【人教版】2016-2017年九年级上册数学期中试卷及答案

合集下载

2016-2017学年新课标人教版九年级(上册)期中数学试卷及答案

2016-2017学年新课标人教版九年级(上册)期中数学试卷及答案

2016-2017学年九年级(上)期中数学试卷一、选择题(每小题3分,共30分.下列各题均有四个选项,其中只有一个是符合题意的.)1.抛物线y=(x﹣1)2+2的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣2 D.直线x=22.若将抛物线y=2x2先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)3.如图,在△ABC中,DE∥BC,AD:AB=1:3,若△ADE的面积等于4,则△ABC的面积等于()A.12 B.16 C.24 D.364.如图,在4×4的正方形网格中,tanα的值等于()A.B.C.D.5.如图,在平面直角坐标系中,以P(4,6)为位似中心,把△ABC缩小得到△DEF,若变换后,点A、B的对应点分别为点D、E,则点C的对应点F的坐标应为()A.(4,2) B.(4,4) C.(4,5) D.(5,4)6.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据,根据所测数据不能求出A,B间距离的是()A.BC,∠ACB B.DE,DC,BC C.EF,DE,BD D.CD,∠ACB,∠ADB7.将抛物线y=2x2+1绕原点O旋转180°,则旋转后的抛物线的解析式为()A.y=﹣2x2B.y=﹣2x2+1 C.y=2x2﹣1 D.y=﹣2x2﹣18.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x29.二次函数y=ax2+bx+c的部分对应值如下表:当函数值y<0时,x的取值范围是()A.﹣2<x<0 B.﹣1<x<0 C.﹣1<x<3 D.0<x<210.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A .B .C .D .二、填空题(每小题3分,共18分)11.已知△ABC ∽△A 1B 1C 1,AB :A 1B 1=2:3,则S △ABC 与S △A1B1C1之比为 . 12.在Rt △ABC 中,∠C=90°,BC :AC=3:4,则cosA= .13.点A (x 1,y 1)、B (x 2,y 2)在二次函数y=x 2﹣4x ﹣1的图象上,若当1<x 1<2,3<x 2<4时,则y 1与y 2的大小关系是y 1 y 2.(用“>”、“<”、“=”填空)14.二次函数y=m 2x 2+(2m+1)x+1的图象与x 轴有两个交点,则m 取值范围是 .15.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意 的观点,理由是 .16.如图,在平面直角坐标系xOy 中,二次函数y=﹣x 2﹣2x 图象位于x 轴上方的部分记作F 1,与x 轴交于点P 1和O ;F 2与F 1关于点O 对称,与x 轴另一个交点为P 2;F 3与F 2关于点P 2对称,与x 轴另一个交点为P 3;….这样依次得到F 1,F 2,F 3,…,F n ,则其中F 1的顶点坐标为 ,F 8的顶点坐标为 ,F n 的顶点坐标为 (n 为正整数,用含n 的代数式表示).三、解答题(本题共72分,第17-21题,每小题6分,第22-25题,每小题6分,第26题7分,第27题7分,第28题8分)17.计算:3tan30°+2cos45°﹣sin60°﹣2sin30°.18.已知:二次函数y=ax2+bx+c的图象经过(﹣3,0)、(1,0)、(0,﹣3)三点,(1)求:二次函数的表达式;(2)求:二次函数的对称轴、顶点坐标,并画出此二次函数的图象.19.如图,▱ABCD中,点E在BA的延长线上,连接CE,与AD相交于点F.(1)求证:△EBC∽△CDF;(2)若BC=8,CD=3,AE=1,求AF的长.20.已知:如图,在△ABC中,CD⊥AB,sinA=,AB=13,CD=12,求AD的长和tanB的值.21.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,则水面CD的宽是10米.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?22.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东30°方向上的B处.(1)B处距离灯塔P有多远?(2)圆形暗礁区域的圆心位于PB的延长线上,距离灯塔200海里的O处.已知圆形暗礁区域的半径为50海里,进入圆形暗礁区域就有触礁的危险.请判断若海轮到达B处是否有触礁的危险,并说明理由.23.如图,在四边形ABCD中,∠C=60°,∠B=∠D=90°,AD=2AB,CD=3,求BC的长.24.在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记作τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).(1)当a=1,且b=﹣2时,τ(0,1)= ;(2)若τ(1,2)=(0,﹣2),则a= ,b= ;(3)设点P(x,y)是直线y=2x上的任意一点,点P经过变换τ得到点P′(x′,y′).若点P与点P′重合,求a和b的值.25.动手操作:小明利用等距平行线解决了二等分线段的问题.作法:(1)在e上任取一点C,以点C为圆心,AB长为半径画弧交c于点D,交d于点E;(2)以点A为圆心,CE长为半径画弧交AB于点M;∴点M为线段AB的二等分点.解决下列问题:(尺规作图,保留作图痕迹)(1)仿照小明的作法,在图2中作出线段AB的三等分点;(可(2)点P是∠AOB内部一点,过点P作PM⊥OA于M,PN⊥OB于N,请找出一个满足下列条件的点P.以利用图1中的等距平行线)①在图3中作出点P,使得PM=PN;②在图4中作出点P,使得PM=2PN.26.小东同学在学习了二次函数图象以后,自己提出了这样一个问题:探究:函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了如下探究:下面是小东的探究过程,请补充完成:(1)函数的自变量x的取值范围是;(2)下表是y与x的几组对应值.则m的值是;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,并画出该函数的图象;(4)小东进一步探究发现,该函数图象在第一象限内的最低点的坐标是,结合函数的图象,写出该函数的其他性质(一条即可):.27.如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,点E是BC边上一点,∠DEF=45°且角的两边分别与边AB,射线CA交于点P,Q.(1)如图2,若点E为BC中点,将∠DEF绕着点E逆时针旋转,DE与边AB交于点P,EF与CA的延长线交于点Q.设BP为x,CQ为y,试求y与x的函数关系式,并写出自变量x的取值范围;(2)如图3,点E在边BC上沿B到C的方向运动(不与B,C重合),且DE始终经过点A,EF与边AC交于Q点.探究:在∠DEF运动过程中,△AEQ能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由.28.已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.(1)①如图2,求出抛物线y=x2的“完美三角形”斜边AB的长;②抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是;(2)若抛物线y=ax2+4的“完美三角形”的斜边长为4,求a的值;(3)若抛物线y=mx2+2x+n﹣5的“完美三角形”斜边长为n,且y=mx2+2x+n﹣5的最大值为﹣1,求m,n的值.2016-2017学年九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分.下列各题均有四个选项,其中只有一个是符合题意的.)1.抛物线y=(x﹣1)2+2的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣2 D.直线x=2【考点】二次函数的性质.【分析】由抛物线的顶点式y=(x﹣h)2+k直接看出对称轴是x=h.【解答】解:∵抛物线的顶点式为y=(x﹣1)2+2,∴对称轴是x=1.故选B.【点评】要求熟练掌握抛物线解析式的各种形式的运用.2.若将抛物线y=2x2先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【考点】二次函数图象与几何变换.【分析】先确定出原抛物线的顶点坐标,再根据向左平移横坐标减,向下平移,纵坐标减解答即可.【解答】解:抛物线y=2x2的顶点坐标为(0,0),∵向左平移2个单位,向下平移1个单位,∴新抛物线的顶点坐标是(﹣2,﹣1).故选:B.【点评】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.3.(2015秋•北京校级期中)如图,在△ABC中,DE∥BC,AD:AB=1:3,若△ADE的面积等于4,则△ABC的面积等于()A.12 B.16 C.24 D.36【考点】相似三角形的判定与性质.【分析】由条件证明△ADE∽△ABC,且相似比为,再利用相似三角形的性质可求得△ABC的面积.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=()2=,=2,∵S△ADE∴=,=36.解得S△ABC故选D.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.4.如图,在4×4的正方形网格中,tanα的值等于()A.B.C.D.【考点】锐角三角函数的定义.【专题】网格型.【分析】直接根据锐角三角函数的定义即可得出结论.【解答】解:∵AD⊥BC,AD=3,BD=2,∴tanα==.故选C.【点评】本题考查的是锐角三角函数的定义,熟记锐角三角函数的定义是解答此题的关键.5.如图,在平面直角坐标系中,以P(4,6)为位似中心,把△ABC缩小得到△DEF,若变换后,点A、B的对应点分别为点D、E,则点C的对应点F的坐标应为()A.(4,2) B.(4,4) C.(4,5) D.(5,4)【考点】位似变换.【专题】数形结合.【分析】根据两个图形必须是相似形;②对应点的连线都经过同一点,即可得出F点的坐标.【解答】解:∵△DEF∽△ABC,且F点在CP的连线上,∴可得F点位置如图所示:故P点坐标为(4,4).故选B.【点评】本题考查位似的定义,难度不大,注意掌握两位似图形的对应点的连线都经过同一点,这一点即是位似中心.6.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据,根据所测数据不能求出A,B间距离的是()A.BC,∠ACB B.DE,DC,BC C.EF,DE,BD D.CD,∠ACB,∠ADB【考点】相似三角形的应用.【分析】根据三角形相似可知,要求出AB,只需求出EF即可.所以借助于相似三角形的性质,根据即可解答.【解答】解:此题比较综合,要多方面考虑,A、因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB的长;B、无法求出A,B间距离.C、因为△ABD∽△EFD,可利用,求出AB;D、可利用∠ACB和∠ADB的正切求出AB;据所测数据不能求出A,B间距离的是选项B;故选:B.【点评】本题考查相似三角形的应用和解直角三角形的应用;将实际问题转化为数学问题是解决问题的关键.7.将抛物线y=2x2+1绕原点O旋转180°,则旋转后的抛物线的解析式为()A.y=﹣2x2B.y=﹣2x2+1 C.y=2x2﹣1 D.y=﹣2x2﹣1【考点】二次函数图象与几何变换.【分析】根据关于原点对称的两点的横坐标纵坐标都互为相反数求解则可.【解答】解:根据题意,可得﹣y=2(﹣x)2+1,得到y=﹣2x2﹣1.故旋转后的抛物线解析式是y=﹣2x2﹣1.故选D.【点评】此题主要考查了根据二次函数的图象的变换求抛物线的解析式.8.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x2【考点】根据实际问题列二次函数关系式.【专题】压轴题.【分析】由图中可以看出,所求抛物线的顶点在原点,对称轴为y轴,可设此函数解析式为:y=ax2,利用待定系数法求解.【解答】解:设此函数解析式为:y=ax2,a≠0;那么(2,﹣2)应在此函数解析式上.则﹣2=4a即得a=﹣,那么y=﹣x2.故选:C.【点评】根据题意得到函数解析式的表示方法是解决本题的关键,关键在于找到在此函数解析式上的点.9.二次函数y=ax2+bx+c的部分对应值如下表:当函数值y<0时,x的取值范围是()A.﹣2<x<0 B.﹣1<x<0 C.﹣1<x<3 D.0<x<2【考点】二次函数的性质.【分析】根据图表可以得出二次函数的顶点坐标为(1,﹣4),图象与x轴的交点坐标为(﹣1,0),(3,0),且图象开口向上,结合图象可以得出函数值y<0时,x的取值范围.【解答】解:根据图表可以得出二次函数的顶点坐标为(1,﹣4),图象与x轴的交点坐标为(﹣1,0),(3,0),如右图所示:∴当函数值y<0时,x的取值范围是:﹣1<x<3.故选C.【点评】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值的取值范围.数形结合是这部分考查重点,同学们应熟练掌握.10.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x ≤6上的抛物线;故选:C .【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P 的位置进行分类讨论,以防错选.二、填空题(每小题3分,共18分)11.已知△ABC ∽△A 1B 1C 1,AB :A 1B 1=2:3,则S △ABC 与S △A1B1C1之比为 4:9 .【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方即可得到答案.【解答】解:∵△ABC ∽△A 1B 1C 1,AB :A 1B 1=2:3,∴.【点评】本题考查对相似三角形性质的理解:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.12.(2007•眉山)在Rt △ABC 中,∠C=90°,BC :AC=3:4,则cosA= .【考点】锐角三角函数的定义.【专题】压轴题.【分析】根据BC :AC=3:4,设BC :AC 的长,再根据勾股定理及直角三角形中锐角三角函数的定义求解.【解答】解:∵Rt △ABC 中,∠C=90°,BC :AC=3:4,∴设BC=3x ,则AC=4x ,∴AB=5x ,∴cosA===.【点评】本题利用了勾股定理和锐角三角函数的定义,比较简单.13.点A (x 1,y 1)、B (x 2,y 2)在二次函数y=x 2﹣4x ﹣1的图象上,若当1<x 1<2,3<x 2<4时,则y 1与y 2的大小关系是y 1 < y 2.(用“>”、“<”、“=”填空)【考点】二次函数图象上点的坐标特征.【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x 2﹣4x ﹣1=(x ﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2, ∵1<x 1<2,3<x 2<4,∴A 点横坐标离对称轴的距离小于B 点横坐标离对称轴的距离,∴y 1<y 2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.二次函数y=m 2x 2+(2m+1)x+1的图象与x 轴有两个交点,则m 取值范围是 m >﹣且m ≠0 .【考点】抛物线与x 轴的交点.【专题】二次函数图象及其性质.【分析】题目考查二次函数图象与x 轴的交点个数与二次函数系数之间的关系,当图象与x 轴有两个交点时,△>0,当图象与x 轴有一个交点时,△=0,当图象与x 轴没有交点时,△<0,同时不要遗漏二次函数二次项系数不为零.【解答】解:∵二次函数y=m 2x 2+(2m+1)x+1的图象与x 轴有两个交点,∴△>0即b 2﹣4ac >0代入得:(2m+1)2﹣4×m 2×1>0解得:m >﹣∵二次函数二次项系数大于零,∴m2>0∴m≠0综上所述:【点评】题目考查二次函数定义及二次函数图象与x轴交点个数与△的关系,在计算△>0取值范围后,不要忘记二次函数不为零的前提.题目较简单.15.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD∥BC,请添加一个条件,使得四边形ABCD是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意小明的观点,理由是一组对边平行且相等的四边形是平行四边形.【考点】平行四边形的判定.【分析】根据一组对边平行且相等的四边形是平行四边形可得小明正确.【解答】解:四边形ABCD 中,AD∥BC,请添加一个条件,使得四边形ABCD是平行四边形,应添加AD=BC,根据一组对边平行且相等的四边形是平行四边形,因此小明说的对;小红添加的条件,也可能是等腰梯形,因此小红错误,故答案为:小明;一组对边平行且相等的四边形是平行四边形.【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.16.如图,在平面直角坐标系xOy中,二次函数y=﹣x2﹣2x图象位于x轴上方的部分记作F1,与x轴交于点P1和O;F2与F1关于点O对称,与x轴另一个交点为P2;F3与F2关于点P2对称,与x轴另一个交点为P3;….这样依次得到F1,F2,F3,…,Fn,则其中F1的顶点坐标为(﹣1,1),F8的顶点坐标为(13,﹣1),Fn的顶点坐标为[2n﹣3,(﹣1)n+1] (n为正整数,用含n的代数式表示).【考点】二次函数图象与几何变换.【分析】根据抛物线的解析式来求F1的顶点坐标;根据该“波浪抛物线”顶点坐标纵坐标分别为1和﹣1即可得出结论.【解答】解:∵y=﹣x2﹣2x=﹣(x+1)2+1,∴F1的顶点坐标为(﹣1,1).又y=﹣x2﹣2x=﹣x(x+2),∴P1(﹣2,0),∴根据函数的对称性得到:F2的顶点坐标为(1,﹣1),P2(2,0),F 3的顶点坐标为(3,1),P3(4,0),…F8的顶点坐标为(13,﹣1),Fn的顶点坐标为[2n﹣3,(﹣1)n+1].故答案是:(﹣1,1);(13,﹣1);[2n﹣3,(﹣1)n+1].【点评】本题考查了二次函数图象与几何变换.解题的关键是找到Fn的顶点坐标变换规律.三、解答题(本题共72分,第17-21题,每小题6分,第22-25题,每小题6分,第26题7分,第27题7分,第28题8分)17.计算:3tan30°+2cos45°﹣sin60°﹣2sin30°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=3×+2×﹣﹣2×=+﹣1.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.18.(2015秋•北京校级期中)已知:二次函数y=ax2+bx+c的图象经过(﹣3,0)、(1,0)、(0,﹣3)三点,(1)求:二次函数的表达式;(2)求:二次函数的对称轴、顶点坐标,并画出此二次函数的图象.【考点】待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.【专题】计算题.【分析】(1)设交点式二次函数解析式为:y=a(x﹣1)(x+3),然后把(0,﹣3)代入求出a即可;(2)把(1)中解析式配成顶点式,然后根据二次函数的性质得到二次函数的对称轴、顶点坐标,然后利用描点法画函数图象.【解答】解:(1)∵二次函数的图象经过(﹣3,0)、(1,0)两点∴设二次函数解析式为:y=a(x﹣1)(x+3)又∵图象经过(0,﹣3)点,∴﹣3=a(0﹣1)(0+3)解得a=1∴二次函数解析式为:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴二次函数图象的对称轴为直线x=﹣1;顶点坐标为:(﹣1,﹣4);如图,【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象.19.如图,▱ABCD中,点E在BA的延长线上,连接CE,与AD相交于点F.(1)求证:△EBC∽△CDF;(2)若BC=8,CD=3,AE=1,求AF的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)利用平行四边形的性质:对角相等和对边平行可得∠B=∠D和∠FCD=∠E,有两对角相等的三角形相似可判定△EBC∽△CDF;(2)有(1)可知:△EBC∽△CDF,利用相似三角形的性质:对应边的比值相等即可求出AF的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠FCD=∠E,∴△EBC∽△CDF;(2)解:∵△EAF∽△EBC,∴,即.解得:AF=2.【点评】本题考查了平行四边形的性质以及相似三角形的判定和相似三角形的性质,难度不大,属于基础性题目.20.已知:如图,在△ABC中,CD⊥AB,sinA=,AB=13,CD=12,求AD的长和tanB的值.【考点】解直角三角形;锐角三角函数的定义.【分析】由sinA=,CD=12,根据三角函数可得AC=15,根据勾股定理可得AD=9,则BD=4,再根据正切的定义求出tanB的值.【解答】解:∵CD⊥AB,∴∠CDA=90°…(1分)∵sinA=∴AC=15.…(2分)∴AD=9.…∴BD=4.…(4分)∴tanB=…【点评】考查了解直角三角形和锐角三角函数的定义,要熟练掌握好边角之间的关系.21.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,则水面CD的宽是10米.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?【考点】二次函数的应用.【专题】应用题.【分析】(1)以拱桥最顶端为原点,建立直角坐标系,根据题目中所给的数据写出函数解析式.(2)计算出本问可用两种方法求得,求x=3米时求出水面求出此时y的值,A、B点的横坐标减去y 此时的值到正常水面AB的距离与3.6相比较即可得出答案.【解答】解:(1)设抛物线解析式为y=ax2,因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10,设点B(10,n),点D(5,n+3),n=102•a=100a,n+3=52a=25a,即,解得,∴;(2)∵货轮经过拱桥时的横坐标为x=3,∴当x=3时,∵﹣(﹣4)>3.6∴在正常水位时,此船能顺利通过这座拱桥.答:在正常水位时,此船能顺利通过这座拱桥.【点评】此题考查了坐标系的建立,以及抛物线的性质与求值.22.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东30°方向上的B处.(1)B处距离灯塔P有多远?(2)圆形暗礁区域的圆心位于PB的延长线上,距离灯塔200海里的O处.已知圆形暗礁区域的半径为50海里,进入圆形暗礁区域就有触礁的危险.请判断若海轮到达B处是否有触礁的危险,并说明理由.【考点】解直角三角形的应用-方向角问题.【分析】(1)首先作PC⊥AB于C,利用∠CPA=90°﹣45°=45°,进而利用锐角三角函数关系得出PC的长,即可得出答案;(2)首先求出OB的长,进而得出OB>50,即可得出答案.【解答】解:(1)作PC⊥AB于C.(如图)在Rt△PAC中,∠PCA=90°,∠CPA=90°﹣45°=45°.∴.在Rt△PCB中,∠PCB=90°,∠PBC=30°.∴.答:B处距离灯塔P有海里.(2)海轮到达B处没有触礁的危险.理由如下:∵,而,∴.∴OB>50.∴B处在圆形暗礁区域外,没有触礁的危险.【点评】此题主要考查了解直角三角形的应用,利用数形结合以及锐角三角函数关系得出线段PC的长是解题关键.23.如图,在四边形ABCD中,∠C=60°,∠B=∠D=90°,AD=2AB,CD=3,求BC的长.【考点】解直角三角形.【分析】延长DA、CB交于点E,解直角三角形求出DE、EC,求出∠E=30°,解直角三角形求出EB,即可求出答案.【解答】解:延长DA、CB交于点E,∵在Rt△CDE中,tanC==,cosC==,∴DE=3,EC=6,∵AD=2AB设AB=k,则AD=2k,∵∠C=60°,∠B=∠D=90°,∴∠E=30°,∵在Rt△ABE中,sinE==tanE==,∴AE=2AB=2k,EB=AB=k,∴DE=4k=3,解得:k=,∴EB=,∴BC=6﹣=.【点评】本题考查了解直角三角形的应用,主要考查学生进行计算的能力,是一道比较好的题目,关键是构造直角三角形.24.在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记作τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).(1)当a=1,且b=﹣2时,τ(0,1)= (﹣2,2);(2)若τ(1,2)=(0,﹣2),则a= ﹣1 ,b= ;(3)设点P(x,y)是直线y=2x上的任意一点,点P经过变换τ得到点P′(x′,y′).若点P与点P′重合,求a和b的值.【考点】一次函数综合题.【分析】(1)将a=1,b=﹣2,τ(0,1),代入,可求x′,y′的值,从而求解;(2)将τ(1,2)=(0,﹣2),代入,可得关于a,b的二元一次方程组,解方程组即可求解;(3)由点P(x,y)经过变换τ得到的对应点P'(x',y')与点P重合,可得τ(x,y)=(x,y).根据点P(x,y)在直线y=2x上,可得关于a,b的二元一次方程组,解方程组即可求解.【解答】解:(1)当a=1,且b=﹣2时,x′=1×0+(﹣2)×1=﹣2,y′=1×0﹣(﹣2)×1=2,则τ(0,1)=(﹣2,2);(2)∵τ(1,2)=(0,﹣2),∴,解得a=﹣1,b=;(3)∵点P(x,y)经过变换τ得到的对应点P'(x',y')与点P重合,∴τ(x,y)=(x,y).∵点P(x,y)在直线y=2x上,∴τ(x,2x)=(x,2x).∴,即∵x为任意的实数,∴,解得.∴,.故答案为:(﹣2,2);﹣1,.【点评】考查了一次函数综合题,关键是对题意的理解能力,具有较强的代数变换能力,要求学生熟练掌握解二元一次方程组.25.(2015秋•北京校级期中)动手操作:小明利用等距平行线解决了二等分线段的问题.作法:(1)在e上任取一点C,以点C为圆心,AB长为半径画弧交c于点D,交d于点E;(2)以点A为圆心,CE长为半径画弧交AB于点M;∴点M为线段AB的二等分点.解决下列问题:(尺规作图,保留作图痕迹)(1)仿照小明的作法,在图2中作出线段AB 的三等分点;(2)点P 是∠AOB 内部一点,过点P 作PM ⊥OA 于M ,PN ⊥OB 于N ,请找出一个满足下列条件的点P .(可以利用图1中的等距平行线) ①在图3中作出点P ,使得PM=PN ; ②在图4中作出点P ,使得PM=2PN . 【考点】作图—应用与设计作图.【分析】(1)作法:①在e 上任取一点C ,以点C 为圆心,AB 长为半径画弧交b 于点D ,交d 于点E ,交c 于点F ;②以点A 为圆心,CE 长为半径画弧交AB 于点P 1,再以点B 为圆心,CE 长为半径画弧交AB 于点P 2;则点P 1、P 2为线段AB 的三等分点;(2)①以O 为圆心,任意长为半径画弧,交OA 于M ,交OB 于N ;在d 上任取一点C ,以点C 为圆心,MN 长为半径画弧交b 于点D ,交c 于点E ;以点M 为圆心,CE 长为半径画弧交MN 于点P ;则P 点为所求;②以O 为圆心,任意长为半径画弧,交OA 于M ,交OB 于N ;在d 上任取一点C ,以点C 为圆心,MN 长为半径画弧交a 于点D ,交c 于点E ,交b 于点F ;②以点M 为圆心,CF 长为半径画弧交MN 于点P ;则P 点为所求.【解答】解:(1)如下图所示,点P 1、P 2为线段AB 的三等分点;(2)①如下图所示,点P即为所求;②如下图所示,点P即为所求.【点评】本题考查了作图﹣应用与设计作图,学生的阅读理解能力及知识的迁移能力,理解等距平行线的含义及平行线分线段成比例定理是解题的关键.26.小东同学在学习了二次函数图象以后,自己提出了这样一个问题:探究:函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了如下探究:下面是小东的探究过程,请补充完成:(1)函数的自变量x的取值范围是x≠1 ;(2)下表是y与x的几组对应值.则m的值是;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,并画出该函数的图象;。

2016-2017学年九年级上期中数学试卷

2016-2017学年九年级上期中数学试卷

2016-2017学年九年级上学期期中数学试卷A一、选择题(每小题3分,共30分)1、在下列四个图案中,既是轴对称图形,又是中心对称图形的是( C )2、如图,⊙O 的直径AB=2,点D 在AB 的延长线上,DC 与⊙O相切于点C ,连接AC. 若∠A=30°,则CD 长为 ( )A .13B .33C .233D .33、将抛物线y=2x 2﹣12x+16绕它的顶点旋转180°,所得抛物线的解析式是( )A . y=﹣2x 2﹣12x+16B . y=﹣2x 2+12x ﹣16C . y=﹣2x 2+12x ﹣20D . y=﹣2x 2+12x ﹣194、现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x ,y ),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A .118 B .112C .19 D .165、两年前生产某药品的成本是5000元,现在生产这种药品的成本是3000元,设该药品成本的年平均下降率为x ,则下面所列方程中正确的是( ) A .5000(1﹣2x )=3000 B .3000(1+2x )=5000 C .3000(1+x )2=5000 D .5000(1﹣x )2=30006、如图所示,△ABC 中,AC=5,中线AD=7,△EDC 是由△ADB 旋转180°所得,则AB 边的取值范围是( )A .1<AB <29 B .4<AB <24C .5<AB <19D .9<AB <19 7、若方程x 2﹣5x ﹣10=0的两根为x 1、x 2,则的值为( )A .2B .﹣2C .D .8、如图,一次函数y 1=x 与二次函数y 2=ax 2+bx+c 图象相交于P 、Q 两点,则函数y=ax 2+(b ﹣1)x+c 的图象可能是( )BOA第2题A .B .C .D .9、如图,抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3;③3a+c >0④当y >0时,x 的取值范围是﹣1≤x <3⑤当x <0时,y 随x 增大而增大 其中结论正确的个数是( )1、2、5A .4个B .3个C .2个D .1个10、如图,在正方形ABCD 中,点O 为对角线AC 的中点,过点0作射线OM 、ON分别交AB 、BC 于点E 、F ,且∠EOF=900,BO 、EF 交于点P .则下列结论中: (1)图形中全等的三角形只有两对;(2)正方形ABCD 的面积等于四边形OEBF 面积的4倍;(3)BE+BF=2 0A ;(4)AE 2+CF 2=22OE ,正确的结论有( )个.A .1 8.2 C .3 D .4 二、填空题(每小题3分,共30分) 11、 元. 12、函数y=中,自变量x 的取值范围是 .13\如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB=6,BC=3,则∠BDC=______度.14、已知关于x 的一元二次方程2(1)210a x x --+=有两个不相等的实数根,则a 的取值范围是 15、若函数y=(a ﹣1)x 2﹣4x+2a 的图象与x 轴有且只有一个交点,则a 的值为 ﹣1或2或1 .16、从﹣2,﹣1,0,1,2这五个数中任取一个数,作为关于x 的一元二次方程x 2﹣x+k=0中的k 值,则所得的方程中有两个不相等的实数根的概率是17、菱形OABC 在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=,将菱形OABC 绕点O 旋转90°则点B 对应的坐标为 .18.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为 19、已知整数k <5,若△ABC 的边长均满足关于x 的方程x 2-3kx +8=0,则△ABC 的周长是__6或12或10__.20、如图,用相同的小正方形按照某种规律进行摆放,则第n 个图形中小正方形的个数是_______三、解答题(共60分)21、(本小题5分)先化简,再求值:(+2﹣x )÷,其中x 满足x 2﹣4x+3=0.22、(本题满分6分)如图已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1) 求抛物线的解析式;(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.23、23(本小题6分)在△ABC中, AB=25,AC=4,BC=2,以AB为边向△AB C外作△ABD,使△ABD为等腰直角三角形,求线段CD的长.2,∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=900.解:∵AC=4,BC=2,AB=5分三种情况如图(1),过点D作DE⊥CB,垂足为点E.易证△ACB≌△BED,易求CD=210如图(2),过点D作DE⊥CA,垂足为点E.易证△ACB≌△DEA,易求CD=213.如图(3),过点D作DE⊥CB,垂足为点E,过点A作AF⊥DE,垂足为点F.易证△AFD≌△DEB,易求CD=3224、(本题7分)某校分别于2014年、2015年随机调查相同数量的学生,对数学课开展变式训练的情况进行调查(开展情况为极少、有时、常常、总是四种),并绘制了部分统计图.请你根据图中信息,解答下列问题:(1)m= %,n= %, “总是”对应扇形统计图的圆心角的度数为;(2)补全条形统计图;(3)若该校2015年共有1200名学生,请你估计其中认为数学课“总是”开展变式训练的学生有多少名?(4)与2014年相比,2015年该校开展变式训练的情况有何变化?1)m= 19 %,n= 10 % ,144°.--------------------------------------------------------3分(2)“有时”20人,“常常”62人.------------------------------------------------------------------2分(3)1200×40%=480,约为480人.------------------------------------------------------------3分(4)提高很大. (意思相近均可)------------------------------------------------------------2分25.(本小题满分8分)快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.26、(本题满分8分)在▱ABCD中,点P和点Q是直线BD上不重合的两个动点,AP∥CQ,AD=BD.(1)如图①,求证:BP+BQ=BC;(2)请直接写出图②,图③中BP、BQ、BC三者之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,若DQ=1,DP=3,则BC=______.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵AP∥CQ,∴∠APQ=∠CQB,∴△ADP≌△CBQ,∴DP=BQ,∵AD=BD,AD=BC,∴BD=BC,∵BD=BP+DP,∴BC=BP+BQ;(2)图②:BQ﹣BP=BC,理由是:∵AP∥CQ,∴∠APB=∠CQD,∵AB∥CD,∴∠ABD=∠CDB,∴∠ABP=∠CDQ,∵AB=CD,∴△ABP≌△CDQ,∴BP=DQ,∴BC=AD=BD=BQ﹣DQ=BQ﹣BP;图③:BP﹣BQ=BC,理由是:同理得:△ADP≌△CBQ,∴PD=BQ,∴BC=AD=BD=BP﹣PD=BP﹣BQ;(3)图①,BC=BP+BQ=DQ+PD=1+3=4,图②,BC=BQ﹣BP=PD﹣DQ=3﹣1=2,27、(本题满分10分)某中学为贯彻“全员育人,创办特色学校,培养特色人才”育人精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?(3)学校已经筹集资金24420元,在(2)的条件下,将剩余资金全部用于奖励“诚实刻苦、博学多才”的学生,设立一等奖价值300元学习用品,二等奖价值200元学习用品,问有多少学生能获得奖励?【解答】解:(1)设组建x个中型图书角,则组建30﹣x个小型图书角,解得18≤x≤20,3种方案;分别为中型18个,小型12个;或中型19个,小型11个;或中型20个,小型10个.(2)设总费用w元,建设中型x个,则小型(30﹣x)个W=290x+17100,∵290>0∴w随x的增大而增大∴当x=18时,w最小,此时w=22320元.最小答:方案一即建设中型18个,小型12个费用最少,最少为22320元.(3)剩余资金为24420﹣22320=1100元,设获得200元有a人,300元的有b人.则200a+300b=1100,2a+3b=11,方程的整数解为a=1,b=3,∴一共有4人获得奖励.28、(本题满分10分)如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b与坐标轴交于C,D两点,直线AB与坐标轴交于A,B两点,线段OA,OC的长是方程x2﹣3x+2=0的两个根(OA>OC).(1)求点A,C的坐标;(2)直线AB与直线CD交于点E,若点E是线段AB的中点,求出直线AB的解析式(3)在(2)的条件下,点M在直线CD上,坐标平面内是否存在点N,使以点B,E,M,N为顶点的四边形是菱形?若存在,请直接写出满足条件的点N的坐标;若不存在,请说明理由.【解答】解:(1)x2﹣3x+2=(x﹣1)(x﹣2)=0,∴x1=1,x2=2,∵OA>OC,∴OA=2,OC=1,∴A(﹣2,0),C(1,0).(2)将C(1,0)代入y=﹣x+b中,得:0=﹣1+b,解得:b=1,∴直线CD的解析式为y=﹣x+1.∵点E为线段AB的中点,A(﹣2,0),B的横坐标为0,∴点E的横坐标为﹣1.∵点E为直线CD上一点,∴E(﹣1,2).将点E(﹣1,2)代入y=(k≠0)中,得:2=,解得:k=﹣2.(3)假设存在,设点M的坐标为(m,﹣m+1),以点B,E,M,N为顶点的四边形是菱形分两种情况(如图所示):①以线段BE为边时,∵E(﹣1,2),A(﹣2,0),E为线段AB的中点,∴B(0,4),∴BE=AB==.∵四边形BEMN为菱形,∴EM==BE=,解得:m1=,m2=,∴M(,2+)或(,2﹣),∵B(0,4),E(﹣1,2),∴N(﹣,4+)或(,4﹣);②以线段BE为对角线时,MB=ME,∴=,解得:m3=﹣,∴M(﹣,),∵B(0,4),E(﹣1,2),∴N(0﹣1+,4+2﹣),即(,).综上可得:坐标平面内存在点N,使以点B,E,M,N为顶点的四边形是菱形,点N的坐标为(﹣,4+)、(,4﹣)或(,).。

2016-2017学年新人教版九年级上册数学期中测试卷含答案

2016-2017学年新人教版九年级上册数学期中测试卷含答案

2016-2017学年新人教版九年级上册数学期中测试卷含答案2016-2017学年九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.方程3x²-4x-1=0的二次项系数和一次项系数分别为()A。

3和4B。

3和-4C。

3和-1D。

3和12.二次函数y=x²-2x+2的顶点坐标是()A。

(1,1)B。

(2,2)C。

(1,2)D。

(1,3)3.将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A。

130°B。

50°C。

40°D。

60°4.用配方法解方程x²+6x+4=0,下列变形正确的是()A。

(x+3)²=-4B。

(x-3)²=4C。

(x+3)²=55.下列方程中没有实数根的是()A。

x²-x-1=0B。

x²+3x+2=0C。

2015x²+11x-20=0D。

x²+x+2=06.平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是()A。

(3,-2)B。

(2,3)C。

(-2,-3)D。

(2,-3)7.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,A。

5cmB。

8cmC。

6cmD。

4cm8.已知抛物线C的解析式为y=ax²+bx+c,则下列说法中错误的是()A。

a确定抛物线的形状与开口方向B。

若将抛物线C沿y轴平移,则a,b的值不变C。

若将抛物线C沿x轴平移,则a的值不变D。

若将抛物线C沿直线l:y=x+2平移,则a、b、c的值全变9.如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是()A。

64B。

16C。

24D。

3210.已知二次函数的解析式为y=ax²+bx+c(a、b、c为常数,a≠),且a²+ab+ac<0,下列说法:①b²-4ac<0;②ab+ac<0;③方程ax²+bx+c=0有两个不同根x1、x2,且(x1-1)(1-x2)>0;④二次函数的图象与坐标轴有三个不同交点。

【人教版】2016届九年级上册期中数学试卷及答案解析

【人教版】2016届九年级上册期中数学试卷及答案解析

九年级(上)期中数学试卷一、选择题(每一道小题都给出代号为A、B、C、D的四个选项,其中有且只有一个选项符合题目要求,把符合题目要求的选项的代号直接填在答题框内相应题号下的方框中,不填、填错成一个方框内填写的代号超过一个,一律得0分;共10小题,每小题3分,共30分)1.已知关于x的一元二次方程x2+x+m2﹣4=0的一个根是0,则m的值是()A.0 B.1 C.2 D.2或﹣22.用配方法解方程x2﹣8x+3=0,下列变形正确的是()A.(x+4)2=13 B.(x﹣4)2=19 C.(x﹣4)2=13 D.(x+4)2=193.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不一定成立的是()A.CM=DM B.OM=MB C.BC=BD D.∠ACD=∠ADC4.下列一元二次方程有实数根的是()A.x2﹣2x﹣2=0 B.x2+2x+2=0 C.x2﹣2x+2=0 D.x2+2=05.已知关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围为()A.k>1 B.k>﹣1且k≠0 C.k>1且k≠2 D.k<16.观察如下图形,它们是按一定规律排列的,依照次规律,第n的图形中共有210个小棋子,则n等于()A.20 B.21 C.15 D.167.若点(﹣1,4),(3,4)是抛物线y=ax2+bx+c上的两点,则此抛物线的对称轴是()A.直线x=﹣B.直线x=1 C.直线x=3 D.直线x=28.如图,⊙C过原点O,且与两坐标轴分别交于点A、B,点A的坐标为(0,4),点M是第三象限内上一点,∠BMO=120°,则⊙O的半径为()A.4 B.5 C.6 D.29.如图,AB为⊙O直径,C为⊙O上一点,∠ACB的平方线交⊙O于点D,若AB=10,AC=6,则CD的长为()A.7 B.7C.8 D.810.已知二次函数y=ax2+bx+c的图象如图所示,则a的取值范围为()A.﹣1<a<0 B.﹣1<a<C.0<a<D.<a<二、填空题(本大题共6小题,每小题3分,共18分)11.抛物线y=﹣(x+3)2+1的顶点坐标是.12.已知ab≠0,且a2﹣3ab﹣4b2=0,则的值为.13.已知关于x的方程a(x+m)2+c=0(a,m,c均为常数,a≠0)的根是x1=﹣3,x2=2,则方程a(x+m﹣1)2+c=0的根是.14.如图,AB,AC是⊙O,D是CA延长线上的一点,AD=AB,∠BDC=25°,则∠BOC=.15.已知△ABC的三个顶点都在⊙O上,AB=AC,⊙O的半径等于10cm,圆心O到BC的距离为6cm,则AB的长等于.16.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,图象与x轴交于A(x1,0)B(x2,0)两点,点M(x0,y0)是图象上另一点,且x0>1.现有以下结论:①abc>0;②b<2a;③a+b+c>0;④a(x0﹣x1)(x0﹣x2)<0.其中正确的结论是.(只填写正确结论的序号)三、解答题(本大题共9小题,共72分)17.解方程:(1)x2+2x﹣15=0(2)3x(x﹣2)=(2﹣x)18.已知抛物线的顶点是(4,2),且在x轴上截得的线段长为8,求此抛物线的解析式.19.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,求m2+n2的值.20.为响应党中央提出的“足球进校园”号召,我市在今年秋季确定了3所学校为我市秋季确定3所学校诶我市足球基地实验学校,并在全市开展了中小学足球比赛,比赛采用单循环制,即组内每两队之间进行一场比赛,若初中组共进行45场比赛,问初中共有多少个队参加比赛?21.如图,在⊙O中,=,∠ACB=60°.(1)求证:∠AOB=∠BOC=∠AOC;(2)若D是的中点,求证:四边形OADB是菱形.22.已知关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是这个方程的两个实数根,且BC=8,当△ABC为等腰三角形时,求m的值.23.如图,O为正方形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E.(1)求证:CD是⊙O的切线;(2)若正方形ABCD的边长为10,求⊙O的半径.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?25.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.九年级(上)期中数学试卷参考答案与试题解析一、选择题(每一道小题都给出代号为A、B、C、D的四个选项,其中有且只有一个选项符合题目要求,把符合题目要求的选项的代号直接填在答题框内相应题号下的方框中,不填、填错成一个方框内填写的代号超过一个,一律得0分;共10小题,每小题3分,共30分)1.已知关于x的一元二次方程x2+x+m2﹣4=0的一个根是0,则m的值是()A.0 B.1 C.2 D.2或﹣2【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m的值.【解答】解:把x=0代入方程程x2+x+m2﹣4=0得到m2﹣4=0,解得:m=±2,故选D.【点评】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了一元二次方程的概念.2.用配方法解方程x2﹣8x+3=0,下列变形正确的是()A.(x+4)2=13 B.(x﹣4)2=19 C.(x﹣4)2=13 D.(x+4)2=19【考点】解一元二次方程-配方法.【专题】计算题.【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【解答】解:x2﹣8x=﹣3,x2﹣8x+16=13,(x﹣4)2=13.故选C.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不一定成立的是()A.CM=DM B.OM=MB C.BC=BD D.∠ACD=∠ADC【考点】垂径定理.【分析】先根据垂径定理得CM=DM,,,得出BC=BD,再根据圆周角定理得到∠ACD=∠ADC,而OM与BM的关系不能判断.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,,,∴BC=BD,∠ACD=∠ADC.故选:B.【点评】本题考查了垂径定理,圆心角、弧、弦之间的关系定理,圆周角定理;熟练掌握垂径定理,由垂径定理得出相等的弧是解决问题的关键.4.下列一元二次方程有实数根的是()A.x2﹣2x﹣2=0 B.x2+2x+2=0 C.x2﹣2x+2=0 D.x2+2=0【考点】根的判别式.【分析】根据一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根判断即可.【解答】解:A、∵△=(﹣2)2﹣4×1×(﹣2)>0,∴原方程有两个不相等实数根;B、∵△=22﹣4×1×2<0,∴原方程无实数根;C、∵△=(﹣2)2﹣4×1×2<0,∴原方程无实数根;D、∵△=﹣4×1×2<0,∴原方程无实数根;故选A.【点评】此题考查了根的判别式与方程解的关系,一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无解.5.已知关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围为()A.k>1 B.k>﹣1且k≠0 C.k>1且k≠2 D.k<1【考点】根的判别式;一元二次方程的定义.【分析】根据关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,可得出判别式大于0,再求得k的取值范围.【解答】解:∵关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,∴△=4+4(k﹣2)>0,解得k>﹣1,∵k﹣2≠0,∴k≠2,∴k的取值范围k>﹣1且k≠2,故选C.【点评】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.观察如下图形,它们是按一定规律排列的,依照次规律,第n的图形中共有210个小棋子,则n等于()A.20 B.21 C.15 D.16【考点】规律型:图形的变化类.【分析】由题意可知:排列组成的图形都是三角形,第一个图形中有1个小棋子,第二个图形中有1+2=3个小棋子,第三个图形中有1+2+3=6个小棋子,…由此得出第n个图形共有1+2+3+4+…+n=n(n+1),由此联立方程求得n的数值即可.【解答】解:∵第一个图形中有1个小棋子,第二个图形中有1+2=3个小棋子,第三个图形中有1+2+3=6个小棋子,…∴第n个图形共有1+2+3+4+…+n=n(n+1),∴n(n+1)=210,解得:n=20.故选:A.【点评】此题考查图形的变化规律,找出图形之间的联系,得出点的排列规律,利用规律解决问题.7.若点(﹣1,4),(3,4)是抛物线y=ax2+bx+c上的两点,则此抛物线的对称轴是()A.直线x=﹣B.直线x=1 C.直线x=3 D.直线x=2【考点】二次函数图象上点的坐标特征.【分析】因为两点的纵坐标都为4,所以可判此两点是一对对称点,利用公式x=求解即可.【解答】解:∵两点的纵坐标都为4,∴此两点是一对对称点,∴对称轴x===1.故选B.【点评】本题考查了如何求二次函数的对称轴,对于此类题目可以用公式法也可以将函数化为顶点式或用公式x=求解.8.如图,⊙C过原点O,且与两坐标轴分别交于点A、B,点A的坐标为(0,4),点M是第三象限内上一点,∠BMO=120°,则⊙O的半径为()A.4 B.5 C.6 D.2【考点】圆内接四边形的性质;含30度角的直角三角形;圆周角定理.【分析】连接OC,由圆周角定理可知AB为⊙C的直径,再根据∠BMO=120°可求出∠BAO 的度数,证明△AOC是等边三角形,即可得出结果.【解答】解:连接OC,如图所示:∵∠AOB=90°,∴AB为⊙C的直径,∵∠BMO=120°,∴∠BCO=120°,∠BAO=60°,∵AC=OC,∠BAO=60°,∴△AOC是等边三角形,∴⊙C的半径=OA=4.故选:A.【点评】本题考查了圆周角定理、圆内接四边形的性质、等边三角形的判定与性质;熟练掌握圆内接四边形的性质,证明三角形是等边三角形是解决问题的关键.9.如图,AB为⊙O直径,C为⊙O上一点,∠ACB的平方线交⊙O于点D,若AB=10,AC=6,则CD的长为()A.7 B.7C.8 D.8【考点】圆周角定理;全等三角形的判定与性质;勾股定理.【分析】作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD 平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD.【解答】解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD,∴DF=DG,弧AD=弧BD,∴DA=DB.在Rt△AFD和Rt△BGD中,,∴△AFD≌△BGD(HL),∴AF=BG.在△CDF和△CDG中,,∴△CDF≌△CDG(AAS),∴CF=CG.∵AC=6,AB=10,∴BC==8,∴AF=1,∴CF=7,∵△CDF是等腰直角三角形,∴CD=7.故选B.【点评】本题主要考查了圆周角的性质,圆心角、弧、弦的对等关系,全等三角形的判定,角平分线的性质等知识点的运用.关键是正确作出辅助线.10.已知二次函数y=ax2+bx+c的图象如图所示,则a的取值范围为()A.﹣1<a<0 B.﹣1<a<C.0<a<D.<a<【考点】二次函数图象与系数的关系.【分析】根据开口判断a的符号,根据y轴的交点判断c的符号,根据对称轴b用a表示出的代数式,进而根据当x=2时,得出4a+2b+c=0,用a表示c>﹣1得出答案即可.【解答】解:抛物线开口向上,a>0图象过点(2,4),4a+2b+c=4则c=4﹣4a﹣2b,对称轴x=﹣=﹣1,b=2a,图象与y轴的交点﹣1<c<0,因此﹣1<4﹣4a﹣4a<0,实数a的取值范围是<a<.故选:D.【点评】此题考查二次函数图象与系数的关系,对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.抛物线y=﹣(x+3)2+1的顶点坐标是(﹣3,1).【考点】二次函数的性质.【分析】已知抛物线的顶点式,可直接写出顶点坐标.【解答】解:∵抛物线y=﹣(x+3)2+1,∴顶点坐标是(﹣3,1).故答案为:(﹣3,1).【点评】此题考查二次函数的性质,掌握顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h,是解决问题的关键.12.已知ab≠0,且a2﹣3ab﹣4b2=0,则的值为﹣1或4.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】把a2﹣3ab﹣4b2=0看作关于a的一元二次方程,利用因式分解法解得a=4b或a=﹣b,然后利用分式的性质计算的值.【解答】解:(a﹣4b)(a+b)=0,a﹣4b=0或a+b=0,所以a=4b或a=﹣b,当a=4b时,=4;当a=﹣b时,=﹣1,所以的值为﹣1或4.故答案为﹣1或4.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).13.已知关于x的方程a(x+m)2+c=0(a,m,c均为常数,a≠0)的根是x1=﹣3,x2=2,则方程a(x+m﹣1)2+c=0的根是x1=﹣2,x2=3.【考点】解一元二次方程-直接开平方法.【分析】把后面一个方程中的x﹣1看作整体,相当于前面一个方程中的x,从而可得x﹣1=﹣3或x﹣1=2,再求解即可.【解答】解:∵关于x的方程a(x+m)2+c=0的解是x1=﹣3,x2=2(a,m,c均为常数,a≠0),∴方程a(x+m﹣1)2+c=0变形为a[(x﹣1)+m]2+c=0,即此方程中x﹣1=﹣3或x﹣1=2,解得x=﹣2或x=3.故方程a(x+m﹣1)2+c=0的解为x1=﹣2,x2=3.故答案是:x1=﹣2,x2=3.【点评】此题主要考查了方程解的定义.注意由两个方程的特点进行简便计算.14.如图,AB,AC是⊙O,D是CA延长线上的一点,AD=AB,∠BDC=25°,则∠BOC= 100°.【考点】圆周角定理.【分析】由AD=AB,∠BDC=25°,可求得∠ABD的度数,然后由三角形外角的性质,求得∠BAC的度数,又由圆周角定理,求得答案.【解答】解:∵AD=AB,∠BDC=25°,∴∠ABD=∠BDC=25°,∴∠BAC=∠ABD+∠BDC=50°,∴∠BOC=2∠BAC=100°.故答案为:100°.【点评】此题考查了圆周角定理以及等腰三角形的性质.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.已知△ABC的三个顶点都在⊙O上,AB=AC,⊙O的半径等于10cm,圆心O到BC的距离为6cm,则AB的长等于8或4.【考点】垂径定理;等腰三角形的性质;勾股定理.【专题】分类讨论.【分析】此题分情况考虑:当三角形的外心在三角形的内部时,根据勾股定理求得BD的长,再根据勾股定理求得AB的长;当三角形的外心在三角形的外部时,根据勾股定理求得BD 的长,再根据勾股定理求得AB的长.【解答】解:如图1,当△ABC是锐角三角形时,连接AO并延长到BC于点D,∵AB=AC,O为外心,∴AD⊥BC,在Rt△BOD中,∵OB=10,OD=6,∴BD===8.在Rt△ABD中,根据勾股定理,得AB===8(cm);如图2,当△ABC是钝角或直角三角形时,连接AO交BC于点D,在Rt△BOD中,∵OB=10,OD=6,∴BD===8,∴AD=10﹣6=4,在Rt△ABD中,根据勾股定理,得AB===4(cm).故答案为:8或4.【点评】本题考查的是垂径定理,在解答此题时要注意进行分类讨论,不要漏解.16.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,图象与x轴交于A(x1,0)B(x2,0)两点,点M(x0,y0)是图象上另一点,且x0>1.现有以下结论:①abc>0;②b<2a;③a+b+c>0;④a(x0﹣x1)(x0﹣x2)<0.其中正确的结论是①、④.(只填写正确结论的序号)【考点】二次函数图象与系数的关系.【专题】推理填空题;数形结合.【分析】由抛物线的开口方向可确定a的符号,由抛物线的对称轴相对于y轴的位置可得a 与b之间的符号关系,由抛物线与y轴的交点位置可确定c的符号;根据抛物线的对称轴与x=﹣1的大小关系可推出2a﹣b的符号;由于x=1时y=a+b+c,因而结合图象,可根据x=1时y的符号来确定a+b+c的符号,根据a、x0﹣x1、x0﹣x2的符号可确定a(x0﹣x1)(x0﹣x2)的符号.【解答】解:由抛物线的开口向下可得a<0,由抛物线的对称轴在y轴的左边可得x=﹣<0,则a与b同号,因而b<0,由抛物线与y轴的交点在y轴的正半轴上可得c>0,∴abc>0,故①正确;由抛物线的对称轴x=﹣>﹣1(a<0),可得﹣b<﹣2a,即b>2a,故②错误;由图可知当x=1时y<0,即a+b+c<0,故③错误;∵a<0,x0﹣x1>0,x0﹣x2>0,∴a(x0﹣x1)(x0﹣x2)<0,故④正确.综上所述:①、④正确.故答案为①、④.【点评】本题主要考查二次函数图象与系数的关系,其中a决定于抛物线的开口方向,b决定于抛物线的开口方向及抛物线的对称轴相对于y轴的位置,c决定于抛物线与y轴的交点位置,2a与b的大小决定于a的符号及﹣与﹣1的大小关系,运用数形结合的思想准确获取相关信息是解决本题的关键.三、解答题(本大题共9小题,共72分)17.解方程:(1)x2+2x﹣15=0(2)3x(x﹣2)=(2﹣x)【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】(1)利用因式分解法解方程;(2)先把方程变形得到3x(x﹣2)+(x﹣2)=0,然后利用因式分解法解方程.【解答】解:(1)(x+5)(x﹣3)=0,x+5=0或x﹣3=0,x+5=0或x﹣3=0,所以x1=﹣5,x2=3;(2)3x(x﹣2)+(x﹣2)=0,(x﹣2)(3x+)=0,x﹣2=0或3x+=0,所以x1=2,x2=﹣.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.已知抛物线的顶点是(4,2),且在x轴上截得的线段长为8,求此抛物线的解析式.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】根据抛物线的对称性得到抛物线与x轴的两交点坐标为(0,0),(8,0),则可设交点式y=ax(x﹣8),然后把顶点坐标代入求出a即可.【解答】解:根据题意得抛物线的对称轴为直线x=4,而抛物线在x轴上截得的线段长为8,所以抛物线与x轴的两交点坐标为(0,0),(8,0),设抛物线解析式为y=ax(x﹣8),把(4,2)代入得a•4•(﹣4)=2,解得a=﹣,所以抛物线解析式为y=﹣x(x﹣8),即y=﹣x2+x.【点评】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.本题的关键是利用对称性确定抛物线与x轴的交点坐标.19.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,求m2+n2的值.【考点】根的判别式;一元二次方程的解.【专题】新定义.【分析】根据x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,列出方程组,求出m,n 的值,再代入计算即可.【解答】解:根据题意得:解得:,则m2+n2=(﹣2)2+12=5.【点评】本题考查了一元二次方程的解,根的判别式,关键是根据已知条件列出方程组,用到的知识点是一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.为响应党中央提出的“足球进校园”号召,我市在今年秋季确定了3所学校为我市秋季确定3所学校诶我市足球基地实验学校,并在全市开展了中小学足球比赛,比赛采用单循环制,即组内每两队之间进行一场比赛,若初中组共进行45场比赛,问初中共有多少个队参加比赛?【考点】一元二次方程的应用.【分析】赛制为单循环形式(每两队之间都赛一场),每个小组x个球队比赛总场数=x(x﹣1),由此可得出方程.【解答】解:设初中组共有x个队参加比赛,依题意列方程x(x﹣1)=45,解得:x1=10,x2=﹣19(不合题意,舍去),答:初中组共有10个队参加比赛.【点评】此题考查一元二次方程的实际运用,解决本题的关键是读懂题意,得到总场数与球队之间的关系.21.如图,在⊙O中,=,∠ACB=60°.(1)求证:∠AOB=∠BOC=∠AOC;(2)若D是的中点,求证:四边形OADB是菱形.【考点】圆心角、弧、弦的关系;菱形的判定;圆周角定理.【专题】证明题.【分析】(1)根据圆心角、弧、弦的关系,由=得AB=AC,加上∠ACB=60°,则可判断△ABC是等边三角形,所以AB=BC=CA,于是根据圆心角、弧、弦的关系即可得到∠AOB=∠BOC=∠AOC;(2)连接OD,如图,由D是的中点得=,则根据圆周角定理得∠AOD=∠BOD=∠ACB=60°,易得△OAD和△OBD都是等边三角形,则OA=AD=OD,OB=BD=OD,所以OA=AD=DB=BO,于是可判断四边形OADB是菱形.【解答】证明:(1)∵=,∴AB=AC,∵∠ACB=60°,∴△ABC是等边三角形,∴AB=BC=CA,∴∠AOB=∠BOC=∠AOC;(2)连接OD,如图,∵D是的中点,∴=,∴∠AOD=∠BOD=∠ACB=60°,又∵OD=OA,OD=OB,∴△OAD和△OBD都是等边三角形,∴OA=AD=OD,OB=BD=OD,∴OA=AD=DB=BO,∴四边形OADB是菱形.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了菱形的判定、等边三角形的判定与性质和圆周角定理.22.已知关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是这个方程的两个实数根,且BC=8,当△ABC为等腰三角形时,求m的值.【考点】根的判别式;根与系数的关系;等腰三角形的性质.【分析】(1)先根据题意求出△的值,再根据一元二次方程根的情况与判别式△的关系即可得出答案;(2)根据△ABC的两边AB、AC的长是这个方程的两个实数根,设AB=x1=8,得出82﹣8(2m+1)+m(m+1)=0,求出m的值即可.【解答】解:(1)∵△=[﹣(2m+1)]2﹣4m(m+1)=1>0,∴不论m为何值,方程总有两个不相等的实数根.(2)由于无论m为何值,方程恒有两个不等实根,故若要△ABC为等腰三角形,那么必有一个解为8;设AB=x1=8,则有:82﹣8(2m+1)+m(m+1)=0,即:m2﹣15m+56=0,解得:m1=7,m2=8.则当△ABC为等腰三角形时,m的值为7或8.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23.如图,O为正方形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E.(1)求证:CD是⊙O的切线;(2)若正方形ABCD的边长为10,求⊙O的半径.【考点】切线的判定;正方形的性质.【分析】(1)首先连接OE,并过点O作OF⊥CD,由OA长为半径的⊙O与BC相切于点E,可得OE=OA,OE⊥BC,然后由AC为正方形ABCD的对角线,根据角平分线的性质,可证得OF=OE=OA,即可判定CD是⊙O的切线;(2)由正方形ABCD的边长为10,可求得其对角线的长,然后由设OA=r,可得OE=EC=r,由勾股定理求得OC=r,则可得方程r+r=10,继而求得答案.【解答】(1)证明:连接OE,并过点O作OF⊥CD.∵BC切⊙O于点E,∴OE⊥BC,OE=OA,又∵AC为正方形ABCD的对角线,∴∠ACB=∠ACD,∴OF=OE=OA,即:CD是⊙O的切线.(2)解:∵正方形ABCD的边长为10,∴AB=BC=10,∠B=90°,∠ACB=45°,∴AC==10,∵OE⊥BC,∴OE=EC,设OA=r,则OE=EC=r,∴OC==r,∵OA+OC=AC,∴r+r=10,解得:r=20﹣10.∴⊙O的半径为:20﹣10.【点评】此题考查了切线的判定、正方形的性质、角平分线的性质以及勾股定理.注意准确作出辅助线是解此题的关键.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?【考点】二次函数的应用.【专题】综合题.【分析】(1)根据题意可知y与x的函数关系式.(2)根据题意可知y=﹣10﹣(x﹣5.5)2+2402.5,当x=5.5时y有最大值.(3)设y=2200,解得x的值.然后分情况讨论解.【解答】解:(1)由题意得:y=(50+x﹣40)=﹣10x2+110x+2100(0<x≤15且x为整数);(2)由(1)中的y与x的解析式配方得:y=﹣10(x﹣5.5)2+2402.5.∵a=﹣10<0,∴当x=5.5时,y有最大值2402.5.∵0<x≤15,且x为整数,当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当y=2200时,﹣10x2+110x+2100=2200,解得:x1=1,x2=10.∴当x=1时,50+x=51,当x=10时,50+x=60.∴当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).【点评】本题考查二次函数的实际应用,借助二次函数解决实际问题,是一道综合题.25.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)利用待定系数法求二次函数解析式解答即可;(2)利用待定系数法求出直线AC的解析式,然后根据轴对称确定最短路线问题,直线AC 与对称轴的交点即为所求点D;(3)根据直线AC的解析式,设出过点E与AC平行的直线,然后与抛物线解析式联立消掉y得到关于x的一元二次方程,利用根的判别式△=0时,△ACE的面积最大,然后求出此时与AC平行的直线,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF,再根据直线l与x轴的夹角为45°求出两直线间的距离,再求出AC间的距离,然后利用三角形的面积公式列式计算即可得解.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),∴,解得,所以,抛物线的解析式为y=x2﹣4x+3;(2)∵点A、B关于对称轴对称,∴点D为AC与对称轴的交点时△BCD的周长最小,设直线AC的解析式为y=kx+b(k≠0),则,解得,所以,直线AC的解析式为y=x﹣1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,当x=2时,y=2﹣1=1,∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小;(3)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x2﹣5x+3﹣m=0,△=(﹣5)2﹣4×1×(3﹣m)=0,解得:m=﹣,即m=﹣时,点E到AC的距离最大,△ACE的面积最大,此时x=,y=﹣=﹣,∴点E的坐标为(,﹣),设过点E的直线与x轴交点为F,则F(,0),∴AF=﹣1=,∵直线AC的解析式为y=x﹣1,∴∠CAB=45°,∴点F到AC的距离为AF•sin45°=×=,又∵AC==3,∴△ACE的最大面积=×3×=,此时E点坐标为(,﹣).【点评】本题考查了二次函数综合题型,主要考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,利用轴对称确定最短路线问题,联立两函数解析式求交点坐标,利用平行线确定点到直线的最大距离问题.。

【人教版】2016届九年级上期中数学试卷及答案解析

【人教版】2016届九年级上期中数学试卷及答案解析

九年级上学期期中数学试卷一、选择题(本大题共8个小题,每小题3分,共24分。

在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项选出来并填在该题相应的括号内)1.如果两个相似三角形的相似比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.1: D.2:12.在△ABC中,∠C=90°,sinA=,则sinB的值是()A.B.C.D.3.如图,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15°B.30°C.60°D.75°4.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD •AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.45.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,每个小正方形边长均为1,则下列图中的三角形与左图中△ABC相似的是()A.B.C.D.7.如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O于点A,如果PA=4,PB=2,那么线段BC的长等于()A.3 B.4 C.5 D.68.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④ C.②③④D.①③④二、填空题(本大题共6个小题,每小题3分,共18分,只要求填写最后结果,每小题填对得3分)9.等腰三角形底边长10cm,周长为36cm,则一底角的正切值为.10.弧长为6π的弧所对的圆心角为60°,则该弧所在圆的半径是.11.将一副三角尺如图所示叠放在一起,则的值是.12.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,则= .13.如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC= 度.14.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为.三、解答题(本大题共7个小题,共78分)解答应写出必要的证明过程或演算步骤15.计算:tan30°•sin60°+cos230°﹣sin245°•tan45°.16.如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,求BC的长.17.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD ⊥AB交AB于D.已知cos∠ACD=,BC=4,求AC的长.18.如图,△ABC的三顶点分别为A(4,4),B(﹣2,2),C(3,0).请画出一个以原点O为位似中心,且与△ABC相似比为的位似图形△A1B1C1,并写出△A1B1C1各顶点的坐标.(只需画出一种情况,A1B1:AB=)19.如图1表示一个时钟的钟面垂直固定与水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直与桌面,A点距桌面的高度为10公分.如图2,若此钟面显示3点45分时,A点距离桌面的高度为16公分,则钟面显示3点50分时,A点距桌面的高度为多少公分?20.如图,小明为测量某铁塔AB的高度,他在离塔底B的10米C处测得塔顶的仰角α=43°,已知小明的测角仪高CD=1.5米,求铁塔AB的高.(精确到0.1米)(参考数据:sin43°=0.6820,cos43°=0.7314,tan43°=0.9325)21.如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=,BC=2.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.22.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)23.在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.24.如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.(1)求证:AE⊥DE;(2)计算:AC•AF的值.九年级上学期期中数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分。

人教版 2016届九年级上册初三数学期中试卷(含答案解析)

人教版 2016届九年级上册初三数学期中试卷(含答案解析)

2016-2017学年九年级(上)期中数学试卷一、选择题:(本大题满分45分,共15小题,每题3分.在下列各小题给出的四个选项中,只有一项符合题目的要求,请把符合要求的选项前面的字母代号填写在答卷上指定的位置)1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.将一元二次方程x2+3=x化为一般形式后,二次项系数和一次项系数分别为()A.0、3 B.0、1 C.1、3 D.1、﹣13.抛物线y=(x+2)2+1的顶点坐标是()A.(2,1) B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)4.关于x的一元二次方程9x2﹣6x+k=0有两个实根,则k的范围是()A.k≤1 B.k≥1 C.k<1 D.k>15.将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是()A.y=2(x+1)2+3 B.y=2(x﹣1)2﹣3 C.y=2(x+1)2﹣3 D.y=2(x﹣1)2+36.若x1,x2是一元二次方程x2﹣3x﹣2=0的两个根,则x1x2的值是()A.3 B.﹣2 C.﹣3 D.27.下列命题中:①圆既是轴对称图形又是中心对称图形;②平分弦的直径垂直于弦,并且平分弦所对的两条弧;③相等的圆心角所对的弧相等;④长度相等的弧是等弧.真命题有()个.A.1 B.2 C.3 D.48.某种型号的电视机经过连续两次降价,每台售价由原来的1500元,降到了980元,设平均每次降价的百分率为x,则下列方程中正确的是()A.1500(1﹣x)2=980 B.1500(1+x)2=980 C.980(1﹣x)2=1500 D.980(1+x)2=15009.如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A .29°B .31°C .59°D .62°10.已知二次函数y=x 2﹣4x+m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2﹣4x+m=0的两个实数根是( )A .x 1=1,x 2=﹣1B .x 1=﹣1,x 2=2C .x 1=﹣1,x 2=0D .x 1=1,x 2=311.如图,在⊙O 中,直径AB 垂直于弦CD ,垂足为P .若PA=2,PB=8,则CD 的长为( )A .2B .4C .8D .12.已知点(﹣3,y 3),(﹣2,y 1),(﹣1,y 2)在函数y=x 2+1的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 1>y 2C .y 3>y 2>y 1D .y 2>y 1>y 313.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC 绕点O 顺时针旋转90°得到△BOD ,则的长为( )A .πB .6πC .3πD .1.5π14.如图,用一块直径为a 的圆桌布平铺在对角线长为a 的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x 为( )A .B .C .D .15.已知一次函数y=﹣kx+k 的图象如图所示,则二次函数y=﹣kx 2﹣2x+k 的图象大致是( )A .B .C .D .二、解答题:(本大题满分75分,共9小题)16.解方程:x (2x ﹣5)=4x ﹣10.17.已知抛物线的顶点为A (1,﹣4),且过点B (3,0).求该抛物线的解析式.18.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (0,1),B (﹣1,1),C (﹣1,3).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点C 1的坐标;(2)画出△ABC 绕原点O 顺时针方向旋转90°后得到的△A 2B 2C 2,并写出点C 2的坐标;19.已知关于x 的一元二次方程x 2﹣6x+k=0有两个不相等的实数根.(1)求k 的取值范围;(2)若x 1,x 2为该方程的两个实数根且满足x 12x 22﹣x 1﹣x 2=115,求k 的值.20.已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦,且AB ⊥CD ,垂足为E .(1)求证:BC=BD ;(2)若BC=15,AD=20,求AB和CD的长.21.如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)在如图的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?22.某工厂从1月份起,每月生产收入是22万元,但在生产过程中会引起环境污染;若再按现状生产,将会受到环保部门的处罚,每月罚款2万元;如果投资111万元治理污染,治污系统可在1月份启用,这样,该厂不但不受处罚,还可降低生产成本,使1至3月的生产收入以相同的百分率递增,经测算,投资治污后,1月份生产收入为25万元,1至3月份的生产累计可达91万元;3月份以后,每月生产收入稳定在3月份的水平.(1)求出投资治污后2、3月份生产收入增长的百分率(参考数据:3.62=1.912,11.56=3.402)(2)如果把利润看做生产累计收入减去治理污染的投资额或环保部门的处罚款,试问:治理污染多少个月后,所投资金开始见效?(即治污后所获利润不小于不治污情况下所获利润).23.如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形边CB、CD上,连接AF,取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,则△AEF是三角形,MD、MN的数量关系是.(2)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则MD、MN的数量关系还成立吗?若成立,请加以证明;若不成立,请说明理由.(3)将图1中正方形ABCD及直角三角板ECF同时绕点C顺时针旋转90°,如图3,其他条件不变,则MD、MN的数量关系还成立吗?若成立,请加以证明;若不成立,请说明理由.24.如图,抛物线y=(x+1)2+k 与x轴交于A、B两点,与y轴交于点C (0,﹣3).(1)求抛物线的解析式;(2)点M是抛物线上一动点,且在第三象限;①当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标;②在抛物线的对称轴上是否存在一点P,使△AMP是以AM为底的等腰直角三角形,若存在,请求出点P和点M的坐标;若不存在,请说明理由.九年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题满分45分,共15小题,每题3分.在下列各小题给出的四个选项中,只有一项符合题目的要求,请把符合要求的选项前面的字母代号填写在答卷上指定的位置)1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选B.【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.2.将一元二次方程x2+3=x化为一般形式后,二次项系数和一次项系数分别为()A.0、3 B.0、1 C.1、3 D.1、﹣1【考点】一元二次方程的一般形式.【分析】首先移项进而得出二次项系数和一次项系数即可.【解答】解:∵x2+3=x,∴x2﹣x+3=0,∴二次项系数和一次项系数分别为:1,﹣1.故选:D.【点评】此题主要考查了一元二次方程的一般形式,正确移项得出是解题关键.3.抛物线y=(x+2)2+1的顶点坐标是()A.(2,1) B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)【考点】二次函数的性质.【分析】已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:因为y=(x+2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1).故选B.【点评】考查顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.要掌握顶点式的性质.4.关于x的一元二次方程9x2﹣6x+k=0有两个实根,则k的范围是()A.k≤1 B.k≥1 C.k<1 D.k>1【考点】根的判别式.【分析】根据方程有实数根,得到根的判别式的值大于等于0,列出关于k的不等式,求出不等式的解集即可得到k的范围.【解答】解:根据题意得:△=36﹣36k≥0,解得:k≤1.故选A.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.5.将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是()A.y=2(x+1)2+3 B.y=2(x﹣1)2﹣3 C.y=2(x+1)2﹣3 D.y=2(x﹣1)2+3【考点】二次函数图象与几何变换.【分析】抛物线平移不改变a的值.【解答】解:原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(﹣1,3).可设新抛物线的解析式为y=2(x ﹣h )2+k ,代入得:y=2(x+1)2+3. 故选A .【点评】解决本题的关键是得到新抛物线的顶点坐标.6.若x 1,x 2是一元二次方程x 2﹣3x ﹣2=0的两个根,则x 1x 2的值是( )A .3B .﹣2C .﹣3D .2【考点】根与系数的关系.【专题】计算题.【分析】直接根据根与系数的关系求解.【解答】解:根据题意得x 1x 2=﹣2.故选B .【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=,x 1x 2=.7.下列命题中:①圆既是轴对称图形又是中心对称图形;②平分弦的直径垂直于弦,并且平分弦所对的两条弧;③相等的圆心角所对的弧相等;④长度相等的弧是等弧.真命题有( )个.A .1B .2C .3D .4 【考点】命题与定理.【专题】推理填空题.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:∵圆既是轴对称图形又是中心对称图形,∴选项①正确;∵所平分的弦是直径时不满足,∴选项②不正确;∵在同圆或等圆中,相等的圆心角所对的弧相等,∴选项③不正确;∵能完全重合的弧是等弧,∴选项④不正确.综上,可得正确的命题有1个:①.故选:A.【点评】主要主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.某种型号的电视机经过连续两次降价,每台售价由原来的1500元,降到了980元,设平均每次降价的百分率为x,则下列方程中正确的是()A.1500(1﹣x)2=980 B.1500(1+x)2=980 C.980(1﹣x)2=1500 D.980(1+x)2=1500【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设平均每次降价的百分率为x,根据题意可得,原价×(1﹣降价百分率)2=现价,据此列方程即可.【解答】解:设平均每次降价的百分率为x,由题意得,1500(1﹣x)2=980.故选A.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.9.如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29° B.31° C.59° D.62°【考点】圆周角定理.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,求得∠ADB=90°,继而求得∠A的度数,然后由圆周角定理,求得∠C的度数.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=59°,∴∠A=90°﹣∠ABD=31°,∴∠C=∠A=31°.故选B.【点评】此题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.此题难度不大,注意掌握数形结合思想的应用.10.已知二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣4x+m=0的两个实数根是()A.x1=1,x2=﹣1 B.x1=﹣1,x2=2 C.x1=﹣1,x2=0 D.x1=1,x2=3【考点】抛物线与x轴的交点.【分析】根据抛物线与x轴交点的性质和根与系数的关系进行解答.【解答】解:∵二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),∴关于x的一元二次方程x2﹣4x+m=0的一个根是x=1.∴设关于x的一元二次方程x2﹣4x+m=0的另一根是t.∴1+t=4,解得 t=3.即方程的另一根为3.故选:D.【点评】本题考查了抛物线与x轴的交点.注意二次函数解析式与一元二次方程间的转化关系.11.如图,在⊙O中,直径AB垂直于弦CD,垂足为P.若PA=2,PB=8,则CD的长为()A .2B .4C .8D .【考点】垂径定理;勾股定理.【分析】连接OC ,根据PA=2,PB=8可得CO=5,OP=5﹣2=3,再根据垂径定理可得CD=2CP=8.【解答】解:连接OC ,∵PA=2,PB=8,∴AB=10,∴CO=5,OP=5﹣2=3,在Rt △POC 中:CP==4,∵直径AB 垂直于弦CD ,∴CD=2CP=8,故选:C .【点评】此题主要考查了勾股定理和垂径定理,关键是掌握平分弦的直径平分这条弦,并且平分弦所对的两条弧.12.已知点(﹣3,y 3),(﹣2,y 1),(﹣1,y 2)在函数y=x 2+1的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 1>y 2C .y 3>y 2>y 1D .y 2>y 1>y 3【考点】二次函数图象上点的坐标特征.【分析】将三个点的坐标分别代入函数关系式,求出y 1,y 2,y 3的值,从而得解.【解答】解:y 1=(﹣3)2+1=9+1=10,y 2=(﹣2)2+1=4+1=5,y3=(﹣1)2+1=1+1=2,所以,y1>y2>y3.故选A.【点评】本题考查了二次函数图象上点坐标特征,此类题目,可以利用二次函数的对称性以及增减性求解,也可以求出具体的相关的函数值.13.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB.6πC.3πD.1.5π【考点】旋转的性质;弧长的计算.【专题】计算题.【分析】根据弧长公式列式计算即可得解.【解答】解:的长==1.5π.故选:D.【点评】本题考查了旋转的性质,弧长的计算,熟记弧长公式是解题的关键.14.如图,用一块直径为a的圆桌布平铺在对角线长为a的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x为()A.B.C.D.【考点】垂径定理的应用;正方形的性质.【专题】计算题.【分析】如图,正方形ABCD为直径为a的⊙O的内接正方形,作OE⊥BC于E,交⊙O于F,连接OB,则OB=a,则可判断△OBE为等腰直角三角形,所以OE=OB=a,然后计算OF﹣OE即可.【解答】解:如图,正方形ABCD为直径为a的⊙O的内接正方形,作OE⊥BC于E,交⊙O于F,连接OB,则OB=a,∴△OBE为等腰直角三角形,∴OE=OB=a,∴EF=OF﹣OE=a﹣a=a.即桌布下垂的最大长度x为a.故选A.【点评】本题考查了垂径定理的应用:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.也考查了正方形的性质.15.已知一次函数y=﹣kx+k的图象如图所示,则二次函数y=﹣kx2﹣2x+k的图象大致是()A. B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据一次函数的图象和性质判断k的取值范围,确定抛物线的开口方向、对称轴和顶点坐标,得到答案.【解答】解:从一次函数图象可知,k >1,﹣k <0,抛物线开口向下,﹣>﹣1,对称轴在x=﹣1的右侧,与y 轴的交点在(0,1)的上方.故选:B .【点评】本题考查的是一次函数的图象和性质、二次函数的图象和性质,掌握性质、读懂图象从中获取正确的信息是解题的关键,解答二次函数图象问题时,要从开口方向、对称轴和顶点坐标三个方面入手.二、解答题:(本大题满分75分,共9小题)16.解方程:x (2x ﹣5)=4x ﹣10.【考点】解一元二次方程-因式分解法.【分析】由于方程左右两边都含有(2x ﹣5),可将(2x ﹣5)看作一个整体,然后移项,再分解因式求解.【解答】解:原方程可变形为:x (2x ﹣5)﹣2(2x ﹣5)=0,(2x ﹣5)(x ﹣2)=0,2x ﹣5=0或x ﹣2=0;解得x 1=,x 2=2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.已知抛物线的顶点为A (1,﹣4),且过点B (3,0).求该抛物线的解析式.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】根据顶点坐标设出顶点形式,把B 坐标代入求出a 的值,即可确定出解析式.【解答】解:设抛物线的解析式为y=a (x ﹣1)2﹣4,∵抛物线经过点B (3,0),∴a (3﹣1)2﹣4=0,解得:a=1,∴y=(x﹣1)2﹣4,即y=x2﹣2x﹣3.【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.18.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(﹣1,1),C(﹣1,3).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2,并写出点C2的坐标;【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可,然后从坐标中读出各点的坐标;(2)让三角形的各顶点都绕点O顺时针旋转90°后得到对应点,顺次连接即可.【解答】解:(1)点C1的坐标(﹣1,﹣3).(2)所作图形如下:.根据图形结合坐标系可得:C 2(3,1).【点评】本题考查轴对称及旋转作图的知识,属于基础题,解答本题的关键是掌握两种几何变换的特点,根据题意找到各点的对应点.19.已知关于x 的一元二次方程x 2﹣6x+k=0有两个不相等的实数根.(1)求k 的取值范围;(2)若x 1,x 2为该方程的两个实数根且满足x 12x 22﹣x 1﹣x 2=115,求k 的值.【考点】根与系数的关系;根的判别式.【分析】(1)根据方程有两个不相等的实数根可得△=36﹣4k >0,解不等式求出k 的取值范围;(2)由根与系数的关系可得x 1+x 2=6,x 1•x 2=k ,代入x 12x 22﹣x 1﹣x 2=115得到关于k 的方程,结合k 的取值范围解方程即可.【解答】解:(1)由题意可得△=36﹣4k >0,解得k <9;(2)∵x 1,x 2为该方程的两个实数根,∴x 1+x 2=6,x 1•x 2=k ,∵x 12x 22﹣x 1﹣x 2=115,∴k 2﹣6=115,解得k=±11.∵k <9,∴k=﹣11.【点评】此题考查了一元二次方程ax 2+bx+c=0根的判别式和根与系数的关系的应用,(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根;(4)x 1+x 2=﹣;(5)x 1•x 2=.20.已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦,且AB ⊥CD ,垂足为E .(1)求证:BC=BD ;(2)若BC=15,AD=20,求AB 和CD 的长.【考点】垂径定理;勾股定理.【专题】探究型.【分析】(1)直接根据垂径定理即可得出结论;(2)先根据垂径定理判断出△ABD 是直角三角形,再根据勾股定理求出AB 的长,由AB •DE=AD •BD 即可求出DE 的长,再由CD=2DE 即可得出结论.【解答】(1)证明:∵AB为⊙O的直径,AB⊥CD,∴,∴BC=BD;(2)解:∵AB为⊙O的直径,∴∠ADB=90°,∴AB===25,∵AB•DE=AD•BD,∴×25×DE=×20×15.∴DE=12.∵AB为⊙O的直径,AB⊥CD,∴CD=2DE=2×12=24.【点评】本题考查的是垂径定理及勾股定理,熟知垂直于弦的直径平分弦,并且平分弦所对的弧是解答此题的关键.21.如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)在如图的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?【考点】二次函数的应用.【专题】函数思想.【分析】先设抛物线的解析式,再找出几个点的坐标,代入解析式后可求解.【解答】解:(1)设所求抛物线的解析式为:y=ax2(a≠0),由CD=10m,可设D(5,b),由AB=20m,水位上升3m就达到警戒线CD,则B(10,b﹣3),把D、B的坐标分别代入y=ax2得:,解得.∴y=;(2)∵b=﹣1,∴拱桥顶O到CD的距离为1m,∴=5(小时).所以再持续5小时到达拱桥顶.【点评】命题立意:此题是把一个实际问题通过数学建模,转化为二次函数问题,用二次函数的性质加以解决.22.(2011•枝江市模拟)某工厂从1月份起,每月生产收入是22万元,但在生产过程中会引起环境污染;若再按现状生产,将会受到环保部门的处罚,每月罚款2万元;如果投资111万元治理污染,治污系统可在1月份启用,这样,该厂不但不受处罚,还可降低生产成本,使1至3月的生产收入以相同的百分率递增,经测算,投资治污后,1月份生产收入为25万元,1至3月份的生产累计可达91万元;3月份以后,每月生产收入稳定在3月份的水平.(1)求出投资治污后2、3月份生产收入增长的百分率(参考数据:3.62=1.912,11.56=3.402)(2)如果把利润看做生产累计收入减去治理污染的投资额或环保部门的处罚款,试问:治理污染多少个月后,所投资金开始见效?(即治污后所获利润不小于不治污情况下所获利润).【考点】一元二次方程的应用;一元一次不等式组的应用.【专题】增长率问题.【分析】(1)设每月的增长率为x,那么2月份的生产收入为25(1+x),三月份的生产收入为25(1+x)2,根据1至3月份的生产累计可达91万元,可列方程求解.(2)设y月后开始见成效,根据利润看做生产累计收入减去治理污染的投资额或环保部门的处罚款且治污后所获利润不小于不治污情况下所获利润可列不等式求解.【解答】解:(1)设每月的增长率为x,由题意得:25+25(1+x)+25(1+x)2=91解得,x=0.2,或x=﹣3.2(不合题意舍去)答:每月的增长率是20%.(2)三月份的收入是:25(1+20%)2=36(万元)设y月后开始见成效,由题意得:91+36(y﹣3)﹣111≥22y﹣2y解得,y≥8答:治理污染8个月后开始见成效.【点评】本题考查理解题意能力,关键是找到1至3月份的生产累计可达91万元和治污后所获利润不小于不治污情况下所获利润这个等量关系和不等量关系可列方程和不等式求解.23.如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形边CB、CD上,连接AF,取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,则△AEF是等腰三角形,MD、MN的数量关系是MD=MN .(2)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则MD、MN的数量关系还成立吗?若成立,请加以证明;若不成立,请说明理由.(3)将图1中正方形ABCD及直角三角板ECF同时绕点C顺时针旋转90°,如图3,其他条件不变,则MD、MN的数量关系还成立吗?若成立,请加以证明;若不成立,请说明理由.【考点】四边形综合题;全等三角形的判定与性质;直角三角形斜边上的中线;等腰直角三角形;三角形中位线定理;正方形的性质.【分析】(1)根据正方形的性质以及等腰直角三角形的性质得出CE=CF,继而证出△ABE≌△ADF,得到AE=AF,即△AEF是等腰三角形;依据直角三角形斜边上中线的性质以及三角形的中位线的性质,可得到MN与MD的数量关系;(2)连接AE,根据正方形的性质以及等腰直角三角形的性质,得出BE=DF,继而证出△ABE≌△ADF,得到AE=AF,再依据直角三角形斜边上中线的性质,可得DM=AF,根据三角形的中位线的性质,可得MN=AE,最后得出MN与MD的数量关系;(3)先连接AE,A′F,根据等腰直角三角形的性质得出CE=CF,继而证出△ADE≌△A′D′F,得到AE=AF,再依据三角形的中位线的性质,可得DM=A′F,MN=AE,最后得出MN与MD的数量关系.【解答】解:(1)∵FC=EC,DC=BC,∴DF=BE,又∵AB=AD,∠B=∠ADF=90°,∴△ABE≌△ADF(SAS),∴AE=AF,即△AEF是等腰三角形,又∵M、N分别是AF与EF的中点,∴Rt△ADF中,DM=AF,△AEF中,MN=AE,∴DM=MN,故答案为:等腰,DM=MN;(2)MD=MN仍成立,证明:连接AE,∵四边形ABCD为正方形,∴AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF,∵在Rt△ADF中,点M为AF的中点,∴DM=AF,∵点M为AF的中点,点N为EF的中点,∴MN=AE,∴DM=MN;(3)MD=MN仍成立,理由如下:连接AE,A′F,∵CD=CD′,CE=CF,∴CD﹣CE=CD′﹣CF,即DE=D′F,又∵AD=A′D′,∠ADE=∠D′,∴△ADE≌△A′D′F(SAS),∴AE=A′F,又∵点D是AA′的中点,点M为AF的中点,点N为EF的中点,∴MN,MD分别为△AEF和△AA′F的中位线,∴MN=AE,DM=A′F,∴MN=DM.【点评】本题主要考查的是四边形的综合应用,解答本题需要掌握正方形的性质、等腰直角三角形的性质以及全等三角形的性质和判定,综合性较强,难度较大.解题时注意:直角三角形斜边上的中线等于斜边的一半,三角形的中位线等于第三边的一半,是得出线段相等数量关系的主要依据.24.如图,抛物线y=(x+1)2+k 与x轴交于A、B两点,与y轴交于点C (0,﹣3).(1)求抛物线的解析式;(2)点M是抛物线上一动点,且在第三象限;①当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标;②在抛物线的对称轴上是否存在一点P,使△AMP是以AM为底的等腰直角三角形,若存在,请求出点P和点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将C(0,﹣3)代入抛物线的解析式求得k的值,从而得到抛物线的解析式;(2)连结AC,过点M作MD⊥AC,交AD于点D.先求得点A、B的坐标,然后再求得直线AC的解析式,设M(x,x2+2x﹣3),则D(x,﹣x﹣3),则MD=﹣x2﹣3x,然后依据四边形AMCB的面积=△ABC面积+△AMC面积列出S与x的函数关系式,然后依据配方法求得二次函数的最大值,从而可求得点M的坐标;(3)先求得抛物线的对称轴方程为x=﹣1,然后过点M 作MD ⊥直线x=﹣1,垂足为D ,设直线x=﹣1与x 轴交于点E ,先证明△APE ≌△PMD ,从而得到EP=MD ,AE=PD .设点P (﹣1,a ),点M (a ﹣1,a ﹣2).将点M 的坐标代入抛物线的解析式可求得a 的值,从而得到点M 与点P 的坐标.【解答】解:(1)∵y=(x+1)2+k 与y 轴交于点C (0,﹣3)﹣3=1+k ,得,k=﹣4∴抛物线解析式为y=(x+1)2﹣4,即y=x 2+2x ﹣3.(2)如图1所示:连结AC ,过点M 作MD ⊥AC ,交AD 于点D .令y=0得:x 2+2x ﹣3=0,解得x 1=﹣3,x 2=1,∴A (﹣3,0)、B (1,0).设直线AC 的解析式为y=kx+b .∵将A (﹣3,0)、C (0,﹣3)代入得:,解得k=﹣1,b=﹣3. ∴直线AC 解析式为y=﹣x ﹣3.设M (x ,x 2+2x ﹣3),则D (x ,﹣x ﹣3),则MD=﹣x 2﹣3x .∵四边形AMCB 的面积=△ABC 面积+△AMC 面积,∴四边形AMCB 的面积=MD •AO+AB •OC=×(﹣x 2﹣3x )×3+×4×3=﹣x 2﹣x+6=﹣(x+)2+.∴当x=﹣时,S 最大值为,点M 的坐标为(﹣,﹣). (3)存在,理由如下.∵x=﹣=﹣1,∴抛物线的对称轴为x=﹣1.如图2所示:过点M作MD⊥直线x=﹣1,垂足为D,设直线x=﹣1与x轴交于点E∵△APM为等腰直角三角形,∴AP=PM,∠APE+∠MPD=90°.∵∠MPD+∠PMD=90°,∴∠PMD=∠APE.在△APE和△PMD中,∴△APE≌△PMD.∴EP=MD,AE=PD.设点P(﹣1,a),点M(a﹣1,a﹣2).将M点代入y=x2+2x﹣3中,得(a﹣1)2+2(a﹣1)﹣3=a﹣2,整理得:a2﹣a﹣2=0,解得a=2或a=﹣1,∵点P在x轴的下方,∴a=﹣1.∴P(﹣1,﹣1)、M(﹣2,﹣3).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、全等三角形的性质和判断、求二次函数的最大值,列出S与x的函数关系式是解答问题(2)的关键,用含a的式子表示点M的坐标是解答问题(3)的关键.。

2016年人教版九年级上册期中数学试卷含答案

2016年人教版九年级上册期中数学试卷含答案

. .2016-2017 学年九年级(上)期中数学试卷一、单项选择题1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .平行四边形B .圆C .正五边形D .等腰三角形 2.下列关于 x 的方程中,是一元二次方程的有( )A .2x +1=0B .y 2+x=1C .x 2﹣1=0D .x 2+ =13.若关于 x 的一元二次方程(m ﹣2)x 2﹣3x +m 2﹣4=0 的常数项为 0,则 m 的值等于( ) A .﹣2 B .2 C .﹣2 或 2 D .04.抛物线 y=(x +2)2﹣3 可以由抛物线 y=x 2 平移得到,则下列平移过程正确的是( ) A .先向左平移 2 个单位,再向上平移 3 个单位 B .先向左平移 2 个单位,再向下平移 3 个单位 C .先向右平移 2 个单位,再向下平移 3 个单位 D .先向右平移 2 个单位,再向上平移 3 个单位5.已知直角三角形的两直角边的长恰好是方程 x 2﹣5x +6=0 的两根,则此直角三角形的斜边 长为( ) A . B .3 C . D .3 6.方程(2x +3)(x ﹣1)=1 的解的情况是( ) A .有两个不相等的实数根 B .没有实数根 C .有两个相等的实数根 D .有一个实数根7.已知点 P 关于 x 轴的对称点 P 1 的坐标是(2,3),那么点 P 关于原点的对称点 P 2 的坐标 是( )A (﹣3,﹣2)B .(2,﹣3)C (﹣2,﹣3)D .(﹣2,3)8.若方程 x 2﹣5x ﹣10=0 的两根为 x 1、x 2,则 的值为( )A .2B .﹣2C .D .9.某药品原价每盒是 25 元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒 16 元,则该药品平均每次降价的百分率是( ) A .10% B .20% C .30% D .20%或 180%10.在同一直角坐标系中,一次函数 y=ax +c 和二次函数 y=ax 2+c 的图象大致为( )A .B .C .D .二、填空题11.函数 y=2(x ﹣1)2 图象的顶点坐标为.12.函数 y= (x ﹣1)2+3,当 x时,函数值 y 随 x 的增大而增大.13.(x ﹣3)2+5=6x 化成一般形式是,其中一次项系数是.14.将二次函数y=2x2+6x+3化为y=a(x﹣h)2+k的形式是.△15.如图,COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是.16.已知二次函数y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围.17.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x﹣1.5x2,该型号飞机着陆后滑行m才能停下来.18.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表xy﹣1﹣1013353下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小.③3是方程ax2+(b﹣1)x+c=0的一个根;④当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的结论是.三、解答题19.解方程(1)2x2+3=7x(2)(2x+1)2+4(2x+1)+3=0(3)x2﹣6x﹣16=0(4)(x+3)(x﹣2)=50.20.已知关于x的一元二次方程x2﹣4x+m﹣1=0有两个相等的实数根,求m的值及方程的根.21.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围(3)当x取何值时,y有最大值,并求出这个最大值.△22.如图,在正方形网格中,ABC各顶点都在格点上,点A,C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题:(△1)画出ABC关于y轴对称的△A1B1C1;(△2)画出ABC关于原点O对称的△A2B2C2;(3)点C1的坐标是;点C2的坐标是;(△4)试判断:A1B1C1与△A2B2C2是否关于x轴对称?(只需写出判断结果).23.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.求降价多少元时,可使商场每天的利润最大,并求出最大利润.24.已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.2016-2017学年九年级(上)期中数学试卷参考答案与试题解析一、单项选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.平行四边形B.圆C.正五边形D.等腰三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、补是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.2.下列关于x的方程中,是一元二次方程的有()A.2x+1=0B.y2+x=1C.x2﹣1=0D.x2+=1【考点】一元二次方程的定义.【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.【解答】解:A、方程未知数是1次,不是一元二次方程;B、方程含有两个未知数,不是一元二次方程;C、符合一元二次方程的定义,是一元二次方程;D、不是整式方程,不是一元二次方程;故选:C.3.若关于x的一元二次方程(m﹣2)x2﹣3x+m2﹣4=0的常数项为0,则m的值等于()A.﹣2B.2C.﹣2或2D.0【考点】一元二次方程的一般形式.【分析】根据已知得出m﹣2≠0且m2﹣4=0,求出即可.【解答】解:∵关于x的一元二次方程(m﹣2)x2﹣3x+m2﹣4=0的常数项为0,∴m﹣2≠0且m2﹣4=0,解得:m=﹣2,故选A.4.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位【考点】二次函数图象与几何变换.【分析】根据“左加右减,上加下减”的原则进行解答即可.. .【解答】解:抛物线 y=x 2 向左平移 2 个单位可得到抛物线 y=(x +2)2, 抛物线 y=(x +2)2,再向下平移 3 个单位即可得到抛物线 y=(x +2)2﹣3. 故平移过程为:先向左平移 2 个单位,再向下平移 3 个单位. 故选:B .5.已知直角三角形的两直角边的长恰好是方程 x 2﹣5x +6=0 的两根,则此直角三角形的斜边 长为( ) A . B .3 C . D .3【考点】勾股定理;解一元二次方程-因式分解法.【分析】解方程求出两根,得出两直角边的长,然后根据勾股定理可得斜边的长. 【解答】解:∵x 2﹣5x +6=0 解得 x 1=2,x 2=3∴斜边长= =故选 C .6.方程(2x +3)(x ﹣1)=1 的解的情况是( ) A .有两个不相等的实数根 B .没有实数根 C .有两个相等的实数根 D .有一个实数根 【考点】根的判别式.【分析】将方程左边展开,化为一元二次方程的一般形式,求出根的判别式,即可做出判断. 【解答】解:方程(2x +3)(x ﹣1)=1 可化为 2x 2+x ﹣4=0, ∵ △=1﹣4×2×(﹣4)=33>0, ∴方程有两个不相等的实数根. 故选 A .7.已知点 P 关于 x 轴的对称点 P 1 的坐标是(2,3),那么点 P 关于原点的对称点 P 2 的坐标是( )A (﹣3,﹣2)B .(2,﹣3)C (﹣2,﹣3)D .(﹣2,3)【考点】关于原点对称的点的坐标;关于 x 轴、y 轴对称的点的坐标. 【分析】平面直角坐标系中任意一点 P (x ,y ),关于 x 轴的对称点的坐标是(x ,﹣y ),关 于 y 轴的对称点的坐标是(﹣x ,y ),关于原点的对称点是(﹣x ,﹣y ). 【解答】解:∵点 P 关于 x 轴的对称点 P 1 的坐标是(2,3), ∴点 P 的坐标是(2,﹣3).∴点 P 关于原点的对称点 P 2 的坐标是(﹣2,3).故选 D .8.若方程 x 2﹣5x ﹣10=0 的两根为 x 1、x 2,则 A .2B .﹣2C .D .【考点】根与系数的关系.的值为( )【分析】根据根与系数的关系得到x1+x2=5,x1x2=﹣10,再把通分得到,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=5,x1x2=﹣10,所以===﹣.故选D.9.某药品原价每盒是25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是()A.10%B.20%C.30%D.20%或180%【考点】一元二次方程的应用.【分析】设该药品平均每次降价的百分率是x.根据原价每盒是25元,经过连续两次降价,现在售价每盒16元,即可列方程求解.【解答】解:设该药品平均每次降价的百分率是x.根据题意,得25(1﹣x)2=16,(1﹣x)2=,1﹣x=±,x==20%或x=(不合题意,应舍去).故该药品平均每次降价的百分率是20%.故选B.10.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象.【解答】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数开口向上,一次函数经过一、三象限,故C选项错误;当a<0时,二次函数开口向下,一次函数经过二、四象限,故A选项错误;故选:D.二、填空题11.函数y=2(x﹣1)2图象的顶点坐标为.【考点】二次函数的性质.【分析】根据二次函数的性质,由顶点式直接得出顶点坐标即可.【解答】解:∵抛物线y=2(x﹣1)2,∴抛物线y=2(x﹣1)2的顶点坐标为:(1,0),故答案为:(1,0).12.函数y=(x﹣1)2+3,当x时,函数值y随x的增大而增大.【考点】二次函数的性质.【分析】先求对称轴,再利用函数值在对称轴左右的增减性可得x的范围.【解答】解:可直接得到对称轴是x=1,∵a=>0,∴函数图象开口向上,∴当x>1时,函数值y随x的增大而增大.13.(x﹣3)2+5=6x化成一般形式是,其中一次项系数是.【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:由原方程,得x2﹣12x+5=0,则一次项系数是﹣12.故答案是:x2﹣12x+5=0;﹣12.14.将二次函数y=2x2+6x+3化为y=a(x﹣h)2+k的形式是.【考点】二次函数的三种形式.【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=2x2+6x+3=2(x2+3x+)﹣+3=y=2(x+)2﹣,即y=2(x+)2﹣.故答案为y=2(x+)2﹣.△15.如图,COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是.【考点】旋转的性质.△0 =【分析】根据旋转的性质可得∠AOC=∠BOD=40°,AO=CO ,再求出∠BOC ,∠ACO ,然 后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解. 【解答】解:∵△COD 是△AOB 绕点 O 顺时针旋转 40°后得到的图形, ∴∠AOC=∠BOD=40°,AO=CO , ∵∠AOD=90°,∴∠BOC=90°﹣40°×2=10°,∠ACO=∠A= = =70°,由三角形的外角性质得,∠B=∠ACO ﹣∠BOC=70°﹣10°=60°. 故答案为:60°.16.已知二次函数 y=kx 2﹣7x ﹣7 的图象和 x 轴有交点,则 k 的取值范围 . 【考点】抛物线与 x 轴的交点.【分析】由于二次函数与 x 轴有交点,故二次函数对应的一元二次方程 kx 2﹣7x ﹣7=0 中,≥,解不等式即可求出 k 的取值范围,由二次函数定义可知,k ≠0. 【解答】解:∵二次函数 y=kx 2﹣7x ﹣7 的图象和 x 轴有交点,∴,∴k ≥﹣ 且 k ≠0.故答案为 k ≥﹣ 且 k ≠0.17.某一型号飞机着陆后滑行的距离 y (单位:m )与滑行时间 x (单位:s )之间的函数关 系式是 y=60x ﹣1.5x 2,该型号飞机着陆后滑行 m 才能停下来. 【考点】二次函数的应用.【分析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值. 【解答】解:∵a=﹣1.5<0, ∴函数有最大值.∴y 最大值 = =600,即飞机着陆后滑行 600 米才能停止. 故答案为:600.18.二次函数 y=ax 2+bx +c (a ,b ,c 为常数,且 a ≠0)中的 x 与 y 的部分对应值如表x y﹣1 ﹣10 1 3 3 5 3下列结论: ①ac <0;②当 x >1 时,y 的值随 x 值的增大而减小. ③3 是方程 ax 2+(b ﹣1)x +c=0 的一个根; ④当﹣1<x <3 时,ax 2+(b ﹣1)x +c >0. 其中正确的结论是 .(【考点】二次函数的性质.【分析】利用待定系数法求出二次函数解析式为 y=﹣x 2+3x +3,然后判断出①正确,②错 误,再根据一元二次方程的解法和二次函数与不等式的关系判定③④正确. 【解答】解:∵x=﹣1 时 y=﹣1,x=0 时,y=3,x=1 时,y=5,∴,解得 ,∴y=﹣x 2+3x +3,∴ac=﹣1×3=﹣3<0,故①正确;对称轴为直线 x=﹣= ,所以,当 x > 时,y 的值随 x 值的增大而减小,故②错误;方程为﹣x 2+2x +3=0, 整理得,x 2﹣2x ﹣3=0, 解得 x 1=﹣1,x 2=3,所以,3 是方程 ax 2+(b ﹣1)x +c=0 的一个根,正确,故③正确; ﹣1<x <3 时,ax 2+(b ﹣1)x +c >0 正确,故④正确; 综上所述,结论正确的是①③④. 故答案为:①③④.三、解答题 19.解方程(1)2x 2+3=7x (2)(2x +1)2+4(2x +1)+3=0 (3)x 2﹣6x ﹣16=0 (4)(x +3)(x ﹣2)=50.【考点】换元法解一元二次方程;解一元二次方程-因式分解法. 【分析】 1)本题可以运用因式分解法解方程.因式分解法解一元二次方程时,应使方程的 左边为两个一次因式相乘,右边为 0,再分别使各一次因式等于 0 即可求解.(2)令 2x +1=t ,则原方程转化为关于 t 的一元二次方程,通过解新方程求得 t 的值;然后 求 x 的值即可.(3)解此一元二次方程选择因式分解法最简单,因为﹣16=﹣8×2,﹣6=﹣8+2,所以 x 2 ﹣6x ﹣16=(x ﹣8)(x +2),这样即达到了降次的目的.(4)整理成一般形式,再因式分解求得方程的解即可. 【解答】解:(1)解:原方程可变形为(2x ﹣1)(x ﹣3)=0 ∴2x ﹣1=0 或 x ﹣3=0,∴x 1= ,x 2=3;((2)令 2x +1=t ,则 t 2+4t +3=0, 整理,得 (t +3)(t +1)=0,所以 t=﹣3 或 t=﹣1,所以 2x +1=﹣3 或 2x +1=﹣1, 解得 x 1=2,x 2=﹣1;(3)原方程变形为(x ﹣8)(x +2)=0 x ﹣8=0 或 x +2=0 ∴x 1=8,x 2=﹣2;(4)(x +3)(x ﹣2)=50 x 2+x ﹣56=0 (x ﹣7)(x +8)=0 x ﹣7=0,x +8=0解得:x 1=7,x 2=﹣8.20.已知关于 x 的一元二次方程 x 2﹣4x +m ﹣1=0 有两个相等的实数根,求 m 的值及方程的 根.【考点】根的判别式.【分析】首先根据原方程根的情况,利用根的判别式求出 m 的值,即可确定原一元二次方 程,进而可求出方程的根. 【解答】解:由题意可知 △=0,即(﹣4)2﹣4(m ﹣1)=0,解得 m=5. 当 m=5 时,原方程化为 x 2﹣4x +4=0.解得 x 1=x 2=2. 所以原方程的根为 x 1=x 2=2.21.已知二次函数 y=﹣x 2+bx +c 的图象如图所示,它与 x 轴的一个交点坐标为(﹣1,0), 与 y 轴的交点坐标为(0,3).(1)求出此二次函数的解析式;(2)根据图象,写出函数值 y 为正数时,自变量 x 的取值范围 (3)当 x 取何值时,y 有最大值,并求出这个最大值.【考点】抛物线与 x 轴的交点;二次函数的最值;待定系数法求二次函数解析式.【分析】 1)将(﹣1,0)和(0,3)两点代入二次函数 y=x 2+bx +c ,求得 b 和 c ;从而得出抛物线的解析式;= ( (2)令 y=0,解得 x 1,x 2,得出此二次函数的图象与 x 轴的另一个交点的坐标,结合函数图象直接回答问题;(3)根据抛物线顶点坐标回答问题.【解答】解:(1)由二次函数 y=x 2+bx +c 的图象经过(﹣1,0)和(0,3)两点,得解这个方程组,得∴抛物线的解析式为 y=﹣x 2+2x ﹣3.(2)令 y=0,得﹣x 2+2x ﹣3=0.解这个方程,得 x 1=﹣3,x 2=3.因为抛物线的开口方向向下,所以当﹣1<x <3 时,y >0;(3)由 y=﹣x 2+2x ﹣3=﹣(x ﹣1)2﹣2 知,该抛物线的顶点坐标是(1,﹣2). 故当 x=1 时,y 最大值﹣2.△22.如图,在正方形网格中, ABC 各顶点都在格点上,点 A ,C 的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题:(△1)画出 ABC 关于 y 轴对称的 △A 1B 1C 1;(△2)画出 ABC 关于原点 O 对称的 △A 2B 2C 2;(3)点 C 1 的坐标是 ;点 C 2 的坐标是 ;(△4)试判断: A 1B 1C 1 与 △A 2B 2C 2 是否关于 x 轴对称?(只需写出判断结果).【考点】作图-旋转变换;作图-轴对称变换.【分析】 1)作出各点关于 y 轴的对称点,再顺次连接各点即可;(2)作出各点关于原点的对称点,再顺次连接各点即可;(3)根据各点在坐标系中的位置写出各点坐标即可;(4)根据关于 x 轴对称的点的坐标特点进行判断即可.【解答】解:(1)如图所示;(2)如图所示;(3)由图可知,C1(1,4),C2(1,﹣4).故答案为:(1,4),(1,﹣4);(△4)由图可知A1B1C1与△A2B2C2关于x轴对称.故答案为:是.23.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.求降价多少元时,可使商场每天的利润最大,并求出最大利润.【考点】二次函数的应用.【分析】根据题意可以得到利润与降价之间的函数关系式,从而可以解答本题.【解答】解:设降价x元出售,利润为w,w==(20﹣x)=2000+100x﹣10x2=﹣10(x﹣5)2+2250,∴当x=5时,w取得最大值,此时w=2250,即降价5元时,可使商场每天的利润最大,最大利润是2250元.24.已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.( 【考点】抛物线与 x 轴的交点;待定系数法求二次函数解析式;轴对称-最短路线问题.【分析】 1)把 A 、D 两点坐标代入二次函数 y=x 2+bx +c ,解方程组即可解决.(2)利用轴对称找到点 P ,用勾股定理即可解决.(3)根据三角形面积公式,列出方程即可解决.【解答】解:(1)因为二次函数 y=x 2+bx +c 的图象经过 A (﹣3,0),D (﹣2,﹣3),所以,解得 .所以一次函数解析式为 y=x 2+2x ﹣3.(2)∵抛物线对称轴 x=﹣1,D (﹣2,﹣3),C (0,﹣3),∴C 、D 关于 x 轴对称,连接 AC 与对称轴的交点就是点 P ,此时 PA +PD=P A +PC=AC=(3)设点 P 坐标(m ,m 2+2m ﹣3),令 y=0,x 2+2x ﹣3=0,x=﹣3 或 1,∴点 B 坐标(1,0),∴AB=4∵S △PAB =6,∴ •4•|m 2+2m ﹣3|=6,∴m 2+2m ﹣6=0,m 2+2m=0,∴m=0 或﹣2 或 1+ 或 1﹣ .= =3 .∴点 P 坐标为(0,﹣3)或(﹣2,﹣3)或(1+ ,3)或(1﹣ ,3).2016年10月14日。

2016-2017学年人教版九年级数学上册期中考试试题及答案

2016-2017学年人教版九年级数学上册期中考试试题及答案

AOA '九 年 级 第 一 学 期 期 中 测试卷数 学 2016.11学校 姓名 学号 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.一元二次方程320x x --=的二次项系数、一次项系数、常数项分别是 A .3,1-,2- B .3,1,2- C .3,1-,2 D .3,1,22.里约奥运会后,受到奥运健儿的感召,群众参与体育运动的热度不减,全民健身再次成为了一种时尚,球场上也出现了更多年轻人的身影.请问下面四幅球类的平面图案中,是中心对称图形的是A B C D3.用配方法解方程2620x x ++=,配方正确的是A .()239x += B .()239x -= C .()236x += D .()237x += 4.如图,小林坐在秋千上,秋千旋转了80°,小林的位置也从 A 点运动到了A '点,则'OAA ∠的度数为 A .40° B .50° C .70° D .80°5.将抛物线22y x =平移后得到抛物线221y x =+,则平移方式为 A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位6.在△ABC 中,90C ︒∠=,以点B 为圆心,以BC 长为半径作圆,点A 与该圆的位置关系为A .点A 在圆外B .点A 在圆内C .点A 在圆上D .无法确定 7.若扇形的圆心角为60°,半径为6,则该扇形的弧长为A .πB .2πC .3πD .4π 8.已知2是关于x 的方程230x ax a +-=的根,则a 的值为A .4-B .4C .2D .459.给出一种运算:对于函数nx y =,规定1-='n nx y .例如:若函数41y x =,则有314y x '=.函数32y x =,则方程212y '=的解是A .14x =,24x =- B.1x =2x =-C .021==x xD .12x =,22x =-10.太阳影子定位技术是通过分析视频中物体的太阳影子变化,确定视频拍摄地点的一种方法.为了确定视频拍摄地的经度,我们需要对比视频中影子最短的时刻与同一天东经120度影子最短的时刻.在一定条件下,直杆的太阳影子长度l (单位:米)与时刻t (单位:时)的关系满足函数关系2l at bt c =++(a ,b ,c 是常数),如图记录了三个时刻的数据,根据上述函数模型和记录的数据,则该地影子最短时,最接近的时刻t 是A .12.75B .13C .13.33D .13.5二、填空题(本题共18分,每小题3分)11.方程02=-x x 的解为 .12.请写出一个对称轴为3x =的抛物线的解析式 .13.如图,用直角曲尺检查半圆形的工件,其中合格的是图 (填“甲”、“乙”或“丙”),你的根据是_______________________________________________________ _______________________________________________________.14.若关于x 的方程220xx k --=有两个相等的实数根,则k 的值是 .15.如图,△ABC 内接于⊙O ,∠C =45°,半径OB 的长为3,则AB的长为 .16.CPI 指居民消费价格指数,反映居民家庭购买消费商品及服务的价格水平的变动情况.CPI 的涨跌率在一定程度受到季节性因素和天气因素的影响.根据北京市2015年与2016年CPI 涨跌率的统计图中的信息,请判断2015年1~8月份与2016年1~8月份,同月份比较CPI 涨跌率下降最多的月份是 月;请根据图中提供的信息,预估北京市2016年第四季度CPI 涨跌率变化趋势l (米)是 ,你的预估理由是 .2015与2016年CPI 涨跌率(%)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解方程:246x x +=.18.求抛物线22y x x =-19.如图,A ,D 是半圆上的两点,O 为圆心,BC 是直径,∠D20.已知:2230m m +-=.求证:关于x 的方程2220x mx m --=有两个不相等的实数根.图221.如图,在等边△ABC 中,点D 是 AB 边上一点,连接CD ,将线段CD 绕点C 按顺时针方向旋转60°后得到CE ,连接AE . 求证:AE ∥BC .22.如图1,在线段AB 上找一点C ,C 把AB 分为AC 和CB 两段,其中BC 是较小的一段,如果2BC AB AC ⋅=,那么称线段AB 被点C 黄金分割.为了增加美感,黄金分割经常被应用在绘画、雕塑、音乐、建筑等艺术领域. 如图2,在我国古代紫禁城的中轴线上,太和门位于太和殿与内金水桥之间靠近内金水桥的一侧,三个建筑的位置关系满足黄金分割,已知太和殿到内金水桥的距离约为1002.2).A C B图1B CDA E23.如图1是某公园一块草坪上的自动旋转喷水装置,这种旋转喷水装置的旋转角度为240°,它的喷灌区是一个扇形.小涛同学想了解这种装置能够喷灌的草坪面积,他 测量出了相关数据,并画出了示意图.如图2,A ,B 两点的距离为18米,求这种 装置能够喷灌的草坪面积.24.下表是二次函数2y ax bx c =++的部分x ,y 的对应值:二次函数图象的开口向,顶点坐标是,的值为 ; (2)当0x >时,y 的取值范围是 ;(3)当抛物线2y ax bx c =++的顶点在直线y x n =+的下方时,n 的取值范围是 .25.如图,在△ABC 中,AB =BC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,过点A 作⊙O 的切线交BC 的延长线于点F ,连接AE . (1)求证:∠ABC =2∠CAF ; (2)过点C 作CM ⊥AF 于M 点,若CM = 4,BE = 6,求AE 的长.A B图226.小华在研究函数1y x =与22y x =图象关系时发现:如图所示,当1x =时,11y =,22y =;当2x =时,12y =,24y =;…;当x a =时,1y a =,22y a =.他得出如果将函数1y x =图象上各点的横坐标不变,纵坐标变为原来的2倍,就可以得到函数22y x =的图象.类比小华的研究方法,解决下列问题:(1)如果函数3y x =图象上各点横坐标不变,纵坐标变为原来的3倍,得到的函数图象的表达式为 ;(2)①将函数2y x =图象上各点的横坐标不变,纵坐标变为原来的 倍,得到函数24y x =的图象;②将函数2y x =图象上各点的纵坐标不变,横坐标变为原来的2倍,得到图象 的函数表达式为 .27.在平面直角坐标系xOy 中,抛物线21y x mx n =++-的对称轴为2x =.(1)m 的值为 ;(2)若抛物线与y 轴正半轴交于点A ,其对称轴与x 轴交于点B ,当△OAB 是等腰直角三角形时,求n 的值;(3)点C 的坐标为(3,0),若该抛物线与线段OC 有且只有一个交点,求n的取值范围.28.在菱形ABCD 中,∠BAD =α,E 为对角线AC 上的一点(不与A ,C 重合),将射线EB绕点E 顺时针旋转β角之后,所得射线与直线AD 交于F 点.试探究线段EB 与EF 的数量关系.小宇发现点E 的位置,α和β的大小都不确定,于是他从特殊情况开始进行探究.(1)如图1,当α=β=90°时,菱形ABCD 是正方形.小宇发现,在正方形中,AC 平分∠BAD ,作EM ⊥AD 于M ,EN ⊥AB 于N .由角平分线的性质可知EM =EN ,进而可得EMF ENB △≌△,并由全等三角形的性质得到EB 与EF 的数量关系为 .(2)如图2,当α=60°,β=120°时,①依题意补全图形;②请帮小宇继续探究(1)的结论是否成立.若成立,请给出证明;若不成立, 请举出反例说明;(3) 小宇在利用特殊图形得到了一些结论之后,在此基础上对一般的图形进行了探究,设∠ABE =γ,若旋转后所得的线段EF 与EB 的数量关系满足(1)中的结论,请直接写出角α,β,γ满足的关系: .FEM CD A N B 图1 图229.点P 到AOB ∠的距离定义如下:点Q 为AOB ∠的两边上的动点,当PQ 最小时,我们称此时PQ 的长度为点P 到AOB ∠的距离,记为()d P AOB ∠,.特别的,当点P 在AOB ∠的边上时,()0d P AOB ∠=,. 在平面直角坐标系xOy 中,A ()40,. (1)如图1,若M (0,2),N (1-,0),则()d M AOB ∠=, ,()d N AOB ∠=, ;(2)在正方形OABC 中,点B (4,4).①如图2,若点P 在直线34y x =+上,且()d P AOB ∠=,P 的坐标;②如图3,若点P 在抛物线24y x =-上,满足()d P AOB ∠=,P 有个,请你画出示意图,并标出点图2图1图3九年级第一学期期中练习数 学 答 案 2016.11一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)11.1201x x ==,; 12.()23y x =-(答案不唯一);13.乙,90°的圆周角所对的弦是直径; 14.1-; 15. 16.8,第二空填“上涨”、“下降”、“先减后增”等,第三空要能支持第二空的合理性即可.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解法一:解:2441x x ++=, ----------------------------------------------------------------------------------1分 ()2210x +=,-------------------------------------------------------------------------------------3分2x =-12x =-,22x =- -------------------------------------------------------------5分解法二: 解:246x x +-=, ----------------------------------------------------------------------------------1分-2b x a ==,----------------------------------------------------3分2x =-12x =-,22x =- -------------------------------------------------------------5分 18.解:()211y x =--,-----------------------------------------------------------------------------------1分∴对称轴为1x =. --------------------------------------------------------------------------------2分顶点为()11-,. ----------------------------------------------------------------------------------3分----------------------------------------------------------------------------5分19.解法一:解:∵35D ∠=°,∴35B D ∠=∠=°. ---------------------------------------------1分 ∵BC 是直径, ∴90BAC ∠=°.∴90ACB ∠=°55ABC -∠=°. -------------------------------3分 ∵OA OC =,∴55OAC OCA ∠=∠=°. --------------------------------------5分 解法二:解:∵35D ∠=°, ∴270AOC D ∠=∠=°. ---------------------------------------------------------------------1分∵OA OC =, ∴OAC OCA∠=∠,----------------------------------------------------------------------------3分∵180OAC OCA AOC ∠+∠+∠=°, ∴55OAC ∠=°. ---------------------------------------------------------------------------------5分20.解:∵2230m m +-=, ∴223m m +=. ---------------------------------------------------------------------------------1分∴248m m ∆=+-----------------------------------------------------------------------------------2分()242120m m =+=>,------------------------------------------------------------------4分 ∴原方程有两个不相等的实数根. -------------------------------------------------------------5分 21.解:∵等边ABC △,∴AC BC =,60B ACB ∠=∠=°.∵线段CD 绕点C 顺时针旋转60°得到CE , ∴CD CE =,60DCE ∠=°. ∴DCE ACB ∠=∠.------------------------------------------------1分即1223∠+∠=∠+∠.∴13∠=∠. -----------------------------------------------------------------------------------------2分在BCD △与ACE △中,13BC AC CD CE =⎧⎪∠=∠⎨⎪=⎩,,, ∴BCD △≌ACE △. ------------------------------------------------------------------------3分∴60EAC B ∠=∠=°. ∴EAC ACB ∠=∠.--------------------------------------------------------------------------------4分∴AE BC ∥. --------------------------------------------------------------------------------------5分22.解:设太和门到太和殿的距离为x 丈,-----------------------------------------------------------1分 由题意可得,321DB CA E()2100100x x =-.----------------------------------------------------------------------------3分1505x =-+,250x =--(舍).--------------------------------------------4分50502.26x ≈-+⨯=.答:太和门到太和殿的距离为60丈. ------------------------------------------------------------5分 23.解:过点O 作OC AB ⊥于C 点.∵OC AB ⊥,18AB =,∴192AC AB ==. ---------------------------------------1分∵OA OB =,360AOB ∠=°240-°120=°,∴1602AOC AOB ∠=∠=°. ---------------------------2在Rt OAC △中,222OA OC AC =+,又∵12OC OA =,∴r OA == -----------------------------------------4分 ∴240360S =πr 2=72π(m 2).----------------------------------5分 24.(1)上;()12-,;2;(说明:每空1分) ------------------------------------------------------3分 (2)2y ≥-;------------------------------------------------------------------------------------------4分 (3)3n >-. -------------------------------------------------------------------------------------------5分25.(1)连接BD , ∵AB 是直径,∴90ADB ∠=°. --------------------------1 ∵AF 是⊙O 的切线,∴90BAF ∠=°.∴1290BAC BAC ∠+∠=∠+∠=°. ∴12∠=∠. ∵AB=BC , ∴2122ABC ∠=∠=∠. ---------------------------------------------------------------------2分(2)∵12334∠=∠=∠∠=∠,,∴24∠=∠. ∵AB 是直径, ∴CE⊥AE .--------------------------------------------------------------------------------------------3分 ∵CM ⊥AF ,CM =4, ∴CE =CM =4. --------------------------------------------------------------------------------------4分 ∵BE =6,∴AB =BC =BE +EC =10.在Rt △ABE 中,8AE ===. ----------------------------------------------------5分 26.(1)9y x=;-------------------------------------------------------------------------------------------1分 (2)①4;----------------------------------------------------------------------------------------------3分 ②214y x =. --------------------------------------------------------------------------------------5分27.(1)4-. ----------------------------------------------------------------------------------------------1分(2)241y x x n =-+-, ()01A n -,,()20B , ,------------------------------------------------------------------2分12n -=,3n =. --------------------------------------------------------------------------------------------3分(3)如图1,当抛物线顶点在x 轴上时,5n =,------------------------------------------------4分如图2,当抛物线过点C (3,0)时,4n =,--------------------------------------------------5分如图3,当抛物线过原点时,1n =, ---------------------------------------------------------6分结合图象可得,14n ≤<或5n =.------------------------------------------------------------7分28.(1)EB=EF;------------------------------------------------------------------------------------------1分 (2)①;---------------------------------------------------------------------2分 ②结论依然成立EB =EF . -----------------------------------3分证法1:过点E 作EM ⊥AF 于M ,EN ⊥AB 于N .∵四边形ABCD 为菱形,∴12∠=∠.∵EM ⊥AF ,EN ⊥AB .∴=90FME N ∠=∠°,EM=EN . -------------------4分 ∵60BAD ∠=°,120BEF ∠=°,∴3360F ∠+∠=°180BAD BEF -∠-∠=°. ∵3180EBN ∠+∠=°, ∴F EBN ∠=∠.------------------------------------------------------------------------------5分在△EFM 与△EBN 中,F E B N F M E N E M E N ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△EFM ≌△EBN . ∴EF=EB . ------------------------------------------------------------------------------------6分 证法2:连接ED∵四边形ABCD 是菱形, ∴AD =AB ,∠DAC =∠BAE . 又∵AE =AE ,∴△ADE ≌△ABE .∴ED =EB ,∠ADE =∠ABE . ------------------------4分 又∵∠DAB =60°,∠BEF =120°. ∴∠F +∠ABE =180°.又∵∠ADE +∠FDE =180°, --------------------------5分 ∴∠F =∠FDE . ∴EF =ED . ∴EF =EB . -------------------------------------------------------------------------------------6分 (3)+=180αβ°或++=18022αβγ°. ------------------------------------------------------7分 29.(1)1;1.(说明:每空1分) --------------------------------------------------------------------2分(2)①如图,点P 在 EF 上时,OP= 设P (x ,3x +4),()22348x x ++=, 12225x x =-=-,(舍),P ()22--,, --------------------------------4分点P 在射线FG 上时,P 到射线OB的距离为 点P 与点C 重合,P ()04,, -------------------------------------5分∴P ()22--,,()04,.②4. -------------------------------------------------------------------------------------------------6分 -------------------------------------------------------------8分(说明:每标对两个点得1分)。

2016-2017学年新人教版九年级数学(上册)期中测试题及答案

2016-2017学年新人教版九年级数学(上册)期中测试题及答案

2016-2017学年九年级(上)期中数学试卷一、选择题:本题共12个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,填涂在答题卡上,每小题3分。

1.边长为3cm的菱形的周长是( )A.6cm B.9cm C.12cm D.15cm2.正方形ABCD中,AB=12 cm,对角线AC,BD相交于点O,则△ABO的周长是( ) A.B.C.D.3.如图,△ABC中,D在AB上,E在AC上,下列条件中,能判定DE∥BC的是( )A.AD•AC=AE•AB B.AD•AE=EC•DB C.AD•AB=AE•AC D.BD•AC=AE•AB4.方程x2=x的两根分别为( )A.x1=﹣1,x2=0 B.x1=1,x2=0 C.x1=﹣l,x2=1 D.x1=1,x2=15.矩形,菱形,正方形都具有的性质是( )A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直2( )7.若x1、x2是一元二次方程x2﹣3x+2=0的两根,则x1•x2的值是( )A.﹣2 B.1 C.2 D.38.“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )A.B.C.D.9.下列说法正确的是( )A.所有的等腰三角形都相似B.有一对锐角相等的两个三角形相似C.相似三角形都是全等的D.所有的等边三角形都相似10.若x=﹣2是关于x的一元二次方程x2﹣=0的一个根,则a的值为( ) A.1或4 B.1或﹣4 C.﹣1或4 2 D.﹣1或﹣411.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是( )A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=19612.如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则AF的长为( )A.4 B.8 C.6 D.10二、填空题:每题4分,共24分。

人教版九年级上学期期中考试数学试卷及答案(共6套)

人教版九年级上学期期中考试数学试卷及答案(共6套)

人教版九年级上学期期中考试数学试卷(一)满分 120 分,考试时间 120 分钟。

一、精心选一选(每小题 3 分,共 30 分,将答案填在相应的括号内) 1. 下列方程中不一定是一元二次方程的是 ()A.(a-3)x =8 (a≠3)B.ax +bx+c=02 2 3C.(x+3)(x-2)=x+5D. 32 2 0 x x 572.关于 的一元二次方程 1 1 0的一个根是 0,则 值为( )x a x x a 2a 2 12 A. 1 B. 1 C.1 或1D.y x 3.在抛物线 =- +1 上的一个点是 ( )2A .(1,0)B .(0,0)C .(0,-1)D .(1,1)y x x4.抛物线 = -2 +1 的顶点坐标是 ( ) 2 A .(1,0) B .(-1,0) C .(-2,1)D .(2,-1) 5.已知方程2 2,则下列说中,正确的是 ()x x A. 方程两根和是 1 B. 方程两根积是 2 C. 方程两根和是1D.方程两根积比两根和大 26.某超市一月份的营业额为 200 万元,已知第一季度的总营业额共 1000 万元, 如 果平均每月增长率为 x,则由题意列方程应为( )A.200(1+x) =10002B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x) ]=100027. 若点(2,5),(4,5)在抛物线 y =ax +bx +c 上,则它的对称轴是 ()2b A . B .x =1 C .x =2 D .x =3xa8.用 10 米长的铝材制成一个矩形窗框,使它的面积为 6 平方米.若设它的一条 边长为 x 米,则根据题意可列出关于 x 的方程为( )A.x(5+x)=6B. x(5-x)=6C. x(10-x)=6D. x(10-2x)=6ht9.一小球被抛出后,距离地面的高度 (米)和飞行时间 (秒)满足下面函数关系 ht式: =-5( -1)2+6,则小球距离地面的最大高度是 ( )A .1 米B .5 米C .6 米D .7 米10.二次函数 y=x +bx+c ,若 b+c=0,则它的图象一定过点( )2A. (-1,-1)B. (1,-1)C. (-1,1)D. (1,1)二、细心填一填(每小题 4 分,共 32 分) 11. 方程 x +x=0 的根是2.12.请你写出以 2 和-2 为根的一元二次方程 个即可).(只写一.13. 抛物线 y =-x +3 的对称轴是2,顶点坐标是14.函数 y=x +x-2 的图象与 y 轴的交点坐标是2.x x bx b15.已知 =-1 是方程 + -5=0 的一个根,则 =________,方程的另一根 2 为________.16.若 x 、x 是方程 x +4x-6=0 的两根,则 x +x =2.2 2 1212 x 2x m,若其顶点在 x 轴上,则 m=_________.2 x x k三、解答题(要求:写出必要的解题步骤和说理过程). x -2x-3 2 19.(满分 9 分)请画出二次函数y的图象,并结合所画图象回答问题:(1) 当 x 取何值时,y=0; (2) 当 x 取何值时,y <0.a ba b a a b20.(满分 6 分)现定义运算“★”,对于任意实数 、 ,都有 ★ = ﹣3 + .2 x x如:3★5=3 ﹣3×3+5,若 ★2=6,试求实数 的值.221. (满分 8 分)已知△ABC 的一条边 BC 的长为 5,另两边 AB 、AC 的长是关于 x 的一元二次方程 2 3 3 2 0 的两个实数根.x 2 k x k 2 k k(1)求证:无论 为何值时,方程总有两个不相等的实数根.k(2) 当 为何值时,△ABC 是以 BC 为斜边的直角三角形.y ax bx c a22. (满分 9 分)已知二次函数 =+ + ( ≠0)的图象如图所示,请结合图2 象,abc; a b c a b c判断下列各式的符号. ①;②b -4ac. ③ + + ;④ ﹣ + .2y ax bx c23.(满分 6 分)已知二次函数 = + + 的图象如图所示. 2 ①求这个二次函数的表达式; ②当 x 为何值时,y=3.24.(满分 7 分)如图所示,在宽为 20m ,长为 32m 的矩形耕地上,修筑同样宽 的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的 面积为 570m ,道路应为多宽?225.(满分 13 分)在平面直角坐标系 xOy 中,顶点为 M 的抛物线是由抛物线 y=x 2﹣3 向右平移 1 个单位后得到的,它与 y 轴负半轴交于点 A ,点 B 在该抛物线上, 且横坐标为 3.(1)求点 M 、A 、B 坐标;(2)若顶点为 M 的抛物线与 x 轴的两个交点为 B 、C ,试求线段 BC 的长.参考答案及评分标准一、选择题(每小题 3 分,共 3 0 分) 1-5 小题 BBAAC6-10 小题 DDBCD二、填空题(每小题 4 分,共 32 分) 11. 0 或-112.答案不唯一,如 x -4=0 等.213. 直线 x=0(或 y 轴) (0,3) 14. (0,-2) 15. -4, 5 16. 2817. -118. 1 19.用描点法正确画出函数图象 得3分;(1)因为抛物线与 x 轴交于(-1,0)、(3,0),所以当 x=-1 或 3 时,y=0;…………(3 分) (2) 由图象知,当-1<x <3 时,y <0; …………(6 分) …………(4 分) ………… (6 分)20. x -3x+2=62解得:x=﹣1 或 421. (1)证明:∵ △= (2 3) 4( 3 2) 1 0k 2 k 2 k k∴ 无论 为何值方程总有两个不相等的实数根。

人教版2016届九年级上期中联考数学试卷及答案

人教版2016届九年级上期中联考数学试卷及答案

2015-2016学年度第一学期期中考试九年级数学试卷及答案一、选择题(每小题3分,共30分)1.将方程化为一元二次方程10832=-x x 的一般形式,其中二次项系数,一次项系数,常数项分别是A .3,-8,-10B .3,-8, 10C . 3, 8,-10D . -3 ,-8,-10 2.用配方法解方程2250x x --=时,原方程应变形为A .2(1)6x += B .2(2)9x += C .2(1)6x -= D .2(2)9x -= 3.在下列四个图案中,不是中心对称图形的是 AB .C .D .4.将二次函数2)1(2--=x y 的图象先向右平移1个单位,再向上平移1个单位后顶点为A .(1,3)B .(2,-1)C .(0,-1)D .(0,1) 5.如图,在△ABC 中,∠CAB =65°,将△ABC 在平面内绕点A 旋转到△AB ′C ′的位置,使CC ′∥AB ,则旋转角的度数为A.35°B.40°C.50°D.65°6.如图,已知长方形的长为10cm ,宽为4cm ,则图中阴影部分的面积为A .20cm 2B .15cm 2C .10cm 2D .25cm 27.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。

已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是 A. 1011)1(2=+x B. 910)1(2=+x C. 101121=+x D. 91021=+x8.如图是抛物线形拱桥,当拱顶高离水面2m 时,水面宽4m .水面下降2.5m ,水面宽度增加A .1 mB .2 mC .3 mD .6 m第5题图 第6题图9.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是10.一元二次方程:M :20ax bx c ++=; N :20cx bx a ++=,其中a c ≠0,a ≠c ,以下四个结论:①如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根; ②如果方程M 有两根符号相同,那么方程N 的两根符号也相同;③如果m 是方程M 的一个根,那么m1是方程N 的一个根; ④如果方程M 和方程N 有一个相同的根,那么这个根必是1x =正确的个数是 A .1 B .2 C .3 D .4二、填空题(每题3分,共18分)11.若点)1,2(A 与点B 是关于原点O 的对称点,则点B 的坐标为 12.一元二次方程x 2﹣2x =0的解是13.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为20m 2的矩形空地,则原正方形空地的边长是14.二次函数k x x y +--=322的图象在x 轴下方,则k 的取值范围是15.在平面直角坐标系xOy 中,对于点()P x y ,,我们把点(11)P y x '-++,叫做点P 的伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A ,….若点1A 的坐标为(3,1),点2015A 的坐标为 .16.如图,在△ABC 中,∠ACB=90,D 为边AB 的中点,E,F 分别为边AC ,BC 上的点,且AE=AD ,BF=BD ,若DE=22,DF=4,则AB 的长为 三、解答题( 共8道小题,共72分)17. (本题满分8分)已知关于x 的方程x 2+2x +a ﹣2=0 (1)若方程有一根为1,求a 的值;FEDC BA第16题图第13题图P Q OOO OO yy y y yx x x x xA .B .C .D .第9题图(2)若a=1,求方程的两根.18. (本题满分8分)四边形ABCD 是正方形,E 、F 分别是DC和CB 的延长线上的点,且DE=BF ,连接AE 、AF 、EF . (1)求证:△ADE≌△ABF;(2)填空:△ABF 可以由△ADE 绕旋转中心 点,按顺时针方向旋转 度得到; 19. (本题满分8分)已知关于x 的方程x 2-2(k -1)x+k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(2)若21211x x x x -=+,求k 的值.20. (本题满分8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-4,3)、B (-3,1)、C (-1,3).(1)请按下列要求画图:①将△ABC 先向右平移4个单位长度、再向上平移2个单位长度,得到△A 1B 1C 1,画出△A 1B 1C 1;②△A 2B 2C 2与△ABC 关于原点O 成中心对称,画出△A 2B 2C 2. (2)在(1)中所得的△A 1B 1C 1和△A 2B 2C 2关于点M 成中心对称,请直接写出对称中心M 点的坐标.21. (本题满分8分)如图,已知ABC ∆是等边三角形.(1)如图(1),点E 在线段AB 上,点D 在射线CB 上,且ED=EC.将BCE ∆绕点C 顺时针旋转60°至ACF ∆,连接EF.猜想线段AB,DB,AF 之间的数量关系;(2)点E 在线段BA 的延长线上,其它条件与(1)中一致,请在图(2)的基础上将图形补充完整,并猜想线段AB,DB,AF 之间的数量关系; (3)请选择(1)或(2)中的一个猜想进行证明.第18题图第20题图 A A E22.(本题满分10分)已知某种产品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查发现,该产品每降价1元,每星期可多卖出20件,由于供货方的原因销量不得超过380件,设这种产品每件降价x 元(x 为整数),每星期的销售利润为w 元.(1)求w 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)该产品销售价定为每件多少元时,每星期的销售利润最大?最大利润是多少元? (3)该产品销售价在什么范围时,每星期的销售利润不低于6000元,请直接写出结果. 23. (本题满分10分)如图(1),在Rt △ABC 中,∠A =90°,AC =AB =4, D ,E 分别是AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,如图(2),设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)求证:BD 1= CE 1 ;(2)当∠=1CPD 2∠1CAD 时,求1CE 的长;(3)连接PA,PAB ∆面积的最大值为 .(直接填写结果)24.(本题满分12分)如图,已知抛物线错误!未找到引用源。

2016-2017年学年度上学期期中考试新人教版九上数学解析

2016-2017年学年度上学期期中考试新人教版九上数学解析

试卷类型:A2016~2017学年度上学期期中考试九年级数学试题注意事项:1.本试题分为第Ⅰ卷和第Ⅱ卷两部分,共4页,满分120分,考试时间为90分钟。

2.答题前,考生应将答题卡的密封线内的班级、姓名、学校、考号等填好。

3.答选择题的时候,应注意题号的对应,填写在答题卡对应位置上,考试结束后,答题卡和试卷一并交回,注意,在试卷上答题无效。

第Ⅰ卷(选择题共40分)一、选择题:本大题共包括12小题,其中1~8小题每小题3分,9~12小题每小题4分共40分。

每小题所给的四个选项中只有一项是符合题目要求的,请把你所选择的答案代号填入相应位置上。

1.下列图案中,既是轴对称图形又是中心对称图形的是A. B. C. D.2.下列函数不属于二次函数的是A.y=(x﹣2)(x+1)B.y=(x+1)2C.y=2(x+3)2﹣2x2D. y=1﹣x23.3.将方程2x2-4x-3=0配方后所得的方程正确的是A.(2x-1)2=0B.(2x-1)2=4C.2(x-1)2=1D.2(x-1)2=54.方程()()1132=-+xx的解的情况是A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个实数5.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心可能是A. 点MB.点NC. 点PD. 点Q6.下列表述不正确...的有①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④半圆是弧;⑤圆内接四边形对角互补.A.1个 B.2个 C.3个 D.4个7.二次函数y=ax2+bx+c的图象如图所示,若点A(1,y1),B(2,y2)是图象上的两点,则y1与y2的大小关系是A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定8.某校运动会上,某运动员掷铅球时,他所掷的铅球的高与水平的距离,则该运动员的成绩是A. 12mB. 10mC. 8mD. 6m九年级数学试题第1页共4页第7题图第9题图x14题 9.小明从如图所示的二次函数y=ax 2+bx +c (a ≠0)图象中, 观察得出了下面五条信息: ①b 32a=;②240b ac -=;③ab >0;④a +b +c <0;⑤b +2c >0.你认为正.确.信息的个数有 A. 4个 B. 3个 C. 2个 D.1个10.如图,Rt △ABC 中,∠C=90°,O 是AB 边上一点,⊙O 与 AC 、BC 都相切,若BC=6,AC=8,则⊙O 的半径为 A .724B .4 C.5 D.2 10题图11.已知一元二次方程2x 2+x ﹣5=0的两根分别是x 1,x 2,则x 12+x 22的值是A . B.﹣C.-421D. 42112.如图,以等腰直角三角形ABC 两锐角顶点A ,B 为圆心作等圆,⊙A 与⊙B 恰好外切,若AC =2,那么图中两个扇形(即阴影部分)的面积之和为A.π4 B.π2 C.2π2D.2π 12题图第Ⅱ卷(非选择题 共80分)二、填空题:本大题有5小题,共20分,只要求写最后结果,每小题填对得4分. 13.已知m ,n 为方程x 2+2x ﹣1=0的两个实数根, 则m 2﹣2n+2016= .14.如图所示,在直角坐标系中,点A (0,9),点P (4,6)将△AOP 绕点O 顺时针方向旋转,使OA 边落在x 轴上, 则PP '= .15、对于实数x ,我们规定[X )表示大于x的最小整数,如,现对64进行如下操作:这样对64只需进行4次操作后变为2,类似地,只需进行4次操作后变为2的所有正整数中,最大的是 ______________ .16、如图,点A 是半圆上一个三等分点,点B 是的中点,点P 是直径MN 上一动点,若⊙O 的半径为1,则AP +BP 的最小值是 . 16题图 九年级数学试题第2页 共4页17、如图,DB 为半圆的直径,A 为BD 延长线上一点,AC 切半圆于点E ,BC ⊥AC 于点C ,交半圆于点F .已知BD =2,设AD =x ,CF =y ,则y 关于x 的函数解析式是 .17题图 三 、解答题:本题有5小题,共60分. 解答时应写出必要的文字说明、证明过程或演算步骤.18.如图,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E.连接AC 、OC 、BC.(8分)(1)求证:∠ACO=∠BCD ;(2)若AE=18cm ,CD=24cm ,求⊙O 的面积.19.如图,△ABC 是等边三角形,AB=4cm ,CD ⊥AB 于点D ,动点P 从点A 出发,沿AC 以2cm/s 的速度向终点C 运动,当点P 出发后,过点P 作PQ∥BC 交折线AD ﹣DC 于点Q ,以PQ 为边作等边三角形PQR ,设四边形APRQ 与△ACD 重叠部分图形的面积为S (cm 2),点P 运动的时间为t (s ).(12分) (1)当点Q 在线段AD 上时,用含t 的代数式表示QR 的长; (2)求点R 运动的路程长;(3)当点Q 在线段AD 上时,求S 与t 之间的函数关系式;(4)直接写出以点B 、Q 、R 为顶点的三角形是直角三角形时t 的值.20.(8分)如图,在⊙O 中,AB 是直径,点D 是⊙O 上的一点,点C 是AD ︵的中点,弦CM 垂直AB 于点F ,连接AD ,交CF 于点P ,连接BC ,∠D AB =30°. (1)求∠ABC 的度数;九年级数学试题 第3页 共4页(2)若CM =83,求AC ︵的长度.(结果保留π)D20题图A BCD在抛物线上,22.(10分)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:(1)房间每天的入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?23.(14分)已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=4OB.(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,写出点P的坐标;若不存在,请说明理由.九年级数学试题第4页共4页试卷类型:A2016~2017学年度上学期期中考试九年级数学试题答题卡第Ⅰ卷(选择题共40分)一、选择题:本大题共包括12小题,其中1~8小题每小题3分,9~12小题每小题4分共40分。

2017届九年级数学上学期期中试题 及答案

2017届九年级数学上学期期中试题 及答案

212016—2017学年度上学期期中质量检测九年级数学试题(时间:120分钟 分值:120分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只 有一项是正确的,请将正确选项代号填入下表.第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.)1.下列命题错误的是( )A. 等弧对等弦; B .三角形一定有外接圆和内切圆;C. 平分弦的直径垂直于弦; D .经过切点且垂直于切线的直线必经过圆心. 2.关于概率,下列说法正确的是( )A .莒县“明天降雨的概率是75%”表明明天莒县会有75%的时间会下雨;B .随机抛掷一枚质地均匀的硬币,落地后一定反面向上;C .在一次抽奖活动中,中奖的概率是1%,则抽奖100次就一定会中奖;D .同时抛掷两枚质地均匀硬币,“一枚硬币正面向上,一枚硬币反面向上”的概率是 3.若A (3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ). A . y 1<y 2<y 3 B . y 1>y2>y 3 C .y 1=y 2=y 3 D .y 1<y 3<y 24.如图,在⊙O 中,AC ∥OB ,∠BAO=25°,则∠BOC 的度数为( ) . A .25° B .50° C . 60° D .80°5.在△ABC 中,∠C=90°, AC=BC=4cm, D 是AB 边的中点,以C 为圆心,4cm 长为半径作圆,则A 、 B 、 C 、 D 四点中在圆内的有( ).A . 1个B .2个C . 3个D . 4个学校: 九年级 班 姓名: 考号:………………………………………………………………………………………6. Rt △ABC 中,∠C=90°,AC=3cm ,BC= 4cm ,以C 为圆心,2.5cm 为半径的圆与AB的位置关系是( )A. 相离B.相切C. 相交D.无法确定7.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这块扇形铁皮的半径是( )A .40cmB ..50cmC .60cmD .80cm 8.正比例函数y 1=k 1x (k 1>0)与反比例函数y 2=部分图象如图所示,则不等式k 1x的解集在数轴上表示正确的是( )9.某科研小组,为了考查某河野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河中野生鱼有( ) A .8000条 B . 4000条 C .2000条 D .1000条10.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( ) A .B.C.D.11.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,则DM 的长为A .133B .92 CD.12.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD 为( )A .36B .12C .6D .3二、填空题(本大题共4小题;每小题4分,共16分.把答案写在题中横线上)13.如图△ABC 是正三角形,曲线CDEF …叫做“正三角形的渐开线”其中弧CD 、弧DE 、弧EF 圆心依次按A 、B 、C …循环,它们依次相连接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017年九年级上册数学期中试卷选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目的要求的。

1.一元二次方程x(x+5)=0的根是( )A.x 1=0,x 2=5B.x 1=0,x 2=-5C.x 1=0,x 2=51 D.x 1=0,x 2=-51 2.下列四个图形中属于中心对称图形的是( )3.已知二次函数y=3x2+c 与正比例函数y=4x 的图象只有一个交点,则c 的值为( )A.34B.43C.3D.44.抛物线y=-3x2+12x-7的顶点坐标为( )A.(2,5)B.(2,-19)C.(-2,5)D.(-2,-43) 5.由二次函数y=2(x-3)2+1可知( )A.其图象的开口向下B.其图象的对称轴为x=-3C.其最大值为1D.当x<3时,y 随x 的增大而减小 6.如图中∠BOD 的度数是( )A.1500B.1250C.1100D.5507.如图,点E 在y 轴上,圆E 与x 轴交于点A ,B,与y 轴交于点C ,D,若C(0,9),D(0,-1),则线段AB 的长度为( )A.3B.4C.6D.88.如图,AB 是圆O 的直径,C 、D 是圆O 上的点,且OC//BD,AD 分别与BC 、OC 相交于点E 、F.则下列结论:①AD ⊥BD;②∠AOC=∠ABC;③CB 平分∠ABD;④AF=DF;⑤BD=2OF.其中一定成立的是( )A.①③⑤B.②③④C.②④⑤D.①③④⑤9.《九章算术》中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少步”( ) A.3步 B.5步 C.6步 D.8步10.如图,在△ABC 中,∠CAB=650.将△ABC 在平面内绕点A 逆时针旋转到△AB /C /的位置,使CC ///AB,则旋转角度数为( )A.350B.400C.500D.65011.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( ) A.43 B.23 C.42 D.2212.如图,正方形ABCD 中,AB=8cm ,对角线AC 、BD 相交于点O,点E 、F 分别从B 、C 两点同时出发,以1cm/s 的速度沿BC 、CD 运动,到点C 、D 时停止运动,设运动时间为t(s),△OEF 的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )二 填空题:本大题共6小题,每小题3分,共18分,请将答案直接天灾答题纸中对应横线上.13.点P(2,-1)关于原点的对称点坐标为P /(m,1),则m= .14.如图,在平面直角坐标系中,已知点A(3,4),将OA 绕坐标原点O 逆时针转900至OA /,则点A /的坐标是 .15.关于x的二次函数y=x2-kx+k-2的图象与y轴的交点在x轴的上方,请写出一个满足条件的二次函数解析式:。

16.如图,抛物线y=ax2+bx+c与x轴的一个交点是A(1,0),对成长后为直线x=-1,则一元二次方程ax2+bx+c=0的解是 .17.某种植物的主干长出若干数目的支干又长出同样数目的小分支,主干、支干和小分支的总数是91.设每个支干长出x个小分支,则可得方程为 .18.如图,AB是圆O的一条弦,C是圆O上一动点且∠ACB=450,E、F分别是AC、BC的中点,直线EF与圆O交于点G、H.若圆O的半径为2,则GE+FH的最大值为 .三解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19 (本小题满分8分)按要求解一元二次方程:(1)x(x+4)=8x+12(适当方法) (2)3x2-6x+2=0(配方法)20(本小题满分8分)在平面直角坐标系中,二次函数图象的顶点为A(1,-4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并请直接写出平移后所得图象与x轴的另一个交点的坐标.21(本小题满分10分)如图,AB是圆O的直径,CD是圆O的一条弦,且CD⊥AB于点E.(1)若∠A=480,求∠OCE的度数;(2)若CD=24,AE=2,求圆O的半径.22(本小题满分10分)如图,△ABC中,AB=AC,一AB为直径作圆O,与BC交于点D,过D作AC的垂线,垂足为E.(1)求证:(1)BD=DC;(2)DE是圆O的切线.23(本小题满分10分)如图,要建一个长方形养鸡场,鸡场的一边靠墙(墙足够长),如果用50m长的篱笆围成中间有一道篱笆墙的养鸡场,设它的长度为x(篱笆墙的厚度忽略不计)。

(1)要使鸡场面积最大,鸡场的长度应为多少米?(2)如果中间有n(n是大于1的整数)到道篱笆墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,要使鸡场闽籍最大,鸡场长度与中间隔离墙的道数有怎样的关系?24(本小题满分10分)如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转900,其它条件不变,在图②中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.25(本小题满分10分)如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(-8,0),B(0,-6)两点.(1)求出直线AB的函数解析式;(2)若有一抛物线的对称轴平行于y 轴且经过点M,顶点C 在圆M 上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交x 轴于D 、E 两点,在抛物线上是否存在点P,使得ABC PDE S S ∆∆=101?若存在,请求出点P 的坐标;若不存在,请说明理由.南开区2016-2017年九年级上册数学期中试卷答案1.B2.A3.A4. A5.D6.C7.C8.D9.C 10.C 11.D 12.B 13.-214.(-4,3) 15.k>2即可 16.x 1=1,x 2=-3 17.x 2+x+1=91 18.2-419.(1)x 1=-2,x 2=6;(2)x 1=331+,x 2=331- 20.(1)y=(x-1)2-4;(2)向右平移1个单位,另一个交点为(4,0) 21.解:(1)∠OCB=60;(2)解:因为AB 是圆O 的直角,且CD ⊥AB 于点E, 所以22242121=⨯==CD CE , 在Rt △OCE 中,OC 2=CE 2+OE 2,设圆O 的半径为r ,则OC=r ,OE=OA-AE=r-2, 所以r2=(22)2+(r-2)2, 解得:r=3.所以圆O 的半径为3. 22.证明:如图所示:(1)连接AD,因为AB 是直径,所以∠ADB=900,又因为AB=AC,所以BD=CD.(2)连接OD,因为∠BAC=2∠BAD,∠BOD=2∠BAD,所以∠BAC=∠BOD,所以OD//AC. 又因为DE ⊥AC,所以∠AED=900,所以∠ODB=∠AED=900,所以DE 是圆O 的切线. 23.解:(1)依题意得:鸡场面积:x x x x y 350313502+-=-⋅= 因为3625)25(313503122+--=+-=x x x y ,所以当x=25时,y 最大=3625. 即鸡场的长度为25m 时,其面积最大为3625m 2.(2)如中间有n 道隔墙,则隔墙长为m n x 250+-,所以2625)25(212502125022+-+-+-=+++-=+-=n x n x n x n x n x y所以当x=25时,y 最大=2625+n . 即鸡场的长度为25m 时,其面积最大为2625+n m 2. 结论:无论鸡场中间有多少道篱笆隔墙,要使鸡场面积最大,其长都是25m.24.证明:(1)因为△ACM,△CBN 是等边三角形,所以AC=MC,BC=NC,∠ACM=600,∠NCB=600. 在△CAN 和△MCB 中,AC=MC,∠ACN=∠MCB,NC=BC.所以△CAN ≌△MCB(SAS),所以AN=BM. (2)因为△CAN ≌△MCB ,所以∠CAN=∠CMB.又因为∠MCF=1800-∠ACM-∠NCB=600.所以∠MCF=∠ACE.在△CAE 和△CMF 中,∠CAE=∠CMF,CA=CM,∠ACE=∠MCF,所以△CAE ≌△CMF(ASA) 所以CE=CF,所以△CEF 为等腰三角形,又因为∠ECF=600,所以△CEF 为等边三角形. (3)解:连接AN,BM.因为△ACM 、△CBN 是等边三角形 所以AC=MC,BC=CN,∠ACM=∠BCN=600, 因为∠ACB=900,所以∠ACN=∠BCM.在△ACN 与△MCB 中,AC=CM,∠ACN=∠BCM,NC=BC,所以△ACN ≌△MCB(SAS).所以AN=BM.当把MC 逆时针旋转900后,AC 也旋转了900,因此∠ACB=900,很显然∠FCE>900,因此三角形FCE 不可能是等边三角形,即结论1成立,结论2不成立。

25.(1)直线AB 的函数解析式为643--=x y(2)因为CM ⊥OA,所以CM 平分OA,因为M 为AB 中点,所以NM 为AOB 中位线,MN=321=OB , 所以AM=5.当抛物线开口向下时,顶点为C(-4,2)的抛物线解析式为2)4(212++-=x y ; 当抛物线开口向上时,顶点为C(-4,-8)的抛物线解析式为2)4(812-+-=x y . (3)因为CM=5,AD=4,DO=4,所以20=∆ABC S ,所以220101=⨯=∆PDE S令y=0,得4),0,2(),0,6(,02)4(212=--=++-DE E D x ,1,2421==⨯⨯h h 当y=1时,24,24,12)4(21212--=+-==++-x x x 解得: 所以);1,24(),1,24(21--+-P P当y=-1时,64,64,12)4(21212--=+-=-=++-x x x 解得: 所以);1,64(),1,64(43--+-P P 故抛物线上存在点P,使得ABC PDE S S ∆∆=101,此时, 点P 的坐标为:);1,24(),1,24(21--+-P P );1,64(),1,64(43--+-P P。

相关文档
最新文档