2015年陕西省咸阳市泾阳县七年级下学期数学期末试卷及解析答案
2015学年七年级(下)期末数学试题(含答案)
七年级(下)期末数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出正确的选项.注意可以用多种不同的方法来选取正确答案.1.下列各式的计算中,正确的是()A.﹣2﹣2=﹣4 B.(+1)0=0 C.(﹣)﹣3=27 D.(m2+1)0=12.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的一组对边上,如果∠1=25°,那么∠2的度数是()A.30°B.25°C.20°D.15°(第2题) (第5题)3.若3x=a,3y=b,则3x﹣2y等于()A.B.2ab C.a+D.4.若分式方程=2+有增根,则a的值为()A.4 B.2 C.1 D.05.如图是近年来我国年财政收入同比(与上一年比较)增长率的折线统计图,其中2008年我国财政收入约为61330亿元.下列命题:①2007年我国财政收入约为61330(1﹣19.5%)亿元;②这四年中,2009年我国财政收入最少;③2010年我国财政收入约为61330(1+11.7%)(1+21.3%)亿元.其中正确的有()A.3个B.2个C.1个D.0个6.计算1÷的结果是()A.﹣m2﹣2m﹣1 B.﹣m2+2m﹣1 C.m2﹣2m﹣1 D.m2﹣17.已知多项式ax+b与2x2﹣x+2的乘积展开式中不含x的一次项,且常数项为﹣4,则a b的值为()A.﹣2 B.2 C.﹣1 D.18.为保证某高速公路在2013年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x天,由题意列出的方程是()A.+=B.+=C.﹣=D.+=9.下列不等式变形中,一定正确的是()A.若ac>bc,则a>b B.若a>b,则ac2>bc2C.若ac2>bc2,则a>b D.若a>0,b>0,且,则a>b10.不等式组的解集是3<x<a+2,则a的取值范围是()A.a>1 B.a≤3 C.a<1或a>3 D.1<a≤3二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.分解因式:2x3﹣8xy2=.12.芝麻作为食品和药物,均广泛使用,经测算,一粒芝麻重量约有0.00000201kg,用科学记数法表示10粒芝麻的重量为.13.下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线a∥b,b∥c,则a∥c;(5)两条直线被第三条直线所截,同位角相等.其中正确的是.14.如果关于x的不等式(a﹣1)x>a+5和2x>4的解集相同,则a的值为.15.如果x2﹣2(m﹣1)x+m2+3是一个完全平方式,则m=.16.如果记y ==f (x ),并且f (1)表示当x =1时y 的值,即f (1)==;f ()表示当x =时y 的值,即f ()==;…那么f (1)+f (2)+f ()+f (3)+…+f (n +1)+f()= (结果用含n 的代数式表示).三、全面答一答(本题有8个小题,共66分.解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以) 17.解下列方程(组):(1) (2)﹣2=.18.计算:(1)()﹣1﹣4×(﹣2)﹣2+(﹣π+3.14)0﹣()﹣2(2)用简便方法计算:1252﹣124×126﹣2101×(﹣0.5)99.19.解不等式组,并从其解集中选取一个能使下面分式有意义的整数,代入求值.20.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.21.设b=ma是否存在实数m,使得(2a﹣b)2﹣(a﹣2b)(a+2b)+4a(a+b)能化简为2a2,若能,请求出满足条件的m值;若不能,请说明理由.22.某市为提高学生参与体育活动的积极性,2011年9月围绕“你最喜欢的体育运动项目(只写一项)”这一问题,对初一新生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数.(3)请将条形统计图补充完整.(4)若该市2011年约有初一新生21000人,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人.23.(1)已知a、b、c是△ABC的三边长,试判断代数式(a2+b2﹣c2)2与4a2b2的大小.(2)已知a、b、c是△ABC的三边长,且3a3+6a2b﹣3a2c﹣6abc=0,则△ABC是什么三角形?24.为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品,若购进A种纪念品10件,B 种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定拿出4000元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B钟纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少?参考答案一、仔细选一选1.解:A、﹣2﹣2=﹣,错误;B、(+1)0=1,错误;C、(﹣)﹣3=﹣27,错误;D、(m2+1)0=1,正确;故选D2.解:∵a∥b,∴∠1=∠3,∵∠2+∠3=45°,∴∠2=45°﹣∠3=45°﹣∠1=20°.故选C3.3x﹣2y=3x÷32y=3x÷32y=3x÷(3y)2=a÷b2=.故选A.4.解:已知方程去分母得:x=2(x﹣4)+a,解得:x=8﹣a,由分式方程有增根,得到x=4,即8﹣a=4,则a=4.故选:A5.解:①2007年的财政收入应该是,不是2007年我国财政收入约为61330(1﹣19.5%)亿元,所以①错.②因为是正增长所以2009年比2007年和2008年都高,所以②错.③2010年我国财政收入约为61330(1+11.7%)(1+21.3%)亿元.所以③正确.故选C.6.解:1÷=1××(m+1)(m﹣1)=﹣(m﹣1)2=﹣m2+2m﹣1.故选B.7.解:∵(ax+b)(2x2﹣x+2)=2ax3+(2b﹣a)x2+(2a﹣b)x+2b,又∵展开式中不含x的一次项,且常数项为﹣4,∴,解得:,∴a b=(﹣1)﹣2=1,选D.8.解:设规定的时间为x天,由题意得,+=.故选D.9.解:A.当c<0,不等号的方向改变.故此选项错误;B.当c=0时,符号为等号,故此选项错误;C.不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D.分母越大,分数值越小,故此选项错误.故选C.10.解:根据题意可知a﹣1≤3即a+2≤5,所以a≤3,又因为3<x<a+2,即a+2>3,所以a>1,所以1<a≤3,故选:D.二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.解:∵2x3﹣8xy2=2x(x2﹣4y2)=2x(x+2y)(x﹣2y).故答案为:2x(x+2y)(x﹣2y).12.解:0.00000201=2.01×10﹣6,故答案为:2.01×10﹣6.13.解:(1)在同一平面内,不相交的两条直线叫做平行线;故错误;(2)经过直线外一点,有且只有一条直线与已知直线平行;故错误;(3)在同一平面内,垂直于同一条直线的两直线平行;故错误;(4)直线a∥b,b∥c,则a∥c;故正确;(5)两条平行直线被第三条直线所截,同位角相等,故错误.其中正确的是(4).14.解:由2x>4得x>2,∵两个不等式的解集相同,∴由(a﹣1)x>a+5可得x>,∴=2,解得a=7.故答案为:7.15.解:∵x2﹣2(m﹣1)x+m2+3是一个完全平方式,∴(m﹣1)2=m2+3,即m2﹣2m+1=m2+3,解得:m=﹣1,故答案为:﹣116.解:∵根据题意,f(2)==,f()==;f(3)==,f()==;…f(n+1)=,f()==;∴f(1)+f(2)+f()+f(3)+…+f(n+1)+f()=+++++…++=+1+1+…+1=故答案为:+n.三、全面答一答(本题有8个小题,共66分.解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以)17.解:(1)方程组整理得:,①×6+②×5得:57x=﹣38,解得:x=﹣,把x=﹣代入①得:y=﹣,则方程组的解为;(2)去分母得:x﹣2x+6=3,解得:x=3,经检验x=3是增根,分式方程无解.18.解:(1)原式=2﹣4×+1﹣9=﹣7;(2)原式=1252﹣(125﹣1)×(125+1)﹣2×(﹣2×0.5)99=1252﹣1252+1+2=3.19.解:,由①得,x<2,由②得,x>﹣3,所以,不等式组的解集是﹣3<x<2,÷﹣=×﹣=﹣=,分式有意义,则x2﹣1≠0,3x≠0,解得x≠±1,x≠0,所以,使得分式有意义的整数只有﹣2,代入得:原式===.20.解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.21.解:不能化简为2a2,理由:∵设b=ma,∴(2a﹣b)2﹣(a﹣2b)(a+2b)+4a(a+b)=4a2﹣4ab+b2﹣a2+4b2+4ab+4a2=7a2+5b2=7a2+5(ma)2=7a2+5m2a2=(7+5m2)a2=2a2,故7+5m2=2,解得:5m2=﹣5,不合题意,错误.22.解:(1)100÷20%=500,∴本次抽样调查的样本容量是500;(2)∵360°×=43.2°,∴扇形统计图中“最喜欢足球运动”的学生数所对应的扇形圆心角度数为43.2°;(3)如图:(4)21000×=2520(人)全市本届学生中“最喜欢足球运动”的学生约有2520人;23.解:(1)(a2+b2﹣c2)2﹣4a2b2第11页(共11页)=(a 2+b 2﹣c 2+2ab )(a 2+b 2﹣c 2﹣2ab )=[(a +b )2﹣c 2][(a ﹣b )2﹣c 2]=(a +b +c )(a +b ﹣c )(a ﹣b ﹣c )(a ﹣b +c ),∵a ,b ,c 是三角形ABC 三边,∴a +b +c >0,a +b ﹣c >0,a ﹣b ﹣c <0,a ﹣b +c >0,∴(a +b +c )(a +b ﹣c )(a ﹣b ﹣c )(a ﹣b +C )<0,即值为负数,(a 2+b 2﹣c 2)2<4a 2b 2(2)3a 3+6a 2b ﹣3a 2c ﹣6abc =0,可得:a (a ﹣c )(a +2b )=0,所以a =c ,所以△ABC 是等腰三角形.24.解:(1)设我校购进一件A 种纪念品需要a 元,购进一件B 种纪念品需要b 元,由题意,得,∴解方程组得:答:购进一件A 种纪念品需要50元,购进一件B 种纪念品需要100元.(2)设我校购进A 种纪念品x 个,购进B 种纪念品y 个,由题意,得则,解得,解得:20≤y ≤25 ∵y 为正整数∴y =20,21,22,23,24,25答:共有6种进货方案;(3)设总利润为W 元,由题意,得W =20x +30y =20(200﹣2 y )+30y =﹣10y +4000(20≤y ≤25)∵﹣10<0,∴W 随y 的增大而减小,∴当y =20时,W 有最大值W 最大=﹣10×20+4000=3800(元)答:当购进A 种纪念品160件,B 种纪念品20件时,可获最大利润,最大利润是3800元.。
陕西初一初中数学期末考试带答案解析
陕西初一初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.﹣5的倒数是()A.5B.﹣5C.﹣D.2.据阿里巴巴实时数据显示,截至到2015年11月11日24:00,2015天猫“双11”全球狂欢节交易额超过912亿元,将912亿元用科学记数法表示为()A.9.12×1010B.9.12×109C.0.912×1010D.9.12×1083.下列调查适合抽样调查的是()A.对某社区的卫生死角进行调查B.对七年级(1)班40名同学的身高情况进行调查C.审核书稿中的错别字D.对中学生目前的睡眠情况进行调查4.用一平面去截如图5个几何体,能得到长方形截面的几何体的个数是()A.4B.3C.2D.15.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款不少于15元的有()A.40人B.32人C.20人D.12人6.下面方程的变形中,正确的是()A.3x﹣5=x+1移项,得3x﹣x=1﹣5B.+=1去分母,得4x+3x=1C.2(x﹣1)+4=x去括号,得2x﹣2+4=xD.﹣5x=15的两边同除以﹣5,得x=37.一个正方体其平面展开图如图所示,那么在该正方体中和“义”相对的字是()A.礼B.智C.信D.孝8.某商场购进一批服装,每件进价为100元,由于换季滞销,商场决定将这种服装按标价的7折销售,若打折后每件服装仍能获利5%,则该服装的标价是()A.150元B.140元C.130元D.120元9.如图,点C是线段AB上的点,点D是线段BC的中点,若AB=16cm,AC=10cm,则线段CD的长是()A.1cm B.2cm C.3cm D.4cm10.如图是一个“数值转换机”的示意图,若输入x,y的值分别为4,﹣2,则输出的结果是()A.15B.5C.﹣5D.﹣15二、填空题1.计算:1650′= °.2.若﹣3x2m﹣2y3与2x4y n+2是同类项,则2m﹣n= .3.若关于x的方程2x﹣3k=5(x﹣k)﹣14的解为x=2,则k= .4.用同样大小的黑色棋子按如图所示的规律摆放,摆第1个图形需要7枚棋子,摆第2个图形需要12枚棋子,…,按照这样的规律摆下去,摆第n个图形需要枚棋子.三、计算题1.计算:72÷(﹣2)3+(﹣)2×32﹣(﹣3)×4.2.一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.四、解答题1.解方程:=+x.2.先化简,再求值:2(5x2﹣4xy)+4(3y2+2xy)﹣(6x2﹣4y2),其中x=﹣2,y=﹣1.3.如图,已知线段a和b,直线AB和CD相交于点O,∠COB=90°,利用尺规,按下列要求作图:(1)在射线OC,OD上分别作线段OE,OF,使它们分别与线段a相等,在射线OA,OB上分别作线段OG,OH,使它们分别与线段b相等;(2)分别连接线段EG,GF,FH,HE,你得到了一个怎样的图形?(3)点G与点H之间的所有连线中,哪条最短?请说明理由.4.根据给出的数轴,回答下列问题:(1)写出点A表示的数的相反数和点B表示的数的绝对值;(2)将点A先向右移动1.5个单位长度,再向左移动5个单位长度,得到点C,在数轴上表示出点C,并写出点C表示的数.5.如图,OD是∠AOC的平分线,且∠BOC=2∠AOB,若∠AOC=120°,求∠BOD的度数.6.为了迎接春节,某小区计划购买A,B两种盆景共170盆摆放在道路的两旁,已知A种盆景每盆80元,B种盆景每盆60元,若购进A、B两种盆景刚好用去12200元,试求该小区购进A、B两种盆景各多少盆?7.某检修小组乘汽车沿南北走向的公路检修输电线路,约定向南为正,向北为负,某天从M地出发到收工时所走路径依次为(单位:千米):+10,﹣4,+2,﹣5,﹣2,+8,+5.(1)该检修小组收工时在M地什么方向,距M地多远?(2)若汽车行驶每千米耗油0.09升,则该汽车从M地出发到收工时共耗油多少升?8.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如图的不完整的条形统计图和扇形统计图(部分信息未给出).(1)求本次调查学生的人数;(2)补全条形统计图和扇形统计图;(3)计算扇形统计图中篮球项目对应的扇形圆心角的度数.9.甲、乙两家电器商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过4000元的电器,超出的金额按80%收取;乙商场规定:凡超过3000元的电器,超出的金额按90%收取,某顾客购买的电器价格是x(x>4000)元.(1)分别用含有x的代数式表示在甲、乙两家商场购买电器所付的费用;(2)当x=6000时,该顾客应选择哪一家商场购买更优惠?说明理由.(3)当x为何值时,在甲、乙两家商场购买所付的费用相同?陕西初一初中数学期末考试答案及解析一、选择题1.﹣5的倒数是()A.5B.﹣5C.﹣D.【答案】C【解析】根据乘积为1的两个数互为倒数,可得一个数的倒数.解:﹣5的倒数是﹣,故选:C.【考点】倒数.2.据阿里巴巴实时数据显示,截至到2015年11月11日24:00,2015天猫“双11”全球狂欢节交易额超过912亿元,将912亿元用科学记数法表示为()A.9.12×1010B.9.12×109C.0.912×1010D.9.12×108【答案】A【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将912亿用科学记数法表示为:9.12×1010.故选:A.【考点】科学记数法—表示较大的数.3.下列调查适合抽样调查的是()A.对某社区的卫生死角进行调查B.对七年级(1)班40名同学的身高情况进行调查C.审核书稿中的错别字D.对中学生目前的睡眠情况进行调查【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A、对某社区的卫生死角进行调查是事关重大的调查,适合普查,故A不符合题意;B、对七年级(1)班40名同学的身高情况进行调查,适合普查,故B不符合题意;C、审核书稿中的错别字,适合普查,故C不符合题意;D、对中学生目前的睡眠情况进行调查,调查范围广适合抽样调查,故D符合题意;故选:D.【考点】全面调查与抽样调查.4.用一平面去截如图5个几何体,能得到长方形截面的几何体的个数是()A.4B.3C.2D.1【答案】B【解析】根据长方体、圆柱、三棱柱、圆锥、球的形状判断即可,可用排除法.解:圆锥、球不可能得到长方形截面,故能得到长方形截面的几何体有:长方体、圆柱、三棱柱一共有3个.故选:B.【考点】截一个几何体.5.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款不少于15元的有()A.40人B.32人C.20人D.12人【答案】B【解析】利用频数分布直方图可得各捐款数段的人数,然后把后两组的人数相加即可.解:由频数分布直方图得后两组的捐款不少于15元,所以捐款不少于15元的有20+12=32(人).故选B.【考点】频数(率)分布直方图.6.下面方程的变形中,正确的是()A.3x﹣5=x+1移项,得3x﹣x=1﹣5B.+=1去分母,得4x+3x=1C.2(x﹣1)+4=x去括号,得2x﹣2+4=xD.﹣5x=15的两边同除以﹣5,得x=3【答案】C【解析】各项中方程变形得到结果,即可作出判断.解:A、3x﹣5=x+1移项,得3x﹣x=1+5,错误;B、+=1去分母,得4x+3x=12,错误;C、2(x﹣1)+4=x去括号,得2x﹣2+4=x,正确;D、﹣5x=15的两边除以﹣5,得x=﹣3,错误,故选C【考点】解一元一次方程.7.一个正方体其平面展开图如图所示,那么在该正方体中和“义”相对的字是()A.礼B.智C.信D.孝【答案】D【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“义”字相对的字是“孝”.故选:D.【考点】正方体相对两个面上的文字.8.某商场购进一批服装,每件进价为100元,由于换季滞销,商场决定将这种服装按标价的7折销售,若打折后每件服装仍能获利5%,则该服装的标价是()A.150元B.140元C.130元D.120元【答案】A【解析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.解:设该服装标价为x元,由题意,得0.7x﹣100=100×5%,解得:x=150.故选:A.【考点】一元一次方程的应用.9.如图,点C是线段AB上的点,点D是线段BC的中点,若AB=16cm,AC=10cm,则线段CD的长是()A.1cm B.2cm C.3cm D.4cm【答案】C【解析】根据题意求出BC的长,根据线段中点的性质解答即可.解:∵AB=16cm,AC=10cm,∴BC=6cm,∵点D是线段BC的中点,∴CD=BC=3cm,故选:C.【考点】两点间的距离.10.如图是一个“数值转换机”的示意图,若输入x,y的值分别为4,﹣2,则输出的结果是()A.15B.5C.﹣5D.﹣15【答案】D【解析】将x=4,y=﹣2代入﹣3x+2和2y﹣1中,求得结果后相加即得出输出结果.解:﹣3x+2=﹣3×4+2=﹣12+2=﹣10,2y﹣1=2×(﹣2)﹣1=﹣4﹣1=﹣5,﹣10+(﹣5)=﹣15.故答案为:﹣15.【考点】代数式求值.二、填空题1.计算:1650′= °.【答案】27.5【解析】根据小单位化大单位除以进率,可得答案.解:1650′=1650÷60=27.5°,故答案为:27.5.【考点】度分秒的换算.2.若﹣3x2m﹣2y3与2x4y n+2是同类项,则2m﹣n= .【答案】5【解析】根据同类项是字母项相同且相同字母的指数也相同,可得m、n的值,根据代数式求值,可得答案.解:由﹣3x2m﹣2y3与2x4y n+2是同类项,得2m﹣2=4,n+2=3.解得m=3,n=1.2m﹣n=2×3﹣1=5,故答案为:5.【考点】同类项.3.若关于x的方程2x﹣3k=5(x﹣k)﹣14的解为x=2,则k= .【答案】﹣4【解析】把x=2代入方程计算即可求出k的值.解:把x=2代入方程得:4﹣3k=5(2﹣k)﹣14,去括号得:4﹣3k=10﹣5k﹣14,移项合并得:2k=﹣8,解得:k=﹣4,故答案为:﹣4.【考点】一元一次方程的解.4.用同样大小的黑色棋子按如图所示的规律摆放,摆第1个图形需要7枚棋子,摆第2个图形需要12枚棋子,…,按照这样的规律摆下去,摆第n个图形需要枚棋子.【答案】5n+2.【解析】由图形可看出后面的图形比它的前一个图形多5个棋子,而第n个图形就比第一个图形多5×(n﹣1)个棋子,加上7整理即可得出结论.解:通过观察图形①②③④,发现后面的图形比它的前一个图形多5个棋子,而第一个图形有7个棋子,∴第n个图形中的棋子数为7+5+5+…+5=7+5×(n﹣1)=2+5+5n﹣5=5n+2.故答案为:5n+2.【考点】规律型:图形的变化类.三、计算题1.计算:72÷(﹣2)3+(﹣)2×32﹣(﹣3)×4.【答案】5【解析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解:原式=72÷(﹣8)+×32+12=﹣9+2+12=5.【考点】有理数的混合运算.2.一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.【答案】见解析【解析】由已知条件可知,主视图有3列,每列小正方数形数目分别为2,3,1;左视图有3列,每列小正方形数目分别为2,3,2.据此可画出图形.解:如图所示:【考点】作图-三视图;由三视图判断几何体.四、解答题1.解方程:=+x.【答案】x=.【解析】按照解一元一次方程的步骤依次去分母、去括号、移项、合并同类项、系数化为1可得方程的解.解:去分母,得:2(x﹣1)=5(x﹣2)+10x,去括号,得:2x﹣2=5x﹣10+10x,移项,得:2x﹣5x﹣10x=﹣10+2,合并同类项,得:﹣13x=﹣8,系数化为1,得:x=.【考点】解一元一次方程.2.先化简,再求值:2(5x2﹣4xy)+4(3y2+2xy)﹣(6x2﹣4y2),其中x=﹣2,y=﹣1.【答案】42【解析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解:原式=10x2﹣8xy+12y2+8xy﹣3x2+2y2=7x2+14y2,当x=﹣2,y=﹣1时,原式=28+14=42.【考点】整式的加减—化简求值.3.如图,已知线段a和b,直线AB和CD相交于点O,∠COB=90°,利用尺规,按下列要求作图:(1)在射线OC,OD上分别作线段OE,OF,使它们分别与线段a相等,在射线OA,OB上分别作线段OG,OH,使它们分别与线段b相等;(2)分别连接线段EG,GF,FH,HE,你得到了一个怎样的图形?(3)点G与点H之间的所有连线中,哪条最短?请说明理由.【答案】(1)见解析;(2)四边形EGFH是菱形;(3)GH最短,因为两点之间线段最短.【解析】(1)利用圆规分别在OC,OD上截取OE=OF=a,在OA,OB上分别截取线段OG=OH=b;(2)根据对角线互相垂直且平分的四边形是菱形可得四边形EGFH是菱形;(3)根据两点之间线段最短可得GH最短.解:(1)如图所示:(2)如图所示:四边形EGFH是菱形;(3)GH最短,因为两点之间线段最短.【考点】作图—复杂作图.4.根据给出的数轴,回答下列问题:(1)写出点A表示的数的相反数和点B表示的数的绝对值;(2)将点A先向右移动1.5个单位长度,再向左移动5个单位长度,得到点C,在数轴上表示出点C,并写出点C表示的数.【答案】(1)点A表示的数的相反数是﹣2.5,点B表示的数的绝对值是2;(2)点C表示的数是﹣1.【解析】(1)根据数轴可以得到点A表示的数和点B表示的数,从而可以得到点A表示的数的相反数和点B表示的数的绝对值;(2)根据点A先向右移动1.5个单位长度,再向左移动5个单位长度,得到点C,可以得到点C表示的数,从而可以在数轴上表示出点C,并得到点C表示的数.解:(1)∵由数轴可得,点A表示的数是2.5,点B表示的数是﹣2,∴点A表示的数的相反数是﹣2.5,点B表示的数的绝对值是2;(2)∵点A先向右移动1.5个单位长度,再向左移动5个单位长度,得到点C,点A表示的数是2.5,∴点C表示的数是:2.5+1.5﹣5=﹣1,∴点C表示的数是﹣1,在数轴上表示出点C,如下图所示,点C表示的数是﹣1.【考点】数轴.5.如图,OD是∠AOC的平分线,且∠BOC=2∠AOB,若∠AOC=120°,求∠BOD的度数.【答案】20°.【解析】先根据角平分线的定义求出∠DOC的度数,再由∠BOC+∠AOB=120°,∠BOC=2∠AOB得出∠AOB的度数,根据∠BOD=∠BOC﹣∠DOC即可得出结论.解:∵OD是∠AOC的平分线,∠AOC=120°,∴∠DOC=∠AOC=60°.∵∠BOC+∠AOB=120°,∠BOC=2∠AOB,∴3∠AOB=120°,∴∠AOB=40°,∠BOC=80°,∴∠BOD=∠BOC﹣∠DOC=20°.【考点】角平分线的定义.6.为了迎接春节,某小区计划购买A,B两种盆景共170盆摆放在道路的两旁,已知A种盆景每盆80元,B种盆景每盆60元,若购进A、B两种盆景刚好用去12200元,试求该小区购进A、B两种盆景各多少盆?【答案】该小区购进A种盆景100盆,购进B种盆景70盆.【解析】设该小区购进A种盆景x盆,则购进B种盆景(170﹣x)盆,利用两种盆景的总费用列方程得到80x+60(170﹣x)=12200,然后解方程求出x,再计算170﹣x即可.解:设该小区购进A种盆景x盆,购进B种盆景(170﹣x)盆,根据题意得80x+60(170﹣x)=12200,解得x=100,则170﹣x=70.答:该小区购进A种盆景100盆,购进B种盆景70盆.【考点】一元一次方程的应用.7.某检修小组乘汽车沿南北走向的公路检修输电线路,约定向南为正,向北为负,某天从M地出发到收工时所走路径依次为(单位:千米):+10,﹣4,+2,﹣5,﹣2,+8,+5.(1)该检修小组收工时在M地什么方向,距M地多远?(2)若汽车行驶每千米耗油0.09升,则该汽车从M地出发到收工时共耗油多少升?【答案】(1)该检修小组收工时在M地的南边,距M地14千米.(2)汽车从M地出发到收工时共耗油3.24升.【解析】(1)将各数据相加,得出结论为+14,根据约定向南为正,向北为负,即可得知结论;(2)汽车的油耗根总路程有关,将各数据的绝对值相加乘以油耗,即可得出结论.解:(1)(+10)+(﹣4)+(+2)+(﹣5)+(﹣2)+(+8)+(+5)=10﹣4+2﹣5﹣2+8+5=+14.答:该检修小组收工时在M地的南边,距M地14千米.(2)|+10|+|﹣4|+|+2|+|﹣5|+|﹣2|+|+8|+|+5|=36(千米),36×0.09=3.24(升).答:汽车从M地出发到收工时共耗油3.24升.【考点】正数和负数.8.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如图的不完整的条形统计图和扇形统计图(部分信息未给出).(1)求本次调查学生的人数;(2)补全条形统计图和扇形统计图;(3)计算扇形统计图中篮球项目对应的扇形圆心角的度数.【答案】(1)40(人);(2)见解析(3)135°.【解析】(1)根据喜欢跳绳的有10人,所占的百分比是25%,据此即可求得总人数;(2)根据百分比的意义即可求得喜欢足球的人数和喜欢跑步的人数,进而求得喜欢篮球的人所占的百分比和喜欢跑步的人所占的百分比,完成统计图;(3)利用360°乘以对应的百分比即可求解.解:(1)本次调查的总人数是10÷25%=40(人);(2)喜欢足球的人数是40×30%=12(人),跑步的人数是40﹣10﹣12﹣15=3(人).喜欢篮球的人所占的百分比是:=37.5%,喜欢跑步的人所占的百分比是:=7.5%.(3)扇形统计图中篮球项目对应的扇形圆心角的度数是:360°×37.5%=135°.【考点】条形统计图;扇形统计图.9.甲、乙两家电器商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过4000元的电器,超出的金额按80%收取;乙商场规定:凡超过3000元的电器,超出的金额按90%收取,某顾客购买的电器价格是x(x>4000)元.(1)分别用含有x的代数式表示在甲、乙两家商场购买电器所付的费用;(2)当x=6000时,该顾客应选择哪一家商场购买更优惠?说明理由.(3)当x为何值时,在甲、乙两家商场购买所付的费用相同?【答案】(1)在甲商场所付的费用:0.8x+800(元),在乙甲商场所付的费用:0.9x+300(元);(2)在甲商场购买更优惠;(3)当x为5000时,在甲、乙两家商场购买所付的费用相同.【解析】(1)在甲商场所付的费用=4000+超过4000元的部分×80%,在乙甲商场所付的费用=3000+超过3000元的部分×90%;(2)把x=6000代入(1)中的两个代数式即可;(3)由题意得:在甲商场所付的费用=在乙甲商场所付的费用,根据等量关系列出方程,再解即可.解:(1)在甲商场所付的费用:4000+(x﹣4000)×80%=0.8x+800(元),在乙甲商场所付的费用:3000+(x﹣3000)×90%=0.9x+300(元);(2)当x=6000时,在甲商场所付的费用:0.8x+800=0.8×6000+800=5600(元),在乙甲商场所付的费用:0.9x+300=0.9×6000+300=5700(元),∵5700>5600,∴在甲商场购买更优惠;(3)根据题意可得:0.8x+800=0.9+300,解得:x=5000,答:当x为5000时,在甲、乙两家商场购买所付的费用相同.【考点】一元一次方程的应用;列代数式;代数式求值.。
咸阳市泾阳县七年级下第一次月考数学试卷含答案解析
2016-2017学年陕西省咸阳市泾阳县七年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)如图,∠1和∠2是一对()A.同位角B.内错角C.同旁内角D.对顶角2.(3分)计算(a3)2的结果是()A.a B.a5C.a6D.a93.(3分)下列各式中能用平方差公式计算的是()A.(﹣x+y)(x﹣y)B.(x﹣y)(y﹣x)C.(x+y)(x﹣2y)D.(x+y)(﹣x+y)4.(3分)下列计算正确的是()A.(a﹣b)2=a2﹣b2 B.(a+b)2=a2+b2C.(﹣a﹣b)2=a2﹣2ab+b2D.(a﹣b)2=a2﹣2ab+b25.(3分)若3n=2,3m=5,则32m﹣n的值是()A.B.C.﹣1 D.56.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向右拐40°,第二次向左拐140°B.第一次向右拐40°,第二次向右拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向左拐40°,第二次向右拐40°7.(3分)下列图形中,能由∠1=∠2得到AB∥CD的是()A.B.C.D.8.(3分)若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为()A.m=5,n=6 B.m=1,n=﹣6 C.m=1,n=6 D.m=5,n=﹣69.(3分)一个正方形的边长增加2cm,它的面积就增加了24cm2,这个正方形原来的边长是()A.5cm B.6cm C.8cm D.10cm10.(3分)如图,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.无法确定二、填空题(每小题3分,共24分)11.(3分)当x2+kx+25是一个完全平方式,则k的值是.12.(3分)如果一个角的补角是150°,那么这个角的余角的度数是度.13.(3分)某种细胞的直径为0.00000000000105米,这个数用科学记数法表示为.14.(3分)已知:x+y=﹣6,x﹣y=5,则x2﹣y2=.15.(3分)(1﹣)(1﹣)(1﹣)(1﹣)┅(1﹣)(1﹣)=.16.(3分)计算:8100×(﹣0.125)101=.17.(3分)已知8×2m×16m=211,则m的值为.18.(3分)①(m+n)()=﹣m2+n2;②a2+ab+b2+()=(a+b)2.三、解答题(共66分)19.(24分)计算(1)(2a+3b)(2a﹣3b)﹣(a﹣3b)2(2)x(x﹣y)﹣(2x+y)(x﹣y)(3)(﹣x2y)2•(﹣x3y2)3(4)(2x+y﹣3z)(2x+y+3z)(5)[(x+y)2﹣(x﹣y)2]÷(2xy)(6).20.(6分)用乘法公式计算(1)20012﹣2000×2002(2)1982.21.(10分)化简求值(1)[(a+2b)2﹣a(a+3b)]÷b,其中(2)(2a﹣3b)(3b+2a)﹣(a﹣2b)2,其中a=﹣2,b=3.22.(7分)看图填空:如图,∵∠1=∠2∴∥,∵∠2=∴∥,同位角相等,两直线平行∵∠3+∠4=180°∴∥,∴AC∥FG,.23.(5分)若一个的补角是这个角余角的3倍,则这个角是多少度?24.(14分)乘法公式的探究及应用.图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)请用两种不同的方法求图2中阴影部分的面积.方法1:方法2:(2)观察图2请你写出下列三个代数式:(a+b)2,(a﹣b)2,ab之间的等量关系.;(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=5,ab=﹣6,求:a2+b2=②(a+b)2=②已知的值.2016-2017学年陕西省咸阳市泾阳县七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)如图,∠1和∠2是一对()A.同位角B.内错角C.同旁内角D.对顶角【解答】解:∠1和∠2是一对内错角,故选:B.2.(3分)计算(a3)2的结果是()A.a B.a5C.a6D.a9【解答】解:(a3)2=a3×2=a6.故选C.3.(3分)下列各式中能用平方差公式计算的是()A.(﹣x+y)(x﹣y)B.(x﹣y)(y﹣x)C.(x+y)(x﹣2y)D.(x+y)(﹣x+y)【解答】解:A、不存在互为相反数的项,故此选项错误;B、不存在互为相反数的项,故此选项错误;C、y与﹣2y,系数绝对值不相等,故此选项错误;D、符合平方差公式的要求,此选项正确;故选;D.4.(3分)下列计算正确的是()A.(a﹣b)2=a2﹣b2 B.(a+b)2=a2+b2C.(﹣a﹣b)2=a2﹣2ab+b2D.(a﹣b)2=a2﹣2ab+b2【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,故本选项错误;B、应为(a+b)2=a2+2ab+b2,故本选项错误;C、应为(﹣a﹣b)2=a2+2ab+b2,故本选项错误;D、(a﹣b)2=a2﹣2ab+b2,故本选项正确.故选D.5.(3分)若3n=2,3m=5,则32m﹣n的值是()A.B.C.﹣1 D.5【解答】解:32m﹣n=(3m)2÷3n=25÷2=.故选A.6.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向右拐40°,第二次向左拐140°B.第一次向右拐40°,第二次向右拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向左拐40°,第二次向右拐40°【解答】解:当第一次向右拐40°时(如图1),∵两次拐弯后,行驶方向与原来的方向相同,∴∠2=∠1=40°,且向左拐,∴A、B错误;当第一次向左拐40°时(如图2),∵两次拐弯后,行驶方向与原来的方向相同,∴∠4=∠3=40°,且向右拐,∴C错误,D正确.故选D.7.(3分)下列图形中,能由∠1=∠2得到AB∥CD的是()A.B.C.D.【解答】解:由∠1=∠2得到AB∥CD的是D选项,∵∠1=∠2,∠3=∠2,∴∠1=∠3,∴AB∥CD.故选:D.8.(3分)若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为()A.m=5,n=6 B.m=1,n=﹣6 C.m=1,n=6 D.m=5,n=﹣6【解答】解:∵(y+3)(y﹣2)=y2﹣2y+3y﹣6=y2+y﹣6,∵(y+3)(y﹣2)=y2+my+n,∴y2+my+n=y2+y﹣6,∴m=1,n=﹣6.故选B.9.(3分)一个正方形的边长增加2cm,它的面积就增加了24cm2,这个正方形原来的边长是()A.5cm B.6cm C.8cm D.10cm【解答】解:设原来正方形的边长为xcm,增加后边长为(x+2)cm,根据题意得:(x+2)2﹣x2=24,解得:x=5,则这个正方形原来的边长为5cm.故选A10.(3分)如图,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.无法确定【解答】解:第一个图形的阴影部分的面积=a2﹣b2;第二个图形是梯形,则面积是(2a+2b)•(a﹣b)=(a+b)(a﹣b).则a2﹣b2=(a+b)(a﹣b).故选:C.二、填空题(每小题3分,共24分)11.(3分)当x2+kx+25是一个完全平方式,则k的值是±10.【解答】解:∵x2+kx+25=x2+kx+52,∴kx=±2•x•5,解得k=±10.故答案为:±10.12.(3分)如果一个角的补角是150°,那么这个角的余角的度数是60度.【解答】解:180°﹣150°=30°,90°﹣30°=60°.故答案为:60°.13.(3分)某种细胞的直径为0.00000000000105米,这个数用科学记数法表示为 1.05×10﹣12.【解答】解:0.00000000000105=1.05×10﹣12.故答案为:1.05×10﹣1214.(3分)已知:x+y=﹣6,x﹣y=5,则x2﹣y2=﹣30.【解答】解:∵x+y=﹣6,x﹣y=5,∴x2﹣y2=(x+y)(x﹣y)=﹣6×5=﹣30.故答案为:﹣30.15.(3分)(1﹣)(1﹣)(1﹣)(1﹣)┅(1﹣)(1﹣)=.【解答】解:原式=×××…××=.16.(3分)计算:8100×(﹣0.125)101=﹣0.125.【解答】解:8100×(﹣0.125)101=[8×(﹣0.125)]100×(﹣0.125)=(﹣1)100×(﹣0.125)=﹣0.125,故答案为:﹣0.125.17.(3分)已知8×2m×16m=211,则m的值为.【解答】解:8×2m×16m=211,23×2m×24m=211,22+m+4m=211,2+m+4m=11,m=,故答案为:.18.(3分)①(m+n)(﹣m+n)=﹣m2+n2;②a2+ab+b2+(ab)=(a+b)2.【解答】解:①∵﹣m2+n2=(m+n)(﹣m+n ),∴(m+n)(﹣m+n )=﹣m2+n2;②∵(a+b)2=a2+2ab+b2,∴a2+2ab+b2=(a+b)2,∴a2+ab+b2+ab=(a+b)2.三、解答题(共66分)19.(24分)计算(1)(2a+3b)(2a﹣3b)﹣(a﹣3b)2(2)x(x﹣y)﹣(2x+y)(x﹣y)(3)(﹣x2y)2•(﹣x3y2)3(4)(2x+y﹣3z)(2x+y+3z)(5)[(x+y)2﹣(x﹣y)2]÷(2xy)(6).【解答】解:(1)原式=4a2﹣9b2﹣a2+6ab﹣9b2=3a2+6ab﹣18b2;(2)原式=x2﹣xy﹣2x2+xy+y2=﹣x2+y2;(3)x4y2•(﹣x9y6)=﹣x13y8;(4)原式=(2x+y)2﹣9z2=4x2+4xy+y2﹣9z2;(5)原式=[x2+2xy+y2﹣x2+2xy﹣y2]÷(2xy)=4xy÷(2xy)=2;(6)原式=1﹣8﹣64=﹣71.20.(6分)用乘法公式计算(1)20012﹣2000×2002(2)1982.【解答】解:(1)原式=(2000+1)2﹣2000(2000+2)=20002+2×2000+1﹣20002﹣2000×2=1;(2)原式=(200﹣2)2=2002﹣2×2×200+22=4000﹣800+4=3204.21.(10分)化简求值(1)[(a+2b)2﹣a(a+3b)]÷b,其中(2)(2a﹣3b)(3b+2a)﹣(a﹣2b)2,其中a=﹣2,b=3.【解答】解:(1)原式=(a2+4ab+4b2﹣a2﹣3ab)÷b=(ab+4b2)÷b=a+4b,当a=﹣1,b=时,原式=﹣1+2=1;(2)原式=4a2﹣9b2﹣a2+4ab﹣4b2=3a2﹣13b2+4ab,当a=﹣2,b=3时,原式=12﹣117﹣24=﹣129.22.(7分)看图填空:如图,∵∠1=∠2∴AC∥DE,内错角相等,两直线平行∵∠2=∠4∴DE∥FG,同位角相等,两直线平行∵∠3+∠4=180°∴DE∥FG,同旁内角互补,两直线平行∴AC∥FG,平行于同一直线的两直线平行.【解答】解:∵∠1=∠2∴AC∥DE,内错角相等,两直线平行;∵∠2=∠4∴DE∥FG,同位角相等,两直线平行∵∠3+∠4=180°∴DE∥FG,同旁内角互补,两直线平行∴AC∥FG,平行于同一直线的两直线平行.故答案为:AC;DE;内错角相等,两直线平行;∠4;DE;FG;DE;FG;同旁内角互补,两直线平行;平行于同一直线的两直线平行.23.(5分)若一个的补角是这个角余角的3倍,则这个角是多少度?【解答】解:设这个角为x,则补角为(180°﹣x),余角为(90°﹣x),由题意得,3(90°﹣x)=180°﹣x,解得:x=45,即这个角为45°.24.(14分)乘法公式的探究及应用.图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)请用两种不同的方法求图2中阴影部分的面积.方法1:(m﹣n)2方法2:(m+n)2﹣4mn(2)观察图2请你写出下列三个代数式:(a+b)2,(a﹣b)2,ab之间的等量关系.(a﹣b)2=(a+b)2﹣4ab;(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=5,ab=﹣6,求:a2+b2=13②(a+b)2=1②已知的值.【解答】解:(1)阴影部分是正方形,正方形的边长是m﹣n,即阴影部分的面积是(m﹣n)2,又∵阴影部分的面积S=(m+n)2﹣4mn,故答案为:(m﹣n)2,(m+n)2﹣4mn.(2)(a﹣b)2=(a+b)2﹣4ab,故答案为:(a﹣b)2=(a+b)2﹣4ab.(3)①∵a﹣b=5,ab=﹣6,∴(a﹣b)2=52∴a2﹣2ab+b2=25,a2+b2=25+2ab=25﹣12=13,故答案为:13.②(a+b)2=(a﹣b)2+4ab=52+4×(﹣6)=1.故答案为:1.③===(32﹣2)2﹣2=47.。
2015-2016年陕西省咸阳市泾阳县中片七年级(下)期中数学试卷(解析版)
2015-2016学年陕西省咸阳市泾阳县中片七年级(下)期中数学试卷一、选择题:(每小题3分,共30分)1.(3分)下列各式计算正确的是()A.(a5)2=a7B.2x﹣2=C.3a2•2a3=6a6D.a8÷a2=a62.(3分)同一平面内的三条直线a,b,c,若a⊥b,b∥c,则a与c()A.平行B.垂直C.相交D.重合3.(3分)下列各式能用平方差公式计算的是()A.(﹣3+x)(3﹣x)B.(﹣a﹣b)(﹣b+a)C.(﹣3x+2)(2﹣3x)D.(3x+2)(2x﹣3)4.(3分)体育课上,老师测量跳远成绩的依据是()A.平行线间的距离相等B.两点之间,线段最短C.垂线段最短D.两点确定一条直线5.(3分)弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下面的关系:下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm6.(3分)以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.2cm,3cm,6cm7.(3分)如图,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.150°B.80°C.100°D.115°8.(3分)已知a2+b2=2,a+b=1,则ab的值为()A.﹣1B.﹣C.﹣D.39.(3分)等腰三角形的一边长为5cm,另一边长为6cm,那么它的周长为()A.16cm B.17cm C.16cm,17cm D.11cm 10.(3分)三角形三条高线所在直线交于三角形外部的是()A.直角三角形B.钝角三角形C.锐角三角形D.内角为30°、80二、填空:(每小题3分,共24分)11.(3分)如果x2+kxy+9y2是一个完全平方式,那么k的值是.12.(3分)已知一个角的补角为132°,求这个角的余角.13.(3分)已知△ABC≌△DEF,且△ABC的三边长分别为3,4,5,则△DEF 的周长为cm.14.(3分)如图,已知AE∥BD,∠1=3∠2,∠2=28°.求∠C=.15.(3分)一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发小时,快车追上慢车行驶了千米,快车比慢车早小时到达B地.16.(3分)∠1与∠2互余,∠2与∠3互补,∠1=50°,那么∠3=.17.(3分)如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.18.(3分)一个原子的质量为0.000 000 000 000 000 000 000 000 095千克,请用科学记数法表示.三.解答题:(19题每小题20分,共20分20题9分)19.(20分)计算(1)(x+2y)(x﹣2y)+(x+1)(x﹣1)(2)(2x﹣y)2﹣4(x﹣y)(x+2y)(3)(2x2y)3•(﹣7xy2)÷14x4y3(4)1232﹣124×122.20.(9分)化简求值:[(xy+2)(xy﹣2)﹣2x2y2+4]÷(xy),其中x=10,.21.(8分)已知:∠α.请你用直尺和圆规画一个∠BAC,使∠BAC=∠α.(要求:不写作法,但要保留作图痕迹,且写出结论)22.(10分)如图,已知AD⊥BC,EF⊥BC,∠1=∠2.求证:DG∥BA.证明:∵AD⊥BC,EF⊥BC (已知)∴∠EFB=∠ADB=90°(垂直的意义)∴EF∥AD∴∠1=∠BAD又∵∠1=∠2 (已知)∴∠2=∠BAD∴..23.(10分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.24.(9分)一辆汽车油箱内有油48升,从某地出发,每行1km,耗油0.6升,如果设剩油量为y(升),行驶路程为x(千米).(1)写出y与x的关系式;(2)这辆汽车行驶35km时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这车辆在中途不加油的情况下最远能行驶多少千米?2015-2016学年陕西省咸阳市泾阳县中片七年级(下)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)下列各式计算正确的是()A.(a5)2=a7B.2x﹣2=C.3a2•2a3=6a6D.a8÷a2=a6【解答】解:A、选项属于幂的乘方,法则为:底数不变,指数相乘.(a5)2=a5×2=a10,错误;B、2x﹣2中2是系数,只能在分子,错误;C、选项是两个单项式相乘,法则为:系数,相同字母分别相乘.3a2•2a3=(3×2)•(a2•a3)=6a5,错误;D、选项属于同底数幂的除法,法则为:底数不变,指数相减a8÷a2=a8﹣2=a6.故选:D.2.(3分)同一平面内的三条直线a,b,c,若a⊥b,b∥c,则a与c()A.平行B.垂直C.相交D.重合【解答】解:如图所示:∵b∥c,∴∠1=∠2,又∵a⊥b,∴∠1=90°,∴∠1=∠2=90°,即a⊥c.故选:B.3.(3分)下列各式能用平方差公式计算的是()A.(﹣3+x)(3﹣x)B.(﹣a﹣b)(﹣b+a)C.(﹣3x+2)(2﹣3x)D.(3x+2)(2x﹣3)【解答】解:能用平方差公式计算的是(﹣a﹣b)(﹣b+a).故选:B.4.(3分)体育课上,老师测量跳远成绩的依据是()A.平行线间的距离相等B.两点之间,线段最短C.垂线段最短D.两点确定一条直线【解答】解:体育课上,老师测量跳远成绩的依据是垂线段最短.故选:C.5.(3分)弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下面的关系:下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm【解答】解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项正确;B、弹簧不挂重物时的长度为10cm,故B选项错误;C、物体质量每增加1kg,弹簧长度y增加0.5cm,故C选项正确;D、由C知,y=10+0.5x,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D选项正确;故选:B.6.(3分)以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.2cm,3cm,6cm【解答】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形;B、4+6>8,能够组成三角形;C、5+6<12,不能组成三角形;D、2+3<6,不能组成三角形.故选:B.7.(3分)如图,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.150°B.80°C.100°D.115°【解答】解:∵矩形ABCD沿EF对折,∴∠BFE=∠2,∴∠BFE=(180°﹣∠1)=×(180°﹣50°)=65°,∵AD∥BC,∴∠AEF+∠BFE=180°,∴∠AEF=180°﹣65°=115°.故选:D.8.(3分)已知a2+b2=2,a+b=1,则ab的值为()A.﹣1B.﹣C.﹣D.3【解答】解:(a+b)2=a2+b2+2ab,∵a2+b2=2,a+b=1,∴12=2+2ab,∴ab=﹣.故选:B.9.(3分)等腰三角形的一边长为5cm,另一边长为6cm,那么它的周长为()A.16cm B.17cm C.16cm,17cm D.11cm【解答】解:当等腰三角形的腰长是5cm时,周长是:5+5+6=16cm;当等腰三角形的腰长是6cm时,周长是5+6+6=17cm.故选:C.10.(3分)三角形三条高线所在直线交于三角形外部的是()A.直角三角形B.钝角三角形C.锐角三角形D.内角为30°、80【解答】解:由题意知,如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是钝角三角形.故选:B.二、填空:(每小题3分,共24分)11.(3分)如果x2+kxy+9y2是一个完全平方式,那么k的值是±6.【解答】解:∵(x±3y)2=x2±6xy+9y2=x2+kxy+9y2,∴k=±6.故本题答案为±6.12.(3分)已知一个角的补角为132°,求这个角的余角42°.【解答】解:设这个角为x,则补角为(180°﹣x),余角为(90°﹣x),由题意得,180°﹣x=132°,解得:x=48°,∴90°﹣48°=42°;故答案为:42°.13.(3分)已知△ABC≌△DEF,且△ABC的三边长分别为3,4,5,则△DEF 的周长为12cm.【解答】解:∵△ABC的三边长分别为3,4,5,△ABC≌△DEF,∴△DEF的三边长分别为3,4,5,∴△DEF的周长为3+4+5=12cm,故答案为:12.14.(3分)如图,已知AE∥BD,∠1=3∠2,∠2=28°.求∠C=56°.【解答】解:∵AE∥DB,∴∠1=∠3=3∠2,∵∠2+∠C=∠3,∴∠2+∠C=3∠2,∴∠C=2∠2,∵∠2=28°.∴∠C=56°,故答案为:56°.15.(3分)一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发2小时,快车追上慢车行驶了276千米,快车比慢车早4小时到达B地.【解答】解:由图象直接可得出:一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发2小时,快车追上慢车行驶了276千米,快车比慢车早4小时到达B地.故答案为:2,276,4.16.(3分)∠1与∠2互余,∠2与∠3互补,∠1=50°,那么∠3=140°.【解答】解:∵∠1与∠2互余,∠1=50°,∴∠2=90°﹣∠1=90°﹣50°=40°,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣40°=140°.故答案为:140°.17.(3分)如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=180°.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为:180°.18.(3分)一个原子的质量为0.000 000 000 000 000 000 000 000 095千克,请用科学记数法表示9.5×10﹣26.【解答】解:0.000 000 000 000 000 000 000 000 095=9.5×10﹣26,故答案为:9.5×10﹣26.三.解答题:(19题每小题20分,共20分20题9分)19.(20分)计算(1)(x+2y)(x﹣2y)+(x+1)(x﹣1)(2)(2x﹣y)2﹣4(x﹣y)(x+2y)(3)(2x2y)3•(﹣7xy2)÷14x4y3(4)1232﹣124×122.【解答】解:(1)(x+2y)(x﹣2y)+(x+1)(x﹣1)=x2﹣4y2+x2﹣1=2x2﹣4y2﹣1;(2)(2x﹣y)2﹣4(x﹣y)(x+2y)=4x2﹣4xy+y2﹣4(x2+2xy﹣xy﹣2y2)=9y2﹣8xy;(3)(2x2y)3•(﹣7xy2)÷14x4y3=﹣4x3y2;(4)1232﹣124×122=1232﹣(123+1)(123﹣1)=1232﹣(1232﹣1)=1.20.(9分)化简求值:[(xy+2)(xy﹣2)﹣2x2y2+4]÷(xy),其中x=10,.【解答】解:原式=(x2y2﹣4﹣2x2y2+4)÷(xy)=(﹣x2y2)÷(xy)=﹣xy,当x=10,y=﹣时,原式=﹣10×(﹣)=.21.(8分)已知:∠α.请你用直尺和圆规画一个∠BAC,使∠BAC=∠α.(要求:不写作法,但要保留作图痕迹,且写出结论)【解答】解:如图所示:,∠BAC即为所求.22.(10分)如图,已知AD⊥BC,EF⊥BC,∠1=∠2.求证:DG∥BA.证明:∵AD⊥BC,EF⊥BC (已知)∴∠EFB=∠ADB=90°(垂直的意义)∴EF∥AD同位角相等,两直线平行∴∠1=∠BAD两直线平行,同位角相等又∵∠1=∠2 (已知)∴∠2=∠BAD等量代换∴DG∥BA.内错角相等,两直线平行.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠EFB=∠ADB=90°,∴EF∥AD(同位角相等,两直线平行),∴∠1=∠BAD(两直线平行,同位角相等),∵∠1=∠2,∴∠2=∠BAD(等量代换),∴DG∥BA(内错角相等,两直线平行),故答案为:同位角相等,两直线平行,两直线平行,同位角相等,等量代换,DG∥BA,内错角相等,两直线平行.23.(10分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.【解答】解:∵AD是BC边上的高,∠B=42°,∴∠BAD=48°,∵∠DAE=18°,∴∠BAE=∠BAD﹣∠DAE=30°,∵AE是∠BAC的平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=78°.24.(9分)一辆汽车油箱内有油48升,从某地出发,每行1km,耗油0.6升,如果设剩油量为y(升),行驶路程为x(千米).(1)写出y与x的关系式;(2)这辆汽车行驶35km时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这车辆在中途不加油的情况下最远能行驶多少千米?【解答】解:(1)y=﹣0.6x+48;(2)当x=35时,y=48﹣0.6×35=27,∴这辆车行驶35千米时,剩油27升;当y=12时,48﹣0.6x=12,解得x=60,∴汽车剩油12升时,行驶了60千米.(3)令y=0时,则0=﹣0.6x+48,解得x=80(千米).故这车辆在中途不加油的情况下最远能行驶80千米.。
2015七年级(下)期末数学试卷附答案
七年级(下)期末数学试卷一、精心选一选,一锤定音!(本题10小题,每小题3分,共30分,每小题只有一个选项是正确的)(请将正确的填在后面的答题栏内)1.下列各数中,是无理数的是()A.B.3.14 C.D.2.如图,直线AB∥CD,与直线EF分别交于M,N,则图中与∠END相等的角(∠END除外)的个数为()A.1 B.2 C.3 D.43.点(﹣2015,2015)在()A.第一象限B.第二象限C.第三象限D.第四象限4.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣5.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.3﹣x>3﹣y C.2x>2y D.﹣6.要反映某种股票的涨跌情况,最好选择()A.条形统计图B.折线统计图C.扇形统计图D.列表7.把不等式组的解集表示在数轴上,下列选项正确的是()A.B. C.D.8.下列命题错误的有()①实数与数轴上的点一一对应;②无限小数就是无理数;③直线外一点到这条直线的垂线段叫做点到直线的距离;④两条直线被第三条直线所截,同旁内角互补.A.1个B.2个C.3个D.4个9.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a10.如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°二、耐心填空,准确无误(每小题3分,共计18分)11.已知实数x、y满足+|y+3|=0,则x+y的值为.12.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成组.13.如图,已知AB∥CD∥EF,∠x=80°,∠z=25°,则∠y=.14.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.15.若方程组只有四个整数解,则实数a的取值范围.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2015的坐标是.三、用心做一做,显现你的能力.(本大题共8个小题,共72分)17.3××﹣||1)解方程组(2)解不等式组.1)如图,若∠1=∠2,则AB∥CD,试判断命题的真假:(填“真”或“假”).(2)若上述命题为真命题,请说明理由,若上述命题为假命题,请你再添加一条件,使该命题成为真命题,并说明理由.20.解不等式(2x+1)(3x﹣2)>0时,根据有理数乘法法则“两数相乘,同号得正”有①,或②,解不等式①,得x>;解不等式②,得x<,则不等式(2x+1)(3x﹣2)>0的解集为x>或x<,请参照例题,解不等式<0.21.如图,已知△ABC平移后得到△A1B1C1,点A(﹣1,3)平移后得到A1(﹣4,2),(1)写出B,C的坐标:B(,),C(,).(2)画出△ABC,并指出平移规律;(3)求△ABC的面积.22.某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有人,并补全条形统计图;(2)在扇形统计图中,m=,n=,表示区域C的圆心角为度;(3)全校学生中喜欢篮球的人数大约有多少?23.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案与试题解析一、精心选一选,一锤定音!(本题10小题,每小题3分,共30分,每小题只有一个选项是正确的)(请将正确的填在后面的答题栏内)1.下列各数中,是无理数的是()A.B.3.14 C.D.考点:无理数.分析:根据无理数是无限不循环小数,可得答案.解答:解:A、=2是有理数,故A错误;B、3.14是有理数,故B错误;C、=2是有理数,故C错误;D、=2是无理数,故D正确;故选:D.点评:本题考查了无理数,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.如图,直线AB∥CD,与直线EF分别交于M,N,则图中与∠END相等的角(∠END除外)的个数为()A.1 B.2 C.3 D.4考点:平行线的性质.分析:先根据平行线的性质得出∠END=∠EMD,再由对顶角相等得出∠END=∠CNF,∠EMB=∠AMN,由此可得出结论.解答:解:∵直线AB∥CD,∴∠END=∠EMD.∵∠END=∠CNF,∠EMB=∠AMN,∴∠END=∠CNF=∠EMB=∠AMN.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.点(﹣2015,2015)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:首先根据2015>0,﹣2015<0,可得点的横坐标小于0,纵坐标大于0,然后根据每个象限的点的横坐标、纵坐标的正负,可得点在第二象限,据此解答即可.解答:解:∵2015>0,﹣2015<0,∴点的横坐标小于0,纵坐标大于0,∴点在第二象限,故选:B.点评:此题主要考查了点的坐标,以及象限的特征和判断,解答此题的关键是要明确:建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限,坐标轴上的点不属于任何一个象限,要明确每个象限的点的横坐标、纵坐标的正负.4.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣考点:二元一次方程的解.专题:计算题.分析:把x与y的值代入方程计算即可求出a的值.解答:解:把代入方程得:8﹣3a=7,解得:a=.故选C.点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.3﹣x>3﹣y C.2x>2y D.﹣考点:不等式的性质.分析:A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.B:首先根据不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,判断出﹣x<﹣y;然后根据不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,可得3﹣x<3﹣y,据此判断即可.C:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.D:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.解答:解:∵x>y,∴x﹣3>y﹣3,∴选项A正确;∵x>y,∴﹣x<﹣y,∴3﹣x<3﹣y,∴选项B错误;∵x>y,∴2x>2y,∴选项C正确;∵x>y,∴﹣,∴选项D正确.故选:B.点评:此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.6.要反映某种股票的涨跌情况,最好选择()A.条形统计图B.折线统计图C.扇形统计图D.列表考点:统计图的选择.分析:根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.解答:解:要反映某种股票的涨跌情况,最好选择折线统计图,故选:B.点评:本题考查的是统计图的选择,利用扇形统计图、折线统计图、条形统计图各自的特点来判断是解题关键.7.把不等式组的解集表示在数轴上,下列选项正确的是()A.B. C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:本题的关键是先解不等式组,然后再在数轴上表示.解答:解:由(1)得x>﹣1,由(2)得x≤1,所以﹣1<x≤1.故选B.点评:本题考查一元一次不等式组的解集及在数轴上的表示方法.8.下列命题错误的有()①实数与数轴上的点一一对应;②无限小数就是无理数;③直线外一点到这条直线的垂线段叫做点到直线的距离;④两条直线被第三条直线所截,同旁内角互补.A.1个B.2个C.3个D.4个考点:命题与定理.分析:根据数轴上的点与实数的关系对①进行判断;根据无理数的定义对②进行判断;根据点到直线的距离的定义对③进行判断;根据平行线的性质对④进行判断.解答:解:实数与数轴上的点一一对应,所以①为真命题;无限不循环小数是无理数,所以②为假命题;直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以③为假命题;两条平行直线被第三条直线所截,同旁内角互补,所以④为假命题.故选C.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a考点:实数.分析:A、根据平方运算的特点即可判定;B、根据平方根的性质即可判定;C、根据绝对值的性质即可判定;D、根据实数的绝对值的性质进行即可判定.解答:解:A、实数﹣a2是负数,a=0时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、|﹣a|一定不一定是正数,a=0时不成立,故选项错误;D、实数﹣a的绝对值不一定是a,a为负数时不成立,故选项错误.故选B.点评:本题考查的是实数的分类及二次根式、绝对值的性质,解答此题时要注意0既不是正数,也不是负数.10.如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°考点:平行线的性质.分析:过点C作CG∥AB,过点D作DH∥EF,根据两直线平行,内错角相等可得∠A=∠ACG,∠CDH=∠DCG,两直线平行,同旁内角互补可得∠EDH=180°﹣∠E,然后表示出∠C整理即可得解.解答:解:如图,过点C作CG∥AB,过点D作DH∥EF,则∠A=∠ACG,∠EDH=180°﹣∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠C=∠ACG+∠CDH=∠A+∠D﹣(180°﹣∠E),∴∠A﹣∠C+∠D+∠E=180°.故选C.点评:本题考查了平行线的性质,此类题目难点在于过拐点作平行线.二、耐心填空,准确无误(每小题3分,共计18分)11.已知实数x、y满足+|y+3|=0,则x+y的值为﹣2.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:由题意得,x﹣1=0,y+3=0,解得x=1,y=﹣3,所以,x+y=1+(﹣3)=﹣2.故答案为:﹣2.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成10组.考点:频数(率)分布表.分析:求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.解答:解:143﹣50=93,93÷10=9.3,所以应该分成10组.故答案为:10.点评:本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.13.如图,已知AB∥CD∥EF,∠x=80°,∠z=25°,则∠y=125°.考点:平行线的性质.分析:先根据AB∥CD,∠x=80°,∠z=25°得出∠CEF的度数,再由CD∥EF即可得出∠y的度数.解答:解:∵AB∥CD,∠x=80°,∠z=25°,∴∠z+∠CEF=∠x=80°,∴∠CEF=80°﹣25°=55°.∵CD∥EF,∴∠y=180°﹣55°=125°.故答案为:125°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.14.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是20元和2元.考点:二元一次方程组的应用.分析:通过理解图形可知本题存在两个等量关系,即每件T恤价格×2+每瓶矿泉水的价格×2=44,每件T恤价格+每瓶矿泉水的价格×3=26.根据这两个等量关系可列出方程组.解答:解:设每件T恤价格和每瓶矿泉水的价格分别为x元,y元,则,解得.故每件T恤和每瓶矿泉水的价格分别是20元和2元.故答案为:20,2.点评:考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.15.若方程组只有四个整数解,则实数a的取值范围﹣3<a≤﹣2.考点:一元一次不等式组的整数解.分析:首先解不等式组,根据不等式组只有四个整数解,即可确定a的范围.解答:解:,解①得:x≥a,解②得:x<2.则不等式组的解集是:a≤x<2,则不等式组的整数解是:1,0,﹣1,﹣2.则﹣3<a≤﹣2.故答案是:﹣3<a≤﹣2.点评:本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2015的坐标是(504,504).考点:规律型:点的坐标.分析:观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律.解答:解:2015÷4=503…3,∴顶点A2015与顶点A3所在的象限相同,其坐标为:横坐标是503+1=504,纵坐标是503+1=504,∴A2015(504,504).故答案为:(504,504).点评:本题主要考查对正方形的性质,坐标与图形性质及点的坐标等知识点的理解和掌握,能根据已知找出规律是解此题的关键.三、用心做一做,显现你的能力.(本大题共8个小题,共72分)17.3××﹣||考点:实数的运算.分析:本题涉及绝对值、二次根式化简、三次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3×(2﹣)×﹣(2﹣)=4﹣2﹣2+=2﹣.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、三次根式、绝对值等考点的运算.1)解方程组(2)解不等式组.考点:解二元一次方程组;解一元一次不等式组.专题:计算题.分析:(1)方程组利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:(1),①+②得:3x=6,即x=2,把x=2代入①得:y=2,则方程组的解为;(2),由①得:x>1,由②得:x≤2,则不等式组的解集为1<x≤2.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1)如图,若∠1=∠2,则AB∥CD,试判断命题的真假:假(填“真”或“假”).(2)若上述命题为真命题,请说明理由,若上述命题为假命题,请你再添加一条件,使该命题成为真命题,并说明理由.考点:命题与定理;平行线的判定与性质.分析:(1)利用平行线的判定方法进而判断即可;(2)利用平行线的判定方法求出即可.解答:解:(1)若∠1=∠2,则AB∥CD,是假命题;故答案为:假;(2)加条件:BE∥FD,∴∠EBD=∠FDN,又∵∠1=∠2,∴∠ABD=∠CDN,∴AB∥CD.点评:此题主要考查了命题与定理以及平行线的判定,正确把握平行线的判定方法是解题关键.20.解不等式(2x+1)(3x﹣2)>0时,根据有理数乘法法则“两数相乘,同号得正”有①,或②,解不等式①,得x>;解不等式②,得x<,则不等式(2x+1)(3x﹣2)>0的解集为x>或x<,请参照例题,解不等式<0.考点:解一元一次不等式组.专题:阅读型.分析:根据题中的解题方法可把原不等式化为①,或②,然后分别解两个不等式组,再得到原不等式的解集.解答:解:根据题意得①,或②,解不等式①,得﹣<x<;解不等式②无解,所以原不等式的解集为﹣<x<.点评:本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.21.如图,已知△ABC平移后得到△A1B1C1,点A(﹣1,3)平移后得到A1(﹣4,2),(1)写出B,C的坐标:B(﹣5,2),C(﹣2,﹣2).(2)画出△ABC,并指出平移规律;(3)求△ABC的面积.考点:作图-平移变换.分析:(1)根据直角坐标系的特点写出各点的坐标;(2)根据题意可得,△ABC向左平移3个单位,向下平移1个单位得到△A1B1C1,作出△ABC;(3)用△ABC所在的矩形的面积减去三个小三角形的面积即可.解答:解;(1)由图可得,B(﹣5,2),C(﹣2,﹣2);(2)所作图形如图所示:△ABC向左平移3个单位,向下平移1个单位得到△A1B1C1;(3)S△ABC=5×4﹣×1×2﹣×3×4﹣×3×5=20﹣1﹣6﹣7.5=5.5.故答案为;﹣5,2,﹣2,﹣2.点评:本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.22.某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有100人,并补全条形统计图;(2)在扇形统计图中,m=30,n=10,表示区域C的圆心角为144度;(3)全校学生中喜欢篮球的人数大约有多少?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用B组频数除以其所占的百分比即可求得样本容量;(2)用A组人数除以总人数即可求得m值,用D组人数除以总人数即可求得n值;(3)用总人数乘以D类所占的百分比即可求得全校喜欢篮球的人数;解答:解:(1)观察统计图知:喜欢乒乓球的有20人,占20%,故被调查的学生总数有20÷20%=100人,喜欢跳绳的有100﹣30﹣20﹣10=40人,条形统计图为:(2)∵A组有30人,D组有10人,共有100人,∴A组所占的百分比为:30%,D组所占的百分比为10%,∴m=30,n=10;表示区域C的圆心角为×360°=144°;(3)∵全校共有2000人,喜欢篮球的占10%,∴喜欢篮球的有2000×10%=200人.点评:本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.23.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.考点:一元一次不等式组的应用;二元一次方程组的应用.专题:方案型;图表型.分析:(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.解答:解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.点评:解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组:甲件数+乙件数=160;甲总利润+乙总利润=1100.甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.考点:坐标与图形性质;解二元一次方程组;平行线的性质;三角形的面积.分析:(1)根据非负数的性质得到a=﹣b,a﹣b+4=0,解得a=﹣2,b=2,则A(﹣2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算.解答:解:(1)∵(a+b)2≥0,≥0,∴a=﹣b,a﹣b+4=0,∴a=﹣2,b=2,∵CB⊥AB∴A(﹣2,0),B(2,0),C(2,2)∴三角形ABC的面积=×4×2=4;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(﹣2,0)、C(2,2)代入得,解得,∴直线AC的解析式为y=x+1,∴G点坐标为(0,1),∴S△PAC=S△APG+S△CPG=|t﹣1|•2+|t﹣1|•2=4,解得t=3或﹣1,∴P点坐标为(0,3)或(0,﹣1).点评:本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.也考查了非负数的性质.。
2015年新人教版七年级数学下册期末试卷5
2015年七年级(下)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)(2011•北海)点P(2,﹣3)所在的象限为()A .第一象限B.第二象限C.第三象限D.第四象限2.(3分)(2014春•岑溪市期末)如图,已知∠1=∠2,则AB∥CD的根据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角相等,两直线平行D.两直线平行,同位角相等3.(3分)(2010•怀柔区二模)不等式2x>4的解集在数轴上表示为()A .B.C.D.4.(3分)(2014春•岑溪市期末)已知a<b,则下列式子正确的是()A .a+5>b+5 B.3a>3b C.﹣5a>﹣5b D.>5.(3分)(2014春•岑溪市期末)不等式组的解集是的()A .﹣3<x<﹣2 B.x<﹣2 C.x<﹣3 D.无解6.(3分)(2014春•岑溪市期末)下列说法正确的是()A.25的平方根是5 B.(﹣4)2的平方根是4C.±4是64的立方根D.﹣8的立方根是﹣27.(3分)(2014春•岑溪市期末)不等式的解集在数轴上表示出来是()A .B.C.D.8.(3分)(2014春•岑溪市期末)2014年中考已经结束,市教科研所随机抽取1000名学生试卷进行调查分析,这个问题的样本是()A. 1000 B. 1000名C.1000名考生的数学试卷D. 1000名学生9.(3分)(2014春•岑溪市期末)下列调查中,适合用全面调查的是()A.了解某班同学立定跳远的情况B.了解一批炮弹的杀伤半径C.了解某种品牌奶粉中含三聚氰胺的百分比D.了解全国青少年喜欢的电视节目10.(3分)(2014春•岑溪市期末)设“●”“▲”“■”表示三种不同的物体,现用天平称称了两次,情况如图所示,那么●▲■这三种物体按质量从大到小的顺序排列()A .■●▲B.■▲●C.▲●■D.▲■●11.(3分)(2009•福州)二元一次方程组的解是()A .B.C.D.12.(3分)(2014春•岑溪市期末)如果点M(3a﹣9,1﹣a)是第三象限的整数点,则M的坐标为()A.(﹣3,﹣1)B.(﹣2,﹣1)C.(﹣6,0)D.(0,﹣4)二、填空题(每小题3分,共18分)13.(3分)(2014春•岑溪市期末)在平面直角坐标系中,将点P(1,3)向下平移2个单位后的点的坐标为.14.(3分)(2009•遂宁)把不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是.15.(3分)(2014春•范县期末)在方程2x+y=5中,用x的代数式表示y,得y=.16.(3分)(2014春•岑溪市期末)求式子的值:=.17.(3分)(2014春•岑溪市期末)今年5月11日是母亲节,赵勇同学想买双鞋孝敬母亲,而母亲只告诉他自己的脚长是24,那么赵同学该买码.(已知用x表示脚长,用y表示鞋码,则有2x﹣y=10)18.(3分)(2008•泰州)用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次的.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长度为acm,则a的取值范围是.三、解答题(46分)19.(6分)(2014春•岑溪市期末)计算:﹣﹣.20.(6分)(2014春•岑溪市期末)解方程组.21.(6分)(2014春•岑溪市期末)解不等式5x+15>4x﹣13,并把它的解集在数轴上表示出来.22.(6分)(2014春•岑溪市期末)解不等式组.23.(6分)(2014春•天门期末)已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.24.(8分)(2014春•岑溪市期末)新华社北京5月22日电,5月22日7时50分许,有2两辆无牌汽车在乌鲁木齐市沙依巴克区公园北街的一个早市冲撞群众,此后2辆车发生爆炸起火.截至发稿时已造成31人死亡,90余人受伤.中共中央总书记、国家主席、中央军委主席习近平得知消息后,立即作出重要批示,要求迅速侦破案件,从严惩处暴恐分子;及时组织救治受伤群众,安抚受害者家属,全面加强社会面巡控和重点部位防控,严防发生连锁反应.对暴恐活动和恐怖分子必须警钟长鸣、重拳出击、持续保持严打高压态势,全力维护社会稳定.并开展为期一年严打暴恐行为,以新疆为主战场,对于此次“乌鲁木齐5.22暴恐案”某校准备开展一个爱国主义及民族团结教育活动,在学生中做了一次抽样调查,并把调查结果分为三类:A、知道“乌鲁木齐5.22暴恐案”B、知道“乌鲁木齐5.22暴恐案”,并表示强烈愤慨C、不知道“乌鲁木齐5.22暴恐案”如图是根据调查结果绘制的部分统计图,根据提供的信息回答问题:(1)已知A类学生占抽样调查学生数的30%,则抽样调查的学生有多少人?(2)计算B类学生的人数并根据计算补全统计图;(3)如果该校共有2000人,是估计该校有多少学生知道“乌鲁木齐5.22暴恐案”事件,并表示强烈愤慨.25.(8分)(2014春•岑溪市期末)今年5月份我市连续遭遇强降雨的袭击,受灾严重,现将300吨救灾物资运往某灾区,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车按载重量且不超载的条件下,把300吨救灾物资装运完,问:在以确定调用5辆A型车的前提下至少还需要调用B型车多少辆?2015年七年级(下)期末数学试卷参考答案一、选择题(每小题3分,共36分)1.D 2.B 3.B 4.C 5.C 6.D 7.A 8.C 9.A 10.B 11.C 12.A二、填空题(每小题3分,共18分)13.(1,1)14.x>1 15.5-2x 16.4 17.39 18.3<a≤3.5三、解答题(46分)19.20.21.22.23.24.25.。
咸阳市七年级下学期期末数学试题题及答案
咸阳市七年级下学期期末数学试题题及答案一、选择题1.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角2.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE3.如图所示图形中,把△ABC 平移后能得到△DEF 的是( )A .B .C .D .4.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x 张制作盒身,y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是( )A .181016x y x y +=⎧⎨=⎩B .1821016x y x y +=⎧⎨⨯=⎩C .1810216x y x y +=⎧⎨=⨯⎩D .181610x y x y +=⎧⎨=⎩ 5.从边长为a 的大正方形板挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证的公式为( )A .()222a b a b -=-B .()2222a b a ab b +=++C .()2222a b a ab b -=-+D .()()22a b a b a b +-=-6.观察下列等式: 133=,239=,3327=,4381=,53243=,63729=,732187=,试利用上述规律判断算式234202033333+++++…结果的末位数字是( ) A .0 B .1 C .3 D .77.下列四个等式从左到右的变形是因式分解的是 ( )A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x+=+ 8.如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC 中AC 边上的高是( )A .CFB .BEC .AD D .CD9.下列各式从左到右的变形中,是因式分解的为( )A .ab +ac +d =a (b +c )+dB .(x +2)(x ﹣2)=x 2﹣4C .6ab =2a ⋅3bD .x 2﹣8x +16=(x ﹣4)2 10.若x 2+kx +16是完全平方式,则k 的值为( )A .4B .±4C .8D .±8 二、填空题11.分解因式:m 2﹣9=_____.12.等式01a =成立的条件是________.13.已知a+b=5,ab=3,求:(1)a 2b+ab 2; (2)a 2+b 2.14.计算:x (x ﹣2)=_____15.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________.16.若x a y b =⎧⎨=⎩是二元一次方程2x ﹣3y ﹣5=0的一组解,则4a ﹣6b =_____. 17.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.18.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩的x 与y 互为相反数,则m 的值为_____. 19.已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限.20.已知m 为正整数,且关于x ,y 的二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,则m 的值为_______. 三、解答题21.已知关于x 、y 的二元一次方程组21322x y x y k +=⎧⎪⎨-=-⎪⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若()2421y x +=,求k 的值; (3)若14k ≤,设364m x y =+,且m 为正整数,求m 的值. 22.要说明(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立;(2)小王说:可以将其转化为两数和的平方来说明等式成立;(3)小丽说:可以构造图形,通过计算面积来说明等式成立;23.因式分解:(1)3()6()x a b y b a ---(2)222(1)6(1)9y y ---+24.已知a +a 1-=3, 求(1)a 2+21a (2)a 4+41a 25.如图,在△ABC 中,∠ACB =90°,∠ABC 与∠BAC 的角平分线相交于点P ,连接CP ,过点P 作DE ⊥CP 分别交AC 、BC 于点D 、E ,(1)若∠BAC =40°,求∠APB 与∠ADP 度数;(2)探究:通过(1)的计算,小明猜测∠APB =∠ADP ,请你说明小明猜测的正确性(要求写出过程).26.观察下列等式,并回答有关问题:3322112234+=⨯⨯; 333221123344++=⨯⨯; 33332211234454+++=⨯⨯; … (1)若n 为正整数,猜想3333123n +++⋅⋅⋅+= ;(2)利用上题的结论比较3333(),()()f x x g x x ==与25055的大小. 27.定义:若实数x ,y 满足22x y t =+,22y x t =+,且x ≠y ,则称点M (x ,y )为“好点”.例如,点(0,-2)和 (-2,0)是“好点”.已知:在直角坐标系xOy 中,点P (m ,n ).(1)P 1(3,1)和P 2(-3,1)两点中,点________________是“好点”.(2)若点P (m ,n )是“好点”,求m +n 的值.(3)若点P 是“好点”,用含t 的代数式表示mn ,并求t 的取值范围.28.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.【参考答案】***试卷处理标记,请不要删除1.C解析:C【分析】根据同旁内角的定义可判断.【详解】∵∠1和∠2都在直线c的下侧,且∠1和∠2在直线a、b之内∴∠1和∠2是同旁内角的关系故选:C.【点睛】本题考查同旁内角的理解,紧抓定义来判断.2.B解析:B【解析】【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB∥CE.【详解】解:∵∠A=∠ACE,∴AB∥CE(内错角相等,两直线平行).故选:B.【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.3.A解析:A【分析】根据平移的概念判断即可,注意区分图形的平移和旋转.【详解】根据平移的概念,平移后的图形与原来的图形完全重合.A是通过平移得到;B通过旋转得到;C通过旋转加平移得到;D通过旋转得到.故选A【点睛】本题主要考查图形的平移,特别要注意区分图形的旋转和平移.4.B解析:B【分析】⨯=盒底的个数;(2)制作盒身根据题意可知,本题中的相等关系是:(1)盒身的个数2=,再列出方程组即可.的白铁皮张数+制作盒底的白铁皮张数18解:设用x 张制作盒身,y 张制作盒底,根据题意得:1821016x y x y+=⎧⎨⨯=⎩. 故选:B .【点睛】此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”. 5.D解析:D【分析】分别表示出图甲和图乙中阴影部分的面积,二者相等,从而可得答案.【详解】解:图甲中阴影部分的面积为:22a b -, 图乙中阴影部分的面积为:()()()1()4=22a b a b a b a b -+⨯⨯⨯+-, 甲乙两图中阴影部分的面积相等 22()()a b a b a b ∴-=+-∴可以验证成立的公式为22()()a b a b a b +-=-故选:D .【点睛】本题考查了平方差公式的几何背景,属于基础题型,比较简单.6.A解析:A【分析】观察可以发现3n 的末位数字为4个一循环,故相加后末位数字为定值,而2020是4的整数倍,即可求解.【详解】解:通过观察可以发现3n 的末位数字为3、9、7、1……,4个为一循环,而12343333=392781=120++++++末尾数字为0,∵20204=505÷,故234202033333+++++…的末尾数字也为0.故选A .【点睛】本题属于找规律题型,难度不大,是中考的常考知识点,细心观察,总结规律是顺利解题的关键.7.B解析:B根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.【详解】解:根据因式分解的概念,A 选项属于整式的乘法,错误;B 选项符合因式分解的概念,正确;C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误.故选B .【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.8.B解析:B【解析】试题分析:根据图形,BE 是△ABC 中AC 边上的高.故选B .考点:三角形的角平分线、中线和高.9.D解析:D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C 、等式左边是单项式,不是因式分解,故本选项错误;D 、符合因式分解的定义,故本选项正确.故选D .【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.10.D解析:D【分析】利用完全平方公式的结构特征判断即可求出k 的值.【详解】∵216x kx ++是完全平方式,k=±,∴8故选:D.【点睛】本题考查完全平方式,熟悉完全平方式的结构特征并能灵活运用是解答的关键.二、填空题11.(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为解析:(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.12..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.a≠.解析:0【分析】根据零指数幂有意义的条件作答即可.【详解】a≠.由题意得:0a≠.故答案为:0【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.13.(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b+ab2=a解析:(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b+ab2=ab(a+b)=3×5=15(2)a2+b2=(a+b)2-2ab=52-2×3=19【点睛】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.14.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.解析:x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.15.210-7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决解析:2⨯10-7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000 0002=2×10-7,故答案为:2⨯10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16.10【分析】已知是二元一次方程2x﹣3y﹣5=0的一组解,将代入二元一次方程2x﹣3y﹣5=0中,即可求解.【详解】∵是二元一次方程2x﹣3y﹣5=0的一组解∴2a-3b=5∴4a-6b解析:10【分析】已知x ay b=⎧⎨=⎩是二元一次方程2x﹣3y﹣5=0的一组解,将x ay b=⎧⎨=⎩代入二元一次方程2x﹣3y﹣5=0中,即可求解.【详解】∵x ay b=⎧⎨=⎩是二元一次方程2x﹣3y﹣5=0的一组解∴2a-3b=5∴4a-6b=10故答案为:10【点睛】本题考查了二元一次方程组解的定义,能使二元一次方程左右两边的值相等的两个未知数的值,叫做二元一次方程的解.由于使二元一次方程的左右两边的值相等的未知数的值不止一组,故每个二元一次方程都有无数组解.17.32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣解析:32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=32°.故答案是:32°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.18.【分析】把m看做已知数表示出x与y,代入x+y=0计算即可求出m的值.【详解】解:,①+②得:5x=3m+2,解得:x=,把x=代入①得:y=,由x与y互为相反数,得到=0,去分母解析:【分析】把m看做已知数表示出x与y,代入x+y=0计算即可求出m的值.【详解】解:33221x y mx y m+=+⎧⎨-=-⎩①②,①+②得:5x =3m +2,解得:x =325m +, 把x =325m +代入①得:y =945m -, 由x 与y 互为相反数,得到3294+55m m +-=0, 去分母得:3m +2+9﹣4m =0,解得:m =11,故答案为:11【点睛】 此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握方程组的解法及相反数的性质是解本题的关键.19.四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得,解得,∴点M 坐标为,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元解析:四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得22111m n m n --=⎧⎨++=⎩, 解得11m n =⎧⎨=-⎩, ∴点M 坐标为()1,1-,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元一次方程定义,二元一次方程组解法,点的坐标等知识,综合性较强,根据题意列出方程组是解题关键.20.【分析】先把二元一次方程组求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:,把①②式相加得到:,即: ,要二元一次方程组有整数解,即为整数,又∵为正整数,故解析:2【分析】先把二元一次方程组210320mx y x y +=⎧⎨-=⎩求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:210320mx y x y +=⎧⎨-=⎩①②, 把①②式相加得到:310+=mx x , 即:103x m =+ , 要二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解, 即103x m =+为整数, 又∵m 为正整数,故m=2, 此时10223x ==+,3y = , 故,x y 均为整数,故答案为:2;【点睛】本题主要考查了二元一次方程组的求解,掌握二元一次方程组的求解步骤是解题的关键;三、解答题21.(1)218524k x ky -⎧=⎪⎪⎨-⎪=⎪⎩;(2)52k =或12k =-;(3)1或2. 【分析】(1)根据题意直接利用加减消元法进行计算求解即可;(2)由题意根据01(0)a a =≠和11n =以及2(1)1n -=(n 为整数)得到三个关于k 的方程,求出k 即可;(3)根据题意用含m 的代数式表示出k ,根据14k ≤,确定m 的取值范围,由m 为正整数,求得m 的值即可.【详解】 解:(1)21322x y x y k ⎧+=⎪⎪⎨⎪-=-⎪⎩①②, ①+②得:3412x k =+-,解得:218k x -=, ①-②得:3212y k =-+,解得:524k y -=, ∴二元一次方程组的解为:218524k x k y -⎧=⎪⎪⎨-⎪=⎪⎩. (2)∵01(0)a a =≠,2(42)1y x +=,∴20y =,即52204k -⨯=,解得:52k =; ∵11n =,2(42)1y x +=,∴421x +=,即214218k -⨯+=,解得:12k =-; ∵2(1)1n -=(n 为正整数),2(42)1y x +=,∴4212x y +=-,为偶数,即214218k -⨯+=-,解得:52k =-; 当52k =-时,3532115222y k =-+=++=,为奇数,不合题意,故舍去. 综上52k =或12k =-.(3)∵215213643647842k k m x y k --=+=⨯+⨯=+,即172m k =+, ∴2114m k -=, ∵14k ≤, ∴211144m k -=≤,解得94m ≤, ∵m 为正整数,∴m=1或2.【点睛】本题考查解二元一次方程组以及解一元一次不等式,根据题意列出不等式是解题的关键.22.(1)详见解析;(2)详见解析;(3)详见解析【分析】(1)利用乘方的意义求解,即可;(2)将式子变形,利用完全平方公式计算,即可;(3)化成边长为a+b+c 的正方形,即可得出答案.【详解】(1)小刚:(a +b +c )2=(a +b +c )(a +b +c )=a 2+ab +ac +ba +b 2+bc +ca +cb +c 2=a 2+b 2+c 2+2ab +2ac +2bc(2)小王:(a +b +c )2=[(a +b )+c ]2=(a +b )2+2(a +b )c +c 2=a 2+b 2+2ab +2ac +2bc +c 2(3)小丽:如图【点睛】本题考查了整式的运算法则的应用,能正确根据整式的运算法则进行化简是解此题的关键,也培养了学生的动手操作能力.23.(1)3()(2)a b x y -+;(2)22(2)(2)y y +-【分析】(1)提取公因式3(a-b),即可求解.(2)将(y 2-1)看成一项,根据完全平方公式进行因式分解,之后再利用平方差公式即可求解.【详解】(1)原式=3()6()x a b y b a ---=3()(2)a b x y -+故答案为:3()(2)a b x y -+(2)原式=222(1)6(1)9y y ---+=22(y 13)--=22(4)y -=22(2)(2)y y +-故答案为:22(2)(2)y y +-【点睛】本题考查了因式分解的方法,本题分别采用了提取公因式法和公式法进行因式分解,一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.运用公式法因式分解,一般有平方差公式,完全平方公式,立方和公式,完全立方公式.24.(1)7;(2)47.【分析】(1)根据13a a -+=得出13a a +=,进而得出219a a ⎛⎫+= ⎪⎝⎭,从而可得出结论; (2)根据(1)中的结论可知2217a a +=,故2221()49a a +=,从而得出441a a +的值. 【详解】解:(1)∵13a a -+=, ∴13a a+=, ∴21()9a a +=,即:22129a a++=, ∴2217a a +=; (2)由(1)知:2217a a +=, ∴2221()49a a +=,即:441249a a ++=, ∴44147a a +=. 【点睛】本题主要考查的是负整数指数幂和分式的运算,解题的关键是熟练掌握完全平方公式的灵活应用.25.(1)135APB ∠=︒,135PDA ∠=︒;(2)正确,理由见解析.【分析】(1)根据三角形的三条角平分线交于一点可知CP 平分∠BCA ,可得∠PCD =45°,从而由三角形外角性质可求∠ADP =135°,再∠BAC =40°,可求∠BAC 度数,根据角平分线的定义求出PBA PAB ∠+∠,然后利用三角形的内角和定理列式计算即可得解.(2)同理(1)直接可得135PDA ∠=︒.由角平分线可求()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒,进而可得135APB ∠=︒,由此得出结论. 【详解】解:(1)180ABC ACB BAC ∠+∠+∠=︒,90ACB ∠=︒,∠BAC =40°,50ABC =∴∠︒.ABC ∠与ACB ∠的角平分线相交于点P ,1252PBA ABC ∴∠=∠=︒,1202PAB BAC ∠=∠=︒. 114522PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.终上所述:135APB ∠=︒,135PDA ∠=︒.∴PCD+ADP ∠=∠∠ ∠ADP =(2)小明猜测是正确的,理由如下:ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.ABC ∠与ACB ∠的角平分线相交于点P ,12PBA ABC ∴∠=∠,12PAB BAC ∠=∠. ∵90ACB ∠=︒,∴90ABC BAC ∠+∠=︒()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.故∠APB =∠ADP .【点睛】本题考查三角形的内角和定理,三角形的角平分线的定义,整体思想的利用和有效的进行角的等量代换是正确解答本题的关键.26.(1)221(1)4n n + (2)< 【分析】(1)根据所给的数据,找出变化规律,即是14乘以最后一个数的平方,再乘以最后一个数加1的平方,即可得出答案;(2)根据(1)所得出的规律,算出结果,再与50552进行比较,即可得出答案.【详解】解:(1)根据所给的数据可得:13+23+33+…+n 3=14n 2(n+1)2. 故答案为:14n 2(n+1)2. (2)13+23+33+ (1003)2211001014⨯⨯ =21(100101)2⨯⨯=25050<25055 所以13+23+33+…+1003=<25055.【点睛】此题考查规律型:数字的变化类,通过观察、分析、总结得出题中的变化规律是解题的关键.27.(1)2P ;(2)2-;(3)3t >【分析】(1)将P 1(3,1)和P 2(-3,1)分别代入等式即可得出结果;(2)将点P (m ,n )代入等式即可得出m+n 的值;(3)根据“好点”的定义,将P 点代入即可得到关于m 和n 的等式,将两个等式结合即可得出结果.【详解】解:(1)对于1(3,1)P ,2321,7t t =⨯+=,2123,5t t =⨯+=-对于2(3,1)P -,2(3)21,7t t -=⨯+=,212(3),7t t =⨯-+=,所以2P 是“好点” (2)∵点(,)P m n 是好点,∴222,2m n t n m t =+=+, 222()m n n m -=-,∴2m n +=-(3)∵222,2m n t n m t =+=+,2222m n n t m t -=+--①,2222m n m t n t +=+++②,得()()2()0m n m n m n -++-=,即()(2)0m n m n -++=,由题知,,2m n m n ≠∴+=-,由②得2()22()2m n mn m n t +-=++,∴4242,4mn t mn t -=-+=-,∵m n ≠,∴2()0m n ->,∴2()40m n mn +->,∴44(4)0t -->,所以3t >,【点睛】本题主要考查的是新定义“好点”,正确的掌握整式的乘法解题的关键.28.(1)2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+;(2)19;(3)4【分析】(1)根据材料中的三种不同形式的配方,“余项“分别是常数项、一次项、二次项,可解答;(2)将x 2+y 2-6x+10y+34配方,根据平方的非负性可得x 和y 的值,可解答;(3)通过配方后,求得a ,b ,c 的值,再代入代数式求值.【详解】解:(1)249x x -+的三种配方分别为:2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+(或2222549339x x x x ⎛⎫-+=-+ ⎪⎝⎭; (2)∵x 2+y 2-6x+10y+34=x 2-6x+9+y 2+10y+25=(x-3)2+(y+5)2=0,∴x-3=0,y+5=0,∴x=3,y=-5,∴3x-2y=3×3-2×(-5)=19(3)2223240a b c ab b c ++---+=()2222134421044a ab b b bc c -++-++-+= 22213(2)(1)024a b b c ⎛⎫-+-+-= ⎪⎝⎭ ∴102a b -=,3(2)04b -=,10c -= ∴1a =,2b =,1c =,则4a b c ++=【点睛】本题考查的是配方法的应用,首先利用完全平方公式使等式变为两个非负数和一个正数的和的形式,然后利用非负数的性质解决问题.。
咸阳市人教版七年级下册数学全册单元期末试卷及答案-百度文库
咸阳市人教版七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角 2.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( ) A .4种B .5种C .6种D .7种 3.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( )A .﹣4B .2C .3D .4 4.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°5.下列四个等式从左到右的变形是因式分解的是 ( )A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x+=+ 6.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=- 7.已知,()()212x x x mx n +-=++,则m n +的值为( )A .3-B .1-C .1D .38.若关于x 的不等式组2034x x a x -<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( )A .1B .3C .4D .69.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个 10.一个多边形的每个内角都等于140°,则这个多边形的边数是( )A .7B .8C .9D .10 二、填空题11.如图,在△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A =50°,则∠BOC =_____.12.若24x mx ++是完全平方式,则m =______.13.若多项式29x mx ++是一个完全平方式,则m =______.14.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________.15.如果()()2x 1x 4ax a +-+的乘积中不含2x 项,则a 为______ . 16.甲、乙两种车辆运土,已知5辆甲车和四辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组_________.17.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____. 18.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.19.已知x 2a +y b ﹣1=3是关于x 、y 的二元一次方程,则ab =_____.20.计算:22020×(12)2020=_____. 三、解答题21.计算:(1)(y 3)3÷y 6;(2)2021()(3)2π--+-.22.计算:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3).23.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n (此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.…… ……(1)请直接写出(a +b )4=__________;(2)利用上面的规律计算:①24+4×23+6×22+4×2+1=__________;②36-6×35+15×34-20×33+15×32-6×3+1=________.24.如图(1),在平面直角坐标系中,点A 在x 轴负半轴上,直线l x ⊥轴于B ,点C 在直线l 上,点C 在x 轴上方.(1)(),0A a ,(),2C b ,且,a b 满足2()|4|0a b a b ++-+=,如图(2),过点C 作MN ∥AB ,点Q 是直线MN 上的点,在x 轴上是否存在点P ,使得ABC ∆的面积是BPQ 的面积的23?若存在,求出P 点坐标;若不存在,请说明理由.(2)如图(3),直线l 在y 轴右侧,点E 是直线l 上动点,且点E 在x 轴下方,过点E 作DE ∥AC 交y 轴于D ,且AF 、DF 分别平分CAB ∠、ODE ∠,则AFD ∠的度数是否发生变化?若不变,求出AFD ∠的度数;若变化,请说明理由.25.计算:(1)201()2016|5|2----;(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2.26.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1;(2)图中AC 与A 1C 1的关系是:_____.(3)画出△ABC 的AB 边上的高CD ;垂足是D ;(4)图中△ABC 的面积是_____.27.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助网格). (1)画出△ABC 中BC 边上的高线AH .(2)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .(3)画一个锐角△ABP (要求各顶点在格点上),使其面积等于△ABC 的面积的2倍.28.如图,ABC ∆中,B ACB ∠=∠,点,D F 分别在边,BC AC 的延长线上,连结,CE CD 平分ECF ∠.求证://AB CE .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据同旁内角的定义可判断.【详解】∵∠1和∠2都在直线c的下侧,且∠1和∠2在直线a、b之内∴∠1和∠2是同旁内角的关系故选:C.【点睛】本题考查同旁内角的理解,紧抓定义来判断.2.B解析:B【分析】设1元和5元的纸币分别有x、y张,得到方程x+5y=20,然后根据x、y都是正整数即可确定x、y的值.【详解】解:设1元和5元的纸币分别有x、y张,则x+5y=20,∴x=20-5y,而x≥0,y≥0,且x、y是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5;y=4,x=0,共有5种换法.故选:B.【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.3.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】解:(4x-a)(x+1),=4x2+4x-ax-a,=4x2+(4-a)x-a,∵积中不含x的一次项,∴4-a=0,解得a=4.故选D.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.4.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.5.B解析:B【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.【详解】解:根据因式分解的概念,A 选项属于整式的乘法,错误;B 选项符合因式分解的概念,正确;C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误.故选B .【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.6.A解析:A【分析】根据长方形的面积=长⨯宽,分别表示出甲乙两个图形的面积,即可得到答案.【详解】解:()()=S a b a b +-甲,()()2222==S a a b b a b a ab ab b a b -+-=-+--乙. 所以()()a b a b +-22=a b -故选A .【点睛】本题考查平方差公式,难度不大,通过计算两个图形的面积即可顺利解题.7.A解析:A【解析】【分析】根据多项式的乘法法则即可化简求解.【详解】∵()()2212222x x x x x x x +-=-+-=-- ∴m=-1,n=-2,故m n +=-3故选A.【点睛】此题主要考查整式的乘法运算,解题的关键是熟知多项式乘多项式的运算法则.8.C解析:C【分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x -<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a -<0, ∴0≤a <4; 解方程21236x a a x +++=+得: x=52a -, ∵方程的解为非负整数, ∴52a -≥0, ∴a ≤5,又∵0≤a <4,∴a=1, 3,∴1+3=4,∴所有满足条件的整数a 的值之和为4.故选:C .【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.9.B解析:B【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠1=∠3,∴l1∥l2,故本小题正确;②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;③∵∠4=∠5,∴l1∥l2,故本小题正确;④∠2=∠3不能判定l1∥l2,故本小题错误;⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.故选B.【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.10.D解析:D【分析】一个外角的度数是:180°-140°=40°,则多边形的边数为:360°÷40°=9;故选C.【详解】二、填空题11.115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=5解析:115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12×(∠ABC+∠ACB)=12×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.12.【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去和2积的2倍,故,故答案为:.【点睛】本题是完全平方公解析:4±【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去x和2积的2倍,故4m=±,故答案为:4±.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.13.-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为解析:-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为-6或6.【点睛】本题考查完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.14.m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.解析:m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.15.【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出,求出即可;【详解】解:,的乘积中不含项,,解得:.故答案为:.【点睛】本题考查了多项式乘以多项式法则和解一元 解析:14【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出4a 10-+=,求出即可;【详解】解:()()2x 1x 4ax a +-+ 322x 4ax ax x 4ax a =-++-+()32x 4a 1x 3ax a =+-+-+,()()2x 1x 4ax a +-+的乘积中不含2x 项,4a 10∴-+=, 解得:1a 4=. 故答案为:14. 【点睛】本题考查了多项式乘以多项式法则和解一元一次方程,掌握多项式乘以多项式法则是解此题的关键.16.【分析】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,由题意得,,故答案为:.【解析:541403276x y x y +=⎧⎨+=⎩【分析】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,由题意得,54140 3276x yx y+=⎧⎨+=⎩,故答案为:54140 3276 x yx y+=⎧⎨+=⎩.【点睛】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.17.-3【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把代入方程得:4﹣1+k=0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解析:-3【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把21xy=⎧⎨=⎩代入方程得:4﹣1+k=0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解,求方程中的参数,掌握二元一次方程解的定义是解决此题的关键.18.【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a的值即可;【详解】解不等式,去括号,得,移项,得,合并同类项,得,系数化为1,得,则最小的整数解为- 解析:72【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式()()325416x x -+<-+,去括号,得365446-+<-+x x ,移项,得344665-<-++-x x ,合并同类项,得3x -<,系数化为1,得3x >-,则最小的整数解为-2.把2x =-代入23x ax -=中,得423a -+=, 解得:72a =. 故答案为72. 【点睛】本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键. 19.1【分析】根据题意可知该式是二元一次方程组,所以x 、y 的指数均为1,这样就可以分别求出a 、b 的值,代入计算即可.【详解】解:∵是关于x 、y 的二元一次方程,所以x 、y 的指数均为1∴2a=1,解析:1【分析】根据题意可知该式是二元一次方程组,所以x 、y 的指数均为1,这样就可以分别求出a 、b 的值,代入计算即可.【详解】解:∵2a b-1x +y =3是关于x 、y 的二元一次方程,所以x 、y 的指数均为1∴2a =1,b-1=1,解得a =12,b =2, 则ab =122⨯=1, 故答案为:1.【点睛】该题考查了二元一次方程的定义,即含有两个未知量,且未知量的指数为1,将其代数式进行求解,即可求出答案.20.1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×)2020=1,故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键.解析:1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×12)2020=1, 故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键. 三、解答题21.(1)y 3;(2)12.【分析】(1)先计算幂的乘方,然后计算同底数幂除法;(2)分别利用负整数指数幂、零次幂、乘方计算,然后合并.【详解】解:(1)原式=y 9÷y 6=y 3;(2)原式=4﹣1+9=12.【点睛】本题考查了整式的运算与实数的运算,熟练运用公式是解题的关键.22.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1; (2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.23.(1)++++432234a 4a b 6a b 4ab b ;(2)①81;②64【分析】(1)根据杨辉三角的数表规律解答即可;(2)由杨辉三角的数表规律和(1)题的结果可得所求式子=(2+1)4,据此解答即可; ②由杨辉三角的数表规律可得所求式子=(3-1)6,据此解答即可.【详解】解:(1)()4432234464a b a a b a b ab b +=++++;故答案为:++++432234a 4a b 6a b 4ab b ;(2)①24+4×23+6×22+4×2+1=(2+1)4=34=81;故答案为:81;②36-6×35+15×34-20×33+15×32-6×3+1=(3-1)6=26=64;故答案为:64.【点睛】本题考查了多项式的乘法和完全平方公式的拓展以及数的规律探求,正确理解题意、找准规律是解题的关键.24.(1)存在,P 点为()8,0或()4,0-;(2)AFD ∠的度数不变,AFD ∠=45︒【分析】(1)由非负数的性质可得a 、b 的方程组,解方程组即可求出a 、b 的值,于是可得点A 、C 坐标,进而可得S △ABC ,若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ ,可得关于m 的方程,解方程即可求出m 的值,从而可得点P 坐标;(2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,根据平行公理的推论可得AC ∥FH ∥DE ,然后根据平行线的性质和角的和差可得∠AFD =∠GAF +∠1,由角平分线的性质和三角形的内角和定理可得2∠GAF +2∠1=90°,于是可得∠AFD =45°,从而可得结论.【详解】解:(1)∵,a b 满足2()|4|0a b a b ++-+=,∴040a b a b +=⎧⎨-+=⎩,解得:22a b =-⎧⎨=⎩, ∴()2,0A -,()2,2C ,∴S △ABC =14242⨯⨯=, ∵点Q 是直线MN 上的点,∴2Q y =, 若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ , 则2122432m ⨯⋅-⨯=,解得:m =8或﹣4, 所以存在点P 满足S △ABC =23S △BPQ ,且P 点坐标为()8,0或()4,0-; (2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,∵DE ∥AC ,∴AC ∥FH ∥DE ,∴∠GAF =∠AFH ,∠HFD =∠1,∠AGO =∠GDE ,∴∠AFD =∠AFH +∠HFD =∠GAF +∠1, ∵AF 、DF 分别平分CAB ∠、ODE ∠,∴∠CAB =2∠GAF ,∠ODE =2∠1=∠AGO ,∵∠CAB +∠AGO =90°,∴2∠GAF +2∠1=90°,∴∠GAF +∠1=45°,即∠AFD =45°;∴AFD ∠的度数不会发生变化,且∠AFD =45°.【点睛】本题考查了非负数的性质、二元一次方程组的解法、坐标系中三角形的面积、平行线的性质、角平分线的定义以及三角形的内角和定理等知识,综合性强、但难度不大,正确添加辅助线、熟练掌握上述是解题的关键.25.(1)﹣2;(2)7a 4+4a 6+a 2.【分析】(1)由负整数指数幂、零指数幂、绝对值的意义进行判断,即可得到答案;(2)由积的乘方,同底数幂相乘进行计算,然后合并同类项,即可得到答案.【详解】解:(1)201()2016|5|2----=4﹣1﹣5=﹣2;(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2=9a 4﹣2a 4+4a 6+a 2=7a 4+4a 6+a 2.【点睛】本题考查了积的乘方,同底数幂相乘,负整数指数幂,零指数幂,以及绝对值,解题的关键是熟练掌握运算法则进行解题.26.(1)画图见解析;(2)平行且相等;(3)画图见解析;(4)8【分析】(1)根据网格结构找出点A 、B 、C 向右平移4个单位后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据平移的性质解答;(3)延长AB ,作出AB 的高CD 即可;(4)利用△ABC 所在的矩形的面积减去四周三个三角形的面积,列式计算即可得解.【详解】解:(1)如图所示,(2)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;(3)如图所示,(4)△ABC 的面积=5×7-12×7×5-12×7×2-12×5×1=8. 27.(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据三角形高的定义求解可得;(2)根据平移的定义作出变换后的对应点,再顺次连接即可得;(3)计算得出格点△ABC 的面积是3,得出格点△ABP 的面积为6,据此画出格点△ABP 即可.【详解】解:(1)如图所示,(2)如图所示;(3)S △ABC =13232⨯⨯= S △ABP =2S △ABC =6 画格点△ABP 如图所示,(答案不唯一).【点睛】本题主要考查作图-平移变换,解题的关键是熟练掌握平移变换的定义和性质,并据此得出变换后的对应点.28.证明见详解.【分析】根据B ACB ∠=∠,DCF ACB ∠=∠,CD 平分ECF ∠,可得B DCF ∠=∠,ECD DCF ,容易得ECD B ∠=∠,即可得//AB CE .【详解】∵B ACB ∠=∠,DCF ACB ∠=∠,∴B DCF ∠=∠,又∵CD 平分ECF ∠,∴ECD DCF ∴ECD B ∠=∠∴//AB CE .【点睛】本题考查了对顶角的性质,角平分线的定义和平行线的证明,熟悉相关性质是解题的关键.。
咸阳市七年级数学下册期末试卷选择题汇编精选考试试题
一、选择题1.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( ) A .7个B .6个C .5个D .4个答案:B解析:B 【分析】根据有理数的分类依此作出判断,即可得出答案. 【详解】解:①没有最小的整数,所以原说法错误; ②有理数包括正数、0和负数,所以原说法错误; ③﹣2π是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确;⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确; ⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误; 故其中错误的说法的个数为6个. 故选:B . 【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.2.如图,在平面直角坐标系上有点A(1,0),点A 第一次跳动至点()111A -,,第二次点1A 跳动至点()221A ,,第三次点2A 跳动至点()322A ,-,第四次点3A 跳动至点()432A ,,……,依此规律跳动下去,则点2017A 与点2018A 之间的距离是( )A .2017B .2018C .2019D .2020答案:C解析:C 【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A 2017与点A 2018的坐标,进而可求出点A 2017与点A 2018之间的距离. 【详解】解:观察发现,第2次跳动至点的坐标是(2,1), 第4次跳动至点的坐标是(3,2), 第6次跳动至点的坐标是(4,3), 第8次跳动至点的坐标是(5,4), …第2n 次跳动至点的坐标是(n+1,n ), 则第2018次跳动至点的坐标是(1010,1009), 第2017次跳动至点A 2017的坐标是(-1009,1009). ∵点A 2017与点A 2018的纵坐标相等,∴点A 2017与点A 2018之间的距离=1010-(-1009)=2019, 故选C . 【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.3.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点()1A 0,1,()2A 1,1,()3A 1,0,()4A 2,0,⋯那么点4n 1A (n +为自然数)的坐标为( )(用n 表示).A .()2n 1,1-B .()2n 1,1+C .()2n,1D .()4n 1,1+答案:C解析:C 【解析】 【分析】根据图形分别求出n 1=、2、3时对应的点4n 1A +的坐标,然后根据变化规律写出即可. 【详解】由图可知,n 1=时,4115⨯+=,点()5A 21,,n 2=时,4219⨯+=,点()9A 41,, n 3=时,43113⨯+=,点()13A 61,,……所以,点()4n 1A 2n 1+,, 故选C . 【点睛】本题考查了点的坐标的变化规律,仔细观察图形,分别求出n 1=、2、3时对应的点4n 1A +的对应的坐标是解题的关键.4.如图,//AB CD ,AC 平分BAD ∠,B CDA ∠=∠,点E 在AD 的延长线上,连接EC ,2B CED ∠=∠,下列结论:①//BC AD ;②CA 平分BCD ∠;③AC EC ⊥;④ECD CED ∠=∠.其中正确的个数为( )A .1个B .2个C .3个D .4个答案:D解析:D 【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可. 【详解】 解:∵AB //CD , ∴∠1=∠2, ∵AC 平分∠BAD , ∴∠2=∠3, ∴∠1=∠3, ∵∠B =∠CDA , ∴∠1=∠4, ∴∠3=∠4, ∴BC //AD , ∴①正确; ∴CA 平分∠BCD , ∴②正确; ∵∠B =2∠CED , ∴∠CDA =2∠CED , ∵∠CDA =∠DCE +∠CED ,∴∠ECD =∠CED , ∴④正确; ∵BC //AD ,∴∠BCE +∠AEC = 180°, ∴∠1+∠4+∠DCE +∠CED = 180°, ∴∠1+∠DCE = 90°, ∴∠ACE = 90°, ∴AC ⊥EC , ∴③正确故其中正确的有①②③④,4个, 故选:D . 【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键. 5.已知点E (x 0,y 0),F (x 2,y 2),点M (x 1,y 1)是线段EF 的中点,则0212x x x +=,0212y y y +=.在平面直角坐标系中有三个点A (1,-1),B (-1,-1),C (0,1),点P (0,2)关于A 的对称点为P 1(即P ,A ,P 1三点共线,且PA =P 1A ),P 1关于B 的对称点为P 2,P 2关于C 的对称点为P 3,按此规律继续以A ,B ,C 为对称点重复前面的操作,依次得到P 4,P 5,P 6,…,则点P 2015的坐标是( ) A .(0,0) B .(0,2) C .(2,-4)D .(-4,2)答案:A解析:A 【解析】试题解析:设P 1(x ,y ),∵点A (1,-1)、B (-1,-1)、C (0,1),点P (0,2)关于A 的对称点为P 1,P 1关于B 的对称点P 2, ∴2x =1,22y +=-1,解得x=2,y=-4,∴P 1(2,-4).同理可得,P 1(2,-4),P 2(-4,2),P 3(4,0),P 4(-2,-2),P 5(0,0),P 6(0,2),P 7(2,-4),…,…, ∴每6个数循环一次. ∵20156=335…5, ∴点P 2015的坐标是(0,0). 故选A .6.如图,在平面直角坐标系中,一动点从原点O 出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到()10,1A ,()21,1A ,()31,0A ,()42,0A ,…那么点2021A 的坐标为( )A .()505,0B .()505,1C .()1010,0D .()1010,1答案:D解析:D 【分析】根据图象移动的得出移动4次一个循环,得出结果即可; 【详解】根据图象可得移动4次图象完成一个循环, ∵202145051÷=,∴2021A 的坐标是()()5052,11010,1⨯=; 故答案选D . 【点睛】本题主要考查了点的坐标规律题,准确计算是解题的关键.7.已知{}min ,,a b c 表示取三个数中最小的那个数.例如:当2x =-时,()(){}23min 2,2,28---=-,当{}21min ,,16x x x =时,则x 的值为( ) A .116 B .18C .14D .12答案:C解析:C 【分析】 2111161616x x x ===,,的x 值,找到满足条件的x 值即可. 【详解】 116x =时,1256x =,x x <当2116x =时,14x =±,当14x =-时,2x x <,不合题意;当14x =12x =,2x x x << 当116x =时,21256x =,2x x <,不合题意, 故选:C . 【点睛】本题主要考查了实数大小比较,算术平方根及其最值问题,解决此题时,注意分类思想的运用.8.已知边长为a 的正方形面积为8,则下列关于a 的说法中,错误的是( ) A .a 是无理数B .a 是8的算术平方根C .a 满足不等式组2030a a ->⎧⎨-<⎩D .a 的值不能在数轴表示答案:D解析:D 【分析】根据题意求得a ,根据无理数的定义,算术平方根的定义,无理数的估算,实数与数轴一一对应逐项分析判断即可 【详解】解:根据题意,28a =,则a =A.a 是无理数,故该选项正确,不符合题意; B. a 是8的算术平方根,故该选项正确,不符合题意;C.48<23<,则a 满足不等式组2030a a ->⎧⎨-<⎩,故该选项正确,不符合题意;D. a 的值能在数轴表示,故该选项不正确,符合题意; 故选D 【点睛】本题考查了无理数的定义,算术平方根的定义,无理数的估算,实数与数轴一一对应,是解题的关键.无理数的定义:“无限不循环的小数是无理数”, 平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根. 9.定义一种新运算“*”,即()*23m n m n =+⨯-,例如()2*322339=+⨯-=.则()6*3-的值为( ) A .12B .24C .27D .30答案:C解析:C 【分析】根据新定义的公式代入计算即可. 【详解】∵()*23m n m n =+⨯-, ∴()6*3-=()623(3)27+⨯--=, 故选C . 【点睛】本题考查了新定义下的实数计算,准确理解新定义公式是解题的关键. 10.下列命题是真命题的有( )个①两个无理数的和可能是无理数;②两条直线被第三条直线所截,同位角相等;③同一平面内,垂直于同一条直线的两条直线互相平行; ④过一点有且只有一条直线与已知直线平行; ⑤无理数都是无限小数. A .2B .3C .4D .5答案:B解析:B 【分析】分别根据无理数的定义、同位角的定义、平行线的判定逐个判断即可. 【详解】解:①两个无理数的和可能是无理数,比如:π+π=2π,故①是真命题; ②两条直线被第三条直线所截,同位角不一定相等,故②是假命题; ③同一平面内,垂直于同一条直线的两条直线互相平行,故③是真命题; ④在同一平面内,过一点有且只有一条直线与已知直线平行,故④是假命题; ⑤无理数是无限不循环小数,都是无限小数,故⑤是真命题. 故选:B 【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定、无理数的定义,难度不大.11.已知T 132,T 276,T 31312,⋯,T n 为正整数.设S n =T 1+T 2+T 3+⋯+T n ,则S 2021值是( ) A .202120212022B .202120222022C .120212021D .120222021答案:A解析:A 【分析】根据数字间的规律探索列式计算 【详解】解:由题意可得:T 1312+1=212⨯⨯,T 2723+1=623⨯⨯,T 31334+1=1234⨯⨯∴T ()()1+11n n n n ++∴T 2021=20212022+120212022⨯⨯∴S 2021=T 1+T 2+T 3+⋯+T 2021=371320212022+1+++...261220212022⨯+⨯ =11111++1++1++...1+261220212022+⨯=11112021++++ (261220212022)=11112021++++...+12233420212022⨯⨯⨯⨯ =11111112021+1++...+2233420212022⎛⎫-+--- ⎪⎝⎭ =12021+12022⎛⎫- ⎪⎝⎭=202120212022故选:A . 【点睛】本题考查实数数字类的规律探索,探索规律,准确计算是解题关键.12.如图,将1、2,3三个数按图中方式排列,若规定(,)a b 表示第a 排第b 列的数,则()8,2与(100,100)表示的两个数的积是( )A .1B 2C 3D 6答案:C解析:C 【分析】观察数列得出每三个数一个循环,再根据有序数对的表示的方法得出每个有序数对表示的数,最后计算积即得. 【详解】解:∵前7排共有123456728++++++=个数∴()82,在排列中是第28+2=30个数又∵根据题意可知:每三个数一个循环:1303=10÷∴()82,∵前100排共有()10011001+2+3++100=50502+⋅⋅⋅=个数且5050316831÷=⋅⋅⋅ ∴(100100),是第1684次循环的第一个数:1. ∵1故选:C . 【点睛】本题考查关于有序数对的规律题,解题关键是根据特殊情况找出数据变化的周期,得出一般规律.13.若225a =,3b =,则a b +所有可能的值为( ) A .8B .8或2C .8或2-D .8±或2±答案:D解析:D 【分析】先求出a 、b 的值,再计算即可. 【详解】 解:∵225a =, ∴a =±5, ∵3b =, ∴b =±3,当a =5,b =3时,8a b +=; 当a =5,b =-3时,2a b +=; 当a =-5,b =3时,2a b +=-; 当a =-5,b =-3时,8a b +=-; 故选:D . 【点睛】本题考查了绝对值、平方根和有理数加法运算,解题关键是分类讨论,准确计算. 14.如图所示在平面直角坐标系中,一个动点从原点O 出发,按照向上、向右、向下、向右的方向不断重复移动,依次得到点()10,2A ,()21,2A ,()31,0A ,()42,0A ,()52,2A ,则点2019A 的坐标是( )A .()1009,0B .()1009,2C .()1008,2D .()1008,0答案:A解析:A 【分析】根据图形可找出点A 3、A 7、A 11、A 15、…、的坐标,根据点的坐标的变化可找出变化规律“A 4n+3(1+2n ,0)(n 为自然数)”,依此规律即可得出结论. 【详解】解:观察图形可知:A 3(1,0),A 7(3,0),A 11(5,0),A 15(9,1),…, ∴A 4n+3(1+2n ,0)(n 为自然数). ∵2019=504×4+3, ∴n=504, ∵1+2×504=1009, ∴A 2018(1009,0). 故选:A . 【点睛】本题考查了规律型中点的坐标,根据点的变化找出变化规律“A 4n+3(1+2n ,0)(n 为自然数).”是解题的关键.15.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( ) A .﹣40B .﹣32C .18D .10答案:D解析:D 【分析】直接利用题中的新定义给出的运算公式计算得出答案. 【详解】解:(-5)※4=(﹣5)2﹣42+1=10. 故选:D . 【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.16.如图,//AB CD ,P 为平行线之间的一点,若AP CP ⊥,CP 平分∠ACD ,68ACD ∠=︒,则∠BAP 的度数为( )A .56︒B .58︒C .66︒D .68︒答案:A解析:A【分析】过P 点作PM //AB 交AC 于点M ,直接利用平行线的性质以及平行公理分别分析即可得出答案.【详解】解:如图,过P 点作PM //AB 交AC 于点M .∵CP 平分∠ACD ,∠ACD =68°,∴∠4=12∠ACD =34°.∵AB //CD ,PM //AB ,∴PM //CD ,∴∠3=∠4=34°,∵AP ⊥CP ,∴∠APC =90°,∴∠2=∠APC -∠3=56°,∵PM //AB ,∴∠1=∠2=56°,即:∠BAP 的度数为56°,故选:A .【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.17.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③ 答案:C解析:C【详解】解:①∵∠B+∠BCD=180°,∴AB ∥CD ;②∵∠1=∠2,∴AD ∥BC ;③∵∠3=∠4,∴AB ∥CD ;④∵∠B=∠5,∴AB ∥CD ;∴能得到AB ∥CD 的条件是①③④.故选C .【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行; 同位角相等,两直线平行.18.如图,ABC 的角平分线CD 、BE 相交于F ,90A ∠=︒,//EG BC ,且CG EG ⊥于G ,下列结论:①2CEG DCB ∠=∠;②CA 平分BCG ∠;③ADC GCD ∠=∠;④12DFB CGE ∠=∠.其中正确的结论是( )A .①③④B .①②③C .②④D .①③ 答案:A解析:A【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】解:①∵EG ∥BC ,∴∠CEG =∠ACB ,又∵CD 是△ABC 的角平分线,∴∠CEG =∠ACB =2∠DCB ,故本选项正确;②无法证明CA 平分∠BCG ,故本选项错误;③∵∠A =90°,∴∠ADC +∠ACD =90°,∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴∠ADC +∠BCD =90°.∵EG ∥BC ,且CG ⊥EG ,∴∠GCB =90°,即∠GCD +∠BCD =90°,∴∠ADC =∠GCD ,故本选项正确;④∵∠EBC +∠ACB =∠AEB ,∠DCB +∠ABC =∠ADC ,∴∠AEB +∠ADC =90°+12(∠ABC +∠ACB )=135°, ∴∠DFE =360°﹣135°﹣90°=135°,∴∠DFB =45°=12∠CGE ,故本选项正确. 故选:A .【点睛】本题考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键. 19.如图所示,直线c 截直线a ,b ,给出下列以下条件:①48∠=∠;②17∠=∠;③26∠=∠;④47180∠+∠=︒.其中能够说明a ∥b 的条件有A .1个B .2个C .3个D .4个答案:D解析:D【解析】根据平行线的判定,由题意知:①∵68∠=∠,48∠=∠,∴46∠=∠,∴a b ∥,故①对.②∵13∠=∠,17∠=∠,∴37∠=∠,∴a b ∥,故②对.③∵26∠=∠,∴a b ∥,故③对.④∵47180∠+∠=︒,34180∠+∠=︒,∴37∠=∠,∴a b ∥,故④对.故选D.点睛:此题主要考查了平行线的判定,关键是利用图形中的条件和已知的条件,构造两直线平行的条件.平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.20.如下图,在“A ”字型图中,AB 、AC 被DE 所截,则A ∠与4∠是( )A .同位角B .内错角C .同旁内角D .邻补角 答案:A解析:A【分析】根据同位角,内错角,同旁内角和邻补角的定义判断即可.【详解】解:在“A ”字型图中,两条直线AB 、AC 被DE 所截形成的角中,∠A 与∠4都在直线AB 、DE 的同侧,并且在第三条直线(截线)AC 的同旁,则∠A 与∠4是同位角. 故选:A .【点睛】本题主要考查了同位角,内错角,同旁内角和邻补角的定义,正确理解定义是解题的关键.21.下列命题是真命题的有( )(1)相等的角是对顶角;(2)两条直线被第三条直线所截,同位角相等;(3)在同一平面内,过两点有且只有一条直线与已知直线垂直;(4)经过直线外一点,有且只有一条直线与已知直线平行;(5)一个角的余角一定大于这个角.A .0个B .1个C .2个D .3个答案:B解析:B【分析】根据对顶角与同位角的定义、垂线的性质、平行公理、余角的定义逐个判断即可得.【详解】解:(1)相等的角不一定是对顶角,则原命题是假命题;(2)两条平行线被第三条直线所截,同位角相等,则原命题是假命题;(3)在同一平面内,过一点有且只有一条直线与已知直线垂直,则原命题是假命题;(4)经过直线外一点,有且只有一条直线与已知直线平行,则原命题是真命题;(5)一个角的余角不一定大于这个角,如70︒角的余角等于20︒,则原命题是假命题;综上,是真命题的有1个,故选:B.【点睛】本题考查了对顶角与同位角的定义、垂线的性质、平行公理、余角,熟练掌握各定理与性质是解题关键.22.如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内CD上方的一点(点E 不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④180°﹣α﹣β,⑤360°﹣α﹣β中,∠AEC的度数可能是()A.①②③B.①②④⑤C.①②③⑤D.①②③④⑤答案:C解析:C【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE 2=α,∠2=∠DCE 2=β,∴∠AE 2C =α+β.(3)如图3,由AB ∥CD ,可得∠BOE 3=∠DCE 3=β,∵∠BAE 3=∠BOE 3+∠AE 3C ,∴∠AE 3C =α﹣β.(4)如图4,由AB ∥CD ,可得∠BAE 4+∠AE 4C +∠DCE 4=360°,∴∠AE 4C =360°﹣α﹣β.综上所述,∠AEC 的度数可能是β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:C .【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.23.如图,直线//EF MN ,点A ,B 分别是EF ,MN 上的动点,点G 在MN 上,ACB m ∠=︒,AGB ∠和CBN ∠的角平分线交于点D ,若52D ∠=︒,则m 的值为( ).A .70B .74C .76D .80答案:C解析:C【分析】先由平行线的性质得到∠ACB =∠5+∠1+∠2,再由三角形内角和定理和角平分线的定义求出m 即可.【详解】解:过C 作CH ∥MN ,∴∠6=∠5,∠7=∠1+∠2,∵∠ACB =∠6+∠7,∴∠ACB =∠5+∠1+∠2,∵∠D =52°,∴∠1+∠5+∠3=180°−52°=128°,由题意可得GD 为∠AGB 的角平分线,BD 为∠CBN 的角平分线,∴∠1=∠2,∠3=∠4,∴m °=∠1+∠2+∠5=2∠1+∠5,∠4=∠1+∠D =∠1+52°,∴∠3=∠4=∠1+52°,∴∠1+∠5+∠3=∠1+∠5+∠1+52°=2∠1+∠5+52°=m °+52°,∴m °+52°=128°,∴m °=76°.故选:C .【点睛】本题主要考查平行线的性质和角平分线的定义,关键是对知识的掌握和灵活运用. 24.如图,//CD AB ,BC 平分ACD ∠,CF 平分ACG ∠,50BAC ∠=︒,12∠=∠,则下列结论:①CB CF ⊥,②165∠=︒,③24ACE ∠=∠,④324∠=∠.其中正确的是( )A .①②③B .①②④C .②③④D .①②③④ 答案:B解析:B【分析】根据角平分线的性质可得12ACB ACD ∠=∠,12ACF ACG ∠=∠,,再利用平角定义可得∠BCF =90°,进而可得①正确;首先计算出∠ACB 的度数,再利用平行线的性质可得∠2的度数,从而可得∠1的度数;利用三角形内角和计算出∠3的度数,然后计算出∠ACE 的度数,可分析出③错误;根据∠3和∠4的度数可得④正确.【详解】解:如图,∵BC 平分∠ACD ,CF 平分∠ACG ,∴1122ACB ACD ACF ACG ∠=∠∠=∠,, ∵∠ACG +∠ACD =180°,∴∠ACF +∠ACB =90°,∴CB ⊥CF ,故①正确,∵CD ∥AB ,∠BAC =50°,∴∠ACG =50°,∴∠ACF =∠4=25°,∴∠ACB =90°-25°=65°,∴∠BCD =65°,∵CD ∥AB ,∴∠2=∠BCD =65°,∵∠1=∠2,∴∠1=65°,故②正确;∵∠BCD =65°,∴∠ACB =65°,∵∠1=∠2=65°,∴∠3=50°,∴∠ACE =15°,∴③∠ACE =2∠4错误;∵∠4=25°,∠3=50°,∴∠3=2∠4,故④正确,故选:B .【点睛】此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系.25.如图,从①12∠=∠,②C D ∠=∠,③//DF AC 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.3答案:D解析:D【分析】分别任选其中两个条件作为已知,然后结合平行线的判定与性质,证明剩余一个条件是否成立即可.【详解】解:如图所示:(1)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4;当②∠C=∠D,故∠4=∠C,则DF∥AC,可得:∠A=∠F,即①②可证得③;(2)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当③∠A=∠F,故DF∥AC,则∠4=∠C,故可得:∠C=∠D,即①③可证得②;(3)当③∠A=∠F,故DF∥AC,则∠4=∠C,当②∠C=∠D,则∠4=∠D,故DB∥EC,则∠2=∠3,可得:∠1=∠2,即②③可证得①.故正确的有3个.故选:D.【点睛】本题主要考查了平行线的判定和性质,正确掌握并熟练运用平行线的判定与性质是解题关键.26.设实数a ,b ,c ,满足()<0a b c ac >>,且c b a <<,则x a x b x c -+++-的最小值为( )A .3a b c++ B .b C .+a b D .c a --答案:C解析:C【分析】根据ac <0可知,a ,c 异号,再根据a >b >c ,以及c b a <<,即可确定a ,−b ,c 在数轴上的位置,而|x −a |+|x +b |+|x −c |表示x 到a ,−b ,c 三点的距离的和,根据数轴即可确定.【详解】解:∵ac <0,∴a ,c 异号,∵a >b >c ,∴a >0,c <0,又∵c b a <<,∴b >0,∴ a >b >0>c >-b又∵|x −a |+|x +b |+|x −c |表示x 到a ,−b ,c 三点的距离的和,当x 在c 时,|x −a |+|x +b |+|x −c |最小,最小值是a 与−b 之间的距离,即a +b故选:C .【点睛】本题考查了绝对值函数的最值问题,解决的关键是根据条件确定a ,−b ,c 之间的大小关系,把求式子的最值的问题转化为距离的问题,有一定难度.27.小兰:“小红,你上周买的笔和笔记本的价格是多少啊?”小红:“哦,…,我忘了!只记得先后买了两次,第一次买了 5 支笔和 10 本笔记本共花了 42 元钱,第二次买了 10 文笔和 5 本笔记本共花了 30 元钱.”请根据小红与小兰的对话,求得小红所买的笔和笔 记本的价格分别是( )A .0.8 元/支,2.6 元/本B .0.8 元/支,3.6 元/本C .1.2 元/支,2.6 元/本D .1.2 元/支,3.6 元/本答案:D解析:D【分析】首先设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,根据关键语句“第一次买了5支笔和10本笔记本共花了42元钱,”可得方程5x+10y=42,“第二次买了10支笔和5本笔记本共花了30元钱”可得方程10x+5y=30,联立两个方程,再解方程组即可.【详解】解:设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,由题意得:5104210530x y x y +=⎧⎨+=⎩ 解得: 1.23.6x y =⎧⎨=⎩ 故答案为D.【点睛】本题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的等量关系,再列出方程组即可.28.若不等式组2123x a x b -<⎧⎨->⎩的解 为31x -<<,则(1)(1)a b +-值为( ) A .6- B .7 C .8- D .9答案:C解析:C【分析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集1322a b x ++<<,根据不等式组的解集得出323b +=-,且112a +=,求出1a =,3b =-,即可解答.【详解】 解:2123x a x b -<⎧⎨->⎩①②, 解不等式①得:12a x +<, 解不等式②得:32xb >+,∴不等式组的解集为1322a b x ++<<, 若不等式组2123x a x b -<⎧⎨->⎩解为31x -<<, 323b ∴+=-,且112a +=, 解得:1a =,3b =-,(1)(1)(11)(31)8a b ∴+-=+⨯--=-,故选:C .【点睛】本题考查了不等式的性质,解一元一次不等式(组),解一元一次方程等知识点,解此题的关键是根据不等式组解集得出关于a 和b 的方程,题目比较好,综合性比较强.29.若关于x 的不等式132(2)x a x x >-⎧⎨≤+⎩仅有四个整数解,则a 的取值范围是( ) A .12a ≤≤ B .12a ≤< C .12a << D .2a <答案:B解析:B【分析】首先解不等式组确定不等式组的解集,然后根据不等式组有四个整数解即可得到关于a 的不等式组,求得a 的值.【详解】解:()1322x a x x >-⎧⎪⎨+⎪⎩①②, 解①得:1x a >-,解②得:4x ,则不等式组的解集是:14a x -<.不等式组有四个整数解,则是1,2,3,4.则011a -<.解得:12a <.故选:B .【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.30.如果关于x 的不等式组2030x m n x -≥⎧⎨-≥⎩仅有四个整数解:-1,0,1,2,那么适合这个为等式组的整数m n 、组成的有序实数对(),m n 最多共有( )A .2个B .4个C .6个D .9个答案:C解析:C【分析】先求出不等式组的解集,得出关于m 、n 的不等式组,求出整数m 、n 的值,即可得出答案.【详解】∵解不等式20x m -≥得:2m x ≥, 解不等式30n x -≥得:3n x ≤, ∴不等式组的解集是23m n x ≤≤, ∵关于x 的不等式组的整数解仅有-1,0,1,2, ∴212m -<≤-,233n ≤<, 解得:42m -<≤-,69n ≤<,即m 的整数值是-3,-2,n 的整数值是6,7,8,即适合这个不等式组的整数m ,n 组成的有序数对(m ,n)共有6个,是(-3,6),(-3,7),(-3,8),(-2,6),(-2,7),(-2,8).故选:C .【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出m 、n 的值.31.从-2,-1,0,1,2,3,5这七个数中,随机抽取一个数记为m ,若数m 使关于x 的不等式组22141x m x m >+⎧⎨--≥+⎩无解,且使关于x 的一元一次方程(m -2)x =3有整数解,那么这六个数所有满足条件的m 的个数有( )A .1B .2C .3D .4答案:D解析:D【分析】不等式组整理后,根据无解确定出m 的范围,进而得到m 的值,将m 的值代入检验,使一元一次方程的解为整数即可.【详解】解:解:不等式组整理得:221x m x m >+⎧⎨--⎩, 由不等式组无解,得到221m m +--,解得:1m -,即1m =-,0,1,2,3,5;当m=-1时,一元一次方程(m -2)x =3解为x=-1,符合题意;当m=0时,一元一次方程(m -2)x =3解为x=-1.5,不合题意;当m=1时,一元一次方程(m -2)x =3解为x=-3,符合题意;当m=2时,一元一次方程(m -2)x =3无解,不合题意;当m=3时,一元一次方程(m -2)x =3解为x=3,符合题意;当m=5时,一元一次方程(m -2)x =3解为x=1,符合题意.故选:D【点睛】本题考查根据不等式组的解集确定字母取值及一元一次方程解法,理解好求不等式组的解集的口诀“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题关键. 32.阅读理解:我们把 a b c d 称作二阶行列式,规定它的运算法则为 a b c d=ad ﹣bc ,例如13 24=1×4﹣2×3=﹣2,如果23 1x x->0,则x 的解集是( ) A .x >1 B .x <﹣1 C .x >3 D .x <﹣3答案:A解析:A【分析】根据二阶行列式直接列出关系式,解不等式即可;【详解】根据题意得:2x-(3-x)>0,整理得:3x>3,解得:x>1.故选A.【点睛】本题考查一元一次不等式的应用,根据二阶行列式列出不等式是解题关键.33.如果关于x 的不等式组3021x a x b -≥⎧⎨+<⎩的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对(),a b 共有( )A .4个B .6个C .8个D .9个答案:B解析:B【分析】解不等式组,然后根据不等式组的整数解仅有1,2即可确定a ,b 的范围,即可确定a ,b 的整数解,即可求解.【详解】解:3021x a x b -⎧⎨+<⎩①②, 解不等式①,得:3a x, 解不等式②,得:12b x -<, ∴不等式组的解集为132a b x -<, 不等式组的整数解仅有1、2, 013a ∴<,1232b -<, 解得:03a <,53b -<-,∴整数a 有1;2;3,整数b 有4-;3-,整数a 、b 组成的有序数对(,)a b 有(1,4)-;(2,4)-;(3,4)-;(1,3)-;(2,3)-;(3,3)-,共6个,故选:B .【点睛】此题主要考查了不等式组的整数解,根据不等式组整数解的值确定a ,b 的取值范围是解决问题的关键.34.若关于x 的不等式0ax b ->的解集是12x <,则关于x 的不等式bx a <的解集是( ) A .2x <- B .2x < C .2x >- D .2x >答案:D解析:D【分析】由题意可知,a 、b 均为负数,且可得a =2b ,把a =2b 代入bx <a 中,则可求得bx <a 的解集.【详解】由0ax b ->得:ax b >∵不等式0ax b ->的解集为12x <∴a <0 ∴12b x a <= ∴a =2b∴b <0由bx a <,得2bx b <∵b <0∴x >2故选:D .【点睛】本题考查了解一元一次不等式,关键是由条件确定字母a 的符号,从而确定a 与b 的关系,易出现错误的地方是求bx <a 的解集时,忽略b 的符号,从而导致结果错误.35.某班数学兴趣小组对不等式组2x x a >⎧⎨≤⎩讨论得到以下结论: ①若a =5,则不等式组的解集为2<x ≤5;②若a =1,则不等式组无解;③若不等式组无解,则a 的取值范围为a ≤2;④若不等式组有且只有两个整数解,则a 的值可以为5.1,以上四个结论,正确的序号是( )A .①②③B .①③④C .①②④D .①②③④ 答案:A解析:A【分析】将5a =和1a =代入不等式组,再根据口诀可得出不等式解集情况,从而判断①②;由不等式组无解,并结合大大小小的口诀可得a 的取值范围,此时注意临界值;由不等式组只有2个整数解可得a 的取值范围,从而判断④.【详解】解:①若a =5,则不等式组为25x x >⎧⎨⎩,此不等式组的解集为2<x ≤5,此结论正确; ②若a =1,则不等式组为21x x >⎧⎨⎩,此不等式组无解,此结论正确; ③若不等式组无解,则a 的取值范围为a ≤2,此结论正确;④若不等式组有且只有两个整数解,则4≤a <5,a 的值不可以为5.1,此结论错误; 故选:A .【点睛】本题主要考查一元一次不等式组的整数解,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.36.若整数a 使得关于x 的不等式组153241x x x a+⎧≥+⎪⎨⎪+≥⎩有且仅有6个整数解,且使关于y 的一元一次方程23y a +﹣2y a +=1的解满足y >21.则所有满足条件的整数a 的值之和为( )A .31B .48C .17D .33 答案:D解析:D【分析】先求出不等式组的解集,根据不等式组的整数解的个数求出a 的范围,求出方程的解,根据y >21求出a 的范围,求出公共部分,再求出a 的整数解,最后求出答案即可.【详解】 解:153?241?x x x a +⎧≥+⎪⎨⎪+≥⎩①②, 解不等式①,得x ≤9,解不等式②,得x ≥14a -, 所以不等式组的解集是14a -≤x ≤9, ∵a 为整数,不等式组有且仅有6个整数解,∴3<14a -≤4, 解得:13<a ≤17, 解方程23y a +﹣2y a +=1得:y =6+a , ∵y >21,∴6+a >21,解得:a >15,∴15<a ≤17,∵a 为整数,∴a 为16或17,16+17=33,故选:D .【点睛】本题考查了解一元一次方程,解一元一次不等式组和不等式组的整数解等知识点,能根据不等式组的解集及整数解的个数求出a 的取值范围是解此题的关键.37.把不等式组21123x x +>-⎧⎨+≤⎩的解集表示在数轴上,正确的是( ) A . B .C .D .答案:B解析:B【分析】先分别求出每一个不等式的解集,再求出它们的公共部分即可.【详解】解: 21123x x +>-⎧⎨+≤⎩①②, ∵解不等式①得:x >−1,解不等式②得:x≤1,∴不等式组的解集是−1<x≤1, 在数轴上表示为:故选:B .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解题的关键. 38.已知关于x 、y 的方程组22331x y k x y k +=⎧⎨+=-⎩以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③当1y x ->-时,1k >;④不论k 取什么实数,3x y +的值始终不变,其中正确的是( )A .①②③B .①②④C .①③④D .②③④ 答案:B解析:B【分析】①把k=0代入方程组求出解,代入方程检验即可;②方程组消元k 得到x 与y 的方程,检验即可;③表示出y-x ,代入已知不等式求出k 的范围,判断即可;④方程组整理后表示出x+3y ,检验即可.【详解】。
咸阳市七年级下学期数学期末试卷
咸阳市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共18分)1. (3分)三个实数﹣,﹣2,﹣之间的大小关系是()A . ﹣>﹣>﹣2B . ﹣>﹣2>﹣C . ﹣2>﹣>﹣D . ﹣<﹣2<﹣2. (3分) (2018八上·东台月考) 若a>0,b<-2,则点(a,b+2)在()A . 第四象限B . 第三象限C . 第二象限D . 第一象限3. (3分)若|m﹣3|+(n+2)2=0,则3m+2n的值为()A . -4B . -1C . 5D . 134. (3分)下列调查适合做普查的是()A . 了解全球人类男女比例情况B . 了解一批灯泡的平均使用寿命C . 调查20~25岁年轻人最崇拜的偶像D . 对患甲型H7N9的流感患者同一车厢的乘客进行医学检查5. (3分)不等式组的最小整数解为()A . -1B . -2C . 1D . 36. (3分)(2017·宜宾) 9的算术平方根是()A . 3B . ﹣3C . ±3D .二、填空题 (共8题;共23分)7. (3分) (2017八下·徐州期末) 计算﹣的结果是________.8. (3分) (2015七下·瑞昌期中) 如图,a∥b,∠1=76°,∠3=72°,则∠2的度数是________.9. (3分)规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[+1]的值为________10. (2分) (2016八上·绍兴期中) 如图,△ABC中,∠BAC=110°,EF,MN分别为AB,AC的垂直平分线,如果BC长为不等式3x﹣1<4x﹣5的最小整数解,那么△FAN的周长为________ cm,∠FAN=________.11. (3分) (2016七下·随县期末) 若点P(a,b)在第四象限,则点M(b﹣a,a﹣b)在第________象限.12. (3分) (2016九上·盐城期末) 小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是________.13. (3分) (2019八上·建湖月考) 将A(1,1)先向左平移2个单位,再向下平移2个单位得点B,则点B 的坐标是________.14. (3分)若关于x的不等式组有解,则实数a的取值范围是________ .三、(本大题共5小题,每小题6分,共30分) (共5题;共30分)15. (6分) (2020七下·宁波期中) 解下列方程组:(1)(2)16. (6分)解不等式组并在数轴上表示出它的解集.17. (6分) (2019八上·泰州月考) 如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线。
2014-2015学年陕西省咸阳市泾阳县七年级(下)期末数学试卷
2014-2015学年陕西省咸阳市泾阳县七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列运算正确的是()A.a3﹣a3=a0B.a2÷a﹣1=a3C.a2+a2=2a4D.a3×a3=a32.(3分)下列能用平方差公式计算的是()A.(﹣x+y)(x﹣y)B.(y﹣1)(﹣1﹣y)C.(x﹣2)(x+1)D.(2x+y)(2y﹣x)3.(3分)如图,已知∠1=85°,∠2=95°,∠4=125°,则∠3的度数为()A.95°B.85°C.70°D.125°4.(3分)如图,EO⊥AB于点O,∠EOC=40°,则∠AOD=()A.30°B.40°C.50°D.60°5.(3分)如图,△ABC与△DEF关于直线MN轴对称,则以下结论中错误的是()A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分6.(3分)如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于()A.65°B.95°C.45°D.100°7.(3分)以下列各组长度的线段为边能组成一个三角形的是()A.3,5,8 B.8,8,18 C.3,4,8 D.2,3,48.(3分)赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A.B.C.D.9.(3分)下列事件为必然事件的是()A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球10.(3分)如果a+b=5,ab=1,则a2+b2的值等于()A.27 B.25 C.23 D.21二、填空题(共6小题,每小题3分,满分18分)11.(3分)等腰三角形的一边长为9,另一边长为6,则此三角形的周长是.12.(3分)一袋中装有5个红球、4个白球和3个黄球,每个球除颜色外都相同.从中任意摸出一个球,则:P(摸到红球)=,P(摸到白球)=,P (摸到黄球)=.13.(3分)如图,已知AD=CB,若利用“SSS”来判定△ABC≌△CDA,则添加直接条件是.14.(3分)如图,在△ABC中,AC的垂直平分线DE交AB于E,∠A=30°,∠ACB=70°,则∠BCE等于.15.(3分)一种病毒的长度约为0.000 052mm,用科学记数法表示为mm.16.(3分)一个正三角形的对称轴有条.三、解答题(共8小题,满分72分)17.(10分)计算(1)(xy)2•(﹣12x2y2)÷(﹣x3y)(2)用简便方法计算1652﹣164×166.18.(10分)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=.19.(8分)如图,AB=AE,AC=AD,BD=CE,△ABC≌△AED吗?试说明.20.(10分)在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y与所挂物体的质量x的几组对应值.(1)上述反映了哪两个变量之问的关系?哪个是自变量?哪个是因变量?(2)当所挂重物为3kg时,弹簧有多长?不挂重物呢?(3)若所挂重物为6kg时(在弹簧的允许范围内),你能说出此时弹簧的长度吗?21.(8分)如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.22.(10分)如图,已知房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上∠B、∠C、∠BAD、∠CAD的度数.23.(8分)已知:∠α,∠β,线段α,求作:△ABC,使∠B=∠α,∠C=∠β,BC=a (不写作法,保留作图痕迹)24.(8分)如图,要测量河两岸相对的两点A,B的距离,可以在AB的垂线BF 上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长,为什么?2014-2015学年陕西省咸阳市泾阳县七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列运算正确的是()A.a3﹣a3=a0B.a2÷a﹣1=a3C.a2+a2=2a4D.a3×a3=a3【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、a3﹣a3=0,故错误;B、正确;C、a2+a2=2a2,故错误;D、a3×a3=a6,故错误;故选:B.2.(3分)下列能用平方差公式计算的是()A.(﹣x+y)(x﹣y)B.(y﹣1)(﹣1﹣y)C.(x﹣2)(x+1)D.(2x+y)(2y﹣x)【分析】这是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.相乘的结果应该是:右边是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:A、应为(﹣x+y)(x﹣y)=﹣(x﹣y)(x﹣y)=﹣(x﹣y)2,故本选项错误;B、(y﹣1)(﹣1﹣y)=﹣(x﹣1)(x+1)=﹣(x2﹣1),故本选项正确;C、(x﹣2)(x+1)中只有相同项,没有没有互为相反数的项,不能利用平方差公式进行计算,故本选项错误;D、(2x+y)(2y﹣x)中既没有相同的项,也没有互为相反数的项,不能利用平方差公式进行计算,故本选项错误.故选:B.3.(3分)如图,已知∠1=85°,∠2=95°,∠4=125°,则∠3的度数为()A.95°B.85°C.70°D.125°【分析】根据对顶角相等得到∠5=∠1=85°,由同旁内角互补,两直线平行得到a∥b,再根据两直线平行,同位角相等即可得到结论.【解答】解:如图,∵∠5=∠1=85°,∴∠5+∠2=85°+95°=180°,∴a∥b,∴∠3=∠4=125°,故选:D.4.(3分)如图,EO⊥AB于点O,∠EOC=40°,则∠AOD=()A.30°B.40°C.50°D.60°【分析】首先根据EO⊥AB,可得∠EOB=90°;然后根据∠COB=∠EOB﹣∠EOC,求出∠COB的度数;最后根据对顶角的性质,求出∠AOD的度数即可.【解答】解:∵EO⊥AB,∴∠EOB=90°.又∵∠EOC=30°,∴∠COB=∠EOB﹣∠EOC=90°﹣40°=50°,∵∠AOD=∠COB,∴∠AOD=50°.故选:C.5.(3分)如图,△ABC与△DEF关于直线MN轴对称,则以下结论中错误的是()A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分【分析】根据轴对称的性质作答.【解答】解:A、AB与DF不是对应线段,不一定平行,故错误;B、△ABC与△DEF关于直线MN轴对称,则△ABC≌△DEF,∠B=∠E,正确;C、△ABC与△DEF关于直线MN轴对称,则△ABC≌△DEF,AB=DE,正确;D、△ABC与△DEF关于直线MN轴对称,A与D的对应点,AD的连线被MN垂直平分,正确.故选:A.6.(3分)如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于()A.65°B.95°C.45°D.100°【分析】利用“边角边”证明△OBD和△OAC全等,根据全等三角形对应角相等可得∠C=∠D,再利用三角形的内角和等于180°列式计算即可得解.【解答】解:在△OAD和△OAC中,,∴△OBD≌△OAC(SAS),∴∠C=∠D=35°,在△OAC中,∠OAC=180°﹣∠O﹣∠C=180°﹣50°﹣35°=95°.故选:B.7.(3分)以下列各组长度的线段为边能组成一个三角形的是()A.3,5,8 B.8,8,18 C.3,4,8 D.2,3,4【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、3+5=8,不能组成三角形;B、8+8<18,不能组成三角形;C、3+4<8,不能够组成三角形;D、2+3>4,能组成三角形.故选:D.8.(3分)赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A.B.C.D.【分析】一开始是匀速行进,随着时间的增多,行驶的距离也将由0匀速上升,停下来修车,距离不发生变化,后来加快了车速,距离又匀速上升,由此即可求出答案.【解答】解:由于先匀速再停止后加速行驶,故其行驶距离先匀速增加再不变后匀速增加.故选:B.9.(3分)下列事件为必然事件的是()A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球【分析】根据事件的分类的定义及分类对四个选项进行逐一分析即可.【解答】解:A、小王参加本次数学考试,成绩是150分是随机事件,故A选项错误;B、某射击运动员射靶一次,正中靶心是随机事件,故B选项错误;C、打开电视机,CCTV第一套节目正在播放新闻是随机事件,故C选项错误.D、口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球是必然事件,故D选项正确;故选:D.10.(3分)如果a+b=5,ab=1,则a2+b2的值等于()A.27 B.25 C.23 D.21【分析】将a+b=5两边平方,利用完全平方公式化简,将ab的值代入计算即可求出a2+b2的值.【解答】解:将a+b=5两边平方得:(a+b)2=a2+2ab+b2=25,将ab=1代入得:a2+2+b2=25,则a2+b2=23.故选:C.二、填空题(共6小题,每小题3分,满分18分)11.(3分)等腰三角形的一边长为9,另一边长为6,则此三角形的周长是24或21.【分析】分边9是底边和腰长两种情况讨论,再根据三角形的任意两边之和大于第三边判断是否能组成三角形,然后求解即可.【解答】解:若9是底边,则三角形的三边分别为9、6、6,能组成三角形,周长=9+6+6=21,若9是腰长,则三角形的三边分别为9、9、6,能组成三角形,周长=9+9+6=24,综上所述,此三角形的周长是24或21.故答案为:24或21.12.(3分)一袋中装有5个红球、4个白球和3个黄球,每个球除颜色外都相同.从中任意摸出一个球,则:P(摸到红球)=,P(摸到白球)=,P(摸到黄球)=.【分析】让相应球的个数除以球的总数即为摸到相应球的概率.【解答】解:∵袋中装有5个红球、4个白球和3个黄球共12个球,∴P(摸到红球)=,P(摸到白球)==,P(摸到黄球)==,故答案为:,,.13.(3分)如图,已知AD=CB,若利用“SSS”来判定△ABC≌△CDA,则添加直接条件是AB=CD.【分析】要使△ABC≌△CDA,已知AD=CB,且有公共边AC=CA,所以只要添加AB=CD即可.【解答】解:要利用SSS判定两三角形全等,现有AD=CB,AC=CA,则再添加AB=CD 即满足条件.故填AB=CD.14.(3分)如图,在△ABC中,AC的垂直平分线DE交AB于E,∠A=30°,∠ACB=70°,则∠BCE等于40°.【分析】根据线段垂直平分线性质求出∠ACE=∠A,即可得出∠BCE的度数.【解答】解:∵AC的垂直平分线DE,∴AE=CE,∴∠ACE=∠A=30°,∴∠BCE=∠ACB﹣∠ACE=70°﹣30°=40°,故答案为:40°15.(3分)一种病毒的长度约为0.000 052mm,用科学记数法表示为 5.2×10﹣5mm.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 052=5.2×10﹣5.故答案是:5.2×10﹣5.16.(3分)一个正三角形的对称轴有3条.【分析】根据轴对称的概念和等边三角形的性质进行解答即可.【解答】解:根据正三角形的轴对称性,三条高所在的直线都是对称轴.故答案为:3.三、解答题(共8小题,满分72分)17.(10分)计算(1)(xy)2•(﹣12x2y2)÷(﹣x3y)(2)用简便方法计算1652﹣164×166.【分析】(1)原式先利用积的乘方运算法则变形,再利用单项式乘除单项式法则计算即可得到结果;(2)原式变形后,利用平方差公式化简,计算即可得到结果.【解答】解:(1)原式=x2y2•(﹣12x2y2)÷(﹣x3y)=xy3;(2)原式=1652﹣(165﹣1)×(165+1)=1652﹣1652+1=1.18.(10分)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=.【分析】先根据整式混合运算的法则把原式进行化简,再把a=﹣3,b=代入进行计算即可.【解答】解:原式=2b2+a2﹣b2﹣(a2+b2﹣2ab)=2b2+a2﹣b2﹣a2﹣b2+2ab=2ab,当a=﹣3,b=时,原式=2×(﹣3)×=﹣3.19.(8分)如图,AB=AE,AC=AD,BD=CE,△ABC≌△AED吗?试说明.【分析】由BD=CE,得到BC=ED,根据“边、边、边”判定定理可得△ABC≌△AED.【解答】△ABC≌△AED,证明:∵BD=CE,∴BC=ED,在△ABC和△AED中,,∴△ABC≌△AED.20.(10分)在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y与所挂物体的质量x的几组对应值.(1)上述反映了哪两个变量之问的关系?哪个是自变量?哪个是因变量?(2)当所挂重物为3kg时,弹簧有多长?不挂重物呢?(3)若所挂重物为6kg时(在弹簧的允许范围内),你能说出此时弹簧的长度吗?【分析】(1)因为表中的数据主要涉及到弹簧的长度和所挂物体的质量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;(2)由表可知,当物体的质量为3kg时,弹簧的长度是24cm;不挂重物时,弹簧的长度是18cm;(3)由表中的数据可知,x=0时,y=18,并且每增加1千克的质量,长度增加2cm,依此可求所挂重物为6千克时(在允许范围内)时的弹簧长度.【解答】解:(1)上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;(2)当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;(3)根据上表可知所挂重物为6千克时(在允许范围内)时的弹簧长度=18+2×6=30厘米.21.(8分)如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.【分析】由∠A=∠F,根据内错角相等,得两条直线平行,即AC∥DF;根据平行线的性质,得∠C=∠CEF,借助等量代换可以证明∠D=∠CEF,从而根据同位角相等,证明BD∥CE.【解答】解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).22.(10分)如图,已知房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上∠B、∠C、∠BAD、∠CAD的度数.【分析】先根据等腰三角形的性质得出∠B=∠C,再由三角形内角和定理即可求出∠B的度数,根据等腰三角形三线合一的性质即可求出∠BAD的度数.【解答】解:∵△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C===40°;∵AB=AC,AD⊥BC,∠BAC=100°,∴AD平分∠BAC,∴∠BAD=∠CAD=50°.23.(8分)已知:∠α,∠β,线段α,求作:△ABC,使∠B=∠α,∠C=∠β,BC=a (不写作法,保留作图痕迹)【分析】先作线段BC=a,再分别以点B和点C为顶点作∠ABC=α,∠ACB=β,两角的另一边相交于点A,则△ABC为所求.【解答】解:如图,△ABC为所求.24.(8分)如图,要测量河两岸相对的两点A,B的距离,可以在AB的垂线BF 上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长,为什么?【分析】本题是测量两点之间的距离方法中的一种,符合全等三角形全等的条件,方案的操作性强,只要测量的线段和角度在陆地一侧即可实施.【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,又∵直线BF与AE交于点C,∴∠ACB=∠ECD(对顶角相等),∵CD=BC,∴△ABC≌△EDC,∴AB=ED,即测得DE的长就是A,B两点间的距离.。
陕西省咸阳市七年级下学期数学期末考试试卷
陕西省咸阳市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10个小题,每小题3分,共30分。
) (共10题;共30分)1. (3分)在平移过程中,对应线段()A . 互相平行且相等B . 互相垂直且相等C . 在一条直线上D . 互相平行(或在同一条直线上)且相等2. (3分) (2019八下·安岳期中) 若点P()在第二象限,则的取值范围是()A . <1B . <0C . >0D . >13. (3分) (2018七上·阜宁期末) 下列四个数中,在-2到0之间的数是()A . -1B . 1C . -3D . 34. (3分)如果一元一次不等式组的解集为x>3,则a的取值范围是()A . a>3B . a≥3C . a<3D . a≤35. (3分)下列调查中,适宜采用普查方式的是()A . 调查市场上酸奶的质量情况B . 调查乘坐飞机的旅客是否携带了危禁物品C . 调查某品牌日光灯管的使用寿命D . 调查《阿福聊斋》节目的收视率情况6. (3分)已知代数式xa﹣1y3与﹣3xby2a﹣b是同类项,那么a,b的值分别是()A .B .C .D .7. (3分)已知:a>0、b<-1,则点(a,b+1)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (3分)如图,AB∥DE,∠1=∠2,则AE与DC的位置关系是()A . 相交B . 平行C . 垂直D . 不能确定9. (3分)已知,则代数式的值是()A . 0B .C .D .10. (3分)若方程组的解中,x与y相等,则k=()A . 3B . 20C . 0D . 10二、填空题(本大题共6个小题,每小题4分,共24分) (共6题;共24分)11. (4分)式子有意义,则x的取值范围是________ .12. (4分)平行四边形的对角线________,并将四边形分成________对全等三角形, ________对面积相等的三角形.13. (4分) (2016九上·柳江期中) 若x=2是方程x2+x﹣a=0的一个根,则a的值为________.14. (4分)已知a、b、c是三角形三边长,且c=5,a、b满足关系式,则△ABC的形状是________三角形.15. (4分) (2017八下·海宁开学考) “x的2倍与5的和不小于10”用不等式表示为________.16. (4分)某学校为了增强学生的国防意识,在八年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.从图中可知这50名学生的成绩的中位数在________ 组.三、解答题(一)(本大题共3个小题,每小题6分,共18分) (共3题;共18分)17. (6分)已知x=2﹣,求代数式(7+4 )x2+(2+ )x+ 的值.18. (6分)解不等式:>1﹣.19. (6分) (2017七下·宁江期末) 已知:如图,∠1=∠2,∠3=∠E,求证:∠A=∠CBE.四、解答题(二)(本大题共3个小题,每小题7分,共21分) (共3题;共21分)20. (7分) (2016七上·利州期末) 当x=−,y=-3时,求代数式3(x2-2xy)-[3x2-2y+2(xy+y)]的值.21. (7.0分) (2017八上·永定期末) 在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1) B点关于y轴的对称点坐标为________;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为________.22. (7.0分) (2016九上·仙游期末) 某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图________,并指出这个样本数据的中位数落在第________小组;(1)(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?五、解答题(三)(本大题共3个小题,每小题9分,共27分) (共3题;共21分)23. (7.0分)我们可以计算出=2; = ; =3而且还可以计算 =2 = =3(1)根据计算的结果,可以得到:①当a>0时 =________;②当a<0时 =________.(2)应用所得的结论解决:如图,已知a,b在数轴上的位置,化简﹣﹣.24. (7.0分)阅读下列材料,解答下面的问题:我们知道方程有无数个解,但在实际生活中我们往往只需求出其正整数解。
陕西省咸阳市七年级下学期数学期末考试试卷
陕西省咸阳市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列说法:①平移不改变图形的形状和大小;②一个多边形的内角中最多有3个锐角;③一个图形和它经过平移所得的图形中,两组对应点的连线段平行(或在同一条直线上)且相等;④同位角相等;⑤任何数的零次幂都等于1;⑥一个角的两边和另一个角的两边分别平行,则这两个角相等;正确的有()A . 2个B . 3个C . 4个D . 5个2. (2分) (2019七下·海曙期中) 下列方程是二元一次方程的是()A .B .C .D .3. (2分)(2020·防城港模拟) 下列叙述正确的是()A . 方差越大,说明数据就越稳定B . 在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变C . 不在同一直线上的三点确定一个圆D . 两边及其一边的对角对应相等的两个三角形全等4. (2分)已知二元一次方程3x﹣y=1,当x=2时,y﹣8等于()A . 5B . -3C . -7D . 75. (2分) (2018八上·定西期末) 下列结论正确的是()A . 两直线被第三条直线所截,同位角相等B . 三角形的一个外角等于两个内角的和C . 多边形最多有三个外角是钝角D . 连接平面上三点构成的图形是三角形6. (2分) (2015九下·南昌期中) 某兴趣小组10名学生在一次数学测试中的成绩如表(满分150分)分数(单位:分)105130 140 150人数(单位:人) 2 4 3 1下列说法中,不正确的是()A . 这组数据的众数是130B . 这组数据的中位数是130C . 这组数据的平均数是130D . 这组数据的方差是112.57. (2分)如图所示,∠1=∠2,∠3=∠4,若证得BD=CD,则所用的判定两三角形全等的依据是()A . 角角角B . 角边角C . 边角边D . 角角边8. (2分) (2019七下·南浔期末) 用如图1中的长方形和正方形纸板作侧面和底面,做成如图2的紧式和横式的两种无盖纸盒.现存仓库里有m张长方形纸板和n张正方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m+n的值可能是()A . 2017B . 2018C . 2019D . 20209. (2分)(2019·梧州) 不等式组的解集在数轴上表示为()A .B .C .D .10. (2分) (2018八上·泰兴月考) 如图,AD是Rt△ABC斜边BC上的高,将△ACD沿AD所在的直线折叠,点C恰好落在BC的中点E处,则∠B等于()A . 25°B . 30°C . 45°D . 60°二、填空题 (共10题;共10分)11. (1分)(2019·白银) 中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点,“马”位于点,则“兵”位于点________.12. (1分) (2019八下·闵行期末) 如果多边形的每个外角都是45°,那么这个多边形的边数是________.13. (1分) (2018七上·澧县期中) 如果单项式﹣3xa+2y3 与 2ybx6 是同类项,那么 a、b 的值分别是________14. (1分) (2017七下·常州期末) 不等式3(x﹣1)≤5﹣x的非负整数解有________个.15. (1分)(2018·姜堰模拟) 八边形的外角和等于________.16. (1分) (2019七下·江夏期末) 某校开展“未成年人普法”知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记分.小明参加本次竞赛的得分超过100分,他至少答对了________题;17. (1分)(2019·营口) 在一次青年歌手演唱比赛中,10位评委给某位歌手的打分分别是:9.5,9.8,9.4,9.5,9.6,9.3,9.6,9.4,9.3,9.4,则这组数据的众数是________.18. (1分)(2017·哈尔滨) 不等式组的解集是________.19. (1分) (2018九上·东营期中) 网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA=________.20. (1分)(2019·毕节) 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度是________.三、综合题 (共7题;共76分)21. (10分)(2020·百色模拟) 已知x,y满足方程组,求(x﹣y)2﹣(x+2y)(x﹣2y)的值.22. (6分)(2019·长春模拟) 图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图1中画出一个以AB为一边面积为 5的等腰RtABC,且点C在小正方形顶点上;(2)在图2中画出一个以AB为一边面积为 4的平行四边形ABDE,且点D和点E均在小正方形的顶点上;写出所画四边形周长=________.23. (15分)(2018·无锡模拟) 今年4月23日是第23个“世界读书日”,也是江苏省第四个法定的全民阅读日。
七年级下册咸阳数学期末试卷综合测试(Word版 含答案)
七年级下册咸阳数学期末试卷综合测试(Word 版 含答案)一、选择题1.如图所示,B 与2∠是一对( )A .同位角B .内错角C .同旁内角D .对顶角 2.下列各组图形可以通过平移互相得到的是( )A .B .C .D . 3.在平面直角坐标系中,平行于坐标轴的线段5PQ =,若点P 坐标是()2,1-,则点Q 不在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.给出下列 4 个命题:①不是对顶角的两个角不相等;②三角形最大内角不小于 60°;③多边形的外角和小于内角和;④平行于同一直线的两条直线平行.其中真命题的个数是 ( )A .1B .2C .3D .45.如图,AB ∥CD ,∠1=∠2,∠3=130°,则∠2等于( )A .30°B .25°C .35°D .40° 6.下列说法错误的是( )A .9的平方根是3±B 168C .127的立方根是13D 38-2- 7.珠江流域某江段江水流向经过B 、C 、D 三点,拐弯后与原来方向相同.如图,若∠ABC =120°,∠BCD =80°,则∠CDE 等于( )A .20°B .40°C .60°D .80°8.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把P 1(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为A 2,点A 2的友好点为A 3,点A 3的友好点为A 4,这样依次得到各点.若A 2021的坐标为(﹣3,2),设A 1(x ,y ),则x +y 的值是( )A .﹣5B .3C .﹣1D .5二、填空题9.已知 325.6≈18.044,那么± 3.256≈___________.10.在平面直角坐标系中,点(,)M a b 与点(3,1)N -关于x 轴对称,则a b +的值是_____. 11.已知点A (3a+5,a ﹣3)在二、四象限的角平分线上,则a=__________. 12.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.13.如图,将长方形纸片ABCD 沿EF 折叠,使得点C 落在边AB 上的点H 处,点D 落在点G 处,若42AHG ∠=︒,则GEF ∠的度数为______.14.若40a b <<,且a ,b 是两个连续的整数,则a+b 的值为_______15.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.16.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→⋯,且每秒移动一个单位,那么粒子运动到点(3,0)时经过了__________秒;2014秒时这个粒子所在的位置的坐标为_____________.三、解答题17.计算下列各题:(1)327-+2(3)--31-(2)3331632700.1251464---++-. 18.求下列各式中的x 值.(1)2164x -=(2)()318x -=19.请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A =∠D .求证:∠B =∠C .证明:∵∠1=∠2,(已知)又:∵∠1=∠3,( )∴∠2=____________(等量代换)AE FD ∴∥(同位角相等,两直线平行)∴∠A =∠BFD ( )∵∠A =∠D (已知)∴∠D =_____________(等量代换)∴____________∥CD ( )∴∠B =∠C ( )20.在平面直角坐标系xOy 中,点A 的坐标为(0,4),线段MN 的位置如图所示,其中点M 的坐标为(﹣3,﹣1),点N 的坐标为(3,﹣2).(1)将线段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对应点为B .画出平移后的线段AB .①点M 平移到点A 的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;②点B 的坐标为 ;(2)在(1)的条件下,若点C 的坐标为(4,0),连接AC ,BC ,求△ABC 的面积.21.数学活动课上,王老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用2﹣1表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:(1)填空题:3的整数部分是 ;小数部分是(2)已知8+3=x+y ,其中x 是一个整数,且0<y <1,求出2x+(y-3)2012的值. 二十二、解答题22.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:2=1.414,3=1.732,5=2.236)二十三、解答题23.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示G ∠的度数.24.已知:三角形ABC 和三角形DEF 位于直线MN 的两侧中,直线MN 经过点C ,且BC MN ⊥,其中A ABC CB =∠∠,DEF DFE ∠=∠,90∠+∠=︒ABC DFE ,点E 、F 均落在直线MN 上.(1)如图1,当点C 与点E 重合时,求证://DF AB ;聪明的小丽过点C 作//CG DF ,并利用这条辅助线解决了问题.请你根据小丽的思考,写出解决这一问题的过程. (2)将三角形DEF 沿着NM 的方向平移,如图2,求证://DE AC ;(3)将三角形DEF 沿着NM 的方向平移,使得点E 移动到点E ',画出平移后的三角形DEF ,并回答问题,若DFE α∠=,则∠=CAB ________.(用含α的代数式表示) 25.如图,直线m 与直线n 互相垂直,垂足为O 、A 、B 两点同时从点O 出发,点A 沿直线m 向左运动,点B 沿直线n 向上运动.(1)若∠BAO 和∠ABO 的平分线相交于点Q ,在点A ,B 的运动过程中,∠AQB 的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP 是∠BAO 的邻补角的平分线,BP 是∠ABO 的邻补角的平分线,AP 、BP 相交于点P ,AQ 的延长线交PB 的延长线于点C ,在点A ,B 的运动过程中,∠P 和∠C 的大小是否会发生变化?若不发生变化,请求出∠P 和∠C 的度数;若发生变化,请说明理由.26.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC ,点D 是三角形ABC 内一点,连接BD ,CD ,试探究BDC ∠与A ∠,1∠,2∠之间的关系.小明:可以用三角形内角和定理去解决.小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程:∵180BDC DBC BCD ∠+∠+∠=︒,(______)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(______)(2)请你按照小丽的思路完成探究过程;(3)利用探究的结果,解决下列问题:①如图①,在凹四边形ABCD 中,135BDC ∠=︒,25B C ∠=∠=︒,求A ∠=______; ②如图②,在凹四边形ABCD 中,ABD ∠与ACD ∠的角平分线交于点E ,60A ∠=︒,140BDC ∠=︒,则E ∠=______;③如图③,ABD ∠,ACD ∠的十等分线相交于点、1F 、2F 、…、9F ,若120BDC ∠=︒,364BF C ∠=︒,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______;⑤如图⑤,ABD ∠,BAC ∠的角平分线交于点E ,40C ∠=︒,140BDC ∠=︒,求AEB ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据“同位角、内错角、同旁内角”的意义进行判断即可.【详解】解:∠B 与∠2是直线DE 和直线BC 被直线AB 所截得到的内错角,故选:B .【点睛】本题考查“同位角、内错角、同旁内角”的意义,理解和掌握“同位角、内错角、同旁内角”的特征是正确判断的前提.2.B【分析】根据平移的定义逐项分析判断即可.【详解】解:A 、不能通过平移得到,故本选项错误;B 、能通过平移得到,故本选项正确;C 、不能通过平移得到,故本选项错误;D 、不能通过平移得到,故解析:B【分析】根据平移的定义逐项分析判断即可.【详解】解:A 、不能通过平移得到,故本选项错误;B 、能通过平移得到,故本选项正确;C 、不能通过平移得到,故本选项错误;D 、不能通过平移得到,故本选项错误.故选:B .【点睛】本题考查了图形的平移,正确掌握平移的定义和性质是解题关键.3.D【分析】设点(),Q a b ,分//PQ x 轴和//PQ y 轴,两种情况讨论,即可求解.【详解】解:设点(),Q a b ,若//PQ x 轴,则点P 、Q 的纵坐标相等,∵线段5PQ =,若点P 坐标是()2,1-,∴()25a --= ,1b = ,解得:3a = 或7- ,∴()3,1Q 或()7,1- ;若//PQ y 轴,则点P 、Q 的横坐标相等,∵线段5PQ =,若点P 坐标是()2,1-, ∴15b -= ,2a =- ,解得:6b = 或4- ,∴()2,6Q - 或()2,4-- ,∴点()3,1Q 或()7,1-或()2,6- 或()2,4-- ,∴点Q 不在第四象限.故选:D .【点睛】本题主要考查了坐标与图形,线段与坐标轴平行时点的坐标特征,分//PQ x 轴和//PQ y 轴,两种情况讨论是解题的关键.4.B①举反例说明即可,②利用三角形内角和定理判断即可,③举反例说明即可,④根据平行线的判定方法判断即可.【详解】解:①如:两直线平行同位角相等,所以不是对顶角的两个角不相等,错误,;②若三角形最大内角小于60°,则三角形内角和小于180°,所以三角形最大内角不小于60°,正确;③如:三角形的外角和大于内角和,所以多边形的外角和小于内角和,错误;④平行于同一直线的两条直线平行,正确.故选:B.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了,这样的例子叫做反例.5.B【分析】根据AB∥CD,∠3=130°,求得∠GAB=∠3=130°,利用平行线的性质求得∠BAE=180°﹣∠GAB=180°﹣130°=50°,由∠1=∠2 求出答案即可.【详解】解:∵AB∥CD,∠3=130°,∴∠GAB=∠3=130°,∵∠BAE+∠GAB=180°,∴∠BAE=180°﹣∠GAB=180°﹣130°=50°,∵∠1=∠2,∴∠2=12∠BAE=12×50°=25°.故选:B.【点睛】此题考查平行线的性质:两直线平行同位角相等,两直线平行同旁内角互补,熟记性质定理是解题的关键.6.B【分析】根据算术平方根与平方根、立方根的性质逐项判断即可得.【详解】A、9的平方根是3±,此项说法正确;B4,此项说法错误;C、127的立方根是13,此项说法正确;D2-,此项说法正确;【点睛】本题考查了算术平方根与平方根、立方根的性质,熟练掌握算术平方根与平方根、立方根的性质是解题关键.7.A【分析】过点C作CF∥AB,则CF∥DE,利用平行线的性质和角的等量代换求解即可.【详解】解:由题意得,AB∥DE,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题主要考查了平行线的性质,合理作出辅助线是解题的关键.8.C【分析】列出部分An点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x、y的值,二者相加即可得出结论.【解析:C【分析】列出部分A n点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x、y的值,二者相加即可得出结论.【详解】解:∵A2021的坐标为(﹣3,2),根据题意可知:A2020的坐标为(﹣3,﹣2),A2019的坐标为(1,﹣2),A2018的坐标为(1,2),A2017的坐标为(﹣3,2),…∴A4n+1(﹣3,2),A4n+2(1,2),A4n+3(1,﹣2),A4n+4(﹣3,﹣2)(n为自然数).∵2021=505×4•••1,∵A2021的坐标为(﹣3,2),∴A1(﹣3,2),∴x+y=﹣3+2=﹣1.故选:C.【点睛】本题考查了规律型中的点的坐标的变化,解决该题型题目时,根据友好点的定义列出部分点的坐标,根据坐标的变化找出变化规律是关键.二、填空题9.±1.8044【详解】∵,∴,即.故答案为±1.8044解析:±1.8044【详解】∵,∴,即 1.8044±.故答案为±1.804410.4【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,,,则a+b的值是:,故答案为.【点睛】本题考查了关于x轴对称的解析:4根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点(,)M a b 与点(3,1)M -关于x 轴对称,3a ∴=,1b =,则a+b 的值是:4,故答案为4.【点睛】本题考查了关于x 轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.11.﹣【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.解析:﹣12【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣12. 故答案是:﹣12. 12.70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C .【详解】∵DE ∥AC ,∴∠C =∠1=70°,∵AF ∥BC ,∴∠2=∠C =70°.故答解析:70根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C .【详解】∵DE ∥AC ,∴∠C =∠1=70°,∵AF ∥BC ,∴∠2=∠C =70°.故答案为70.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.13.111°【分析】结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案.【详解】根据题意,得,,,∴,∴∴∴∵解析:111°【分析】结合题意,根据轴对称和长方形的性质,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠,从而推导得BFH AHG ∠=∠;通过计算得CFE ∠,根据平行线同旁内角互补的性质,得DEF ∠,即可得到答案.【详解】根据题意,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠ ∴90BHF AHG ∠+∠=︒,90BHF BFH ∠+∠=︒∴42BFH AHG ∠=∠=︒∴180138HFE CFE BFH ∠+∠=︒-∠=︒∴69HFE CFE ∠=∠=︒∵//BC AD∴180111DEF CFE ∠=︒-∠=︒∴111GEF DEF ∠=∠=︒故答案为:111°.【点睛】本题考查了轴对称、平行线、矩形、余角的知识;解题的关键是熟练掌握轴对称和平行线的性质,从而完成求解.14.13【解析】分析:先估算出的范围,求出a、b的值,再代入求出即可.详解:∵6<<7,∴a=6,b=7,∴a+b=13.故答案为13.点睛:本题考查了估算无理数的大小,能估算出的范围是解答此解析:13【解析】a、b的值,再代入求出即可.详解:∵67,∴a=6,b=7,∴a+b=13.故答案为13.15.【分析】根据x轴上的点的纵坐标等于0列式计算即可得解.【详解】∵点P(m+3,m﹣2)在x轴上,∴m﹣2=0,解得m=2.故答案为:2.【点睛】此题考查点的坐标,熟记x轴上的点的纵解析:【分析】根据x轴上的点的纵坐标等于0列式计算即可得解.【详解】∵点P(m+3,m﹣2)在x轴上,∴m﹣2=0,解得m=2.故答案为:2.【点睛】此题考查点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.16.(10,44)【分析】该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4解析:(10,44)【分析】该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…A n时所用的间分别为a1,a2,…a n,则a1=2,a2=6,a3=12,a4=20,…,【详解】解:由题意,粒子运动到点(3,0)时经过了15秒,设粒子运动到A1,A2,…,A n时所用的间分别为a1,a2,…,a n,则a1=2,a2=6,a3=12,a4=20,…,a2-a1=2×2,a3-a2=2×3,a4-a3=2×4,…,a n-a n-1=2n,各式相加得:a n-a1=2(2+3+4+…+n)=n2+n-2,∴a n=n(n+1).∵44×45=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,…,A n中,奇数点处向下运动,偶数点处向左运动.故达到A44(44,44)时向左运动34秒到达点(10,44),即运动了2014秒.所求点应为(10,44).故答案为:(10,44).故答案为:15,(10,44).【点睛】本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运动规律得到递推关系式a n-a n-1=2n是本题的突破口,本题对运动规律的探索可知知:A1,A2,…A n中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键.三、解答题17.(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=;(2)原式=-3-0-+0.5+ =解析:(1)1 (2)11 4 -【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=3311-++=;(2)原式=-3-0-12+0.5+14=11 4 -18.(1);(2).【分析】(1)首先求出的值是多少,然后根据平方根的含义和求法,求出x的值即可.(2)根据立方根的含义和求法,可得x-1=2,据此求出x的值是多少即可.【详解】(1)解解析:(1)52x=±;(2)3x=.【分析】(1)首先求出2x的值是多少,然后根据平方根的含义和求法,求出x的值即可.(2)根据立方根的含义和求法,可得x-1=2,据此求出x的值是多少即可.【详解】(1)2164x-=2254x=解得:52 x=±故答案为:52 x=±(2)()318x-=12x-=解得:3x=故答案为:3x=【点睛】本题考查了平方根的含义和求法,立方根的含义和求法.19.对顶角相等;∠3;两直线平行,同位角相等;∠BFD ;AB ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可.【详解】证明:∵∠1=∠2,(解析:对顶角相等;∠3;两直线平行,同位角相等;∠BFD ;AB ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可.【详解】证明:∵∠1=∠2,(已知)又:∵∠1=∠3,(对顶角相等)∴∠2=∠3(等量代换)AE FD ∴∥(同位角相等,两直线平行)∴∠A =∠BFD (两直线平行,同位角相等)∵∠A =∠D (已知)∴∠D =∠BFD (等量代换)∴AB ∥CD (内错角相等,两直线平行)∴∠B =∠C (两直线平行,内错角相等).【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.20.(1)①右,3,上,5(答案不唯一);②(6,3);(2)10【分析】(1)由点M 及其对应点的A 的坐标可得平移的方向和距离,据此可得点N 的对应点B 的坐标;(2)利用割补法,得到即可求解.【详解析:(1)①右,3,上,5(答案不唯一);②(6,3);(2)10【分析】(1)由点M 及其对应点的A 的坐标可得平移的方向和距离,据此可得点N 的对应点B 的坐标;(2)利用割补法,得到矩形ABC AOED Rt AOC Rt BCE Rt ABD SS S S S =---即可求解.【详解】解:(1)将段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对称点为B ,①点M 平移到点A 的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;∵N (3,-2),∴将N (3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3)∴②点B 的坐标为(6,3);(2)如图,过点B 作BE ⊥x 轴于点E ,过点A 作AD ⊥y 轴交EB 的延长线于点D ,则四边形AOED 是矩形,∵A (0,4),B (6, 3), C (4,0)∴E (6,0), D (6,4)∴ AO = 4, CO = 4, EO =6,∴CE =EO -CO =6-4=2, BE =3, DE = 4, AD =6, BD =DE -BE =4-3=1,∴矩形ABC AOED Rt AOC Rt BCE Rt ABD S S S S S =---1114644231610222=⨯-⨯⨯-⨯⨯-⨯⨯= 【点睛】本题主要考查作图-平移变换,熟练掌握平移变换的定义及其性质是解题的关键. 21.(1)1;-1(2)19【分析】(1)根据已知的条件就可以求出;(2)先估算的范围,进一步确定8+的范围,即可求出x ,y 的值,即可解答.【详解】解:(1)∵1<<2,∴的整数部分是1;小解析:(1)13(2)19【分析】(1)根据已知的条件就可以求出;(233x ,y 的值,即可解答.解:(1)∵12,∴1;(2)解:∵12,∴9<10,∵x+y,且x是一个整数,0<y<1,∴x=9,y=91,∴2x+(2012=2×9+2012=18+1=19.【点睛】二十二、解答题22.(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3解析:(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出长方形的长和宽和5比较即可得出答案.试题解析:(1)∵正方形的面积是 25 平方分米,∴正方形工料的边长是 5 分米;(2)设长方形的长宽分别为 3x 分米、2x 分米,则3x•2x=18,x2=3,x1,x2=5,,即这块正方形工料不合格.二十三、解答题23.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFα解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=12(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=1 2∠PEA+12∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE 中,∠G =180°-(∠GFE +∠GEF ),∵∠GEF =12∠PEA +∠OEF ,∠GFE =12∠PFC +∠OFE ,∴∠GEF +∠GFE =12∠PEA +12∠PFC +∠OEF +∠OFE ,∵由(2)知∠PFC =∠PEA +∠P ,∴∠PEA =∠PFC -α,∵∠OFE +∠OEF =180°-∠FOE =180°-∠PFC ,∴∠GEF +∠GFE =12(∠PFC −α)+12∠PFC +180°−∠PFC =180°−12α,∴∠G =180°−(∠GEF +∠GFE )=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键. 24.(1)见解析;(2)见解析;(3)见解析;.【分析】(1)过点C 作,得到,再根据,,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据(2)结论得到∠D解析:(1)见解析;(2)见解析;(3)见解析;2α.【分析】(1)过点C 作//CG DF ,得到DFE FCG ∠=∠,再根据90BCF ∠=︒,90∠+∠=︒ABC DFE ,得到ABC BCG ∠=∠,进而得到//CG AB ,最后证明//DF AB ; (2)先证明90ACB DEF ∠+∠=︒,再证明90ACB ACE ∠+∠=︒,得到DEF ACE ∠=∠,问题得证;(3)根据题意得到DFE DEF α∠=∠=,根据(2)结论得到∠DEF =∠ECA =α,进而得到=90BC AC A B α=∠︒-∠,根据三角形内角和即可求解.【详解】解:(1)过点C 作//CG DF ,DFE FCG ∴∠=∠,BC MN ⊥,90BCF ∴∠=︒,90BCG FCG ∴∠+∠=︒,90BCG DFE ∴∠+∠=︒,90ABC DFE ∠+∠=︒,ABC BCG ∴∠=∠,//CG AB ∴,//DF AB ∴;(2)解:ABC ACB ∠=∠,DEF DFE ∠=∠,又90ABC DFE ∠+∠=︒,90ACB DEF ∴∠+∠=︒,BC MN ⊥,90BCM ∴∠=︒,90ACB ACE ∴∠+∠=︒,DEF ACE ∴∠=∠,//DE AC ∴;(3)如图三角形DEF 即为所求作三角形.∵DFE α∠=,∴DFE DEF α∠=∠=,由(2)得,DE ∥AC ,∴∠DEF =∠ECA =α,∵90ACB ACE ∠+∠=︒,∴∠ACB =90α︒-,∴ =90BC AC A B α=∠︒-∠,∴∠A =180°-A ABC CB -∠∠=2α.故答案为为:2α.【点睛】本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键.25.(1)∠AQB 的大小不发生变化,∠AQB =135°;(2)∠P 和∠C 的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO 与∠BAO 的和,由角平分线和角的和差可求出∠BA 解析:(1)∠AQB 的大小不发生变化,∠AQB =135°;(2)∠P 和∠C 的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BAQ与∠ABQ 的和,最后在△ABQ中,根据三角形的内角各定理可求∠AQB的大小.第(2)题求∠P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解.【详解】解:(1)∠AQB的大小不发生变化,如图1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分别是∠BAO和∠ABO的角平分线,∴∠BAQ=12∠BAC,∠ABQ=12∠ABO,∴∠BAQ+∠ABQ=12 (∠ABO+∠BAO)=190452⨯=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如图2所示:①∠P的大小不发生变化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分别是∠BAE和∠ABP的角平分线,∴∠PAB=12∠EAB,∠PBA=12∠ABF,∴∠PAB+∠PBA=12 (∠EAB+∠ABF)=12×270°=135°,又∵在△PAB 中,∠P+∠PAB+∠PBA =180°,∴∠P =180°﹣135°=45°.②∠C 的大小不变,其原因如下:∵∠AQB =135°,∠AQB+∠BQC =180°,∴∠BQC =180°﹣135°,又∵∠FBO =∠OBQ+∠QBA+∠ABP+∠PBF =180°∠ABQ =∠QBO =12∠ABO ,∠PBA =∠PBF =∠ABF , ∴∠PBQ =∠ABQ+∠PBA =90°,又∵∠PBC =∠PBQ+∠CBQ =180°,∴∠QBC =180°﹣90°=90°.又∵∠QBC+∠C+∠BQC =180°,∴∠C =180°﹣90°﹣45°=45°【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题.26.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①85A ∠=︒;②100E ∠=︒;③40A ∠=︒;④2B C E ∠-∠=∠;⑤130︒【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长BD 交AC 于E ,然后根据外角的性质确定1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,即可判断BDC ∠与A ∠,1∠,2∠之间的关系;(3)①连接BC ,然后根据(1)中结论,代入已知条件即可求解;②连接BC ,然后根据(1)中结论,求得ABD ACD ∠+∠的和,进而得到DBC DCB ∠+∠的和,然后根据角平分线求得EBD ECD ∠+∠的和,进而求得80EBC ECB ∠+∠=︒,然后利用三角形内角和定理180E EBC ECB ∠+∠+∠=︒,即可求解;③连接BC ,首先求得18060DBC DCB BDC ∠+∠=︒-∠=︒,然后根据十等分线和三角形内角和的性质得到333180=116CBF BC F F B C =︒-∠︒∠+∠,然后得到ABD ACD ∠+∠的和,最后根据(1)中结论即可求解;④设BD 与AE 的交点为点O ,首先利用根据外角的性质将∠BOE 用两种形式表示出来,然后得到BAE ABD E BDE ∠+∠=∠+∠,然后根据角平分线的性质,移项整理即可判断; ⑤根据(1)问结论,得到BAC ABD ∠+∠的和,然后根据角平分线的性质得到BAE ABE ∠+∠的和,然后利用三角形内角和性质即可求解.【详解】(1)∵180BDC DBC BCD ∠+∠+∠=︒,(三角形内角和180°)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(等量代换)故答案为:三角形内角和180°;等量代换.(2)如图,延长BD 交AC 于E ,由三角形外角性质可知,1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,∴12BDC A ∠=∠+∠+∠.(3)①如图①所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=135252585A BDC ABD ACD ∠=∠-∠-∠︒-︒-︒=︒,∴85A ∠=︒;②如图②所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=1406080ABD ACD BDC A ∠+∠=∠-∠︒-︒=︒,∵ABD ∠与ACD ∠的角平分线交于点E , ∴12EBD ABD ∠=∠,12ECD ACD ∠=∠,∴()11140222EBD ECD ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠=︒, ∵140BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18040DBC DCB BDC ∠+∠=︒-∠=︒,∴80EBC ECB ∠+∠=︒,∵180E EBC ECB ∠+∠+∠=︒, ∴100E ∠=︒;③如图③所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∵120BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18060DBC DCB BDC ∠+∠=︒-∠=︒,∵ABD ∠与ACD ∠的十等分线交于点3F ,∴3710DBF ABD ∠=∠,3710DCF ACD ∠=∠, ∴()33777101010DBF DCF ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠, ∴()333371060CBF BCF EBF ECF A DBC D A CB BD CD ∠+∠=+︒∠+∠=∠+∠+∠+∠, ∵333180CBF BCF BF C +∠=︒∠+∠,∴333180=116CBF BC F F B C =︒-∠︒∠+∠,∴80ABD ACD ︒∠+∠=,∴()1208040A BDC ABD ACD ∠=∠-∠+∠=︒-︒=︒,∴40A ∠=︒;④如图④所示,设BD 与AE 的交点为点O ,∵AE 平分BAC ∠,BD 平分BDC ∠,∴12BAE BAC ∠=∠,12BDE BDC ∠=∠, ∵BOE BAE ABD ∠=∠+∠,BOE E BDE ∠=∠+∠,∴BAE ABD E BDE ∠+∠=∠+∠,∴()11+22BAC ABD E BAC ABD ACD ∠+∠=∠+∠+∠∠, ∴()1111+2222E BAC ABD ACD BAC ABD ABD ACD ∠=∠+∠∠-∠-∠=∠-∠,即2B C E ∠-∠=∠;⑤∵ABD ∠,BAC ∠的角平分线交于点E , ∴()1502BAE ABE BAC ABD ∠+∠=∠+∠=︒, ∴()180********AEB BAE ABE ∠=︒-∠+∠=︒-︒=︒.【点睛】本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.。
咸阳市七年级下册数学期末试卷-百度文库
咸阳市七年级下册数学期末试卷-百度文库一、选择题1.在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )A .B .C .D .2.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )A .三角形B .四边形C .六边形D .八边形3.从边长为a 的大正方形板挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证的公式为( )A .()222a b a b -=-B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+D .()()22a b a b a b +-=- 4.下列图形可由平移得到的是( ) A . B . C . D .5.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×1011 6.计算12x a a a a ⋅⋅=,则x 等于( ) A .10B .9C .8D .4 7.下列说法中,正确的个数有( )①同位角相等②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,④两个角的两边分别平行,则这两个角相等A .1个B .2个C .3 个D .4个8.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150° 9.一个三角形的两边长分别是2和4,则第三边的长可能是( )A .1B .2C .4D .7 10.下列调查中,适宜采用全面调查方式的是( )A .考察南通市民的环保意识B .了解全国七年级学生的实力情况C .检查一批灯泡的使用寿命D .检查一枚用于发射卫星的运载火箭的各零部件 二、填空题11.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.12.已知:实数m,n 满足:m+n=3,mn=2.则(1+m)(1+n)的值等于____________.13.计算(﹣2xy )2的结果是_____.14.若29x kx -+是完全平方式,则k =_____.15.计算24a a ⋅的结果等于__.16.计算:5-2=(____________)17.()7(y x -+________ 22)49y x =-.18.三角形两边长分别是3、5,第三边长为偶数,则第三边长为_______19.已知代数式2x-3y 的值为5,则-4x+6y=______.20.计算:22020×(12)2020=_____. 三、解答题21.装饰公司为小明家设计电视背景墙时需要A 、B 型板材若干块,A 型板材规格是a ⨯b ,B 型板材规格是b ⨯b .现只能购得规格是150⨯b 的标准板材.(单位:cm )(1)若设a =60cm ,b =30cm .一张标准板材尽可能多的裁出A 型、B 型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.裁法一 裁法二 裁法三 A 型板材块数1 2 0 B 型板材块数 3 m n则上表中, m =___________, n =__________;(2)为了装修的需要,小明家又购买了若干C 型板材,其规格是a ⨯a ,并做成如下图的背景墙.请写出下图中所表示的等式:__________;(3)若给定一个二次三项式2a 2+5ab +3b 2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)22.解方程组:(1)2338y x x y =-⎧⎨-=⎩(2) 743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 23.已知关于x,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解(2)若方程组的解满足x+y=0,求m 的值(3)无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,请直接写出这个解?24.如图,在方格纸内将△ABC 经过一次平移得到A B C ''',图中标出了点B 的对应点B '.(1)在给定的方格纸中画出平移后的A B C ''';(2)画出BC 边上的高AE ;(3)如果P 点在格点上,且满足S △PAB =S △ABC (点P 与点C 不重合),满足这样条件的P 点有 个.''',25.如图,在边长为1个单位长度的小正方形网格中,ΔABC经过平移后得到ΔA B C图中标出了点B的对应点B',点A'、C'分别是A、C的对应点.''';(1)画出平移后的ΔA B C(2)连接BB'、CC',那么线段BB'与CC'的关系是_________;(3)四边形BCC B''的面积为_______.26.某口罩加工厂有,A B两组工人共150人,A组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B两组工人每小时一共可加工口罩9300只.、两组工人各有多少人?(1)求A B、两组工人均提高了工作效率,一名A组工人和一名B组工人每(2)由于疫情加重,A B、两组工人每小时至少加工15000只口罩,那么A组工人小时共可生产口罩200只,若A B每人每小时至少加工多少只口罩?27.如图,一个三角形的纸片ABC,其中∠A=∠C,(1)把△ABC纸片按 (如图1) 所示折叠,使点A落在BC边上的点F处,DE是折痕.说明BC∥DF;(2)把△ABC纸片沿DE折叠,当点A落在四边形BCED内时 (如图2),探索∠C与∠1+∠2之间的大小关系,并说明理由;(3)当点A落在四边形BCED外时 (如图3),探索∠C与∠1、∠2之间的大小关系.(直接写出结论)28.如图所示,A(2,0),点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC,且点C 的坐标为(-6,4) .(1)直接写出点E 的坐标;(2)在四边形ABCD 中,点P 从点B 出发,沿“BC→CD”移动.若点P 的速度为每秒 2 个单位长度,运动时间为t 秒,回答下列问题:①求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);②当 3 秒<t<5 秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z 之间的数量关系能否确定?若能,请用含x,y 的式子表示z,写出过程;若不能,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的高的概念判断.【详解】解:AC边上的高就是过B作垂线垂直AC交AC的延长线于D点,因此只有C符合条件,故选:C.【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.2.D解析:D【分析】一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.【详解】解:多边形的内角和是:360°×3=1080°.设多边形的边数是n,则(n-2)•180=1080,解得:n=8.即这个多边形是正八边形.故选D.本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.3.D解析:D【分析】分别表示出图甲和图乙中阴影部分的面积,二者相等,从而可得答案.【详解】解:图甲中阴影部分的面积为:22a b -, 图乙中阴影部分的面积为:()()()1()4=22a b a b a b a b -+⨯⨯⨯+-, 甲乙两图中阴影部分的面积相等 22()()a b a b a b ∴-=+-∴可以验证成立的公式为22()()a b a b a b +-=-故选:D .【点睛】本题考查了平方差公式的几何背景,属于基础题型,比较简单.4.A解析:A【详解】解:观察可知A 选项中的图形可以通过平移得到,B 、C 选项中的图形需要通过旋转得到,D 选项中的图形可以通过翻折得到,故选:A5.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100nm =100×10﹣9m=1×10﹣7m ,故选:C .【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.6.A解析:A【分析】利用同底数幂的乘法即可求出答案,【详解】解:由题意可知:a 2+x =a 12,∴2+x =12,∴x =10,故选:A .【点睛】本题考查同底数幂的乘法,要注意是指数相加,底数不变.7.A解析:A【分析】根据同位角的定义、三角形垂心的定义及多边形内角和公式、平行线的性质逐一判断可得.【详解】解:①只有两平行直线被第三条直线所截时,同位角才相等,故此结论错误;②只有锐角三角形的三条高在三角形的内部,故此结论错误;③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,此结论正确; ④两个角的两边分别平行,则这两个角可能相等,也可能互补,故此结论错误. 故选A .【点睛】本题主要考查同位角、三角形垂心及多边形内角和、平行线的性质,熟练掌握基本定义和性质是解题的关键.8.A解析:A【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故选:A .【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.9.C【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..【详解】设第三边为x,由三角形三条边的关系得4-2<x<4+2,∴2<x<6,∴第三边的长可能是4.故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.10.D解析:D【分析】调查方式的选择需要将全面调查的局限性和抽样调查的必要性结合起来,具体问题具体分析,全面调查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择全面调查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,全面调查就受到限制,这时就应选择抽样调查.【详解】解:A、考察南通市民的环保意识,人数较多,不适合全面调查;B、了解全国七年级学生的实力情况,人数较多,不适合全面调查;C、检查一批灯泡的使用寿命,数量较多,且具有破坏性,不适合全面调查;D、检查一枚用于发射卫星的运载火箭的各零部件,较为严格,必须采用全面调查,故选D.【点睛】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果和普查得到的调查结果比较近似.二、填空题11.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多解析:6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多项式乘以多项式,掌握多项式乘以多项式的法则是解答本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.13.4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy)2=4x2y2.故答案为:4x2y2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.解析:4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy )2=4x 2y 2.故答案为:4x 2y 2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.14.【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值 .【详解】解:∵是完全平方式,即.故答案为:.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式解析:6±【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .【详解】解:∵29x kx -+是完全平方式,即()2293x kx x -+=± 236k ∴=±⨯=±.故答案为:6±.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键15..【分析】直接利用同底数幂的乘法运算法则求出答案.【详解】原式.故答案为:.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键. 解析:6a .【分析】直接利用同底数幂的乘法运算法则求出答案.【详解】原式246a a +==.故答案为:6a .【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.16.【分析】直接根据负整数指数幂的运算法则求解即可.【详解】,故答案为:.【点睛】本题考查了负整数指数幂的运算法则,比较简单. 解析:125【分析】直接根据负整数指数幂的运算法则求解即可.【详解】22115525-==, 故答案为:125. 【点睛】本题考查了负整数指数幂的运算法则,比较简单.17.【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,解析:7y x --【分析】根据平方差公式进行解答.【详解】解:∵49y 2-x 2 =(-7y)2-x 2,∴(-7x+y)(-7x-y)=49y 2-x 2.故答案为-7x-y.本题考查了平方差公式,掌握平方差公式的特征是解题的关键.18.4或6【解析】【分析】根据三角形三边关系,可令第三边为x,则5-3<x<5+3,即2<x<8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x,则5-3<x<5+3,即2<解析:4或6【解析】【分析】根据三角形三边关系,可令第三边为x,则5-3<x<5+3,即2<x<8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x,则5-3<x<5+3,即2<x<8,∵第三边长为偶数,∴第三边长是4或6,故答案为:4或6.【点睛】本题考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.19.-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.【点睛】本题解析:-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.本题考查了代数式求值,熟练掌握运算法则是解题的关键.20.1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×)2020=1,故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键.解析:1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×12)2020=1,故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键.三、解答题21.(1)m=1,n=5;(2)(a+2b)2=a2+4ab+4b2;(3)2a2+5ab+3b2=(a+b)(2a+3b),详见解析【分析】(1)结合图形和条件分析可以得出按裁法二裁剪时,可以裁出B型板1块,按裁法三裁剪时,可以裁出5块B型板;(2)看图即可得出所求的式子;(3)通过画图能更好的理解题意,从而得出结果.由于构成的是长方形,它的面积等于所给图片的面积之和,从而因式分解.【详解】(1)按裁法二裁剪时,2块A型板材块的长为120cm,150-120=30,所以可裁出B型板1块,按裁法三裁剪时,全部裁出B型板,150÷30=5,所以可裁出5块B型板;∴m=1,n=5.故答案为:1,5;(2)如下图:发现的等式为:(a+2b)2=a2+4ab+4b2;故答案为:(a+2b)2=a2+4ab+4b2.(3)按题意画图如下:∵构成的长方形面积等于所给图片的面积之和,∴2a2+5ab+3b2=(a+b)(2a+3b).【点睛】本题考查了完全平方公式和几何图形的应用及一元一次方程的应用,关键是根据学生的画图能力,计算能力来解答.22.(1)57xy=⎧⎨=⎩;(2)6024xy=⎧⎨=-⎩【分析】(1)2338y xx y=-⎧⎨-=⎩①②,由①得2x-y=3③,②-③可求得x,将x值代入①可得y值,即可求得方程组的解.(2)743832x yx y⎧+=⎪⎪⎨⎪+=⎪⎩①②,先将①×12去分母,将分式方程化为整式方程,得3x+4y=84③,将②×6,由分式方程化为整式方程,得2x+3y=48④,③和④再利用加减消元法即可求解方程组的解.【详解】(1)23 38 y xx y=-⎧⎨-=⎩①②由①,得2x-y=3③②-③,得x=5将x=5代入①,得2×5-y=3∴y=7故方程组的解为:57x y =⎧⎨=⎩故答案为:57x y =⎧⎨=⎩(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①×12,得3x+4y=84③②×6,得2x+3y=48④③×2,得6x+8y=168⑤④×3,得6x+9y=144⑥⑤-⑥,得y=-24将y=-24代入①,得874x -= ∴x=60 故方程组的解为:6024x y =⎧⎨=-⎩故答案为:6024x y =⎧⎨=-⎩【点睛】本题考查了一元二次方程的解法—加减消元法,将方程组中的各个方程化简成标准形式,方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等,把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求出一个未知数的值;23.(1)24,21x x y y ==⎧⎧⎨⎨==⎩⎩(2)-136(3)02.5x y =⎧⎨=⎩【解析】分析:(1)先对方程变形为x=6-2y ,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m 的值;(3)方程整理后,根据无论m 如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;详解:(1)∵x+2y-6=0∴x=6-2y当y=1时,x=4,当y=2时,x=2∴24,21 x xy y==⎧⎧⎨⎨==⎩⎩(2)根据题意,把x+y=6和x+2y-6=0构成方程组为:6260 x yx y+=⎧⎨+-=⎩和解得66 xy=-⎧⎨=⎩把66xy=-⎧⎨=⎩代入x-2y+mx+5=0,解得m=136-(3)∵无论实数m取何值,方程x-2y+mx+5=0总有一个固定的解,∴x=0时,m的值与题目无关∴y=2.5∴2.5 xy=⎧⎨=⎩点睛:此题主要考查了二元一次方程组的应用,对方程组中的方程灵活变形,构成可解方程是解题关键,有一定的难度,合理选择加减消元法和代入消元法解题是关键.24.(1)见解析;(2)见解析;(3)8【分析】(1)由点B及其对应点B′的位置得出平移的方向和距离,据此作出点A、C平移后的对应点,再首尾顺次连接即可得;(2)根据三角形高线的概念作图即可;(3)由S△PAB=S△ABC知两个三角形共底、等高,据此可知点P在如图所示的直线m、n上,再结合图形可得答案.【详解】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,垂线段AE即为所求;(3)如图所示,满足这样条件的点P有8个,故答案为:8.【点睛】本题主要考查作图-平移变换,解题的关键是掌握平移变换的定义和性质,据此得出变换后的对应点及三角形高线的概念、共底等高的三角形面积问题.25.(1)见解析;(2)平行且相等;(3)28【分析】''';(1)根据平移的性质画出点A、C平移后的对应点A'、C'即可画出平移后的△A B C (2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】'''即为所求;解:(1)如图,ΔA B C(2)根据平移的性质可得:BB'与CC'的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.26.(1)A组工人有90人、B组工人有60人(2)A组工人每人每小时至少加工100只口罩【分析】(1)设A组工人有x人、B组工人有(150−x)人,根据题意列方程健康得到结论;(2)设A组工人每人每小时加工a只口罩,则B组工人每人每小时加工(200−a)只口罩;根据题意列不等式健康得到结论.【详解】(1)设A组工人有x人、B组工人有(150−x)人,根据题意得,70x+50(150−x)=9300,解得:x=90,150−x=60,答:A组工人有90人、B组工人有60人;(2)设A组工人每人每小时加工a只口罩,则B组工人每人每小时加工(200−a)只口罩;根据题意得,90a+60(200−a)≥15000,解得:a≥100,答:A 组工人每人每小时至少加工100只口罩.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.27.(1)见解析;(2)∠1+∠2=2∠C ;(3)∠1-∠2=2∠C.【分析】(1)根据折叠的性质得∠DFE=∠A ,由已知得∠A=∠C ,于是得到∠DFE=∠C ,即可得到结论;(2)先根据四边形的内角和等于360°得出∠A+∠A′=∠1+∠2,再由图形翻折变换的性质即可得出结论;(3)∠A′ED=∠AED (设为α),∠A′DE=∠ADE (设为β),于是得到∠2+2α=180°,∠1=β-∠BDE=β-(∠A+α),推出∠2-∠1=180°-(α+β)+∠A ,根据三角形的内角和得到∠A=180°-(α+β),证得∠2-∠1=2∠A ,于是得到结论.【详解】解:(1) 由折叠知∠A=∠DFE,∵∠A=∠C ,∴∠DFE=∠C ,∴BC ∥DF ;(2)∠1+∠2=2∠A.理由如下:∵∠1+2∠AED =180°, ∠2+2∠ADE =180°,∴∠1+∠2+2(∠ADE +∠AED)=360°.∵∠A +∠ADE +∠AED =180°,∴∠ADE +∠AED =180°-∠A ,∴∠1+∠2+2(180°-A)=360°,即∠1+∠2=2∠C.(3)∠1-∠2=2∠A.∵2∠AED +∠1=180°,2∠ADE -∠2=180°,∴2(∠ADE +∠AED)+∠1-∠2=360°.∵∠A +∠ADE +∠AED =180°,∴∠ADE +∠AED =180°-∠A ,∴∠1-∠2+2(180°-∠A)=360°,即∠1-∠2=2∠C.【点睛】考查了翻折变换的性质,三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和等于180°,综合题,但难度不大,熟记性质准确识图是解题的关键.28.(1)()4,0- (2)1)点P 在线段BC 上时, (),4P t -,2)点P 在线段CD 上时, ()6,10P t --; (3)能确定,z x y =+,证明见解析【分析】(1)根据平移的性质即可得到结论;(2)①分两种情况:1)点P 在线段BC 上时,2)点P 在线段CD 上时;②如图,作P 作//PE BC 交于AB 于E ,则//PE AD ,根据平行线的性质即可得到结论.【详解】(1)∵点B 的横坐标为0,点C 的横坐标为-6,∴将A (2,0)向左平移6个单位长度得到点E∴()4,0E -;(2)①∵6,4BC CD ==∴1)点P 在线段BC 上时,PB t =(),4P t -;2)点P 在线段CD 上时,()4610PD t t =--=-()6,10P t --;②能确定如图,作P 作//PE BC 交于AB 于E ,则//PE AD∴1,2CBP x DAP y ==︒==︒∠∠∠∠ ∴1+2BPA x y z ==︒+︒=︒∠∠∠ ∴z x y =+.【点睛】本题考查了平行线的问题,掌握平移的性质、代数式的用法、平行线的性质以及判定定理是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年陕西省咸阳市泾阳县七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列运算正确的是()A.a3﹣a3=a0B.a2÷a﹣1=a3C.a2+a2=2a4D.a3×a3=a32.(3分)下列能用平方差公式计算的是()A.(﹣x+y)(x﹣y)B.(y﹣1)(﹣1﹣y)C.(x﹣2)(x+1)D.(2x+y)(2y﹣x)3.(3分)如图,已知∠1=85°,∠2=95°,∠4=125°,则∠3的度数为()A.95°B.85°C.70°D.125°4.(3分)如图,EO⊥AB于点O,∠EOC=40°,则∠AOD=()A.30°B.40°C.50°D.60°5.(3分)如图,△ABC与△DEF关于直线MN轴对称,则以下结论中错误的是()A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分6.(3分)如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于()A.65°B.95°C.45°D.100°7.(3分)以下列各组长度的线段为边能组成一个三角形的是()A.3,5,8 B.8,8,18 C.3,4,8 D.2,3,48.(3分)赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A.B.C.D.9.(3分)下列事件为必然事件的是()A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球10.(3分)如果a+b=5,ab=1,则a2+b2的值等于()A.27 B.25 C.23 D.21二、填空题(共6小题,每小题3分,满分18分)11.(3分)等腰三角形的一边长为9,另一边长为6,则此三角形的周长是.12.(3分)一袋中装有5个红球、4个白球和3个黄球,每个球除颜色外都相同.从中任意摸出一个球,则:P(摸到红球)=,P(摸到白球)=,P (摸到黄球)=.13.(3分)如图,已知AD=CB,若利用“SSS”来判定△ABC≌△CDA,则添加直接条件是.14.(3分)如图,在△ABC中,AC的垂直平分线DE交AB于E,∠A=30°,∠ACB=70°,则∠BCE等于.15.(3分)一种病毒的长度约为0.000 052mm ,用科学记数法表示为 mm .16.(3分)一个正三角形的对称轴有 条.三、解答题(共8小题,满分72分)17.(10分)计算(1)(xy )2•(﹣12x 2y 2)÷(﹣x 3y )(2)用简便方法计算1652﹣164×166.18.(10分)先化简,再求值:2b 2+(a +b )(a ﹣b )﹣(a ﹣b )2,其中a=﹣3,b=.19.(8分)如图,AB=AE ,AC=AD ,BD=CE ,△ABC ≌△AED 吗?试说明.20.(10分)在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值. 所挂物体质量x/kg0 1 2 3 4 5弹簧长度y/cm18 20 22 24 26 28 (1)上述反映了哪两个变量之问的关系?哪个是自变量?哪个是因变量?(2)当所挂重物为3kg 时,弹簧有多长?不挂重物呢?(3)若所挂重物为6kg 时(在弹簧的允许范围内),你能说出此时弹簧的长度吗?21.(8分)如图,已知∠A=∠F ,∠C=∠D ,试说明BD ∥CE .22.(10分)如图,已知房屋的顶角∠BAC=100°,过屋顶A 的立柱AD ⊥BC ,屋椽AB=AC,求顶架上∠B、∠C、∠BAD、∠CAD的度数.23.(8分)已知:∠α,∠β,线段α,求作:△ABC,使∠B=∠α,∠C=∠β,BC=a (不写作法,保留作图痕迹)24.(8分)如图,要测量河两岸相对的两点A,B的距离,可以在AB的垂线BF 上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长,为什么?2014-2015学年陕西省咸阳市泾阳县七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列运算正确的是()A.a3﹣a3=a0B.a2÷a﹣1=a3C.a2+a2=2a4D.a3×a3=a3【解答】解:A、a3﹣a3=0,故错误;B、正确;C、a2+a2=2a2,故错误;D、a3×a3=a6,故错误;故选:B.2.(3分)下列能用平方差公式计算的是()A.(﹣x+y)(x﹣y)B.(y﹣1)(﹣1﹣y)C.(x﹣2)(x+1)D.(2x+y)(2y﹣x)【解答】解:A、应为(﹣x+y)(x﹣y)=﹣(x﹣y)(x﹣y)=﹣(x﹣y)2,故本选项错误;B、(y﹣1)(﹣1﹣y)=﹣(x﹣1)(x+1)=﹣(x2﹣1),故本选项正确;C、(x﹣2)(x+1)中只有相同项,没有没有互为相反数的项,不能利用平方差公式进行计算,故本选项错误;D、(2x+y)(2y﹣x)中既没有相同的项,也没有互为相反数的项,不能利用平方差公式进行计算,故本选项错误.故选:B.3.(3分)如图,已知∠1=85°,∠2=95°,∠4=125°,则∠3的度数为()A.95°B.85°C.70°D.125°【解答】解:如图,∵∠5=∠1=85°,∴∠5+∠2=85°+95°=180°,∴a∥b,∴∠3=∠4=125°,故选:D.4.(3分)如图,EO⊥AB于点O,∠EOC=40°,则∠AOD=()A.30°B.40°C.50°D.60°【解答】解:∵EO⊥AB,∴∠EOB=90°.又∵∠EOC=30°,∴∠COB=∠EOB﹣∠EOC=90°﹣40°=50°,∵∠AOD=∠COB,∴∠AOD=50°.故选:C.5.(3分)如图,△ABC与△DEF关于直线MN轴对称,则以下结论中错误的是()A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分【解答】解:A、AB与DF不是对应线段,不一定平行,故错误;B、△ABC与△DEF关于直线MN轴对称,则△ABC≌△DEF,∠B=∠E,正确;C、△ABC与△DEF关于直线MN轴对称,则△ABC≌△DEF,AB=DE,正确;D、△ABC与△DEF关于直线MN轴对称,A与D的对应点,AD的连线被MN垂直平分,正确.故选:A.6.(3分)如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于()A.65°B.95°C.45°D.100°【解答】解:在△OAD和△OAC中,,∴△OBD≌△OAC(SAS),∴∠C=∠D=35°,在△OAC中,∠OAC=180°﹣∠O﹣∠C=180°﹣50°﹣35°=95°.故选:B.7.(3分)以下列各组长度的线段为边能组成一个三角形的是()A.3,5,8 B.8,8,18 C.3,4,8 D.2,3,4【解答】解:A、3+5=8,不能组成三角形;B、8+8<18,不能组成三角形;C、3+4<8,不能够组成三角形;D、2+3>4,能组成三角形.故选:D.8.(3分)赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A.B.C.D.【解答】解:由于先匀速再停止后加速行驶,故其行驶距离先匀速增加再不变后匀速增加.故选:B.9.(3分)下列事件为必然事件的是()A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球【解答】解:A、小王参加本次数学考试,成绩是150分是随机事件,故A选项错误;B、某射击运动员射靶一次,正中靶心是随机事件,故B选项错误;C、打开电视机,CCTV第一套节目正在播放新闻是随机事件,故C选项错误.D、口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球是必然事件,故D选项正确;故选:D.10.(3分)如果a+b=5,ab=1,则a2+b2的值等于()A.27 B.25 C.23 D.21【解答】解:将a+b=5两边平方得:(a+b)2=a2+2ab+b2=25,将ab=1代入得:a2+2+b2=25,则a2+b2=23.故选:C.二、填空题(共6小题,每小题3分,满分18分)11.(3分)等腰三角形的一边长为9,另一边长为6,则此三角形的周长是24或21.【解答】解:若9是底边,则三角形的三边分别为9、6、6,能组成三角形,周长=9+6+6=21,若9是腰长,则三角形的三边分别为9、9、6,能组成三角形,周长=9+9+6=24,综上所述,此三角形的周长是24或21.故答案为:24或21.12.(3分)一袋中装有5个红球、4个白球和3个黄球,每个球除颜色外都相同.从中任意摸出一个球,则:P(摸到红球)=,P(摸到白球)=,P(摸到黄球)=.【解答】解:∵袋中装有5个红球、4个白球和3个黄球共12个球,∴P(摸到红球)=,P(摸到白球)==,P(摸到黄球)==,故答案为:,,.13.(3分)如图,已知AD=CB,若利用“SSS”来判定△ABC≌△CDA,则添加直接条件是AB=CD.【解答】解:要利用SSS判定两三角形全等,现有AD=CB,AC=CA,则再添加AB=CD 即满足条件.故填AB=CD.14.(3分)如图,在△ABC中,AC的垂直平分线DE交AB于E,∠A=30°,∠ACB=70°,则∠BCE等于40°.【解答】解:∵AC的垂直平分线DE,∴AE=CE,∴∠ACE=∠A=30°,∴∠BCE=∠ACB﹣∠ACE=70°﹣30°=40°,故答案为:40°15.(3分)一种病毒的长度约为0.000 052mm,用科学记数法表示为 5.2×10﹣5mm.【解答】解:0.000 052=5.2×10﹣5.故答案是:5.2×10﹣5.16.(3分)一个正三角形的对称轴有3条.【解答】解:根据正三角形的轴对称性,三条高所在的直线都是对称轴.故答案为:3.三、解答题(共8小题,满分72分)17.(10分)计算(1)(xy)2•(﹣12x2y2)÷(﹣x3y)(2)用简便方法计算1652﹣164×166.【解答】解:(1)原式=x2y2•(﹣12x2y2)÷(﹣x3y)=xy3;(2)原式=1652﹣(165﹣1)×(165+1)=1652﹣1652+1=1.18.(10分)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=.【解答】解:原式=2b2+a2﹣b2﹣(a2+b2﹣2ab)=2b2+a2﹣b2﹣a2﹣b2+2ab=2ab,当a=﹣3,b=时,原式=2×(﹣3)×=﹣3.19.(8分)如图,AB=AE,AC=AD,BD=CE,△ABC≌△AED吗?试说明.【解答】△ABC≌△AED,证明:∵BD=CE,∴BC=ED ,在△ABC 和△AED 中,,∴△ABC ≌△AED .20.(10分)在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值. 所挂物体质量x/kg 012345弹簧长度y/cm182022242628(1)上述反映了哪两个变量之问的关系?哪个是自变量?哪个是因变量? (2)当所挂重物为3kg 时,弹簧有多长?不挂重物呢?(3)若所挂重物为6kg 时(在弹簧的允许范围内),你能说出此时弹簧的长度吗? 【解答】解:(1)上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;(2)当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;(3)根据上表可知所挂重物为6千克时(在允许范围内)时的弹簧长度=18+2×6=30厘米.21.(8分)如图,已知∠A=∠F ,∠C=∠D ,试说明BD ∥CE .【解答】解:∵∠A=∠F (已知), ∴AC ∥DF (内错角相等,两直线平行), ∴∠C=∠CEF (两直线平行,内错角相等), ∵∠C=∠D (已知), ∴∠D=∠CEF (等量代换),∴BD ∥CE (同位角相等,两直线平行).22.(10分)如图,已知房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上∠B、∠C、∠BAD、∠CAD的度数.【解答】解:∵△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C===40°;∵AB=AC,AD⊥BC,∠BAC=100°,∴AD平分∠BAC,∴∠BAD=∠CAD=50°.23.(8分)已知:∠α,∠β,线段α,求作:△ABC,使∠B=∠α,∠C=∠β,BC=a (不写作法,保留作图痕迹)【解答】解:如图,△ABC为所求.24.(8分)如图,要测量河两岸相对的两点A,B的距离,可以在AB的垂线BF 上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长,为什么?【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,又∵直线BF与AE交于点C,∴∠ACB=∠ECD(对顶角相等),∵CD=BC,∴△ABC≌△EDC,∴AB=ED,即测得DE的长就是A,B两点间的距离.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa+b-aa45°A BE 挖掘图形特征:a+bx-aa 45°DBa+b-a45°A运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.DABFEDCF。