、a8 B 、22b a + C 、x1.0 D 、5a49、下列计算哪个是正确的( ) A 、523=+ B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( )A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于( )A 、2-2aB 、2a-2C 、-2D 、252、已知02112=-+-x x ,则122+-x x 的值( )A 、1B 、±21C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则ba 等于( ) A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似 A 、2个 B 、3个C 、4个D 、5个二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_________。
初中数学经典易错题集锦与答案解析
3、轮船顺流航行时m千米/小时,逆流航行时(m-6)千米/小时,则水流速度-----------------( )
A、2千米/小时 B、3千米/小时 C、6千米/小时 D、不能确定
4、方程2x+3y=20的正整数解有---------------------------------------------------------( )
A、m≤1 B、m≥ 且m≠1 C、m≥1 D、-1<m≤1
44、函数y=kx+b(b>0)和y= (k≠0),在同一坐标系中的图象可能是------------------------------( )
A B C D
45、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有----------------------------------------( )
A、 B、 C、 D、
19、方程x(x-1)(x-2)=x的根是-------------------------------------------------------------- ( )
A、x1=1, x2=2 B、x1=0, x2=1, x3=2
C、x1= , x2= D、x1=0,x2= , x3=
A、-x-3 B、-(x+3) C、3-xD、x+3
15、如果0<a<1,那么下列说法正确的是------------------------------------------------- ( )
A、a2比a大B、a2比a小
C、a2与a相等 D、a2与a的大小不能确定
16、数轴上,A点表示-1,现在A开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A点表示的数是----------------------------------------------------------------------------------- ( )
初一数学易错题汇总(有理数、整式、因式分解、一元一次方程)
精心整理初一数学易错题汇总第一章 有理数易错题练习一.判断⑴ a 与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是-6. ⑿一个数的倒数的绝对值等于这个数的相反数,这个数是 .三.解答题⑴已知a 、b 互为倒数,- c 与2d 互为相反数,且│x │=4,求2ab -2c +d +3x 的值. ⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9)+(+2)- (-5); ②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分):⑺比较4a和-4a的大小①已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;②已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;③已知3.412=11.63,那么(34.1)2=116300;④近似数2.40×104精确到百分位,它的有效数字是2,4;⑤已知5.4953=165.9,x3=0.0001659,则x=0.5495.⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?⑼若x、y是有理数,且|x|-x=0,|y|+y=0,|y|>|x|,化简|x|-|y|-|x+y|.(3)绝对值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;(6) 平方得412的数是____;此题用符号表示:已知,4122=x 则x=_______; (7)若|a|=|b|,则a,b 的关系是________;A .a + b <0B .a + b >0;C .a -b = 0D .a -b >0 (4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。
(易错题精选)初中数学有理数易错题汇编含答案解析
(易错题精选)初中数学有理数易错题汇编含答案解析一、选择题1.数轴上A ,B ,C 三点所表示的数分别是a ,b ,c ,且满足||||||c b a b a c ---=-,则A ,B ,C 三点的位置可能是( )A .B .C .D .【答案】C【解析】【分析】由A 、B 、C 在数轴上的位置判断出a 、b 、c 的大小关系,根据绝对值性质去绝对值符号,判断左右两边是否相等即可.【详解】当a c b <<时,||||c b a b b c a b a c ---=-+-=-,180°-66?38=113?22′′,此选项错误;B 、当a <b <c 时,||||2c b a b c b a b c a b ---=-+-=+-,44A-mB=,此项错误;C 、当c <a <b 时,||||c b a b b c a b a c ---=-+-=-,||a c a c -=-,此项正确D 、当c <b <a 时,||||2c b a b b c a b c a b ---=--+=--+,||a c a c -=-,此选项错误;故选C.【点睛】本题主要考查绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.2.-6的绝对值是( )A .-6B .6C .- 16D .16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6故选B【点睛】考点:绝对值.3.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是()A.B.C.D.【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答.【详解】解:,原点在a,b的中间,如图,由图可得:,,,,,故选项A错误,故选:A.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.4.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a 与b 互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a 与b 互为相反数,故选A .【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.5.在有理数2,-1,0,-5中,最大的数是( )A .2B .C .0D .【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.6.若a 与b 互为相反数,则下列式子不一定正确的是( )A .0a b +=B .=-a bC .a b =D .a b =【答案】C【解析】【分析】依据相反数的概念及性质可确定正确的式子,再通过举反例可证得不一定正确的式子.【详解】解:∵a 与b 互为相反数,∴0a b +=,∴=-a b , ∴a b =,故A 、B 、D 正确,当1a =时,1b =-,则1=b ,∴a b =;当1a =-时,1b =,则1=b ,∴a b ≠,故C 不一定正确,故选:C .【点睛】本题考查了相反数的定义.解此题的关键是灵活运用相反数的定义判定式子是否正确.7.已知实数a 满足2006a a -=,那么22006a -的值是( )A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴2006a a -=可化为a 2006a -+=,2006=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.8.已知|m+3|与(n ﹣2)2互为相反数,那么m n 等于( )A .6B .﹣6C .9D .﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n ﹣2)2互为相反数,∴|m+3|+(n ﹣2)2=0,∴m+3=0,n ﹣2=0,解得m=﹣3,n=2,所以,m n =(﹣3)2=9.故选C .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.9.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.10.方程|2x+1|=7的解是( )A .x=3B .x=3或x=﹣3C .x=3或x=﹣4D .x=﹣4【答案】C【解析】【分析】根据绝对值的意义,将原方程转化为两个一元一次方程后求解.【详解】 解:由绝对值的意义,把方程217x +=变形为: 2x +1=7或2x +1=-7,解得x =3或x =-4故选C .【点睛】本题考查了绝对值的意义和一元一次方程的解法,对含绝对值的方程,一般是根据绝对值的意义,去除绝对值后再解方程.11.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q【答案】C【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.12.下列运算正确的是()A =-2 B.|﹣3|=3 C=± 2 D 【答案】B【解析】【分析】A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.【详解】解:A、C2=,故选项错误;B、|﹣3|=3,故选项正确;D、9开三次方不等于3,故选项错误.故选B.【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.13.- 14的绝对值是()A.-4 B.14C.4 D.0.4【答案】B【解析】【分析】直接用绝对值的意义求解.【详解】−14的绝对值是14.故选B.【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键.14.在﹣6,0,﹣1,4这四个数中,最大的数是()A.4 B.﹣6 C.0 D.﹣1【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A .【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.15.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“6cm ”分别对应数轴上表示﹣2和实数x 的两点,那么x 的值为( )A .3B .4C .5D .6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x 之间的距离为6,∴x 表示的数为:﹣2+6=4,故选:B .【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.16.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b +-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3 【答案】A【解析】【分析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a、b、c三数中有2个正数、1个负数,则a b c a b cb c a c a b a b c+-=+-+++---,若a为负数,则原式=1-1+1=1,若b为负数,则原式=-1+1+1=1,若c为负数,则原式=-1-1-1=-3,所以答案为1或-3.故选:A.【点睛】本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.17.下列各数中,绝对值最大的数是()A.1 B.﹣1 C.3.14 D.π【答案】D【解析】分析:先求出每个数的绝对值,再根据实数的大小比较法则比较即可.详解:∵1、-1、3.14、π的绝对值依次为1、1、3.14、π,∴绝对值最大的数是π,故选D.点睛:本题考查了实数的大小比较和绝对值,能比较实数的大小是解此题的关键.18.下列各组数中互为相反数的一组是()A.3与13B.2与|-2| C.(-1) 2与1 D.-4与(-2) 2【答案】D【解析】考点:实数的性质.专题:计算题.分析:首先化简,然后根据互为相反数的定义即可判定选择项.解答:解:A、两数数值不同,不能互为相反数,故选项错误;B、2=|-2|,两数相等,不能互为相反数,故选项错误.C、(-1)2=1,两数相等;不能互为相反数,故选项错误;D、(-2)2=4,-4与4互为相反数,故选项正确;故选D.点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.19.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.20.12a=-,则a的取值范围是()A.12a≥B.12a>C.12a≤D.无解【答案】C【解析】【分析】=|2a-1|,则|2a-1|=1-2a,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】=|2a-1|,∴|2a-1|=1-2a,∴2a-1≤0,∴12a≤.故选:C.【点睛】此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.。
(易错题精选)初中数学图形的相似难题汇编
(易错题精选)初中数学图形的相似难题汇编一、选择题1.已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A.35B.43C.53D.34【答案】C【解析】【分析】首先延长BC,做FN⊥BC,构造直角三角形,利用三角形相似的判定,得出Rt△FNE∽Rt△ECD,再利用相似比得出12.52NE CD==,运用正方形性质,得出△CNF是等腰直角三角形,从而求出CE.【详解】解:过F作BC的垂线,交BC延长线于N点,∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN,∴Rt△FNE∽Rt△ECD,∵DE的中点G,EG绕E顺时针旋转90°得EF,∴两三角形相似比为1:2,∴可以得到CE=2NF,12.52NE CD==∵AC平分正方形直角,∴∠NFC=45°,∴△CNF是等腰直角三角形,∴CN=NF,∴2255.3323 CE NE==⨯=故选C.【点睛】此题主要考查了旋转的性质与正方形的性质以及相似三角形的判定等知识,求线段的长度经常运用相似三角形的知识解决,同学们应学会这种方法.2.如果两个相似正五边形的边长比为1:10,则它们的面积比为()A .1:2B .1:5C .1:100D .1:10【答案】C【解析】 根据相似多边形的面积比等于相似比的平方,由两个相似正五边形的相似比是1:10,可知它们的面积为1:100.故选:C .点睛:此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.3.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则AB 的长为( )A .10B .12C .16D .20【答案】D【解析】【分析】 连接BD ,如图,先利用圆周角定理证明ADE DAC ∠=∠得到5FD FA ==,再根据正弦的定义计算出3EF =,则4AE =,8DE =,接着证明ADE DBE ∆∆∽,利用相似比得到16BE =,所以20AB =.【详解】解:连接BD ,如图,AB Q 为直径,90ADB ACB ∴∠=∠=︒,AD CD =Q ,DAC DCA ∴∠=∠,而DCA ABD ∠=∠,DAC ABD ∴∠=∠,DE AB ∵⊥,90ABD BDE ∴∠+∠=︒,而90ADE BDE ∠+∠=︒,ABD ADE ∴∠=∠,ADE DAC ∴∠=∠,5FD FA ∴==,在Rt AEF ∆中,3sin 5EF CAB AF ∠==Q , 3EF ∴=, 22534AE ∴=-=,538DE =+=, ADE DBE ∠=∠Q ,AED BED ∠=∠,ADE DBE ∴∆∆∽,::DE BE AE DE ∴=,即8:4:8BE =,16BE ∴=,41620AB ∴=+=.故选:D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.4.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数1y x=-、2y x =的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )A .逐渐变小B .逐渐变大C .时大时小D .保持不变【答案】D【解析】【分析】 如图,作辅助线;首先证明△BEO ∽△OFA ,,得到BE OE OF AF =;设B 为(a ,1a-),A 为(b ,2b ),得到OE=-a ,EB=1a-,OF=b ,AF=2b ,进而得到222a b =,此为解决问题的关键性结论;运用三角函数的定义证明知tan ∠2为定值,即可解决问题.【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴BE OE OF AF=,设点B为(a,1 a-),A为(b,2b),则OE=-a,EB=1a-,OF=b,AF=2b,可代入比例式求得222a b=,即222ab=,根据勾股定理可得:OB=22221OE EB aa+=+,OA=22224OF AF bb+=+,∴tan∠OAB=2222222212244baOB a bOAb bb b++==++=222214()24bbbb++=22∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.5.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.12【答案】D【解析】分析:根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.详解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选D.点睛:本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.6.如图,正方形OABC的边长为6,D为AB中点,OB交CD于点Q,Q是y=kx上一点,k的值是()A.4 B.8 C.16 D.24【答案】C【解析】【分析】延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q ,OCQ BDQ ∴∆∆∽, ∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽, ∴22213QF OF OQ AB OA OB ====+, 6AB =Q , 2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.7.如图,点A在双曲线y═kx(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于12OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.3225C.43D.252+【答案】B【解析】分析:如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;详解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,22=5OF OC+∴255,∴OA=455,由△FOC∽△OBA,可得OF OC CFOB AB OA==,∴215455 OB AB==,∴OB=85,AB=45,∴A(85,45),∴k=32 25.故选B.点睛:本题考查作图-复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边40DE cm=,20EF cm=,测得边DF离地面的高度 1.5AC m=,8CD m=,则树高AB是()A.4米B.4.5米C.5米D.5.5米【答案】D【解析】【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明的身高即可求得树高AB.【详解】解:∵∠DEF=∠BCD-90°∠D=∠D∴△ADEF∽△DCB∴BC DC EF DE=∴DE=40cm=0.4m,EF-20cm=0.2m,AC-1.5m,CD=8m∴80.20.4BC=解得:BC=4∴AB=AC+BC=1.5+4=5.5米故答案为:5.5.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型。
初中数学易错题集合整理过的)
例题:解方程 .
三、函数
⑴自变量
例题:函数 中,自变量 的取值范围是_______________.
⑵字母系数
例题:若二次函数 的图像过原点,则 =______________.
⑶函数图像
例题:如果一次函数 的自变量的取值范围是 ,相应的函数值的范围是 ,求此函数解析式.
⑷应用背景
例题:某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费再提高2元,则再减少10张床位租出.以每次这种提高2元的方法变化下去,为了投资少而获利大,每床每晚应提高_________元.
五、圆中易错问题
⑴点与弦的位置关系
例题:已知 是⊙O的直径,点 在⊙O上,过点 引直径 的垂线,垂足为点 ,点 分这条直径成 两部分,如果⊙O的半径等于5,那么 =________.
⑵点与弧的位置关系
例题: 、 是⊙O的切线, 、 是切点, ,点 是圆上异于 、 的任意一点,那么 ________.
练习题:
一、容易漏解的题目
1.一个数的绝对值是5,则这个数是_________;__________数的绝对值是它本身.
2._________的倒数是它本身;_________的立方是它本身.
3.关于 的不等式 的正整数解是1和2;则 的取值范围是_________.
4.不等式组 的解集是 ,则 的取值范围是_________
26. 、 是⊙O的切线, 、 是切点, ,点 是上异于 、 的任意一点,那么 ________.
27.在半径为1的⊙O中,弦 , ,那么 ________.
二、容易多解的题
28.已知 ,则 _______.
29.在函数 中,自变量的取值范围为_______.
初中数学易错题分类大全
初中数学易错题分类汇编一、数与式例题:A )2,(B,(C )2±,(D)例题:等式成立的是.(A )1c ab abc =,(B )632x x x =,(C )112112a a a a ++=--,(D )22a x a bx b=. 二、方程与不等式⑴字母系数例题:关于x 的方程2(2)2(1)10k x k x k ---++=,且3k ≤.求证:方程总有实数根.例题:不等式组2,.x x a >-⎧⎨>⎩的解集是x a >,则a 的取值范围是. (A )2a <-,(B )2a =-,(C )2a >-,(D )2a ≥-.⑵判别式例题:已知一元二次方程222310x x m -+-=有两个实数根1x ,2x ,且满足不等式121214x x x x <+-,求实数的范围. ⑶解的定义例题:已知实数a 、b 满足条件2720a a -+=,2720b b -+=,则a b b a+=____________. ⑷增根例题:m 为何值时,22111x m x x x x --=+--无实数解. ⑸应用背景例题:某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船3小时,已知船在静水中的速度为8千米/时,水流速度为2千米/时,若A、C 两地间距离为2千米,求A、B两地间的距离.⑹失根例题:解方程(1)1-=-.x x x三、函数⑴自变量例题:函数y=中,自变量x的取值范围是_______________.⑵字母系数例题:若二次函数22y mx x m m=-+-的图像过原点,则m=______________.32⑶函数图像例题:如果一次函数y kx b=+的自变量的取值范围是26-≤≤,相应的函数值x的范围是119y-≤≤,求此函数解析式.⑷应用背景例题:某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费再提高2元,则再减少10张床位租出.以每次这种提高2元的方法变化下去,为了投资少而获利大,每床每晚应提高_________元.四、直线型⑴指代不明________.⑵相似三角形对应性问题例题:在ABCBC=,D为AC上一点,:2:3DC AC=,AC=18△中,9AB=,12在AB上取点E,得到ADE△,若两个三角形相似,求DE的长.⑶等腰三角形底边问题例题:等腰三角形的一条边为4,周长为10,则它的面积为________. ⑷三角形高的问题例题:等腰三角形的一边长为10,面积为25,则该三角形的顶角等于多少度? ⑸矩形问题例题:有一块三角形ABC 铁片,已知最长边BC =12cm ,高AD =8cm ,要把它加工成一个矩形铁片,使矩形的一边在BC 上,其余两个顶点分别在三角形另外两条边上,且矩形的长是宽的2倍,求加工成的铁片面积?⑹比例问题 例题:若b c c a a b k a b c+++===,则k =________. 五、圆中易错问题⑴点与弦的位置关系例题:已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 引直径AB 的垂线,垂足为点D ,点D 分这条直径成2:3两部分,如果⊙O 的半径等于5,那么BC =________.⑵点与弧的位置关系例题:PA 、PB 是⊙O 的切线,A 、B 是切点,78APB ∠=︒,点C 是上异于A 、B 的任意一点,那么ACB ∠=________.⑶平行弦与圆心的位置关系例题:半径为5cm 的圆内有两条平行弦,长度分别为6cm 和8cm ,则这两条弦的距离等于________.⑷相交弦与圆心的位置关系例题:两相交圆的公共弦长为6,两圆的半径分别为、5,则这两圆的圆心距等于________.⑸相切圆的位置关系例题:若两同心圆的半径分别为2和8,第三个圆分别与两圆相切,则这个圆的半径为________.练习题:一、容易漏解的题目1.一个数的绝对值是5,则这个数是_________;__________数的绝对值是它本身.(5±,非负数)2._________的倒数是它本身;_________的立方是它本身.(1±,1±和0)3.关于x 的不等式40x a -≤的正整数解是1和2;则a 的取值范围是_________.(412a ≤<)4.不等式组213,.x x a ->⎧⎨>⎩的解集是2x >,则a 的取值范围是_________.(2a ≤) 5.若()2211a a a +--=,则a =_________.(2-,2,1-,0)6.当m 为何值时,函数21(3)45m y m x x +=++-是一个一次函数.(0m =或3m =-)7.若一个三角形的三边都是方程212320x x -+=的解,则此三角形的周长是_________.(12,24或20)8.若实数a 、b 满足221a a =+,221b b =+,则a b +=________.(2,2±9.在平面上任意画四个点,那么这四个点一共可以确定_______条直线.10.已知线段AB =7cm ,在直线AB 上画线段BC =3cm ,则线段AC =_____.(4cm 或10cm )11.一个角的两边和另一个角的两边互相垂直,且其中一个角是另一个角的两倍少30︒,求这两个角的度数.(30︒,30︒或70︒,110︒)12.三条直线公路相互交叉成一个三角形,现在要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有_______处?(4)13.等腰三角形一腰上的高与腰长之比为1:2,则该三角形的顶角为_____.(30︒或150︒)14.等腰三角形的腰长为a,一腰上的高与另一腰的夹角为30︒,则此等腰三a)角形底边上的高为_______.(215.矩形ABCD的对角线交于点O.一条边长为1,OAB△是正三角形,则这个矩形的周长为______.(2+216.梯形ABCD中,AD BC∥,90∠=︒,AB=7cm,BC=3cm,试在AB边上确A定P的位置,使得以P、A、D为顶点的三角形与以P、B、C为顶点的三角cm)形相似.(AP=1cm,6cm或14517.已知线段AB=10cm,端点A、B到直线l的距离分别为6cm和4cm,则符合条件的直线有___条.(3条)18.过直线l外的两点A、B,且圆心在直线l的上圆共有_____个.(0个、1个或无数个)19.在Rt ABCAB=,以C为圆心,以r为半径的∠=︒,3AC=,5△中,90C圆,与斜边AB只有一个交点,求r的取值范围.( 2.4<≤)rr=或3420.直角坐标系中,已知(1,1)P,在x轴上找点A,使AOP△为等腰三角形,这样的点P共有多少个?(4个)21.在同圆中,一条弦所对的圆周角的关系是______________.(相等或互补)22.圆的半径为5cm,两条平行弦的长分别为8cm和6cm,则两平行弦间的距离为?_______.(1cm或7cm)23.两同心圆半径分别为9和5,一个圆与这两个圆都相切,则这个圆的半径等于多少?(2或7)24.一个圆和一个半径为5的圆相切,两圆的圆心距为3,则这个圆的半径为多少?(2或8)25.PA 切⊙O 于点A ,AB 是⊙O 的弦,若⊙O 的半径为1,AB =PA 的长为____.(1或)26.PA 、PB 是⊙O 的切线,A 、B 是切点,80APB ∠=︒,点C 是上异于A 、B 的任意一点,那么ACB ∠=________.(50︒或130︒)27.在半径为1的⊙O 中,弦AB AC BAC ∠=________.(75︒或15︒)二、容易多解的题28.已知()()22222215x y x y +++=,则22x y +=_______.(3)29.在函数y =中,自变量的取值范围为_______.(1x ≥)30.已知445x x -+=,则22x x -+=________)31.当m 为何值时,关于x 的方程2(2)(21)0m x m x m ---+=有两个实数根.(14m ≥-,且2m ≠).32.当m 为何值时,函数2(1)350m m y m x x -=++-=是二次函数.(2)33.若22022(43)x x x x --=-+,则x =?.(1-)34.方程组22240,3260.x y x xy x y ⎧-=⎪⎨-+++=⎪⎩的实数解的组数是多少?(2)35.关于x 的方程2210x k +-=有实数解,求k 的取值范围.(113k -≤≤) 36.k 为何值时,关于x 的方程2(2)320x k x k -++-=的两根的平方和为23?(3k =-)37.m 为何值时,关于x 的方程21202x m x m ⎛⎫-++= ⎪⎝⎭的两根恰好是一个直角三角形的两个锐角的余弦值?.(m =38.若对于任何实数x,分式21 4x x c++总有意义,则c的值应满足______.(4c>)39.在ABC△中,90A∠=︒,作既是轴对称又是中心对称的四边形ADEF,使D、E、F分别在AB、BC、CA上,这样的四边形能作出多少个?(1)40.在⊙O中,弦AB=8cm,P为弦AB上一点,且AP=2cm,则经过点P的最短弦长为多少?(41.两枚硬币总是保持相接触,其中一个固定,另一个沿其周围滚动,当滚动的硬币沿固定的硬币滚动一周,回到原来的位置,滚动的那个硬币自转的圈数为_______.(2)三、容易误判的问题:1.两条边和其中一组对边上的高对应相等的两个三角形全等。
(易错题精选)初中数学有理数分类汇编及答案解析
(易错题精选)初中数学有理数分类汇编及答案解析一、选择题1.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a> C .ad bc > D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a<0,故B 不符合题意; C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.2.下列说法中,正确的是( )A .在数轴上表示-a 的点一定在原点的左边B .有理数a 的倒数是1aC .一个数的相反数一定小于或等于这个数D .如果a a =-,那么a 是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A 、如果a<0,那么在数轴上表示-a 的点在原点的右边,故选项错误;B 、只有当a≠0时,有理数a 才有倒数,故选项错误;C 、负数的相反数大于这个数,故选项错误;D 、如果a a =-,那么a 是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.4.-6的绝对值是( )A .-6B .6C .- 16D .16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6故选B【点睛】考点:绝对值.5.下列说法错误的是( )A .2 a 与()2a -相等B .()2a -与2a -互为相反数C .3 a 与3a -互为相反数D .a 与a -互为相反数【答案】D【解析】【分析】根据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、()2a -=2 a ,故A 正确;B 、()22a a -=,则()2a -与2a -互为相反数,故B 正确;C 、3 a 与3a -互为相反数,故C 正确;D 、a a -=,故D 说法错误;故选:D.【点睛】本题考查了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的关键是熟练掌握所学的定义进行解题.6.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .7.四个有理数﹣2,1,0,﹣1,其中最小的数是( )A .1B .0C .﹣1D .﹣2【答案】D【解析】【分析】根据正数大于零,零大于负数,可得答案.【详解】∵-2<-1<0<1,最小的是-2.故选D .【点睛】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.8.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .0 【答案】C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k=1不合题意,故舍去,当k=−1时,34450∆=-++=>,符合题意,∴k=−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.9.如图,下列判断正确的是()A.a的绝对值大于b的绝对值B.a的绝对值小于b的绝对值C.a的相反数大于b的相反数D.a的相反数小于b的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a|,|b|,有可能|a|>|b|,|a|=|b|,|a|<|b|.由数轴上的点表示的数右边的总比左边的大,得a<b,由不等式的性质,得﹣a>﹣b,故C符合题意;故选:C.【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.10.下列各数中,最大的数是()A.12-B.14C.0 D.-2【答案】B【解析】【分析】将四个数进行排序,进而确定出最大的数即可.【详解】112024-<-<<,则最大的数是14,故选B.【点睛】此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.11.小麦做这样一道题“计算()3-+W”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A.5 B.-5 C.11 D.-5或11【答案】D【解析】【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D.【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.已知一个数的绝对值等于2,那么这个数与2的和为()A.4 B.0 C.4或—4 D.0或4【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a,则这个为±a13.下列各组数中,互为相反数的组是()A .2-与()22-B .2-与38-C .12-与2D .2-与2【答案】A【解析】【分析】 根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2与()22-=2,符合相反数的定义,故选项正确;B 、-2与38-=-2不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.14.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .15.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.16.如果a+b >0,ab >0,那么( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0【答案】A【解析】解:因为ab >0,可知ab 同号,又因为a +b >0,可知a >0,b >0.故选A .17.在﹣6,0,﹣1,4这四个数中,最大的数是( )A .4B .﹣6C .0D .﹣1 【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A .【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.18.下列各组数中互为相反数的一组是( )A .3与13B .2与|-2|C .(-1) 2与1D .-4与(-2) 2【答案】D【解析】 考点:实数的性质.专题:计算题. 分析:首先化简,然后根据互为相反数的定义即可判定选择项.解答:解:A 、两数数值不同,不能互为相反数,故选项错误;B 、2=|-2|,两数相等,不能互为相反数,故选项错误.C 、(-1)2=1,两数相等;不能互为相反数,故选项错误;D 、(-2)2=4,-4与4互为相反数,故选项正确;故选D .点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.19.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误; ∵a c >,∴C 错误; ∵d c >,c>0, ∴c d <D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.20.在-3,-1,0,3这四个数中,比-2小的数是( )A .-3B .-1C .0D .3【答案】A【解析】【分析】根据两个负数比较大小,绝对值较大的数反而小,正数比负数大,逐个判断与-2的大小关系即可.【详解】解:∵-32103<-<-<<∴比-2小的数是-3故选:A【点睛】本题考查有理数的大小比较,掌握负数比较大小的方法是关键.。
历年中考数学易错题(含答案解析)
历年中考数学易错题(含答案解析)历年中考数学易错题汇编1、数轴上,若A、B为原点两旁的点,则它们表示的两个有理数是()。
A、互为相反数B、绝对值相等C、符号相同的数D、都是负数2、有理数a、b在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是()。
A、2aB、2bC、2a-2bD、2a+b3、轮船顺流航行时速度为m千米/小时,逆流航行时速度为(m-6)千米/小时,则水流速度为()。
A、2千米/小时B、3千米/小时C、6千米/小时D、不能确定4、方程2x+3y=20的正整数解有()。
A、1个B、3个C、4个D、无数个5、下列说法错误的是()。
A、两点确定一条直线B、线段是直线的一部分C、一条直线是一个平面D、把线段向两边延长即是直线6、函数y=(m2-1)x2-(3m-1)x+2的图象与x轴的交点情况是()。
A、当m≠3时,有一个交点B、m1时,有两个交点C、当m1时,有一个交点D、不论m为何值,均无交点7、如果两圆的半径分别为R和r(R>r),圆心距为d,且(d-r)2=R2,则两圆的位置关系是()。
A、内切B、外切C、内切或外切D、相交9、有理数中,绝对值最小的数是()。
A、-1B、1C、0D、无穷小10、1的倒数的相反数是()。
A、-1B、-2C、2D、1/211、若|x|=x,则-x一定是()。
A、正数B、非负数C、负数D、非正数12、两个有理数的和除以这两个有理数的积,其商为1,则这两个有理数为()。
A、互为相反数B、互为倒数C、互为相反数且不为0D、有一个为113、长方形的周长为x,宽为2,则这个长方形的面积为()。
A、2xB、2(x-2)C、x-4D、x-214、“比x的相反数大3的数”可表示为()。
A、-x-3B、-(x+3)C、3-xD、x+315、如果0<a<1,那么下列说法正确的是()。
A、a2比a大B、a2比a小C、a2与a相等D、a2与a的大小不能确定16、数轴上,A点表示-1,现在A开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A点表示的数是()。
(易错题精选)初中数学代数式分类汇编及解析
(易错题精选)初中数学代数式分类汇编及解析一、选择题1.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.2.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.3.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 2【答案】C【解析】试题解析:A.a 2与a 3不是同类项,故A 错误;B.原式=a 5,故B 错误;D.原式=a 2b 2,故D 错误;考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.4.如果多项式4x 4+ 4x 2+ A 是一个完全平方式,那么A 不可能是( ).A .1B .4C .x 6D .8x 3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x 4+ 4x 2+1=(2x+1)2,∴A=1,不符合题意,∵4x 4+ 4x 2+ 4不是完全平方式,∴A=4,符合题意,∵4x 4+ 4x 2+ x 6=(2x+x 3)2,∴A= x 6,不符合题意,∵4x 4+ 4x 2+8x 3=(2x 2+2x )2,∴A=8x 3,不符合题意.故选B .【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.5.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.6.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.7.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅= 【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【详解】解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.8.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.9.若2m =5,4n =3,则43n ﹣m 的值是( )A .910B .2725C .2D .4【答案】B【解析】【分析】根据幂的乘方和同底数幂除法的运算法则求解.【详解】∵2m =5,4n =3,∴43n ﹣m =344n m =32(4)(2)n m =3235=2725 故选B.【点睛】本题考查幂的乘方和同底数幂除法,熟练掌握运算法则是解题关键.10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为6cm ,宽为5cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长之和等于( )A .19cmB .20cmC .21cmD .22cm【答案】B【解析】【分析】 根据图示可知:设小长方形纸片的长为a 、宽为b ,有:26a b +=(cm),则阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,计算即可求得结果.【详解】解:设小长方形纸片的长为a 、宽为b ,由图可知:26a b +=(cm),阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,化简得:444(2)-+a b ,代入26a b +=得:原式=44−4×6=44−24=20(cm),故选:B .【点睛】本题主要考查整式加减的应用,关键分清图形②如何用小长方形纸片的长和宽表示.11.计算(-2)2009+(-2)2010的结果是( )A .22019B .22009C .-2D .-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B .12.下列运算中正确的是( )A .2235a a a +=B .222(2)4a b a b +=+C .236236a a a ⋅=D .()()22224a b a b a b -+=- 【答案】D【解析】【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A 、2a+3a=5a ,故本选项错误;B 、(2a+b )2=4a 2+4ab+b 2,故本选项错误;C 、2a 2•3a 3=6a 5,故本选项错误;D 、(2a-b )(2a+b )=4a 2-b 2,故本选项正确.故选D .【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.13.下列运算正确的是A .32a a 6÷=B .()224ab ab =C .()()22a b a b a b +-=-D .()222a b a b +=+【答案】C【解析】根据整式的除法,幂的乘方与积的乘方运算法则和平方差公式,完全平方公式逐一计算作出判断:A 、322a a 2a ÷=,故选项错误;B 、()2224ab a b =,故选项错误;C 、选项正确;D 、()222a b a 2ab b +=++,故选项错误.故选C .14.若代数式()212323aa x y xy -+-是五次二项式,则a 的值为( ) A .2B .2±C .3D .3± 【答案】A【解析】【分析】根据多项式的次数与项数的定义解答.【详解】∵()212323a a x y xy -+-是五次二项式,∴2125a -+=,且20a +≠,解得a=2,故选:A.【点睛】此题考查多项式的次数与项数的定义,熟记定义是解题的关键.15.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯【答案】C【解析】 根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.16.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .17.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D、当a=4,b=2时,y=12a-=142-=12,不符合题意.故选:A.【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.18.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42 B.43 C.56 D.57【答案】B【解析】【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.19.已知112x y+=,则23xyx y xy+-的值为()A.12B.2 C.12-D.2-【答案】D 【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+= ∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.20.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A 、x 3+x 5,无法计算,故此选项错误;B 、(y+1)(y-1)=y 2-1,正确;C 、a 10÷a 2=a 8,故此选项错误;D 、(-a 2b )3=-a 6b 3,故此选项错误.故选:B .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学易错题分类汇编
一、数与式
(A )2,(B
(C )2±,(D
)
例题:等式成立的是.(A )1c ab abc =,(B )6
32x x x =,(C )1
12112
a a a a +
+=--,(D )22a x a bx b =. 二、方程与不等式 ⑴字母系数
例题:关于x 的方程2(2)2(1)10k x k x k ---++=,且3k ≤.求证:方程总有实数根.
例题:不等式组2,
.x x a >-⎧⎨
>⎩
的解集是x a >,则a 的取值范围是.
(A )2a <-,(B )2a =-,(C )2a >-,(D )2a ≥-.
⑵判别式:例题:已知一元二次方程222310x x m -+-=有两个实数根1x ,2x ,且满足不等式
12
1214
x x x x <+-,求实数的范围.
⑶解的定义:例题:已知实数a 、b 满足条件2720a a -+=,2720b b -+=,则
a b
b a
+=____________. ⑷增根:例题:m 为何值时,
221
11
x m x x x x --=+
--无实数解. (5)失根:例题:解方程(1)1x x x -=-. 三、函数
⑴自变量:例题:函数y 中,自变量x 的取值范围是_______________.
⑵字母系数:例题:若二次函数2232y mx x m m =-+-的图像过原点,则
m =______________.
⑶函数图像:例题:如果一次函数y kx b =+的自变量的取值范围是26x -≤≤,相应的函
数值的范围是119y -≤≤,求此函数解析式.. 四、直线型
⑴指代不明:例题:则斜边上的高等于________. ⑵相似三角形对应性问题:例题:在ABC △中,9AB =,12AC =18BC =,D 为AC 上一点,:2:3DC AC =,在AB 上取点E ,得到ADE △,若两个三角形相似,求DE 的长. ⑶等腰三角形底边问题:例题:等腰三角形的一条边为4,周长为10,则它的面积为? ⑷三角形高的问题:例题:等腰三角形的一边长为10,面积为25,则该三角形的顶角等于多少度?
⑸矩形问题:例题:有一块三角形ABC 铁片,已知最长边BC =12cm ,高AD =8cm ,要把它加工成一个矩形铁片,使矩形的一边在BC 上,其余两个顶点分别在三角形另外两条边上,且矩形的长是宽的2倍,求加工成的铁片面积? ⑹比例问题:例题:若b c c a a b
k a b c
+++===,则k =________. 练习题:
一、容易漏解的题目
1.一个数的绝对值是5,则这个数是_________;__________数的绝对值是它本身.(5±,非负数)
2._________的倒数是它本身;_________的立方是它本身.(1±,1±和0) 3.关于x 的不等式40x a -≤的正整数解是1和2;则a 的取值范围_________.(412
a ≤<)
4.不等式组213,
.x x a ->⎧⎨>⎩
的解集是2x >,则a 的取值范围是_________.(2a ≤)
5.若()
2
211a a a +--=,则a =_________.(2-,2,1-,0)
6.当m 为何值时,函数21(3)45m y m x x +=++-是一个一次函数.(0m =或3m =-) 7.若一个三角形的三边都是方程212320x x -+=的解,则三角形的周长_________.(12,24或20)
8.若实数a 、b 满足221a a =+,221b b =+,则a b +=________.(2,2± 9.在平面上任意画四个点,那么这四个点一共可以确定_______条直线.
10.已知线段AB =7cm ,在直线AB 上画线段BC =3cm ,则线段AC =_____.(4cm 或10cm ) 11.一个角的两边和另一个角的两边互相垂直,且其中一个角是另一个角的两倍少30︒,求这两个角的度数.(30︒,30︒或70︒,110︒)
12.三条直线公路相互交叉成一个三角形,现在要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有_______处?(4)
13.等腰三角形一腰上的高与腰长之比为1:2,则该三角形的顶角为_____.(30︒或150︒) 14.等腰三角形的腰长为a ,一腰上的高与另一腰的夹角为30︒,则此等腰三角形底边上
的高为_______.(
2
a
) 15.矩形ABCD 的对角线交于点O .一条边长为1,OAB △是正三角形,则这个矩形的周
长为______.(2+2) 16.梯形ABCD 中,AD BC ∥,90A ∠=︒,AB =7cm ,BC =3cm ,试在AB 边上确定P 的位置,使得以P 、A 、D 为顶点的三角形与以P 、B 、C 为顶点的三角形相似.(AP =1cm ,
6cm 或
14
5
cm ) 17.已知线段AB =10cm ,端点A 、B 到直线l 的距离分别为6cm 和4cm ,则符合条件的直线有___条.(3条)
18.直角坐标系中,已知(1,1)P ,在x 轴上找点A ,使AOP △为等腰三角形,这样的点P 共有多少个?(4个)
19.圆的半径为5cm ,两条平行弦的长分别为8cm 和6cm ,则两平行弦间的距离为 _______.(1cm 或7cm ) 二、容易多解的题
28.已知()()2
2222215x y x y +++=,则22x y +=_______.(3)
29.在函数y =中,自变量的取值范围为_______.(1x ≥)
30.已知445x x -+=,则22x x -+=________
31.当m 为何值时,关于x 的方程2(2)(21)0m x m x m ---+=有两个实数根.(1
4m ≥-,
且2m ≠).
32.当m 为何值时,函数2
(1)350m m y m x x -=++-=是二次函数.(2) 33.若22022(43)x x x x --=-+,则x =?.(1-)
34.方程组22240,
3260.
x y x xy x y ⎧-=⎪⎨-+++=⎪⎩的实数解的组数是多少?(2)
35.关于x 的方程2210x k +-=有实数解,求k 的取值范围.(1
13k -≤≤)
36.k 为何值时,关于x 的方程2(2)320x k x k -++-=的两根的平方和为23?(3k =-). 37.若对于任何实数x ,分式
21
4x x c
++总有意义,则c 的值应满足______.(4c >)
38.在ABC △中,90A ∠=︒,作既是轴对称又是中心对称的四边形ADEF ,使D 、E 、
F 分别在AB 、BC 、CA 上,这样的四边形能作出多少个?(1)
39.两枚硬币总是保持相接触,其中一个固定,另一个沿其周围滚动,当滚动的硬币沿固定的硬币滚动一周,回到原来的位置,滚动的那个硬币自转的圈数为_______.(2)。