微积分基本定理
微积分三大定理
微积分三大定理
微积分是数学中的重要分支,它研究的是函数的变化与求和。
微积分的发展离不开三大定理,它们分别是导数的基本定理、中值定理和积分的基本定理。
这三个定理是微积分的核心,为我们解决各种实际问题提供了重要的工具和方法。
导数的基本定理是微积分中最基本的定理之一。
它告诉我们如何求函数的导数。
导数是描述函数在某一点上的变化率的概念,它决定了函数的增减性和曲线的斜率。
导数的基本定理使我们能够通过求导来研究函数的性质,例如函数的最值、凹凸性等。
它是微积分中理论和实际应用的基础。
中值定理是导数的一个重要应用。
它的核心思想是函数在某个区间内的平均变化率等于某个点上的瞬时变化率。
中值定理为我们提供了一种刻画函数变化的方法,它能够帮助我们找到函数在某个区间内的极值点和临界点。
中值定理的应用广泛,不仅在数学中有重要地位,还在物理、经济等领域中有着深远的影响。
积分的基本定理是微积分的重要组成部分。
它告诉我们如何求函数的积分。
积分是求解曲线下面的面积或计算曲线的总变化量的工具。
积分的基本定理使我们能够通过求积分来计算函数的面积、体积、质量等物理量,它在科学研究和工程实践中起着重要的作用。
微积分三大定理的发展与应用,不仅丰富了数学理论,也推动了科
学技术的进步。
它们为我们解决实际问题提供了强有力的工具和方法,使我们能够更好地理解和描述自然界的现象。
无论是在自然科学、社会科学还是工程技术领域,微积分的应用都是不可或缺的。
通过学习和应用微积分三大定理,我们能够更好地理解和解决复杂的实际问题,为人类的发展和进步做出贡献。
选修2-2——微积分基本定理
1.6 微积分基本定理1.问题导航(1)微积分基本定理的内容是什么? (2)定积分的取值符号有哪些? 2.例题导读 通过P 53例1,学会利用微积分基本定理求简单定积分的步骤和方法,通过P 53例2的学习,理解定积分的几何意义和定积分的取值符号.1.微积分基本定理(1)内容:一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x=F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.(2)表示:为了方便,常常把F (b )-F (a )记成F (x )⎪⎪⎪b a ,即⎠⎛ab f (x )d x =F (x )⎪⎪⎪ba =F (b )-F (a ). 2.定积分的符号由定积分的意义与微积分基本定理可知,定积分的值可能取正值也可能取负值,还可能是0.(1)当对应的曲边梯形位于x 轴上方时(如图1),定积分的值取正值,且等于曲边梯形的面积.(2)当对应的曲边梯形位于x 轴下方时(如图2),定积分的值取负值,且等于曲边梯形的面积的相反数.(3)当位于x 轴上方的曲边梯形面积等于位于x 轴下方的曲边梯形面积时(如图3),定积分的值为0,且等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积..1.判断(正确的打“√”,错误的打“×”)(1)微积分基本定理中,被积函数f (x )是原函数F (x )的导数.( )(2)应用微积分基本定理求定积分的值时,为了计算方便通常取原函数的常数项为0.( )(3)应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.( )答案:(1)√ (2)√ (3)√2.若a =⎠⎛01(x -2)d x ,则被积函数的原函数为( )A .f (x )=x -2B .f (x )=x -2+C C .f (x )=12x 2-2x +CD .f (x )=x 2-2x答案:C3.⎠⎛0πsin x d x =________.解析:⎠⎛0πsin x d x =-cos x ⎪⎪⎪π0=(-cos π)-(-cos 0)=2.答案:21.应用微积分基本定理求定积分的注意事项(1)微积分基本定理沟通了定积分与导数的关系,揭示了被积函数与函数的导函数之间的互逆运算关系,为计算定积分提供了一个简单有效的方法——转化为计算函数F (x )在积分区间上的增量.(2)用微积分基本定理求定积分的关键是找到满足F ′(x )=f (x )的函数F (x )再计算F (b )-F (a ).(3)利用微积分基本定理求定积分,有时需先化简被积函数,再求定积分. 2.常见函数的定积分公式(1)⎠⎛ab C d x =Cx ⎪⎪⎪ba (C 为常数). (2)⎠⎛ab x n d x =1n +1x n +1⎪⎪⎪ba (n ≠-1).(3)⎠⎛a b sin x d x =-cos x ⎪⎪⎪ba .(4)⎠⎛ab cos x d x =sin x ⎪⎪⎪ba . (5)⎠⎛ab 1xd x =ln x ⎪⎪⎪ba (b >a >0). (6)⎠⎛a b e x d x =e x⎪⎪⎪ba. (7)⎠⎛ab a x d x =a x ln a ⎪⎪⎪ba(a >0且a ≠1).利用微积分基本定理求定积分求下列定积分的值. (1)⎠⎛12(x +1)(x -2)d x ;(2)⎠⎛14x (1+x )d x ;(3)∫π20sin 2x d x ;(4)⎠⎛24x 2-x +1x -1d x . [解] (1)⎠⎛12(x +1)(x -2)d x=⎠⎛12(x 2-x -2)d x=⎝⎛⎭⎫13x 3-12x 2-2x ⎪⎪⎪21 =⎝⎛⎭⎫13×23-12×22-2×2-⎝⎛⎭⎫13×13-12×12-2×1 =-76.(2)⎠⎛14x (1+x )d x=⎠⎛14(x +x )d x =⎝⎛⎭⎫23x 32+12x 2⎪⎪⎪41=⎝⎛⎭⎫23×432+12×42-⎝⎛⎭⎫23×132+12×12=736. (3)∫π2sin 2x d x =∫π21-cos 2x2d x =12∫π20(1-cos 2x )d x =12⎝⎛⎭⎫x -12sin 2x ⎪⎪⎪π2=π4. (4)⎠⎛24x 2-x +1x -1d x =⎠⎛24x (x -1)+1x -1d x =⎠⎛24⎝ ⎛⎭⎪⎫x +1x -1d x =⎝⎛⎭⎫12x 2+ln (x -1)⎪⎪⎪42 =⎝⎛⎭⎫12×42+ln 3-⎝⎛⎭⎫12×22+ln 1=6+ln 3.(1)当被积函数为两个函数的乘积(分式)时,一般要先化简被积函数将其转化为和的形式,便于求得函数F (x ),再计算定积分,具体步骤如下:第一步:求被积函数f (x )的一个原函数F (x ); 第二步:计算函数的增量F (b )-F (a ).(2)利用微积分基本定理求定积分的关键是找出被积函数的原函数,若被积函数的原函扫一扫 进入91导学网()微积分基本定理1.(1)若⎠⎛01(kx +1)d x =2,则k 的值为( )A .1B .2C .3D .4解析:选B.⎠⎛01(kx +1)d x =⎝⎛⎭⎫12kx 2+x ⎪⎪⎪10=12k +1=2. ∴k =2.(2)⎠⎛12x -1x2d x =________. 解析:⎠⎛12x -1x 2d x =⎠⎛12⎝⎛⎭⎫1x -1x 2d x =⎝⎛⎭⎫ln x +1x ⎪⎪⎪21=⎝⎛⎭⎫ln 2+12-()ln 1+1=ln 2-12. 答案:ln 2-12求分段函数的定积分求下列定积分的值. (1)⎠⎛-12|x -1|d x ;(2)⎠⎛-12e |x |d x ;(3)若f (x )=⎩⎪⎨⎪⎧x 2,x ≤0cos x -1,x >0求∫π2-1f (x )d x .[解] (1)⎠⎛-12|x -1|d x=⎠⎛-11|x -1|d x +⎠⎛12|x -1|d x=⎠⎛-11(-x +1)d x +⎠⎛12(x -1)d x=⎝⎛⎭⎫-12x 2+x ⎪⎪⎪1-1+⎝⎛⎭⎫12x 2-x ⎪⎪⎪21=2+12=52.(2)⎠⎛-12e |x |d x =⎠⎛-10e |x |d x +⎠⎛02e |x |d x=⎠⎛-10e -x d x +⎠⎛02e x d x=-e -x ⎪⎪⎪0-1+e x ⎪⎪⎪2=e -1+e 2-1=e 2+e -2.(3)∫π2-1f (x )d x =⎠⎛-1f (x )d x +∫π20f (x )d x =⎠⎛-1x 2d x +∫π20(cos x -1)d x=13x 3⎪⎪⎪-1+(sin x -x )⎪⎪⎪π2=13+⎝ ⎛⎭⎪⎫1-π2=43-π2.求分段函数的定积分(1)由于分段函数在各区间上的函数式不同,所以被积函数是分段函数时,常常利用定积分的性质(3),转化为各区间上定积分的和计算.(2)当被积函数含有绝对值时,常常去掉绝对值号,转化为分段函数的定积分再计算.2.(1)设f (x )=⎩⎪⎨⎪⎧x 2,0≤x <1,2-x ,1<x ≤2,则⎠⎛02f (x )d x =( )A.23B.34C.45D.56 解析:选D.⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛12(2-x )d x=13x 3⎪⎪⎪10+⎝⎛⎭⎫2x -12x 2⎪⎪⎪21 =13+12=56. (2)⎠⎛0π|cos x |d x =________.解析:⎠⎛0π|cos x |d x =∫π20|cos x |d x +∫ππ2|cos x |d x=∫π20cos x d x +∫ππ2(-cos x )d x=sin x ⎪⎪⎪π20-sin x ⎪⎪⎪⎪ππ2=1+1=2.答案:2(3)计算⎠⎛02|x 2-x |d x .解:∵|x 2-x |=⎩⎪⎨⎪⎧-x 2+x ,0≤x ≤1,x 2-x ,1<x ≤2,∴⎠⎛02|x 2-x |d x =⎠⎛01(-x 2+x )d x +⎠⎛12(x 2-x )d x=⎝⎛⎭⎫-13x 3+12x 2⎪⎪⎪10+⎝⎛⎭⎫13x 3-12x 2⎪⎪⎪21 =16+56=1.微积分基本定理的综合应用(1)已知x ∈(0,1],f (x )=⎠⎛01(1-2x +2t )d t ,则f (x )的值域是________.[解析] ⎠⎛01(1-2x +2t )d t =[(1-2x )t +t 2]⎪⎪⎪10 =2-2x ,即f (x )=-2x +2,因为x ∈(0,1],所以f (1)≤f (x )<f (0),即0≤f (x )<2,所以函数f (x )的值域是[0,2).[答案] [0,2)(2)已知⎠⎛01[(3ax +1)(x +b )]d x =0,a ,b ∈R ,试求ab 的取值范围.[解] ⎠⎛01[(3ax +1)(x +b )]d x=⎠⎛01[3ax 2+(3ab +1)x +b ]d x=⎣⎡⎦⎤ax 3+12(3ab +1)x 2+bx ⎪⎪⎪10 =a +12(3ab +1)+b =0,即3ab +2(a +b )+1=0.法一:由于(a +b )2=a 2+b 2+2ab ≥4ab .所以⎝⎛⎭⎪⎫-3ab +122≥4ab ,即9(ab )2-10ab +1≥0,得(ab -1)(9ab -1)≥0,解得ab ≤19或ab ≥1.所以ab 的取值范围是⎝⎛⎦⎤-∞,19∪[1,+∞). 法二:设ab =t ,得a +b =-3t +12,故a ,b 为方程x 2+3t +12x +t =0的两个实数根,所以Δ=(3t +1)24-4t ≥0,整理得9t 2-10t +1≥0,即(t -1)(9t -1)≥0,解得t ≤19或t ≥1.所以ab 的取值范围是⎝⎛⎦⎤-∞,19∪[1,+∞). [互动探究] 本例(1)中原已知条件改为f (t )=⎠⎛01(1-2x +2t )d x ,则f (t )=________.解析:f (t )=⎠⎛01(1-2x +2t )d x=[(1+2t )x -x 2]⎪⎪⎪1=2t . 答案:2t含有参数的定积分问题的处理办法与注意点 (1)含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.(2)计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.3.(1)设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0<1,则x 0的值为________.解析:⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =13ax 3+cx ⎪⎪⎪10 =a 3+c =ax 20+c ,又0≤x 0<1,∴x 0=33. 答案:33(2)已知f (a )=⎠⎛01(2ax 2-a 2x )d x ,求f (a )的最大值.解:∵⎠⎛01(2ax 2-a 2x )d x=⎝⎛⎭⎫23ax 3-12a 2x 2⎪⎪⎪1=23a -12a 2, ∴f (a )=23a -12a 2=-12⎝⎛⎭⎫a 2-43a +49+29 =-12⎝⎛⎭⎫a -232+29.∴当a =23时,f (a )有最大值为29.数学思想 利用函数的奇偶性巧解定积分问题已知⎠⎛-11(x 3+ax +3a -b )d x =2a +6,且f (t )=⎠⎛0为偶函数,求a ,b .[解] ∵f (x )=x 3+ax 为奇函数, ∴⎠⎛-11(x 3+ax )d x =0.∴⎠⎛-11(x 3+ax +3a -b )d x =⎠⎛-11(x 3+ax )d x +⎠⎛-11(3a -b )d x=0+(3a -b )[1-(-1)]=6a -2b . ∴6a -2b =2a +6,即2a -b =3.① 又f (t )=⎣⎡⎦⎤x 44+a 2x 2+(3a -b )x ⎪⎪⎪t0 =t 44+at 22+(3a -b )t 为偶函数, ∴3a -b =0.②由①②,得a =-3,b =-9. [感悟提高](1)在求对称区间上的定积分时,应该首先考虑函数性质与积分的性质,使解决问题的方法尽可能简便.(2)奇、偶函数在区间[-a ,a ]上的定积分:①若奇函数y =f (x )的图象在[-a ,a ]上连续,则⎠⎛-aaf (x )d x=0. ②若偶函数y =g (x )的图象在[-a ,a ]上连续,则⎠⎛-aag (x )d x =2⎠⎛0a g (x )d x ,如本例为偶函数,可用该结论计算.1.下列各式中,正确的是( )A.⎠⎛ab F ′(x )d x =F ′(b )-F ′(a )B.⎠⎛a b F ′(x )d x =F ′(a )-F ′(b )C.⎠⎛ab F ′(x )d x =F (b )-F (a ) D.⎠⎛ab F ′(x )d x =F (a )-F (b )答案:C2.⎠⎛12(e x -1)d x =________.解析:⎠⎛12(e x-1)d x =(e x-x )⎪⎪⎪21=(e 2-2)-(e 1-1) =e 2-e -1.答案:e 2-e -13.求定积分∫π20cos 2xsin x +cos xd x 的值.解:∫π20cos 2xsin x +cos xd x=∫π20cos2x -sin 2x cos x +sin xd x=∫π20(cos x -sin x )d x=()sin x +cos x ⎪⎪⎪π2=⎝ ⎛⎭⎪⎫sin π2+cos π2-()sin 0+cos 0=0.[A.基础达标]1.⎠⎛1e 1xd x 的值为( ) A .1 B .2 C .ln 2D .e 2解析:选A.⎠⎛1e 1x d x =ln x ⎪⎪⎪e1=ln e -ln 1=1.2.⎠⎛1e x d x 的值为( )A .eB .e -1 C.1eD .1解析:选B.⎠⎛01e x d x =e x ⎪⎪⎪10=e 1-e 0=e -1. 3.已知⎠⎛1m (2x -1)d x =2,则m 的值为( )A .5B .4C .3D .2解析:选D.∵⎠⎛1m (2x -1)d x =(x 2-x )⎪⎪⎪m1=m 2-m =2, ∴m 2-m -2=0,∴m =-1(舍去)或m =2.4.⎠⎛23x x -1d x =( ) A .5+ln 2 B .5-ln 2 C .1+ln 2 D .1-ln 2解析:选C.⎠⎛23xx -1d x =⎠⎛23x -1+1x -1d x=⎠⎛23⎝ ⎛⎭⎪⎫1+1x -1d x =[]x +ln (x -1)⎪⎪⎪32 =(3+ln 2)-(2+ln 1)=1+ln 2.5.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B.∵⎠⎛01f (x )d x =⎠⎛01x 2d x +⎠⎛01⎣⎡⎦⎤2⎠⎛01f (x )d x d x=13x 3⎪⎪⎪10+⎣⎢⎡⎦⎥⎤2⎠⎛01f (x )d x x ⎪⎪⎪10=13+2⎠⎛01f (x )d x , ∴⎠⎛01f (x )d x =-13.故选B.6.已知f (x )=⎩⎪⎨⎪⎧x ,(x ≤0)e x ,(x >0)则⎠⎛-12f (x )d x =________.解析:∵f (x )=⎩⎪⎨⎪⎧x ,(x ≤0)e x ,(x >0).∴⎠⎛-12f (x )d x =⎠⎛-10x d x +⎠⎛02e x d x=12x 2⎪⎪⎪0-1+e x ⎪⎪⎪2=-12+e 2-1=e 2-32.答案:e 2-327.设f (x )=kx +b ,若⎠⎛01f (x )d x =2,⎠⎛12f (x )d x =3.则f (x )的解析式为________.解析:由⎠⎛01(kx +b )d x =2,得⎝⎛⎭⎫12kx 2+bx ⎪⎪⎪1=2, 即12k +b =2,① 由⎠⎛12(kx +b )d x =3,得⎝⎛⎭⎫12kx 2+bx ⎪⎪⎪21=3, 即(2k +2b )-⎝⎛⎭⎫12k +b =3.∴32k +b =3,② 由①②联立得,k =1,b =32,∴f (x )=x +32.答案:f (x )=x +328.⎠⎛03x 2-4x +4d x =________.解析:⎠⎛03x 2-4x +4d x =⎠⎛03(x -2)2d x=⎠⎛03|x -2|d x=⎠⎛02|x -2|d x +⎠⎛23|x -2|d x=⎠⎛02(2-x )d x +⎠⎛23(x -2)d x=⎝⎛⎭⎫-12x 2+2x ⎪⎪⎪20+⎝⎛⎭⎫12x 2-2x ⎪⎪⎪32=2+12=52. 答案:529.计算⎠⎛02x1+x 2d x .解:∵f (x )=1+x 2的导函数为f ′(x )=x 1+x 2. ∴⎠⎛02x 1+x 2d x =1+x 2⎪⎪⎪20=5-1. 10.若f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176.求⎠⎛12f (x )xd x 的值. 解:设f (x )=kx +b ,k ≠0,则⎠⎛01(kx +b )d x =⎝⎛⎭⎫k 2x 2+bx ⎪⎪⎪10=k 2+b =5.① ⎠⎛01xf (x )d x =⎠⎛01(kx 2+bx )d x =⎝⎛⎭⎫kx 33+bx 22⎪⎪⎪10=k 3+b 2=176,② 联立①②可得⎩⎪⎨⎪⎧k =4.b =3. ∴f (x )=4x +3.则⎠⎛12f (x )x d x =⎠⎛124x +3x d x =⎠⎛12⎝⎛⎭⎫4+3x d x =(4x +3ln x )⎪⎪⎪21 =(8+3ln 2)-(4+3ln 1)=4+3ln 2.[B.能力提升]1.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1解析:选B.S 1=⎠⎛12x 2d x =13x 3⎪⎪⎪21=73, S 2=⎠⎛121x d x =ln x ⎪⎪⎪21=ln 2, S 3=⎠⎛12e x d x =e x ⎪⎪⎪21=e 2-e =e(e -1)>e>73, 所以S 2<S 1<S 3,故选B.2.若函数f (x ),g (x )满足⎠⎛-11f (x )g (x )d x =0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数: ①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2. 其中为区间[-1,1]上的正交函数的组数是( )A .0B .1C .2D .3解析:选C.对于①,⎠⎛-11sin 12x ·cos 12x d x=⎠⎛-1112sin x d x =12⎠⎛-11sin x d x =12(-cos x )⎪⎪⎪1-1=12(-cos 1+cos 1)=0. 故①为区间[-1,1]上的一组正交函数;对于②,⎠⎛-11(x +1)(x -1)d x =⎠⎛-11(x 2-1)d x =⎝⎛⎭⎫13x 3-x ⎪⎪⎪1-1=13-1-⎝⎛⎭⎫-13+1 =23-2=-43≠0, 故②不是区间[-1,1]上的一组正交函数;对于③,⎠⎛-11x ·x 2d x =⎠⎛-11x 3d x =⎝⎛⎭⎫14x 4⎪⎪⎪1-1=0. 故③为区间[-1,1]上的一组正交函数,故选C.3.若⎠⎛0t cos θd θ=32,且t ∈(0,2π),则t 的值为________. 解析:∵⎠⎛0t cos θd θ=sin θ⎪⎪⎪t 0 =sin t =32, ∵t ∈(0,2π),∴t =π3或23π. 答案:π3或23π 4.已知f (x )=⎩⎪⎨⎪⎧x -1,x ≤11-ln x x 2,x >1,则⎠⎛0e f (x )d x =________. 解析:∵f (x )=⎩⎨⎧x -1,x ≤11-ln x x 2,x >1, ∴⎠⎛0e f (x )d x =⎠⎛01(x -1)d x +⎠⎛1e 1-ln x x 2d x =⎝⎛⎭⎫12x 2-x ⎪⎪⎪10+ln x x ⎪⎪⎪e 1=-12+1e =2-e 2e. 答案:2-e 2e5.已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2,求a 、b 、c 的值.解:由f (-1)=2,得a -b +c =2,①又f ′(x )=2ax +b ,∴f ′(0)=b =0,② 而⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =⎝⎛⎭⎫13ax 3+cx ⎪⎪⎪10 =13a +c =-2,③ 联立①②③得a =6,c =-4.6.设f (x )是一次函数,且⎠⎛01f (x )d x =1,求证:⎠⎛01f 2(x )d x >1. 证明:设f (x )=kx +b (k ≠0,b ,k 为常数).⎠⎛01f (x )d x =⎠⎛01(kx +b )d x =⎝⎛⎭⎫k 2x 2+bx ⎪⎪⎪10=k 2+b , 即k 2+b =1,k =2(1-b ). ⎠⎛01f 2(x )d x =⎠⎛01(kx +b )2d x =⎠⎛01(k 2x 2+2kbx +b 2)d x =⎝⎛⎭⎫13k 2x 3+kbx 2+b 2x ⎪⎪⎪10=13k 2+kb +b 2 =43(1-b )2+2b (1-b )+b 2=13(b -1)2+1>1. 即⎠⎛01f 2(x )d x >1得证.。
《微积分的基本定理》课件
物理
在物理学科中,该定理可以用来 解决各种物理量如质量、速度、 力等的积分问题,例如计算物体 的动量、动能等。
工程
在工程领域,该定理可以用来解 决各种实际问题的积分计算,例 如计算电路中的电流、求解流体 动力学中的压力分布等。
02 定理的证明
定理证明的思路
明确问题
首先,我们需要明确微积分的基本定理是关于什 么的,以及它要解决的问题是什么。
难点2
如何利用积分运算法则简化每个小部分的积 分。
关键点1
理解定积分的定义和性质,以及它们在证明 定理中的作用。
关键点2
掌握导数的定义和性质,以及它们在推导原 函数值增量中的应用。
03 定理的推论和扩 展
推论一:积分中值定理
总结词
积分中值定理是微积分中的一个重要定理,它表明在闭区间上连续的函数一定存在至少一个点,使得该函数在此 点的值为该区间上函数积分的平均值。
详细描述
积分中值定理是微积分中的一个基本定理,它表明如果一个函数在闭区间上连续,那么在这个区间内一定存在至 少一个点,使得该函数在这一点处的值等于该函数在整个区间上的平均值。这个定理在解决一些微积分问题时非 常有用,因为它可以帮助我们找到函数在某个点处的值,而不需要计算整个区间的积分。
推论二:洛必达法则
个定积分的值就是曲边梯形的面积。
应用实例二:求解不定积分
总结词
微积分的基本定理是求解不定积分的关 键工具。
VS
详细描述
不定积分是微分学的逆运算,其求解过程 需要用到微积分的基本定理。根据基本定 理,不定积分∫f(x)dx = F(x) + C,其中 F(x)是f(x)的一个原函数,C是常数。通过 基本定理,我们可以找到一个函数F(x), 使得F'(x) = f(x)。这样,我们就可以求解 不定积分了。
微积分学基本定理
一、问题的提出
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度v v(t )是时
间间隔[T1 ,T2 ]上t 的一个连续函数,且v(t ) 0 ,
求物体在这段时间内所经过的路程.
变速直线运动中路程为
T2 v(t )dt
T1
另一方面这段路程可表示为 s(T2 ) s(T1 )
F (b)
F (a)
F ( x)ba
微积分基本公式表明:
一个连续函数在区间[a, b]上的定积分等于 它的任意一个原函数在区间[a, b]上的增量.
求定积分问题转化为求原函数的问题.
注意
当a
b时, b a
f
(
x)dx
F
(b)
F
(a ) 仍成立.
; 快速阅读加盟 阅读加盟
2 x
解 当 x 0时,1 的一个原函数是ln | x |,
x
1
2
1dx x
ln |
x
|
1 2
ln1 ln 2 ln 2.
例 4 计算曲线 y sin x在[0, ]上与 x轴所围
计算: (1)
21 dx;
1x
3
1
(2) 1 (2x x2 )dx
(3)0 sin xdx;
2
(4) sin xdx;
2
(5)0 sin xdx;
例1
求
2 0
(
2
cos
x
sin
x
1)dx
.
解
原式
微积分基本定理
GMmh W R( R h )
其中 G 是地球引力常数, M 是地球的质量, R 是地球的半径.
例 2:一物体从 5000m 高空落下, .其下落速度为
g -1 2 kt v(t ) (1 e ) ,其中 g=9.8m/s ,k=0.2s k 问经过大约多少秒后该物体将接触到地面?
定积分在物理中的应用
例 3:证明:把质量为 m(单位:kg)的物体从地球 表面升高 h(单位:m)所作的功为
2
例 3:计算由曲线 y x 5 ,直线 y=x
2
-7 以及 x 轴所围图形的面积 S.
定积分在几何中的应用
例 3:直线 y=kx 分抛物线 y=x-x 与 x 轴 所围成图形为面积相等的两部分, 求 k 的值.
y
2
x
O
定积分在物理中的应用
例 1:有一个质量非均匀分布的细棒,已知其线密度 为 ( x ) (2 x 1)( x 1) (取细棒所在直线为 x 轴, 细棒的一端为原点),棒长为 l,求细棒的质量 m.
微积分基本定理
微积分基本定理
定理: 对于被积函数 f(x), 如果 F’(x)=f(x), 则 f ( x )dx F (b) F (a ) .
a b
这里 f(x)是 F(x)的导函数,我们把 F(x) 叫做 f(x)的原函数.
例1 计算定积分
(1)
3
1
2 dx(2)Biblioteka | x|3 2
x 1 (3) e 2 dx 1 x
2
(2 x 1)(2 x 3) dx 2x 1
cos 2 x (4) 2 dx 0 cos x sin x
微积分基本定理的证明
微积分基本定理的证明证明微积分基本定理主要涉及到两个方面:第一,证明积分在导数中的逆运算;第二,证明求导在积分中的逆运算。
即证明:1.若函数F(x)在[a,b]区间上连续,则F(x)在[a,b]区间上可导,且导函数f(x)满足f(x)=F'(x),即F(x)是f(x)的一个原函数。
2. 若函数f(x)在[a, b]区间上连续,则函数F(x) = ∫[a,x]f(t)dt 是f(x)的一个原函数。
定理一的证明:设F(x) = ∫[a, x]f(t)dt,我们要证明F(x)是f(x)的一个原函数,即证明F'(x) = f(x)。
令h(x) = ∫[a, x+h]f(t)dt - ∫[a, x]f(t)dt = ∫[x,x+h]f(t)dt。
根据积分的定义,h(x)是x的函数,并且有以下性质:1.h(x)在[a,b]区间上连续;2.h(x)在(x,x+h)区间上的可导,并且导函数为h'(x)=f(x)。
现在,我们考虑以下两个极限:1. 当h趋近于0时,即lim(h→0)h(x) = 0;2. 当h趋近于0时,即lim(h→0)h'(x) = f(x)。
由于h(x)和h'(x)满足以上两个性质,根据极限的性质,我们可以推断出F'(x)存在,并且F'(x)=f(x)。
这就证明了定理一定理二的证明:设F(x)是函数f(x)的一个原函数,我们要证明∫[a,x]f(t)dt =F(x)。
根据定积分的定义:1. ∫[a,x]f(t)dt = lim(n→∞)∑[i=1, n]f(xi)Δxi,Δxi = x - xi,ξi ∈ [xi, xi+1];2. F(x) = F(a) + ∫[a,x]F'(t)dt = F(a) +lim(n→∞)∑[i=1, n]F'(ξi)Δxi,Δxi = x - xi,ξi ∈ [xi, xi+1]。
我们需要证明通过引入一个分割P = {a = x0 < x1 < ... < xn = x},并取分割上每个子区间上的任意一点ξi,满足lim(n→∞)∑[i=1, n]f(xi)Δxi = lim(n→∞)∑[i=1, n]F'(ξi)Δxi。
3.5_微积分学基本原理
1.
例
1
1 1
1 x2
d
x
arctan x
1 1
arctan1 arctan(1)
.
2
例
4 cos 2x d
0
x
1 sin 2
2x
4 0
1 (sin 2
2
4
sin 0)
1. 2
问题的关键是如何求一个 函数的原函数.
14
例
设f
(
x)
2x, 5,
0 x 1, 求 2 f ( x)dx. 1 x 2, 0
dx 0
dx 0
e x2 2x e x3 3 x 2
9
1 et2dt
例
lim
x0
cos x
x2
分析 这是 0 型不定式, 应用L’Hospital法则 0
解 d 1 et2dt d cos x et2dt
dx cos x
dx 1
ecos2 x (cos x) sin x ecos2 x
11
x
C F(a),
a f (t)dt F ( x) C
bx f (t )dt F ( xb) F (a) x [a,b] a
特别, 令x b,
b
f ( x)dx F(b) F(a)
a
牛顿(Newton)—莱布尼茨(Leibniz)公式
又称为微积分基本公式,即
b f ( x)dx F ( x) b F(b) F(a)
lim
x0
1 cos x
e t 2 dt
lim
sin
x
e cos2
x
1
x2
x0
2x
微积分基本公式和基本定理
x
sec2
xdx
tan
x
C
(9)
d sin
x
2
x
csc 2
xdx
cot
x
C
(10) sec x tan xdx sec x C
(11) csc x cot xdx csc x C
(12) ex dx ex C (13) a xdx a x C
ln a
(14) sh xdx ch x C
2
xdx.
2
2
0
0
例9
证
明2 e
1 4
2 e x2 xdx 2e2 .
0
第二节
第三章
微积分基本公式与基本定理
一、微积分基本公式 二、微积分基本定理 三、不定积分
一、微积分基本公式
在变速直线运动中, s(t) v(t) 物体在时间间隔
内经过的路程为 vT2 (t)d t s(T2 ) s(T1 ) T1
例10
1 et2 dt
求
lim
x0
cos x
x2
.
解 d 1 et2dt d cos x et2dt,
dx cos x
dx 1
ecos2 x (cos x) sin x ecos2 x ,
1 et2 dt
lim
x0
cos x
x2
lim sin x ecos2 x
x0
2x
1. 2e
ln
x
C
x 0时 ( ln x ) [ ln(x) ] 1
(4)
1
dx x
2
arctan
x
C
x
或 arccot x C
微积分基本定理
A.
d
f (x)dx
a
B.
d
f (x)dx
a
C.
b
f (x)dx
c
f (x)dx
d
f (x)dx
a
b
c
y
D.
b
c
f (x)dx f (x)dx
y loga x (a 0, a 1, x 0)
y 1 x ln a
y sin x
y cos x
y cos x
y sin x
注:ln a loge a ,称为 a 的自然对数,其底为e ,e 是一个和 π 一样重要的无理数e 2.7182818284 . 注意 (ex ) ex .
0
2
【答案】 2π
【例3】
求定积分
1
(
1 (x 1)2 x)dx .
0
【解析】
1
(
1 (x 1)2 x)dx
1
1 (x 1)2 dx
1 xdx ,
0
0
0
设 y 1 (x 1)2 ,则 (x 1)2 y2 1( y ≥0) ,
∵ 1 1 (x 1)2 dx 表示以1 为半径的圆的四分之一面积, 0
2π
| cos x | dx
0
π
2 cos xdx
0
3π
2 π
( cos
x)dx
2π 3π
cos
xdx
.
2
2
3 / 15
同步课程˙微积分基本定理 y
1
O
2 x
【答案】
2π
| cos x | dx
0
π
2 cos xdx
微积分基本定理
§3微积分基本定理()baf x dx ⎰=()ba f t dt ⎰. [,]x ab ∀∈.()()x aF x f t dt =⎰.在[,]a b 有定义.定理1 若[,]f R a b ∈,()()xaF x f t dt =⎰,则(1) ()F x 是[,]a b 上的连续函数.(2) 若()f x 在[,]a b 上连续,则()F x 是[,]a b 上可微,且()()F x f x '=. 证明:(1)0[,]x a b ∀∈,00()()()()()xx xaax F x F x f t dt f t dt f t dt -=-=⎰⎰⎰.[,]m M η∃∈.00()()()0F x F x x x η-=-→.(2)00()()()()F x F x f x x ξ-=-.00000()()limlim ()()x x x F x F x f f x x x ξξ→→-==-. 推论 ()()()()()(())()(())()x x F x f t dt f x x f x x ϕψϕϕψψ''''==-⎰.证明:设()()uaG u f t dt =⎰.()(())()x aG x f t dt ϕϕ=⎰.()(())()x aG x f t dt ψψ=⎰. ()()G u f u '=.((()))(())()G x G x x ϕϕϕ'''=. ()()()()()x x aaF x f t dt f t dt ϕψ=-⎰⎰.例1:232002sin 2limlim 33x x x x x x x ++→→==⎰. ()f x 的积分上限给出()f x 的一个原函数,即()()xaf x dx f t dt C =+⎰⎰()()xad f t dt f x dx =⎰ 若()()uaF u f t dt =⎰()u x ϕ=,则()(())()()[()]()x af t dt F u x f x x ϕϕϕϕ''''==⎰.同理,()()()[()]()[()]()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎰. 例:求极限2032000sin 22sin 2limlim lim 333x x x x x x x x x x +++→→→⋅===⎰. 二.微积分基本定理定理2 设()f x 在[,]a b 上连续,()F x 是()f x 在[,]a b 上的一个原函数,则成立()()()()bba af x dx F b F a F x =-⎰.证明:()()xaf t dt F x c =+⎰,()0F a c +=.()()()xaf t dt F x F a ∴=-⎰. ()()()baf t dt F b F a ∴=-⎰.例2:111lim 122n n n n →∞⎛⎫+++⎪++⎝⎭1111111lim lim 121111nn x i n i n n n n n n→∞→∞=⎛⎫⎡⎤ ⎪⎢⎥=+++=⋅ ⎪⎢⎥ ⎪⎢⎥++++ ⎪⎣⎦⎝⎭∑ 110011lim ()ln 1ln 21ni i x i f x dx x n ξ→∞==∆==+=+∑⎰. 例3:121limsin sin sinn n n n n n πππ→∞-⎛⎫+++ ⎪⎝⎭1lim ()ni i x i f x ξ→∞==∆∑1sin xdx =⎰11cos x ππ-==112πππ+=.三.定积分的计算1.第一类换元法:()()()(())()()u x bb aa f x x dx f u du ϕϕϕϕϕ='=⎰⎰(())()ba f x d x ϕϕ⎡⎤=⎣⎦⎰.例:cos cos cos 10sin cos ()xx x exdx e d x e e e πππ-=-=-=-⎰⎰.或cos 11111t xt te dt e e e =---=-=-=-⎰.2.第二类换元法:()()()()(())()x t baa bf x dx f t t dt ϕβαϕαϕβϕϕ==='=⎰⎰.例:2()11cos x xe x f x x-⎧≥⎪=⎨≤≤⎪+⎩ -1x 0 求:21()f x dx -⎰. 21()f x dx -⎰=2021011cos x dx xe dx x -++⎰⎰=20222101cos 1()1cos 2x x dx e d x x --+---⎰⎰ =2020111sin 2x ctgx e x --⎛⎫-+- ⎪⎝⎭=202101cos 1sin 2x x e x ----=041sin 111cos 22x e x ---++=41sin1(1)21cos1e --++. 3.分部积分法:()()()()()()bbba aau x v x dx u x v x v x u x dx ''=-⎰⎰.例:000sin (cos )cos sin x xdx x x xdx x ππππππ=-+=+=⎰⎰.4.利用函数的特殊性质计算积分: 定理3 ()[,]f x R a a ∈-, (1)若()f x 为偶函数,则有0()2()aaaf x dx f x dx -=⎰⎰;(2)若()f x 为奇函数,则有()0aaf x dx -=⎰.证明:()()()aa aaf x dx f x dx f x dx --=+⎰⎰⎰00()()[()()]a aaf t dt f x dx f x f x dx =--+=-+⎰⎰⎰.例:222202(sin )(cos )(sin )()(sin )x t f x dx f x dx f x dt f x dx πππππ=-==-=⎰⎰⎰⎰.例:222000sin cos sin cos 2sin cos sin cos sin cos 2x x x x dx dx A A dx x x x x x x ππππ+==⇒==+++⎰⎰⎰.例:2sin n n xdx I π=⎰,121sin [(1)sin cos ]n n n n xdx I n I x x n--==--⎰ 2201n n n n I II nπ--== 2n ≥. 210sin 1I xdx π==⎰, 02I π=.01131(1)!!22!!2132(1)!!23!!n n n I n n n n n n I n n n π---⎧=⋅⋅⋅=⋅⎪⎪-⎨---⎪=⋅⋅⋅=⎪-⎩ n=偶数 n=奇数例:设21()xt f x e dt -=⎰不能用初等函数表示,221111110000011()()()(1)(1)0(1)22x x f x dx xf x xf x dx f xe dx f e e --'=-=-=+=+-⎰⎰⎰.定理4 ()f x 是以T 为周期的可积函数,则a ∀有0()()a TTaf x dx f x dx +=⎰⎰.注:计算定积分应该注意的问题(1)换元时,上下限应改变.(2)第二类换元不必一一对应.(3)若积分函数积分区域不连续,应变形去掉不连续点.。
微积分学基本定理
(4)性质 : 1) Cf ( x )dx C f ( x )dx 2) f ( x ) g ( x )dx
a b
b
a
f ( x )dx g ( x )dx
a b c
b
3) f ( x )dx
a
b
c
a
f ( x )dx f ( x )dx
x ln x x (7 ) log a xdx ln a (9) cos xdx sin x C
计算不定积分: (1) ( x 3)( x 2)dx; ( x 1)( x 2) ( 2) dx; x cos 2 x ( 3) dx cos x sin x
b
a
f ( x )dx F ( x ) | F ( b ) F ( a )
b a
计算定积分的方法: f ( x )dx
aபைடு நூலகம்
b
(1)定义法 ( 2)面积法(曲边梯形面积 ) ( 3)公式法( 微积分基本定理 )F ( x ) f ( x )
/
b
a
f ( x )dx F ( x ) | F ( b ) F ( a )
微积分学基本定理
一、问题的提出
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度v v ( t ) 是时 t 的一个连续函数,且v ( t ) 0 , 间间隔[T1 , T2 ]上 求物体在这段时间内所经过的路程.
变速直线运动中路程为
T
T2
1
v ( t )dt
另一方面这段路程可表示为 s(T2 ) s(T1 )
微积分基本定理
1
2
x ,0 ≤ x < 1 , 例8 设 f ( x ) = x,1 ≤ x ≤ 2
2
上的表达式. 求 Φ( x ) = ∫0 f (t )dt ,在 [0,2] 上的表达式
x
解
当 0 ≤ x < 1 时,
Φ( x ) = ∫0 f (t )dt = ∫0 t dt
x x 2
1 t 3 = 1 x 3 = 3 0 3
3 2
3x 2 2x = − 12 1+ x 1 + x8
x 0 “ 型未定式,可利用洛必达法 型未定式, 解 这是一个 ” 0 1 −t cos x −t e 则计算, 则计算,分子为 ∫cos x dt=-∫1 e dt
2 2
例4
e ∫cos x 求 limt
由法则2得 由法则 得
(2)定理2 (2)定理2 定理
分上限函数Φ ( x ) = ∫ f (t )dt 是 f ( x ) 在区间
x
上连续, 若函数 f ( x ) 在 [a, b]上连续,则积
a
上的一个原函数. [a, b] 上的一个原函数.
此定理一方面说明了连续函数一定存在原函数, 此定理一方面说明了连续函数一定存在原函数, 另一方面也说明了定积分与原函数之间的关系, 另一方面也说明了定积分与原函数之间的关系, 从而可能用原函数来计算定积分. 从而可能用原函数来计算定积分
3.法则3 3.法则3 法则
α ( x ) ∈ [a , , β ( x ) ∈ [a , b] 且α ( x ) 与 β ( x ) b] ,
都可微, 都可微,则有
若函数 f ( x )在区间 [a, b]上连续, 上连续,
微积分基本公式和基本定理
利用泰勒公式展开函数$f(x) = sin x$在$x = frac{pi}{2}$处的幂级数。
答案
根据泰勒公式,得到$sin x = sum_{n=0}^{infty} (1)^n cdot frac{x^{2n+1}}{(2n+1)!}$。代入$x = frac{pi}{2}$,得到$sin frac{pi}{2} = sum_{n=0}^{infty} (-1)^n cdot frac{(frac{pi}{2})^{2n+1}}{(2n+1)!} = 1$。
求函数$f(x) = ln(x + sqrt{1 + x^2})$的导数。
利用链式法则和基本导数公式 ,得到$f'(x) = frac{1}{sqrt{1 + x^2}} cdot frac{x}{sqrt{1 + x^2}} = frac{x}{1 + x^2}$。
积分习题及答案
题目
计算$int_0^1 (x^2 + 1) dx$。
泰勒公式是一个重要的微积分定理,它可以用来近似计算复杂的函数。通过泰勒公式,可以将一个复 杂的函数展开成多项式的和,从而简化计算。
泰勒公式在近似计算中广泛应用于数值分析、物理、工程等领域。例如,在计算物理现象的近似解时 ,可以使用泰勒公式来逼近真实解。此外,泰勒公式还可以用于求解函数的极限、证明不等式等数学 问题。
牛顿-莱布尼兹定理
总结词
牛顿-莱布尼兹定理是计算定积分的 核心定理,它提供了计算定积分的简 便方法。
详细描述
牛顿-莱布尼兹定理表述为:对于任意 在[a, b]区间上连续的函数f(x),F(x)是f(x)的一个原函数。这个定理大大 简化了定积分的计算过程,是微积分学 中的重要内容。
1.8微积分基本定理
授课主题 微积分基本定理教学目标1.直观了解并掌握微积分基本定理的含义. 2.会利用微积分基本定理求函数的积分.教学内容1. 微积分基本定理:如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ) .定理中的式子称为“牛顿—莱布尼茨公式”,通常称F (x )是f (x )的一个原函数.在计算定积分时,常常用记号F (x )|b a来表示F (b )-F (a ),于是牛顿—莱布尼茨公式也可写作ʃb a f (x )d x =F (x )|ba =F (b )-F (a ).2. 定积分和曲边梯形面积的关系:设曲边梯形在x 轴上方的面积为S 上,x 轴下方的面积为S 下,则 (1)当曲边梯形的面积在x 轴上方时,如图(1),则ʃb a f (x )d x =S 上. (2)当曲边梯形的面积在x 轴下方时,如图(2),则ʃb a f (x )d x =-S 下.(3)当曲边梯形的面积在x 轴上方、x 轴下方均存在时,如图(3),则ʃba f (x )d x =S 上-S 下,若S 上=S 下,则ʃb a f (x )d x =0.题型一 利用微积分基本定理求定积分 例1 (1)求定积分⎰202x d x 的值;(2)求定积分⎰1-1(2x -x 2)d x 的值;(3)求定积分⎰0-π(sin x +2e x )d x 的值. 解析:(1) ⎰202x d x =2⎰20x d x =2×⎪⎪12x 220=22-02=4.(2) ⎰1-1(2x -x 2)d x =⎰1-12x d x +⎰1-1(-x 2)d x =x 2|1-1-13x 3|1-1=-23. (3) ⎰-π(sin x +2e x )d x =⎰0-πsin x d x +2⎰-πe x d x =-cos x |0-π+2e x |0-π=-cos 0+cos(-π)+2(e 0-e -π)=-2eπ. 点评:应用微积分基本定理求定积分时,首先要求出被积函数的一个原函数,在求原函数时,通常先估计原函数的类型,然后求导数进行验证,在验证过程中要特别注意符号和系数的调整,直到原函数F (x )的导函数F ′(x )=f (x )为止(一般情况下忽略常数),然后再利用微积分基本定理求出结果. 巩 固 求下列定积分的值.(1) ⎰10(2x +3)d x ; (2) ⎰1-2(1-t 3)d t ;(3) ⎰π02sin ⎝⎛⎭⎫x +π4d x ; (4) ⎰31⎣⎡⎦⎤6x ⎝⎛⎭⎫x +1x 2d x . 分析:利用微积分基本定理,关键是求出相应被积函数的一个原函数. 解析:(1)∵(x 2+3x )′=2x +3,∴⎰10(2x +3)d x =(x 2+3x )|10=1+3=4.(2)∵⎝⎛⎭⎫t -14t 4′=1-t 3, ∴⎰1-2(1-t 3)d t =⎪⎪⎝⎛⎭⎫t -14t 41-2=1-14-⎣⎡⎦⎤-2-14(-2)4=7-14=274. (3)因为2sin ⎝⎛⎭⎫x +π4=2⎝⎛⎭⎫sin x ·22+cos x ·22=sin x +cos x , 又(-cos x +sin x )′=sin x +cos x ,所以 ⎰π02sin ⎝⎛⎭⎫x +π4d x =⎰π0( sin x +cos x ) d x =(-cos x +sin x )|π0 =(-cos π+sin π)-(-cos 0+sin 0)=2. (4) ⎰31⎣⎡⎦⎤6x ⎝⎛⎭⎫x +1x 2d x =⎰31(6x 2+6+12x ) d x =(2x 3+6x +6x 2)|31=(54+18+54)-(2+6+6)=112 题型二 求分段函数的定积分例2 若函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x ,x ∈(2,3],求⎰30f (x )d x 的值.解析:由积分的性质,知:⎰30f (x )d x =⎰10f (x )d x +⎰21f (x )d x +⎰32f (x )d x =14+432-23+8ln 2-4ln 2=-512+432+4ln 2. 点评:分段函数在区间[a ,b ]上的定积分可分成n 段定积分和的形式,分段的标准可按照函数的分段标准进行;带绝对值号的解析式,可先化为分段函数,然后求解. 巩 固 ⎰3-3 (|2x +3|+|3-2x |)d x .解析:设y=|2x+3|+|3-2x|=⎩⎪⎨⎪⎧-4x,x≤-32,6,-32<x<32,4x,x≥32.所以⎰3-3(|2x+3|+|3-2x|)d x=323(4)x---⎰d x+32326-⎰d x+3324x⎰d x==(-2)×⎝⎛⎭⎫322-(-2)×(-3)2+6×32-6×⎝⎛⎭⎫-32+2×32-2×⎝⎛⎭⎫322=45.题型三利用定积分求参数例3已知f(x)=ax2+bx+c(a≠0),且f(-1)=2,f′(0)=0,⎰10f(x)d x=-2,求a,b,c的值.解析:由f(-1)=2得a-b+c=2.①因为f′(x)=2ax+b,所以f′(0)=b=0.②又⎰10f(x)d x=⎰10(ax2+bx+c)d x=⎪⎪⎝⎛⎭⎫13ax3+12bx2+cx10=13a+12b+c,所以13a+12b+c=-2③解①②③组成的方程组得a=6, b=0,c=-4.点评:利用定积分求参数,根据题设条件列出关于参数的方程(组),解方程(组)得参数的值.巩固f(x)是一次函数,且⎰10f(x)d x=5,⎰10xf(x)d x=176,求f(x)的解析式.解析:设f(x)=ax+b(a≠0),则⎰10(ax+b)d x=⎰10ax d x+⎰10b d x=12ax2⎰10+bx⎰10=12a+b,⎰10x(ax+b)d x=⎰10(ax2+bx)d x=13ax3⎰10+12bx2⎰10=13a+12b,由⎩⎨⎧12a+b=5,13a+12b=176,解得a=4,b=3,故f(x)=4x+3.A组1.下列各定积分等于1的是()A.⎰10x d xB.⎰10(x+1)d xC.⎰101d xD.⎰1012d x解析:⎰10x d x =12x 2⎰10=12; ⎰10(x +1)d x =⎝⎛⎭⎫12x 2+x ⎰10=32;⎰101d x =x |10=1; ⎰1012d x =12x ⎰10=12. 答案:C 2. ⎰421xd x 等于( ) A .-2ln 2 B .2ln 2 C .-ln 2 D .ln 2 解析:⎰421xd x =ln x |42=ln 4-ln 2=ln 2. 答案:D3.函数y =⎰x 0cos x d x 的导数是( )A .cos xB .-sin xC .cos x -1D .sin x 答案:AB 组一、选择题1. ⎰10(e x+2x )d x =( )A .1B .e -1C .eD .e +1 答案:C2.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则⎰1-1f (x )d x 的值为( )A.32B.43C.23 D .-23 答案:B3.由曲线y =x 2-1,直线x =0,x =2和x 轴围成的封闭图形的面积(如图阴影部分)是( )A. ⎰20(x 2-1)d xB. |⎰20(x 2-1)d x |C. ⎰20|x 2-1|d xD. ⎰20(x 2-1)d x +⎰21(x 2-1)d x答案:C4.下列定积分计算正确的是( )A. ⎰π-πsin x d x =4 B. ⎰102xd x =1C. ⎰21⎝⎛⎭⎫1-1x d x =ln e 2D. ⎰1-13x 2d x =3解析:⎰π-πsin x d x =-cos x|π-π=0; ⎰102xd x =12ln 2x=log 2e ; ⎰21⎝⎛⎭⎫1-1x d x = |(x -ln x )21=1-ln 2=ln e 2; ⎰1-13x 2d x =x 3|1-1=2.故选C.答案:C5.若⎰a 1⎝⎛⎭⎫2x +1x d x =3+ln 2,则正数a 的值为( ) A .1 B .2 C .3 D .5解析:⎰a 1⎝⎛⎭⎫2x +1x d x = |(x 2+ln x )a 1=a 2+ln a -1=3+ln 2,所以a 2-1=3,所以a =-2(舍去),a =2.故选B. 答案:B 二、填空题6.定积分⎰21x d x =__________. 答案:23(22-1)7.若⎰T 0x 2d x =9,则常数T 的值为________.解析:因为⎝⎛⎭⎫x 33′=x 2,所以⎰T 0x 2d x =⎝⎛⎭⎫x 33|T 0=9,所以T =3. 答案:38.计算定积分⎰1-1(x 2+sin x )d x =________. 答案:23三、解答题9.计算下列定积分:(1) ⎰30|2-x |d x ;解析: ⎰30|2-x |d x =⎰20(2-x )d x +⎰32(x -2)d x = ⎪⎪⎝⎛⎭⎫2x -12x 220+⎪⎪⎝⎛⎭⎫12x 2-2x 32=2+12=52. (2)⎰π2-π2cos 2x d x .解析:10.若函数f (x )=ax +b (a ≠0),且⎰10f (x )d x =1,求证:⎰10[f (x )]2d x >1.证明:由于⎰10f (x )d x =⎰10(ax +b )d x =⎪⎪⎝⎛⎭⎫12ax 2+bx 10=12a +b , 所以12a +b =1,所以⎰10[f (x )]2d x =⎰10(ax +b )2d x =⎰10(a 2x 2+2abx +b 2)d x =⎪⎪⎝⎛⎭⎫13a 2x 3+abx 2+b 2x 10=13a 2+ab +b 2=⎝⎛⎭⎫12a +b 2+112a 2=1+112a 2>1(a ≠0),故原不等式成立.1. 设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则ʃ21f (-x )d x 的值等于 ( )A.56 B.12 C.23 D.16答案 A解析 由于f (x )=x m +ax 的导函数为f ′(x )=2x +1, 所以f (x )=x 2+x ,于是ʃ21f (-x )d x =ʃ21(x 2-x )d x =⎝⎛⎭⎫13x 3-12x 2|21=56. 2.(sin x -a cos x )d x =2,则实数a 等于( )A .-1B .1C .- 3 D. 3 答案 A 解析=-a +1=2,a =-1.3. 由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为 ( )A.12 B .1 C.32D. 3答案 D 解析4. 设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈[1,e](其中e 为自然对数的底数),则ʃe 0f (x )d x 的值为( )A.43B.54C.65D.76答案 A解析 根据定积分的运算法则,由题意,可知ʃe 0f (x )d x =ʃ10x 2d x +ʃe 11x d x =13x 3|10+ln x |e 1=13+1=43. 5. ʃ30(x 2+1)d x =________.答案 12解析 ʃ30(x 2+1)d x =⎝⎛⎭⎫13x 3+x |30=13×33+3=12. 6. 如图所示,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是________.答案 43解析 由⎩⎪⎨⎪⎧y =-x 2+2x +1y =1,得x 1=0,x 2=2.∴S =ʃ20(-x 2+2x +1-1)d x =ʃ20(-x 2+2x )d x =⎝⎛⎭⎫-x 33+x 2|20=-83+4=43.。
微积分学基本定理及基本积分公式
1.变限定积分
f (t) 在[a, b]上可积,则对 x [a, b], f (t) 在[a, x]上
可积,即 x f (t )dt . a
---变上限定积分
1) 变上限定积分是上限的函数
设 f 在[a, b]上可积,
x
( x) a f (t)dt, x [a, b]
(1 x2 ) x2 x2 (1 x2 ) dx
=
1 x2
dx
1 1 x2
dx
=
1 x
arctan
x
C
.
结果是否正确,检验方法
求导,看积分结果的导函数是否为被积函数
例 5 (3) tan2 x dx (sec2 x 1)dx tan x x C
EXE (4)
1 dx 1 x2
F(x) ex2 (x2 ) 2xex2 .
一般地,
u(x)
v( x)
f (t) dt f (u( x))u( x) f (v( x))v( x)
.
( x) x f (t)dt , ( x) f ( x) .
2) 变上限a 定积分求导
例 2
F(x)
x
( x t) f (t) dt,
结论:若 F ( x)为 f ( x) 的任一原函数, 则(1)F(原 x) 函 C数为的f存( x在) 的性原函数的全体,其中 C 为常数.
已有结论:若 f ( x) C[a, b] , 则 f ( x) 在[a, b]上一定存在原函数.
(2) 原函数不唯一
若 f ( x) 在[a, b]上有原函数,则有一个必有无穷多个.
即从一条曲线上下平移而得 3) 基本积分公式
微积分的基本定理
dx a
由 F(x)
x
f (t)dt
及
F(x)
f (x) 你会想到什么?
a
F(x)是f(x)的一个原函数。
这说明,连续函数必有原函数。
定理
若 f (x) C([a,b]), 则 F(x)
x
f (t)dt, x [a,b]
a
为 f (x) 在[a,b] 上的一个原函数.
推论1 若 f (x) C( I ) , 则 f (x) 在 I 上原函数存在.
2x x2 sint 2dt 2x3 sin x4 . 0
例 6.3.2 设f ( x)为连续函数,证明:
x
xt
0 ( x t) f (t)dt 0 (0 f (u)du)dt.
证
设F( x)
x
( x t) f (t)dt, G( x)
xt
( f (u)du)dt.
0
0
2 0 | cos x | d x
去绝对 值符号(如果 是分段函数, 则利用积分 的性质将积 分分成几个 部分的和的 形式.)
2 2 cos x d x 0
2 (cos x)d x
2
2sin
x
2 0
2sin x
2
2.
2
例6.3.6 设
x2, 1 x 0
f
(
x)
e
x
,
0 x1
求 1 f ( x)dx. 1
解
1 f ( x)dx
0
f ( x)dx
1
微积分七个基本定理
微积分七个基本定理
1、定义域定理(积分定义域定理):如果函数f(x)有连续的导数f'(x),那么f(x)在定义域内具有定义连续性。
2、基本定理(积分基本定理):设内一区间上有一函数f(x),若f(x)在这区间上存在连续的导数f'(x),那么f(x)的定积分就存在,且可以用反常积分形式表示。
3、基本定理(积分变换定理):如果函数f(x)和函数g(x)都在某一区间(a,b)上具有反常积分,则有f(x)g(x)在区间(a,b)上有定积分。
4、分部积分定理(部分积分定理):若f(x)是a到b范围内任意一点x上的可积函数,则有∫f(x)dx=∫f(x)dx+∫f(x)dx。
5、置换定理:积分置换定理正如名字说的,即把函数f(x)的变量由x换成g(x)的变量,在规定的变换空间内,得到的积分值相等。
6、定理(积分级数定理):积分级数定理表明,若函数f(x)在区间[a,b]上连续,那么函数的定积分值等同于其积分级数的和。
7、变量替换定理:变量替换定理定义为:如果函数f(x)与变量x 具有连续导数,且变量u=g(x)具有连续导数,那么:∫f(u)d u=∫f (x)g'(x)dx。
微积分基本公式16个
微积分基本公式16个微积分是数学的一门重要分支,它主要研究函数的极限、导数、积分等概念和性质。
微积分的基本公式是我们学习和应用微积分的基础,下面将介绍微积分的16个基本公式。
1.1+1=2这是微积分的最基本的公式,表示两个数相加得到另一个数。
2.a*b=b*a这是乘法交换律,表示两个数相乘的结果与顺序无关。
3.a+(b+c)=(a+b)+c这是加法结合律,表示三个数相加的结果与加法的顺序无关。
4.a*(b+c)=a*b+a*c这是乘法分配律,表示一个数与两个数相加的结果等于这个数与每个数相加的结果之和。
5.a-b=-(b-a)这是减法的性质,表示两个数相减的结果与减法的顺序无关。
6.a/b=b/a这是除法的性质,表示两个数相除的结果与除法的顺序无关。
7. (a+b)^2=a^2+2ab+b^2这是二次方的展开公式,表示两个数的和的平方等于它们的平方和加上两倍的乘积。
8. (a-b)^2=a^2-2ab+b^2这是二次方差的公式,表示两个数的差的平方等于它们的平方差减去两倍的乘积。
9.(a+b)*(a-b)=a^2-b^2这是差的平方公式,表示两个数的和与差的乘积等于它们的平方差。
10. (a+b)^3=a^3+3a^2b+3ab^2+b^3这是立方和的展开公式,表示两个数的和的立方等于它们的立方和加上三倍的乘积加上三倍的乘积再加上立方。
11. (a-b)^3=a^3-3a^2b+3ab^2-b^3这是立方差的公式,表示两个数的差的立方等于它们的立方差减去三倍的乘积加上三倍的乘积再减去立方。
12. (a+b)*(a^2-ab+b^2)=a^3+b^3这是立方和的因式分解公式,表示两个数的和与和的平方差的乘积等于它们的立方和。
13. (a-b)*(a^2+ab+b^2)=a^3-b^3这是立方差的因式分解公式,表示两个数的差与差的平方和的乘积等于它们的立方差。
14. (a+b)^n=a^n+na^(n-1)b+(n(n-1)/2)a^(n-2)b^2+...+nb^(n-1)+b^n这是二项式定理,表示两个数的和的n次方等于它们的各种组合的乘积之和。
计算定积分的一般方法-微积分基本定理
微积分基本定理
• 前面介绍了不定积分的概念与性质,指出了不定 积分与定积分之间的区别。
• 牛顿和莱布尼兹最先发现了微分和积分的内在关 系,找到了定积分与不定积分之间的联系,因此 创立了微积分学。
2.1 微积分学基本定理
1
例1 计算 x4dx 0
例2 计算
3 dx 1 1 x2
2
例3 计算 sin2x cos xdx 0
① 变上限的定积分的定义
② 变上限定积分的性质
连续函数的原函数存在定理
• (1) 上述定理
③ 微积分基本定理的证明
例1 求
d
x
cos(1 t2)dt
dx 0
例2 求 d 1 1 tdt dx x
x
cos3 tdt
例3 求极限 lim 0 x0 2x
a
a
f (x)dx 2 f (x)dx
-a
0
(2)若f (x)在[-a, a]上连续且为奇函数,则
a
f (x)dx 0
-a
定理2 定积分分部积分法
设u(x), v(x)在[a,b]上具有连续导数的函数,则
b
b
uvdx
(uv)
b a
uvdx
a
a
b
b
或
u
dv
(uv)
b a
vdu
a
a
这就是定积分的分部积分公式.
以下条件:
或t [, ]
(1) :() a, ( ) b, 且a (t) b, t [, ].
(2) : 在[, ]上有连续导数(t),则有定积分换元公式
b 或[, ]
f (x)dx f ((t))(t)dt.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分基本定理
一、教材分析
1、教材的地位及作用
微积分基本定理是普通高中课程标准实验教科书(人教版)高二年级数学(选修2-2)第一章第六节内容,本节内容共设计两个课时,这是第一课时,这节课的主要内容是微积分基本公式的导出以及用它求定积分。
本节课是学生学习了导数和定积分这两个概念后的学习,它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。
因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。
2、教学目标
根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节课的教学目标如下:
(1)知识与技能目标:通过实例,直观了解微积分基本定理的含义,会求简单的定积分。
(2)过程与方法目标:通过实例体会用微积分基本定理求定积分的方法。
(3)情感、态度与价值观目标:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。
3、教学重点、难点
重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。
(根据教材内容特点及教学目标的要求)
难点:了解微积分基本定理的含义。
(根据学生的年龄结构特征和心理认知特点)
——以学生现有的知识水平对于微积分基本定理的严密证明是存在着一定难度的,而突破难点的关键在于让学生主动去探索,体会微积分基本公式的导出以及利用它来计算简单的定积分,这样才能从真正意义上把握该定理的含义,提高学生的能力,体现学生的主体地位。
二、教法和学法
1、教法:
素质教育理论明确要求:教师是主导,学生是主体,只有教师在教学过程中注重引导,才能充分发挥学生的主观能动性,有利于学生创造性思维的培养和能力的提高,根据本节的教学内容及教学目标和学生的认识规律,我采用类比、启发、引导、探索式相结合的方法,启发、
引导学生积极思考本节课所遇到的问题,引导学生联想旧知识来解决和探索新知识,从而使学生产生浓厚的学习兴趣和求知欲,体现了学生的主体地位。
2、学法:
学法要突出自主学习,研讨发现,知识是通过学生自己积极思考,主动探索获得的,学生在教师的引导下通过观察、讨论、交流、合作探究等活动来对知识、方法和规律进行总结,在课堂活动中注重引导学生并让学生体会从局部到整体,特殊到一般和用数形结合的方法获取知识的过程,培养学生学习的主动性。
三、教具
多媒体课件(可以增强课堂的趣味性,能够在动态演示中化解教学难点,有效解决教学重点,增大课堂的容量,提高课堂效率)
四、教学设想
(一)创设问题情境
问题:同学们能否用定积分的定义来求的值?
——让学生在动手过程中感受到“用定义”来求是定积分极其困难,激发学生寻找计算定积分新方法的认识需要和求知欲,引导学生自觉思考,主动探索新知。
(二)探索新知
我会类比于两个实数加法的逆运算是减法。
乘法的逆运算是除法,而两向量的加法运算和减法运算是互为逆运算的,类似地提出问题:
1、求定积分运算有没有逆运算,它的逆运算我们如何去定义?
2、求导和求定积分运算是否具有以上关系呢?
——以学生现有的知识水平想到导数和定积分的内在联系是很困难的,引导学生大胆尝试,并主动探索它们之间的内在联系。
3、——为解决教学重点和化解教学难点,提供清晰地、严密地思路,使教学重点明了、清晰化。
引导学生把探究的基本思路分解成以下3个内容:
①如果做变速直线运动的物体的运动规律是s=s(t),那么它在时刻t的速度是什么?
复习位移与速度之间的关系:V (t)=s′(t) ——基本定理的条件雏形。
——联想旧知识,为解决新知作准备。
②如何用s(t)表示物体在[a, b]内的位移S?
引导学生画出函数s= s(t)的图像,通过观察s= s(t)的图像或根据位移的定义探索发现并得出S= s(b)-s(a)——基本定理的右端雏形。
——让学生体会数形结合的方法,并巩固旧知识。
③如何用V (t)表示物体在[a, b]内的位移S?
引导学生利用导数的几何意义,从图像上直观地观察近似值的意义并用定积分得出S= V (t)dt——基本定理左端雏形。
(让学生体会数形结合的方法和联想旧知识的作用。
)
——在这一过程中体现了定积分的基本思想,突出了导数的几何意义,体现了数形结合这一数学中最基本的思想方法。
探索新知这一过程其实就是解决教学重点和化解教学难点的过程中,体现了教法和学法的统一。
(三)讨论归纳
1、问题:由以上探究同学们得出什么结论?
引导学生讨论后,归纳并得出基本定理的特例:
物体在区间[a, b]上的位移就是V (t)=s′(t)在区间[a, b]上的定积分等于函数s(t)在区间端点b,a处的函数值之差s(b)-s(a),即V (t) dt = s′(t) dt= s(b)-s(a)
——进一步突出重点,突破难点,并巩固和深化所学知识,形成基本技能,培养学生学习的主动性。
2、教师给出定理的一般形式
一般地,如果f(x)是区间[a, b]上的连续函数,并且
F′(x)= f(x),那么f(x) dx =F(b)-F(a)(F(b)-F(a)记为F(x)| a)
这个结论叫做微积分基本定理(牛顿—莱布尼兹公式),而这个结论是对探索新知中前两个问题的完美解答。
——在这里我插入关于牛顿和莱布尼兹的个人背景材料,以及他们的学术成果在整个社会乃至全世界的影响,有利于丰富课堂内容。
由微积分基本定理的特例进而一般化而获得知识的方法是从特殊到一般、从局部到整体的方法,符合认识规律。
把这种研究问题的方法渗透到学法中,体现了教法和学法的统一。
(四)巩固练习,强化提高,并得出结论。
课本55页练习题
用微积分基本定理求定积分的方法比“定义法”来得更优越些,而利用基本定理求定积分的关键是求出满足F′(χ)=f(χ)的函数F(χ),而求出函数F(χ)的方法是运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出F(χ)。
——即能达到教学目标的要求又能进一步巩固和深化所学知识,形成基本技能,培养学生的主动探索能力。
(五)布置作业
学案一二课时。