思维导图 实数

合集下载

七年级数学知识思维导图-代数

七年级数学知识思维导图-代数

数轴上某点标1,就是从原点到该点的线段包含1个单位长度,具体长度不 限。
如何确定一个实数在数轴上的位置:在数轴上,除了数0要用原点表示外, 要表示任何一个不为0的实数,根据这个数的正负号确定它所在原点的哪一 边,再在相应的方向上确定它与原点相距几个单位长度,然后画上相应的 点。
平面直角坐标系
平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平 面直角坐标系。
解一元一次不等式组: 1.先求出组成不等式组的不等式的解集。 2.求出这些解集的公共部分。
二元一次不等式:指含有两个未知数,并且未知数的次数是1次的不等式。单 个二元一次不等式无法求出解集。
二元一次不等式组:指由几个共含两个未知数的不等式组成的次数为一的不 等式组.
二元一次不等式(组)
解二元二次不等式组:利用不等式的性质,采取与解二元一次方程组类似的 步骤,就可以求出二元一次不等式组的解集。
近似数:指与精准数相近的一个数。 四舍五入:将精确数转化为近似数的一种方法。
四舍五入的步骤:看需要保留的位数的前一位,如果该位上的数字是“5”或 者比“5”大,向前进一,如果该位上的数字是“4”或者比“4”小,就舍去。
无理数的定义:无理数是不能用两个整数的比表示的数。无理数不能测量, 即没有度量,所以无理数只能用符号来表示,例如:圆周率π。
实数减法
实数减法法则:减去一个数,等于加这个数的相反数。a-b=a+(-b)
加减混合运算可以统一表示为加法运算:a-b=(a)+(-b),a+b=(a)+(b)
乘法:是加法的延伸,意义是计算一个数连序相加几次。
实数乘法
实数乘法法则:两实数相乘,同号得正,异号得负,并把绝对值相乘作为积 的数值。

初二数学第六章思维导图

初二数学第六章思维导图

初二数学第六章思维导图【考纲要求】1.了解有理数、无理数、实数的概念;借助数轴理解相反数、绝对值的概念及意义,会比较实数的大小;2.知道实数与数轴上的点一一对应,会用科学记数法表示有理数,会求近似数和有效数字;了解乘方与开方、平方根、算术平方根、立方根的概念,并理解这两种运算之间的关系,了解整数指数幂的意义和基本性质;3.掌握实数的运算法则,并能灵活运用;4.逐步形成数形结合、分类讨论、建模思想.【知识网络思维导图】【知识点梳理】知识点一实数的分类1.按定义分类:2.按性质符合分类:有理数:整数和分数统称为有理数,或者“形如m/n(m,n是整数n≠0)”的数叫有理数.无理数:无限不循环小数叫无理数.实数:有理数和无理数统称为实数.要点诠释:常见的无理数有以下几种形式:(1)字母型:如π是无理数,π/2、π/4等都是无理数,而不是分数;(2)构造型:如2.10100100010000...(每两个1之间依次多一个0)就是一个无限不循环的小数;(3)根式型:..等都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.知识点二实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0;(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数;(3)互为相反数的两个数之和等于0.a、b互为相反数,即a+b=0. 2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.可用式子表示为:(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.用式子表示:若a是实数,则|a|≥0.3.倒数(1)实数a(a≠0)的倒数是1/a;0没有倒数;(2)乘积是1的两个数互为倒数.a、b互为倒数a·b=1.4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作±.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.5.立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;0的立方根仍是0.要点诠释:若,则a≥0;若则,则a≤0. 表示的几何意义就是在数轴上表示数a与数b的点之间的距离.知识点三实数与数轴规定了原点、正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数.要点诠释:(1)数轴的三要素:原点、正方向和单位长度.(2)实数和数轴上的点是一一对应的.知识点四实数大小的比较知识点五、实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.满足运算律:加法的交换律a+b=b+a,加法的结合律(a+b)+c=a+(b+c).2.减法减去一个数等于加上这个数的相反数.3.乘法两数相乘,同号得正,异号得负,并把绝对值相乘.几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.乘法运算的运算律:(1)乘法交换律ab=ba;(2)乘法结合律(ab)c=a(bc);(3)乘法对加法的分配律a(b+c)=ab+ac.4.除法(1)除以一个数,等于乘上这个数的倒数.(2)两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)求n个相同因数的积的运算叫做乘方,an所表示的意义是n个a相乘.正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数:a0=1(a≠0),a-p=1/ap(a≠0)要点诠释:(1)加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.(2)实数的运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc知识点六有效数字和科学记数法1.近似数一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.精确度的形式有两种:(1)精确到哪一位;(2)保留几个有效数字.2.有效数字一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.3.科学记数法把一个数用±a×10n(其中1≤<10,n为整数)的形式记数的方法叫科学记数法.要点诠释:(1)当要表示的数的绝对值大于1时,用科学记数法写成a×10n,其中1≤<10,n为正整数,其值等于原数中整数部分的数位减去1;(2)当要表示的数的绝对值小于1时,用科学记数法写成a×10n,其中1≤<10,n为负整数,其值等于原数中第一个非零数字前面所用零的个数的相反数(包括小数点前面的零).知识点七数形结合、分类讨论、建模思想1.数形结合思想实数与数轴上的点一一对应,绝对值的几何意义等,数轴在很多时候可以帮助我们更直观地分析题目,从而找到解决问题的突破口;2.分类讨论思想(算术)平方根,绝对值的化简都需要有分类讨论的思想,考虑问题要全面,做到既不重复又不遗漏;3. 从实际问题中抽象出数学模型以现实生活为背景的题目,我们要抓住问题的实质,明确该用哪一个考点来解决问题,然后有的放矢.。

第6单元:实数-七年级下册数学思维导图

第6单元:实数-七年级下册数学思维导图

第六单元
实数
勾股定理
定理内容直角三角形两直角边的平方和等于斜边的平方
如果a,b分别表示直角三角形的两直角边,用c表示斜边,那么:a²+b²=c²
探索勾股定理
拼图法
直角三角形的判别条件
勾股定理逆定理
看三边长是否满足
a²+b²=c²(c为最长边)
勾股数
a、b、c是三个正整数满足:a²+b²=c²
勾股定理的应用
在直角三角形中,已知两边长求第三边长
分类按定义分
有理数
正有理数
0负理数无理数
正无理数
负无理数
按性质符号分
正实数0负实数
运算
实数的大小比较实数的混合运算
性质
实数的绝对值、相反数、倒数实数与数轴上的点一一对应
开方
算术平方根
定义
性质
双重非负性
a≥0
√a≥0
确定√a的整数部分、小数部分
根据算术平方根的定义,有m²<a<n²,其m,n是连续的非负整数,则m<√a<n,则√a的整数部分为m,√a的小数部分为√a-m
开平方
平方根
定义
性质
一个正数有两个互为相反数的平方根
0的平方根是0负数没有平方根
求法开立方
立方根定义
性质正数的立方根是正数
0的立方根是0负数的立方根是负数
求法
有限小数或循环小数
无限不循环小数
七年级下册数学

作工具:
知犀思维

图。

七年级数学下册思维导图(超全)

七年级数学下册思维导图(超全)

七年级数学下册思维导图(超全)第一章:实数1. 实数的概念2. 实数的分类有理数整数正整数、负整数、零分数正分数、负分数无理数3. 实数的运算加法减法乘法除法乘方开方第二章:代数式1. 代数式的概念2. 代数式的分类单项式多项式3. 代数式的运算减法乘法除法乘方第三章:方程与不等式1. 方程的概念2. 一元一次方程求解方法3. 不等式的概念4. 一元一次不等式求解方法第四章:函数1. 函数的概念2. 函数的表示方法解析式法图象法3. 一次函数定义图象性质4. 二次函数定义图象第五章:几何图形1. 点、线、面2. 线段3. 角锐角、直角、钝角、平角、周角4. 三角形定义分类性质5. 四边形定义分类性质6. 圆定义性质第六章:概率与统计1. 概率的概念2. 概率的计算方法3. 统计的概念4. 数据的收集与整理5. 数据的表示方法表格法6. 数据的分析方法七年级数学下册思维导图(超全)第一章:实数1. 实数的概念实数是包括有理数和无理数在内的所有数的集合。

2. 实数的分类有理数整数正整数、负整数、零分数正分数、负分数无理数不能表示为两个整数比例的数,如根号2、π等。

3. 实数的运算加法将两个实数相加得到一个新的实数。

减法将一个实数减去另一个实数得到一个新的实数。

乘法将两个实数相乘得到一个新的实数。

除法将一个实数除以另一个非零实数得到一个新的实数。

乘方将一个实数乘以自身多次得到一个新的实数。

开方求一个实数的平方根或立方根等。

第二章:代数式1. 代数式的概念代数式是由数、字母和运算符号组成的表达式。

2. 代数式的分类单项式只有一个项的代数式。

多项式由多个项组成的代数式。

3. 代数式的运算加法将两个代数式相加得到一个新的代数式。

减法将一个代数式减去另一个代数式得到一个新的代数式。

乘法将两个代数式相乘得到一个新的代数式。

除法将一个代数式除以另一个非零代数式得到一个新的代数式。

乘方将一个代数式乘以自身多次得到一个新的代数式。

初中数学 数与式 知识点 考点 思维导图 实数及其运算 整式 分式 二次根式

初中数学 数与式 知识点 考点 思维导图 实数及其运算 整式 分式 二次根式
分母为0;分式值为0的条件是分子等于0,但分母不等于0
分式的加减法/ 异分母的分式相加减,先通分,变成同分母的分
4、参数法∶当已经条件形如工-上=三,所要求值的代数式
是一个含x,y,z,a,b,c,而又不易化简的分式
时,通常设 艺-为=三*(k就是我们所说的参数),
分式
\式,然后相加减,b即 4d± 二b=dad ,bbdc_ adb±dbc
运算顺序
作商法 =1ea=b(a>0,b>0)
<1ea<b
(4) (ab)c=a(bc); n(5)a(b+c)=ab+ac
分级∶加减是一级运算,乘除是二级运算,乘方和开方是三级运算.
三级运算的顺序是三、二、一、(如果有括号,先算括号内的;如
果没有括号,在同一级运算中,要从左至右进行运算,无论何种
运算,都要注意先定符号后运算.)
学习误区
合并同类项
系数相加,所得的结果作为合并后的系数,字母和字母的指数 _不变叫做合并同类项.
整式的加减 就是合并同类项,遇到括号,一般先去掉括号,去 括号的方法是∶+(a+b-c)=a+b-c;-(a+b-c)=-a-b+c.
知能提升
整式有关概念
总并华结 梳知理识
整式 幂的运算法则 的运算 整式的乘法
中A,B,M/都是整式,特别要注意整式M的值不等于零.
2、分式的分子、分母与分式本身的符号,改变其中的任何
两个,分式的值不变如--=-为=号,再如一ba
知能提升
分式的概念
并总华结
知识
梳理
式子表述 告A部告告(u20,如为整式)
基本性质
同分母的分式相加减,分母不变,把分子相加减,
即号±8a±o,
3、分式有意义的条件是分母不为0;分式无意义的条件是

初中数学七年级上册思维导图

初中数学七年级上册思维导图

初中数学七年级上册思维导图一、数与代数1. 实数有理数整数正整数、负整数、0分数正分数、负分数无理数不能表示为两个整数比的数无理数的近似值2. 代数式代数式的概念代数式的化简代数式的求值3. 方程与不等式一元一次方程方程的解法方程的应用一元一次不等式不等式的解法不等式的应用二、几何1. 平面几何点、线、面角锐角、直角、钝角角的度量多边形三角形等腰三角形、等边三角形、直角三角形四边形矩形、正方形、平行四边形、梯形圆圆的性质圆的周长、面积2. 空间几何立体图形长方体、正方体、圆柱、圆锥、球立体图形的表面积、体积三、统计与概率1. 统计数据的收集与整理数据的表示表格、条形图、折线图、扇形图数据的分析平均数、中位数、众数2. 概率概率的概念概率的计算概率的应用四、数学思维方法1. 分类讨论法2. 类比法3. 归纳法4. 反证法五、数学应用与建模1. 数学在实际生活中的应用金融领域利息计算、复利计算工程领域测量、绘图、计算科学研究数据分析、实验设计2. 数学建模建模的基本步骤提出问题、建立模型、求解模型、验证模型常见的数学模型线性模型、非线性模型、概率模型六、数学思维导图的制作与应用1. 思维导图的制作方法确定中心主题画出分支填充内容修饰美化2. 思维导图的应用场景学习规划项目管理决策分析七、数学与科技的发展1. 数学在科技领域的重要性计算机科学算法设计、数据结构机器学习、深度学习物理学量子力学、相对论2. 数学与其他学科的交叉融合数学与生物学遗传算法、神经网络数学与经济学博弈论、优化理论八、数学教育的创新与改革1. 数学教育的现状与问题教学方法单一学生兴趣不高创新能力培养不足2. 数学教育的创新策略案例教学法项目式学习翻转课堂在线教育3. 数学教育的改革方向注重学生个性化发展培养学生的数学思维提高学生的数学应用能力初中数学七年级上册思维导图一、数的认识1. 整数自然数:0, 1, 2, 3,正整数:1, 2, 3,负整数:1, 2, 3,整数:自然数和负整数的统称2. 分数真分数:分子小于分母的分数假分数:分子大于或等于分母的分数分数的基本性质:分子分母同时乘以或除以同一个非零整数,分数的值不变3. 小数小数的表示方法:整数部分和小数部分小数的性质:小数点向右移动一位,相当于乘以10;小数点向左移动一位,相当于除以10二、数的运算1. 整数的运算加法:将两个整数相加减法:将一个整数从另一个整数中减去乘法:将两个整数相乘除法:将一个整数除以另一个非零整数2. 分数的运算加法:将两个分数的分子相加,分母保持不变减法:将一个分数的分子从另一个分数的分子中减去,分母保持不变乘法:将两个分数的分子相乘,分母相乘除法:将一个分数的分子乘以另一个分数的分母,分母乘以另一个分数的分子3. 小数的运算加法:将两个小数的小数部分相加,整数部分相加减法:将一个小数的小数部分从另一个小数的小数部分中减去,整数部分相减乘法:将两个小数相乘除法:将一个小数除以另一个非零小数三、方程与不等式1. 方程一元一次方程:ax + b = 0(a, b为常数,x为未知数)方程的解:使方程成立的未知数的值2. 不等式一元一次不等式:ax + b > 0 或 ax + b < 0(a, b为常数,x 为未知数)不等式的解集:满足不等式的未知数的值的集合四、函数与图形1. 函数定义:函数是一种特殊的关系,每个输入值对应唯一的输出值表示方法:函数关系可以用函数表达式、函数图像、函数表格等方式表示2. 图形直线:一次函数的图像抛物线:二次函数的图像双曲线:反比例函数的图像五、统计与概率1. 统计数据的收集与整理:收集数据、整理数据、制作统计图表数据的分析与解释:分析数据、得出结论、解释结论2. 概率概率的定义:某个事件发生的可能性概率的计算:根据事件发生的次数和总次数计算概率初中数学七年级上册思维导图六、几何图形的认识1. 点、线、面点:没有长度、宽度和高度的几何元素线:只有长度没有宽度和高度的几何元素面:具有长度和宽度的几何元素2. 平面图形三角形:由三条线段组成的闭合图形四边形:由四条线段组成的闭合图形圆:由一个点到平面上所有点的距离相等的点的集合3. 空间图形立方体:由六个正方形面组成的立体图形圆柱:由两个平行圆面和一个侧面组成的立体图形圆锥:由一个圆面和一个侧面组成的立体图形七、几何图形的性质1. 三角形的性质内角和定理:三角形的内角和等于180度等腰三角形的性质:底角相等,底边上的高、中线、角平分线互相重合直角三角形的性质:直角边上的高、中线、角平分线互相重合2. 四边形的性质平行四边形的性质:对边平行且相等,对角相等,对角线互相平分矩形的性质:四个角都是直角,对边平行且相等,对角线互相平分且相等菱形的性质:四个角都是直角,对边平行且相等,对角线互相垂直平分3. 圆的性质圆的周长公式:C = 2πr(r为圆的半径)圆的面积公式:A = πr²圆的性质:圆心到圆上任意一点的距离都相等八、几何图形的计算1. 三角形的计算三角形的周长:三条边的长度之和三角形的面积:底乘以高除以22. 四边形的计算四边形的周长:四条边的长度之和四边形的面积:根据不同类型的四边形使用相应的公式计算3. 圆的计算圆的周长:2πr圆的面积:πr²九、综合应用1. 实际问题运用所学的数学知识解决实际问题,如计算面积、周长、体积等培养学生的应用意识和解决问题的能力2. 数学建模将实际问题抽象成数学模型,运用数学知识解决问题培养学生的建模能力和创新能力3. 数学探究通过探究活动,让学生发现数学规律,提高学生的探究能力和思维能力初中数学七年级上册思维导图十、数学思维与方法1. 逻辑推理通过观察、分析、归纳等方法,培养学生的逻辑思维能力帮助学生理解数学概念、性质、定理之间的关系2. 数学建模将实际问题抽象成数学模型,运用数学知识解决问题培养学生的建模能力和创新能力3. 数学探究通过探究活动,让学生发现数学规律,提高学生的探究能力和思维能力十一、数学素养与能力1. 数感培养学生对数的敏感性,能够快速、准确地理解和处理数学信息2. 空间观念培养学生对几何图形的认识和空间想象能力,提高学生的空间思维能力3. 解决问题的能力培养学生运用数学知识解决实际问题的能力,提高学生的应用意识和实践能力4. 创新能力培养学生的创新思维,鼓励学生尝试不同的解题方法和思路5. 合作与交流能力培养学生与他人合作交流的能力,提高学生的团队协作能力和沟通能力初中数学七年级上册思维导图一、数与代数1. 实数有理数整数正整数、负整数、0分数正分数、负分数无理数不能表示为两个整数比的数无理数的近似值2. 代数式代数式的概念代数式的化简代数式的求值3. 方程与不等式一元一次方程方程的解法方程的应用一元一次不等式不等式的解法不等式的应用二、几何1. 平面几何点、线、面角锐角、直角、钝角角的度量多边形三角形等腰三角形、等边三角形、直角三角形四边形矩形、正方形、平行四边形、梯形多边形的内角和定理2. 空间几何立体图形正方体、长方体、圆柱、圆锥、球立体图形的表面积与体积三、统计与概率1. 数据的收集与整理数据的收集方法数据的整理方法2. 数据的描述平均数、中位数、众数极差、方差、标准差3. 概率概率的基本概念概率的计算方法概率的应用四、数学思维方法1. 归纳法从具体到一般从特殊到一般2. 类比法通过相似性进行推理3. 反证法假设结论不成立,推出矛盾,从而证明结论成立4. 构造法通过构造实例来解决问题五、数学建模1. 建模的基本步骤确定问题建立模型求解模型验证模型2. 常见的数学模型线性模型二次模型指数模型3. 数学建模的应用在实际生活中的应用在科学研究中的应用初中数学七年级上册思维导图六、数学实验与探究1. 实验的设计与实施确定实验目的设计实验方案实施实验并记录数据分析实验结果2. 探究的方法与技巧观察法实验法归纳法类比法3. 数学实验与探究的应用解决实际问题深化数学理解培养创新思维七、数学文化1. 数学发展史古代数学近现代数学2. 数学家的故事中国数学家外国数学家3. 数学与生活的关系数学在科技发展中的作用数学在日常生活中的应用八、数学学习方法1. 课堂学习专心听讲积极思考勇于提问2. 自主学习制定学习计划完成课后作业复习巩固3. 合作学习与同学交流讨论分享学习资源相互帮助、共同进步九、数学素养的培养1. 数学思维逻辑思维抽象思维空间思维2. 数学能力计算能力推理能力解决问题的能力3. 数学品质耐心细心持之以恒初中数学七年级上册思维导图十、数学竞赛与拓展1. 数学竞赛简介数学竞赛的类型数学竞赛的级别数学竞赛的报名时间及方式2. 数学竞赛的备考策略基础知识的巩固解题技巧的提升模拟试题的训练3. 数学竞赛的意义激发学习兴趣培养竞争意识提高数学能力十一、数学与科技1. 数学在科技领域的作用计算机科学数据分析2. 数学在工程技术中的应用建筑设计机械制造通信技术3. 数学在生活中的创新数学与艺术数学与体育数学与游戏十二、数学教育改革与发展1. 新课程标准的实施课程目标的调整教学内容的更新教学方法的改革2. 数学教育技术的发展信息技术与数学教育的融合在线教育平台的建设虚拟现实技术在数学教学中的应用3. 数学教育的国际交流与合作国际数学竞赛的参与数学教育研究的合作数学教师培训的国际交流。

初中数学《实数》单元教学设计以及思维导图

初中数学《实数》单元教学设计以及思维导图

初中数学《实数》单元教学设计以及思维导图一、教学目标1. 知识与技能:理解实数的概念,掌握实数的分类。

掌握实数的运算方法,能够熟练地进行加、减、乘、除、乘方、开方等运算。

了解实数的性质,如实数的顺序性、稠密性、完备性等。

2. 过程与方法:通过实际问题和数学活动,培养学生的数学思维能力和问题解决能力。

通过小组合作学习,培养学生的合作意识和沟通能力。

3. 情感态度与价值观:培养学生对数学的兴趣和热爱,激发学生的求知欲和探索精神。

培养学生的严谨、细致、求实的科学态度。

二、教学内容1. 实数的概念:引导学生理解实数的概念,包括有理数和无理数。

通过举例和实际应用,帮助学生理解实数的意义。

2. 实数的分类:教授学生如何将有理数和无理数进行分类。

通过练习和讨论,巩固学生对实数分类的理解。

3. 实数的运算:讲解实数的加、减、乘、除、乘方、开方等运算方法。

通过大量练习和实际应用,帮助学生熟练掌握实数的运算。

4. 实数的性质:介绍实数的顺序性、稠密性、完备性等性质。

通过讨论和探究,引导学生发现和证明实数的性质。

三、教学策略1. 讲授法:通过讲解和示范,向学生传授实数的概念、分类和运算方法。

2. 讨论法:通过小组讨论和全班讨论,激发学生的思维,促进学生对实数概念和性质的理解。

3. 练习法:设计大量的练习题,让学生通过实际操作巩固所学知识。

4. 探究法:引导学生通过自主探究和合作学习,发现和证明实数的性质。

四、思维导图1. 实数的概念:有理数整数正整数、负整数、零分数正分数、负分数无理数2. 实数的分类:有理数无理数3. 实数的运算:加法减法乘法除法乘方开方4. 实数的性质:顺序性稠密性完备性初中数学《实数》单元教学设计以及思维导图一、教学目标1. 知识与技能:理解实数的概念,掌握实数的分类。

掌握实数的运算方法,能够熟练地进行加、减、乘、除、乘方、开方等运算。

了解实数的性质,如实数的顺序性、稠密性、完备性等。

2. 过程与方法:通过实际问题和数学活动,培养学生的数学思维能力和问题解决能力。

七年级上册数学思维导图

七年级上册数学思维导图

七年级上册数学思维导图七年级上册数学思维导图一、数的认识1.自然数、整数、有理数、无理数、实数的概念及其关系。

2.数轴的概念及其运用,及时了解坐标的表示方法和使用。

二、代数表达1.代数式的概念及其特点,初步建立代数式的意义。

2.多项式的概念及其运算,了解不同的多项式。

三、方程式的求解1.方程式及其根的概念。

了解一次方程、一元二次方程的求解方法。

2.应用题的解题方法。

形成解题思路,熟练掌握应用数学知识。

四、几何图形的初步认识1.平面几何图形的构造。

初步认识直线、射线、线段、角度,掌握角度的度量方法。

2.平面几何图形的性质。

熟练掌握三角形、四边形及其性质。

3.图形的简单变形。

初步认识图形的移动、旋转、翻转等几何变化。

五、测量1.长度、面积、体积、角度等基本测量单位的认识。

2.测量的精确性及其误差。

初步认识误差的来源和计算方法。

六、函数概念1.函数的概念及其表示方法。

初步建立函数图像和函数关系的概念。

2.函数的性质及其应用。

熟练掌握函数的性质和应用方法。

七、数据的处理1.数据的收集、整理、分析方法。

熟练运用各种数据处理方法。

2.图表的应用。

初步认识统计图表的种类及其应用。

八、概率1.概率的概念及其运用。

初步认识事件、样本空间、概率等基本概念。

2.排列与组合的应用。

初步认识排列与组合的基本概念和应用方法。

以上是七年级上册数学思维导图,希望对同学们有所帮助。

初二数学实数思维导图

初二数学实数思维导图

初二数学实数思维导图汇总实数的完备有序域实数集合通常被描述为完备的有序域,这可以几种解释。

首先,有序域可以是完备格。

然而,很容易发现没有有序域会是完备格。

这是由于有序域没有最大元素(对任意元素,将更大)。

所以,这里的完备不是完备格的意思。

另外,有序域满足戴德金完备性,这在上述公理中已经定义。

上述的唯一性也说明了这里的完备是指戴德金完备性的意思。

这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。

这两个完备性的概念都忽略了域的结构。

然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。

上述完备性中所述的只是一个特例。

(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。

)当然,并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。

实际上,完备的阿基米德域比完备的有序域更常见。

可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。

这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。

完备的阿基米德域最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。

他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是的子域。

这样是完备的是指,在其中加入任何元素都将使它不再是阿基米德域。

这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。

实数的基本定理实数系的基本定理也称实数系的完备性定理、实数系的连续性定理,这些定理分别是确界存在定理、单调有界定理、有限覆盖定理、聚点定理、致密性定理、闭区间套定理和柯西收敛准则,共7个定理,它们彼此等价,以不同的形式刻画了实数的连续性,它们同时也是解决数学分析中一些理论问题的重要工具,在微积分学的各个定理中处于基础的地位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档