相似拓展提高练习
相似三角形提高练习经典
第四章相似图形11.等边三角形的一边与这边上的高的比是___________2.已知a 、b 、c 为△ABC 的三条边,且a :b :c=2:3:4,则△ABC•各边上的高之比为______.3.在一X 地图上,甲、乙两地的图上距离是3 cm,而两地的实际距离为1500 m ,那么这X 地图的比例尺为________.4.已知四条线段a 、b 、c 、d 成比例,若a=2,b=3,c=33,则 d=________.5.已知线段a 、b 、c 、d 满足ab=cd ,把它改写成比例式,错误的是( ) A.a ∶d=c ∶bB.a ∶b=c ∶d C.d ∶a=b ∶cD.a ∶c=d ∶b6.如果b a =43,那么b b a 2+=____;b b a 2-=____;a b a3-=____;ab b a 3-2+=____ 7.如果53=-b b a ,那么b a =________b b a 2+=____;b b a 2-=____;ab b a 3-2+=____8.若d c b a ==3(b+d ≠0),则d b c a ++=_______,d b c a 3-23-2=_______9.若3x -4y = 0,则yy x +的值是____________10.若875c b a ==,且3a -2b+c=3,则2a+4b -3c 的值是____________ 11.若65432+==+c b a ,且2a -b+3c=21. ,则2a+4b -3c 的值是___________12.x :y :z=3:5:7,3x +2y -4z =9则x +y +z 的值为___________ 13.如果kcb a dd b a c d c a b d c b a =++=++=++=++,则k 的值是___________。
14.在长度为10的线段上找到两个黄金分割点P、Q.则PQ=_________15.当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女士身高165cm ,下半身 长与身高的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为cm16.顶角为360的等腰三角形称为黄金三角形.如右图,△ABC, △BDC, △DEC 都是黄金三角形.若AB=1则DE=_ 17.如图以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF=PD ,以AF 为边作正方形AMEF ,点M 在AD 上, (1)求AM 、DM 的长.(2)求证:AM 2=AD ·DM.(3)根据(2)的结论你能找出图中的黄金分割点吗?18.以下五个命题:①所有的正方形都相似 ②所有的矩形都相似 ③所有的三角形都相似 ④所有的等腰直角三角形都相似 ⑤所有的正五边形⑥所有的菱形⑦所有的平行四边形都相似.,其中正确的命题有_______ 19.下列判断中,正确的是( )(A )各有一个角是67°的两个等腰三角形相似(B )邻边之比都为2:1的两个等腰三角形相似 (C )各有一个角是45°的两个等腰三角形相似(D )邻边之比都为2:3的两个等腰三角形相似20.如图在一矩形ABCD 的花坛四周修筑小路,使得相对两条小路的宽均相等。
相似性专项练习
0824作业 相似性专项练习◆基础训练一、选择题:1.若x=23y z =,且x+2y-z=4,则x+y+z 等于( ). A .6 B .10 C .12 D .14 2.如图,ABCD 中,F 是BC 延长线上一点,AF 交BD 于O ,与DC 交于点E ,则图中相似三角形共有( )对(全等除外).A .3B .4C .5D .63.在梯形ABCD 中,AD ∥BC ,AC 、BD 相交于点O ,若AD :BC=1:3,那么下列结论中正确的是( ).A .S △COD =9S △AODB .S △ABC =9S △ACD C .S △BOC =9S △AOD D .S △DBC =9S △AOD二、填空题:4.在某天的同一时刻,高为1.5m 的小明的影长为1m ,烟囱的影长为20m ,则这座烟囱的高为_______m .5.已知△ABC ∽△DEF ,△ABC 的三边长分别为2,14,2,△DEF•的其中的两边长分别为1和7,则第三边长为________.三、解答题:6.已知△ABC ∽△A ′B ′C ′,相似比k=34,AB :BC :CA=2:3:4,△A ′B ′C ′的周长是72cm ,求△ABC 各边的长. 7.如图,△PMN 是等边三角形,∠APB=120°,求证:AM ·PB=PN ·AP .第7题图 第8题图 第9题图 第10题图 第11题图 第12题图◆能力提高一、填空题:8.如图,已知AB ∥EF ∥CD ,AC 、BD 相交于点E ,AB=6cm ,CD=12cm ,则EF=____.9.如图,已知矩形ABCD 中,AB=10,BC=12,E 为DC 中点,AF ⊥BE 于点F ,则AF=_____.二、解答题:10.如图所示,梯形ABCD 中,AD ∥BC ,AB=CD ,∠ADB=60°,BD=10,DE :EB=1:4,•求梯形的面积.11.如图,已知BD AD AB BE ED BC ==,求证:△ABC ∽△DBE .◆拓展训练12.如图,在Rt △ABC 中,∠BCA=90°,CD 是高,已知Rt △ABC•的三边长都是整数且BD=113,求Rt △BCD 与Rt △ACD 的周长之比.13、如图,已知∠ADC=∠BAC ,BC=16cm ,AC=12cm ,求DC 的长。
图形的相似练习题
图形的相似练习题相似性是几何学中一个非常重要的概念,它描述了当两个图形形状相似时的关系。
在本文中,我们将探讨几个图形的相似练习题,并解答这些问题。
练习题1:已知三角形ABC和三角形DEF,且∠A=∠D,∠B=∠E,以及∠C=∠F。
又已知线段AB与线段DE的比例为2:3,线段BC与线段EF的比例为5:7。
证明这两个三角形相似。
解答1:根据已知条件,我们可以得出以下关系:∠A=∠D,∠B=∠E,∠C=∠FAB/DE = 2/3BC/EF = 5/7我们需要证明这两个三角形相似,根据相似性的定义,我们需要证明三个条件:1. 对应角相等(已知条件)2. 对应边的比例相等3. 三角形的形状相似首先,我们可以根据已知条件得出:AB/DE = BC/EF根据等比例的性质,我们知道这意味着三角形ABC和三角形DEF的对应边的比例相等。
其次,我们可以比较相似三角形的其他两对边:AC/DF = AB/DE * BC/EF根据已知条件和等比例的性质,我们可以将上面的等式进一步简化为:AC/DF = (2/3) * (5/7) = 10/21综上所述,我们证明了这两个三角形满足相似性的条件,因此可以得出结论:三角形ABC与三角形DEF相似。
练习题2:已知矩形ABCD的长为8cm,宽为4cm。
在该矩形上作一个相似于矩形ABCD的矩形EFGH,且其长是矩形ABCD的3倍。
求EFGH的宽和周长。
解答2:已知矩形ABCD的长为8cm,宽为4cm。
矩形EFGH是相似于矩形ABCD的,且其长是矩形ABCD的3倍。
我们需要求出矩形EFGH的宽和周长。
根据相似性的定义,我们知道相似的两个矩形的对应边的比例相等。
因此,我们可以得到以下关系:AB/EF = CD/FH = 1/3已知矩形ABCD的长为8cm,宽为4cm,因此我们可以得到:EF = AB * (1/3) = 8 * (1/3) = 8/3 cm所以,矩形EFGH的宽为8/3 cm。
小学数学相似形练习题
小学数学相似形练习题题目一:相似形的边长比1. 下图中,两个三角形相似。
已知小三角形的边长比为2:5,小三角形的周长为14cm,求大三角形的周长。
A/ \/ \/ \/_______\B C2. 两个矩形相似,已知小矩形的长为8cm,宽为4cm,求大矩形的长和宽分别是多少?题目二:相似形的面积比1. 已知两个三角形相似,小三角形的面积为20平方厘米,大三角形的面积为80平方厘米,求两个三角形的面积比。
2. 两个圆盘相似,小圆盘的面积为36平方厘米,求大圆盘的面积。
题目三:相似形的高度比1. 下图中的两个三角形相似,小三角形的底边为7cm,高度为3cm,求大三角形的底边和高度。
/\/ \/ \/______\2. 两个长方形相似,小长方形的长为10cm,宽为5cm,求大长方形的长和宽分别是多少?题目四:相似形的角度比1. 两个三角形相似,小三角形的一个角为30°,求大三角形的对应角度。
2. 下图中的两个矩形相似,小矩形的一个角为60°,求大矩形的对应角度。
___________| || 小矩形 ||___________|题目五:相似形的应用 - 塔比高度甲塔比乙塔高60米,甲的阴影比乙的阴影长5倍,如果乙的阴影长度为50米,求甲的阴影长度和塔高。
题目六:相似形的应用 - 拉比猫旁边的小妹大妹身高170cm,小妹身高是大妹的的3/5,拉比猫的身高是小妹的3/4,问拉比猫的身高是多少?题目七:相似形的应用 - 几何画面缩放矩形的长是宽的3倍,如果将长和宽均缩小为原来的一半,求缩小后矩形的面积。
题目八:相似形的应用 - 旗杆的高度某旗杆上方的灯的投影与旗杆底部的距离为10米,灯的高度为3米。
若旗杆的高度为15米,求灯光与地面之间的距离。
注:以上题目中的数值和图形仅为示例,实际题目中可以根据教学内容进行调整。
数学相似的专项培优 易错 难题练习题(含答案)附详细答案
一、相似真题与模拟题分类汇编(难题易错题)1.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由.【答案】(1)解:y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2,把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4,∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4(2)解:∵y=x2+2x+1=(x+1)2,∴A(﹣1,0),当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0);当x=0时,y=﹣x2+4=4,则B(0,4),从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB,∵AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 ,∴△BCD为等腰三角形,∴构造的三角形是等腰三角形的概率=(3)解:存在,易得BC的解析是为y=﹣2x+4,S△ABC= AC•OB= ×3×4=6,M点的坐标为(m,﹣2m+4)(0≤m≤2),①当N点在AC上,如图1,∴△AMN的面积为△ABC面积的,∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1,当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4,∴tan∠MAC= =4;当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2,∴tan∠MAC= =1;②当N点在BC上,如图2,BC= =2 ,∵BC•AN= AC•BC,解得AN= ,∵S△AMN= AN•MN=2,∴MN= = ,∴∠MAC= ;③当N点在AB上,如图3,作AH⊥BC于H,设AN=t,则BN= ﹣t,由②得AH= ,则BH= ,∵∠NBG=∠HBA,∴△BNM∽△BHA,∴,即,∴MN= ,∵AN•MN=2,即•(﹣t)• =2,整理得3t2﹣3 t+14=0,△=(﹣3 )2﹣4×3×14=﹣15<0,方程没有实数解,∴点N在AB上不符合条件,综上所述,tan∠MAN的值为1或4或【解析】【分析】(1)将y=x2+2x+1配方成顶点式,根据轴对称的性质,可得出翻折后的函数解析式,再根据函数图像平移的规律:上加下减,左加右减,可得出答案。
初中数学图形的相似练习题及参考答案
初中数学图形的相似练习题及参考答案相似是初中数学中的一个重要概念,它描述了两个图形在形状上的相似程度。
相似的图形具有相同的形状但不一定相等的大小。
在这篇文章中,我们将介绍几道关于相似图形的练习题,并提供参考答案供大家参考。
题目一:已知三角形ABC和三角形DEF相似,且比例系数为3:4。
若AB=6cm,BC=8cm,DE=12cm,求EF的长度。
解答一:根据相似三角形的定义,相似三角形的对应边长之比相等。
即AB/DE=BC/EF。
代入已知条件,得到以下等式:6/12=8/EF通过交叉乘法可以求解EF的长度:6*EF=12*8EF=16cm所以,EF的长度为16cm。
题目二:如果一个正方形的边长为6cm,那么和它相似的另一个正方形的边长是多少?解答二:由于两个正方形相似,所以它们的对应边长之比相等。
设另一个正方形的边长为x,则根据相似三角形的性质得到以下等式:x/6=6/6通过交叉乘法可以求解x的长度:x=6cm所以,和给定正方形相似的另一个正方形的边长也是6cm。
题目三:已知一个矩形的长为10cm,宽为5cm。
如果和它相似的另一个矩形的长为15cm,求这个矩形的宽。
解答三:根据相似矩形的性质,两个矩形的边长比相等。
设相似矩形的宽为x,则根据已知条件可以得到以下等式:10/x=15/5通过交叉乘法可以求解x的长度:10*5=15*x50=15*xx=50/15x=10/3 cm所以,这个矩形的宽为10/3 cm。
题目四:如果一个三角形的三边分别为3cm,4cm和5cm,那么和它相似的另一个三角形的三边分别是多少?解答四:根据相似三角形的性质,两个三角形的边长比相等。
设相似三角形的三边分别为x、y、z,则根据已知条件可以得到以下等式:x/3=y/4=z/5通过交叉乘法可以求解x、y、z的长度:x=3*(4/5)=12/5 cmy=4*(4/5)=16/5 cmz=5*(4/5)=20/5 cm所以,和给定三角形相似的另一个三角形的三边分别是:12/5 cm、16/5 cm和20/5 cm。
初三相似三角形提高拓展专题练习附答案
14.〔1〕把两个含 450 角的直角三角板如图 1 放置,点 D 在 BC 上,连接 BE、AD,AD 的延长线
交 BE 于点 F,求证:AF⊥BE
〔2〕把两个含 300 角的直角三角板如图 2 放置,点 D 在 BC 上,连接 BE、AD,AD 的延长线交 BE
于点 F,问 AF 与 BE 是否垂直?并说明理由.
2
________________.
12. 将三角形纸片〔△ABC〕按如下图的方式折叠,使点 B 落在边 AC 上,记为点 B′,折痕为 EF.AB
A
பைடு நூலகம்
B
=AC=3,
设以点 B′,F,C 为顶点的三角形与△ABC 相似,则 BF 的长度是.
D
F
E BC=4,假
C
13.如图,
正方形 ABCD 的边长为 1cm,E、F 分别是 BC、CD 的中点,连接 BF、DE,则图中阴影局部的 面积是 cm2. 三、解答题
A.1 B.2 C.3 D.4
4.如图,
A
菱形 ABCD 中,对角线 AC、BD 相交于点 O,M、N 分别是边
M
N
B AB、AD 的中点,连接 OM、ON、MN,则以下表达正确的选
O
D
项是
C
〔〕
A.△AOM 和△AON 都是等边三角形
B.四边形 MBON 和四边形 MODN 都是菱形
C.四边形 AMON 与四边形 ABCD 是位似图形
A.8
B.9.5
C.10
D.11.5
A
D
G
二、填空题 B
E
C
8.如图,路灯距离地面 8 米F ,身高 1.6 米的小明站在距离灯的底部〔点 O 〕20 米的 A 处,则小明
中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)
中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.三个等角的顶点在同一条直线上,称一线三等角模型(角度有锐角、直角、钝角,若为直角,则又称一线三垂直模型).解决此模型问题的一般方法是利用三等角关系找全等或相似三角形所需角的相等条件,利用全等或相似三角形解决问题.【证明体验】如图1,在四边形ABCD 中点P 为AB 上一点90DPC A B ∠=∠=∠=︒,求证:AD BC AP BP ⋅=⋅. 【思考探究】(2)如图2,在四边形ABCD 中点P 为AB 上一点,当DPC A B β∠=∠=∠=时,上述结论是否依然成立?说明理由. 【拓展延伸】(3)请利用(1)(2)获得的经验解决问题:如图3,在ABC 中22AB =45B ∠=︒以点A 为直角顶点作等腰Rt ADE △,点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =CD 的长.2.综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在ABC 中90,4B AB BC ∠=︒==分别取AB ,AC 的中点D ,E ,作ADE .如图2所示,将ADE 绕点A 逆时针旋转,连接BD ,CE .(1)探究发现旋转过程中线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明. (2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长. (3)延伸思考如图4,在Rt ABC △中90,8,6ABC AB BC ∠=︒==,分别取AB ,BC 的中点D ,E .作BDE ,将BDE 绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求tan ECB ∠的值.3.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=且DM 交AC 于F ,ME 交BC 于G .(1)写出图中两对相似三角形;(2)连接FG ,如果45α=︒,42AB =3AF =,求FG 的长.4.如图,在ABC 中6cm AB =,12cm BC =和90B .点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 分别从A 、B 同时出发,设移动时间为()s t .(1)当2t =时,求PBQ 的面积; (2)当t 为多少时,PBQ 的面积是28cm ? (3)当t 为多少时,PBQ 与ABC 是相似三角形?5.下面是小新同学在“矩形折叠中的相似三角形”主题下设计的问题,请你解答.如图,已知在矩形ABCD 中点E 为边AB 上一点(不与点A 、点B 重合),先将矩形ABCD 沿CE 折叠,使点B 落在点F 处,CF 交AD 于点H .(1)观察发现:写出图1中一个与AEG △相似的三角形:______.(写出一个即可)(2)迁移探究:如图2,若4AB =,6BC =当CF 与AD 的交点H 恰好是AD 的中点时,求阴影部分的面积. (3)如图③,当点F 落在边AD 上时,延长EF ,与FCD ∠的角平分线交于点M ,CM 交AD 于点N ,当FN AF ND =+时,请直接写出ABBC的值.6.【阅读】如图1,若ABD ACE ∽,且点B 、D 、C 在同一直线上,则我们把ABD △与ACE △称为旋转相似三角形.(1)【理解】如图2,ABC 和ADE 是等边三角形,点D 在边BC 上,连接CE .求证:ABD △与ACE △是旋转相似三角形.(2)【应用】如图3,ABD △与ACE △是旋转相似三角形AD CE ,求证:③ABC ADE △△∽;③AC DE =;(3)【拓展】如图4,AC 是四边形ABCD 的对角线90,D B ACD ∠=︒∠=∠,25,20BC AC ==和16AD =,试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.7.综合与实践如图1,已知纸片Rt ABC △中90BAC ∠=︒,AD 为斜边BC 上的高(AD BC ⊥于点D ). 观察发现(1)请直接写出图中的一组相似三角形.(写出一组即可)实践操作第一步:如图2,将图1中的三角形纸片沿BE 折叠(点E 为AC 上一点),使点A 落在BC 边上的点F 处; 第二步:BE 与AD 交于点G 连接GF ,然后将纸片展平. 猜想探究(2)猜想四边形AEFG 是哪种特殊的四边形,并证明猜想. (3)探究线段GF ,BE ,GE 之间的数量关系,并说明理由.8.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=.证明思路是如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明AB BDAC CD=.(1)利用图2证明AB BDAC CD=; (2)如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,AB=2,求DE 的长.9.【教材原题】如图③,在ABC 中DE BC ∥,且3AD =,2DB =图中的相似三角形是__________,它们的相似比为__________ ;【改编】将图③中的ADE 绕点A 按逆时针方向旋转到如图③所示的位置,连接BD 、CE .求证:ABD ACE ∽△△;【应用】如图③,在ABC 和ADE 中90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒点D 在边BC 上,连接CE ,则ACE △与ABD △的面积比为__________.10.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=小慧的证明思路是:如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明.(1)尝试证明:请参照小慧提供的思路,利用图2证明AB BDAC CD=; (2)基础训练:如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,2AB =求DE 的长;(3)拓展升华:如图4,ABC 中6AB = ,AC=4,AD 为BAC ∠的角平分线,AD 的中垂线EF 交BC 延长线于F ,当3BD =时,求AF 的长.11.定义:两个相似三角形,如果它们的一组对应角有一个公共的顶点,那么把这两个三角形称为“阳似三角形”、如图1,在ABC 与AED △中ABC AED ∽△△.所以称ABC 与AED △为“阳似三角形”,连接EB DC ,,则DCEB为“阳似比”.(1)如图1,已知R ABC 与Rt AED △为“阳似三角形”,其中90CBA DEA ∠=∠=︒,当30BAC ∠=︒时,“阳似比”DCEB=______; (2)如图2,二次函数234y x x =-++交x 轴于点A 和B 两点,交y 轴于点C .点M 为直线12y x =在第一象限上的一个动点,且OMB △与CNB 为“阳似三角形”,连接CM ③当点N 落在二次函数图象上时,求出线段OM 的长度; ③若32CN =34BM MC +的最小值.12.已知在Rt ABC △中90ACB ∠=︒,CD AB ⊥于点D .(1)在图1中写出其中的两对相似三角形.(2)已知1BD =,DC=2,将CBD △绕着点D 按顺时针方向进行旋转得到C BD ',连接AC ',BC . ③如图2,判断AC '与BC 之间的位置及数量关系,并证明; ③在旋转过程中当点A ,B ,C '在同一直线上时,求BC 的长.13.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“和谐四边形”,这条对角线叫“和谐线”.(1)如图1,在44⨯的正方形网格中有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“和谐四边形”的是______.(2)如图2,BD 平分ABC ∠,43BD =10BC =,四边形ABCD 是被BD 分割成的“和谐四边形”,求AB 长; (3)如图3,A 为抛物线24y x =-+的顶点,抛物线与x 轴交于点B ,C .在线段AB 上有一个点P ,在射线BC 上有一个点Q .P 、Q 5/秒,5个单位/秒的速度同时从B 出发分别沿BA ,BC 方向运动,设运动时间为t ,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M ,使得四边形BQMP 是以PQ 为和谐线分割的“和谐四边形”,若存在,请直接写出t 的值;若不存在,请说明理由.14.【阅读理解】小白同学遇到这样一个问题:ABC 中D 是BC 的中点,E 是AB 上一点,延长DE 、CA 交于点F ,DE=EF ,AB=5,求AE 的长.小白的想法是:过点E 作EH BC ∥交AC 于H ,再通过相似三角形的性质得到AE 、BE 的比,从而得出AE 的长.请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:ABC 中AD 平分BAC ∠交BC 于D ,E 为AB 边上一点,AE=AD ,H 、Q 为BC 上两点,CQ DH =和DQ mDH =,G 为AC 上一点,连接EQ 交HG 、AD 于F 、P ,180EFG EAD ∠+∠=︒猜想并验证EP 与GH的数量关系.15.【温故知新】(1)九(1)班数学兴趣小组认真探究了课本P 91第13题:如图1,在正方形ABCD 中E 是AD 的中点,F 是CD 上一点,且3CF DF =,图中有哪几对相似三角形?把它们表示出来,并说明理由.③小华很快找出ABE DEF △△∽,他的思路为:设正方形的边长4AB a =,则2,AE DE a DF a ===,利用“两边分别成比例且夹角相等的两个三角形相似”即可证明,请你结合小华的思路写出证明过程; ③小丽发现图中的相似三角形共有三对,而且可以借助于ABE 与DEF 中的比例线段来证明EBF △与它们都相似.请你根据小丽的发现证明其中的另一对三角形相似;【拓展创新】(2)如图2,在矩形ABCD 中E 为AD 的中点,EF EC ⊥交AB 于F ,连结FC .()AB AE > ③求证:AEF ECF ∽△△;③设2,BC AB a ==,是否存在a 值,使得AEF △与BFC △相似.若存在,请求出a 的值;若不存在,请说明理由.参考答案:1.(3)52.(1)2BD CE =(2)6CE =(3)1tan 2ECB ∠=3.(1)DMG ③DBM △,EMF ③EAM △ (2)53FG =4.(1)8(2)2秒或4秒(3)当t 为3或1.2秒钟,使PBQ 与ABC 相似.5.(1)FHG △或DHC (写出一个即可)(2)阴影部分的面积是23 (3)AB BC 的值为357.(1)ABC DBA ∽ ABC CAD ∽ DBA DAC ∽(其中一个即可,答案不唯一);(2)四边形AEFG是菱形,(3)212GF GE BE =⋅ 8. 5 9.【教材原题】ADE ABC △△∽,35【应用】13 10.5(3)611.23105337 12.(1)BCD ACD ∽ BCD BAC ∽△△ CAD BAC △∽△(任写两对即可)(2)③2AC BC '= AC BC '⊥ ③BC 2595+2595-+13.(1)四边形ABCE ;(2)10AB =或245; (3)1118t = 2881t = 1825t = 180169t =.14.阅读理解 54AE =;解决问题,猜想:12EP m GH m +=+. 15.③存在 3。
相似三角形提高练习30题
郑州郭氏数学内部资料;更多学习资料及学习方法、考试技巧请百度郭氏数学公益教学博客。
相似三角形提高练习30题填空题1.(2005•北京)在△ABC中,∠B=25°,AD是BC边上的高,并且AD2=BD•DC,则∠BCA的度数为_________.2.(2001•重庆)已知:如图,在△ABC中,AB=15m,AC=12m,AD是∠BAC的外角平分线,DE∥AB交AC的延长线于点E,那么CE=_________m.3.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1=_________,=_________.4.如图,在梯形ABCD中,AD∥BC,AC,BD交于点O,S△AOD:S△COB=1:9,则S△DOC:S△BOC=_________.5.如图,在平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,那么=_________.6.如图,在△ABD中,∠ADB=90°,C是BD上一点,若E、F分别是AC、AB的中点,△DEF的面积为3.5,则△ABC的面积为_________.7.在矩形ABCD中,E、F分别是边AD、BC的中点,点G、H在DC边上,且GH=DC.若AB=10,BC=12,则图中阴影部分的面积为_________.8.如图,在▱ABCD中,E为CD中点,AE与BD相交于点O,S△DOE=12cm2,则S△AOB等于_________cm2.9.如图,在△ABC中,EF∥BC,AE=2BE,则△AEF与梯形BCFE的面积比_________.10.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC 于N,则MN=.11.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD=_________.12.如图,在△ABC中,M、N是AB、BC的中点,AN、CM交于点O,那么△MON与△AOC面积的比是_________.13.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=_________.14.如图,已知点D是AB边的中点,AF∥BC,CG:GA=3:1,BC=8,则AF=_________.解答题15.(2008•黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的;(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)试探究:当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD为矩形?并求出此时动点P的坐标.16.(2005•重庆)在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似?(3)当t=2秒时,四边形OPQB的面积多少个平方单位?17.(2003•南宁)如图所示,已知A,B两点的坐标分别为(28,0)和(0,28).动点P从A点开始在线段AO 上以每秒3个单位的速度向原点O运动,动直线EF从x轴开始每秒1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴,线段AB交于E,F点,连接FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)当t=1秒时,求梯形OPFE的面积,当t为何值时,梯形OPFE的面积最大,最大面积是多少?(2)当梯形OPFE的面积等于三角形APF的面积时,求线段PF的长;(3)设t的值分别取t1,t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.18.(2009•兰州)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P 在正方形ABCD的边上,从点A出发沿A⇒B⇒C⇒D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P 点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A⇒B⇒C⇒D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.19.(2008•孝感)锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0)(1)△ABC中边BC上高AD=_________;(2)当x=_________时,PQ恰好落在边BC上(如图1);(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?20.(2008•青岛)已知:如图①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC;(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.21.(2008•梅州)如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.22.(2007•温州)在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC 向终点C移动.过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为x秒.(1)用含x的代数式表示AE、DE的长度;(2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm2),求y与x的函数关系式,并写出自变量x的取值范围;23.(2006•南平)如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究:(1)线段AE与CG是否相等请说明理由:(2)若设AE=x,DH=y,当x取何值时,y最大?(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?24.(2001•上海)已知梯形ABCD中,AD∥BC,且AD<BC,AD=5,AB=DC=2.(1)如图,P为AD上的一点,满足∠BPC=∠A,求AP的长;(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q.①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数关系式,并写出自变量x的取值范围;②当CE=1时,写出AP的长.(不必写解答过程)25.已知一个二次函数的图象经过A(﹣1,0)、B(0,3)、C(4,﹣5)三点.(1)求这个二次函数的解析式及其图象的顶点D的坐标;(2)这个函数的图象与x轴有两个交点,除点A外的另一个交点设为E,点O为坐标原点.在△AOB、△BOE、△ABE和△BDE着四个三角形中,是否有相似三角形?如果有,指出哪几对三角形相似,并加以证明;如果没有,要说明理由.26.如图,四边形ABCD是等腰梯形,其中AD∥BC,AD=2,BC=4,AB=CD=.点M从点B开始,以每秒2个单位长的速度向点C运动;点N从点D开始,以每秒1个单位长的速度向点A运动,若点M,N同时开始运动,点M与点C不重合,运动时间为t(t>0).过点N作NP垂直于BC,交BC于点P,交AC于点Q,连接MQ.(1)用含t的代数式表示QP的长;(2)设△CMQ的面积为S,求出S与t的函数关系式;27.如图,△ABC中,AC=BC,∠A=30°,AB=.将三角板中30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,连接DE、DF、EF,且使DE始终与AB垂直,设AD=x,△DEF的面积为y.(1)画出符合条件的图形,写出与△ADE一定相似的三角形并说明理由;(2)EF与AB可能平行吗?若能,请求出此时AD的长;若不能,请说明理由;(3)求出y与x之间的函数关系式并求出自变量的取值范围;当x为何值时,y有最大值,最大值为多少?28.(2009•青岛)如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD 方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题:(1)当t为何值时,PE∥AB;(2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△PEQ=S△BCD?若存在,求出此时t的值;若不存在,说明理由;(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由.29.(2008•湖州)如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为_________,数量关系为_________.②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法)(3)若AC=4,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.30.(2008•恩施州)如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;(2)求m与n的函数关系式,直接写出自变量n的取值范围;(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2;(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立?若成立,请证明;若不成立,请说明理由.。
数学相似的专项培优 易错 难题练习题(含答案)含答案解析
一、相似真题与模拟题分类汇编(难题易错题)1.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I.(1)求证:AF⊥BE;(2)求证:AD=3DI.【答案】(1)证明:∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点,∴AD=BD=CD,∠ACB=45°,∵在△ADC中,AD=DC,DE⊥AC,∴AE=CE,∵△CDE沿直线BC翻折到△CDF,∴△CDE≌△CDF,∴CF=CE,∠DCF=∠ACB=45°,∴CF=AE,∠ACF=∠DCF+∠ACB=90°,在△ABE与△ACF中,,∴△ABE≌△ACF(SAS),∴∠ABE=∠FAC,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE(2)证明:作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°∴四边形DECF是正方形,∴EC∥DF,EC=DF,∴∠EAH=∠HFD,AE=DF,在△AEH与△FDH中,∴△AEH≌△FDH(AAS),∴EH=DH,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE,∵M是IC的中点,E是AC的中点,∴EM∥AI,∴,∴DI=IM,∴CD=DI+IM+MC=3DI,∴AD=3DI【解析】【分析】(1)根据翻折的性质和SAS证明△ABE≌△ACF,利用全等三角形的性质得出∠ABE=∠FAC,再证明∠AGB=90°,可证得结论。
(2)作IC的中点M,结合正方形的性质,可证得∠EAH=∠HFD,AE=DF,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可。
三角形相似练习(中等50道+提高30道) 含答案
三角形相似(中等50道+提高30道)含答案一.中等题(共50小题)1.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AD=3,BD=6,求CD的长.2.如图,是一块三角形材料,∠A=30°,∠C=90°,AB=6.用这块材料剪出一个矩形DECF,点D,E,F分别在AB,BC,AC上,要使剪出的矩形DECF面积最大,点D应该选在何处?3.如图,BD,CE是△ABC的高.求证:BA•AE=AC•AD.4.如图,△ABC中,∠ACB=90°,CD⊥AB于点D.求证:DC2=DA•DB.5.已知:如图所示,直线AE、BD、CF相交于点O,AC∥EF,BC∥DF,求证:AB∥DE.6.如图,在矩形ABCD中,已知AD>AB.在边AD上取点E,连结CE.过点E作EF⊥CE,与边AB的延长线交于点F.(1)证明:△AEF∽△DCE.(2)若AB=3,AE=4,AD=10,求线段BF的长.7.如图,已知AB∥MN,BC∥NG.(1)求证:;(2)在此图中你还有什么发现?请直接写出2个结论.8.如图,矩形CDEF两边EF、FC的长分别为8和6,现沿EF、FC的中点A、B截去一角成五边形ABCDE,P是线段AB上一动点,试确定AP的长为多少时,矩形PMDN的面积取得最大值.9.如图,在△ABC中,DE∥AC,DF∥AE,BD:DA=3:2,BF=6,DF=8,(1)求EF的长;(2)求EA的长.10.如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=16,BD=8,(1)求证:△ACD∽△BED;(2)求DC的长.11.如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,且四边形AECG是正方形时,求的值.12.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且∠BEF=90°,延长EF交BC的延长线于点G.(1)求证:△ABE∽△EGB;(2)若AB=4,求CG的长.13.如图,▱ABCD的对角线AC、BD相交于点O,EF经过O,分别交AB、CD于点E、F,EF的延长线交CB的延长线于M.(1)求证:OE=OF;(2)若AD=4,AB=6,BM=1,求BE的长.14.如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.15.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC 于点E,连接OE.(1)求证:△DBE是等腰三角形;(2)求证:△COE∽△CAB.16.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,求△BEF与△DCB的面积比.17.如图,在▱ABCD中,E是BC延长线上的一点,AE与CD交于点F.求证:△ADF∽△EBA.18.如图,在△ABC中,点D在BC边上,BC=3CD,分别过点B,D作AD,AB的平行线,并交于点E,且ED交AC于点F,AD=3DF.(1)求证:△CFD∽△CAB;(2)求证:四边形ABED为菱形;(3)若DF=,BC=9,求四边形ABED的面积.19.如图,在△ABC中,AD平分∠BAC交BC于点D,F为AD上一点,且BF=BD.BF的延长线交AC 于点E.(1)求证:AB•AD=AF•AC;(2)若∠BAC=60°.AB=4,AC=6,求DF的长;(3)若∠BAC=60°,∠ACB=45°,直接写出的值.20.如图,△ABC中,∠ABC=90°,∠C=30°,D为BC上一点,DE⊥AC于E.(1)求证:△ADC∽△BEC;(2)若点D为BC的中点,AB=4,求BE的长.21.如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为8,AE=2,求⊙O的半径.22.已知:AB为⊙O的直径,延长AB到点P,过点P作⊙O的切线,切点为C,连接AC,且∠A=30°.(1)求证:AC=PC;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE•DC=18,求⊙O的面积.23.如图,已知圆内接四边形ABCD的两边AB、DC的延长线相交于点E,DF过圆心O交AB于F,AF=FB,连接AC.(1)求证:△ACD∽△EAD;(2)若圆O的半径为5,AF=2BE=4,求证:AC=AD.24.如图,已知四边形ABCD的外接圆⊙O的半径为4,弦AC与BD的交点为E,OA与BD相交于点F,AB=AD.(1)求证:AB2=AE•AC;(2)若AE=EC,AF=2,求△BCD的面积.25.如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE并延长交AD于点F,交CD的延长线于点G,连接DE.(1)求证:△ABE≌△ADE;(2)求证:EB2=EF•EG;(3)若菱形ABCD的边长为4,∠ABC=60°,AE:EC=1:3,求BG的长.26.如图,点D,E在线段BC上,△ADE是等边三角形,且∠BAC=120°(1)求证:△ABD∽△CAE;(2)若BD=2,CE=8,求BC的长.27.如图,已知CD是Rt△ABC斜边AB上的中线,过点D作AC的平行线,过点C作CD的垂线,两线相交于点E.(1)求证:△ABC∽△DEC;(2)若CE=2,CD=4,求△ABC的面积.28.如图,已知AB∥CD,AC与BD相交于点E,∠ABE=∠ACB.(1)求证:△ABE∽△ACB;(2)如果AB=6,AE=4,求CD的长.29.已知:如图,在正方形ABCD中,Q是CD的中点,PQ⊥AQ.求证:BP=3CP.30.如图,在正方形ABCD中,点E是BC的中点,点P在BC的延长线上,AP与DE、CD分别交于点G、F.DF=2CF,AB=6,求DG的长.31.已知,在Rt△ABC中,以斜边AB上的高CD为直径作了一个圆,圆心为点O,这个圆交线段BC于E 点,点G为BD的中点.(1)求证:GE为⊙O的切线;(2)若=,GE=6,求AD的长.32.如图,▱ABCD中,E是AB中点,AC与DE交于点F.(1)求证:△DFC∽△EF A.(2)若AC⊥DE,AB=2,AF=2,求DF长.33.已知四边形ABCD中,AB=AD,AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,△DGC∽△ADC.(1)求证:CD=CF;(2)H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=5,DC=3,求的值.34.如图,⊙O中弦AB与CD交于M点.(1)求证:DM•MC=BM•MA;(2)若∠D=60°,⊙O的半径为2,求弦AC的长.35.已知:如图,在△ABC中,D在边AB上.(1)若∠ACD=∠ABC,求证:AC2=AD•AB;(2)若E为CD中点,∠ACD=∠ABE,AB=3,AC=2,求BD的长.36.如图,在正方形ABCD中,点E,F分别在边AB,AD上,EF⊥CE于点E(1)求证:△AEF∽△BCE.(2)若,求的值.37.如图,已知▱ABCD,点E在边BC延长线上,连接AE,如果∠EAC=∠D.(1)求证:△EAC∽△EBA;(2)若=,求的值.38.如图,E是边长为4的正方形ABCD的边AB上的点,且AE=1,EF⊥DE交BC于点F,求线段CF 的长.39.如图,AB∥CD∥EF,点C在AE上,点G在EF上,AF、BG交于点D,已知CD=5米,EG=6米,GF=9米,求AB的长.40.已知:如图,△ABC中,AD是角平分线,点E在AC上,∠ADE=∠B,求证:AD2=AE•AB.41.如图,在矩形ABCD中,点M是CD的中点,MN⊥BM交AD于N,连BN;(1)求证:BM平分∠NBC;(2)若=,求的值.42.如图,在等边三角形ABC中,点D,E分别在BC,AB上,且∠ADE=60°.求证:△ADC∽△DEB.43.如图,△ABC中,DE∥BC,△ADE的面积等于6,△DEC的面积等于9,OE=4,求BE的长.44.如图,点E是四边形ABCD的对角线BD上的一点,且∠1=∠2=∠3.(1)求证:DE•AB=BC•AE;(2)求证:∠AEB=∠ADC.45.已知:如图,在⊙O中,弦CD与直径AB相交于点E,∠BED=60°,DE=OE=4.求:(1)CE的长;(2)⊙O的半径.46.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由;(2)过点B作⊙O的切线BE交直线CD于点E,若BE=5,CD=8,求⊙O的半径.47.如图,点C,P均在⊙O上,且分布在直径AB的两侧,BE⊥CP于点E.(1)求证:△EPB∽△CAB;(2)若BP=5,BE=4,AB=10,求CE的长.48.如图,AB是⊙O的直径,点C、D在⊙O上,弦AD与OC相交于点E,与BC相交于点F,AE=DE.(1)求证:∠CBD=∠OCB;(2)若⊙O的半径为2,BC=8,求DF的长.49.如图(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO =20°,∠OAC=80°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2),请回答:∠ADB=°,AB=.(2)请参考以上思路解决问题:如图3,在四边形ABCD中,对角线AC、BD相交于点O,AC⊥AD,AO=6,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.50.如图,在△ABC中,∠C=90°,F为射线BA上一点,且满足CB2=CE•CA,过B作BD⊥DF于D,交AC边于E.证明:∠BFD=2∠CBD.二.提高30道1.如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,在BC的延长线上取一点F,使得EF=DE.(1)求证:DF是⊙O的切线;(2)连接AF交DE于点M,若AD=4,DE=5,求DM的长.2.如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,过点D作⊙O 的切线交BC的延长线于点E.(1)求证:EF=DE;(2)若AD=4,DE=5,求BD的长.3.如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,过点D作⊙O 的切线交BC的延长线于点F.(1)求证:EF=ED;(2)如果半径为5,cos∠ABC=,求DF的长.4.如图,△ABC是⊙O的内接圆,且AB是⊙O的直径,点D在⊙O上,BD平分∠ABC交AC于点E,DF⊥BC交BC延长线于点F.(1)求证:DF是⊙O的切线.(2)若BD=4,sin∠DBF=,求DE的长.5.如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.(1)求证:DF是⊙O的切线;(2)若DF=3,DE=2①求值;②求图中阴影部分的面积.6.如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.(1)求证:DF是⊙O的切线;(2)若DF=3,DE=2,求的值.7.如图,矩形ABCD中,AB=4,BC=m(m>1),点E是AD边上一定点,且AE=1.(1)当m=3时,AB上存在点F,使△AEF与△BCF相似,求AF的长度.(2)如图②,当m=3.5时.用直尺和圆规在AB上作出所有使△AEF与△BCF相似的点F.(不写作法,保留作图痕迹)(3)对于每一个确定的m的值,AB上存在几个点F,使得△AEF与△BCF相似?8.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分别是AC、AB的中点,连接DE.点P 从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s.解答下列问题:(1)当t为何值时,以点E、P、Q为顶点的三角形与△ADE相似?(2)当t为何值时,△EPQ为等腰三角形?(直接写出答案即可).9.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE =∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=,AE=3,求AF的长.10.如图,等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,使AE=CF,连接AF,BE相交于点P.(1)求证:AF=BE,并求∠APB的度数;(2)若AE=2,试求AP•AF的值.11.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F.过点D作⊙O的切线交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G.(1)求证:△EFD为等腰三角形;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.12.已知:AB⊥BC于B,CD⊥BC于C,AB=4,CD=6,BC=14,点P在BC上移动,当以P,C,D为顶点的三角形与△ABP相似时,求PB的长?13.如图所示,要在底边BC=160cm,高AD=120cm的△ABC铁皮余料上,截取一个矩形EFGH,使点H 在AB上,点G在AC上,点E、F在BC上,AD交HG于点M.(1)设矩形EFGH的长HG=y,宽HE=x,确定y与x的函数关系式;(提示:S△ABC=S△AHG+S梯形BCGH)(2)设矩形EFGH的面积为S,确定S与x的函数关系式;(3)当x为何值时,矩形EFGH的面积S最大?14.如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)△EAF与△EBA相似吗?说说你的理由.15.如图,在矩形ABCD中对角线AC、BD相交于点F,延长BC到点E,使得四边形ACED是一个平行四边形,平行四边形对角线AE交BD、CD分别为点G和点H.(1)证明:DG2=FG•BG;(2)若AB=5,BC=6,则线段GH的长度.16.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.17.(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.18.如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;(3)求证:AD是⊙O的切线.19.如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.20.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EF A;(2)若AB=12,BM=5,求DE的长.21.如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)△ABE与△ADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长.22.如图,在四边形ABCD中,AC、BD相交于点F,点E在BD上,且==.(1)试问:∠BAE与∠CAD相等吗?为什么?(2)试判断△ABE与△ACD是否相似?并说明理由.23.已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:(1)△ACE∽△BDE;(2)BE•DC=AB•DE.24.如图,在△ABC中,AC=8厘米,BC=16厘米,点P从点A出发,沿着AC边向点C以1cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC 和△ABC相似?25.已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME 平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD•MN.26.如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.27.如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.28.如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE,EF与CD交于点G.(1)求证:BD∥EF;(2)若=,BE=4,求EC的长.29.如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.30.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.31.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.参考答案与试题解析一.中等题(共50小题)1.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AD=3,BD=6,求CD的长.【解】由射影定理得,CD2=AD•DB=3×6=18,∴CD==3.2.如图,是一块三角形材料,∠A=30°,∠C=90°,AB=6.用这块材料剪出一个矩形DECF,点D,E,F分别在AB,BC,AC上,要使剪出的矩形DECF面积最大,点D应该选在何处?【解】∵∠C=90°,∠A=30°,∴BC=AB=3,由勾股定理得,AC===3,在Rt△ADF中,∠A=30°,∴AD=2DF,AF=DF,∴CF=AC﹣AF=3﹣DF,则矩形DECF面积=DF×(3﹣DF)=﹣DF2+3DF=﹣(DF﹣)2+,当DF=时,剪出的矩形DECF面积最大,则AD=2DF=3,∴使剪出的矩形DECF面积最大,点D应该选在AB的中点.3.如图,BD,CE是△ABC的高.求证:BA•AE=AC•AD.【解】∵BD,CE是△ABC的高∴∠ADB=∠AEC=90°又∵∠A=∠A∴△ADB∽△AEC∴=∴AD•AC=AE•AB即BA•AE=AC•AD.4.如图,△ABC中,∠ACB=90°,CD⊥AB于点D.求证:DC2=DA•DB.【解】证明:∵CD⊥AB,∴∠ADC=∠CDB=90°,∴∠DCB+∠B=90°,∵∠ACB=90°,∴∠DCB+∠ACD=90°,∴∠ACD=∠B,又∠ADC=∠CDB=90°,∴△ACD∽△CBD,∴=,∴DC2=DA •DB.5.已知:如图所示,直线AE、BD、CF相交于点O,AC∥EF,BC∥DF,求证:AB∥DE.【解】证明:∵AC∥EF,∴=,∵BC∥DF,∴=,∴=,∵∠AOB=∠DOE,∴AB ∥DE.6.如图,在矩形ABCD中,已知AD>AB.在边AD上取点E,连结CE.过点E作EF⊥CE,与边AB的延长线交于点F.(1)证明:△AEF∽△DCE.(2)若AB=3,AE=4,AD=10,求线段BF的长.【解】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠AEF+∠F=90°∵EF⊥CE,∴∠CED+∠AEF=90°∴∠CED=∠F,∴△AFE∽△DEC.(2)∵△AFE∽△DEC.∴,∵AB=CD=3,AE=4,AD=10,∴DE=6,∴,∴BF=5.答:线段BF的长为5.7.如图,已知AB∥MN,BC∥NG.(1)求证:;(2)在此图中你还有什么发现?请直接写出2个结论.【解】证明:(1)如图所示:∵AB∥MN,∴△AOB~△MON,∴,又∵BC∥NG,∴△BOC~△NOG,∴,∴;(2)△AOB~△MON,△BOC~△NOG,△AOC∽MOG 等,证明过程见第(1)的步骤.8.如图,矩形CDEF两边EF、FC的长分别为8和6,现沿EF、FC的中点A、B截去一角成五边形ABCDE,P是线段AB上一动点,试确定AP的长为多少时,矩形PMDN的面积取得最大值.【解】延长MP,交EF于点Q.如图所示:设AP的长x,矩形PMDN的面积为y.∵四边形CDEF为矩形,∴∠C=∠E=∠F=90°.∵四边形PMDN为矩形,∴∠PMD=∠MPN=∠PND=90°.∴∠PMC=∠QPN=∠PNE=90°.∴四边形CMQF、PNEQ为矩形.∴MQ=CF,PN=QE,且PQ∥BF.∵EF、FC 的中点分别为A、B,且EF=8,CF=6,∴AF=4,BF=3,∴AB==5,∵PQ∥BF,∴△APQ ∽△ABF.∴==.即==.解得:AQ=x,PQ=x.∴PN=QE=AQ+AE=x+4,PM=MQ﹣PQ=6﹣x.∴y=PN•PM=(x+4)(6﹣x)=﹣x2+x+24.当x=﹣=时,y取得最大值.即当AP=时,矩形PMDN的面积取得最大值.9.如图,在△ABC中,DE∥AC,DF∥AE,BD:DA=3:2,BF=6,DF=8,(1)求EF的长;(2)求EA的长.【解】(1)∵DF∥AE,∴=,即=,解得,EF=4;(2)∵DF∥AE,∴△BDF∽△BAE,∴=,即=,解得,EA=.10.如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=16,BD=8,(1)求证:△ACD∽△BED;(2)求DC的长.【解】(1)∵∠C=∠E,∠ADC=∠BDE,∴△ACD∽△BED;(2)∵△ACD∽△BED,∴=,又∵AD:DE=3:5,AE=16,∴AD=6,DE=10,∵BD=8,∴=,即=.∴DC=.11.如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,且四边形AECG是正方形时,求的值.【解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∠B=∠D,由平移的性质得:AE∥GC,∵AE是BC边上的高,∴AE⊥BC,∠AEB=90°,∴GC⊥AD,∴∠CGD=90°,在△ABE和△CDG中,,∴△ABE≌△CDG(AAS),∴BE=DG;(2)解:∵∠AEB=90°,∠B=90°,∴∠BAE=30°,∴BE=AB,AE=BE,∵四边形AECG是正方形,∴CE=AE=BE,∴BC=CE+BE=(+1)BE,∴==.12.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且∠BEF=90°,延长EF交BC的延长线于点G.(1)求证:△ABE∽△EGB;(2)若AB=4,求CG的长.【解】(1)证明:∵四边形ABCD为正方形,且∠BEG=90°,∴∠A=∠BEG,∵∠ABE+∠EBG=90°,∠G+∠EBG=90°,∴∠ABE=∠G,∴△ABE∽△EGB;(2)∵AB=AD=4,E为AD的中点,∴AE=DE=2,在Rt△ABE中,BE===2,由(1)知,△ABE∽△EGB,∴=,即:=,∴BG=10,∴CG=BG﹣BC=10﹣4=6.13.如图,▱ABCD的对角线AC、BD相交于点O,EF经过O,分别交AB、CD于点E、F,EF的延长线(1)求证:OE=OF;(2)若AD=4,AB=6,BM=1,求BE的长.交CB的延长线于M.【解】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,BC=AD,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF;(2)解:过点O作ON ∥BC交AB于N,则△AON∽△ACB,∵OA=OC,∴ON=BC=2,BN=AB=3,∵ON∥BC,∴△ONE∽△MBE,∴=,即=,解得,BE=1.14.如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.【解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△EBF∽△EAD,∴==,∴BF=AD=BC,∴BF=CF;(2)解:∵四边形ABCD是平行四边形,∴AD∥CF,∴△FGC∽△DGA,∴=,即=,解得,FG=2.15.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE.(1)求证:△DBE是等腰三角形;(2)求证:△COE∽△CAB.【解】证明:(1)连接OD,如图所示:∵DE是⊙O的切线,∴∠ODE=90°,∴∠ADO+∠BDE=90°,∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵OA=OD,∴∠CAB=∠ADO,∴∠BDE=∠CBA,∴EB=ED,∴△DBE是等腰三角形;(2)∵∠ACB=90°,AC是⊙O的直径,∴CB是⊙O的切线,∵DE是⊙O 的切线,∴DE=EC,∵EB=ED,∴EC=EB,∵OA=OC,∴OE∥AB,∴△COE∽△CAB.16.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,求△BEF与△DCB的面积比.【解】在平行四边形ABCD中,AB∥CD,AB=CD,∵E是AB的中点,∴BE=AB=CD,∵AB∥CD,∴△BEF∽△DCF,∴,∴,又∵,∴.17.如图,在▱ABCD中,E是BC延长线上的一点,AE与CD交于点F.求证:△ADF∽△EBA.【解】证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠DF A=∠BAE,∴△ADF∽△EBA.18.如图,在△ABC中,点D在BC边上,BC=3CD,分别过点B,D作AD,AB的平行线,并交于点E,且ED交AC于点F,AD=3DF.(1)求证:△CFD∽△CAB;(2)求证:四边形ABED为菱形;(3)若DF=,BC=9,求四边形ABED的面积.【解】(1)证明:∵EF∥AB,∴∠CFD=∠CAB,又∵∠C=∠C,∴△CFD∽△CAB;(2)证明:∵EF ∥AB,BE∥AD,∴四边形ABED是平行四边形,∵BC=3CD,∴BC:CD=3:1,∵△CFD∽△CAB,∴AB:DF=BC:CD=3:1,∴AB=3DF,∵AD=3DF,∴AD=AB,∴四边形ABED为菱形;(3)解:连接AE交BD于O,如图所示:∵四边形ABED为菱形,∴BD⊥AE,OB=OD,∴∠AOB=90°,∵△CFD ∽△CAB,∴AB:DF=BC:CD=3:1,∴AB=3DF=5,∵BC=3CD=9,∴CD=3,BD=6,∴OB=3,由勾股定理得:OA==4,∴AE=8,∴四边形ABED的面积=AE×BD=×8×6=24.19.如图,在△ABC中,AD平分∠BAC交BC于点D,F为AD上一点,且BF=BD.BF的延长线交AC于点E.(1)求证:AB•AD=AF•AC;(2)若∠BAC =60°.AB=4,AC=6,求DF的长;(3)若∠BAC=60°,∠ACB=45°,直接写出的值.【解】(1)∵AD平分∠BAC∴∠BAF=∠DAC又∵BF=BD∴∠BFD=∠FDB∴∠AFB=∠ADC∴△AFB∽△ADC∴.∴AB•AD=AF•AC(2)作BH⊥AD于H,作CN⊥AD于N,则BH=AB=2,CN=AC =3∴AH=BH=2,AN=CN=3∴HN=∵∠BHD=∠CDN∴△BHD∽△CND∴∴HD=又∵BF=BD,BH⊥DF∴DF=2HD=(3)由(1)得①,易证△ABD,△AEF,△BFD均为顶角为30°的等腰三角形∴AB=AD,AE=AF,BF=BD易证△ABD∽△AEF∴②∴①×②得==,过F作FG⊥AB于G,设FG=x,则AF=2x,BF=x,AG=x,BG=x∴AB=(+1)x,∴==4﹣220.如图,△ABC中,∠ABC=90°,∠C=30°,D为BC上一点,DE⊥AC于E.(1)求证:△ADC∽△BEC;(2)若点D为BC的中点,AB=4,求BE的长.【解】(1)∵在四边形ABDE中,∠ABD+∠AED=180°,∴∠BAE+∠BDE=180°,∴点A、B、D、E 四点共圆,∴∠DAE=∠DBE.又∠C=∠C,∴△ADC∽△BEC;(2)∵AB=4,∠C=30°,∠ABC=90°,∴BC=.∵D为BC中点,∴BD=DC=2.在Rt△ABD中,AD=.在Rt△CDE 中,∠C=30°,CD=2,所以CE=3.∵△ADC∽△BEC,∴,即,解得BE=.所以BE长为.21.如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为8,AE=2,求⊙O的半径.【解】(1)∵∠GAF+∠ADF=90°,∠CDF+∠ADF=90°,∴∠GAF=∠CDF.∵⊙O经过点C、D、G、F,∴∠FCD+∠FGD=180°.又∵∠AGF+∠FGD=180°,∴∠AGF=∠DCF.∴△AFG∽△DFC;(2)在Rt△AED和Rt△AFD中tan∠ADF=.∵△AFG∽△DFC,∴,即,解得AG =2.∴GD=8﹣2=6.连接GC,∵∠GDC=90°,∴GC为直径.在Rt△GDC中,GC==10,所以⊙O的半径为5.22.已知:AB为⊙O的直径,延长AB到点P,过点P作⊙O的切线,切点为C,连接AC,且∠A=30°.(1)求证:AC=PC;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE•DC=18,求⊙O的面积.【解】(1)证明:连接OC,∵PC为⊙O的切线,∴∠OCP=90°,即∠COP+∠P=90°,∵OA=OC,∴∠OCA=∠OAC=30°,∵∠COP是△AOC的一个外角,∴∠COP=2∠CAO=60°,∴∠P=∠CAO=30°,∴AC=PC;(2)解:连接AD,∵D为的中点,∴∠ACD=∠DAE,又∠ADC=∠EDA,∴△ACD ∽△EAD,∴=,即AD2=DC•DE,∵DC•DE=18,∴AD=3,∵=,∴AD=BD=3,∵AB是⊙O的直径,∴△ADB为等腰直角三角形,∴AB=6,∴OA=AB=3,∴S⊙O=π•OA2=9π.23.如图,已知圆内接四边形ABCD的两边AB、DC的延长线相交于点E,DF过圆心O交AB于F,AF=FB,连接AC.(1)求证:△ACD∽△EAD;(2)若圆O的半径为5,AF=2BE=4,求证:AC=AD.【解】(1)∵DF过圆心O交AB于F,AF=FB,∴DF垂直平分AB.∴弧AD=弧BD,∴∠DCA=∠DAB.又∵∠ADC=∠EDA,∴△ACD∽△EAD;(2)连结OA,在Rt△AFO中,OF=3,DF=8,在Rt△DEF中,EF=6,∴DE=10.∵AE=10,∴DE=AE.∴∠ADE=∠DAE.∴弧AC=弧BD.∴AC=BD.又弧AD =弧BD,∴AD=BD.∴AC=AD.24.如图,已知四边形ABCD的外接圆⊙O的半径为4,弦AC与BD的交点为E,OA与BD相交于点F,AB=AD.(1)求证:AB2=AE•AC;(2)若AE=EC,AF=2,求△BCD的面积.【解】(1)证明:∵AB=AD∴∠ABD=∠ADB又∵∠ADB=∠ACB∴∠ABD=∠ACB而∠BAE=∠CAB∴△ABE∽△ACB∴即:AB2=AE•AC得证.(2)连接OB,如下图所示∵AE=EC∴S△BAE=S△BCE,S△DAE=S△DCE∴S△BCD=S△BAD又∵AB=AD∴OA⊥BD且BF=DF∵AF=2,OA=OB =4∴BF=DF=2∴BD=4∴S△BAD=×BD×AF=×4×2=4而S△BCD=S△BAD故△BCD的面积为4.25.如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE并延长交AD于点F,交CD的延长线于点G,连接DE.(1)求证:△ABE≌△ADE;(2)求证:EB2=EF•EG;(3)若菱形ABCD的边长为4,∠ABC=60°,AE:EC=1:3,求BG的长.【解】(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,又AE=AE,∴△ABE≌△ADE(SAS);(2)∵AB∥CG,∴∠ABG=∠EGD,由(1)得△ABE≌△ADE,∴ED=EB,∠ABG=∠ADE,∴∠EGD =∠ADE,∵∠FED=∠DEG,∴△EDF∽△EGD,∴,所以ED2=EF•EG;∴EB2=EF•EG;(3)∵AB=BC,∠ABC=60°,∴△ABC是等边三角形.∴AC=AB=4.连接BD交AC于O,则AC⊥BD,OA=OC=2,OB=2,∵AE:EC=1:3,∴AE=OE=1.∴BE=.∵AD∥BC,∴,∴EF=BE=.由(2)得EB2=EF•EG,∴EG=,∴BG=BE+EG=4.26.如图,点D,E在线段BC上,△ADE是等边三角形,且∠BAC=120°(1)求证:△ABD∽△CAE;(2)若BD=2,CE=8,求BC的长.【解】(1)证明:∵∠BAC=120°,∴∠BAD+∠EAC=60°,∵△ADE是等边三角形,∴∠ADE=∠AED =60°,∴∠BAD+∠B=60°,∠ADB=∠AEC=120°,∴∠B=∠EAC,又∠ADB=∠AEC,∴ABD∽△CAE;(2)解:∵ABD∽△CAE,∴=,即AD2=BD•CE=16,解得,AD=4,则DE=4,∴BC=BD+DE+EC=14.27.如图,已知CD是Rt△ABC斜边AB上的中线,过点D作AC的平行线,过点C作CD的垂线,两线相交于点E.(1)求证:△ABC∽△DEC;(2)若CE=2,CD=4,求△ABC的面积.【解】证明:(1)∵CD是Rt△ABC斜边AB上的中线,∴CD=AB=AD,∴∠A=∠ACD.∵DE∥AC,∴∠CDE=∠ACD=∠A,又∵∠ACB=∠DCE=90°,∴△ABC∽△DEC.(2)在Rt△DEC中,DE=,△CDE的面积为×2×4=4.∵CD是Rt△ABC斜边AB上的中线,∴AB=2CD=8.∵△ABC∽△DEC,∴,即,∴△ABC的面积为.28.如图,已知AB∥CD,AC与BD相交于点E,∠ABE=∠ACB.(1)求证:△ABE∽△ACB;(2)如果AB=6,AE=4,求CD的长.【解】证明:(1)∵∠ABE=∠ACB,∠A=∠A,∴△ABE∽△ACB;(2)∵△ABE∽△ACB,∴,即,解得AC=9.∴CE=9﹣AE=5.∵AB∥CD,∴△ABE∽△CDE,∴,即,解得CD=.29.已知:如图,在正方形ABCD中,Q是CD的中点,PQ⊥AQ.求证:BP=3CP.【解】证明:∵PQ⊥AQ,∴∠AQD+∠PQC=90°.∵∠C=∠D=90°,∴∠DAQ+∠AQD=90°.∴∠DAQ=∠PQC.∴△DAQ∽△CQP.∵Q是CD的中点,∴.∴,∴AD=4CP..∵AD=BC,∴BC=4CP,∴BP=3CP.30.如图,在正方形ABCD中,点E是BC的中点,点P在BC的延长线上,AP与DE、CD分别交于点G、F.DF=2CF,AB=6,求DG的长.【解】在正方形ABCD中,有△PCF∽△PBA∴而DF=2CF,即CF=CD∴=∴=即而AB=BC=6,∴PC=3又∵点E是BC的中点∴DE=3,PE=6∵AD∥EP∴△PGE∽△AGD ∴而PE=AD=6,∴GE=GD=故DG的长为.31.已知,在Rt△ABC中,以斜边AB上的高CD为直径作了一个圆,圆心为点O,这个圆交线段BC于E点,点G为BD的中点.(1)求证:GE为⊙O的切线;(2)若=,GE=6,求AD的长.【解】(1)证明:连接OE、DE、OG,∵CD为⊙O的直径,∴∠CED=90°,∵点G为BD的中点,∴GE=BD=DG,在△GEO和△GDO中,,∴△GEO≌△GDO(SSS)∴∠GEO=∠GDO=90°,∴GE为⊙O的切线;(2)解:∵∠ACB=90°,∠CDA=90°,∴∠ACD=∠B,∴tan B==,∴tan∠ACD==,∴AD=CD=GE=3.32.如图,▱ABCD中,E是AB中点,AC与DE交于点F.(1)求证:△DFC∽△EF A.(2)若AC⊥DE,AB=2,AF=2,求DF长.【解】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,AB=CD,∴△DFC∽△EF A;(2)解:∵E 是AB中点,∴AE=AB=,∵AC⊥DE,∴∠AFE=90°,∴FE==1,∵△DFC∽△EF A,∴==,∴DF=2EF=2.33.已知四边形ABCD中,AB=AD,AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,△DGC∽△ADC.(1)求证:CD=CF;(2)H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=5,DC=3,求的值.【解】(1)证明:∵AC平分∠DAB,∴∠DAC=∠BAC,在△ADC和△ABC中,∴△ADC ≌△ABC(SAS),∴CD=CB,∵CE⊥AB,EF=EB,∴CF=CB,∴CD=CF;(2)解:∵△DGC∽△ADC,∴∠DGC=∠ADC,∵∠ADC=2∠HAG,∴∠DCG=2∠HAG,∵∠DGC=∠HAG+∠AHG,∴∠HAG=∠AHG,∴HG=AG,∵∠GDC=∠DAC=∠F AG,∠DGC=∠AGF,∴△DGC∽△AGF,∴△AGF∽△ADC,∴==,即=.34.如图,⊙O中弦AB与CD交于M点.(1)求证:DM•MC=BM•MA;(2)若∠D=60°,⊙O的半径为2,求弦AC的长.【解】(1)证明:∵=,∴∠D=∠B,又∵∠DMA=∠BMC,∴△DMA∽△BMC,∴=,∴DM•MC=BM•MA;(2)连接OA,OC,过O作OH⊥AC于H点,∵∠D=60°,∴∠AOC=120°,∠OAH=30°,AH=CH,∵⊙O半径为2,∴AH=∵AC=2AH,∴AC=2.35.已知:如图,在△ABC中,D在边AB上.(1)若∠ACD=∠ABC,求证:AC2=AD•AB;(2)若E为CD中点,∠ACD=∠ABE,AB=3,AC=2,求BD的长.【解】(1)在△ABC和△ACD中,∠ACD=∠ABC,∠A=∠A,∴△ABC∽△ACD,故,即AC2=AD⋅AB,(2)过C作CF∥EB交AB的延长线于F,由于E为CD中点,故BF=BD,∠F=∠ABE,而∠ACD=∠ABE,∴∠ACD=∠F,∴在△AFC和△ACD中,∠ACD=∠F,∠A=∠A,∴△AFC∽△ACD,∴,∴AC2=AD•AF,又∵AB=3,AC=2,∴22=(3﹣BD)(3+BD),∴BD=.36.如图,在正方形ABCD中,点E,F分别在边AB,AD上,EF⊥CE于点E(1)求证:△AEF∽△BCE.(2)若,求的值.【解】(1)∵∠A=∠B=90°,∠FEC=90°,∴∠AEF+∠AFE=90°,∠AEF+∠CEB=90°.∴∠AFE =∠CEB.∴△AEF∽△BCE;(2)由,设BE=x,则AE=2x,AB=3x=BC.∵△AEF∽△BCE,∴=.37.如图,已知▱ABCD,点E在边BC延长线上,连接AE,如果∠EAC=∠D.(1)求证:△EAC∽△EBA;(2)若=,求的值.【解】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠EAC=∠D,∴∠EAC=∠B,又∠E =∠E,∴△EAC∽△EBA;(2)解:△EAC∽△EBA,=,∴===,∴EC=EA,EB =EA,则=.38.如图,E是边长为4的正方形ABCD的边AB上的点,且AE=1,EF⊥DE交BC于点F,求线段CF的长.【解】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠ADE+∠AED=90°,∵EF⊥DE,∴∠BEF+∠AED=90°,∴∠ADE=∠BEF,∴△ADE∽△BEF,∴=,即=,解得,BF=,∴CF=BC﹣BF=.39.如图,AB∥CD∥EF,点C在AE上,点G在EF上,AF、BG交于点D,已知CD=5米,EG=6米,GF=9米,求AB的长.【解】∵CD∥EF,∴△ACD∽△AEF,∴=,即==,∴=,∵AB∥EF,∴△ADB ∽△FDG,∴=,即=,解得,AB=4.5(米).40.已知:如图,△ABC中,AD是角平分线,点E在AC上,∠ADE=∠B,求证:AD2=AE•AB.【解】证明:∵AD是角平分线,∴∠BAD=∠DAC,又∵∠ADE=∠B,∴△ABD∽△ADE,∴=,∴AD2=AE•AB.41.如图,在矩形ABCD中,点M是CD的中点,MN⊥BM交AD于N,连BN;(1)求证:BM平分∠NBC;(2)若=,求的值.【解】(1)证明:延长BM交AD的延长线于H,在△BMC和△HMD中,,∴△BMC≌△HMD,∴BM=MH,又MN⊥BM,∴NB=NH,∴∠NBM=∠NHM,∵AH∥BC,∴∠MBC=∠NHM,∴∠MBC=∠NBM,即BM平分∠NBC;(2)解:设DN=a,则DC=AB=4a,∴DM=MC=2a,由勾股定理得,MN==a,由(1)得,∠BNM=∠MND,∠BMN=∠MDN,∴△BMN∽△MDN,∴==,∴BM=2a,由勾股定理得,BN==5a,则AN==3a,∴==.42.如图,在等边三角形ABC中,点D,E分别在BC,AB上,且∠ADE=60°.求证:△ADC∽△DEB.【解】证明:∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C=∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴△ADC∽△DEB.43.如图,△ABC中,DE∥BC,△ADE的面积等于6,△DEC的面积等于9,OE=4,求BE的长.【解】∵△ADE的面积等于6,△DEC的面积等于9,∴=,∴==,∵DE∥BC,∴△ADE ∽△ABC,∴===,∵DE∥BC,∴△DOE∽△COB,∴==,∴OB=10,∴BE=OB+OE=14.44.如图,点E是四边形ABCD的对角线BD上的一点,且∠1=∠2=∠3.(1)求证:DE•AB=BC•AE;(2)求证:∠AEB=∠ADC.【解】(1)证明:∵∠1=∠2,∴∠BAC=∠EAD,∵∠AED=∠1+∠ABD,∠ABC=∠3+∠ABD,∠1=∠3,∴∠ABC=∠AED,∴△ABC∽△AED,∴=,∴DE•AB=BC•AE;(2)证明:∵△ABC∽△AED,∴=,∴=,∵∠1=∠2,∴△ABE∽△ACD,∴∠AEB=∠ADC.45.已知:如图,在⊙O中,弦CD与直径AB相交于点E,∠BED=60°,DE=OE=4.求:(1)CE的长;(2)⊙O的半径.【解】(1)作OF⊥CD于F,如图1所示:则CF=DF,∠OFC=∠OFE=90°,∵∠OEF=∠BED=60°,∴∠EOF=30°,∴EF=OE=2,∴CF=DF=DE+EF=4+2=6,∴CE=CF+EF=6+2=8;(2)连接OC,如图2所示:∵∠EOF=30°,∴OF=EF=2,由勾股定理得:OC===4,即⊙O的半径为4.46.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O 的位置关系,并说明理由;(2)过点B作⊙O的切线BE交直线CD于点E,若BE=5,CD=8,求⊙O的半径.【解】(1)直线CD和⊙O的位置关系是相切,理由如下:∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即∠CDO=90°,∴OD⊥CE,∴直线CD是⊙O的切线;(2)∵CD是⊙O的切线,BE是⊙O的切线,∴DE=BE=5,∠CBE=90°=∠CDO,∴CE=CD+DE=13,∴BC===12,∵∠C=∠C,∴△COD∽△CEB,∴=,即=,解得:OC=,∴OB=BC﹣OC=,即⊙O的半径为.47.如图,点C,P均在⊙O上,且分布在直径AB的两侧,BE⊥CP于点E.(1)求证:△EPB∽△CAB;(2)若BP=5,BE=4,AB=10,求CE的长.【解】(1)证明:∵AB是⊙O的直径,BE⊥CP,∴∠ACB=∠BEP=90°,∵∠CAB=∠BPC,∴△EPB ∽△CAB;(2)解:∵△EPB∽△CAB,∴=,即:=,解得:BC=8,∴CE===4.48.如图,AB是⊙O的直径,点C、D在⊙O上,弦AD与OC相交于点E,与BC相交于点F,AE=DE.(1)求证:∠CBD=∠OCB;(2)若⊙O的半径为2,BC=8,求DF的长.【解】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,即BD⊥AD,∵AE=DE,∴OE⊥AD,∴OE∥BD,∴∠CBD=∠OCB;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ACD中,AC===4,∵OE⊥AD,∴=,∴∠CAD=∠ABC,又∠ACF=∠BCA,∴△ACF∽△BCA,∴=,即=,解得,CF=2,∴BF=BC﹣CF=8﹣2=6,∵∠ABC=∠CBD,∠ACB=∠FDB,∴△ABC∽△FBD,∴=,即=,解得,DF=.49.如图(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=20°,∠OAC=80°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2),请回答:∠ADB=80°,AB=8.(2)请参考以上思路解决问题:如图3,在四边形ABCD 中,对角线AC、BD相交于点O,AC⊥AD,AO=6,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.【解】(1)∵BD∥AC,∴∠ADB=∠OAC=80°,∵∠BOD=∠COA,∴△BOD∽△COA,∴==,∵AO=6,∴OD=AO=2,∴AD=AO+OD=6+2=8,∵∠BAD=20°,∠ADB=80°,∴∠ABD=180°﹣∠BAD﹣∠ADB=80°=∠ADB,∴AB=AD=8,故答案为:80,8;(2)过点B 作BE∥AD交AC于点E,如图3所示:∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°,∵∠AOD=∠EOB,∴△AOD∽△EOB,∴==,∵BO:OD=1:3,∴==,∵AO=6,∴EO=AO =2,∴AE=AO+EO=6+2=8,∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB =2BE,在Rt△AEB中,BE2+AE2=AB2,即(8)2+BE2=(2BE)2,解得:BE=8,∴AB=AC=16,AD=3BE=24,在Rt△CAD中,AC2+AD2=DC2,即162+242=DC2,解得:DC=8.50.如图,在△ABC中,∠C=90°,F为射线BA上一点,且满足CB2=CE•CA,过B作BD⊥DF于D,交AC边于E.证明:∠BFD=2∠CBD.【解】证明:如图,作AH⊥BD于H点,∵CB2=CE•CA,即.又∠BCE=∠ACB,∴△BCE∽△ACB.∴∠CBD=∠CAB.∵∠BCE=∠AHE=90°,∠CEB=∠HEA,∴∠CBD=∠CAH.∴∠BAH=2∠CBD.∵AH∥DF,∴∠BAH=∠BFD.∴∠BFD=2∠CBD.二.提高30道1.如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,在BC的延长线上取一点F,使得EF=DE.(1)求证:DF是⊙O的切线;(2)连接AF交DE于点M,若AD=4,DE=5,求DM的长.【解答】(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD.∵DE∥AB,∴∠ABD=∠BDE.∴∠CBD=∠BDE.∵ED=EF,∴∠EDF=∠EFD.∵∠EDF+∠EFD+∠EDB+∠EBD=180°,∴∠BDF=∠BDE+∠EDF=90°.∴OD⊥DF.∵OD是半径,∴DF是⊙O的切线.(2)解:连接DC,∵BD是⊙O的直径,∴∠BAD=∠BCD=90°.∵∠ABD=∠CBD,BD=BD,∴△ABD≌△CBD.∴CD=AD=4,AB=BC.∵DE=5,∴,EF=DE=5.∵∠CBD=∠BDE,∴BE=DE=5.∴BF=BE+EF=10,BC=BE+EC=8.∴AB=8.∵DE∥AB,∴△ABF∽△MEF.∴∴ME=4.∴DM=DE﹣EM=1.2.如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,过点D作⊙O的切线交BC的延长线于点E.(1)求证:EF=DE;(2)若AD=4,DE=5,求BD的长.【解答】(1)证明:∵DF为切线,∴BD⊥DF,∴∠1+∠2=90°,∠3+∠F=90°,∵BD平分∠ABC,∴∠3=∠4,∵DE∥AB,∴∠2=∠4,∴∠2=∠3,∴∠1=∠F,∴EF=ED;(2)解:∵∠2=∠3,∴BE=DE=5,而EF=ED=5,∴BF=10,∵BD为直径,∴∠BAD=90°,∵∠3=∠4,∠BDF=∠BAD =90°,∴△BDF∽△BAD,∴=,∴BD2=BF•AB=10AB,在Rt△ABD中,BD2=AD2+AB2,∴AB2﹣10AB+16=0,解得AB=2或AB=8,当AB=2时,BD=2<DE(舍去);当AB=8时,BD=4,∴BD的长为4.3.如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,过点D作⊙O 的切线交BC的延长线于点F.(1)求证:EF=ED;(2)如果半径为5,cos∠ABC=,求DF的。
初三相似简单练习题
初三相似简单练习题相似是几何学中重要的概念之一,在初三学习中也是必须掌握的内容。
相似的概念和性质是初步了解几何相似的基础,通过练习题的形式可以帮助我们加深对相似的理解和应用。
下面是一些初三相似的简单练习题:1. 已知△ABC和△DEF相似,AB = 4cm,AC = 6cm,DE = 2cm,寻找满足相似的比例因子k。
2. 已知△ABC和△DEF相似,AB = 5cm,AC = 8cm,DE = 6cm,寻找满足相似的比例因子k。
3. 已知△ABC和△DEF相似,AC = 9cm,BC = 12cm,EF = 15cm,寻找满足相似的比例因子k。
4. 已知△ABC和△DEF相似,AC = 10cm,BC = 18cm,EF = 30cm,寻找满足相似的比例因子k。
5. 将一个正方形的边长扩大到原来的2倍,面积变为原来的几倍?6. 将一个正方形的边长缩小到原来的一半,面积变为原来的几倍?7. 将一个矩形的长和宽各乘以2,面积变为原来的几倍?8. 将一个矩形的长和宽都减少到原来的一半,面积变为原来的几倍?9. 已知两个三角形的边长比为3:4,面积比为9:16,求这两个三角形的高的比值。
10. 已知两个三角形的边长比为5:6,面积比为25:36,求这两个三角形的高的比值。
以上是初三相似的简单练习题,通过解题可以加深对相似的理解和运用。
在做题时,需要注意比例因子的计算和面积的计算方法。
相似的概念是初步了解几何相似的基础,掌握了相似的性质和运用方法,才能更好地解决相关问题。
相似的知识在几何学和应用数学中有广泛的应用,对于后续的学习和应用都有重要的作用。
练习题可以帮助我们巩固和拓展对相似的认识,提高解决问题的能力。
总之,相似的概念是初三几何学中的重要内容,通过解答练习题可以加深理解和应用。
练习题中涉及到比例因子和面积的计算,需要运用相关的知识和方法。
掌握相似的性质和运用方法对于几何学和应用数学的学习都具有重要的作用。
《相似多边形》综合拓展练习(有答案)
初中数学精品试卷4.6 相似多边形一、选择题1.△ABC ∽△ A ′B ′C ′,相似比是2∶3,那么△ A ′B ′C ′与△ ABC 面积的比是()A.4∶9B.9∶ 4C.2∶3D.3∶22.将一个五边形改成与它相似的五边形,如果面积扩大为原来的9 倍,那么周长扩大为原来的( )A.9 倍B.3 倍C.81 倍D.18 倍3.在△ ABC 中, DE ∥BC ,交 AB 于 D ,交 AC 于 E ,且 AD ∶DB=1∶2,则下列结论正确的是 ()DE 1A.=BC 2B.DE =1BC 3C.ADE 的周长 = 1 ABC 的周长 2D.S SADEABC= 13如图 , 2ABCD 中, AE ∶ED=1∶ 2, SAEF =6 cm ,则 S CBF 等于 ()4.1△△图 1A.12 cm 2B.24 cm 2C. 54 cm 2D.15 cm 25.下列说法中正确的是 ()A.位似图形可以通过平移而相互得到B.位似图形的对应边平行且相等C.位似图形的位似中心不只有一个D.位似中心到对应点的距离之比都相等二、填空题6.△ABC∽△ A′B′C′,相似比是 3∶ 4,△ ABC 的周长是 27 cm,则△A′B′C′的周长为 ________.7.两个相似多边形对应边的比为3∶2,小多边形的面积为32 cm2,那么大多边形的面积为________.8.若两个三角形相似,且它们的最大边分别为 6 cm 和8 cm,它们的周长之和为35 cm,则较小的三角形的周长为________.9.在矩形 ABCD 中, E、 F 分别为 AB、CD 的中点,如果矩形 ABCD∽矩形BCFE,那么 AD∶AB=________,相似比是 ________,面积比是 ________.10.已知,如图2, A′B′∥AB,B′C′∥ BC,且 OA′∶A′A=4∶ 3,则△ ABC 与________是位似图形,位似比为________;△ OAB 与________是位似图形,位似比为 ________.图 2三、解答题11.在比例尺为1∶50000 的地图上,一块多边形地区的周长是72 cm,多边形的两个顶点A、B 之间的距离是25 cm,求这个地区的实际边界长和A、B 两地之间的实际距离 .12.如图 3,梯形 ABCD 中,AB∥ CD,AC、BD 交于 E,若 S△DCE∶ S△DCB=1∶3,求 S△DCE∶S△ABD .图 313.已知:△ABC∽△ A′B′C′,它们的周长之差为20,面积比为 4∶1,求△ ABC 和△ A′B′C′的周长 .14.选取一个你喜欢的图形,然后将此图形放大,使放大后的图形的面积是原图形面积的 4 倍.参考答案一、 1.B 2.B 3.B 4.C 5.D二、 6.36 cm7.72 cm28.15 cm9. 2∶2 2 ∶12∶110.△A′B′C′ 7∶4△OA′B′ 7∶ 4三、 11.36 千米12.5 千米12.1∶613.402014.略。
初三数学相似练习题及答案
初三数学相似练习题及答案相似性是数学中一个重要的概念,通过对两个图形或者物体进行比较,我们可以得出它们之间的相似性质。
相似性不仅在几何中有应用,在生活中也有很多实际的应用。
本文将介绍一些初三数学中的相似性练习题及其答案,希望能帮助同学们更好地理解和掌握这一概念。
练习题一:在下面的图形中,黄色区域是正方形ABCD的内部。
已知比值为3:4的两条边分别为EF和GH。
求证:矩形EFGH和正方形ABCD相似。
解答:首先,我们可以观察到矩形EFGH与正方形ABCD具有共同的一个角A。
根据三角形的AA判定相似性质,我们只需要证明另外两个对应边的比值相等即可。
设矩形EFGH的长为x,宽为y。
根据题目中的条件,我们可以列出以下等式:EF = 3AB = x + yBC = CD = AD = x根据正方形的性质,我们知道正方形ABCD的边长相等,所以可以得到以下等式:AB = BC = CD = AD因此,可以得到以下关系:x + y = xy = 0由此可见,矩形EFGH的宽度y等于0,这是不可能的。
故我们得到的结论是错误的。
练习题二:在下面的图形中,已知三角形ABC与三角形DEF相似。
已知AC = 10cm,BC = 6cm。
若DE = 8cm,求EF的长度。
解答:根据题目中的已知条件,我们可以列出以下等式:AC/DE = BC/EF代入已知数值,可以得到:10/8 = 6/EF交叉相乘并移项,我们可以得到:10EF = 8 * 6计算右边的乘积,我们得到:10EF = 48最后,将式子两边同时除以10,我们可以求得:EF = 48/10 = 4.8所以,EF的长度为4.8cm。
练习题三:在下面的图形中,已知三角形ABC与三角形DEF相似。
已知AC = 12cm,BC = 8cm,EF = 18cm。
求DE的长度。
解答:根据题目中的已知条件,我们可以列出以下等式:AC/DE = BC/EF代入已知数值,可以得到:12/DE = 8/18交叉相乘并移项,我们可以得到:8DE = 12 * 18计算右边的乘积,我们得到:8DE = 216最后,将式子两边同时除以8,我们可以求得:DE = 216/8 = 27所以,DE的长度为27cm。
人教版九年级数学下《图形的相似》拓展练习
《图形的相似》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示,以线段AB为边作正方形ABCD,取AD的中点E,连结BE,延长DA至F,使得EF=BE,以AF为边作正方形AFGH,则点H即是线段AB的黄金分割点.若记正方形AFGH的面积为S1,矩形BCIH的面积为S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定2.(5分)商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a,最高销售限价b(b>a)以及实数x(0<x<1)确定实际销售价格c=a+x(b﹣a),这里x被称为乐观系数.经验表明,最佳乐观系数x恰好使得,据此可得,最佳乐观系数x的值等于()A.B.C.D.3.(5分)如图,一组互相平行的直线a,b,c分别与直线l1,12交于点A,B,C,D,E,F,直线11,l2交于点O,则下列各式不正确的是()A.=B.=C.=D.=4.(5分)某校每位学生上、下学期各选择一个社团,下表为该校学生上、下学期各社团的人数比例.若该校上、下学期的学生人数不变,相较于上学期,下学期各社团的学生人数变化,下列叙述何者正确?()舞蹈社溜冰社魔術社上學期345下學期432A.舞蹈社不变,溜冰社减少B.舞蹈社不变,溜冰社不变C.舞蹈社增加,溜冰社减少D.舞蹈社增加,溜冰社不变5.(5分)甲、乙两地的实际距离是400千米,在比例尺为1:500000的地图上,甲乙两地的距离是()A.0.8cm B.8cm C.80cm D.800cm.二、填空题(本大题共5小题,共25.0分)6.(5分)若(k≠0),则y=kx+k﹣2一定经过第象限.7.(5分)把2米长的线段进行黄金分割,则分成的较长的线段长为.8.(5分)如图,AD∥BE∥FC,它们依次交直线l1、l2于点A、B、C和点D、E、F,如果=,DF=7.5,那么DE的长为.9.(5分)如图,在△ABC中,AC=BC,D为AB的中点,F为BC边上一点,连接CD、AF交干点E.若∠F AC=90°﹣3∠BAF,BF:AC=2:5,EF=2,则AB长为.10.(5分)如图,在三角形ABC中,D为BC的中点,AF=2BF,CE=3AE,连接CF交DE于P点,则的值为.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,点D为△ABC内部一点,点E、F、G分别为线段AB、AC、AD上一点,且EG∥BD,GF∥DC.(1)求证:EF∥BC;(2)当时,求的值.12.(10分)如图,已知△ABC中,AB=AC=,BC=4.线段AB的垂直平分线DF分别交边AB、AC、BC所在的直线于点D、E、F.(1)求线段BF的长;(2)求AE:EC的值.13.(10分)黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618.这个比值,被称为黄金分割数.我国著名数学家华罗庚普及并做出重要贡献的优选法中有一种0.618法也应用了黄金分割数.定义:点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点(如图1).如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.14.(10分)如图1,我们已经学过:点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某校的数学拓展性课程班,在进行知识拓展时,张老师由黄金分割点拓展到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.如图2,在△ABC中,∠A=36°,AB=AC,∠C的平分线交AB于点D.(1)证明点D是AB边上的黄金分割点;(2)证明直线CD是△ABC的黄金分割线.15.(10分)如图,在△ABC中,EF∥CD,DE∥BC.(1)求证:AF:FD=AD:DB;(2)若AB=15,AD:BD=2:1,求DF的长.《图形的相似》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示,以线段AB为边作正方形ABCD,取AD的中点E,连结BE,延长DA至F,使得EF=BE,以AF为边作正方形AFGH,则点H即是线段AB的黄金分割点.若记正方形AFGH的面积为S1,矩形BCIH的面积为S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定【分析】设正方形ABCD的边长为2a,根据勾股定理求出BE,求出EF,求出AF,再根据面积公式求出S1、S2即可.【解答】解:∵四边形ABCD是正方形,∴∠EAB=90°,设正方形ABCD的边长为2a,∵E为AD的中点,∴AE=a,在Rt△EAB中,由勾股定理得:BE===a,∵EF=BE,∴EF=a,∴AF=EF﹣AE=a﹣a=(﹣1)a,即AF=AH=(﹣1)a∴S1=AF×AH=(﹣1)a×(﹣1)a=6a2﹣2a2,S2=S正方形ABCD﹣S长方形ADIH=2a×2a﹣2a×(﹣1)a=6a2﹣2a2,即S1=S2,故选:C.【点评】本题考查了勾股定理和正方形的性质,能熟记正方形的性质是解此题的关键,注意:正方形的每个角都是90°,正方形的四边都相等.2.(5分)商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a,最高销售限价b(b>a)以及实数x(0<x<1)确定实际销售价格c=a+x(b﹣a),这里x被称为乐观系数.经验表明,最佳乐观系数x恰好使得,据此可得,最佳乐观系数x的值等于()A.B.C.D.【分析】根据题设条件,由,知[x(b﹣a)]2=(b﹣a)2﹣x(b﹣a)2,由此能求出最佳乐观系数x的值.【解答】解:∵c﹣a=x(b﹣a),b﹣c=(b﹣a)﹣x(b﹣a),,∴[x(b﹣a)]2=(b﹣a)2﹣x(b﹣a)2,∴x2+x﹣1=0,解得x=,∵0<x<1,∴x=.故选:D.【点评】本题考查黄金分割的应用,解题时要注意一元二次方程的求解方法.3.(5分)如图,一组互相平行的直线a,b,c分别与直线l1,12交于点A,B,C,D,E,F,直线11,l2交于点O,则下列各式不正确的是()A.=B.=C.=D.=【分析】根据平行线分线段成比例定理逐个判断即可.【解答】解:A、∵直线a∥直线b∥直线c,∴=,正确,故本选项不符合题意;B、∵直线a∥直线b∥直线c,∴=,正确,故本选项不符合题意;C、∵直线a∥直线b∥直线c,∴=,正确,故本选项不符合题意;D、∵直线b∥直线c,∴△OEB∽△OFC,∴=,错误,故本选项符合题意;故选:D.【点评】本题考查了平行线分线段成比例定理,能灵活运用定理进行推理是解此题的关键.4.(5分)某校每位学生上、下学期各选择一个社团,下表为该校学生上、下学期各社团的人数比例.若该校上、下学期的学生人数不变,相较于上学期,下学期各社团的学生人数变化,下列叙述何者正确?()舞蹈社溜冰社魔術社上學期345下學期432A.舞蹈社不变,溜冰社减少B.舞蹈社不变,溜冰社不变C.舞蹈社增加,溜冰社减少D.舞蹈社增加,溜冰社不变【分析】若甲:乙:丙=a:b:c,则甲占全部的,乙占全部的,丙占全部的.【解答】解:由表得知上、下学期各社团人数占全部人数的比例如下:舞蹈社溜冰社魔術社上學期===下學期===∴舞蹈社增加,溜冰社不变.故选:D.【点评】本题考查了比例的性质:两内项之积等于两外项之积.5.(5分)甲、乙两地的实际距离是400千米,在比例尺为1:500000的地图上,甲乙两地的距离是()A.0.8cm B.8cm C.80cm D.800cm.【分析】设地图上,甲乙两地的距离是xcm,根据比例尺的定理列出方程,解之可得.【解答】解:设地图上,甲乙两地的距离是xcm,根据题意,得:=,解得:x=80,即地图上,甲乙两地的距离是80cm,故选:C.【点评】本题考查了比例线段,能够根据比例尺灵活计算,注意单位的换算问题.二、填空题(本大题共5小题,共25.0分)6.(5分)若(k≠0),则y=kx+k﹣2一定经过第三象限.【分析】利用比例的等比性质正确求得k的值,然后根据直线解析式中的k的值正确判断直线经过的象限.【解答】解:根据比例的等比性质,得k=,当a+b+c≠0时,k=2,∴直线解析式是y=2x,∴图象经过一、三象限.当a+b+c=0时,a+b=﹣c,∴k===﹣1,∴直线解析式是y=﹣x﹣3,∴图象经过二、三、四象限.综上所述,直线一定经过第三象限,故答案为:三.【点评】本题考查的是一次函数的图象与系数的关系,利用k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降,是解答此题的关键.7.(5分)把2米长的线段进行黄金分割,则分成的较长的线段长为﹣1.【分析】设分成的较长的线段长为x,根据黄金分割的定义得出方程2(2﹣x)=x2,求出方程的解即可.【解答】解:设分成的较长的线段长为x,则2(2﹣x)=x2,x2+2x﹣4=0,x=,x1=﹣1,x2=﹣﹣1(负数不符合题意,舍去),故答案为:﹣1.【点评】本题考查了黄金分割,能熟记黄金分割的定义是解此题的关键.8.(5分)如图,AD∥BE∥FC,它们依次交直线l1、l2于点A、B、C和点D、E、F,如果=,DF=7.5,那么DE的长为3.【分析】根据平行线分线段成比例定理得出比例式,再代入求出即可.【解答】解:∵AD∥BE∥FC,∴=,∵=,DF=7.5,∴=,解得:DE=3,故答案为:3.【点评】本题考查了平行线分线段成比例定理,能根据平行线分线段成比例定理得出比例式是解此题的关键.9.(5分)如图,在△ABC中,AC=BC,D为AB的中点,F为BC边上一点,连接CD、AF交干点E.若∠F AC=90°﹣3∠BAF,BF:AC=2:5,EF=2,则AB长为.【分析】如图,连接BE.设∠BAF=α.BF=2k,BC=CA=5k.首先证明∠ACE =∠BEF=∠BCD=2α,想办法求出k,再设DE=a,BD=b,理由勾股定理构建方程组解决问题即可;【解答】解:如图,连接BE.设∠BAF=α.BF=2k,BC=CA=5k.∵CA=CB,AD=DB,∴CD⊥AB,∠ACD=∠BCD,∴∠CDA=90°,EA=EB,∴∠EAB=∠EBA=α,∠BEF=2α,∵∠EAC+∠DAE+∠ACD=90°,∠F AC=90°﹣3∠BAF,∴∠ACD=∠BCD=2α=∠BEF,∵∠EBF=∠CBE,∴△EBF∽△CBE,∴==,∴BE=k,EC=,∵∠CEF=2α+∠CAE,∥EFC=2α+∠FBE,∵∠CAB=∠CBA,∠EAB=∠EBA,∴∠CAE=∠CBE,∴∠CEF=∠CFE,∴CE=CF,∴3k=,∴k=,∴BE=,BC=,设DE=a,BD=b,则有,解得a=,b=,∴AB=2b=2,故答案为2【点评】本题考查相似三角形的判定和性质、勾股定理、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会利用参数构建方程或方程组解决问题,属于中考填空题中的压轴题.10.(5分)如图,在三角形ABC中,D为BC的中点,AF=2BF,CE=3AE,连接CF交DE于P点,则的值为3.【分析】作EG∥CB交AB于G,交CF的延长线于H.根据EP:PD=EH:CD,设EG=m,求出EH,CD即可解决问题;【解答】解:作EG∥CB交AB于G,交CF的延长线于H.∵===,∴可以设EG=m,则BC=4m,∵AF=2BF,设BF=a,则AF=2a,∴AG=AB=a,FG=2a﹣a=a,∵=,∴=,∴HG=5m,∵=,CD=2m,EH=6m,∴==3,故答案为3.【点评】本题考查平行线分线段成比例定理,解题的关键是学会添加常用辅助线,学会利用参数解决问题,属于中考填空题中的压轴题.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,点D为△ABC内部一点,点E、F、G分别为线段AB、AC、AD上一点,且EG∥BD,GF∥DC.(1)求证:EF∥BC;(2)当时,求的值.【分析】(1)先根据相似比的性质得出=,=,故可得出=,由此即可得出结论;(2)先根据EF∥BC得出∠AEF=∠ABC,再由DG∥BD得出∠AEG=∠ABD,故可得出∠GEF=∠DBC,同理可得,∠GEF=∠DBC,故可得出△EGF∽△BDC根据相似三角形面积的比等于相似比的平方即可得出结论.【解答】解:(1)∵EG∥BD,∴=,∵GF∥DC,∴=,∴=,∴EF∥BC;(2)∵EF∥BC,∴∠AEF=∠ABC,∵EG∥BD,∴∠AEG=∠ABD,∴∠AEF﹣∠AEG=∠ABC﹣∠AED,即∠GEF=∠DBC,同理可得,∠GEF=∠DBC,∴△EGF∽△BDC,∵=,∴=,∴=()2=.【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.(10分)如图,已知△ABC中,AB=AC=,BC=4.线段AB的垂直平分线DF分别交边AB、AC、BC所在的直线于点D、E、F.(1)求线段BF的长;(2)求AE:EC的值.【分析】(1)作AH⊥BC于H,如图,利用等腰三角形的性质得BH=CH=BC =2,再利用勾股定理计算出AH=4,然后证明Rt△FBD∽Rt△ABH,再利用相似比计算BF和DF的长;(2)作CG∥AB交DF于G,如图,利用CG∥BD得到==,然后由CG∥AD,根据平行线分线段成比例定理得到AE:EC的值.【解答】解:(1)作AH⊥BC于H,如图,∵AB=AC=,∴BH=CH=BC=2,在Rt△ABH中,AH==4,∵DF垂直平分AB,∴BD=,∠BDF=90°∵∠ABH=∠FBD,∴Rt△FBD∽Rt△ABH,∴==,即==,∴BF=5,DF=2;(2)作CG∥AB交DF于G,如图,∵BF=5,BC=4,∴CF=1,∵CG∥BD,∴==,∵CG∥AD,∴===5.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.也考查了等腰三角形的性质和线段垂直平分线的性质.13.(10分)黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618.这个比值,被称为黄金分割数.我国著名数学家华罗庚普及并做出重要贡献的优选法中有一种0.618法也应用了黄金分割数.定义:点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点(如图1).如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.【分析】(1)利用等腰三角形的性质和三角形内角和定理可计算出∠ABC=∠C =72°,∠ABD=∠CBD=36°,∠BDC=72°,则可得到AD=BD=BC,然后根据相似三角形的判定方法易得△BDC∽△ABC,利用相似比得到BC2=CD•AC,于是有AD2=CD•AC,则可根据线段黄金分割点的定义得到结论;(2)设AD=x,则CD=AC﹣AD=1﹣x,由(1)的结论得到x2=1﹣x,然后解方程即可得到AD的长.【解答】(1)证明:∵AB=AC=1,∴∠ABC=∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=∠ABC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∴DA=DB,BD=BC,∴AD=BD=BC,易得△BDC∽△ABC,∴BC:AC=CD:BC,即BC2=CD•AC,∴AD2=CD•AC,∴点D是线段AC的黄金分割点;(2)设AD=x,则CD=AC﹣AD=1﹣x,∵AD2=CD•AC,∴x2=1﹣x,解得x1=,x2=,即AD的长为.【点评】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB 黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.14.(10分)如图1,我们已经学过:点C 将线段AB 分成两部分,如果,那么称点C 为线段AB 的黄金分割点.某校的数学拓展性课程班,在进行知识拓展时,张老师由黄金分割点拓展到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果,那么称直线l 为该图形的黄金分割线.如图2,在△ABC 中,∠A =36°,AB =AC ,∠C 的平分线交AB 于点D .(1)证明点D 是AB 边上的黄金分割点;(2)证明直线CD 是△ABC 的黄金分割线.【分析】(1)易证△BCD ∽△BAC ,则有=,再由BC =CD =AD 可得=,由此可得D 是AB 边上的黄金分割点;(2)设△ABC 的边AB 上的高为h ,则S △ADC =AD •h ,S △DBC =DB •h ,S △ABC =AB •h ,即可得到=,=.由(1)得=,即可知=,由此可得CD 是△ABC 的黄金分割线.【解答】解:(1)点D 是边AB 上的黄金分割点,理由如下:∵∠A =36°,AB =AC ,∴∠B =∠ACB =72°.∵CD 平分∠ACB ,∴∠ACD =∠DCB =36°,∴∠BDC =∠B =72°,∠ACD =∠A =36°,∴BC =DC =AD .∵∠A =∠BCD ,∠B =∠B ,∴△BCD ∽△BAC ,∴=.∴=.∴D是AB边上的黄金分割点;(2)直线CD是△ABC的黄金分割线,理由如下:设△ABC的边AB上的高为h,则S△ADC=AD•h,S△DBC=DB•h,S△ABC=AB•h,∴=,=.∵D是AB的黄金分割点,∴=,∴=.∴CD是△ABC的黄金分割线.【点评】本题主要考查了相似三角形的判定与性质、等腰三角形的判定与性质、三角形的面积公式,需要注意的是:当比例顺序不确定时,应分情况讨论,避免出现漏解的现象.15.(10分)如图,在△ABC中,EF∥CD,DE∥BC.(1)求证:AF:FD=AD:DB;(2)若AB=15,AD:BD=2:1,求DF的长.【分析】(1)利用平行线分线段成比例定理,由EF∥CD得到,由DE ∥BC得到,然后利用等量代换可得到结论;(2)根据比例的性质由AD:BD=2:1可计算出AD=10,则利用AF:FD=AD:DB得到AF=2DF,然后利用2DF+DF=10可计算出DF.【解答】(1)证明:∵EF∥CD,∴,∵DE∥BC,∴∴.(2)∵AD:BD=2:1,∴BD=AD,∴AD+AD=15,∴AD=10,∵AF:FD=AD:DB,∴AF:FD=2:1,∴AF=2DF,∵AF+DF=10,∴2DF+DF=10,∴DF=.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九上练习卷
1..下列语句正确的是( )
A.在 △ABC 和△A′B′C′中,∠B=∠B′=90°,∠A=30°,∠C′=60°, 则⊿ABC 和⊿A′B′C′不相似;
B.在⊿ABC 和⊿A′B′C′中,AB=5,BC=7,AC=8,A′C′=16,B′C′=14,A′B ′=10,则⊿ABC ∽⊿A′B′C′;
C.两个全等三角形不一定相似;
D.所有的菱形都相似 2、如图,在正三角形ABC 中,D 、E 分别在AC 、AB 上,且AC AD =3
1
,AE =BE ,则有( ) (A )△AED ∽△BED (B )△AED ∽△CBD (C )△AED ∽△ABD (D )△BAD ∽△BCD
3、已知一次函数y=2x+2与x 轴y 轴交于A 、B 两点,另一直线y=kx+3交x 轴正半轴于E 、交y 轴于F 点,如⊿AOB 与E 、F 、O 三点组成的三角形相似,那么k 值为( ) A 1.5 B 6 C 1.5或6 D 以上都不对
4、如图,在Rt ABC △内有边长分别为a ,b ,c 的三个正方形.则a ,b ,c 满足的关系式是( )
A .b a c =+
B .b ac =
C .2
2
2
b a
c =+ D .22b a c == 5、如图,点M 在BC 上,点N 在AM 上,CM=CN ,
CM
BM
AN AM =
,下列结论正确的是( ) A .∆ABM ∽∆ACB B .∆ANC ∽∆AMB
C .∆ANC ∽∆ACM
D .∆CMN ∽∆BCA
6、如图,DE 是△ABC 的中位线,F 是DE 的中点,BF 的延长线交AC 于点H ,则HE :AH 等于( )
+1
距离为 km 。
9、. 如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则该平行四边形的面积是_____________
第5题图
A
B
C
N
10、在□ABCD 中,E 在DC 上,若:1:2D E E C =,则:B F B E = . 11、如图,在平行四边形ABCD 中,M 、N 为AB 的三等分点,DM 、DN 分别交AC 于P 、Q 两点,则AP :PQ :QC= . 12、如图,将①∠BAD = ∠C ;②∠ADB = ∠CAB ;③
BC BD AB ⋅=2;④
DB AB AD CA =;⑤DA
AC
BA BC =
; ⑥
AC
DA
BA BC =
中的一个作为条件,另一个作为结论,组成一个真命题,则条件是__________,结论是_______.(注:填序号)
13、如图,Rt ∆ABC 中,AC ⊥BC ,CD ⊥AB 于D ,AC=8,BC=6,则AD=_________。
14、已知:AM ∶MD=4∶1,BD ∶DC=2∶3,则AE ∶
EC=_________。
15.在直角坐标中,已知点A(-2,0),B(0,4),C(0,3),过点C 的直线交x 轴于点D,使得以D,O,C 为顶点的三角形与⊿AOB 相似,这样的直线最多可以作____条.
16、如图,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论:
①AFC C ∠=∠;②DF CF =;③ADE FDB △∽△;④BFD CAF ∠=∠. 其中正确的结论是 (填写所有正确结论的序号).
17、⊿ABC 中,AD 、CE 是中线, ∠BAD=∠BCE,请猜想⊿ABC 的形状,并证明.
E
D
C
B A
18、如图已知AB 是O ⊙的直径,过点O 作弦BC 的平行线,交过点A 的切线AP 于点P ,连结AC .
(1)求证:ABC POA △∽△; (2)若2OB =,7
2
OP =
,求BC 的长.
19、如图,已知抛物线与x 交于A (-1,0)、E (3,0)两点,与y 轴交于点B (0,3)。
(1)求抛物线的解析式;
(2)设抛物线顶点为D ,求四边形AEDB 的面积;
(3)△AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。
20、如图14,在ABC △中,90BAC ∠=,AD 是BC 边上的高,E 是BC 边上的一个动点(不与B C ,重合),EF AB ⊥,EG AC ⊥,垂足分别为F G ,.
(1)求证:
EG CG
AD CD
=
; (2)FD 与DG 是否垂直?若垂直,请给出证明;若不垂直,请说明理由; (3)当AB AC =时,FDG △为等腰直角三角形吗?并说明理由.
21如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点, (1)求证:AC 2=AB •AD ; (2)求证:CE ∥AD ; (3)若AD =4,AB =6,求
的值.
F A
G
C
E
D B
图14
22、如图,△ABC 中,∠C =90°,AC =4,BC =3。
半径为1的圆的圆心P 以1个单位/s 的速度由点A 沿AC 方向在AC 上移动,设移动时间为t (单位:s ). (1)当t 为何值时,⊙P 与AB 相切;
(2)作PD ⊥AC 交AB 于点D ,如果⊙P 和线段BC 交于点E ,
证明:当t =16
5 s 时,四边形PDBE 为平行四边形.
23、在平面直角坐标系中,已知OA=12cm ,OB=6cm ,点P 从O 点开始沿OA 边向点A 以
1cm/s 的速度移动:点Q 从点B 开始沿BO 边向点O 以1cm/s 的速度移动,如果P 、Q 同时出发,用t(s)表示移动的时间(06t ≤≤),那么: (1)设△POQ 的面积为y ,求y 关于t 的函数解析式。
(2)当△POQ 的面积最大时,△ POQ 沿直线PQ 翻折 后得到△PCQ ,试判断点C 是否落在直线AB 上, 并说明理由。
(3)当t 为何值时, △POQ 与△AOB 相似?。