人教中考数学—一元二次方程的综合压轴题专题复习及详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、一元二次方程真题与模拟题分类汇编(难题易错题)
1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.
(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;
(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)
【答案】详见解析
【解析】
试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;
(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.
试题解析:(1)设年平均增长率为x,根据题意得:
10(1+x)2=14.4,
解得x=﹣2.2(不合题意舍去)x=0.2,
答:年平均增长率为20%;
(2)设每年新增汽车数量最多不超过y万辆,根据题意得:
2009年底汽车数量为14.4×90%+y,
2010年底汽车数量为(14.4×90%+y)×90%+y,
∴(14.4×90%+y)×90%+y≤15.464,
∴y≤2.
答:每年新增汽车数量最多不超过2万辆.
考点:一元二次方程—增长率的问题
2.已知关于x的方程230
x x a
++=①的两个实数根的倒数和等于3,且关于x的方程
2
(1)320
k x x a
-+-=②有实数根,又k为正整数,求代数式
2
2
1
6
k
k k
-
+-
的值.
【答案】0.
【解析】
【分析】
由于关于x的方程x2+3x+a=0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a的方程求出a,又由于关于x的方程(k-1)x2+3x-2a=0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k为正整数,利用判别式可以求出k,最后代入所求代数式计算即可求解.
【详解】
解:设方程①的两个实数根分别为x 1、x 2
则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩
=== , 由条件,知12121211x x x x x x ++==3, 即
33a -=,且94
a ≤, 故a =-1, 则方程②为(k -1)x 2+3x +2=0,
Ⅰ.当k -1=0时,k =1,x =23-,则22106
k k k -=+-. Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178
k ≤, 又k 是正整数,且k≠1,则k =2,但使2216
k k k -+-无意义. 综上,代数式2216
k k k -+-的值为0 【点睛】
本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,
3.解方程:(3x+1)2=9x+3.
【答案】x 1=﹣
13,x 2=23. 【解析】
试题分析:利用因式分解法解一元二次方程即可.
试题解析:方程整理得:(3x+1)2﹣3(3x+1)=0,
分解因式得:(3x+1)(3x+1﹣3)=0,
可得3x+1=0或3x ﹣2=0,
解得:x 1=﹣13,x 2=23
. 点睛:此题主要考查了一元二次方程的解法,解题关键是认真观察一元二次方程的特点,然后再从一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法中合理选择即可.
4.已知:关于的方程
有两个不相等实数根.
(1) 用含的式子表示方程的两实数根;
(2)设方程的两实数根分别是,(其中),且,求的值.
【答案】(I)kx2+(2k-3)x+k-3 = 0是关于x的一元二次方程.

由求根公式,得
.∴或
(II),∴.
而,∴,.
由题意,有
∴即(﹡)
解之,得
经检验是方程(﹡)的根,但,∴
【解析】
(1)计算△=(2k-3)2-4k(k-3)=9>0,再利用求根公式即可求出方程的两根即可;(2)有(1)可知方程的两根,再有条件x1>x2,可知道x1和x2的数值,代入计算即可.
一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措
施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映
了每月收取的水费(元)与每月用水量(吨)之间的函数关系.
请你解答下列问题:
5.将m看作已知量,分别写出当0<x<m和x>m时,与之间的函数关系式;
6.已知两条线段长分别是一元二次方程28120
x x
-+=的两根,
(1)解方程求两条线段的长。

(2)若把较长的线段剪成两段,使其与另一段围成等腰三角形,求等腰三角形的面积。

(3)若把较长的线段剪成两段,使其与另一段围成直角三角形,求直角三角形的面积。

【答案】(1)2和6;(2)223)8 3
【解析】
【分析】
(1)求解该一元二次方程即可;
(2)先确定等腰三角形的边,然后求面积即可;
(3)设分为两段分别是x 和6x -,然后用勾股定理求出x ,最后求面积即可.
【详解】
解:(1)由题意得()()260x x --=,
即:2x =或6x =,
∴两条线段长为2和6;
(2)由题意,可知分两段为分别为3、3,则等腰三角形三边长为2,3,3, 由勾股定理得:该等腰三角形底边上的高为:2231=22+
∴此等腰三角形面积为12222
⨯⨯=22. (3)设分为x 及6x -两段
()22226x x +=-
∴83
x =, ∴2823
x S ∆==, ∴面积为83
. 【点睛】
本题考查了一元二次方程、等腰三角形、直角三角形等知识,考查知识点较多,灵活应用所学知识是解答本题的关键.
7.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.
【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析
【解析】
【分析】
根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况.
【详解】
解:∵90B ∠=,10AC =,6BC =,
∴8AB =.
∴BQ x =,82PB x =-;
假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622
x x ⨯⨯--=, 整理得:2480x x -+=,
∵1632160=-=-<,
∴假设不成立,四边形APQC 面积的面积不能等于216cm . 【点睛】
本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.
8.关于x 的一元二次方程
. (1).求证:方程总有两个实数根;
(2).若方程的两个实数根都是正整数,求m 的最小值.
【答案】(1)证明见解析;(2)-1.
【解析】
【分析】
(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根.
(2)根据题意利用十字相乘法解方程,求得
,再根据题意两个根都是正整数,从而可以确定的取值范围,即求出吗 的最小值.
【详解】
(1)证明:依题意,得
. ,

. ∴方程总有两个实数根. 由
. 可化为:

, ∵ 方程的两个实数根都是正整数,

. ∴
. ∴ 的最小值为.
【点睛】
本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.
9.淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A商品的成本为30元/件,网上标价为80元/件.
(1)“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?
(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品.在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.
【答案】(1)平均每次降价率为30%,才能使这件A商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为100元.
【解析】
【分析】
(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据总利润=每件的利润×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论.
【详解】
(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,
根据题意得:80(1﹣x)2=39.2,
解得:x1=0.3=30%,x2=1.7(不合题意,舍去).
答:平均每次降价率为30%,才能使这件A商品的售价为39.2元.
(2)根据题意得:[0.5×80(1+a%)﹣30]×1000(1+2a%)=30000,
整理得:a2+75a﹣2500=0,
解得:a1=25,a2=﹣100(不合题意,舍去),
∴80(1+a%)=80×(1+25%)=100.
答:乙网店在“双十一”购物活动这天的网上标价为100元.
【点睛】
本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
10.已知关于x的方程(x-3)(x-2)-p2=0.
(1)求证:无论p取何值时,方程总有两个不相等的实数根;
(2)设方程两实数根分别为x1、x2,且满足x12+x22=3 x1x2,求实数p的值.
【答案】(1)详见解析;(2)p=±1.
【解析】
【分析】
(1)先把方程化成一般形式,再计算根的判别式,判定△>0,即可得到总有两个不相等的实数根;(2)根据一元二次方程根与系数的关系可得两根和与两根积,再把
2212123x x x x +=变形,化成和与乘积的形式,代入计算,得到一个关于p 的一元二次方程,解方程即可求解.
【详解】
证明:(1)(x ﹣3)(x ﹣2)﹣p 2=0,
x 2﹣5x+6﹣p 2=0,
△=(﹣5)2﹣4×1×(6﹣p 2)=25﹣24+4p 2=1+4p 2,
∵无论p 取何值时,总有4p 2≥0,
∴1+4p 2>0,
∴无论p 取何值时,方程总有两个不相等的实数根;
(2)x 1+x 2=5,x 1x 2=6﹣p 2,
∵2212
123x x x x +=, ∴(x 1+x 2)2﹣2x 1x 2=3x 1x 2,
∴52=5(6﹣p 2),
∴p=±1.
考点:根的判别式;根与系数的关系.。

相关文档
最新文档