考前三个月高考数学(全国甲卷通用理科)知识方法篇专题1集合与常用逻辑用语二第2练
高考数学专题复习《集合与常用逻辑用语》知识梳理及典型例题讲解课件(含答案)
(一)高考考点解读
高考考点
1. 集合的概念及运算 2. 命题及逻辑联结词、全称量词与存在量词 3. 充要条件的判断
考点解读
1. 以函数的定义域、值域、不等式的解集为背景考查集合的 交、并、补的基本运算 2.利用集合之间的关系求解参数的值或取值范围 3.以新定义集合及集合的运算为背景考查集合关系及运算
2.若命题“ x R , x2 2x a 0 ”为假命题,则实数 a 的取值范围是 ___________.
答案: (,1) 解析: x2 2x a (x 1)2 a 1.因为“ x R , x2 2x a 0 ”为假命题, 所以 a 1 0 ,即 a 1 .
(二)核心知识整合
含有量词的命题的否定,需从两方面进行: 一是改写量词或量词符号; 二是否定命题的结论,两者缺一不可.
1.若命题“ x R , x2 4x m 0”为假命题,则实数 m 的取值范围是( )
A.[4, )
B. (4, )
C. (, 4]
D. (, 4)
答案:B 解析:因为命题“ x R , x2 4x m 0”为假命题,所以一元二次方程 x2 4x m 0没有实数根,所以 16 4m 0,解得 m 4 .
(5)a. A A A,A A,A B B A; b. A A A,A ,A B B A ;
c A B,A B A B A .
2.集合运算中的常用方法 (1)数轴法:若已知的集合是不等式的解集,用数轴法求解. (2)图象法:若已知的集合是点集,用图象法求解. (3)Venn图法:若已知的集合是抽象集合,用Venn图法求解.
考点 3:充分与必要条件的判断
若p 、q中所涉及的问题与变量有关,p、q中相应变量的取值集合分别记为A,B,
高考数学(全国甲卷通用理科)知识 方法篇 专题1 集合与常用逻辑用语二 第2练 Word版含答案
第练用好逻辑用语,突破充要条件[题型分析·高考展望]逻辑用语是高考常考内容,充分、必要条件是重点考查内容,题型基本都是选择题、填空题,题目难度以低、中档为主,在二轮复习中,本部分应该重点掌握四种命题的真假判断、否命题与命题的否定的区别、含有量词的命题的否定的求法、充分必要条件的判定与应用,这些知识被考查的概率都较高,特别是充分、必要条件几乎每年都有考查.体验高考.(·山东)若∈,命题“若>,则方程+-=有实根”的逆否命题是().若方程+-=有实根,则>.若方程+-=有实根,则≤.若方程+-=没有实根,则>.若方程+-=没有实根,则≤答案解析原命题为“若,则”,则其逆否命题为“若綈,则綈”.∴所求命题为“若方程+-=没有实根,则≤”..(·天津)设∈,则“-<”是“+->”的().充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件答案解析-<⇔-<-<⇔<<,+->⇔<-或>,所以“-<”是“+->”的充分不必要条件,故选..(·重庆)“>”是“21(+)<”的().充要条件.充分不必要条件.必要不充分条件.既不充分也不必要条件答案 解析21(+)<⇔+>⇔>-,因此选..(·北京)设,是向量,则“=”是“+=-”的().充分不必要条件.必要不充分条件.充分必要条件.既不充分也不必要条件答案解析由+=-⇔(+)=(-)⇔·=⇔⊥,故是既不充分也不必要条件,故选..(·浙江)命题“∀∈,∃∈*,使得≥”的否定形式是().∀∈,∃∈*,使得<.∀∈,∀∈*,使得<.∃∈,∃∈*,使得<.∃∈,∀∈*,使得<答案解析全称命题的否定是特称命题,特称命题的否定是全称命题,≥的否定是<,故选. 高考必会题型。
高考数学专项复习专题一集合与常用逻辑用语
专题一集合与常用逻辑用语01 集合的概念题型一判断元素与集合的关系题型二根据元素与集合的关系求参数题型三利用集合互异性求参数题型四集合的描述方法题型五元素个数的求解及参数问题02 集合间的基本关系题型一判断集合的子集(真子集)个数题型二判断两个集合的包含关系及参数问题题型三两个集合相等求参数题型四空集性质及应用题型五根据集合相等关系进行计算03 集合的基本运算题型一根据交集结果求集合或参数题型一根据交集结果求集合或参数题型三根据补集结果求集合或参数题型四交并补混合运算确定集合或参数题型五容斥原理的应用题型六集合新定义04 充分条件与必要条件题型一根据充分不必要条件求参数题型二根据必要不充分条件求参数题型三根据充要条件求参数题型四充要条件的证明05 全称量词与存在量词题型一根据全称命题的真假求参数题型二根据特称(存在性)命题的真假求参数题型三含有一个量词的命题的否定的应用专题1 集合的概念题型一 判断元素与集合的关系 1.下面有四个语句: ①集合N *中最小的数是0; ②-a ∉N ,则a ∈N ;③a ∈N ,b ∈N ,则a +b 的最小值是2; ④x 2+1=2x 的解集中含有两个元素. 其中说法正确的个数是( ) A .0 B .1 C .2 D .3【答案】A【解析】因为N *是不含0的自然数,所以①错误; 取a =2,则-2∉N ,2 ∉N ,所以②错误;对于③,当a =b =0时,a +b 取得最小值是0,而不是2,所以③错误; 对于④,解集中只含有元素1,故④错误. 故选:A2.下列四个命题:①{0}是空集;②若a ∈N ,则-a ∉N ;③集合{x ∈R |x 2-2x +1=0}含有两个元素;④集合6|x Q N x ⎧⎫∈∈⎨⎬⎩⎭是有限集.其中正确命题的个数是( )A .1B .2C .3D .0【答案】D【解析】①{0}是含有一个元素0的集合,不是空集,所以①不正确; ②当a =0时,0∈N ,所以②不正确;③因为由x 2-2x +1=0,得x 1=x 2=1,所以{x ∈R |x 2-2x +1=0}={1},所以③不正确; ④当x 为正整数的倒数时,6x ∈N ,所以6|x Q N x ⎧⎫∈∈⎨⎬⎩⎭是无限集,所以④不正确.故选:D3.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5k n k n Z =+∈,0,1,2,3,4k =,给出如下四个结论:①[]20111∈;②[]33-∈;③若整数,a b 属于同一“类”,则[]0a b -∈;④若[]0a b -∈,则整数,a b 属于同一“类”.其中,正确结论的个数是( ). A .1 B .2C .3D .4【答案】C【解析】对于①,201154021÷=⋅⋅⋅,[]20111∴∈,①正确;对于②,352-=-+,即3-被5除余2,[]33∴-∉,②错误; 对于③,设15a n k =+,25b n k =+,()125a b n n ∴-=-,能被5整除,[]0a b ∴-∈,③正确;对于④,设5a b n -=,n Z ∈,即5a n b =+,n Z ∈, 不妨令5b m k =+,m Z ∈,0,1,2,3,4k =,则()555a n m k m n k =++=++,m Z ∈,n Z ∈,0,1,2,3,4k =,,a b ∴属于同一“类”, ④正确; 综上所述:正确结论的个数为3个. 故选:C .4.已知集合{10}A x x =,23a =+,则a 与集合A 的关系是( ) A .a A ∈ B .a A ∉ C .a A = D .{}a A ∈【答案】A【解析】解:{|10}A x x =,23224a =+<+=,10a <,a A ∴∈,故选:A .5.下列三个命题:①集合N 中最小的数是1;②a N -∉,则a N ∈;③a N ∈,N b ∈,则+a b 的最小值是2.其中正确命题的个数是( ) A .0 B .1 C .2 D .3【答案】A【解析】①N 表示自然数集,最小的数为0,①错误; ②若32a N -=-∉,则32a N =∉,②错误;③若0a =,1b =,则1a b +=,③错误. ∴正确命题的个数为0个故选:A6.用符号“∈”或“∉”填空:(1)0________N *,5________Z ;(2)23________{x |x <11},32________{x |x >4};(3)(-1,1)________{y |y =x 2},(-1,1)________{(x ,y )|y =x 2}.【答案】∉ ∉ ∉ ∈ ∉ ∈ 【解析】(1)*0N ∉ 5∉Z ;(2)22(23)(11)>,2311∴>,∴23{|11}∉<x x ; 22(32)4>,即324>,∴32{|4}∈>x x ;(3)(-1,1)为点,{y |y =x 2}中元素为数,故(-1,1) ∉{y |y =x 2}. 又∵(-1)2=1,∴(-1,1)∈{(x ,y )|y =x 2}. 故答案为:∉;∉;∉;∈;∉;∈ 题型二 根据元素与集合的关系求参数1.若由a 2,2019a 组成的集合M 中有两个元素,则a 的取值可以是( ) A .0 B .2019 C .1 D .0或2019【答案】C【解析】若集合M 中有两个元素,则a 2≠2 019a .即a ≠0且a ≠2 019. 故选:C.2.若集合2{|320}A x R ax x =∈-+=中只有一个元素,则(a = )A .92B .98C .0D .0或98【答案】D【解析】解:集合2{|320}A x R ax x =∈-+=中只有一个元素, 当0a =时,可得23x =,集合A 只有一个元素为:23.当0a ≠时:方程2320ax x -+=只有一个解:即980a ∆=-=, 可得:98a =. 故选:D .3.已知集合A 是由a ﹣2,2a 2+5a ,12三个元素组成的,且﹣3∈A ,求a =________. 【答案】32-【解析】解:由﹣3∈A ,可得﹣3=a ﹣2,或﹣3=2a 2+5a , 由﹣3=a ﹣2,解得a =﹣1,经过验证a =﹣1不满足条件,舍去.由﹣3=2a 2+5a ,解得a =﹣1或32-,经过验证:a =﹣1不满足条件,舍去.∴a =32-.故答案为:﹣32.4.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为________. 【答案】3 【解析】∵2{0,,32}A m m m =-+,且2A ∈,∴2m =或2322m m -+=,即2m =或0m =或3m =,当2m =时,与元素的互异性相矛盾,舍去;当0m =时,与元素的互异性相矛盾,舍去;当3m =时,{}032A =,,满足题意,∴3m =,故答案是3. 5.已知集合2{|320}A x ax x =-+=,其中a 为常数,且a R ∈. (1)若A 中至少有一个元素,求a 的取值范围; (2)若A 中至多有一个元素,求a 的取值范围. 【答案】(1)89≤a ;(2)89≤a 或0=a 【解析】解:(1)0a =,由320x -+=,解得23x =,满足题意,因此0a =. 0a ≠时,A 中至少有一个元素,∴980a ∆=-,解得89≤a ,0a ≠. 综上可得:a 的取值范围是89≤a . (2)0a =,由320x -+=,解得23x =,满足题意,因此0a =. 0a ≠时,A 中至多有一个元素,∴980a ∆=-,解得89≤a . 综上可得:a 的取值范围是89≤a 或0=a . 题型三 利用集合互异性求参数1.含有三个实数的集合既可表示为{,,0}bb a,也可表示为{,,1}a a b +,则+a b 的值为____. 【答案】0【解析】由题意{,,0}{,,1}b b a a b a=+,可得0a ≠,根据集合相等和元素的互异性,可得0a b +=且1b =,解得1,1a b =-=, 此时集合{,,0}{1,1,0},{,,1}{1,1,0}b b a a b a=-+=- 所以0a b +=. 故答案为0.2.已知集合22{2,(1),33}A a a a =+++,且1A ∈,则实数a 的值为________. 【答案】1-或0【解析】若()211,a +=则0a =或2,a =- 当0a =时,{}2,1,3A =,符合元素的互异性; 当2a =-时,{}2,1,1A =,不符合元素的互异性,舍去 若2a 3a 31,++=则1a =-或2,a =-当1a =-时,{}2,0,1A =,符合元素的互异性; 当2a =-时,{}2,1,1A =,不符合元素的互异性,舍去; 故答案为:1-或0.3.已知集合{}2411A a a a =+++,,{}2|0B x x px q =++=,若1A ∈.(1)求实数a 的值;(2)如果集合A 是集合B 的列举表示法,求实数p q ,的值. 【答案】(1)4a =-;(2)23p q ==-,.【解析】解:(1)∵1A ∈,∴2411a a ++=或者11a += 得4a =-或0a =,验证当0a = 时,集合{}11A =,,集合内两个元素相同,故舍去0a = ∴4a =-(2)由上4a =-得{}13A =-,,故集合B 中,方程20x px q ++=的两根为1、-3. 由一元二次方程根与系数的关系,得[1(3)]21(3)3p q =-+-==⨯-=-,.4.已知{}20,1,1a a a ∈--,求a 的值.【答案】1a =-【解析】由已知条件得:若a =0,则集合为{0,﹣1,﹣1},不满足集合元素的互异性,∴a ≠0; 若a ﹣1=0,a =1,则集合为{1,0,0},显然a ≠1;若a 2﹣1=0则a =±1,由上面知a =1不符合条件;a =﹣1时,集合为{﹣1,﹣2,0}; ∴a =﹣1.5.含有三个实数元素的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成2{,,0}a a b +,求20172018a b +的值. 【答案】-1【解析】由题意得,,1b a a ⎧⎫⎨⎬⎩⎭与2{,,0}a a b +表示同一个集合,所以0ba=且0a ≠,1a ≠,即0b =,则有{,0,1}a 与2{,,0}a a 表示同一个集合,所以21a =,解得1a =-,所以()2017201720182018101a b +=-+=-,故答案为:1-题型四 集合的描述方法 1.给出下列说法:①集合{}3x x x ∈=N 用列举法表示为{}1,0,1-;②实数集可以表示为{|x x 为实数}或{}R ;③方程组3,1x y x y +=⎧⎨-=-⎩的解组成的集合为{}1,2x y ==.其中不正确的有______.(把所有不正确说法的序号都填上) 【答案】①②③【解析】①由3x x =,即()210x x -=,得0x =或1x =或1x =-.因为1-∉N ,所以集合{}3x xx ∈=N 用列举法表示为{}0,1.②实数集正确的表示为{|x x 为实数}或R .③方程组3,1x y x y +=⎧⎨-=-⎩的解组成的集合正确的表示应为(){}1,2或()1,,2x x y y ⎧⎫=⎧⎪⎪⎨⎨⎬=⎩⎪⎪⎩⎭.故①②③均不正确. 2.定义集合运算(){}|,,AB z z xy x y x A y B ==+∈∈,集合{}{}0,1,2,3A B ==,则集合A B 所有元素之和为________【答案】18【解析】当0,2,0==∴=x y z 当1,2,6==∴=x y z 当0,3,0==∴=x y z 当1,3,12==∴=x y z 和为0+6+12=18 故答案为:183.设数集A 由实数构成,且满足:若x A ∈(1x ≠且0x ≠),则11A x∈- . (1)若2A ∈,试证明集合A 中有元素1-,12; (2)判断集合A 中至少有几个元素,并说明理由; (3)若集合A 中的元素个数不超过8,所有元素的和为143,且集合A 中有一个元素的平方等于所有元素的积,求集合A .【答案】(1)证明见解析;(2)至少有3个元素.理由见解析(3)112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭【解析】(1)由题意,因为2A ∈,可得1112A =-∈-. 因为1A -∈,则()11112A =-∈-.所以集合A 中有元素1-,12. (2)由题意,可知若x A ∈(1x ≠且0x ≠), 则11A x ∈-,1x A x -∈,且11x x ≠-,111x x x -≠-,1x x x-≠, 故集合A 中至少有3个元素.(3)由集合A 中的元素个数不超过8,所以由(2)知A 中有6个元素. 设1111,,,,,11x m A x m x x m m --⎧⎫=⎨⎬--⎩⎭,m x ≠,1x ≠且0x ≠,1m ≠且0m ≠, 因为集合A 中所有元素的积为1,不妨设21x =,或2111x ⎛⎫= ⎪-⎝⎭,或211x x -⎛⎫= ⎪⎝⎭.当21x =时,1x =(舍去)或1x =-;若1x =-,则1,22A ∈.∵集合A 中所有元素的和为143,∴1111421213m m m m -+-+++=-, ∴3261960m m m -++=,即()32261860m m m m ----=, 即()()23620m m m ---=,即()()()321320m m m -+-=,∴12m =-或3或23,∴112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.当2111x ⎛⎫= ⎪-⎝⎭或211x x -⎛⎫= ⎪⎝⎭时,同理可得112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭. 综上,112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.题型五 元素个数的求解及参数问题1.用()d A 表示集合A 中的元素个数,若集合()(){}2210A x x ax x ax =--+=,{}0,1B =,且()()1d A d B -=.设实数a 的所有可能取值构成集合M ,则()d M =( ) A .3 B .2C .1D .4【答案】A【解析】由题意,()()1d A d B -=,()2d B =,可得()d A 的值为1或3,若()1d A =,则20x ax -=仅有一根,必为0,此时a =0,则22110x ax x -+=+=无根,符合题意若()3d A =,若20x ax -=仅有一根,必为0,此时a =0,则22110x ax x -+=+=无根,不合题意,故20x ax -=有二根,一根是0,另一根是a ,所以210x ax -+=必仅有一根,所以2Δ40a =-=,解得2a =±,此时210x ax -+=的根为1或1-,符合题意,综上,实数a 的所有可能取值构成集合{0,2,2}M =-,故()3d M =. 故选:A .2.已知集合{}2,,M m m a b a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①12π+;②1162+;③122+;④2323-++A .4B .3C .2D .1【答案】C【解析】①当212a b π+=+时,可得1,a b π==,这与,a b Q ∈矛盾, ②()211623232+=+=+232a b ∴+=+ ,可得3,1a b == ,都是有理数,所以正确,③122212222-==-+,2212a b ∴+=-,可得11,2a b ==-,都是有理数,所以正确,④()22323426-++=+=而()2222222a b a b ab +=++ ,,a b Q ∈,()22a b ∴+是无理数,2323∴-++不是集合M 中的元素,只有②③是集合M 的元素. 故选:C3.已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .30【答案】C 【解析】因为集合,所以集合中有5个元素(即5个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.4.选择适当的方法表示下列集合: (1)被5除余1的正整数组成的集合;(2)由直线y =-x +4上的横坐标和纵坐标都是自然数的点组成的集合; (3)方程(x 2-9)x =0的实数解组成的集合; (4)三角形的全体组成的集合.【答案】(1){x|x=5k+1,k ∈N };(2){(x ,y )|y =-x +4,x ∈N ,y ∈N };(3){-3,0,3};(4){x|x 是三角形}或{三角形}. 【解析】(1){|51,}x x k k N =+∈; (2){(,)|4,,}x y y x x N y N =-+∈∈;(3)2(9)00x x x -=⇒=或3x =±,解集为{3,0,3}-, (4){|x x 是三角形}或写成{三角形}. 5.设A 是由一些实数构成的集合,若a ∈A,则11a- ∈A ,且1∉A , (1)若3∈A ,求A .(2)证明:若a ∈A ,则11A a-∈.【答案】(1)123,,23A ⎧⎫=-⎨⎬⎩⎭;(2)证明见解析.【解析】(1)因为3∈A , 所以11132A =-∈-, 所以12131()2A =∈--, 所以13213A=∈-,所以123,,23A ⎧⎫=-⎨⎬⎩⎭.(2)因为a ∈A , 所以11A a∈-, 所以1111111a Aa aa-==-∈---.专题2 集合间的基本关系题型一 判断集合的子集(真子集)个数1.设全集{}2250,Q x x x x N =-≤∈,且P Q ⊆,则满足条件的集合P 的个数是( )A .3B .4C .7D .8【答案】D【解析】由不等式2250x x -≤,解得502x ≤≤,即{}{}2250,0,1,2Q x x x x N =-≤∈= 又由P Q ⊆,可得满足条件的集合P 的个数为328=. 故选:D2.已知集合{}220|A x mx x m =-+=仅有两个子集,则实数m 的取值构成的集合为( )A .{}1,1-B .{}1,0,1-C .{}0,1D .∅【答案】B【解析】由集合A 仅有两个子集 可知集合A 仅有一个元素.当0m =时,可得方程的解为0x =,此时集合{}0A =,满足集合A 仅有两个子集当0m ≠时,方程220mx x m -+=有两个相等的实数根,则()22240m ∆=--=,解得1m =或1m =-,代入可解得集合{}1A =或{}1A =-.满足集合A 仅有两个子集综上可知, m 的取值构成的集合为{}1,0,1- 故选:B3.非空集合P 满足下列两个条件:(1)P ⊊{1,2,3,4,5},(2)若元素a ∈P ,则6﹣a ∈P ,则集合P 个数是__. 【答案】6【解析】根据条件:若元素a ∈P ,则6﹣a ∈P ,将集合{1,2,3,4,5}的元素分成三组:3、1和5、2和4. 因为P ⊊{1,2,3,4,5}, 当P 中元素只有一个时,P ={3};当P 中元素只有二个时,P ={1,5}或{2,4}; 当P 中元素只有三个时,P ={3,1,5}或{3,2,4}; 当P 中元素只有四个时,P ={2,4,1,5};当P 中元素有五个时,P ={3,2,4,1,5}不满足题意;综上所述得:则集合P 个数是:6. 故答案为:6.4.定义集合运算:{}|,,⊗==-∈∈A B z z x y x A y B ,若集合{}0,1A =,{}2,3B =,则集合A B ⊗的真子集的个数为_____.【答案】7【解析】由题知:{}3,2,1⊗=---A B 所以集合A B ⊗的真子集个数为3217-=. 故答案为:7题型二 判断两个集合的包含关系及参数问题 1.已知集合2|10Ax x ,则下列式子表示正确的有( )①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆. A .1个 B .2个C .3个D .4个【答案】C【解析】因为2{|10}A x x =-=,{1A ∴=-,1}, 对于①,1A ∈显然正确;对于②,{1}A -∈,是集合与集合之间的关系,显然用∈不对; 对于③,A ∅⊆,根据空集是任何集合的子集知正确; 对于④,{1,1}A -⊆.根据子集的定义知正确. 故选:C .2.已知集合{2,3,1}A =-,集合2{3,}B m =.若B A ⊆,则实数m 的取值集合为( ) A .{1} B .{}3C .{1,1}-D .{3,3}【答案】C【解析】因为B A ⊆,所以21m =,得1m =±, 所以实数m 的取值集合为{1,1}-. 故选:C3.若集合A ={x |2<x <3},B ={x |(x ﹣3a )(x ﹣a )<0},且A ⊆B ,则实数a 的取值范围是( ) A .1<a <2 B .1≤a ≤2C .1<a <3D .1≤a ≤3【答案】B【解析】∵A ={x |2<x <3},B ={x |(x ﹣3a )(x ﹣a )<0},且A ⊆B , ∴a >0,则B ={x |a <x <3a },∴233a a ≤⎧⎨≥⎩,解得1≤a ≤2,故选:B.4.已知集合{}25A x x =-≤≤,{121}B x m xm =+<<-,若B A ⊆,则实数m 的取值范围是____. 【答案】3m ≤【解析】依题意得:当B =∅时,121m m +≥-,即2m ≤.当B ≠∅时,12112215m m m m +<-⎧⎪+≥-⎨⎪-≤⎩,解得23m <≤.综上,3m ≤.5.写出下列每组中集合之间的关系: (1)A ={x |-3≤x <5},B ={x |-1<x <2}.(2)A ={x |x =2n -1,n ∈N *},B ={x |x =2n +1,n ∈N *}.(3)A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是四边形},D ={x |x 是正方形}. (4)A ={x |-1≤x <3,x ∈Z },B ={x |x =y ,y ∈A }. 【答案】(1)BA ;(2)BA ;(3)DB AC ;(4)B A . 【解析】(1)将两个集合在数轴上表示出来,如图所示,显然有BA ;(2)当n ∈N *时,由x =2n -1知x =1,3,5,7,9,…. 由x =2n +1知x =3,5,7,9,….故A ={1,3,5,7,9,…},B ={3,5,7,9,…},因此B A ;(3)由图形的特点可画出Venn 图,如图所示,从而可得DB AC ;(4)依题意可得:A ={-1,0,1,2},B ={0,1,2},所以B A .6.已知集合{}13A x x =<<,集合{}21B x m x m =<<-. (1)当1m =-时,求A B ; (2)若A B ⊆,求实数m 的取值范围; (3)若A B =∅,求实数m 的取值范围.【答案】(1){}23A B x x ⋃=-<<;(2)2m ≤-;(3)0m ≥. 【解析】(1)当1m =-时,{}22B x x =-<<,则{}23A B x x ⋃=-<<;(2)由A B ⊆知122113m m m m ->⎧⎪≤⎨⎪-≥⎩,解得2m ≤-,即m 的取值范围是(],2-∞-;(3)由A B =∅得①若21m m ,即13m ≥时,B =∅符合题意;②若21m m ,即13m <时,需1311m m ⎧<⎪⎨⎪-≤⎩或1323m m ⎧<⎪⎨⎪≥⎩. 得103m ≤<或m ∈∅,即103m ≤<.综上知0m ≥题型三 两个集合相等求参数1.已知a R ∈,b R ∈,若集合{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( )A .2-B .1-C .1D .2【答案】B【解析】因为{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,所以201b a a a b a ⎧=⎪⎪=+⎨⎪=⎪⎩,解得01b a =⎧⎨=⎩或01b a =⎧⎨=-⎩,当1a =时,不满足集合元素的互异性, 故1a =-,0b =,()2019201920192019101a b +=-+=-,故选:B.2.设a 、b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=__________.【答案】2 【解析】{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,由于b a -有意义,则0a ≠,则有0a b +=,所以,1ba -=-.根据题意有10b a b ba a ⎧⎪=⎪+=⎨⎪⎪=⎩,解得11a b =-⎧⎨=⎩,因此,()112b a -=--=.故答案为2.3.已知{}2,,2,4,59∈=-+a x R A x x ,{}23,B x ax a =++,{}2(1)3,1C x a x =++-.求:(1)使2B ∈,BA 的 ,a x 的值;(2)使B C =的 ,a x 的值.【答案】(1)2x =,23a =-或=3x ,74=-a ;(2)1x =-,6=-a 或=3x ,2a =-【解析】(1)因为2B ∈,所以22++=x ax a 又因为BA ,所以259=3-+x x ,解得2x =或=3x当2x =时,422++=a a ,解得23a =-当=3x 时,932++=a a ,解得74=-a所以,2x =,23a =-或=3x ,74=-a ;(2)B C =,221(1)33x ax a x a x ⎧++=∴⎨++-=⎩,解得16x a =-⎧⎨=-⎩或32x a =⎧⎨=-⎩ 所以,1x =-,6=-a 或=3x ,2a =-. 4.由a ,ba,1组成的集合中有3个元素,该集合与由2a ,a+b ,0组成的集合是同一个集合,求20202020a b +的值. 【答案】1【解析】由题意可得集合,,1b a a ⎧⎫⎨⎬⎩⎭和集合{}2,,0a a b +为相等集合,则由集合中元素的特点和相等集合的概念可得20110b a a a ba a a ⎧=⎪⎪=+⎪⎨=⎪⎪≠⎪≠⎩联立解得:10a b =-⎧⎨=⎩,所以202020202020(1)01a b +=-+=.5.已知集合,,1b A a a ⎧⎫=⎨⎬⎩⎭,{}2,,0B a a b =+,若A B =,求20182019a b +的值.【答案】1【解析】解:因为集合,,1b A a a ⎧⎫=⎨⎬⎩⎭,{}2,,0B a a b =+,要使ba有意义,则0a ≠又A B =,由集合相等的充要条件及集合中元素的互异性可得2110a a b a ⎧⎪=⎪≠⎨⎪⎪=⎩,即10a b =-⎧⎨=⎩,即 20182019a b +=20182019(1)01-+=, 故20182019a b +=1.题型四 空集性质及应用1.已知集合{}2|320,A x ax x a =∈-+=∈R R .(1)若集合A 是空集,求a 的取值范围;(2)若集合A 中只有一个元素,求a 的值,并把这个集合A 写出来. 【答案】(1)9,8⎛⎫+∞ ⎪⎝⎭(2)0a =,23A ⎧⎫=⎨⎬⎩⎭或98a =,43A ⎧⎫=⎨⎬⎩⎭【解析】解析(1)要使集合A 为空集,则方程2320ax x -+=无实数根, 当0a =时,得23x =不满足题意;则有0980a a ≠⎧⎨∆=-<⎩解得98a >.故a 的取值范围是9,8⎛⎫+∞ ⎪⎝⎭.(2)当0a =时,方程为320x -+=,解得23x =为一个解满足题意,此时23A ⎧⎫=⎨⎬⎩⎭; 当0a ≠时,方程为一元二次方程,此时集合A 中只有一个元素的条件是980a ∆=-=,解得98a =,此时43x =,则得43A ⎧⎫=⎨⎬⎩⎭. 综上可得:0a =时,23A ⎧⎫=⎨⎬⎩⎭;98a =时,43A ⎧⎫=⎨⎬⎩⎭.2.已知集合A ={x |ax 2+2x +1=0,a ∈R },(1)若A 只有一个元素,试求a 的值,并求出这个元素; (2)若A 是空集,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围. 【答案】(1)详见解析;(2)1a >;(3)0a =或1a ≥【解析】(1)若A 中只有一个元素,则方程ax 2+2x +1=0有且只有一个实根, 当a =0时,方程为一元一次方程,满足条件,此时x =-12, 当a ≠0,此时△=4-4a =0,解得:a =1,此时x =-1, (2)若A 是空集, 则方程ax 2+2x +1=0无解,此时△=4-4a <0,解得:a >1. (3)若A 中至多只有一个元素, 则A 为空集,或有且只有一个元素,由(1),(2)得满足条件的a 的取值范围是:a =0或a ≥1. 题型五 根据集合相等关系进行计算1.设,R a b ∈,集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -等于( )A .1-B .1C .2-D .2【答案】D【解析】两个集合相等,则集合中的元素相同,0a ≠ ,所以0a b +=,则1ba=-,那么1b =,和1a =-, 所以2b a -=. 故选:D2.已知集合{}13A x =,,,{}21B x =-,. (1)若集合{}14M y =,,,A M =,求x y +的值; (2)是否存在实数x ,使得B A ⊆?若存在,求出x 的值;若不存在,请说明理由. 【答案】(1)19x y +=;(2)不存在实数x ,见解析 【解析】(1)由题可知4,3,x y ⎧=⎪⎨=⎪⎩所以16,3,x y =⎧⎨=⎩所以19x y +=.(2)假设存在实数x 使得B A ⊆, 则23x -=或2x x -=.若23x -=,则1x =-,此时x 没有意义,舍去. 若2x x -=,则()()222x x-=,化简得2540x x -+=,解得1x =或4x =(舍),当1x =时,不符合集合中元素的互异性,舍去. 故不存在实数x ,使得B A ⊆. 3.已知关于x 的方程322126x x a x -+-=-与2136x a x a+--=有相同的解集,求a 的值及方程的解集.【答案】1a =,方程的解集为{1} 【解析】解:方程322126x x a x -+-=-化为63(32)62x x x a --=--, 整理,得13152x a =-,解得15213ax -=.方程2136x a x a+--=化为2(2)()6x a x a +--=, 整理,得336x a =-+,解得2x a =-+. 由题意,得152213aa -=-+,解得1a =,所以1x =. 综上,1a =,方程的解集为{1}. 4.已知关于x 的方程442313a x x ++=-的解集为A ,关于x 的方程340x a --=的解集为B ,若A B =,求a 的值. 【答案】1a =-【解析】解:由方程442313a x x ++=-,解得4413a x +=+,即4413a A +⎧⎫=+⎨⎬⎩⎭, 由方程340x a --=,解得43a x +=,即43a B +⎧⎫=⎨⎬⎩⎭.又A B =,所以444133a a +++=,解得1a =-. 5.若{0,1,2}{1,||,1}a a a a -=--+,求a 的值. 【答案】1a =或1a =-.【解析】由题意知,()1当10a -=时,1a =,此时{0,1,2}{0,1,2}-=-符合题意;()2当11a -=-时,0a =,此时{0,1,0}-不符合集合中元素的互异性,(舍去); ()3当12a a -=时,1a =-,此时{0,1,2}{2,1,0}--=--,符合题意;综上可知,1a =或1a =-.专题3 集合的基本运算题型一 根据交集结果求集合或参数1.设全集U =R ,已知集合{|3A x x =<或9}x ,集合{|}B x x a =,若()U A B ⋂≠∅,则a 的取值范围为( ) A .3a > B .3a C .9a < D .9a【答案】C【解析】因为全集U =R ,集合{|3A x x =<或9}x , 所以{|39}UA x x =<,又因为()U A B ⋂≠∅,{|}B x x a =9a ∴<.故选:C2.已知集合A ={x |2<x <4},B ={x |a <x <3a }.若A ∩B ={x |3<x <4},则a 的值为_______.【答案】3【解析】由A ={x |2<x <4},A ∩B ={x |3<x <4}, 如图,可知a =3,此时B ={x |3<x <9},即a =3为所求. 答案:33.已知全集U =R ,A ={x |2≤x <7},B ={x |x 2﹣10x +9<0},C ={x |a <x <a +1}. (1)求A B ,()U A B ;(2)如果A C ⋂=∅,求实数a 的取值范围.【答案】(1){}|19A B x x =<<,(){|12U A B x x =<<或}79x ≤<;(2){|1a a ≤或}7a ≥.【解析】(1){}|27A x x =≤<,{}|19B x x =<<, 所以{}|19A B x x =<<,{|2UA x x =<或}7x ≥,(){|12UA B x x =<<或}79x ≤<。
考前三个月高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣3
回扣3 三角函数、平面向量1.准确记忆六组诱导公式对于“k π2±α,k ∈Z ”的三角函数值,与α角的三角函数值的关系可按口诀记忆:奇变偶不变,符号看象限.2.同角三角函数的基本关系式sin 2α+cos 2α=1,tan α=sin αcos α(cos α≠0).3.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.(4)a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba ).4.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α1-tan 2α.5.三种三角函数的性质函数y =sin xy =cos xy =tan x图象单调性在[-π2+2k π,π2+2k π] (k ∈Z )上单调递增;在[π2+2k π,3π2+2k π] (k ∈Z )上单调递减 在[-π+2k π,2k π] (k ∈Z )上单调递增;在[2k π,π+2k π](k ∈Z )上单调递减在(-π2+k π,π2+k π)(k ∈Z )上单调递增对称性对称中心:(k π,0)(k ∈Z );对称轴:x =π2+k π (k ∈Z )对称中心:(π2+k π,0)(k ∈Z );对称轴:x =k π(k ∈Z )对称中心:(k π2,0) (k ∈Z )6.函数y =A sin(ωx +φ)(ω>0,A >0)的图象 (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出相应的x 的值与y 的值,描点、连线可得.(2)由三角函数的图象确定解析式时,一般利用五点中的零点或最值点作为解题突破口. (3)图象变换:y =sin x ――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ) ――――――――――――→横坐标变为原来的1ω(ω>0)倍纵坐标不变y =sin(ωx +φ) ――――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). 7.正弦定理及其变形a sin A =b sin B =csin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c2R .a ∶b ∶c =sin A ∶sin B ∶sin C . 8.余弦定理及其推论、变形a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C . 推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . 9.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .10.解三角形(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解. 11.平面向量的数量积(1)若a ,b 为非零向量,夹角为θ,则a·b =|a||b |cos θ. (2)设a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. 12.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则(1)a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. 13.利用数量积求长度(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2. 14.利用数量积求夹角若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.15.三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,角A ,B ,C 所对的边长分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A. (2)O 为△ABC 的重心⇔OA →+OB →+OC →=0. (3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →. (4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0.1.利用同角三角函数的平方关系式求值时,不要忽视角的范围,要先判断函数值的符号.2.在求三角函数的值域(或最值)时,不要忽略x 的取值范围.3.求函数f (x )=A sin(ωx +φ)的单调区间时,要注意A 与ω的符号,当ω<0时,需把ω的符号化为正值后求解.4.三角函数图象变换中,注意由y =sin ωx 的图象变换得y =sin(ωx +φ)时,平移量为⎪⎪⎪⎪φω,而不是φ.5.在已知两边和其中一边的对角时,要注意检验解是否满足“大边对大角”,避免增解.6.要特别注意零向量带来的问题:0的模是0,方向任意,并不是没有方向;0与任意非零向量平行.7.a·b >0是〈a ,b 〉为锐角的必要不充分条件; a·b <0是〈a ,b 〉为钝角的必要不充分条件.1.2sin 45°cos 15°-sin 30°的值等于( )A.12B.22C.32 D.1 答案 C解析 2sin 45°cos 15°-sin 30°=2sin 45°cos 15°-sin(45°-15°)=2sin 45°cos 15°-(sin 45°cos 15°-cos 45°sin 15°)=sin 45°cos 15°+cos 45°sin 15°=sin 60°=32.故选C. 2.要得到函数y =sin 2x 的图象,可由函数y =cos(2x -π3)( )A.向左平移π6个单位长度得到B.向右平移π6个单位长度得到C.向左平移π12个单位长度得到D.向右平移π12个单位长度得到答案 D解析 由于函数y =sin 2x =cos(π2-2x )=cos(2x -π2)=cos[2(x -π12)-π3],所以可由函数y =cos(2x -π3)向右平移π12个单位长度得到函数y =sin 2x 的图象,故选D.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC的面积是( )A.3B.932C.332 D.3 3答案 C解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6,① ∵C =π3,由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332,故选C.4.(1+tan 18°)(1+tan 27°)的值是( ) A. 3 B.1+ 2 C.2 D.2(tan 18°+tan 27°) 答案 C解析 由题意得,tan(18°+27°)=tan 18°+tan 27°1-tan 18°tan 27°,即tan 18°+tan 27°1-tan 18°tan 27°=1,所以tan 18°+tan 27°=1-tan 18°tan 27°,所以(1+tan 18°)(1+tan 27°)=1+tan 18°+tan 27°+tan 18°tan 27°=2,故选C.5.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定 答案 B解析 ∵b cos C +c cos B =a sin A , ∴sin B cos C +cos B sin C =sin 2A ,∴sin(B +C )=sin 2A ,∴sin A =1,∴A =π2,三角形为直角三角形.6.已知A ,B ,C 是锐角△ABC 的三个内角,向量p =(sin A ,1),q =(1,-cos B ),则p 与q 的夹角是( )A.锐角B.钝角C.直角D.不确定 答案 A解析 ∵A 、B 、C 是锐角△ABC 的三个内角,∴A +B >π2,即A >π2-B >0,∴sin A >sin(π2-B )=cos B ,∴p·q =sin A -cos B >0.再根据p ,q 的坐标可得p ,q 不共线,故p 与q 的夹角为锐角. 7. f (x )=12sin(2x -π3)+32cos(2x -π3)是( )A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的奇函数D.最小正周期为π的偶函数答案 C解析 f (x )=12sin(2x -π3)+32cos(2x -π3)=sin(2x -π3+π3)=sin 2x ,是最小正周期为π的奇函数,故选C.8.已知a ,b 为同一平面内的两个向量,且a =(1,2),|b |=12|a |,若a +2b 与2a -b 垂直,则a与b 的夹角为( ) A.0 B.π4 C.2π3 D.π答案 D解析 |b |=12|a |=52,而(a +2b )·(2a -b )=0⇒2a 2-2b 2+3b·a =0⇒b·a =-52,从而cos 〈b ,a 〉=b·a|b|·|a |=-1,〈b ,a 〉=π,故选D. 9.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c 有下列命题: ①若A >B >C ,则sin A >sin B >sin C ;②若cos A a =cos B b =cos C c ,则△ABC 为等边三角形;③若sin 2A =sin 2B ,则△ABC 为等腰三角形; ④若(1+tan A )(1+tan B )=2,则△ABC 为钝角三角形; ⑤存在A ,B ,C 使得tan A tan B tan C <tan A +tan B +tan C 成立. 其中正确的命题为________.(写出所有正确命题的序号). 答案 ①②④解析 若A >B >C ,则a >b >c ⇒sin A >sin B >sin C ; 若cos A a =cos B b =cos C c ,则cos A sin A =cos B sin B⇒sin(A -B )=0⇒A =B ⇒a =b ,同理可得a =c ,所以△ABC 为等边三角形;若sin 2A =sin 2B ,则2A =2B 或2A +2B =π,因此△ABC 为等腰或直角三角形;若(1+tan A )(1+tan B )=2,则tan A +tan B =1-tan A tan B ,因此tan(A +B )=1⇒C =3π4,△ABC 为钝角三角形;在△ABC 中,tan A tan B tan C =tan A +tan B +tan C 恒成立, 因此正确的命题为①②④.10.若△ABC 的三边a ,b ,c 及面积S 满足S =a 2-(b -c )2,则sin A =________. 答案817解析 由余弦定理得S =a 2-(b -c )2=2bc -2bc cos A =12bc sin A ,所以sin A +4cos A =4,由sin 2A +cos 2A =1,解得sin 2A +(1-sin A 4)2=1,sin A =817(0舍去).11.若tan θ=3,则cos 2θ+sin θcos θ=________. 答案 25解析 ∵tan θ=3, ∴cos 2θ+sin θcos θ=cos 2θ+sin θcos θsin 2θ+cos 2θ=1+tan θtan 2θ+1=1+332+1=25.12.已知单位向量a ,b ,c ,且a ⊥b ,若c =t a +(1-t )b ,则实数t 的值为________. 答案 1或0解析 c =t a +(1-t )b ⇒c 2=t 2+(1-t )2=|c |2=1⇒t =0或t =1.13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足b cos A =(2c +a )cos(A +C ).(1)求角B 的大小;(2)求函数f (x )=2sin 2x +sin(2x -B )(x ∈R )的最大值. 解 (1)由已知,b cos A =(2c +a )cos(π-B ), 即sin B cos A =-(2sin C +sin A )cos B , 即sin(A +B )=-2sin C cos B , 则sin C =-2sin C cos B , ∴cos B =-12,即B =2π3.(2)f (x )=2sin 2x +sin 2x cos2π3-cos 2x sin 2π3=32sin 2x -32cos 2x =3sin(2x -π6), 即x =π3+k π,k ∈Z 时,f (x )取得最大值 3.14.已知函数f (x )=2cos x (sin x -cos x )+1. (1)求函数f (x )的最小正周期和单调增区间;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且锐角A 满足f (A )=1,b =2,c =3,求a 的值.解 (1)f (x )=2sin x cos x -2cos 2x +1 =sin 2x -cos 2x =2sin(2x -π4),所以f (x )的最小正周期为π.由-π2+2k π≤2x -π4≤π2+2k π(k ∈Z ),得k π-π8≤x ≤k π+3π8(k ∈Z ),所以f (x )的单调增区间为[k π-π8,k π+3π8](k ∈Z ).(2)由题意知f (A )=2sin(2A -π4)=1,sin(2A -π4)=22,又∵A 是锐角, ∴2A -π4=π4,∴A =π4,由余弦定理得a 2=2+9-2×2×3×cos π4=5,∴a= 5.。
高考理科数学专题一集合与常用逻辑用语第二讲常用逻辑用语答案.pdf
也可能平行,不能推出 ∥ ,反过来若 ∥ , m ì ,则有 m∥ ,则“ m∥ ”是“ ∥ ”
的必要而不充分条件.
19.A【解析】因为 cos2 cos2 sin 2 0 ,所以 sin cos 或 sin
cos ,因为“ sin cos ”
“ cos2 0”,但“ sin cos ” “ cos2 0 ”,所以“ sin cos ”是“ cos2 0”
d 0 .所以“ d 0 ”是“ S4+S6 2 S5 ” 充分必要条件,选 C.
7. A 【解析】由 |
ππ | ,得 0
12 12
,所以 sin 6
1
,反之令
2
0 ,有 sin
1
成立,不满足
2
|
π|
π
,所以“
|
π|
π
”是“
sin
12 12
12 12
1
”的充分而不必要条件.选 A .
2
8.B【解析】 x 0 ,x 1 1,所以 ln( x 1) 0 ,所以 p 为真命题; 若 a b 0 ,则 a2 b2 ,若 b a 0,
所以 | a b | |a b | ,故由 | a | | b |推不出 |a b | | a b |.由 | a b | | a b |,
得 |a
2
b | |a
2
b | ,整理得
a
b
0 ,所以 a
b ,不一定能得出 | a | |b |,
故由 | a b | |a b | 推不出 | a | | b |,故“ |a | | b | ”是“ |a b | |a b |”的既不充分也不必要条件,
a2 b 2 R ,得 b 0 ,所以 z R , p1 正确;
考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题1 集合与常用逻辑用语二 第1练
第1练小集合,大功能[题型分析·高考展望]集合是高考每年必考内容,题型基本都是选择题、填空题,题目难度大多数为低档,有时候在填空题中以创新题型出现,难度稍高,在二轮复习中,本部分应该重点掌握集合的表示、集合的性质、集合的运算及集合关系在常用逻辑用语、函数、不等式、三角函数、解析几何等方面的应用.同时注意研究有关集合的创新问题,研究问题的切入点及集合知识在相关问题中所起的作用.体验高考1.(2015·重庆)已知集合A={1,2,3},B={2,3},则()A.A=BB.A∩B=∅C.A BD.B A答案D解析由于2∈A,2∈B,3∈A,3∈B,1∈A,1∉B,故A,B,C均错,D是正确的,选D.2.(2015·福建)若集合A={i,i2,i3,i4}(i是虚数单位),B={1,-1},则A∩B等于()A.{-1}B.{1}C.{1,-1}D.∅答案C解析集合A={i,-1,1,-i},B={1,-1},A∩B={1,-1},故选C.3.(2016·山东)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B等于()A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)答案C解析A={y|y>0},B={x|-1<x<1},则A∪B=(-1,+∞),故选C.4.(2015·四川)设集合A={x|(x+1)(x-2)<0},集合B={x|1<x<3},则A∪B等于()A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3}答案A解析∵A={x|-1<x<2},B={x|1<x<3},∴A∪B={x|-1<x<3}.5.(2016·北京)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B等于()A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}答案C解析由A={x|-2<x<2},得A∩B={-1,0,1}.高考必会题型题型一单独命题独立考查常用的运算性质及重要结论:(1)A∪A=A,A∪∅=A,A∪B=B∪A;(2)A∩A=A,A∩∅=∅,A∩B=B∩A;(3)A∩(∁U A)=∅,A∪(∁U A)=U;(4)A∩B=A⇔A⊆B⇔A∪B=B.例1(1)(2015·广东)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N等于()A.∅B.{-1,-4}C.{0}D.{1,4}(2)已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.答案(1)A(2)4解析(1)因为M={x|(x+4)(x+1)=0}={-4,-1},N={x|(x-4)(x-1)=0}={1,4},所以M∩N=∅,故选A.(2)由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B=(-∞,a),由A⊆B,如图所示,则a>4,即c=4.点评(1)弄清集合中所含元素的性质是集合运算的关键,这主要看代表元素,即“|”前面的表述.(2)当集合之间的关系不易确定时,可借助Venn图或列举实例.变式训练1(1)(2015·浙江)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q等于()A.[0,1)B.(0,2]C.(1,2)D.[1,2]答案 C解析 ∵P ={x |x ≥2或x ≤0},∁R P ={x |0<x <2},∴(∁R P )∩Q ={x |1<x <2},故选C.(2)已知集合A ={x |x 2-3x +2=0},B ={x |0≤ax +1≤3},若A ∪B =B ,求实数a 的取值范围.解 ∵A ={x |x 2-3x +2=0}={1,2},又∵B ={x |0≤ax +1≤3}={x |-1≤ax ≤2},∵A ∪B =B ,∴A ⊆B .①当a =0时,B =R ,满足题意.②当a >0时,B ={x |-1a ≤x ≤2a}, ∵A ⊆B ,∴2a≥2,解得0<a ≤1. ③当a <0时,B ={x |2a ≤x ≤-1a}, ∵A ⊆B ,∴-1a ≥2,解得-12≤a <0. 综上,实数a 的取值范围为⎣⎡⎦⎤-12,1. 题型二 集合与其他知识的综合考查集合常与不等式、向量、数列、解析几何等知识综合考查.集合运算的常用方法:(1)若已知集合是不等式的解集,用数轴求解;(2)若已知集合是点集,用数形结合法求解;(3)若已知集合是抽象集合,用Venn 图求解.例2 在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满足OQ →=2(a+b ).曲线C ={P |OP →=a cos θ+b sin θ,0≤θ<2π},区域Ω={P |0<r ≤|PQ →|≤R ,r <R }.若C ∩Ω为两段分离的曲线,则( )A.1<r <R <3B.1<r <3≤RC.r ≤1<R <3D.1<r <3<R答案 A解析 ∵|a |=|b |=1,a ·b =0,又∵OQ →=2(a +b ),∴|OQ →|2=2(a +b )2=2(a 2+b 2+2a ·b )=4,∴点Q 在以原点为圆心,半径为2的圆上.又OP →=a cos θ+b sin θ,∴|OP →|2=a 2cos 2θ+b 2sin 2θ=cos 2θ+sin 2θ=1.∴曲线C 为单位圆.又∵Ω={P |0<r ≤|PQ →|≤R ,r <R },要使C ∩Ω为两段分离的曲线,如图,可知1<r <R <3,其中图中两段分离的曲线是指»AB 与»CD.故选A. 点评 以集合为载体的问题,一定要弄清集合中的元素是什么,范围如何.对于点集,一般利用数形结合,画出图形,更便于直观形象地展示集合之间的关系,使复杂问题简单化. 变式训练2 函数f (x )=x 2+2x ,集合A ={(x ,y )|f (x )+f (y )≤2},B ={(x ,y )|f (x )≤f (y )},则由A ∩B 的元素构成的图形的面积是________.答案 2π解析 集合A ={(x ,y )|x 2+2x +y 2+2y ≤2},可得(x +1)2+(y +1)2≤4,集合B ={(x ,y )|x 2+2x ≤y 2+2y },可得(x -y )·(x +y +2)≤0.在平面直角坐标系上画出A ,B 表示的图形可知A ∩B 的元素构成的图形的面积为2π.题型三 与集合有关的创新题与集合有关的创新题目,主要以新定义的形式呈现,考查对集合含义的深层次理解,在新定义下求集合中的元素、确定元素个数、确定两集合的关系等.例3 设S 为复数集C 的非空子集,若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题:①集合S ={a +b i|a ,b 为整数,i 为虚数单位}为封闭集;②若S 为封闭集,则一定有0∈S ;③封闭集一定是无限集;④若S 为封闭集,则满足S ⊆T ⊆C 的任意集合T 也是封闭集.其中的真命题是________.(写出所有真命题的序号)答案 ①②解析 ①正确,当a ,b 为整数时,对任意x ,y ∈S ,x +y ,x -y ,xy 的实部与虚部均为整数;②正确,当x =y 时,0∈S ;③错误,当S ={0}时,是封闭集,但不是无限集;④错,设S={0}⊆T,T={0,1},显然T不是封闭集,因此,真命题为①②.点评解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义,首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质,解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.变式训练3在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z,k=0,1,2,3,4}.给出如下四个结论:①2 016∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一类”的充要条件是“a-b∈[0]”.其中,正确结论的个数是()A.1B.2C.3D.4答案C解析对于①:2 016=5×403+1,∴2 016∈[1],故①正确;对于②:-3=5×(-1)+2,∴-3∈[2],故②不正确;对于③:∵整数集Z被5除,所得余数共分为五类.∴Z=[0]∪[1]∪[2]∪[3]∪[4],故③正确;对于④:若整数a,b属于同一类,则a=5n1+k,b=5n2+k,∴a-b=5n1+k-(5n2+k)=5(n1-n2)=5n,∴a-b∈[0],若a-b=[0],则a-b=5n,即a=b+5n,故a与b被5除的余数为同一个数,∴a与b属于同一类,∴“整数a,b属于同一类”的充要条件是“a-b∈[0]”,故④正确,∴正确结论的个数是3.高考题型精练1.(2015·天津)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁U B)等于()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}答案A解析 由题意知,∁U B ={2,5,8},则A ∩(∁U B )={2,5},选A.2.(2015·陕西)设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N 等于( )A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]答案 A解析 由题意得M ={0,1},N =(0,1],故M ∪N =[0,1],故选A.3.(2016·四川)集合A ={x |-2≤x ≤2},Z 为整数集,则A ∩Z 中元素的个数是( )A.3B.4C.5D.6答案 C解析 由题意,A ∩Z ={-2,-1,0,1,2},故其中的元素个数为5,选C.4.设全集U =R ,A ={x |x 2-2x ≤0},B ={y |y =cos x ,x ∈R },则图中阴影部分表示的区间是( )A.[0,1]B.[-1,2]C.(-∞,-1)∪(2,+∞)D.(-∞,-1]∪[2,+∞)答案 C解析 因为A ={x |0≤x ≤2}=[0,2],B ={y |-1≤y ≤1}=[-1,1],所以A ∪B =[-1,2],所以∁R (A ∪B )=(-∞,-1)∪(2,+∞).5.已知集合A ={x |-1≤x ≤1},B ={x |x 2-2x <0},则A ∪(∁R B )等于( )A.[-1,0]B.[1,2]C.[0,1]D.(-∞,1]∪[2,+∞)答案 D解析 ∵A ={x |-1≤x ≤1},B ={x |x 2-2x <0}={x |0<x <2},∴∁R B =(-∞,0]∪[2,+∞),∴A ∪(∁R B )=(-∞,1]∪[2,+∞).6.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M ={-1,0,12,2,3}的所有非空子集中具有伙伴关系的集合的个数是( )A.1B.3C.7D.31答案 B解析 具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},{12,2},{-1,12,2}. 7.在R 上定义运算⊗:x ⊗y =x 2-y,若关于x 的不等式(x -a )⊗(x +1-a )>0的解集是集合{x |-2≤x ≤2}的子集,则实数a 的取值范围是( )A.-2≤a ≤2B.-1≤a ≤1C.-2≤a ≤1D.1≤a ≤2答案 C解析 因为(x -a )⊗(x +1-a )>0,所以x -a 1+a -x>0, 即a <x <a +1,则a ≥-2且a +1≤2,即-2≤a ≤1.8.已知集合A ={x |x 2-2 017x +2 016<0},B ={x |log 2x <m },若A ⊆B ,则整数m 的最小值是( )A.0B.1C.11D.12答案 C解析 由x 2-2 017x +2 016<0,解得1<x <2 016,故A ={x |1<x <2 016}.由log 2x <m ,解得0<x <2m ,故B ={x |0<x <2m }.由A ⊆B ,可得2m ≥2 016,因为210=1 024,211=2 048,所以整数m 的最小值为11.9.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与a j a i两数中至少有一个属于A ,则称集合A 为“权集”,则( ) A.{1,3,4}为“权集”B.{1,2,3,6}为“权集”C.“权集”中元素可以有0D.“权集”中一定有元素1答案 B解析 由于3×4与43均不属于数集{1,3,4},故A 不正确;由于1×2,1×3,1×6,2×3,62,63,11,22,33,66都属于数集{1,2,3,6},故B 正确;由“权集”的定义可知a j a i需有意义,故不能有0,同时不一定有1,故C ,D 错误.10.已知a ,b 均为实数,设集合A ={x |a ≤x ≤a +45},B ={x |b -13≤x ≤b },且A ,B 都是集合{x |0≤x ≤1}的子集.如果把n -m 叫做集合{x |m ≤x ≤n }的“长度”,那么集合A ∩B 的“长度”的最小值是________.答案 215解析 ∵⎩⎪⎨⎪⎧ a ≥0,a +45≤1,∴0≤a ≤15, ∵⎩⎪⎨⎪⎧ b -13≥0,b ≤1,∴13≤b ≤1,利用数轴分类讨论可得集合A ∩B 的“长度”的最小值为13-15=215. 11.设集合S n ={1,2,3,…,n },若X ⊆S n ,把X 的所有元素的乘积称为X 的容量(若X 中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X 的容量为奇(偶)数,则称X 为S n 的奇(偶)子集,则S 4的所有奇子集的容量之和为________.答案 7解析 ∵S 4={1,2,3,4},∴X =∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}.其中是奇子集的为X ={1},{3},{1,3},其容量分别为1,3,3,∴S 4的所有奇子集的容量之和为7.12.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }.(1)当m =-1时,求A ∪B ;(2)若A ⊆B ,求实数m 的取值范围;(3)若A ∩B =∅,求实数m 的取值范围.解 (1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}.(2)由A ⊆B 知⎩⎪⎨⎪⎧ 1-m >2m ,2m ≤1,1-m ≥3,解得m ≤-2,即实数m 的取值范围为(-∞,-2]. (3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意; ②若2m <1-m ,即m <13时, 需⎩⎪⎨⎪⎧ m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13或∅,即0≤m <13. 综上知m ≥0,即实数m 的取值范围为[0,+∞).。
高考数学真题题型分类解析专题01 集合与常用逻辑用语
高考数学真题题型分类解析高考数学真题题型分类解析 专题01集合与常用逻辑用语集合与常用逻辑用语命题解读考向 考查统计1.高考对集合的考查,重点是集合间的基本运算,主要考查集合的交、并、补运算,常与一元二次不等式解法、一元一次不等式解法、分式不等式解法、指数、对数不等式解法结合.2.高考对常用逻辑用语的考查重点关注如下两点:(1)集合与充分必要条件相结合问题的解题方法;(2)全称命题与存在命题的否定和以全称命题与存在命题为条件,求参数的范围问题. 交集的运算2022·新高考Ⅰ卷,12023·新高考Ⅰ卷,1 2024·新高考Ⅰ卷,1 2022·新高考Ⅱ卷,1根据集合的包含关系求参数 2023·新高考Ⅱ卷,2 充分必要条件的判定2023·新高考Ⅰ卷,7全称、存在量词命题真假的判断 2024·新高考Ⅱ卷,2命题分析2024年高考新高考Ⅱ卷未考查集合,Ⅰ卷依旧考查了集合的交集运算,常用逻辑用语在新高考Ⅱ卷中考查了全称、存在量词命题真假的判断,这也说明了现在新高考“考无定题”,以前常考的现在不一定考了,抓住知识点和数学核心素养是关键!集合和常用逻辑用语考查应关注:(1)集合的基本运算和充要条件;(2)集合与简单的不等式、函数的定义域、值域的联系。
预计2025年高考还是主要考查集合的基本运算。
试题精讲1.(2024新高考Ⅰ卷·1)已知集合{}355,{3,1,0,2,3}A xx B =−<<=−−∣,则A B =∩( ) A .{1,0}− B .{2,3} C .{3,1,0}−− D .{1,0,2}−【答案答案】】A2.(2024新高考Ⅱ卷·2)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题 B .p ¬和q 都是真命题 C .p 和q ¬都是真命题D .p ¬和q ¬都是真命题1.(2022新高考Ⅰ卷·1)若集合{4},{31}M x N x x =<=≥∣,则M N ∩=( ) A .{}02x x ≤<B .123x x≤<C .{}316x x ≤<D .1163x x≤<A .{}2,1,0,1−−B .{}0,1,2C .{}2−D .{}2A .{1,2}−B .{1,2}C .{1,4}D .{1,4}−4.(2023新高考Ⅱ卷·2)设集合,,若,则().A .2B .1C .23D .1−【答案答案】】B【分析分析】】根据包含关系分20a −=和220a −=两种情况讨论,运算求解即可. 【详解详解】】因为A B ⊆,则有则有::若20a −=,解得2a =,此时{}0,2A =−,{}1,0,2B =,不符合题意不符合题意;; 若220a −=,解得1a =,此时{}0,1A =−,{}1,1,0B =−,符合题意符合题意;; 综上所述综上所述::1a =. 故选故选::B. 5.(2023新高考Ⅰ卷·7)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件一、元素与集合1、集合的含义与表示某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2、集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素. (2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现. (3)无序性:集合与其组成元素的顺序无关. 3、元素与集合的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种. 4、集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图). 5、常用数集的表示数集 自然数集 正整数集 整数集 有理数集 实数集 符号N*N 或N +ZQR二、集合间的基本关系(1)子集:一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集:对于两个集合A 与B ,若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作A B Ü(或B A ⊃≠).读作“A 真包含于B ”或“B 真包含A ”. (3)相等:对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A B =. (4)空集:把不含任何元素的集合叫做空集,记作∅;∅是任何集合的子集,是任何非空集合的真子集.三、集合的基本运算(1)交集:由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ∩,即{}|A B x x A x B ∩=∈∈且.(2)并集:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ∪,即{}|A B x x A x B ∪=∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且.四、集合的运算性质(1),,A B B A =∩∩,A B A ∩⊆,A B B ∩⊆. (2)A A A =∪,A A ∅=∪,A B B A =∪∪,A A B ⊆∪,B A B ⊆∪. (3),()U A C A U =∪,()U U C C A A =. (4)U UU A B A A B B A B B A A B ∩=⇔∪=⇔⊆⇔⊆⇔∩=∅痧?A A A =∩A ∅=∅∩()U A C A =∅∩【集合常用结论集合常用结论】】(1)若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有21n −个,非空子集有21n −个,非空真子集有22n −个.(2)空集是任何集合A 的子集,是任何非空集合B 的真子集. (3)U U A B A B A A B B C B C A ⊆⇔=⇔=⇔⊆∩∪. (4)()()()U U U C A B C A C B =∩∪,()()()U U U C A B C A C B =∪∩.五、充分条件充分条件、、必要条件必要条件、、充要条件1、定义如果命题“若p ,则q ”为真(记作p q ⇒),则p 是q 的充分条件;同时q 是p 的必要条件. 2、从逻辑推理关系上看(1)若p q ⇒且q p ¿,则p 是q 的充分不必要条件; (2)若p q ¿且q p ⇒,则p 是q 的必要不充分条件;(3)若p q ⇒且q p ⇒,则p 是q 的的充要条件(也说p 和q 等价); (4)若p q ¿且q p ¿,则p 不是q 的充分条件,也不是q 的必要条件.六、全称量词与存在量词(1)全称量词与全称量词命题.短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题叫做全称量词命题.全称量词命题“对M 中的任意一个x ,有()p x 成立”可用符号简记为“,()x M p x ∀∈”,读作“对任意x 属于M ,有()p x 成立”.(2)存在量词与存在量词命题.短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题叫做存在量词命题.存在量词命题“存在M 中的一个0x ,使0()p x 成立”可用符号简记为“00,()x M P x ∃∈”,读作“存在M 中元素0x ,使0()p x 成立”(存在量词命题也叫存在性命题). 七、含有一个量词的命题的否定(1)全称量词命题:,()p x M p x ∀∈的否定p ¬为0x M ∃∈,0()p x ¬. (2)存在量词命题00:,()p x M p x ∃∈的否定p ¬为,()x M p x ∀∈¬. 注:全称、存在量词命题的否定是高考常见考点之一. 【常用逻辑用语常用结论常用逻辑用语常用结论】】 1、从集合与集合之间的关系上看设{}{}|(),|()A x p x B x q x ==.(1)若A B ⊆,则p 是q 的充分条件(p q ⇒),q 是p 的必要条件;若A B 躡,则p 是q 的充分不必要条件,q 是p 的必要不充分条件,即p q ⇒且q p ¿; 注:关于数集间的充分必要条件满足:“小⇒大”. (2)若B A ⊆,则p 是q 的必要条件,q 是p 的充分条件;(3)若A B =,则p 与q 互为充要条件.集合三模题一、单选题1.(2024·河南·三模)命题“20,10x x x ∃>+−>”的否定是( ) A .20,10x x x ∀>+−> B .20,10x x x ∀>+−≤ C .20,10x x x ∃≤+−>D .20,10x x x ∃≤+−≤【答案答案】】B【分析分析】】根据存在量词命题的否定形式根据存在量词命题的否定形式,,即可求解. 【详解详解】】根据存在量词命题的否定为全称量词命题根据存在量词命题的否定为全称量词命题,, 即命题“20,10x x x ∃>+−>”的否定为“20,10x x x ∀>+−≤”. 故选故选::B. 2.(2024·湖南长沙·三模)已知集合{}2,{|ln 1}M x x N x x ==<∣…,则M N ∩=( ) A .[)2,eB .[]2,1−C .[)0,2D .(]0,2【答案答案】】D【分析分析】】由对数函数单调性解不等式由对数函数单调性解不等式,,化简N ,根据交集运算求解即可. 【详解详解】】因为[]()2,2,0,e M N =−=, 所以(]0,2M N =∩. 故选故选::D. 3.(2024·河北衡水·三模)已知集合{}()11,2,3,4,51lg 12A B x x==−≤−≤,,则A B =∩( ) A .11510x x≤≤B .{2,3,4}C .{2,3}D .11310x x≤≤4.(2024·陕西·三模)已知集合A =A .RB .(]0,2【答案答案】】D【分析分析】】先解一元二次不等式求出集合【详解详解】】由230x x −+>,解得03x <<所以3|}1{A B x x ∪=−≤<,所以A 故选故选::D. 5.(2024·安徽·三模)已知集合A x=为( )A .{}21x x −≤≤ C .{}52x x −≤≤−6.(2024·湖南长沙·三模)已知直线使点P 在圆O 内”的( ) A .充分不必要条件 C .充要条件【答案答案】】B【分析分析】】由直线与圆相交可求得1−<【详解详解】】由直线l 上存在点P ,使点解得11k −<<,即()1,1k ∈−,因为1k <不一定能得到11k −<<,而11k −<<可推出1k <,所以“k <1”是“直线l 上存在点P ,使点P 在圆O 内”的必要不充分条件. 故选故选::B 7.(2024·湖北荆州·三模)已知集合{}220A x x x =−≤,B A =R ð,其中R 是实数集,集合(],1C ∞=−,则B C ∩=( )A .(],0−∞B .(]0,1C .(),0∞−D .()0,18.(2024·北京·三模)已知集合ln 1A x x =<,若a A ∉,则a 可能是() A .1eB .1C .2D .3【答案答案】】D【分析分析】】解对数不等式化简集合A ,进而求出a 的取值集合即得.【详解详解】】由ln 1x <,得0e x <<,则{|0e}A x x =<<,R {|0A x x =≤ð或e}≥, 由a A ∉,得R a A ∈ð,显然选项ABC 不满足不满足,,D 满足. 故选故选::D 9.(2024·河北衡水·三模)已知函数()()22sin x xf x m x −=+⋅,则“21m =”是“函数()f x 是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案答案】】B【分析分析】】由函数()f x 是奇函数是奇函数,,可求得1m =,可得结论. 【详解详解】】若函数()f x 是奇函数是奇函数,,则()()()()()22sin 22sin (1)22sin 0x x x x x xf x f x m x m x m x −−−+−=+⋅−+⋅=−−=恒成立恒成立,,即1m =,而21m =,得1m =±.故“21m =”是“函数()f x 是奇函数”的必要不充分条件的必要不充分条件.. 故选故选::B .10.(2024·内蒙古·三模)设α,β是两个不同的平面,m ,l 是两条不同的直线,且l αβ=∩则“//m l ”是“//m β且//m α”的( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件【答案答案】】C【分析分析】】根据题意根据题意,,利用线面平行的判定定理与性质定理利用线面平行的判定定理与性质定理,,结合充分条件结合充分条件、、必要条件的判定方法必要条件的判定方法,,即可求解.【详解详解】】当//m l 时,m 可能在α内或者β内,故不能推出//m β且//m α,所以充分性不成立所以充分性不成立;; 当//m β且//m α时,设存在直线n ⊂α,n β⊄,且//n m ,因为//m β,所以//n β,根据直线与平面平行的性质定理根据直线与平面平行的性质定理,,可知//n l , 所以//m l ,即必要性成立即必要性成立,,故“//m l ”是“//m β且//m α”的必要不充的必要不充分条件分条件. 故选故选::C. 11.(2024·北京·三模)已知(){}2log 11A x x =−≤,{}32B x x =−>,则A B =∩( )A .空集B .{3x x ≤或}5x >C .{3x x ≤或5x >且}1x ≠D .以上都不对A .∅B .{}0C .{}0,2,3,5D .{}0,3A .(1,4)−B .1,14C .1,12D .1,22A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件有下列两个结论:①存在a和b,使得集合B中恰有5个元素;②存在a和b,使得集合B中恰有4个元素.则下列判断正确的是()A.①②都正确B.①②都错误C.①错误,②正确D.①正确,②错误二、多选题16.(2024·江西南昌·三模)下列结论正确的是()A .若{}{}300x x x x a +>∩−<=∅,则a 的取值范围是3a <−B .若{}{}300x x x x a +>∩−<=∅,则a 的取值范围是3a ≤−C .若{}{}300x x x x a +>∪−<=R ,则a 的取值范围是3a ≥−D .若{}{}300x x x x a +>∪−<=R ,则a 的取值范围是3a >−17.(2024·辽宁·三模)已知12max ,,,n x x x 表示12,,,n x x x 这个数中最大的数.能说明命题“,R d ∈,{}{}{}max ,max ,max ,,,a b c d a b c d +≥”是假命题的对应的一组整数a ,b ,c ,d 值的选项有( )A .1,2,3,4B .3−,1−,7,5C .8,1−,2−,3−D .5,3,0,1−【答案答案】】BC【分析分析】】根据{}12max ,,,n x x x 的含义说明AD 不符合题意,举出具体情况说明BC ,符合题意即可.【详解详解】】对于A ,D ,从其中任取两个数作为一组从其中任取两个数作为一组,,剩下的两数作为另一组剩下的两数作为另一组,,由于这两组数中的最大的数都不是负数由于这两组数中的最大的数都不是负数,,其中一组中的最大数即为这四个数中的最大值其中一组中的最大数即为这四个数中的最大值,,故都能使得命题“,,,R a b c d ∀∈,{}{}{}max ,max ,max ,,,a b c d a b c d +≥”成立成立;;对于B ,当{}{}{}max ,max 3,11,max 7,57a b =−−=−=时,而{}max 3,1,7,57−−=,此时177−+<,即命题“,,a b c ∀,R d ∈,{}{}{}max ,max ,max ,,,a b c d a b c d +≥”是假命题是假命题;; 对于C ,当{}{}{}max ,max 8,18,max 2,32a b =−=−−=−时,而{}max 8,1,2,38−−−=,此时288−+<,即命题“,,a b c ∀,R d ∈,{}{}{}max ,max ,max ,,,a b c d a b c d +≥”是假命题是假命题;; 故选故选::BC 18.(2024·重庆·三模)命题“存在0x >,使得2210mx x +−>”为真命题的一个充分不必要条件是()A .2m >−B .1m >−C .0m >D .1m >A .11a b <B .|2||2|a b −>−C .22a b ab a b −>−D .()()22ln 1ln 1a b +>+有且仅有3个不同元素,则实数m 的值可以为( )A .0B .1C .2D .3三、填空题21.(2024·湖南长沙·三模)已知集合{}1,2,4A =,{}2,B a a =,若A B A ∪=,则=a .【答案答案】】{}0,1【分析分析】】把集合中的元素代入不等式331x x −≤检验可求得{0,1}A B =∩.【详解详解】】当0x =时,303001−×=≤,所以0B ∈,当1x =时,313121−×=−≤,所以1B ∈,当2x =时,323221−×=>,所以2∉B ,所以{0,1}A B =∩.23.(2024·湖南衡阳·三模)已知集合{},1A a a =+,集合{}2N 20|B x x x =∈−−≤,若A B ⊆,则=a .25.(2024·安徽·三模)已知集合,2,1,,A B yy x x A λ=−==∈∣,若A B ∪的所有元素之和为12,则实数λ=. 【答案答案】】3−【分析分析】】分类讨论λ是否为1,2−,进而可得集合B ,结合题意分析求解.【详解详解】】由题意可知由题意可知::1λ≠−且2λ≠,当x λ=,则2y λ=;当2x =,则4y =;当=1x −,则1y =;若1λ=,则{}1,4B =,此时A B ∪的所有元素之和为6,不符合题意不符合题意,,舍去舍去;;若2λ=−,则{}1,4B =,此时A B ∪的所有元素之和为4,不符合题意不符合题意,,舍去舍去;;若1λ≠且2λ≠−,则{}21,4,B λ=,故2612λλ++=,解得3λ=−或2λ=(舍去舍去););综上所述综上所述::3λ=−.26.(2024·山东聊城·三模)已知集合{}{}21,5,,1,32A a B a ==+,且A B A ∪=,则实数a 的值为.C 的个数为.A B ∪=.。
2025年新高考数学专题 集合与常用逻辑用语 含解析
专题01集合与常用逻辑用语易错点一:对集合表示方法的理解存在偏差(集合运算问题两种解题方法)方法一:列举法列举法就是通过枚举集合中的所有元素,然后根据集合基本运算的定义求解的方法。
其解题具体步骤如下:第一步定元素:确定已知集合中的所有元素,利用列举法或画数轴写出所有元素或范围;第二步定运算:利用常见不等式或等式解未知集合;第三步:定结果。
方法二:赋值法高考对集合的基本运算的考查以选择题为主,所以我们可以利用特值法解题,即根据选项之间的明显差异,选择一些特殊元素进行检验排除,从而得到正确选项.其解题具体步骤如下:第一步:辨差异:分析各选项,辨别各选项的差异;第二步:定特殊:根据选项的差异,选定一些特殊的元素;第三步:验排除:将特殊的元素代入进行验证,排除干扰项;第四步:定结果:根据排除的结果确定正确的选项。
易错提醒:对集合表示法的理解先观察研究对象(丨前),研究对象是点集还是数集,故要对本质进行剖析,需要明确集合中的代表元素类型及代表元素的含义.若A B ⊆,即A 是B 的子集,所以A B A = ,所以(4)正确;根据元素与集合的关系可知{}∅∈∅正确,也即(5)正确.所以正确的个数是4.故选:A易错点二:忽视(漏)空集导致错误(集合中的含参问题)1.利用两个集合之间的关系确定参数的取值范围解题时务必注意:由于∅是任意集合的子集,若已知非空集合B,集合A 满足A ⊆B 或A ⊂B,则对集合A 分两种情中的含参问题况讨论:(1)当A=∅时,若集合A 是以不等式为载体的集合,则该不等式无解;(2)当A≠∅时,要利用子集的概念把子集关系转化为两个集合对应区间的端点值的大小关系,从而构造关于参数的不等式(组)求解.2.利用两集合的运算求参数的值或取值范围解决此类问题的步骤一般为:第一步:化简所给集合;第二步:用数轴表示所给集合;第三步:根据集合端点间关系列出不等式(组);(4)解不等式(组);第四步:检验,通过返回代入验证端点是否能够取到.第五步:解决此类问题多利用数形结合的方法,结合数轴或Venn 图进行求解.易错提醒:勿忘空集和集合本身.由于∅是任意集合的子集,是任何集合的真子集,任何集合的本身是该集合的子集,所以在进行列举时千万不要忘记。
四川新高考考前三个月数学理二轮专题复习2.1集合与常用逻辑用语(含答案详析)
专题二集合与常用逻辑用语、不等式、函数与导数第一讲集合与常用逻辑用语1.集合的概念、运算(1)集合元素的三个特性:确定性、互异性、无序性,是判断某些对象能否构成一个集合或判断两集合是否相等的依据.(2)集合的表示方法:列举法、描述法、图示法.(3)集合间的关系:子集、真子集、空集、集合相等,在集合间的运算中要注意空集的情形.(4)重要结论A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.2.命题(1)两个命题互为逆否命题,它们有相同的真假性;(2)含有量词的命题的否定:∀x∈M,p(x)的否定是∃x∈M,綈p(x);∃x∈M,p(x)的否定是∀x∈M,綈p(x).3.充要条件1.(2013·辽宁)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B等于() A.(0,1) B.(0,2] C.(1,2) D.(1,2]答案 D解析A={x|1<x<4},B={x|x≤2},∴A∩B={x|1<x≤2}.2. (2013·北京)“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 当φ=π时,y =sin(2x +φ)=-sin 2x 过原点.当曲线过原点时,φ=k π,k ∈Z ,不一定有φ=π.∴“φ=π”是“曲线y =sin(2x +φ)过原点”的充分不必要条件. 3. (2013·四川)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∈B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B答案 D解析 命题p :∀x ∈A,2x ∈B 是一个全称命题,其命题的否定綈p 应为∃x ∈A,2x ∉B ,选D. 4. (2013·天津)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( )A .①②③B .①②C .①③D .②③答案 C解析 对于命题①,设球的半径为R ,则43π⎝⎛⎭⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确.5. (2013·四川)设P 1,P 2,…,P n 为平面α内的n 个点,在平面α内的所有点中,若点P到点P 1,P 2,…,P n 的距离之和最小,则称点P 为点P 1,P 2,…,P n 的一个“中位点”.例如,线段AB 上的任意点都是端点A 、B 的中位点.现有下列命题: ①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A,B,C,D共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是________.(写出所有真命题的序号)答案①④解析∵|CA|+|CB|≥|AB|,当且仅当点C在线段AB上等号成立,即三个点A,B,C,∴点C在线段AB上,∴点C是A,B,C的中位点,故①是真命题.如图(1),在Rt△ABC中,∠C=90°,P是AB的中点,CH⊥AB,点P,H不重合,则|PC|>|HC|.又|HA|+|HB|=|P A|+|PB|=|AB|,∴|HA|+|HB|+|HC|<|P A|+|PB|+|PC|,∴点P不是点A,B,C的中位点,故②是假命题.如图(2),A,B,C,D是数轴上的四个点,若P点在线段BC上,则|P A|+|PB|+|PC|+|PD|=|AD|+|BC|,由中位点的定义及①可知,点P是点A,B,C,D的中位点.显然点P有无数个,故③是假命题.如图(3),由①可知,若点P是点A,C的中位点,则点P在线段AC上,若点P是点B,D的中位点,则点P在线段BD上,∴若点P是点A,B,C,D的中位点,则P是AC,BD的交点,∴梯形对角线的交点是梯形四个顶点的唯一中位点,故④是真命题.题型一集合的概念与运算问题例1(1)(2012·湖北)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为() A.1 B.2 C.3 D.4(2)定义A-B={x|x∈A且x∉B},若M={1,2,3,4,5},N={2,3,6},则N-M等于()A.M B.N C.{1,4,5} D.{6}审题破题(1)先对集合A、B进行化简,注意B中元素的性质,然后根据子集的定义列举全部适合条件的集合C即可.(2)透彻理解A -B 的定义是解答本题的关键,要和补集区别开来. 答案 (1)D (2)D解析 (1)由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)N -M ={x |x ∈N 且x ∉M }. ∵2∈N 且2∈M ,∴2∉N -M ; 3∈N 且3∈M ,∴3∉N -M ; 6∈N 且6∉M ,∴6∈N -M . ∴故N -M ={6}.反思归纳 (1)解答集合间关系与运算问题的一般步骤:先正确理解各个集合的含义,认清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解. (2)两点提醒:①要注意集合中元素的互异性;②当B ⊆A 时,应注意讨论B 是否为∅.变式训练1 (2013·玉溪毕业班复习检测)若集合S ={x |log 2(x +1)>0},T =⎩⎨⎧⎭⎬⎫x |2-x 2+x <0,则S ∩T 等于( )A .(-1,2)B .(0,2)C .(-1,+∞)D .(2,+∞)答案 D解析 S ={x |x +1>1}={x |x >0}, T ={x |x >2或x <-2}. ∴S ∩T ={x |x >2}. 题型二 命题的真假与否定问题 例2 下列叙述正确的个数是( )①l 为直线,α、β为两个不重合的平面,若l ⊥β,α⊥β,则l ∥α;②若命题p :∃x 0∈R ,x 20-x 0+1≤0,则綈p :∀x ∈R ,x 2-x +1>0;③在△ABC 中,“∠A =60°”是“cos A =12”的充要条件;④若向量a ,b 满足a ·b <0,则a 与b 的夹角为钝角. A .1 B .2 C .3 D .4审题破题 判定叙述是否正确,对命题首先要分清命题的条件与结论,再结合涉及知识进行判定;对含量词的命题的否定,要改变其中的量词和判断词. 答案 B解析 对于①,直线l 不一定在平面α外,错误;对于②,命题p 是特称命题,否定时要写成全称命题并改变判断词,正确;③注意到△ABC 中条件,正确;④a ·b <0可能〈a ,b 〉=π,错误.故叙述正确的个数为2.反思归纳 (1)命题真假的判定方法:①一般命题p 的真假由涉及到的相关知识辨别;②四种命题的真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律;③形如p ∨q ,p ∧q ,綈p 命题的真假根据真值表判定.(2)区分命题的否定和否命题;含一个量词的命题的否定一定要改变量词. 变式训练2 给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >cb”的逆否命题;④若命题p :∀x ∈R ,x 2+1≥1,命题q :∃x ∈R ,x 2-x -1≤0,则命题p ∧綈q 是真命题.其中真命题只有( )A .①②③B .①②④C .①③④D .②③④答案 A解析 ①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④中綈q :∀x ∈R ,x 2-x -1>0,由于x 2-x -1=⎝⎛⎭⎫x -122-54,则存在x 值使x 2-x -1≤0,故綈q 为假命题,则p ∧綈q 为假命题. 题型三 充要条件的判断问题例3 (1)甲:x ≠2或y ≠3;乙:x +y ≠5,则( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件(2)设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A.⎣⎡⎦⎤0,12B.⎝⎛⎭⎫0,12 C .(-∞,0)∪⎣⎡⎭⎫12,+∞ D .(-∞,0)∪⎝⎛⎭⎫12,+∞ 审题破题 (1)利用逆否命题判别甲、乙的关系;(2)转化为两个集合间的包含关系,利用 数轴解决.答案 (1)B (2)A解析 (1)“甲⇒乙”,即“x ≠2或y ≠3”⇒“x +y ≠5”,其逆否命题为:“x +y =5”⇒“x =2且y =3”显然不正确.同理,可判断命题“乙⇒甲”为真命题.所以甲是乙的必要不充分条件.(2)綈p :|4x -3|>1;綈q :x 2-(2a +1)x +a (a +1)>0, 解得綈p :x >1或x <12;綈q :x >a +1或x <a .若綈p ⇐綈q ,则⎩⎪⎨⎪⎧ a ≤12a +1>1或⎩⎪⎨⎪⎧a <12a +1≥1,即0≤a ≤12.反思归纳 (1)充要条件判断的三种方法:定义法、集合法、等价命题法;(2)判断充分、必要条件时应注意的问题:①要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A ;②要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.变式训练3 (1)(2012·山东)设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 由题意知函数f (x )=a x 在R 上是减函数等价于0<a <1,函数g (x )=(2-a )x 3在R 上是增函数等价于0<a <1或1<a <2,∴“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件. (2)设A ={x |xx -1<0},B ={x |0<x <m },若B 是A 成立的必要不充分条件,则m 的取值范围是( )A .m <1B .m ≤1C .m ≥1D .m >1答案 D解析 xx -1<0⇔0<x <1.由已知得,0<x <m ⇒0<x <1, 但0<x <1⇒0<x <m 成立. ∴m >1.典例 设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1;③若l =12,则-22≤m ≤0.其中正确命题的个数是( )A .0B .1C .2D .3解析 ①m =1时,l ≥m =1且x 2≥1, ∴l =1,故①正确. ②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确. ③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确. 答案 D得分技巧 创新性试题中最常见的是以新定义的方式给出试题,这类试题要求在新的情境中使用已知的数学知识分析解决问题,解决这类试题的关键是透彻理解新定义,抓住新定义的本质,判断给出的各个结论,适当的时候可以通过反例推翻其中的结论. 阅卷老师提醒 在给出的几个命题中要求找出其中正确命题类的试题实际上就是一个多项选择题,解答这类试题时要对各个命题反复进行推敲,确定可能正确的要进行严格的证明,确定可能错误的要举出反例,这样才能有效避免答错试题.1. 已知集合A ={x |x 2+x -2=0},B ={x |ax =1},若A ∩B =B ,则a 等于( )A .-12或1 B .2或-1C .-2或1或0D .-12或1或0答案 D解析 依题意可得A ∩B =B ⇔B ⊆A . 因为集合A ={x |x 2+x -2=0}={-2,1},当x =-2时,-2a =1,解得a =-12;当x =1时,a =1;又因为B 是空集时也符合题意,这时a =0,故选D.2. (2013·浙江)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ= π2”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 φ=π2⇒f (x )=A cos ⎝⎛⎭⎫ωx +π2=-A sin ωx 为奇函数, ∴“f (x )是奇函数”是“φ=π2”的必要条件.又f (x )=A cos(ωx +φ)是奇函数⇒f (0)=0⇒φ=π2+k π(k ∈Z )⇒φ=π2.∴“f (x )是奇函数”不是“φ=π2”的充分条件.3. (2012·辽宁)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))·(x 2-x 1)≥0,则綈p 是( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 答案 C解析 根据全称命题的否定是特称命题知. 綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0.4. 已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围为( ) A .(-∞,-1] B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)答案 C解析 由P ={x |x 2≤1}得P ={x |-1≤x ≤1}. 由P ∪M =P 得M ⊆P .又M ={a },∴-1≤a ≤1. 5. 下列命题中错误的是( )A .命题“若x 2-5x +6=0,则x =2”的逆否命题是“若x ≠2,则x 2-5x +6≠0”B .若x ,y ∈R ,则“x =y ”是“xy ≤⎝⎛⎭⎫x +y 22中等号成立”的充要条件 C .已知命题p 和q ,若p ∨q 为假命题,则命题p 与q 中必一真一假 D .对命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,x 2+x +1≥0 答案 C解析 易知选项A ,B ,D 都正确;选项C 中,若p ∨q 为假命题,根据真值表,可知p ,q 必都为假,故C 错.专题限时规范训练一、选择题1. (2013·陕西)设全集为R ,函数f (x )=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 答案 D解析 由题意得M =[-1,1],则∁R M =(-∞,-1)∪(1,+∞).2. (2013·山东)给定两个命题p ,q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由题意知:綈p ⇐q ⇔(逆否命题)p ⇒綈q .3. (2012·湖南)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α ≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4答案 C解析 由命题与其逆否命题之间的关系可知,原命题的逆否命题是:若tan α≠1,则α≠π4.4. (2012·湖北)命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( )A .∃x 0D ∈∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30D ∈QC .∀xD ∈R Q ,x 3∈Q D .∀x ∈∁R Q ,x 3D ∈Q 答案 D解析 “∃”的否定是“∀”,x 3∈Q 的否定是x 3D ∈Q .命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是“∀x ∈∁R Q ,x 3D ∈”.5. 设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 C解析 A ={x |x -2>0}={x |x >2}=(2,+∞),B ={x |x <0}=(-∞,0),∴A ∪B =(-∞,0)∪(2,+∞),C ={x |x (x -2)>0}={x |x <0或x >2}=(-∞,0)∪(2,+∞).A ∪B =C .∴“x ∈A ∪B ”是“x ∈C ”的充要条件. 6. 下列关于命题的说法中错误的是( )A .对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”D .若p ∧q 为假命题,则p ,q 均为假命题 答案 D解析 对于A ,命题綈p :∀x ∈R ,均有x 2+x +1≥0,因此选项A 正确.对于B ,由x =1可得x 2-3x +2=0;反过来,由x 2-3x +2=0不能得知x =1,此时x 的值可能是2,因此“x =1”是“x 2-3x +2=0”的充分不必要条件,选项B 正确.对于C ,原命题的逆否命题是:“若x ≠1,则x 2-3x +2≠0”,因此选项C 正确.7. 已知p :2xx -1<1,q :(x -a )(x -3)>0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A .(-∞,1)B .[1,3]C .[1,+∞)D .[3,+∞)答案 C解析 2xx -1-1<0⇒x +1x -1<0⇒(x -1)(x +1)<0⇒p :-1<x <1.当a ≥3时,q :x <3或x >a ;当a <3时,q :x <a 或x >3.綈p 是綈q 的必要不充分条件,即p 是q 的充分不必要条件,即p ⇒q 且q ⇒p ,从而可推出a 的取值范围是a ≥1. 8. 下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数 答案 D解析 对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=⎝⎛⎭⎫lg x +122+34≥34>0,因此选项B 是真命题;对于C ,在△ABC 中,由A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=π2时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命题.综上所述,选D.二、填空题9. 已知集合A ={x ∈R ||x -1|<2},Z 为整数集,则集合A ∩Z 中所有元素的和等于________.答案 3解析 A ={x ∈R ||x -1|<2}={x ∈R |-1<x <3},集合A 中包含的整数有0,1,2,故A ∩Z ={0,1,2}.故A ∩Z 中所有元素之和为0+1+2=3.10.设集合M ={y |y -m ≤0},N ={y |y =2x -1,x ∈R },若M ∩N ≠∅,则实数m 的取值范围是________.答案 (-1,+∞)解析 M ={y |y ≤m },N ={y |y >-1},结合数轴易知m >-1.11. 已知命题p :“∀x ∈[1,2],12x 2-ln x -a ≥0”是真命题,则实数a 的取值范围是________. 答案 ⎝⎛⎦⎤-∞,12 解析 命题p :a ≤12x 2-ln x 在[1,2]上恒成立,令f (x )=12x 2-ln x ,f ′(x )=x -1x=(x -1)(x +1)x ,当1<x <2时,f ′(x )>0,∴f (x )min =f (1)=12,∴a ≤12. 12.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.(写出所有真命题的序号)答案 ①④解析 对于①,当数列{a n }是等比数列时,易知数列{a n a n +1}是等比数列;但当数列 {a n a n +1}是等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确.对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确.对于③,当m =3时,相应的两条直线垂直;反过来,当这两条直线垂直时,不一定能得出m =3,也可能得出m =0,因此③不正确.对于④,由题意,得b a =sin B sin A =3,当B =60°时,有sin A =12,注意到b >a ,故A =30°;但当A =30°时,有sin B =32,B =60°或B =120°,因此④正确.三、解答题13.已知函数f (x )= 6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B . (1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解 A ={x |-1<x ≤5},(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},故4是方程-x 2+2x +m =0的一个根,∴有-42+2×4+m =0,解得m =8.此时B ={x |-2<x <4},符合题意.因此实数m 的值为8.14.设集合A ={x |-2-a <x <a ,a >0},命题p :1∈A ,命题q :2∈A .若p ∨q 为真命题,p ∧q为假命题,求a 的取值范围.解 由命题p :1∈A ,得⎩⎪⎨⎪⎧ -2-a <1,a >1.解得a >1. 由命题q :2∈A ,得⎩⎪⎨⎪⎧-2-a <2,a >2.解得a >2. 又∵p ∨q 为真命题,p ∧q 为假命题,即p 真q 假或p 假q 真,当p 真q 假时,⎩⎪⎨⎪⎧ a >1,a ≤2,即1<a ≤2, 当p 假q 真时,⎩⎪⎨⎪⎧a ≤1,a >2,无解. 故所求a 的取值范围为(1,2].。
考前三个月高考数学(全国甲卷通用理科)技巧规范篇 第一篇 第1讲 六招求解选择题
第1讲 六招求解选择题[题型分析·高考展望] 选择题是高考试题的三大题型之一,其特点是:难度中低,小巧灵活,知识覆盖面广,解题只要结果不看过程.解选择题的基本策略是:充分利用题干和选项信息,先定性后定量,先特殊再一般,先排除后求解,避免“小题大做”.解答选择题主要有直接法和间接法两大类.直接法是最基本、最常用的方法,但为了提高解题的速度,我们还要研究解答选择题的间接法和解题技巧.高考必会题型方法一 直接法直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密地推理和准确地运算,从而得出正确的结论,然后对照题目所给出的选项“对号入座”,作出相应的选择.涉及概念、性质的辨析或运算较简单的题目常用直接法.例1 设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F ,虚轴的一个端点为B ,线段BF 与双曲线的一条渐近线交于点A ,若F A →=2AB →,则双曲线的离心率为( ) A.6 B.4 C.3 D.2 答案 D解析 设点F (c ,0),B (0,b ), 由F A →=2AB →,得OA →-OF →=2(OB →-OA →), 即OA →=13(OF →+2OB →),所以点A (c 3,2b3),因为点A 在渐近线y =bax 上,则2b 3=b a ·c3,即e =2. 点评 直接法是解答选择题最常用的基本方法,直接法适用的范围很广,一般来说,涉及概念、性质的辨析或运算比较简单的题多采用直接法,只要运算正确必能得出正确的答案.提高用直接法解选择题的能力,准确地把握题目的特点.用简便的方法巧解选择题,是建立在扎实掌握“三基”的基础上的,在稳的前提下求快,一味求快则会快中出错.变式训练1 函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A.2,-π3B.2,-π6C.4,-π6D.4,π3答案 A解析 由图可知,T 2=11π12-5π12,即T =π,所以由T =2πω可得,ω=2,所以函数f (x )=2sin(2x +φ), 又因为函数图象过点(5π12,2),所以2=2sin(2×5π12+φ),即2×5π12+φ=π2+2k π,k ∈Z ,又因为-π2<φ<π2,所以φ=-π3.方法二 特例法特例法是从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特殊化法是“小题小做”的重要策略,适用于题目中含有字母或具有一般性结论的选择题,特殊情况可能是:特殊值、特殊点、特殊位置、特殊数列等.例2 (1)已知O 是锐角△ABC 的外接圆圆心,∠A =60°,cos B sin C ·AB →+cos C sin B ·AC →=2m ·AO →,则m 的值为( ) A.32 B. 2 C.1 D.12(2)已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 均不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24) 答案 (1)A (2)C 解析 (1)如图,当△ABC 为正三角形时,A =B =C =60°,取D 为BC 的中点,AO →=23AD →,则有13 AB →+13AC →=2m ·AO →, ∴13(AB →+AC →)=2m ×23AD →,∴13·2AD →=43mAD →,∴m =32,故选A. (2)不妨设0<a <1<b ≤10<c ,取特例, 如取f (a )=f (b )=f (c )=12,则易得a =1021-,b =1021,c =11,从而abc =11,故选C.点评 特例法具有简化运算和推理的功效,用特例法解选择题时,要注意以下两点: 第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.变式训练2 (1)已知等比数列{a n }满足a n >0,n =1,2,3,…,且a 5·a 2n -5=22n (n ≥3),当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( ) A.n (2n -1) B.(n +1)2 C.n 2 D.(n -1)2(2)如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P 、Q 满足A 1P =BQ ,过P 、Q 、C 三点的截面把棱柱分成两部分,则其体积之比为( )A.3∶1B.2∶1C.4∶1D.3∶1 答案 (1)C (2)B解析 (1)因为a 5·a 2n -5=22n (n ≥3), 所以令n =3,代入得a 5·a 1=26, 再令数列为常数列,得每一项为8, 则log 2a 1+log 2a 3+log 2a 5=9=32. 结合选项可知只有C 符合要求.(2)将P 、Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有1C AA B V -=1A ABC V -=13111ABC A B C V -,故过P ,Q ,C 三点的截面把棱柱分成的两部分的体积之比为2∶1.方法三 排除法排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰项逐一排除,从而获得正确答案.例3 (1)函数f (x )=2|x |-x 2的图象为( )(2)函数f (x )=sin x -13-2cos x -2sin x(0≤x ≤2π)的值域是( )A.⎣⎡⎦⎤-22,0 B.[-1,0] C.[-2,-1] D.⎣⎡⎦⎤-33,0 答案 (1)D (2)B解析 (1)由f (-x )=f (x )知函数f (x )是偶函数, 其图象关于y 轴对称,排除选项A 、C ; 当x =0时,f (x )=1,排除选项B ,故选D. (2)令sin x =0,cos x =1, 则f (x )=0-13-2×1-2×0=-1,排除A ,D ;令sin x =1,cos x =0,则f (x )=1-13-2×0-2×1=0,排除C ,故选B.点评 排除法适用于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.变式训练3 (1)设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0,若f (0)是f (x )的最小值,则a 的取值范围为( )A.[-1,2]B.[-1,0]C.[1,2]D.[0,2](2)(2015·浙江)函数f (x )=⎝⎛⎭⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )答案 (1)D (2)D解析 (1)若a =-1,则f (x )=⎩⎪⎨⎪⎧(x +1)2,x ≤0,x +1x -1,x >0,易知f (-1)是f (x )的最小值,排除A ,B ; 若a =0,则f (x )=⎩⎪⎨⎪⎧x 2,x ≤0,x +1x,x >0,易知f (0)是f (x )的最小值,故排除C.故D 正确. (2)∵f (x )=(x -1x )cos x ,∴f (-x )=-f (x ),∴f (x )为奇函数,排除A ,B ; 当x =π时,f (x )<0,排除C.故选D. 方法四 数形结合法根据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断,习惯上也叫数形结合法,有些选择题可通过命题条件中的函数关系或几何意义,作出函数的图象或几何图形,借助于图象或图形的作法、形状、位置、性质等,综合图象的特征,得出结论.例4 (1)已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为( ) A.60° B.90° C.120° D.150°(2)定义在R 上的奇函数f (x )和定义在{x |x ≠0}上的偶函数g (x )分别满足f (x )=⎩⎪⎨⎪⎧2x-1,0≤x <1,1x,x ≥1,g (x )=log 2x (x >0),若存在实数a ,使得f (a )=g (b )成立,则实数b 的取值范围是( ) A.[-2,2]B.[-12,0)∪(0,12]C.[-2,-12]∪[12,2]D.(-∞,-2]∪[-2,+∞)答案 (1)B (2)C 解析 (1)如图,因为〈a ,b 〉=120°, |b |=2|a |,a +b +c =0, 所以在△OBC 中, BC 与CO 的夹角为90°, 即a 与c 的夹角为90°.(2)分别画出函数f (x )和g (x )的图象, 存在实数a , 使得f (a )=g (b )成立,则实数b 一定在函数g (x )使得两个函数的函数值重合的区间内, 故实数b 的取值范围是[-2,-12]∪[12,2].点评 图解法是依靠图形的直观性进行分析的,用这种方法解题比直接计算求解更能抓住问题的实质,并能迅速地得到结果.不过运用图解法解题一定要对有关的函数图象、几何图形较熟悉,否则错误的图象反而会导致错误的选择.变式训练4 (1)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 2,C 1上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( ) A.52-4 B.17-1 C.6-2 2 D.17(2)已知函数f (x )=4x 与g (x )=x 3+t ,若f (x )与g (x )的交点在直线y =x 的两侧,则实数t 的取值范围是( )A.(-6,0]B.(-6,6)C.(4,+∞)D.(-4,4)答案 (1)A (2)B解析 (1)作圆C 1关于x 轴的对称圆C 1′:(x -2)2+(y +3)2=1, 则|PM |+|PN |=|PM |+|PN ′|,由图可知当点C 2、M 、P 、N ′、C 1′在 同一直线上时,|PM |+|PN |=|PM |+|PN ′|取得最小值, 即为|C 1′C 2|-1-3=52-4.(2)根据题意可得函数图象,g (x )在点A (2,2)处的取值大于2,在点B (-2,-2)处的取值小于-2,可得g (2)=23+t =8+t >2,g (-2)=(-2)3+t =-8+t <-2,解得t ∈(-6,6),故选B.方法五 正难则反法在解选择题时,有时从正面求解比较困难,可以转化为其反面的问题来解决,即将问题转化为其对立事件来解决,实际上就是补集思想的应用.例5 (1)设集合A ={x |a -1<x <a +1,x ∈R },B ={x |1<x <5,x ∈R },若A ∩B ≠∅,则实数a 的取值范围是( ) A.{a |0<a <6} B.{a |a <2或a >4} C.{a |a ≤0或a ≥6}D.{a |2≤a ≤4}(2)已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在[-1,1]上存在x 使得f (x )>0,则实数p 的取值范围是( ) A.[-32,-12]∪[1,3]B.[1,3]C.[-12,3]D.(-3,32)答案 (1)A (2)D解析 (1)当A ∩B =∅时,由图可知a +1≤1或a -1≥5, 所以a ≤0或a ≥6,故当A ∩B ≠∅时,0<a <6.(2)若在[-1,1]上不存在x 使得f (x )>0, 即当x ∈[-1,1]时,f (x )≤0恒成立,则⎩⎪⎨⎪⎧ f (-1)≤0,f (1)≤0,即⎩⎪⎨⎪⎧-2p 2+p +1≤0,-2p 2-3p +9≤0, 解得⎩⎨⎧p ≥1或p ≤-12,p ≥32或p ≤-3,即p ∈(-∞,-3]∪[32,+∞),其补集是(-3,32).点评 应用正难则反法解题的关键在于准确转化,适合于正面求解非常复杂或者无法判断的问题.变式训练5 若函数y =e x +mx 有极值,则实数m 的取值范围是( ) A.(0,+∞) B.(-∞,0) C.(1,+∞) D.(-∞,1) 答案 B解析 y ′=(e x +mx )′=e x +m ,函数y =e x +mx 没有极值的充要条件是函数在R 上为单调函数, 即y ′=e x +m ≥0(或≤0)恒成立, 而e x ≥0,故当m ≥0时,函数y =e x +mx 在R 上为单调递增函数,不存在极值, 所以函数存在极值的条件是m <0. 方法六 估算法由于选择题提供了唯一正确的选项,解答又无需过程.因此,有些题目不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法的关键是确定结果所在的大致范围,否则“估算”就没有意义.估算法往往可以减少运算量,但是提升了思维的层次.例6 (1)已知x 1是方程x +lg x =3的根,x 2是方程x +10x =3的根,则x 1+x 2等于( ) A.6 B.3 C.2 D.1(2)如图,在多面体ABCDEF 中,四边形ABCD 是边长为3的正方形,EF ∥AB ,EF =32,EF与平面ABCD 的距离为2,则该多面体的体积为( )A.92B.5C.6D.152 答案 (1)B (2)D解析 (1)因为x 1是方程x +lg x =3的根,所以2<x 1<3,x 2是方程x +10x =3的根,所以0<x 2<1, 所以2<x 1+x 2<4.(2)该多面体的体积比较难求,可连接BE 、CE ,问题转化为四棱锥E -ABCD 与三棱锥E -BCF 的体积之和, 而V E -ABCD =13S ·h =13×9×2=6,所以只能选D.点评 估算法是根据变量变化的趋势或极值的取值情况进行求解的方法.当题目从正面解析比较麻烦,特值法又无法确定正确的选项时(如难度稍大的函数的最值或取值范围、函数图象的变化等问题)常用此种方法确定选项. 变式训练6 (1)设a =log 23,b =232,c =334,则( )A.b <a <cB.c <a <bC.c <b <aD.a <c <b(2)已知sin θ=m -3m +5,cos θ=4-2m m +5 (π2<θ<π),则tan θ2等于( )A.m -3q -mB.m -3|q -m |C.-15 D.5答案 (1)B (2)D解析 (1)因为2>a =log 23>1,b =232>2,c =334-<1,所以c <a <b .(2)由于受条件sin 2θ+cos 2θ=1的制约,m 一定为确定的值进而推知tan θ2也是一确定的值,又π2<θ<π,所以π4<θ2<π2,故tan θ2>1.所以D 正确. 高考题型精练1.已知集合P ={x |x 2-2x ≥0},Q ={x |1<x ≤2},则(∁R P )∩Q 等于( ) A.[0,1) B.(0,2] C.(1,2) D.[1,2] 答案 C解析 ∵P ={x |x ≥2或x ≤0},∁R P ={x |0<x <2}, ∴(∁R P )∩Q ={x |1<x <2},故选C.2.(2015·四川)下列函数中,最小正周期为π的奇函数是( ) A.y =sin ⎝⎛⎭⎫2x +π2 B.y =cos ⎝⎛⎭⎫2x +π2 C.y =sin 2x +cos 2x D.y =sin x +cos x答案 B解析 A 项,y =sin ⎝⎛⎭⎫2x +π2=cos 2x ,最小正周期为π,且为偶函数,不符合题意; B 项,y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,最小正周期为π,且为奇函数,符合题意; C 项,y =sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4,最小正周期为π,为非奇非偶函数,不符合题意; D 项,y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,最小正周期为2π,为非奇非偶函数,不符合题意. 3.已知双曲线的一个焦点与抛物线x 2=24y 的焦点重合,其一条渐近线的倾斜角为30°,则该双曲线的标准方程为( )A.x 29-y 227=1B.y 29-x 227=1C.y 212-x 224=1D.y 224-x 212=1 答案 B解析 由题意知,抛物线的焦点坐标为(0,6), 所以双曲线的焦点坐标为(0,6)和(0,-6), 所以双曲线中c =6,又因为双曲线的一条渐近线的倾斜角为30°,所以a b =33,所以a 2b 2=13,又a 2+b 2=36, 得a 2=9,b 2=27. 故选B.4.图中阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的大致图象是( )答案 B解析 由题图知,随着h 的增大,阴影部分的面积S 逐渐减小,且减小得越来越慢,结合选项可知选B.5.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥0,x -y ≥0,2x -y -2≥0,则z =y -1x +1的取值范围是( )A.[-1,13]B.[-12,13]C.[-12,+∞)D.[-12,1)答案 B解析 如图,z =y -1x +1表示可行域内的动点P (x ,y )与定点A (-1,1)连线的斜率.6.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )等于( )A.e x +1 B.e x -1 C.e -x +1D.e-x -1答案 D解析 依题意,f (x )向右平移一个单位长度之后得到的函数是y =e -x ,于是f (x )相当于y =e-x向左平移一个单位的结果,所以f (x )=e-x -1.7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( ) A.1 B. 2 C.2-12 D.2+12答案 C解析 由俯视图知正方体的底面水平放置,其正视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12. 8.给出下面的程序框图,若输入的x 的值为-5,则输出的y 值是( ) A.-2 B.-1 C.0 D.1答案 C解析 由程序框图得:若输入的x 的值为-5, (12)-5=25=32>2, 程序继续运行x =-3,(12)-3=23=8>2,程序继续运行x =-1,(12)-1=2,不满足(12)x >2,∴执行y =log 2x 2=log 21=0, 故选C.9.(2015·山东)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1B.[0,1]C.⎣⎡⎭⎫23,+∞ D.[1, +∞)解析 由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥23,故选C.10.等差数列{a n }的前n 项和为S n ,若a 1<0,且S 2 015=0,则当S n 取得最小值时,n 的取值为( )A.1 009B.1 008C.1 007或1 008D.1 008或1 009 答案 C解析 等差数列中,S n 的表达式为n 的二次函数,且常数项为0,故函数S n 的图象过原点,又a 1<0,且存在n =2 015使得S n =0,可知公差d >0,S n 图象开口向上,对称轴n =2 0152,于是当n =1 007或n =1 008时,S n 取得最小值,选C.11.已知四面体P ABC 的四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且AC =1,PB =AB =2,则球O 的表面积为( ) A.7π B.8π C.9π D.10π 答案 C解析 依题意,记题中的球的半径是R ,可将题中的四面体补形成一个长方体,且该长方体的长、宽、高分别是2,1,2,于是有(2R )2=12+22+22=9,4πR 2=9π,所以球O 的表面积为9π.12.已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 200OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 200等于( ) A.100 B.101 C.200 D.201 答案 A解析 因为A ,B ,C 三点共线,所以a 1+a 200=1, S 200=a 1+a 2002×200=100.13.若(x -2x )n 的二项展开式中的第5项是常数,则自然数n 的值为( )A.6B.10C.12D.15解析 ∵T k +1=C k n (x )n -k(-2x)k =C k n (-1)k 2k32-n kx ,∴T 5=C 4n ·24·122-n x.令n -12=0,∴n =12.14.在抛物线y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( )A.(-2,1)B.(1,2)C.(2,1)D.(-1,2) 答案 B解析 如图所示,直线l 为抛物线y =2x 2的准线,F 为其焦点,PN ⊥l ,AN 1⊥l ,由抛物线的定义知,|PF |=|PN |,∴|AP |+|PF |=|AP |+|PN |≥|AN 1|, 当且仅当A 、P 、N 三点共线时取等号. ∴P 点的横坐标与A 点的横坐标相同即为1, 则可排除A 、C 、D ,故选B.15.已知函数f (x )=e x -1,g (x )=-x 2+4x -3.若f (a )=g (b ),则b 的取值范围为( ) A.[2-2,2+2] B.(2-2,2+2) C.[1,3] D.(1,3) 答案 B解析 ∵f (a )>-1,∴g (b )>-1, ∴-b 2+4b -3>-1, ∴b 2-4b +2<0, ∴2-2<b <2+ 2. 故选B.16.若不等式m ≤12x +21-x 在x ∈(0,1)时恒成立,则实数m 的最大值为( )A.9B.92C.5D.52答案 B解析 12x +21-x =(12x +92x )+[92(1-x )+21-x ]-92 ≥212x ×92x +2 92(1-x )(21-x )-92=2×32+2×3-92=9-92=92,当且仅当⎩⎨⎧12x =92x ,92(1-x )=21-x即x =13时取得等号,所以实数m 的最大值为92,故选B.17.已知定义在R 上的函数f (x )满足f (1)=1,且f (x )的导数f ′(x )在R 上恒有f ′(x )<12,则不等式f (x 2)<x 22+12的解集为( ) A.(1,+∞) B.(-∞,-1) C.(-1,1) D.(-∞,-1)∪(1,+∞) 答案 D解析 记g (x )=f (x )-12x -12,则有g ′(x )=f ′(x )-12<0,g (x )是R 上的减函数,且g (1)=f (1)-12×1-12=0,不等式f (x 2)<x 22+12, 即f (x 2)-x 22-12<0,g (x 2)<0=g (1), 由g (x )是R 上的减函数得x 2>1, 解得x <-1或x >1,即不等式f (x 2)<x 22+12的解集是(-∞,-1)∪(1,+∞). 18.已知函数f (x )=⎩⎪⎨⎪⎧|lg (-x )|,x <0,x 2-6x +4,x ≥0,若函数F (x )=f 2(x )-bf (x )+1有8个不同的零点,则实数b 的取值范围是( )A.(-∞,-2)∪(2,+∞)B.(2,8)C.(2,174] D.(0,8)答案 C解析 函数f (x )的图象如图所示:要使方程f 2(x )-bf (x )+1=0有8个不同实数根,令f (x )=t ,意味着0<t ≤f (0)(f (0)=4)且t 有两个不同的值t 1,t 2,0<t 1<t 2≤4, 即二次方程t 2-bt +1=0在区间(0,4]上有两个不同的实数根.对于二次函数g (t )=t 2-bt +1, 这意味着Δ=b 2-4>0(或g (b2)<0),0<b2<4(或t 1+t 2=b ∈(0,8)), 因为g (0)=1>0(不论t 如何变化都有图象恒过定点(0,1)), 所以只需g (4)≥0,求得b ≤174, 综上可得b ∈(2,174].。
考前三个月高考数学(全国甲卷通用理科)技巧规范篇 第一篇 第2讲 四种策略搞定填空题
第2讲 四种策略搞定填空题[题型分析·高考展望] 填空题的基本特点是:(1)题目小巧灵活,结构简单;(2)答案简短明确,不反映过程 ,只要结果;(3)填空题根据填写内容,可分为定量型(填写数值,数集或数量关系)和定性型(填写某种性质或是有某种性质的对象).根据填空题的特点,在解答时要做到四个字——“快”“稳”“全”“细”.快——运算要快,力戒小题大做;稳——变形要稳,不可操之过急;全——答案要全,力避残缺不齐;细——审题要细,不能粗心大意.高考必会题型方法一 直接法根据题目中给出的条件,通过数学计算找出正确答案.解决此类问题需要直接从题设条件出发,利用有关性质或结论等,通过巧妙变化,简化计算过程.解题过程要灵活地运用相关的运算规律和技巧,合理转化、巧妙处理已知条件.例1 在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos B cos C =-b 2a +c ,则角B 的值为________. 答案2π3解析 方法一 由正弦定理, 即a sin A =b sin B =c sin C=2R , 得a =2R sin A ,b =2R sin B ,c =2R sin C , 代入cos B cos C =-b 2a +c ,得cos B cos C =-sin B 2sin A +sin C, 即2sin A cos B +sin C cos B +cos C sin B =0, 所以2sin A cos B +sin(B +C )=0. 在△ABC 中,sin(B +C )=sin A , 所以2sin A cos B +sin A =0, 又sin A ≠0,所以cos B =-12.又角B 为△ABC 的内角,所以B =2π3.方法二 由余弦定理,即cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab ,代入cos B cos C =-b2a +c ,得a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c ,整理,得a 2+c 2-b 2=-ac ,所以cos B =a 2+c 2-b 22ac =-ac 2ac =-12,又角B 为△ABC 的内角,所以B =2π3.点评 直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.变式训练1 已知数列{a n }满足a 1=1,a n +1·a n =2n ,则S 2 016=____________. 答案 3·21 008-3解析 由题意得a n ·a n +1=2n ,a n +2·a n +1=2n +1⇒a n +2a n=2,因此a 1,a 3,a 5,…构成一个以1为首项,2为公比的等比数列; a 2,a 4,a 6,…构成一个以2为首项,2为公比的等比数列;从而S 2 016=(a 1+a 3+…+a 2 015)+(a 2+a 4+…+a 2 016)=1-21 0081-2+2×1-21 0081-2=3(21 008-1).方法二 特例法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊函数,特殊角,特殊数列,特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论.为保证答案的正确性,在利用此方法时,一般应多取几个特例.例2 (1)若函数f (x )=sin 2x +a cos 2x 的图象关于直线x =-π8对称,则a =________.(2)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC的面积是________. 答案 (1)-1 (2)323解析 (1)由题意,对任意的x ∈R , 有f (-π8+x )=f (-π8-x ),令x =π8,得f (0)=f (-π4),得a =-1.(2)方法一 △ABC 为等边三角形时满足条件,则S △ABC =332. 方法二 ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.点评 求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.变式训练2 (1)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.(2)如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为________.答案 (1)-32(2)2解析 (1)由题意知,函数f (x )的定义域为R , 又因为函数为偶函数,所以f (-13)-f (13)=0,即ln(e -1+1)-a 3-ln(e +1)-a 3=0,ln e -1-23a =0,解得a =-32,将a =-32代入原函数,检验知f (x )是偶函数, 故a =-32.(2)用特殊值法, 可设AB =AC =BM =1, 因为AB →=mAM →,所以m =12,过点C 引AM 的平行线,并延长MN ,两线相交于点E ,则AE =BC =2OC ,易得AN =23AC ,因为AC →=nAN →,所以n =32,可知m +n =12+32=2.方法三 数形结合法对于一些含有几何背景的填空题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率或截距、向量的夹角、解析几何中两点间距离等,求解的关键是明确几何含义,准确、规范地作出相应的图形.例3 (1)已知点P (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则x 2+y 2-6x +9的取值范围是________________________________________________________________________. (2)已知函数f (x )=x |x -2|,则不等式f (2-x )≤f (1)的解集为________. 答案 (1)[2,16] (2)[-1,+∞)解析 (1)画出可行域如图,所求的x 2+y 2-6x +9=(x -3)2+y 2是点Q (3,0)到可行域上的点的距离的平方,由图形知最小值为Q 到射线x -y -1=0(x ≥0)的距离d 的平方,∴d 2min =[|3-0-1|12+(-1)2]2=(2)2=2.最大值为点Q 到点A 的距离的平方, ∴d 2max =16.∴取值范围是[2,16].(2)函数y =f (x )的图象如图,由不等式f (2-x )≤f (1)知,2-x ≤2+1,从而得到不等式f (2-x )≤f (1)的解集为[-1,+∞).点评 数形结合在解答填空题中的应用,就是利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.变式训练3 已知函数f (x )=⎩⎪⎨⎪⎧log 2x , x >0,3x , x ≤0且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________. 答案 (1,+∞)解析 方程f (x )+x -a =0的实根也就是函数y =f (x )与y =a -x 的图象交点的横坐标,如图所示,作出两个函数的图象,显然当a ≤1时,两个函数图象有两个交点,当a >1时,两个函数图象的交点只有一个.所以实数a 的取值范围是(1,+∞). 方法四 构造法构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模型,揭示问题的本质,从而沟通解题思路的方法. 例4 (1)若a =ln12 017-12 017,b =ln 12 016-12 016,c =ln 12 015-12 015,则a ,b ,c 的大小关系为________.(2)如图,在边长为2的正方形ABCD 中,点E 、F 分别是边AB 、BC 的中点,△AED 、△EBF 、△FCD 分别沿着DE 、EF 、FD 折起,使A 、B 、C 三点重合于点A ′,若四面体A ′EFD 的四个顶点在同一个球面上,则该球的半径为________.答案 (1)a <b <c (2)62解析 (1)令f (x )=ln x -x (0<x <1), 则f ′(x )=1x-1,∵0<x <1,∴f ′(x )>0,∴f (x )为增函数.又12 017<12 016<12 015,∴a <b <c . (2)由题意知DF =5,A ′E =A ′F =1,A ′D =2, 以A ′E 、A ′F 、A ′D 为棱,建立一个长方体, 则体对角线长为2R =12+12+22(R 为球的半径),R =62. 点评 构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.本题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决.变式训练4 (1)若x ,y ∈[-π4,π4],a ∈R ,且满足方程x 3+sin x -2a =0和4y 3+sin y cos y+a =0,则cos(x +2y )=________.(2)如图,已知球O 的面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.答案 (1)1 (2)6π解析 (1)对第二个等式进行变形可得:(2y )3+sin 2y +2a =0,对照两等式和所求的结论思考, 可以找到x 和2y 的关系, 构造函数f (x )=x 3+sin x ,则两个条件分别变为f (x )=2a 和f (2y )=-2a , 即f (x )=-f (2y ),因为函数f (x )=x 3+sin x 是奇函数,所以有f (x )=f (-2y ),又因为当x ,y ∈[-π4,π4]时,f (x )是单调递增的函数, 所以有x =-2y ,即x +2y =0, 因此cos(x +2y )=1.(2)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径, 所以CD =(2)2+(2)2+(2)2=2R , 所以R =62, 故球O 的体积V =4πR 33=6π.高考题型精练1.设ln 3=a ,ln 7=b ,则e a +e b =______(其中e 为自然对数的底数). 答案 10解析 ∵e a =3,e b =7,∴e a +e b =10.2.如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=________.答案 18解析 把平行四边形ABCD 看成正方形,则P 点为对角线的交点,AC =6,则AP →·AC →=18. 3.已知θ∈(0,π),且sin(θ-π4)=210,则tan 2θ=________.答案 -247解析 由sin(θ-π4)=210得,22(sin θ-cos θ)=210,sin θ-cos θ=15,解方程组⎩⎪⎨⎪⎧sin θ-cos θ=15,sin 2θ+cos 2θ=1,得⎩⎨⎧sin θ=45,cos θ=35或⎩⎨⎧sin θ=-35,cos θ=-45.因为θ∈(0,π),所以sin θ>0,所以⎩⎨⎧sin θ=-35,cos θ=-45不合题意,舍去,所以tan θ=43,所以tan 2θ=2tan θ1-tan 2θ=2×431-(43)2=-247.4.一枚质地均匀的正方体骰子,六个面上分别刻着1点至6点,甲、乙二人各掷骰子一次,则甲掷得的向上的点数比乙大的概率为________. 答案512解析 一共有36种情况,其中甲掷得的向上的点数比乙大的有:(6,1)、(6,2)、(6,3)、(6,4)、(6,5)、(5,1)、(5,2)、(5,3)、(5,4)、(4,1)、(4,2)、(4,3)、(3,1)、(3,2)、(2,1),共15种,所以所求概率为1536=512.5.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b ,若b ·c =0,则t =________. 答案 2解析 方法一 如图所示,在△OAB 中,|OA →|=|OB →|=1,∠AOB =60°,延长BA 到C 使∠BOC =90°,则A 为BC 的中点,c =OC →=OA →+AC →=OA →+BA →=2a -b , 则t =2.方法二 由已知b ·c =0, 即t a ·b +(1-t )b 2=0, 12t +(1-t )=0,因此t =2. 6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C1+cos A cos C =________. 答案 45解析 令a =3,b =4,c =5,则△ABC 为直角三角形, 且cos A =45,cos C =0,代入所求式子,得cos A +cos C 1+cos A cos C=45+01+45×0=45.7.直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M 、N 两点,若|MN |≥23,则k 的取值范围是________. 答案 ⎣⎡⎦⎤-33,33解析 由题意,得圆心到直线的距离 d =|k ·2-3+3|1+k 2=|2k |1+k 2,若|MN |≥23,则4-d 2≥(3)2, 解得-33≤k ≤33. 8.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0,若f (f (a ))≤2,则实数a 的取值范围是________.答案 [-∞,2]解析 f (x )的图象如图,由图象知,满足f (f (a ))≤2时,得f (a )≥-2,而满足f (a )≥-2时,得a ≤ 2.9.已知平行四边形ABCD ,点P 为四边形内部或者边界上任意一点,向量AP →=xAB →+yAD →,则0≤x ≤12,0≤y ≤23的概率是________.答案 13解析 由平面向量基本定理及点P 为ABCD 内部或边界上任意一点,可知0≤x ≤1且0≤y ≤1,又满足条件的x ,y 满足0≤x ≤12,0≤y ≤23,所以P (A )=23×121×1=13.10.某程序框图如图所示,若a =3,则该程序运行后,输出的x 值为________.答案 31解析 第一次循环,x =2×3+1=7,n =2; 第二次循环,x =2×7+1=15,n =3; 第三次循环,x =2×15+1=31,n =4, 程序结束,故输出x =31.11.e 416,e 525,e 636(其中e 为自然对数的底数)的大小关系是________. 答案 e 416<e 525<e 636解析 由于e 416=e 442,e 525=e 552,e 636=e 662,故可构造函数f (x )=e x x 2,于是f (4)=e 416,f (5)=e 525,f (6)=e 636. 而f ′(x )=(e xx 2)′=e x ·x 2-e x ·2x x 4=e x (x -2)x 3,令f ′(x )>0得x <0或x >2,即函数f (x )在(2,+∞)上单调递增,因此有f (4)<f (5)<f (6),即e 416<e 525<e 636. 12.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤3x -2,x -2y +1≤0,2x +y ≤8,则yx -1的最小值是________. 答案 1解析 作出变量x ,y 满足的平面区域, 如图阴影部分所示,y x -1表示的几何意义是平面区域内的一点与点P (1,0)连线的斜率,结合图形可知,P A 的斜率最小,所以y x -1的最小值为23-1=1. 13.已知椭圆x 24+y 23=1的左焦点F ,直线x =m 与椭圆相交于点A ,B ,当△F AB 的周长最大时,△F AB 的面积是________.答案 3解析 不妨设A (2cos θ,3sin θ),θ∈(0,π),△F AB 的周长为2(|AF |+3sin θ)=2(2+cos θ+3sin θ)=4+4sin(θ+π6). 当θ=π3,即A (1,32)时,△F AB 的周长最大. 所以△F AB 的面积为S =12×2×3=3. 14.三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________. 答案 14解析 如图,设S △ABD =S 1,S △P AB =S 2,E 到平面ABD 的距离为h 1,C 到平面P AB 的距离为h 2,则S 2=2S 1,h 2=2h 1,V 1=13S 1h 1,V 2=13S 2h 2, 所以V 1V 2=S 1h 1S 2h 2=14. 15.已知函数f (x )=2x -a ,g (x )=x e x ,若对任意x 1∈[0,1],存在x 2∈[-1,1],使f (x 1)=g (x 2)成立,则实数a 的取值范围为________.答案 [2-e ,1e] 解析 f (x )=2x -a 为增函数,∵x 1∈[0,1],∴f (x 1)的范围是[-a ,2-a ],易知g (x )也为增函数,当x 2∈[-1,1]时,g (x 2)的范围是[-1e,e], 由题意得⎩⎪⎨⎪⎧ -a ≥-1e ,2-a ≤e.∴2-e ≤a ≤1e . 16.若数列{a n },{b n }的通项公式分别是a n =(-1)n +2 016a ,b n =2+(-1)n+2 017n ,且a n <b n ,对任意n ∈N *恒成立,则实数a 的取值范围是________.答案 [-2,32) 解析 由题意,当n 为偶数时,a <2-1n恒成立, 可得a <32;当n 为奇数时, -a <2+1n恒成立, 可得a ≥-2,故-2≤a <32. 17.设f (x )是⎝⎛⎭⎫x 2+12x 6展开式的中间项,若f (x )≤mx 在区间⎣⎡⎦⎤22,2上恒成立,则实数m 的取值范围是________.答案 [5,+∞)解析 由于T k +1=C k 6⎝⎛⎭⎫12k x 12-3k , 故展开式中间的一项为T 3+1=C 36·⎝⎛⎭⎫123·x 3=52x 3, f (x )≤mx ⇔52x 3≤mx 在⎣⎡⎦⎤22,2上恒成立, 即m ≥52x 2,又52x 2≤5, 故实数m 的取值范围是m ≥5.18.设M ,N 分别是曲线f (x )=-x 3+x 2(x <e)与g (x )=a ln x (x ≥e)上一点,△MON 是以O 为直角顶点的直角三角形(其中O 为坐标原点),且斜边的中点恰好在y 轴上,则实数a 的取值范围是________.答案 (0,2e -2e -1] 解析 ∵△MON 是以O 为直角顶点的直角三角形,且斜边的中点恰好在y 轴上,∴M ,N 两点的横坐标互为相反数,设M (-t ,t 3+t 2),N (t ,a ln t )(t ≥e),由题意知OM →·ON →=0,有-t 2+(t 2+t 3)·a ln t =0,整理得1a =(t +1)ln t (t ≥e), 令h (x )=(x +1)ln x (x ≥e),则h ′(x )=ln x +1+1x>0, ∴h (x )在[e ,+∞)上是增函数,∴h (t )≥h (e)=e +12, ∴1a ≥e +12, 解得0<a ≤2e -2e -1.。
2017版考前三个月高考数学全国甲卷通用理科知识 方法
第2练 用好逻辑用语,突破充要条件[题型分析·高考展望] 逻辑用语是高考常考内容,充分、必要条件是重点考查内容,题型基本都是选择题、填空题,题目难度以低、中档为主,在二轮复习中,本部分应该重点掌握四种命题的真假判断、否命题与命题的否定的区别、含有量词的命题的否定的求法、充分必要条件的判定与应用,这些知识被考查的概率都较高,特别是充分、必要条件几乎每年都有考查.体验高考1.(2015·山东)若m ∈R , 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( ) A.若方程x 2+x -m =0有实根,则m >0 B.若方程x 2+x -m =0有实根,则m ≤0 C.若方程x 2+x -m =0没有实根,则m >0 D.若方程x 2+x -m =0没有实根,则m ≤0 答案 D解析 原命题为“若p ,则q ”,则其逆否命题为“若綈q ,则綈p ”. ∴所求命题为“若方程x 2+x -m =0没有实根,则m ≤0”. 2.(2015·天津)设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案 A解析 |x -2|<1⇔-1<x -2<1⇔1<x <3,x 2+x -2>0⇔x <-2或x >1,所以“|x -2|<1”是“x 2+x -2>0”的充分不必要条件,故选A. 3.(2015·重庆)“x >1”是“log 21(x +2)<0”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件 答案 B解析 log 21(x +2)<0⇔x +2>1⇔x >-1,因此选B.4.(2016·北京)设a,b是向量,则“|a|=|b|”是“|a+b|=|a-b|”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 D解析由|a+b|=|a-b|⇔(a+b)2=(a-b)2⇔a·b=0⇔a⊥b,故是既不充分也不必要条件,故选D.5.(2016·浙江)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2答案 D解析全称命题的否定是特称命题,特称命题的否定是全称命题,n≥x2的否定是n<x2,故选D.高考必会题型题型一命题及其真假判断常用结论:(1)原命题与逆否命题等价,同一个命题的逆命题、否命题等价;(2)四个命题中,真命题的个数为偶数;(3)只有p、q都假,p∨q假,否则为真,只有p、q都真,p∧q真,否则为假;(4)全称命题的否定为特称命题,特称命题的否定为全称命题,一个命题与其否定不会同真假.例1(1)(2015·安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面(2)命题p:若sin x>sin y,则x>y;命题q:x2+y2≥2xy.下列命题为假命题的是()A.p或qB.p且qC.qD.綈p答案(1)D(2)B解析(1)对于A,α,β垂直于同一平面,α,β关系不确定,故A错;对于B,m,n平行于同一平面,m,n关系不确定,可平行、相交、异面,故B错;对于C,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.(2)取x =π3,y =5π6,可知命题p 不正确;由(x -y )2≥0恒成立,可知命题q 正确,故綈p 为真命题,p 或q 是真命题,p 且q 是假命题.点评 利用等价命题判断命题的真假,是判断命题真假快捷有效的方法.在解答时要有意识地去练习.变式训练1 已知命题p :∀x ∈R ,x 2>0,命题q :∃α,β∈R ,使tan(α+β)=tan α+tan β,则下列命题为真命题的是( ) A.p ∧q B.p ∨(綈q ) C.(綈p )∧q D.p ∧(綈q )答案 C解析 因为∀x ∈R ,x 2≥0,所以命题p 是假命题,因为当α=-β时,tan(α+β)=tan α+tan β,所以命题q 是真命题,所以p ∧q 是假命题,p ∨(綈q )是假命题,(綈p )∧q 是真命题,p ∧(綈q )是假命题.题型二 充分条件与必要条件例2 (1)(2015·北京)设α,β是两个不同的平面,m 是直线且m ⊂α.则“m ∥β”是“α∥β”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 答案 B解析 m ⊂α,m ∥β⇏α∥β,但m ⊂α,α∥β⇒m ∥β, 所以“m ∥β”是“α∥β”的必要不充分条件.(2)已知(x +1)(2-x )≥0的解为条件p ,关于x 的不等式x 2+mx -2m 2-3m -1<0(m >-23)的解为条件q .①若p 是q 的充分不必要条件时,求实数m 的取值范围; ②若綈p 是綈q 的充分不必要条件时,求实数m 的取值范围. 解 ①设条件p 的解集为集合A , 则A ={x |-1≤x ≤2}, 设条件q 的解集为集合B , 则B ={x |-2m -1<x <m +1}, 若p 是q 的充分不必要条件,则A 是B 的真子集⎩⎪⎨⎪⎧ m +1>2,-2m -1<-1,m >-23,解得m >1.②若綈p 是綈q 的充分不必要条件, 则B 是A 的真子集⎩⎪⎨⎪⎧m +1≤2,-2m -1≥-1,m >-23.解得-23<m ≤0.点评 判断充分、必要条件时应注意的问题(1)先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .(2)举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.(3)准确转化:若綈p 是綈q 的必要不充分条件,则p 是q 的充分不必要条件;若綈p 是綈q 的充要条件,那么p 是q 的充要条件.变式训练2 (2015·湖北)设a 1,a 2,…,a n ∈R ,n ≥3.若p :a 1,a 2,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)·(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则( )A.p 是q 的必要条件,但不是q 的充分条件B.p 是q 的充分条件,但不是q 的必要条件C.p 是q 的充分必要条件D.p 既不是q 的充分条件,也不是q 的必要条件 答案 B解析 若p 成立,设a 1,a 2,…,a n 的公比为q ,则(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=a 21(1+q 2+…+q 2n -4)·a 22(1+q 2+…+q2n -4)=a 21a 22(1+q 2+…+q 2n -4)2,(a 1a 2+a 2a 3+…+a n -1a n )2=(a 1a 2)2(1+q 2+…+q 2n -4)2,故q 成立,故p 是q 的充分条件.取a 1=a 2=…=a n =0,则q 成立,而p 不成立,故p 不是q 的必要条件,故选B. 题型三 与命题有关的综合问题 例3 下列叙述正确的是( )A.命题:∃x 0∈R ,使x 30+sin x 0+2<0的否定为:∀x ∈R ,均有x 3+sin x +2<0B.命题:“若x 2=1,则x =1或x =-1”的逆否命题为:若x ≠1或x ≠-1,则x 2≠1C.已知n ∈N ,则幂函数y =x 3n -7为偶函数,且在x ∈(0,+∞)上单调递减的充分必要条件为n =1D.函数y =log 2x +m3-x 的图象关于点(1,0)中心对称的充分必要条件为m =±1答案 C解析 A :命题:∃x 0∈R ,使x 30+sin x 0+2<0的否定为:∀x ∈R ,均有x 3+sin x +2≥0,故A 错误; B :命题:若x 2=1,则x =1或x =-1的逆否命题为:若x ≠1且x ≠-1, 则x 2≠1,故B 错误; C :因为幂函数y =x 3n-7在x ∈(0,+∞)上单调递减,所以3n -7<0,解得n <73,又n ∈N ,所以n =0,1或2; 又y =x 3n-7为偶函数,所以,n =1,即幂函数y =x 3n-7为偶函数,且在x ∈(0,+∞)上单调递减的充分必要条件为n =1,C 正确;D :令y =f (x )=log 2x +m3-x ,由其图象关于点(1,0)中心对称,得f (x )+f (2-x )=0,即log 2x +m 3-x +log 2(2-x )+m 3-(2-x )=log 2(x +m )(2+m -x )(3-x )(1+x )=0,(x +m )(2+m -x )(3-x )(1+x )=1.整理得:m 2+2m -3=0,解得m =1或m =-3, 当m =-3时,x +m 3-x =-1<0,y =log 2x +m3-x 无意义, 故m =1.所以,函数y =log 2x +m 3-x 图象关于点(1,0)中心对称的充分必要条件为m =1,故D 错误.点评 解决此类问题需要对每一个命题逐一作出判断,需要有扎实的基础知识,这是破解此类问题的前提条件.若需证明某命题为真,需要根据有关知识作出逻辑证明,但若需要证明某命题为假,只要举出一个反例即可,因此,“找反例”是破解此类问题的重要方法之一. 变式训练3 下列命题: ①若ac 2>bc 2,则a >b ; ②若sin α=sin β,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件; ④若f (x )=log 2x ,则f (|x |)是偶函数.其中正确命题的序号是________.答案 ①③④解析 对于①,ac 2>bc 2,c 2>0, ∴a >b 正确;对于②,sin 30°=sin 150°⇏ 30°=150°, ∴②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1, 即-2a =-4a ⇒a =0且A 1C 2≠A 2C 1, ∴③正确; ④显然正确.高考题型精练1.已知复数z =a +3i i (a ∈R ,i 为虚数单位),则“a >0”是“z 在复平面内对应的点位于第四象限”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案 C解析 z =a +3ii =-(a +3i)i =3-a i ,若z 位于第四象限,则a >0,反之也成立,所以“a>0”是“z 在复平面内对应的点位于第四象限”的充要条件.2.已知条件p :x +y ≠-2,条件q :x ,y 不都是-1,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案 A解析 因为p :x +y ≠-2,q :x ≠-1或y ≠-1, 所以綈p :x +y =-2,綈q :x =-1且y =-1, 因为綈q ⇒綈p 但綈p ⇏綈q , 所以綈q 是綈p 的充分不必要条件, 即p 是q 的充分不必要条件.3.(2015·湖北)l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线;q :l 1,l 2不相交,则( ) A.p 是q 的充分条件,但不是q 的必要条件B.p 是q 的必要条件,但不是q 的充分条件C.p 是q 的充分必要条件D.p 既不是q 的充分条件,也不是q 的必要条件 答案 A解析 两直线异面,则两直线一定无交点,即两直线一定不相交;而两直线不相交,有可能是平行,不一定异面,故两直线异面是两直线不相交的充分不必要条件,故选A.4.(2016·天津)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 答案 C解析 由题意得,a 2n -1+a 2n <0⇔a 1(q 2n -2+q 2n -1)<0⇔q 2(n-1)(q +1)<0⇔q ∈(-∞,-1),故是必要不充分条件,故选C.5.设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 答案 A解析 当四边形ABCD 为菱形时,必有对角线互相垂直,即AC ⊥BD ;当四边形ABCD 中AC ⊥BD 时,四边形ABCD 不一定是菱形,还需要AC 与BD 互相平分.综上知,“四边形ABCD 为菱形”是“AC ⊥BD ”的充分不必要条件.6.已知命题p :∀x ∈R ,x 3<x 4;命题q :∃x 0∈R ,sin x 0-cos x 0=-2,则下列命题中为真命题的是( ) A.p ∧q B.(綈p )∧q C.p ∧(綈q ) D.(綈p )∧(綈q )答案 B解析 若x 3<x 4,则x <0或x >1, ∴命题p 为假命题;若sin x -cos x =2sin ⎝⎛⎭⎫x -π4=-2,则x -π4=3π2+2k π(k ∈Z ),即x =7π4+2k π(k ∈Z ),∴命题q 为真命题, ∴(綈p )∧q 为真命题.7.(2016·四川)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p是q 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件D.既不充分也不必要条件 答案 A解析 画出可行域(如图所示),可知命题q 中不等式组表示的平面区域△ABC 在命题p 中不等式表示的圆盘内,故选A.8.下列5个命题中正确命题的个数是( )①“若log 2a >0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数”是真命题; ②m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充要条件;③已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则线性回归方程为y ^=1.23x +0.08;④若实数x ,y ∈[-1,1],则满足x 2+y 2≥1的概率为π4;⑤命题“若a ∈M ,则b ∉M ”与命题“若b ∈M ,则a ∉M ”等价. A.2 B.3 C.4 D.5 答案 A解析 ①错,若log 2a >0=log 21,则a >1, 所以函数f (x )=log a x 在其定义域内是增函数; ②错,当m =0时,两直线也垂直, 所以m =3是两直线垂直的充分不必要条件;③正确,将样本点的中心的坐标代入,满足方程;④错,实数x ,y ∈[-1,1]表示的平面区域为边长为2的正方形,其面积为4,而x 2+y 2<1所表示的平面区域的面积为π,所以满足x 2+y 2≥1的概率为4-π4;⑤正确,不难看出,命题“若a ∈M ,则b ∉M ”与命题“若b ∈M ,则a ∉M ”是互为逆否命题,因此二者等价,所以正确.9.已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,则a 的取值范围为________. 答案 ⎣⎡⎦⎤13,38解析 由a >0,m 2-7am +12a 2<0,得3a <m <4a , 即命题p :3a <m <4a ,a >0.由x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆, 可得2-m >m -1>0,解得1<m <32,即命题q :1<m <32.因为p 是q 的充分不必要条件, 所以⎩⎪⎨⎪⎧ 3a >1,4a ≤32或⎩⎪⎨⎪⎧3a ≥1,4a <32, 解得13≤a ≤38,所以实数a 的取值范围是⎣⎡⎦⎤13,38.10.已知函数f (x )=4|a |x -2a +1.若命题:“∃x 0∈(0,1),使f (x 0)=0”是真命题,则实数a 的取值范围为________. 答案 ⎝⎛⎭⎫12,+∞ 解析 由于f (x )是单调函数,在(0,1)上存在零点, 应有f (0)·f (1)<0,解不等式求出实数a 的取值范围. 由f (0)·f (1)<0⇒(1-2a )(4|a |-2a +1)<0⇔⎩⎪⎨⎪⎧ a ≥0,(2a +1)(2a -1)>0或⎩⎪⎨⎪⎧a <0,(6a -1)(2a -1)<0⇒a >12.11.下列结论:①若命题p :∃x 0∈R ,tan x 0=2;命题q :∀x ∈R ,x 2-x +12>0.则命题“p ∧(綈q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab =-3;③“设a ,b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a ,b ∈R ,若ab <2,则a 2+b 2≤4”.其中正确结论的序号为__________.(把你认为正确结论的序号都填上) 答案 ①③解析 在①中,命题p 是真命题,命题q 也是真命题, 故“p ∧(綈q )”是假命题是正确的.在②中,由l 1⊥l 2,得a +3b =0,所以②不正确.在③中,“设a ,b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a ,b ∈R ,若ab <2,则a 2+b 2≤4”正确. 12.已知条件p :4x -1≤-1,条件q :x 2-x <a 2-a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是________. 答案 [0,1]解析 由4x -1≤-1,得-3≤x <1.由x 2-x <a 2-a ,得(x -a )[x +(a -1)]<0,当a >1-a ,即a >12时,不等式的解为1-a <x <a ;当a =1-a ,即a =12时,不等式的解为∅;当a <1-a ,即a <12时,不等式的解为a <x <1-a .由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,即p 为q 的一个必要不充分条件,即条件q 对应的x 取值集合是条件p 对应的x 取值集合的真子集. 当a >12时,由{x |1-a <x <a }{x |-3≤x <1},得⎩⎪⎨⎪⎧-3≤1-a ,1≥a ,解得12<a ≤1;当a =12时,因为空集是任意一个非空集合的真子集,所以满足条件;当a <12时,由{x |a <x <1-a }{x |-3≤x <1},得⎩⎪⎨⎪⎧-3≤a ,1≥1-a ,解得0≤a <12. 综上,a 的取值范围是[0,1].。
考前三个月高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣2
回扣2 函数与导数1.函数的定义域和值域(1)求函数定义域的类型和相应方法①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围;②若已知f (x )的定义域为[a ,b ],则f [g (x )]的定义域为不等式a ≤g (x )≤b 的解集;反之,已知f [g (x )]的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a ,b ])的值域; ③在实际问题中应使实际问题有意义. (2)常见函数的值域①一次函数y =kx +b (k ≠0)的值域为R ; ②二次函数y =ax 2+bx +c (a ≠0):a >0时,值域为⎣⎡⎭⎫4ac -b24a ,+∞,a <0时,值域为⎝⎛⎦⎤-∞,4ac -b 24a ;③反比例函数y =kx (k ≠0)的值域为{y ∈R |y ≠0}.2.函数的奇偶性、周期性(1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数).(2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期. 3.关于函数周期性、对称性的结论 (1)函数的周期性①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期.②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期.③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期.(2)函数图象的对称性①若函数y =f (x )满足f (a +x )=f (a -x ), 即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称. ②若函数y =f (x )满足f (a +x )=-f (a -x ),即f (x )=-f (2a -x ),则f (x )的图象关于点(a ,0)对称. ③若函数y =f (x )满足f (a +x )=f (b -x ), 则函数f (x )的图象关于直线x =a +b2对称.4.函数的单调性函数的单调性是函数在定义域上的局部性质. ①单调性的定义的等价形式:设x 1,x 2∈[a ,b ], 那么(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f x 1-f x 2x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f x 1-f x 2x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.②若函数f (x )和g (x )都是减函数,则在公共定义域内,f (x )+g (x )是减函数;若函数f (x )和g (x )都是增函数,则在公共定义域内,f (x )+g (x )是增函数;根据同增异减判断复合函数y =f [g (x )]的单调性.5.函数图象的基本变换 (1)平移变换:y =f (x )――――→h >0,右移h <0,左移y =f (x -h ), y =f (x )――――→k >0,上移k <0,下移y =f (x )+k . (2)伸缩变换:y =f (x )――――→0<ω<1,伸ω>1,缩y =f (ωx ), y =f (x )――――→0<A <1,缩A >1,伸y =Af (x ). (3)对称变换: y =f (x )――→x 轴y =-f (x ), y =f (x )――→y 轴y =f (-x ), y =f (x )――→原点y =-f (-x ).6.准确记忆指数函数与对数函数的基本性质 (1)定点:y =a x (a >0,且a ≠1)恒过(0,1)点; y =log a x (a >0,且a ≠1)恒过(1,0)点.(2)单调性:当a >1时,y =a x 在R 上单调递增;y =log a x 在(0,+∞)上单调递增; 当0<a <1时,y =a x 在R 上单调递减;y =log a x 在(0,+∞)上单调递减. 7.函数与方程(1)零点定义:x 0为函数f (x )的零点⇔f (x 0)=0⇔(x 0,0)为f (x )的图象与x 轴的交点.(2)确定函数零点的三种常用方法 ①解方程判定法:即解方程f (x )=0.②零点定理法:根据连续函数y =f (x )满足f (a )f (b )<0,判断函数在区间(a ,b )内存在零点. ③数形结合法:尤其是方程两端对应的函数类型不同时多用此法求解. 8.导数的几何意义(1)f ′(x 0)的几何意义:曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,该切线的方程为y -f (x 0)=f ′(x 0)(x -x 0).(2)切点的两大特征:①在曲线y =f (x )上;②在切线上. 9.利用导数研究函数的单调性(1)求可导函数单调区间的一般步骤:①求函数f (x )的定义域;②求导函数f ′(x );③由f ′(x )>0的解集确定函数f (x )的单调增区间,由f ′(x )<0的解集确定函数f (x )的单调减区间.(2)由函数的单调性求参数的取值范围:①若可导函数f (x )在区间M 上单调递增,则f ′(x )≥0(x ∈M )恒成立;若可导函数f (x )在区间M 上单调递减,则f ′(x )≤0 (x ∈M )恒成立;②若可导函数在某区间上存在单调递增(减)区间,f ′(x )>0(或f ′(x )<0)在该区间上存在解集;③若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,则I 是其单调区间的子集.10.利用导数研究函数的极值与最值(1)求函数的极值的一般步骤:①确定函数的定义域;②解方程f ′(x )=0;③判断f ′(x )在方程f ′(x )=0的根x 0两侧的符号变化: 若左正右负,则x 0为极大值点; 若左负右正,则x 0为极小值点; 若不变号,则x 0不是极值点.(2)求函数f (x )在区间[a ,b ]上的最值的一般步骤: ①求函数y =f (x )在(a ,b )内的极值;②比较函数y =f (x )的各极值与端点处的函数值f (a )、f (b )的大小,最大的一个是最大值,最小的一个是最小值.11.定积分的三个公式与一个定理 (1)定积分的性质: ①⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x ;②⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x .③⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).(2)微积分基本定理:一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ).1.解决函数问题时要注意函数的定义域,要树立定义域优先原则.2.解决分段函数问题时,要注意与解析式对应的自变量的取值范围.3.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“及”连接或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.4.判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响.5.准确理解基本初等函数的定义和性质.如函数y =a x (a >0,a ≠1)的单调性忽视字母a 的取值讨论,忽视a x >0;对数函数y =log a x (a >0,a ≠1)忽视真数与底数的限制条件.6.易混淆函数的零点和函数图象与x 轴的交点,不能把函数零点、方程的解、不等式解集的端点值进行准确互化.7.已知可导函数f (x )在(a ,b )上单调递增(减),则f ′(x )≥0(≤0)对∀x ∈(a ,b )恒成立,不能漏掉“=”号,且需验证“=”不能恒成立;而已知可导函数f (x )的单调递增(减)区间为(a ,b ),则f ′(x )>0(<0)的解集为(a ,b ).8.f ′(x )=0的解不一定是函数f (x )的极值点.一定要检验在x =x 0的两侧f ′(x )的符号是否发生变化,若变化,则为极值点;若不变化,则不是极值点.1.若函数f (x )=⎩⎪⎨⎪⎧2x +2,x ≤0,2x -4,x >0,则f (f (1))等于( )A.-10B.10C.-2D.2 答案 C解析 由f (f (1))=f (21-4)=f (-2)=2×(-2)+2=-2,故选C.2.若函数f (x )=x 2-12ln x +1在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( )A.[1,+∞)B.[1,32)C.[1,2)D.[32,2)答案 B解析 因为f (x )的定义域为(0,+∞),y ′=2x -12x ,由f ′(x )=0,得x =12.利用图象可得,⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32,故选B.3.若函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7单调递增,则实数a 的取值范围是( )A.(94,3)B.[94,3) C.(1,3) D.(2,3) 答案 D解析 因为函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7单调递增,所以1<a <3且由f (7)<f (8)得,7(3-a )-3<a 2,解得a <-9或a >2,所以实数a 的取值范围是(2,3),故选D.4.设函数F (x )=f (x )+f (-x ),x ∈R ,且⎣⎡⎦⎤-π,-π2是函数F (x )的一个单调递增区间.将函数F (x )的图象向右平移π个单位,得到一个新的函数G (x )的图象,则G (x )的一个单调递减区间是( ) A.⎣⎡⎦⎤-π,-π2 B.⎣⎡⎦⎤-π2,0 C.⎣⎡⎦⎤π2,π D.⎣⎡⎦⎤3π2,2π 答案 D解析 ∵F (x )=f (x )+f (-x ),x ∈R ,∴F (-x )=f (-x )+f (x )=F (x ),∴F (x )为偶函数,∴⎣⎡⎦⎤π2,π为函数F (x )的一个单调递减区间.将F (x )的图象向右平移π个单位,得到一个新的函数G (x )的图象,则G (x )的一个单调递减区间是⎣⎡⎦⎤3π2,2π.5.已知函数f (x )为偶函数,将f (x )的图象向右平移一个单位后得到一个奇函数,若f (2)=-1,则f (1)+f (2)+…+f (2 016)等于( ) A.1 B.0 C.-1 003 D.1 003 答案 B解析 由条件知f (x -1)是奇函数,所以f (-x -1)=-f (x -1),又f (x )为偶函数,所以f (x +1)=-f (x -1),即f (x +2)=-f (x ),从而f (x +4)=f (x ),即函数f (x )是周期为4的函数,在f (x +2)=-f (x )中令x =-1,可得f (1)=0,再令x =1可得f (3)=-f (1)=0,令x =2可得f (4)=-f (2)=1,因此f (1)+f (2)+…+f (2 016)=504[f (1)+f (2)+f (3)+f (4)]=0,故选B.6.已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且f (-1)=2,则f (2 017)的值是( ) A.2 B.0 C.-1 D.-2 答案 D解析 由题意得f (x +4)=-f (x +2)=f (x ),所以函数是以T =4的周期函数,所以f (2 017)=f (1)=-f (-1)=-2,故选D.7.a 、b 、c 依次表示函数f (x )=2x +x -2,g (x )=3x +x -2,h (x )=ln x +x -2的零点,则a 、b 、c 的大小顺序为( )A.c <b <aB.a <b <cC.a <c <bD.b <a <c 答案 D解析 a 、b 、c 为直线y =2-x 分别与曲线y =2x ,y =3x ,y =ln x 的交点横坐标,从图象可知b <a <c ,故选D.8.设a =log 32,b =log 52,c =log 23,则( ) A.a >c >b B.b >c >a C.c >b >a D.c >a >b 答案 D解析 易知log 23>1,log 32,log 52∈(0,1).在同一平面直角坐标系中画出函数y =log 3x 与y =log 5x 的图象,观察可知log 32>log 52.所以c >a >b .比较a ,b 的其他解法:log 32>log 33=12,log 52<log 55=12,得a >b ;0<log 23<log 25,所以1log 23>1log 25,结合换底公式得log 32>log 52,即a >b .9.若函数f (x )定义域为[-2,2],则函数y =f (2x )·ln(x +1)的定义域为________. 答案 (-1,1]解析 由题意可得⎩⎪⎨⎪⎧-2≤2x ≤2,x +1>0,∴-1<x ≤1,即函数y =f (2x )·ln(x +1)的定义域为(-1,1].10.设函数f (x )=x 3-2e x 2+mx -ln x ,记g (x )=f (x )x ,若函数g (x )至少存在一个零点,则实数m的取值范围是__________. 答案 (-∞,e 2+1e]解析 令g (x )=x 2-2e x +m -ln xx =0,∴m =-x 2+2e x +ln xx(x >0),设h (x )=-x 2+2e x +ln xx ,令f 1(x )=-x 2+2e x ,f 2(x )=ln xx ,∴f 2′(x )=1-ln x x 2,发现函数f 1(x ),f 2(x )在x ∈(0,e)上都是单调递增,在x ∈(e ,+∞)上都是单调递减,∴函数h (x )=-x 2+2e x +ln xx 在x ∈(0,e)上单调递增,在x ∈(e ,+∞)上单调递减,∴当x =e 时,h (x )max=e 2+1e ,∴函数有零点需满足m ≤h (x )max ,即m ≤e 2+1e.11.设奇函数y =f (x )(x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈[0,12]时f (x )=-x 2,则f (3)+f (-32)的值等于________.答案 -14解析 由于y =f (x )为奇函数,根据对任意t ∈R 都有f (t )=f (1-t ), 可得f (-t )=f (1+t ),所以函数y =f (x )的一个周期为2, 故f (3)=f (1)=f (0+1)=-f (0)=0, f (-32)=f (12)=-14,∴f (3)+f (-32)=-14.12.函数f (x )=x 3+ax 2+bx +a 2在x =1处有极小值10,则a +b 的值为________. 答案 -7解析 ∵f ′(x )=3x 2+2ax +b ,由已知可得⎩⎪⎨⎪⎧f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10,解得a =4,b =-11或a =-3,b =3, 经验证,a =4,b =-11符合题意, 故a +b =-7.13.已知函数f (x )=x +1e x (e 为自然对数的底数).(1)求函数f (x )的单调区间;(2)设函数φ(x )=xf (x )+tf ′(x )+1e x ,存在实数x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立,求实数t的取值范围.解 (1)∵函数的定义域为R ,f ′(x )=-xe x ,∴当x <0时,f ′(x )>0,当x >0时,f ′(x )<0, ∴f (x )在(-∞,0)上单调递增, 在(0,+∞)上单调递减.(2)存在x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立, 则2[φ(x )]min <[φ(x )]max .∵φ(x )=xf (x )+tf ′(x )+e -x=x 2+(1-t )x +1e x,∴φ′(x )=-x 2+(1+t )x -t e x=-(x -t )(x -1)e x. ①当t ≥1时,φ′(x )≤0,φ(x )在[0,1]上单调递减, ∴2φ(1)<φ(0),即t >3-e2>1;②当t ≤0时,φ′(x )>0,φ(x )在[0,1]上单调递增, ∴2φ(0)<φ(1),即t <3-2e<0;③当0<t <1时,若x ∈[0,t ),φ′(x )<0,φ(x )在[0,t )上单调递减,若t ∈(t ,1],φ′(x )>0,φ(x )在(t ,1)上单调递增,∴2φ(t )<max{φ(0),φ(1)}, 即2·t +1e t <max{1,3-t e}.(*)由(1)知,g (t )=2·t +1e t 在[0,1]上单调递减,故4e ≤2·t +1e t ≤2,而2e ≤3-t e ≤3e , ∴不等式(*)无解.综上所述,存在t ∈(-∞,3-2e)∪(3-e2,+∞),使得命题成立.。
考前三个月高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣4 Word版含答案
回扣4数列1.牢记概念与公式 等差数列、等比数列2.活用定理与结论(1)等差、等比数列{a n }的常用性质(2)判断等差数列的常用方法 ①定义法:a n +1-a n =d (常数) (n ∈N *)⇔{a n }是等差数列.②通项公式法:a n =pn +q (p ,q 为常数,n ∈N *)⇔{a n }是等差数列. ③中项公式法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列. ④前n 项和公式法:S n =An 2+Bn (A ,B 为常数,n ∈N *)⇔{a n }是等差数列. (3)判断等比数列的三种常用方法①定义法:a n +1a n=q (q 是不为0的常数,n ∈N *)⇔{a n }是等比数列.②通项公式法:a n =cq n (c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列. ③中项公式法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.3.数列求和的常用方法(1)等差数列或等比数列的求和,直接利用公式求和.(2)形如{a n·b n}(其中{a n}为等差数列,{b n}为等比数列)的数列,利用错位相减法求和.(3)通项公式形如a n=c(an+b1)(an+b2)(其中a,b1,b2,c为常数)用裂项相消法求和.(4)通项公式形如a n=(-1)n·n或a n=a·(-1)n(其中a为常数,n∈N*)等正负项交叉的数列求和一般用并项法.并项时应注意分n为奇数、偶数两种情况讨论.(5)分组求和法:分组求和法是解决通项公式可以写成c n=a n+b n形式的数列求和问题的方法,其中{a n}与{b n}是等差(比)数列或一些可以直接求和的数列.(6)并项求和法:先将某些项放在一起求和,然后再求S n.1.已知数列的前n项和求a n,易忽视n=1的情形,直接用S n-S n-1表示.事实上,当n=1时,a1=S1;当n≥2时,a n=S n-S n-1.2.易混淆几何平均数与等比中项,正数a,b的等比中项是±ab.3.等差数列中不能熟练利用数列的性质转化已知条件,灵活整体代换进行基本运算.如等差数列{a n}与{b n}的前n项和分别为S n和T n,已知S nT n=n+12n+3,求a nb n时,无法正确赋值求解.4.易忽视等比数列中公比q≠0,导致增解,易忽视等比数列的奇数项或偶数项符号相同造成增解.5.运用等比数列的前n项和公式时,易忘记分类讨论.一定分q=1和q≠1两种情况进行讨论.6.利用错位相减法求和时,要注意寻找规律,不要漏掉第一项和最后一项.7.裂项相消法求和时,分裂前后的值要相等,如1n(n+2)≠1n-1n+2,而是1n(n+2)=12⎝⎛⎭⎫1n-1n+2.8.通项中含有(-1)n的数列求和时,要把结果写成分n为奇数和n为偶数两种情况的分段形式.1.已知数列{a n}的前n项和为S n,若S n=2a n-4(n∈N*),则a n等于()A.2n+1B.2nC.2n-1D.2n-2答案A解析a n+1=S n+1-S n=2a n+1-4-(2a n-4)⇒a n+1=2a n,再令n=1,∴S1=2a1-4⇒a1=4,∴数列{a n}是以4为首项,2为公比的等比数列,∴a n=4·2n-1=2n+1,故选A.2.已知数列{a n}满足a n+2=a n+1-a n,且a1=2,a2=3,S n为数列{a n}的前n项和,则S2016的值为()A.0B.2C.5D.6 答案A解析由题意得,a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-a 4=-1,a 7=a 6-a 5=2,∴数列{a n }是周期为6的周期数列,而2016=6·336,∴S 2016=336S 6=0,故选A. 3.已知等差数列{a n }的前n 项和为S n ,若a 5=14-a 6,则S 10等于() A.35B.70C.28D.14 答案B解析a 5=14-a 6⇒a 5+a 6=14, S 10=10(a 1+a 10)2=10(a 5+a 6)2=70.故选B.4.已知等差数列{a n }的前n 项和为S n ,a 2=4,S 10=110,则使S n +63a n 取得最小值时n 的值为()A.7B.7或8C.172D.8答案D解析a 2=4,S 10=110⇒a 1+d =4,10a 1+45d =110⇒a 1=2,d =2,因此S n +63a n =2n +n (n -1)+632n =n 2+632n +12,又n ∈N *,所以当n =8时,S n +63a n 取得最小值. 5.等比数列{a n }中,a 3a 5=64,则a 4等于() A.8B.-8C.8或-8D.16 答案C解析由等比数列的性质知,a 3a 5=a 24, 所以a 24=64,所以a 4=8或a 4=-8.6.已知等比数列{a n }的前n 项和为S n ,a 1+a 3=52,且a 2+a 4=54,则S na n 等于()A.4n -1B.4n -1C.2n -1D.2n -1答案D解析设等比数列{a n }的公比为q ,则⎩⎨⎧a 1(1+q 2)=52,a 1q (1+q 2)=54,解得⎩⎪⎨⎪⎧a 1=2,q =12,∴S n a n =a 1(1-q n )1-q a 1q n -1=2×(1-12n )1-122×(12)n -1=2n-1.故选D. 7.设函数f (x )=x a +ax 的导函数f ′(x )=2x +2,则数列{1f (n )}的前9项和是()A.2936B.3144C.3655D.4366 答案C解析由题意得函数f (x )=x a +ax 的导函数f ′(x )=2x +2,即ax a -1+a =2x +2,所以a =2,即f (x )=x 2+2x ,1f (n )=1n (n +2)=12(1n -1n +2), 所以S n =12(1-13+12-14+13-15+…+1n -1n +2)=12(1+12-1n +1-1n +2).则S 9=12(1+12-110-111)=3655,故选C.8.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则2S n +16a n +3(n ∈N *)的最小值为()A.4B.3C.23-2D.92答案A解析据题意由a 1,a 3,a 13成等比数列可得(1+2d )2=1+12d ,解得d =2,故a n =2n -1,S n =n 2,因此2S n +16a n +3=2n 2+162n +2=n 2+8n +1=(n +1)2-2(n +1)+9n +1=(n +1)+9n +1-2,据基本不等式知2S n +16a n +3=(n +1)+9n +1-2≥2(n +1)×9n +1-2=4,当n =2时取得最小值4.9.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于________. 答案4解析由等比数列的性质有a 1a 8=a 2a 7=a 3a 6=a 4a 5,所以T 8=lg a 1+lg a 2+…+lg a 8=lg(a 1a 2…a 8)=lg(a 4a 5)4=lg(10)4=4.10.已知数列{a n }满足a n +1=a n +2n 且a 1=2,则数列{a n }的通项公式a n =__________. 答案n 2-n +2 解析a n +1=a n +2n ,∴a n +1-a n =2n ,采用累加法可得∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1, =2(n -1)+2(n -2)+…+2+2=n 2-n +2.11.若数列{a n }满足a n =3a n -1+2(n ≥2,n ∈N *),a 1=1,则数列{a n }的通项公式为a n =____________. 答案2×3n -1-1解析设a n +λ=3(a n -1+λ),化简得a n =3a n -1+2λ, ∵a n =3a n -1+2,∴λ=1, ∴a n +1=3(a n -1+1), ∵a 1=1,∴a 1+1=2,∴数列{a n +1}是以2为首项,3为公比的等比数列, ∴a n +1=2×3n -1, ∴a n =2×3n -1-1.12.数列113,219,3127,4181,51243,…的前n 项之和等于________________.答案n (n +1)2+12[1-(13)n ]解析由数列各项可知通项公式为a n =n +13n ,由分组求和公式结合等差数列、等比数列求和公式可知前n 项和为S n =n (n +1)2+12[1-(13)n ].13.设数列{a n }的前n 项和为S n ,a 1=1,a n +1=λS n +1(n ∈N *,且λ≠-1),且a 1,2a 2,a 3+3为等差数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式; (2)求数列{a n b n }的前n 项和. 解(1)方法一∵a n +1=λS n +1(n ∈N *), ∴a n =λS n -1+1(n ≥2).∴a n +1-a n =λa n ,即a n +1=(λ+1)a n (n ≥2),λ+1≠0, 又a 1=1,a 2=λS 1+1=λ+1,∴数列{a n }为以1为首项,以λ+1为公比的等比数列,∴a 3=(λ+1)2,∴4(λ+1)=1+(λ+1)2+3, 整理得λ2-2λ+1=0,得λ=1. ∴a n =2n -1,b n =1+3(n -1)=3n -2. 方法二∵a 1=1,a n +1=λS n +1(n ∈N *),∴a 2=λS 1+1=λ+1,a 3=λS 2+1=λ(1+λ+1)+1=λ2+2λ+1. ∴4(λ+1)=1+λ2+2λ+1+3, 整理得λ2-2λ+1=0,得λ=1. ∴a n +1=S n +1 (n ∈N *), ∴a n =S n -1+1(n ≥2),∴a n +1-a n =a n ,即a n +1=2a n (n ≥2),又a 1=1,a 2=2, ∴数列{a n }为以1为首项,以2为公比的等比数列, ∴a n =2n -1,b n =1+3(n -1)=3n -2. (2)设数列{a n b n }的前n 项和为T n , a n b n =(3n -2)·2n -1,∴T n =1·1+4·21+7·22+…+(3n -2)·2n -1.①∴2T n =1·21+4·22+7·23+…+(3n -5)·2n -1+(3n -2)·2n .②①-②得-T n =1·1+3·21+3·22+…+3·2n -1-(3n -2)·2n=1+3·2·(1-2n -1)1-2-(3n -2)·2n .整理得T n =(3n -5)·2n +5.14.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2 (n ∈N *),(1)求证:数列{a n }是等差数列;(2)设b n =1S n ,T n =b 1+b 2+…+b n ,若λ≤T n 对于任意n ∈N *恒成立,求实数λ的取值范围.(1)证明∵S n =a n (a n +1)2 (n ∈N *),①∴S n -1=a n -1(a n -1+1)2(n ≥2).②①-②得:a n =a 2n +a n -a 2n -1-a n -12(n ≥2),整理得:(a n +a n -1)(a n -a n -1)=(a n +a n -1), ∵数列{a n }的各项均为正数,∴a n +a n -1≠0, ∴a n -a n -1=1(n ≥2).当n =1时,a 1=1,∴数列{a n }是首项为1,公差为1的等差数列. (2)解由(1)得S n =n 2+n2,∴b n =2n 2+n =2n (n +1)=2(1n -1n +1),∴T n =2[(1-12)+(12-13)+(13-14)+…+(1n -1n +1)]=2(1-1n +1)=2nn +1,∵T n =21+1n ,∴T n 单调递增,∴T n ≥T 1=1,∴λ≤1.故λ的取值范围为(-∞,1].。
2021版考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题
2021版考前三个月高考数学(全国甲卷通用理科)知识方法篇专题第13练必考题型――导数与单调性[题型分析・高考展望] 利用导数研究函数单调性是高考每年必考内容,多以综合题中某一问的形式考查,题目承载形式多种多样,但其实质都是通过求导判断导数符号,确定单调性.题目难度为中等偏上,一般都在最后两道压轴题上,这是二轮复习的得分点,应高度重视.体验高考1.(2021・福建)若定义在R上的函数f(x)满足f(0)=-1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是( ) 1?1A.f??k?<k 11C.f?k-1?<??k-1 答案 C解析由已知条件,构造函数g(x)=f(x)-kx,11则g′(x)=f′(x)-k>0,故函数g(x)在R上单调递增,且>0,故g()>g(0),k-1k-11k11所以f()->-1,f()>,k-1k-1k-1k-1所以结论中一定错误的是C,选项D无法判断;构造函数h(x)=f(x)-x,1则h′(x)=f′(x)-1>0,所以函数h(x)在R上单调递增,且>0,k11111所以h()>h(0),即f()->-1,f()>-1,选项A,B无法判断,故选C.kkkkk2.(2021・课标全国Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是( ) A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)答案 Axf′?x?-f?x?f?x?解析记函数g(x)=,则g(x)=,xx21?1B.f?>?k?k-1 1kD.f?k-1?>??k-1因为当x>0时,xf′(x)-f(x)<0,故当x>0时,g′(x)<0,所以g(x)在(0,+∞)单调递减;又因为函数f(x)(x∈R)是奇函数,故函数g(x)是偶函数,所以g(x)在(-∞,0)单调递增,且g(-1)=g(1)=0. 当0<x<1时,g(x)>0,则f(x)>0;当x<-1时,g(x)<0,则f(x)>0.综上所述,使得f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1),故选A.3.(2021・浙江)设函数f(x)=x3+(1)f(x)≥1-x+x2; 33(2)<f(x)≤. 421-?-x?41-x4证明 (1)因为1-x+x-x==,1-?-x?1+x231,x∈[0,1].证明: 1+x1-x41由于x∈[0,1],有≤,1+xx+11即1-x+x2-x3≤,x+1所以f(x)≥1-x+x2. (2)由0≤x≤1得x3≤x, 11故f(x)=x3+≤x+x+1x+1133?x-1??2x+1?33=x+-+=+≤,22x+1222?x+1?3所以f(x)≤.2133x-?2+≥,由(1)得f(x)≥1-x+x2=??2?44感谢您的阅读,祝您生活愉快。
2019考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题1 集合与常用逻辑用语二 第2练
D.若方程x2+x-m=0没有实根,则m≤0 解析 原命题为“若p,则q”,则其逆否命题为“若綈q,则綈p”. ∴所求命题为“若方程x2+x-m=0没有实根,则m≤0”.
解析
1
2
3
4
5
2.(2015· 天津)设x∈R,则“|x-2|<1”是“x2+x-2>0”的(
)
√
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 |x-2|<1⇔-1<x-2<1⇔1<x<3,x2+x-2>0⇔x<-2或x>1
所以“m∥β”是“α∥β”的必要不充分条件.
解析
(2)已知(x+1)(2-x)≥0 的解为条件 p,关于 x 的不等式 x2+mx-2m2-3m-1<0 2 (m>-3)的解为条件 q.
①若p是q的充分不必要条件时,求实数m的取值范围; ②若綈p是綈q的充分不必要条件时,求实数m的取值范围.
点评
解析答案
,
所以“|x-2|<1”是“x2+x-2>0”的充分不必要条件,故选A.
解析
1
2
3
4
5
3.(2015· 重庆)“x>1”是“log1 (x+2)<0”的(
A.充要条件 B.充分不必要条件 √ C.必要不充分条件 D.既不充分也不必要条件
2
)
解析 log 1 (x+2)<0⇔x+2>1⇔x>-1,因此选B.
√
则x2≠1
C.已知 n∈N,则幂函数 y= x3n- 7 为偶函数,且在 x∈(0 ,+ ∞)上单调递
x+m 减 D.函数 y=log2 的图象关于点(1, 0)中心对称的充分必要条件为 m=± 1 3-x n=1 的充分必要条件为
点评 解析
高考数学(全国甲卷通用理科)知识 方法篇 专题1 集合与常用逻辑用语二 第1练 Word版含答案
第练小集合,大功能[题型分析·高考展望]集合是高考每年必考内容,题型基本都是选择题、填空题,题目难度大多数为低档,有时候在填空题中以创新题型出现,难度稍高,在二轮复习中,本部分应该重点掌握集合的表示、集合的性质、集合的运算及集合关系在常用逻辑用语、函数、不等式、三角函数、解析几何等方面的应用.同时注意研究有关集合的创新问题,研究问题的切入点及集合知识在相关问题中所起的作用.体验高考.(·重庆)已知集合={,,},={,},则()=∩=∅答案解析由于∈,∈,∈,∈,∈,∉,故,,均错,是正确的,选..(·福建)若集合={,,,}(是虚数单位),={,-},则∩等于().{-}.{}.{,-}.∅答案解析集合={,-,,-},={,-},∩={,-},故选..(·山东)设集合={=,∈},={-<},则∪等于().(-,) .(,).(-,+∞) .(,+∞)答案解析={>},={-<<},则∪=(-,+∞),故选..(·四川)设集合={(+)(-)<},集合={<<},则∪等于() .{-<<}.{-<<}.{<<}.{<<}答案解析∵={-<<},={<<},∴∪={-<<}..(·北京)已知集合={<},={-,,,,},则∩等于().{,}.{,,}.{-,,}.{-,,,}答案解析由={-<<},得∩={-,,}.高考必会题型题型一单独命题独立考查常用的运算性质及重要结论:()∪=,∪∅=,∪=∪;()∩=,∩∅=∅,∩=∩;()∩(∁)=∅,∪(∁)=;()∩=⇔⊆⇔∪=.。
高考真题解析1 集合与常用逻辑用语
第一章 集合与常用逻辑用语第一节 集合1.(2023全国甲卷理科1)设集合{}31,A x x k k ==+∈Z ,{}32,B x x k k ==+∈Z ,U 为整数集,则()UA B =( )A.{}3,x x k k =∈ZB.{}31,x x k k =−∈ZC.{}32,x x k k =−∈ZD.∅【分析】根据整数集的分类,以及补集的运算即可解出. 【解析】因为整数集{}{}{}3,3+1,3+2,x x k k x x k k x x k k ==∈=∈=∈Z Z Z Z ,=U Z , 所以(){}3,UAB x x k k ==∈Z .故选A .2.(2023全国甲卷文科1)设全集{}1,2,3,4,5U =,集合{}1,4M = ,{}2,5N =,则UNM =( )A.{}2,3,5B.{}1,3,4C.{}1,2,4,5D.{}2,3,4,5 【分析】利用集合的交并补运算即可得解.【解析】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以{}2,3,5UM =,又{2,5}N =,所以{2,3,5}UNM =.故选A.3.(2023全国乙卷理科2)设集合U =R ,集合{}1M x x =<,{}12N x x =−<<,则{}2x x =( ) A.()UM N B.UNM C.()UM N D.UMN【分析】由题意逐一考查所给的选项运算结果是否为{}2x x 即可. 【解析】由题意可得{}2MN x x =<,则(){}2UMN x x =,选项A 正确;{}1UM x x =,则{}1UN M x x =>− ,选项B 错误;{}11MN x x =−<<,则(){}11UMN x x x =−或,选项C 错误;{}12UN x x x =−或,则{}12UMN x x x =<或,选项D 错误;故选A.4.(2023全国乙卷文科2)设全集{}0,1,2,4,6,8U =,集合{}0,4,6M =,{}0,1,6N =,则UMN =( )A.{}0,2,4,6,8B.{}0,1,4,6,8C.{}1,2,4,6,8D.U 【分析】由题意可得UN 的值,然后计算UM N 即可.【解析】由题意可得{}2,4,8UN =,则{}0,2,4,6,8UMN =.故选A.5.(2023新高考I 卷1)已知集合{}2,1,0,1,2M =−−,{}260N x x x =−−≥,则MN =( ) A.{}2,1,0,1−−B.{}0,1,2C.{}2−D.{}2【解析】{}(][)260,23,N x x x =−−≥=−∞−+∞,所以{}2MN =−,故选C.6.(2023新高考II 卷2)2.设集合{}{}0,,1,2,22A a B a a =−=−−,若A B ⊆,则a =( ) A. 2 B. 1 C.23D.1− 【解析】因为A B ⊆,所以必有20a −=或220a −=,解得2a =或1a =. 当2a =时,{}{}0,2,1,0,2A B =−=,不满足A B ⊆; 当1a =时,{}{}0,1,1,1,0A B =−=−,符合题意.所以1a =. 故选B.7.(2023北京卷1)已知集合{}20M x x =+,{}10N x x =−<,则M N =( )A.{}21x x −<B.{}21x x −<C.{}2x x −D.{}1x x <【分析】先化简集合,M N ,然后根据交集的定义计算.【解析】由题意,{20}{|2}M xx x x =+≥=≥−∣,{10}{|1}N x x x x =−<=<∣, 根据交集的运算可知,{|21}MN x x =−≤<.故选A.8.(2023天津卷1)已知集合{}{}{}1,2,3,4,5,1,3,1,2,4U A B ===,则UB A =( )A .{}1,3,5B .{}1,3C .{}1,2,4D .{}1,2,4,5【分析】对集合B 求补集,应用集合的并运算求结果; 【解析】由{3,5}UB =,而{1,3}A =,所以{1,3,5}UB A =.故选A.第二节 充分条件与必要条件、全称量词与存在量词1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解. 【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠, 即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=−+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件. 故选B.2.(2023新高考I 卷7)已记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:n S n ⎧⎫⎨⎬⎩⎭为等差数列,则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解析】{}n a 为等差数列,设首项为1a 公差为d ,则()112n n n S na d −=+,111222n S n d d a d n a n −=+=+−,所以n S n ⎧⎫⎨⎬⎩⎭为等差数列,所以甲是乙的充分条件. n S n ⎧⎫⎨⎬⎩⎭为等差数列,即()()()1111111n n n n n n nS n S S S na S n n n n n n +++−+−−==+++为常数, 设为t ,即()11n nna S t n n +−=+,故()11n n S na tn n +=−+,()()()1112n n S n a t n n n −=−−−≥,两式相减得()1112n n n n n a S S na n a tn −+=−=−−−,12n n a a t +−=为常数,对1n =也成立,所以{}n a 为等差数列,所以甲是乙的必要条件. 所以,甲是乙的充要条件,故选C.3.(2023北京卷8)若0xy ≠,则“0x y +=”是“2x yy x+=−”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【分析】解法一:证明充分性可由0x y +=得到x y =−,代入x yy x+化简即可,证明必要性可由2x y y x +=−去分母,再用完全平方公式即可;解法二:由x y y x+通分后用配凑法得到完全平方公式,证明充分性可把0x y +=代入即可;证明必要性把2x yy x+=−代入,解方程即可.【解析】解法一:充分性:因为0xy ≠,且0x y +=,所以x y =−, 所以112x y y y y x y y−+=+=−−=−−,所以充分性成立; 必要性:因为0xy ≠,且2x yy x+=−, 所以222x y xy +=−,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以必要性成立. 所以“0x y +=”是“2x yy x+=−”的充要条件.故选C. 解法二:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xy y x xy xy xy xy+−+++−−+=====−,所以充分性成立; 必要性:因为0xy ≠,且2x yy x+=−, 所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+−++++−+====−=−, 所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2x yy x+=−”的充要条件. 故选C.4.(2023天津卷2)“a 2=b 2”是“a 2+b 2=2ab ”的( )A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【解析】由a 2=b 2,则a =±b ,当a =−b ≠0时a 2+b 2=2ab 不成立,充分性不成立;由a 2+b 2=2ab ,则(a −b )2=0,即a =b ,显然a 2=b 2成立,必要性成立;所以a 2=b 2是a 2+b 2=2ab 的必要不充分条件.故选B.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 1 (1)(2015 ·安徽 )已知 m,n 是两条不同直线, α,β是两个不同平面,则下列命题正确的
是( )
A. 若 α, β垂直于同一平面,则 α与 β平行
B.若 m, n 平行于同一平面,则 m 与 n 平行
C.若 α, β不平行,则在 α内不存在与 β平行的直线
D.若 m, n 不平行,则 m 与 n 不可能垂直于同一平面 (2) 命题 p:若 sin x> sin y,则 x>y;命题 q: x2+ y2≥ 2xy.下列命题为假命题的是 ( )
点评 利用等价命题判断命题的真假,是判断命题真假快捷有效的方法
.在解答时要有意识
地去练习 .
变式训练 1 已知命题 p:? x∈ R,x2> 0,命题 q:? α,β∈R ,使 tan(α+ β)= tan α+ tan β,
则下列命题为真命题的是 ( )
A. p∧ q
B. p∨ (綈 q)
C.(綈 p)∧ q
A. p 或 q B.p 且 q C.q D.綈 p 答案 (1)D (2)B
解析 (1)对于 A ,α,β垂直于同一平面, α, β关系不确定,故 A 错;对于 B, m, n 平行
于同一平面, m,n 关系不确定,可平行、相交、异面,故 B 错;对于 C,α,β不平行,但
你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云
你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云
第 2 练 用好逻辑用语,突破充要条件
[题型分析 ·高考展望 ] 逻辑用语是高考常考内容,充分、必要条件是重点考查内容,题型基 本都是选择题、填空题,题目难度以低、中档为主,在二轮复习中,本部分应该重点掌握四 种命题的真假判断、 否命题与命题的否定的区别、 含有量词的命题的否定的求法、 充分必要 条件的判定与应用, 这些知识被考查的概率都较高, 特别是充分、 必要条件几乎每年都有考 查.
4.(2016 北·京 )设 a,b 是向量,则“ |a|= |b|”是“ |a+ b|= |a- b|”的 ( ) A. 充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 答案 D 解析 由 |a+b|= |a- b|? (a+ b)2= (a- b)2? a·b= 0? a⊥ b,故是既不充分也不必要条件,故 选 D. 5.(2016 浙·江 )命题“ ? x∈ R, ? n∈N *,使得 n≥ x2”的否定形式是 ( ) A. ? x∈R , ? n∈ N* ,使得 n<x2 B.? x∈R , ? n∈ N *,使得 n< x2 C.? x∈R , ? n∈ N *,使得 n< x2 D.? x∈R , ? n∈ N* ,使得 n<x2 答案 D 解析 全称命题的否定是特称命题, 特称命题的否定是全称命题, n≥ x2 的否定是 n< x2,故 选 D.
高考必会题型
题型一 命题及其真假判断 常用结论:
(1) 原命题与逆否命题等价,同一个命题的逆命题、否命题等价;
(2)四个命题中,真命题的
个数为偶数; (3)只有 p、q 都假, p∨ q 假, 否则为真, 只有 p、q 都真, p∧ q 真,否则为假;
(4) 全称命题的否定为特称命题,特称命题的否定为全称命题,一个命题与其否定不会同真 假.
你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云
α内能找出平行于 β的直线,如 α中平行于 α, β交线的直线平行于 β,故 C 错;对于 D , 若假设 m, n 垂直于同一平面,则 m∥ n,其逆否命题即为 D 选项,故 D 正确 . (2) 取 x= π3, y= 56π,可知命题 p 不正确;由 (x- y)2≥ 0 恒成立,可知命题 q 正确,故 綈 p 为 真命题, p 或 q 是真命题, p 且 q 是假命题 .
体验高考
1.(2015 山·东 )若 m∈ R, 命题“若 m>0,则方程 x2+x- m=0 有实根”的逆否命题是 ( ) A. 若方程 x2+ x- m= 0 有实根,则 m> 0 B.若方程 x2+ x- m= 0 有实根,则 m≤ 0 C.若方程 x2+ x- m= 0 没有实根,则 m> 0 D.若方程 x2+ x- m= 0 没有实根,则 m≤0 答案 D 解析 原命题为 “ 若 p,则 q”,则其逆否命题为 “ 若 綈 q,则 綈 p”. ∴所求命题为 “ 若方程 x2+ x- m= 0 没有实根,则 m≤0”. 2.(2015 天·津 )设 x∈ R,则“ |x- 2|< 1”是“ x2+ x- 2>0”的 ( ) A. 充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 A 解析 |x- 2|< 1? - 1< x- 2< 1? 1< x< 3,x2+ x- 2> 0? x<- 2 或 x>1,所以 “|x- 2|< 1” 是“ x2+ x- 2> 0” 的充分不必要条件,故选 A. 3.(2015 重·庆 )“ x> 1”是“ log 1 (x+ 2)< 0”的 ( )
D. p∧ (綈 q)
答案ห้องสมุดไป่ตู้C
解析 因为 ? x∈ R,x2≥ 0,所以命题 p 是假命题, 因为当 α=- β时, tan(α+β)= tan α+tan
β,所以命题 q 是真命题,所以 p∧ q 是假命题,p∨ (綈 q)是假命题,(綈 p)∧ q 是真命题,p∧ (綈
q)是假命题 . 题型二 充分条件与必要条件 例 2 (1)(2015 ·北京 )设 α, β是两个不同的平面, m 是直线且 m? α.则“ m∥ β”是“ α∥β” 的( )
2
A. 充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 答案 B 解析 log 1 (x+ 2)< 0? x +2> 1? x>- 1,因此选 B.
2
你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云
你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云