2011年新课标高考数学试题和答案(理科)

合集下载

2011年高考数学试卷(含答案)

2011年高考数学试卷(含答案)

2011年普通高等学校招生全国统一考试数 学(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.(1) 复数212ii +-的共轭复数是 (A) 35i - (B) 35i (C) i - (D) i(2) 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(A)y=x 2(B)y=|x|+1(C)y=-x 2+1 (D)y=2-|x|(3) 执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A ) 120(B) 720 (C) 1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则两位同学参加同一个兴趣小组的概率为 (A )13 (B) 12 (C) 23 (D )34(5) 已知角θ的顶点与原点重合,始边与x 轴的正半周重合,始边在直线y=2x 上,则cos2θ= (A )45-(B) 35- (C) 35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(A ) (B ) (C ) (D )(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB|为C 的实轴长的2倍,则C 的实轴长的2倍,则C 的离心率为 (A (C ) (B ) 2 (D )3(8)51()(2a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (C ) -20 (B ) 20 (D )40 (9)由曲线y ,直线y=x-2及y 轴所围成的图形的面积为(A )310 (B )4 (C )163(D )6 (10)已知a与b 均为单位向量,其夹角为θ,有下列四个命题12:||10,3p a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:||1,3p a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:||10,3p a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:||1,3p a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,p p (B )13,p p (C )23,p p (D )24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=,则(A )()f x 在(0,)2π单调递减 (B )()f x 在3(,)44ππ单调递减(C )()f x 在(0,)2π单调递增 (D )()f x 在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-≤≤的图象所有交点的横坐标之和等于(A) 2 (B)4 (C)6 (D)8第Ⅱ卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答,第(22)题~第(24)题为选考题,考生根据要求作答。

2011年高考理科数学全国卷(及答案)

2011年高考理科数学全国卷(及答案)

2011年普通高等学校招生全国统一考试(全国卷)数学试题卷本试卷共4页,三大题21小题。

满分150分,考试时间120分钟。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。

1.复数1z i =+,z 为z 的共轭复数,则1zz z --= (A) -2i (B) -i (C) i (D) 2i2. 函数()20y x x =≥的反函数为(A)()24x y x R =∈ (B) ()204x y x =≥(C)()24y x x R =∈ (D) ()240y x x =≥ 3.下面四个条件中,使a b >成立的充分而不必要的条件是(A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A)13(B) 3 (C) 6 (D) 9 6.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于(A)22 (B) 33 (C) 63(D) 1 7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种 8.曲线21xy e =+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为(A)13 (B) 12 (C) 23(D) 19.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A) 12-(B) 14- (C) 14 (D) 1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos AFB ∠= (A)45 (B) 35 (C) 35- (D) 45- 11.已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为(A) 7π (B) 9π (C) 11π (D) 13π12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值等于 (A) 2 (B)3 (C) 2 (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写. 13. ()201x-的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈⎪⎝⎭,5sin 5α=,则tan 2α= . 15. 已知12F F 、分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F AF ∠的角平分线,则 2AF = .16. 已知点E 、F 分别在正方体1111ABCD A B C D - 的棱11BB CC 、上,且12B E EB =,12CF FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。

2011年高考新课标全国卷理科数学试题(附答案)

2011年高考新课标全国卷理科数学试题(附答案)

2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)复数212ii +=- (A )35i - (B )35i (C )i - (D )i (2)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B ) 720 (C ) 1440 (D ) 5040 (4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )13 (B ) 12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ= (A ) 45-(B )35- (C ) 35 (D )45(6)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,C 的离心率为(A (B (C ) 2 (D ) 3(8)51()(2)ax x x x+-的展开式中各项系数的和为2,则该展开式中常数项为(A )—40 (B )—20 (C )20 (D )40(9)曲线y =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C ) 163(D ) 6 (10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题1:||1p +>a b ⇔2[0,)3πθ∈ 2:p ||+a b 1>⇔θ∈2(,]3ππ 3:||1p ->a b ⇔θ∈[0,)3π 4:||1p ->a b ⇔θ∈(,]3ππ其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则 (A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减 (C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-剟的图象所有交点的橫坐标之和等于(A )2 (B )4 (C )6 (D )8第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.(13)若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.(14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为.过点1F 的直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为_________.(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =6,BC =锥O ABCD -的体积为_____________.(16)ABC ∆中,60,B AC =︒=,则AB +2BC 的最大值为_________. 三、解答题:解答应写文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==. (I )求数列{}n a 的通项公式.(II )设31323log log log n n b a a a =+++ ,求数列1{}nb 的前n 项和.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD(I )证明:PA BD ⊥;(II )若PD AD =,求二面角A PB C --的余弦值.(19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩从用B 配方生产的产品中任取一件,其利润记为X (单位:元).求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).(20)(本小题满分12分)在平面直角坐标系xOy 中, 已知点(0,1)A -,B 点在直线3y =-上,M 点满足//MB OA ,MA AB MB BA =,M 点的轨迹为曲线C .(I )求C 的方程;(II )P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.(21)(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=.(I )求,a b 的值;(II )如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:,,,C B D E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C .(I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .(24)(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >.(I )当1a =时,求不等式()32f x x ≥+的解集. (II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学答案(1)C 【解析】212i i+-=(2)(12),5i i i ++=共轭复数为C . (2)B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .(3)B 【解析】框图表示1n n a n a -=⋅,且11a =所求6a =720,选B .(4)A 【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为P =3193=,选A . (5)B 【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .(6)D 【解析】条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。

2011年高考理科数学试题及答案—全国课标版

2011年高考理科数学试题及答案—全国课标版

2011年高考理科数学试题—全国课标版第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每个小题给出的5个选项中,只有一项是符合题目要求的.1.复数212ii +-的共轭复数是 (A )35i - (B)35i (C)i - (D) i2.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(A )3y x = (B)||1y x =+ (C) 21y x =-+ (D)||2x y -= 3.执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B)720 (C)1440 (D)50404.有3个兴趣小组,甲、乙两位同学各参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一兴趣小组的概率为(A )13 (B)12 (C)23 (D)345.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A )45-(B)35- (C) 35 (D) 456.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为7.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A,B 两点,||AB 为C 的实轴长2倍,则C 的离心率为(A (B)(C)2 (D)38.51()(2ax x x x+-)的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (B )-20 (C)20 (D)409.由曲线y =,直线2y x =-及y 轴围成的图形的面积为(A )103 (B)4 (C)163(D)610.已知a 与b 均为单位向量,其中夹角为θ,有下列四个命题1p :||1+>a b ⇔θ∈[0,23π) 2p :||1+>a b ⇔θ∈(23π,π] 3p : ||1->a b ⇔θ∈[0, 3π) 4p :||1->a b ⇔θ∈(3π,π]其中真命题是(A )1p ,4p (B) 1p ,3p (C) 2p ,3p (D) 3p ,4p 11.设函数()f x =sin()cos()x x ωϕωϕ+++(ω>0,||ϕ<2π)的最小正周期为π,且()f x -=()f x ,则()f x(A )在(0,2π)单调递减 (B)在(4π,34π)单调递减(C) 在(0,2π)单调递增 (D)在(4π,34π)单调递增12.函数11y x=-的图像与函数2sin y x π=(-2≤x ≤4)的图像所有交点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个考题考生都必须作答,第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4个小题,每小题5分. 13.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 .14.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点1F ,2F 在x 轴上,,过1F 作直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为 .15.已知矩形ABCD 的顶点都在半径为4的球面上,且AB =6,BC =,则棱锥O ABCD -的体积为 .16.在ABC ∆中,060B =,AC =则2AB BC +的最大值为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等比数列{n a }的各项均为整数,且1223a a +=1,23a =269a a ,(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n b =31323log log log n a a a +++ ,求数列{1nb }的前n 项和.18. (本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,DAB ∠=060,AB =2AD ,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若PD =AD ,求二面角A PB C --的余弦值.19. (本小题满分12分)某种产品以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(Ⅰ)分别估计用A 配方,B 配方生产产品的优质品率;(Ⅱ)已知用B 配方生产的一件产品的利润y (单位:元)与其质量指标值的关系为y = 2 942 941024 102t t t -<⎧⎪≤<⎨⎪≥⎩,从用B 配方生产的产品中任取一件,其利润记为ξ(单位:元),求ξ的分布列与数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).20. (本小题满分12分)在平面直角坐标系xOy 中,已知A(0,-1),B 点在直线3y =-上,M 点满足MB ∥OA ,MA AB =MB BA,M 点的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.21. (本小题满分12分)已知函数()f x =ln 1a x bx x++,曲线y=()f x 在点(1,(1)f )处的切线方程为230x y +-=. (Ⅰ)求a ,b 的值;(Ⅱ)如果当x >0,且x ≠1时,()f x >ln 1x kx x+-,求k 的取值范围.请考生在第22、23、24题中任选一题做答,如果多做,则按所作第一题记分,作答时请写清题号.22. (本小题满分12分)选修4—1:几何选讲如图,D ,E 分别是ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合,已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两根. (Ⅰ)证明:C ,B ,D ,E 四点共圆;(Ⅱ)若A ∠=090,且m =4,n =6,求C ,B ,D ,E 所在圆的半径.23. (本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足OP =2OM,P 点的轨迹为2C .(Ⅰ)求2C 的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .24. (本小题满分10分)选修4—5:不等式选讲 设函数()f x =||3x a x -+,其中a >0.(Ⅰ)当a =1时,求不等式()f x ≥32x +的解集; (Ⅱ)若不等式()f x ≤0的解集为{|1x x ≤-},求a 的值.2011年高考理科数学试题—全国课标版答案一、选择题CBBABD BDCAAD 二、填空题13.-6 14.221168x y +=15.16.三、解答题17.【命题意图】本题考查等比数列的通项公式、性质、等差数列的前n 项和公式及拆项相消求和法,是容易题目.【解析】(Ⅰ)设数列{n a }的公比为q ,由23a =269a a 得23a =249a ,所以2q =19, 由条件可知q >0,故q =13. 由122+3a a =1得112+3a a q =1,所以1a =13, 故数列{n a }的通项公式为n a =13n. (Ⅱ)n b =31323log log log n a a a +++ =(12)n -+++ =(1)2n n +- 故1nb =2(1)n n -+=112()1n n --+, 12111nb b b +++ =111112[(1)()()]2231n n --+-++-+ =21n n -+ 所以数列{1nb }的前n 项和为21n n -+.【解题指导】数列题目由压轴题调整为大题第一题,题目难度降了很多,符合课标对这部分的要求,数列题重点考查等差数列、等比数列的概念、性质、通项公式、前n 项和公式,简单递推数列问题、分组求和、拆项相消、错位相减、倒序求和等常见数列求和方法.18. 【命题意图】本题考查了线面、线线垂直的判定与性质、利用向量法求二面角的方法,是容易题目.【解析】(Ⅰ) ∵DAB ∠=060,AB =2AD ,由余弦定理得BD, ∴22BD AD +=2AB , ∴BD ⊥AD ,又∵PD ⊥面ABCD , ∴BD ⊥PD , ∴BD ⊥面PAD , ∴PA BD ⊥(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴正半轴建立空间直角坐标系D xyz -,则A (1,0,0),B (00),P (0,0,1),AB =(-10),PB =(01),BC =(-1,0,0).设平面PAB 的法向量为n =(1x ,1y ,1z ),则0AB PB ⎧=⎪⎨=⎪⎩n n ,即1110x z ⎧-=⎪-=,取1y =1,则1x1z= ∴n设平面PBC 的法向量为m =(2x ,2y ,2z ),则0BC PB ⎧=⎪⎨=⎪⎩m m,即2100x z =⎧⎪-=,取2y =-1,则2x =0,2z =m =(0,-1,,cos m,n=7-,故二面角A PB C --的余弦值为. 【解题指导】空间几何体重点考查空间线线、线面、面面的平行、垂直判定与性质,利用向量法和几何法求异面直线所成角、线面角、二面角问题,难度与大纲版要求变化不大,是拿分题目.19. 【命题意图】本题主要考查给出试验结果的频数分布计算相应的频率,将频率当概率计算随机变量的分布列与数学期望.【解析】(Ⅰ)由试验结果知,用A 配方生产的产品中优质品的频率为228100+=0.3, ∴用A 配方生产的产品中优质品率的估计值为0.3. 由试验结果知,用B 配方生产的产品中优质品的频率为3210100+=0.42, ∴用B 配方生产的产品中优质品率的估计值为0.42.(Ⅱ)用B 配方生产的100件产品中,其质量指标值落入[90,94),[94,102),[102,110]的频率分别额为0.04,0.54,0.42,∴(2)P ξ=-=0.04,(2)P ξ==0.54,(4)P ξ==0.42, 即ξ的分布列为ξ的数学期望ξE =-20.04+20.54+40.42⨯⨯⨯=2.68.【解题指导】概率统计是每年必考的题目,侧重考查在统计下的概率计算,重点要掌握抽样方法、数据处理方法茎叶图、直方图,会利用茎叶图、直方图中的信息计算期望、方差、中位数、众数等,掌握离散型随机变量的常见分布:二项分布、两点分布、几何分布、超几何分布等,会求简单随机变量的分布列、数学期望、方差,会根据正态分布的图像解正态分布问题,掌握线性回归分析、独立性检验的思想方法.20. 【命题意图】本题以向量为载体考查求曲线方程的方法,考查了抛物线的切线、点到直线的距离公式、利用基本不等式求最值等,是中档题目. 【解析】(Ⅰ)设M (x ,y ),由已知得B (x ,-3),A (0,—1), ∴MA =(x -,1y --),MB =(0,3y --),AB=(x ,-2),由题意可知()MA MB AB + =0,即(,42)(,2)x y x ----=0,化简整理得2124y x =-, ∴曲线C 的方程为2124y x =-;(Ⅱ)设P (0x ,0y )为曲线C :2124y x =-上一点,∴200122y x =-,y '=12x ,∴l 的斜率为012x , ∴直线l 的方程为0y y -=001()2x x x -,即2000220x x y y x -+-=∴O 点到l 的距离d=22014x +12≥2,当x =0时取等号,∴O 点到l 的距离的最小值为2.【解题指导】本题以向量为载体给出曲线上的点满足的条件,故用直接法求方程,抛物线的切线可用导数求切线方程,然后利用点到直线的距离公式化为函数问题,再用函数求最值的方法求解.21. 【命题意图】本题考查了利用导数解函数的切线问题、已知含参数的不等式在某个范围上成立求参数范围问题及分类讨论思想,是难题.【解析】(Ⅰ)()f x '=2221(ln )(1)x a x b x x x+--+, ∵直线23x y +-=0的斜率为12-,且过点(1,1),∴(1)f =1且(1)f '=12-, 即1122b a b =⎧⎪⎨-=-⎪⎩,解得a =1,b =1;(Ⅱ)由(Ⅰ)知()f x =ln 11x x x++, ∴ln ()()1x kf x x x -+-=221(1)1)(2ln )1k x x x x--+-( 设()h x =2(1)1)2ln k x x x--+((x >0),则()h x '=22(1)(1)2k x xx -++ ①当k ≤0时,由()h x '=222(1)(1)k x x x+--知,当1x ≠时,()h x '<0,而(1)h =0,故当x ∈(0,1)时,()h x >0,可得21()01h x x >-; 当x ∈(1,+∞)时,()h x <0,可得21()01h x x >-, 从而当x >0,且x ≠1时,ln ()()1x k f x x x -+->0,即()f x >ln 1x kx x +-; ②当0<k <1时,由于当x ∈(1,11k-)时,2(1)(1)2k x x -++>0,故()h x '>0,而(1)h =0,故x ∈(1,11k -)时,()h x >0,可得21()1h x x-<0与题设矛盾; ③当k ≥1时,此时()h x '>0,而(1)h =0,故当x ∈(1,+∞)时,()h x >0,可得21()01h x x <-,与题设矛盾, 综上所述,k 的取值范围为(—∞,0].【解题指导】对切线问题,从求切线入手求解;对已知不等成立求参数范围问题,若参变分离后,易求含未知数的一端的最值,常用此法,否则分类讨论,注意分类时要做到不重不漏.22. 【命题意图】本题考查了四点共圆的判定与圆的性质,是容易题.【解析】(Ⅰ)连结DE ,根据题意在ADE ∆和ACB ∆中,A D AB ⨯=mn =AE AC ⨯, 即AD AEAC AB=,又DAE CAB ∠=∠, ∴ADE ∆∽ACB ∆, ∴ADE ACB ∠=∠,∴C,B,D,E 四点共圆(Ⅱ)当m =4,n =6时,方程2140x x mn -+=的两根为1x =2,2x =12,故AD =2,AC =12,取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线交于H 点,连结DH ,由(Ⅰ)知C,B,D,E 四点共圆,∴C,B,D,E 四点所在圆的圆心为H ,半径为DH , ∵A ∠=090,∴GH ∥AB ,HF ∥AC , ∴HF =AG =5,DF =1(122)2-=5,∴C,B,D,E 四点所在圆的半径为【解题指导】对证明四点故圆问题,可证对角互补或一外角等于内对角或通过证明其中三点与非这四点中另外两点分别在两个圆上,因这两个圆的由不共线的三个公共点,必重合而得证,求圆的半径注意利用圆的性质.23. 【命题意图】本题考查了参数方程与极坐标,是容易题型。

高考课标全国卷理科数学2011新课标理

高考课标全国卷理科数学2011新课标理

三、解答题
17. 等比数列{an }的各项均为正数, 且2a1 3a2 1, a32 9a2a6 (1)求数列{an }的通项公式
(1)设数列{an }的公比为q,由a32

9a2a6得a32

9a42 , q2

1 9
由条件可知q 0, q 1 3
由2a1

3a2

1, 得2a1
r 设平面PAB的法向量为n

( x1 ,
y1 ,
z1 ),
z
r uuur

n r

PA uuur

0
,即

x1

3 y1 0 ,
P
n PB 0 3 y1 z1 0 r
可取n ( 3,1, 3)
D
C
x
A
By
ur uuur
ur 设平面PBC的法向量为m
(2x y) (x y)
6
3 9 6
5
10
14. 在平面直角坐标系xOy中, 椭圆C的中心为原点, 焦点
F1, F2在x轴上, 离心率为
2 2
.
过F1的直线交C 于A,
B两点,
且△ABF2的周长为16, 那么C的方程为
.


c a

2 2 , 得a 4, c 2
所以所求的概率P 3 1 93
5. 已知角的顶点与原点重合, 始边与x轴正半轴重合,
终边在直线y 2x上, 则cos 2 ( B )
A. 4
B. 3
C. 3
D. 4
5
5
5

2011年高考试题——数学理(新课标卷)

2011年高考试题——数学理(新课标卷)

读 万 卷 书 行 万 里 路2011年普通高等学校招生全国统一考试(新课标)理科数学解析第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i (2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是 (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )13 (B )12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=(A )45- (B )35- (C )35(D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的侧视图可以为(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A )2 (B )3 (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (B )-20 (C )20 (D )40 (9)由曲线y x =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,P P (C )23,P P (D )24,P P(11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11y x=-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于 (A )2 (B) 4 (C) 6 (D)8第Ⅱ卷二、填空题:本大题共4小题,每小题5分。

2011年新课标高考数学试题及答案(理科)

2011年新课标高考数学试题及答案(理科)

(陕西卷) 文科数学一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分) 1.设,a b 是向量,命题“若a b =-,则∣a ∣= ∣b ∣”的逆命题是A .若a b ≠-,则∣a ∣≠∣b ∣B .若a b =,则∣a ∣≠∣b ∣C .若∣a ∣≠∣b ∣,则a b ≠-D .若∣a ∣=∣b ∣,则a = -b 2.设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是A .28y x =-B .24y x =-C .28y x =D .24y x =3.设0a b <<,则下列不等式中正确的是A .2a b a b +<<<B .2a b a b +<<<C .2a b a b +<<<D 2a b a b +<<<4.函数13y x =的图像是5.某几何体的三视图如图所示,则它的体积是A .283π-B .83π-C .8-2πD .23π6.方程cos x x =在(),-∞+∞内 A .没有根B .有且仅有一个根C .有且仅有两个根D .有无穷多个根7.如右框图,当126,9,x x ==8.5p =时,3x 等于 A .7 B .8C .10D .118.设集合M={y|y=12cos x —2sin x|,x ∈R},{|||1x N x i =<,i 为虚数单位,x ∈R},则M ∩N 为 A .(0,1) B .(0,1] C .[0,1)D .[0,1]9.设1122(,),(,),x y x y ··· ,(,)n n x y 是变量x 和y 的n 次方个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是A .直线l 过点(,)x yB .x 和y 的相关系数为直线l 的斜率C .x 和y 的相关系数在0到1之间D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同10.植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳....坑位的编号为A .(1)和(20)B .(9)和(10)C .(9)和(11)D .(10)和(11)二、填空题。

11年全国高考数学卷及答案

11年全国高考数学卷及答案

2011年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答.......无效。

... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题1.复数1z i =+,z 为z 的共轭复数,则1zz z --=A .2i -B .i -C .iD .2i2.函数0)y x =≥的反函数为A .2()4x y x R =∈B .2(0)4x y x =≥C .24y x =()x R ∈ D .24(0)y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是A .1a b +>B .1a b ->C .22a b >D .33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =A .8B .7C .6D .55.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .96.已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于A .3B .3C .3D .17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有 A .4种 B .10种 C .18种 D .20种 8.曲线y=2xe -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为A .13 B .12C .23D .19.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=A .45B .35C .35-D .45-11.已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为A .7πB .9πC .11πD .13π12.设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于A .2BCD .1第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011高考全国2卷数学理科试题及答案详解

2011高考全国2卷数学理科试题及答案详解

2011年普通高等学校招生全国统一考试 全国卷2理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数1z i =+,z 为z 的共轭复数,则1zz z --= (A )2i - (B )i - (C )i (D )2i(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥(3)下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224A n S S +-=,则k = (A )8 (B )7 (C )6 (D )5(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13(B )3 (C )6 (D )9(6)已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂[来源:Z§xx§]足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于(A)3 (B)3 (C)3(D) 1(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友 每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种[来源:学科网](8)曲线y=2x e -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为 (A)13 (B)12 (C)23(D)1(9)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -= (A) -12 (B)1 4- (C)14 (D)12(10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠= (A)45 (B)35 (C)35- (D)45-(11)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为 (A)7π (B)9π (C)11π (D)13π(12)设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于 (A)2 (B)3 (c)2 (D)1第Ⅱ卷 注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011年高考数学(理科)试卷(及答案)_全国卷

2011年高考数学(理科)试卷(及答案)_全国卷

2011年高考全国卷 数学(理工)本试卷共4页,三大题21小题。

满分150分,考试时间120分钟。

★祝考试顺利★注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。

2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。

3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。

4. 考试结束,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。

1.复数1z i =+,z 为z 的共轭复数,则1zz z --= (A) -2i (B) -i (C) i (D) 2i2. 函数()20y x x =≥的反函数为(A)()24x y x R =∈ (B) ()204x y x =≥(C)()24y xx R =∈ (D) ()240y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是 (A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A)13(B) 3 (C) 6 (D) 9 6.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于(A)22 (B) 33 (C) 63(D) 1 7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种8.曲线21x y e =+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为 (A)13 (B) 12 (C) 23(D) 1 9.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A) 12-(B) 14- (C) 14 (D) 1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos AFB ∠= (A)45 (B) 35 (C) 35- (D) 45- 11.已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为(A) 7π (B) 9π (C) 11π (D) 13π12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值等于(A) 2 (B)3 (C) 2 (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写. 13. ()201x-的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈⎪⎝⎭,5sin 5α=,则tan 2α= . 15. 已知12F F 、分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F AF ∠的角平分线,则 2AF = .16. 已知点E 、F 分别在正方体1111ABCD A B C D - 的棱11BB CC 、上,且12B E EB =,12CF FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。

2011年全国新课标高考理科数学试题及答案-推荐下载

2011年全国新课标高考理科数学试题及答案-推荐下载

0,

0,
2 3
3
(B) P1, P3


(C)2
(C)20
(C) 16 3
(C) P2 , P3
(11)设函数 f (x) sin(x ) cos(x )( 0, ) 的最小正周期为 ,且 2
f (x) f (x) ,则
标值大于或等于 102 的产品为优质品,现用两种新配方(分别称为 A 配方和 B 配方)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2011年全国统一高考数学试卷(理科)(新课标)含详细答案

2011年全国统一高考数学试卷(理科)(新课标)含详细答案

2011年全国统一高考数学试卷(理科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数的共轭复数是()A.B.C.﹣i D.i2.(5分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1 C.y=﹣x2+4 D.y=2﹣|x|3.(5分)执行如图的程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.50404.(5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.5.(5分)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣ B.﹣ C.D.6.(5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.7.(5分)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C 交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为()A.B.C.2 D.38.(5分)的展开式中各项系数的和为2,则该展开式中常数项为()A.﹣40 B.﹣20 C.20 D.409.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.610.(5分)已知与均为单位向量,其夹角为θ,有下列四个命题P1:|+|>1⇔θ∈[0,);P2:|+|>1⇔θ∈(,π];P3:|﹣|>1⇔θ∈[0,);P4:|﹣|>1⇔θ∈(,π];其中的真命题是()A.P1,P4B.P1,P3C.P2,P3D.P2,P411.(5分)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增12.(5分)函数y=的图象与函数y=2sinπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A.2 B.4 C.6 D.8二、填空题(共4小题,每小题5分,满分20分)13.(5分)若变量x,y满足约束条件则z=x+2y的最小值为.14.(5分)在平面直角坐标系xOy,椭圆C的中心为原点,焦点F1F2在x轴上,离心率为.过F l的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为.15.(5分)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的体积为.16.(5分)在△ABC中,B=60°,AC=,则AB+2BC的最大值为.三、解答题(共8小题,满分70分)17.(12分)等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.19.(12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表B配方的频数分布表(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20.(12分)在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,=•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.21.(12分)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)如果当x>0,且x≠1时,f(x)>+,求k的取值范围.22.(10分)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.24.设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.2011年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2011•新课标)复数的共轭复数是()A.B.C.﹣i D.i【分析】复数的分子、分母同乘分母的共轭复数,复数化简为a+bi(a,b∈R)的形式,然后求出共轭复数,即可.【解答】解:复数===i,它的共轭复数为:﹣i.故选C2.(5分)(2011•新课标)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1 C.y=﹣x2+4 D.y=2﹣|x|【分析】由函数的奇偶性和单调性的定义和性质,对选项一一加以判断,即可得到既是偶函数又在(0,+∞)上单调递增的函数.【解答】解:对于A.y=2x3,由f(﹣x)=﹣2x3=﹣f(x),为奇函数,故排除A;对于B.y=|x|+1,由f(﹣x)=|﹣x|+1=f(x),为偶函数,当x>0时,y=x+1,是增函数,故B正确;对于C.y=﹣x2+4,有f(﹣x)=f(x),是偶函数,但x>0时为减函数,故排除C;对于D.y=2﹣|x|,有f(﹣x)=f(x),是偶函数,当x>0时,y=2﹣x,为减函数,故排除D.故选B.3.(5分)(2011•新课标)执行如图的程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.5040【分析】执行程序框图,写出每次循环p,k的值,当k<N不成立时输出p的值即可.【解答】解:执行程序框图,有N=6,k=1,p=1P=1,k<N成立,有k=2P=2,k<N成立,有k=3P=6,k<N成立,有k=4P=24,k<N成立,有k=5P=120,k<N成立,有k=6P=720,k<N不成立,输出p的值为720.故选:B.4.(5分)(2011•新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【分析】本题是一个古典概型,试验发生包含的事件数是3×3种结果,满足条件的事件是这两位同学参加同一个兴趣小组有3种结果,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到P=,故选A.5.(5分)(2011•新课标)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣ B.﹣ C.D.【分析】根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到tanθ的值,然后根据同角三角函数间的基本关系求出cosθ的平方,然后根据二倍角的余弦函数公式把所求的式子化简后,把cosθ的平方代入即可求出值.【解答】解:根据题意可知:tanθ=2,所以cos2θ===,则cos2θ=2cos2θ﹣1=2×﹣1=﹣.故选:B.6.(5分)(2011•新课标)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选D.7.(5分)(2011•新课标)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为()A.B.C.2 D.3【分析】不妨设双曲线C:,焦点F(﹣c,0),由题设知,,由此能够推导出C的离心率.【解答】解:不妨设双曲线C:,焦点F(﹣c,0),对称轴y=0,由题设知,,∴,b2=2a2,c2﹣a2=2a2,c2=3a2,∴e=.故选B.8.(5分)(2011•新课标)的展开式中各项系数的和为2,则该展开式中常数项为()A.﹣40 B.﹣20 C.20 D.40【分析】给x赋值1求出各项系数和,列出方程求出a;将问题转化为二项式的系数和;利用二项展开式的通项公式求出通项,求出特定项的系数.【解答】解:令二项式中的x为1得到展开式的各项系数和为1+a∴1+a=2∴a=1∴==∴展开式中常数项为的的系数和=(﹣1)r25﹣r C5r x5﹣2r∵展开式的通项为T r+1令5﹣2r=1得r=2;令5﹣2r=﹣1得r=3展开式中常数项为8C52﹣4C53=40故选D9.(5分)(2011•新课标)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.6【分析】利用定积分知识求解该区域面积是解决本题的关键,要确定出曲线y=,直线y=x﹣2的交点,确定出积分区间和被积函数,利用导数和积分的关系完成本题的求解.【解答】解:联立方程得到两曲线的交点(4,2),因此曲线y=,直线y=x﹣2及y轴所围成的图形的面积为:S=.故选C.10.(5分)(2011•新课标)已知与均为单位向量,其夹角为θ,有下列四个命题P1:|+|>1⇔θ∈[0,);P2:|+|>1⇔θ∈(,π];P3:|﹣|>1⇔θ∈[0,);P4:|﹣|>1⇔θ∈(,π];其中的真命题是()A.P1,P4B.P1,P3C.P2,P3D.P2,P4【分析】利用向量长度与向量数量积之间的关系进行转化求解是解决本题的关键,要列出关于夹角的不等式,通过求解不等式得出向量夹角的范围.【解答】解:由,得出2﹣2cosθ>1,即cosθ<,又θ∈[0,π],故可以得出θ∈(,π],故P3错误,P4正确.由|+|>1,得出2+2cosθ>1,即co sθ>﹣,又θ∈[0,π],故可以得出θ∈[0,),故P2错误,P1正确.故选A.11.(5分)(2011•新课标)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【分析】利用辅助角公式将函数表达式进行化简,根据周期与ω的关系确定出ω的值,根据函数的偶函数性质确定出φ的值,再对各个选项进行考查筛选.【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ)=,由于该函数的最小正周期为T=,得出ω=2,又根据f(﹣x)=f(x),得φ+=+kπ(k∈Z),以及|φ|<,得出φ=.因此,f(x)=cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选A.12.(5分)(2011•新课标)函数y=的图象与函数y=2sinπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A.2 B.4 C.6 D.8【分析】的图象由奇函数的图象向右平移1个单位而得,所以它的图象关于点(1,0)中心对称,再由正弦函数的对称中心公式,可得函数y2=2sinπx 的图象的一个对称中心也是点(1,0),故交点个数为偶数,且每一对对称点的横坐标之和为2.由此不难得到正确答案.【解答】解:函数,y2=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象如图当1<x≤4时,y1<0而函数y2在(1,4)上出现1.5个周期的图象,在和上是减函数;在和上是增函数.∴函数y1在(1,4)上函数值为负数,且与y2的图象有四个交点E、F、G、H相应地,y1在(﹣2,1)上函数值为正数,且与y2的图象有四个交点A、B、C、D且:x A+x H=x B+x G═x C+x F=x D+x E=2,故所求的横坐标之和为8故选D二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2011•新课标)若变量x,y满足约束条件则z=x+2y的最小值为﹣6.【分析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把目标函数z=x+2y变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.【解答】解:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由y=x﹣9与2x+y=3的交点得到A(4,﹣5)∴z=4+2(﹣5)=﹣6故答案为:﹣6.14.(5分)(2011•新课标)在平面直角坐标系xOy,椭圆C的中心为原点,焦点F1F2在x轴上,离心率为.过F l的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为+=1.【分析】根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16,结合椭圆的定义,有4a=16,即可得a的值;又由椭圆的离心率,可得c的值,进而可得b的值;由椭圆的焦点在x轴上,可得椭圆的方程.【解答】解:根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16;根据椭圆的性质,有4a=16,即a=4;椭圆的离心率为,即=,则a=c,将a=c,代入可得,c=2,则b2=a2﹣c2=8;则椭圆的方程为+=1;故答案为:+=1.15.(5分)(2011•新课标)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的体积为8.【分析】由题意求出矩形的对角线的长,结合球的半径,球心到矩形的距离,满足勾股定理,求出棱锥的高,即可求出棱锥的体积.【解答】解:矩形的对角线的长为:,所以球心到矩形的距离为:=2,所以棱锥O﹣ABCD的体积为:=8.故答案为:816.(5分)(2011•新课标)在△ABC中,B=60°,AC=,则AB+2BC的最大值为2.【分析】设AB=c AC=b BC=a利用余弦定理和已知条件求得a和c的关系,设c+2a=m代入,利用判别大于等于0求得m的范围,则m的最大值可得.【解答】解:设AB=c AC=b BC=a由余弦定理cosB=所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a=,c=符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有====2,所以AB=2sinC,BC=2sinA.所以AB+2BC=2sinC+4sinA=2sin(120°﹣A)+4sinA=2(sin120°cosA﹣cos120°sinA)+4sinA=cosA+5sinA=2sin(A+φ),(其中sinφ=,cosφ=)所以AB+2BC的最大值为2.故答案为:2三、解答题(共8小题,满分70分)17.(12分)(2011•新课标)等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.【分析】(Ⅰ)设出等比数列的公比q,由a32=9a2a6,利用等比数列的通项公式化简后得到关于q的方程,由已知等比数列的各项都为正数,得到满足题意q 的值,然后再根据等比数列的通项公式化简2a1+3a2=1,把求出的q的值代入即可求出等比数列的首项,根据首项和求出的公比q写出数列的通项公式即可;(Ⅱ)把(Ⅰ)求出数列{a n}的通项公式代入设bn=log3a1+log3a2+…+log3a n,利用对数的运算性质及等差数列的前n项和的公式化简后,即可得到b n的通项公式,求出倒数即为的通项公式,然后根据数列的通项公式列举出数列的各项,抵消后即可得到数列{}的前n项和.【解答】解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1得2a1+3a1q=1,所以a1=.故数列{a n}的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣,所以数列{}的前n项和为﹣.18.(12分)(2011•新课标)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.【分析】(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(Ⅱ)建立空间直角坐标系,写出点A,B,C,P的坐标,求出向量,和平面PAB的法向量,平面PBC的法向量,求出这两个向量的夹角的余弦值即可.【解答】(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).=(﹣1,,0),=(0,,﹣1),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则即,因此可取=(,1,)设平面PBC的法向量为=(x,y,z),则,即:可取=(0,1,),cos<>==故二面角A﹣PB﹣C的余弦值为:﹣.19.(12分)(2011•新课标)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表B配方的频数分布表(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)【分析】(I)根据所给的样本容量和两种配方的优质的频数,两个求比值,得到用两种配方的产品的优质品率的估计值.(II)根据题意得到变量对应的数字,结合变量对应的事件和第一问的结果写出变量对应的概率,写出分布列和这组数据的期望值.【解答】解:(Ⅰ)由试验结果知,用A配方生产的产品中优质的频率为∴用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为∴用B配方生产的产品的优质品率的估计值为0.42;(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,即X的分布列为∴X的数学期望值EX=﹣2×0.04+2×0.54+4×0.42=2.6820.(12分)(2011•新课标)在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,=•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.【分析】(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1)并代入∥,=•,即可求得M点的轨迹C的方程;(Ⅱ)设P(x0,y0)为C上的点,求导,写出C在P点处的切线方程,利用点到直线的距离公式即可求得O点到l距离,然后利用基本不等式求出其最小值.【解答】解:(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1).所=(﹣x,﹣1﹣y),=(0,﹣3﹣y),=(x,﹣2).再由题意可知()•=0,即(﹣x,﹣4﹣2y)•(x,﹣2)=0.所以曲线C的方程式为y=﹣2.(Ⅱ)设P(x0,y0)为曲线C:y=﹣2上一点,因为y′=x,所以l的斜率为x0,因此直线l的方程为y﹣y0=x0(x﹣x0),即x0x﹣2y+2y0﹣x02=0.则o点到l的距离d=.又y0=﹣2,所以d==≥2,所以x02=0时取等号,所以O点到l距离的最小值为2.21.(12分)(2011•新课标)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)如果当x>0,且x≠1时,f(x)>+,求k的取值范围.【分析】(I)求出函数的导数;利用切线方程求出切线的斜率及切点;利用函数在切点处的导数值为曲线切线的斜率及切点也在曲线上,列出方程组,求出a,b值.(II)将不等式变形,构造新函数,求出新函数的导数,对参数k分类讨论,判断出导函数的符号,得到函数的单调性,求出函数的最值,求出参数k的范围.【解答】解:由题意f(1)=1,即切点坐标是(1,1)(Ⅰ)由于直线x+2y﹣3=0的斜率为,且过点(1,1),故即解得a=1,b=1.(Ⅱ)由(Ⅰ)知,所以).考虑函数(x>0),则.(i)设k≤0,由知,当x≠1时,h′(x)<0.而h(1)=0,故当x∈(0,1)时,h′(x)<0,可得;当x∈(1,+∞)时,h′(x)<0,可得h(x)>0从而当x>0,且x≠1时,f(x)﹣(+)>0,即f(x)>+.(ii)设0<k<1.由于当x∈(1,)时,(k﹣1)(x2+1)+2x>0,故h′(x)>0,而h(1)=0,故当x∈(1,)时,h(x)>0,可得h(x)<0,与题设矛盾.(iii)设k≥1.此时h′(x)>0,而h(1)=0,故当x∈(1,+∞)时,h(x)>0,可得h(x)<0,与题设矛盾.综合得,k的取值范围为(﹣∞,0].22.(10分)(2011•新课标)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x 的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.【分析】(I)做出辅助线,根据所给的AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根,得到比例式,根据比例式得到三角形相似,根据相似三角形的对应角相等,得到结论.(II)根据所给的条件做出方程的两个根,即得到两条线段的长度,取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH,根据四点共圆得到半径的大小.【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2﹣14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H 点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=(12﹣2)=5.故C,B,D,E四点所在圆的半径为523.(2011•新课标)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【分析】(I)先设出点P的坐标,然后根据点P满足的条件代入曲线C1的方程即可求出曲线C2的方程;(II)根据(I)将求出曲线C1的极坐标方程,分别求出射线θ=与C1的交点A 的极径为ρ1,以及射线θ=与C2的交点B的极径为ρ2,最后根据|AB|=|ρ2﹣ρ1|求出所求.【解答】解:(I)设P(x,y),则由条件知M(,).由于M点在C1上,所以即从而C2的参数方程为(α为参数)(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ=与C1的交点A的极径为ρ1=4sin,射线θ=与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ2﹣ρ1|=.24.(2011•新课标)设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【分析】(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.直接求出不等式f(x)≥3x+2的解集即可.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得﹣=﹣1,故a=2参与本试卷答题和审题的老师有:qiss;双曲线;w3239003;涨停;sllwyn;zlzhan;wdnah;301137;ywg2058;danbo7801;zhwsd;394782;minqi5(排名不分先后)菁优网2017年2月3日。

2011年新课标高考数学试题及答案(理科)

2011年新课标高考数学试题及答案(理科)

一、名词解释(每小题3分,共计15分)1.心输出量:指一侧心室每分钟射入动脉的血液总量。

2.消化:指食物在消化道内被分解为可吸收的小分子物质的过程。

3.反射:指机体在中枢神经系统参与下,对内、外环境变化所作出的规律性应答。

4.激素:是具有内分泌功能的细胞产生的高效能生物活性物质。

作为化学信使,经体液传送到靶细胞,活化或抑制其固有的反应,以调节细胞的功能。

5.性成熟:家畜生长发育到一定时期,生殖器官和副性征基本发育完全,开始具有生殖能力,这一时期称为性成熟。

二、填空题(每空1分,共25分)1.1.机体生理功能的调节有细胞内源调节、神经调节和体液调节三种调节方式,其中神经调节是最重要、最完善的方式。

2.微循环的三条途径是营养通路直捷通路动--静脉短路。

3.窦房结是心脏的起搏点。

4.生理学上常把细胞外液称为机体的内环境。

5.NaHCO3/H2CO3是血浆中的主要缓冲对。

6.氧在血液中运输的化学形式是氧合血红蛋白,二氧化碳在血液中运输的化学形式是碳酸氢盐和氨基甲酸血红蛋白。

7.皮肤散热是通过传导对流辐射和蒸发方式来进行的。

8.一般地,一个突触由突触前膜突触间隙和突触后膜三部分构成。

9.消化有物理性化学性和生物学性三种形式。

三、单项选择题(每小题1.5分,共计15分)1.静息电位主要由()所产生。

A.K+外流B.K+内流C.Na+外流D.Na+内流2.将红细胞置于0.3%NaCl溶液中将发生()现象。

A.皱缩B.溶血C.聚集D.叠连3.血液凝固过程中必须有()参与。

A.Na+ B. K+ C. H+ D. Ca2+4.动物血液的pH值范围一般在()A.7.25~7.35 B.7.35~7.45C.7.45~7.55 D.7.55~7.655.明显影响神经系统发育的是()A.生长素B.肾上腺皮质激素C.甲状腺激素D.肾上腺髓质激素6.决定肺部气体交换的主要因素是()A.气体分子量大小B.气体分压差C.气体溶解度D.呼吸膜通透性7.与血钙浓度有关的物质是()A.甲状旁腺素B.降钙素C.VitD3D.A、B和C8.原尿与血浆相比较不含有()A. 大分子蛋白质B. 尿素C. 葡萄糖D. 尿酸9.沟通细胞与血液间物质交换的媒介是()A.细胞内液B.组织液C.血浆D.淋巴10.加压素的正常生理作用是()A.升高血压B.提高肾小球滤过率C.增大肾小管对水的通透性四、判断题(每小题1分,共计5分,正确的打“√”号,错误的打“×”号)1.向家畜静注生理盐水后,血浆胶体渗透压升高,尿量增多。

2011年新课标高考数学试题及答案(理科)

2011年新课标高考数学试题及答案(理科)

高考数学模拟题一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设复数,若为纯虚数,则实数A.B.C.D.2. 设都是非零向量,若函数(R)是偶函数,则必有A.B.a∥b C.D.3. 是直线和直线平行的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4. 设函数,集合,则右图中阴影部分表示的集合为A.B.C.D.5. 把函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为A.B.C.D.6. 已知为两条不同的直线,为两个不同的平面,且,,则下列命题中的假命题是A.若∥,则∥B.若,则C.若相交,则相交D.若相交,则相交7.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,其中,若,就称甲乙“心有灵犀”. 现任意找两人玩这个游戏,则他们“心有灵犀”的概率为A.B.C.D.8.已知函数,且,则A.0B.C.100D.10200第Ⅱ卷非选择题(共110分)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9—12题)9.某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师人.10.圆柱形容器的内壁底半径是cm,有一个实心铁球浸没于容器的水中,若取出这个铁球,测得容器的水面下降了cm,则这个铁球的表面积为.11.右图所示的算法流程图中,若,则输出的值为;若输出的,则的值为 .12.已知是上的奇函数,,且对任意都有成立,则;.(二)选做题(13—15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)(坐标系与参数方程选做题)若直线与曲线(为参数)没有公共点,则实数的取值范围是____________.14.(不等式选讲选做题)设关于的不等式(R). 若,则不等式的解集为;若不等式的解集为,则的取值范围是 . 15.(几何证明选讲选做题)如图,圆与圆交于两点,以为切点作两圆的切线分别交圆和圆于两点,延长交圆于点,延长交圆于点,已知,,则;.三、解答题:本大题共6小题,共80分. 解答应写出详细文字说明,证明过程或演算步骤.16.(本小题满分12分)设向量,,,函数.(1) 求函数的最大值与单调递增区间;(2) 求使不等式成立的的取值集合.17.(本小题满分12分)某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:版本人教A版人教B版苏教版北师大版人数20 15 5 10(1) 从这50名教师中随机选出2名,求2人所使用版本相同的概率;(2) 若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为,求随机变量的分布列和数学期望.18.(本小题满分14分)四棱锥中,底面,且,,.(1) 在侧棱上是否存在一点,使平面?证明你的结论;(2) 求证:平面平面;(3) 求平面与平面所成锐二面角的余弦值.19.(本小题满分14分)已知函数(为常数,且),且数列是首项为4,公差为2的等差数列.(1) 求证:数列是等比数列;(2) 若,当时,求数列的前项和;(3) 若,问是否存在实数,使得中的每一项恒小于它后面的项?若存在,求出的范围;若不存在,说明理由.20.(本小题满分14分)如图,设是椭圆的左焦点,直线为对应的准线,直线与轴交于点,为椭圆的长轴,已知,且.(1) 求椭圆的标准方程;(2) 求证:对于任意的割线,恒有;(3) 求三角形△ABF面积的最大值.21.(本小题满分14分)设函数.(1) 求函数的最小值;(2) 设,讨论函数的单调性;(3) 斜率为的直线与曲线交于、两点,求证:.【答案及详细解析】一、选择题:本大题理科共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

2011年高考理科数学试题及答案—全国课标版

2011年高考理科数学试题及答案—全国课标版

2011年高考理科数学试题—全国课标版第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每个小题给出的5个选项中,只有一项是符合题目要求的.1.复数212ii +-的共轭复数是 (A )35i - (B)35i (C)i - (D) i2.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(A )3y x = (B)||1y x =+ (C) 21y x =-+ (D)||2x y -= 3.执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B)720 (C)1440 (D)50404.有3个兴趣小组,甲、乙两位同学各参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一兴趣小组的概率为(A )13 (B)12 (C)23 (D)345.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A )45-(B)35- (C) 35 (D) 456.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为7.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A,B 两点,||AB 为C 的实轴长2倍,则C 的离心率为(A (B)(C)2 (D)38.51()(2ax x x x+-)的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (B )-20 (C)20 (D)409.由曲线y =,直线2y x =-及y 轴围成的图形的面积为(A )103 (B)4 (C)163(D)610.已知a 与b 均为单位向量,其中夹角为θ,有下列四个命题1p :||1+>a b ⇔θ∈[0,23π) 2p :||1+>a b ⇔θ∈(23π,π] 3p : ||1->a b ⇔θ∈[0, 3π) 4p :||1->a b ⇔θ∈(3π,π]其中真命题是(A )1p ,4p (B) 1p ,3p (C) 2p ,3p (D) 3p ,4p 11.设函数()f x =sin()cos()x x ωϕωϕ+++(ω>0,||ϕ<2π)的最小正周期为π,且()f x -=()f x ,则()f x(A )在(0,2π)单调递减 (B)在(4π,34π)单调递减(C) 在(0,2π)单调递增 (D)在(4π,34π)单调递增12.函数11y x=-的图像与函数2sin y x π=(-2≤x ≤4)的图像所有交点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个考题考生都必须作答,第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4个小题,每小题5分. 13.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 .14.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点1F ,2F 在x 轴上,,过1F 作直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为 .15.已知矩形ABCD 的顶点都在半径为4的球面上,且AB =6,BC =,则棱锥O ABCD -的体积为 .16.在ABC ∆中,060B =,AC =则2AB BC +的最大值为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等比数列{n a }的各项均为整数,且1223a a +=1,23a =269a a ,(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n b =31323log log log n a a a +++ ,求数列{1nb }的前n 项和.18. (本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,DAB ∠=060,AB =2AD ,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若PD =AD ,求二面角A PB C --的余弦值.19. (本小题满分12分)某种产品以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(Ⅰ)分别估计用A 配方,B 配方生产产品的优质品率;(Ⅱ)已知用B 配方生产的一件产品的利润y (单位:元)与其质量指标值的关系为y = 2 942 941024 102t t t -<⎧⎪≤<⎨⎪≥⎩,从用B 配方生产的产品中任取一件,其利润记为ξ(单位:元),求ξ的分布列与数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).20. (本小题满分12分)在平面直角坐标系xOy 中,已知A(0,-1),B 点在直线3y =-上,M 点满足MB ∥OA ,MA AB =MB BA,M 点的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.21. (本小题满分12分)已知函数()f x =ln 1a x bx x++,曲线y=()f x 在点(1,(1)f )处的切线方程为230x y +-=. (Ⅰ)求a ,b 的值;(Ⅱ)如果当x >0,且x ≠1时,()f x >ln 1x kx x+-,求k 的取值范围.请考生在第22、23、24题中任选一题做答,如果多做,则按所作第一题记分,作答时请写清题号.22. (本小题满分12分)选修4—1:几何选讲如图,D ,E 分别是ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合,已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两根. (Ⅰ)证明:C ,B ,D ,E 四点共圆;(Ⅱ)若A ∠=090,且m =4,n =6,求C ,B ,D ,E 所在圆的半径.23. (本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足OP =2OM,P 点的轨迹为2C .(Ⅰ)求2C 的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .24. (本小题满分10分)选修4—5:不等式选讲 设函数()f x =||3x a x -+,其中a >0.(Ⅰ)当a =1时,求不等式()f x ≥32x +的解集; (Ⅱ)若不等式()f x ≤0的解集为{|1x x ≤-},求a 的值.2011年高考理科数学试题—全国课标版答案一、选择题CBBABD BDCAAD 二、填空题13.-6 14.221168x y +=15.16.三、解答题17.【命题意图】本题考查等比数列的通项公式、性质、等差数列的前n 项和公式及拆项相消求和法,是容易题目.【解析】(Ⅰ)设数列{n a }的公比为q ,由23a =269a a 得23a =249a ,所以2q =19, 由条件可知q >0,故q =13. 由122+3a a =1得112+3a a q =1,所以1a =13, 故数列{n a }的通项公式为n a =13n. (Ⅱ)n b =31323log log log n a a a +++ =(12)n -+++ =(1)2n n +- 故1nb =2(1)n n -+=112()1n n --+, 12111nb b b +++ =111112[(1)()()]2231n n --+-++-+ =21n n -+ 所以数列{1nb }的前n 项和为21n n -+.【解题指导】数列题目由压轴题调整为大题第一题,题目难度降了很多,符合课标对这部分的要求,数列题重点考查等差数列、等比数列的概念、性质、通项公式、前n 项和公式,简单递推数列问题、分组求和、拆项相消、错位相减、倒序求和等常见数列求和方法.18. 【命题意图】本题考查了线面、线线垂直的判定与性质、利用向量法求二面角的方法,是容易题目.【解析】(Ⅰ) ∵DAB ∠=060,AB =2AD ,由余弦定理得BD, ∴22BD AD +=2AB , ∴BD ⊥AD ,又∵PD ⊥面ABCD , ∴BD ⊥PD , ∴BD ⊥面PAD , ∴PA BD ⊥(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴正半轴建立空间直角坐标系D xyz -,则A (1,0,0),B (00),P (0,0,1),AB =(-10),PB =(01),BC =(-1,0,0).设平面PAB 的法向量为n =(1x ,1y ,1z ),则0AB PB ⎧=⎪⎨=⎪⎩n n ,即1110x z ⎧-=⎪-=,取1y =1,则1x1z= ∴n设平面PBC 的法向量为m =(2x ,2y ,2z ),则0BC PB ⎧=⎪⎨=⎪⎩m m,即2100x z =⎧⎪-=,取2y =-1,则2x =0,2z =m =(0,-1,,cos m,n=7-,故二面角A PB C --的余弦值为. 【解题指导】空间几何体重点考查空间线线、线面、面面的平行、垂直判定与性质,利用向量法和几何法求异面直线所成角、线面角、二面角问题,难度与大纲版要求变化不大,是拿分题目.19. 【命题意图】本题主要考查给出试验结果的频数分布计算相应的频率,将频率当概率计算随机变量的分布列与数学期望.【解析】(Ⅰ)由试验结果知,用A 配方生产的产品中优质品的频率为228100+=0.3, ∴用A 配方生产的产品中优质品率的估计值为0.3. 由试验结果知,用B 配方生产的产品中优质品的频率为3210100+=0.42, ∴用B 配方生产的产品中优质品率的估计值为0.42.(Ⅱ)用B 配方生产的100件产品中,其质量指标值落入[90,94),[94,102),[102,110]的频率分别额为0.04,0.54,0.42,∴(2)P ξ=-=0.04,(2)P ξ==0.54,(4)P ξ==0.42, 即ξ的分布列为ξ的数学期望ξE =-20.04+20.54+40.42⨯⨯⨯=2.68.【解题指导】概率统计是每年必考的题目,侧重考查在统计下的概率计算,重点要掌握抽样方法、数据处理方法茎叶图、直方图,会利用茎叶图、直方图中的信息计算期望、方差、中位数、众数等,掌握离散型随机变量的常见分布:二项分布、两点分布、几何分布、超几何分布等,会求简单随机变量的分布列、数学期望、方差,会根据正态分布的图像解正态分布问题,掌握线性回归分析、独立性检验的思想方法.20. 【命题意图】本题以向量为载体考查求曲线方程的方法,考查了抛物线的切线、点到直线的距离公式、利用基本不等式求最值等,是中档题目. 【解析】(Ⅰ)设M (x ,y ),由已知得B (x ,-3),A (0,—1), ∴MA =(x -,1y --),MB =(0,3y --),AB=(x ,-2),由题意可知()MA MB AB + =0,即(,42)(,2)x y x ----=0,化简整理得2124y x =-, ∴曲线C 的方程为2124y x =-;(Ⅱ)设P (0x ,0y )为曲线C :2124y x =-上一点,∴200122y x =-,y '=12x ,∴l 的斜率为012x , ∴直线l 的方程为0y y -=001()2x x x -,即2000220x x y y x -+-=∴O 点到l 的距离d=22014x +12≥2,当x =0时取等号,∴O 点到l 的距离的最小值为2.【解题指导】本题以向量为载体给出曲线上的点满足的条件,故用直接法求方程,抛物线的切线可用导数求切线方程,然后利用点到直线的距离公式化为函数问题,再用函数求最值的方法求解.21. 【命题意图】本题考查了利用导数解函数的切线问题、已知含参数的不等式在某个范围上成立求参数范围问题及分类讨论思想,是难题.【解析】(Ⅰ)()f x '=2221(ln )(1)x a x b x x x+--+, ∵直线23x y +-=0的斜率为12-,且过点(1,1),∴(1)f =1且(1)f '=12-, 即1122b a b =⎧⎪⎨-=-⎪⎩,解得a =1,b =1;(Ⅱ)由(Ⅰ)知()f x =ln 11x x x++, ∴ln ()()1x kf x x x -+-=221(1)1)(2ln )1k x x x x--+-( 设()h x =2(1)1)2ln k x x x--+((x >0),则()h x '=22(1)(1)2k x xx -++ ①当k ≤0时,由()h x '=222(1)(1)k x x x+--知,当1x ≠时,()h x '<0,而(1)h =0,故当x ∈(0,1)时,()h x >0,可得21()01h x x >-; 当x ∈(1,+∞)时,()h x <0,可得21()01h x x >-, 从而当x >0,且x ≠1时,ln ()()1x k f x x x -+->0,即()f x >ln 1x kx x +-; ②当0<k <1时,由于当x ∈(1,11k-)时,2(1)(1)2k x x -++>0,故()h x '>0,而(1)h =0,故x ∈(1,11k -)时,()h x >0,可得21()1h x x-<0与题设矛盾; ③当k ≥1时,此时()h x '>0,而(1)h =0,故当x ∈(1,+∞)时,()h x >0,可得21()01h x x <-,与题设矛盾, 综上所述,k 的取值范围为(—∞,0].【解题指导】对切线问题,从求切线入手求解;对已知不等成立求参数范围问题,若参变分离后,易求含未知数的一端的最值,常用此法,否则分类讨论,注意分类时要做到不重不漏.22. 【命题意图】本题考查了四点共圆的判定与圆的性质,是容易题.【解析】(Ⅰ)连结DE ,根据题意在ADE ∆和ACB ∆中,A D AB ⨯=mn =AE AC ⨯, 即AD AEAC AB=,又DAE CAB ∠=∠, ∴ADE ∆∽ACB ∆, ∴ADE ACB ∠=∠,∴C,B,D,E 四点共圆(Ⅱ)当m =4,n =6时,方程2140x x mn -+=的两根为1x =2,2x =12,故AD =2,AC =12,取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线交于H 点,连结DH ,由(Ⅰ)知C,B,D,E 四点共圆,∴C,B,D,E 四点所在圆的圆心为H ,半径为DH , ∵A ∠=090,∴GH ∥AB ,HF ∥AC , ∴HF =AG =5,DF =1(122)2-=5,∴C,B,D,E 四点所在圆的半径为【解题指导】对证明四点故圆问题,可证对角互补或一外角等于内对角或通过证明其中三点与非这四点中另外两点分别在两个圆上,因这两个圆的由不共线的三个公共点,必重合而得证,求圆的半径注意利用圆的性质.23. 【命题意图】本题考查了参数方程与极坐标,是容易题型。

2011年全国高考数学试题及答案(理科)

2011年全国高考数学试题及答案(理科)

2011年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。

1.复数1z i =+,z 为z 的共轭复数,则1zz z --= (A) -2i (B) -i (C) i (D) 2i2. 3. 4. 5. 6. 7.1本,则不同的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种 8.曲线12+=-xe y 在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为(A)13 (B) 12 (C) 23(D) 1 9.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A) 12-(B) 14- (C) 14 (D) 1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos AFB ∠=(A)45 (B) 35 (C) 35- (D) 45- 11.已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为(C) 11π (D) 13π 11,,,602a b a b a c b c ===---=,则c 的最大值等于 (D) 1小题,每小题5分,共其答案按先后次序填写的系数与x ),AM ,17.,a c +18.(本小题满分12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立。

(Ⅰ)求该地1为车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X 表示该地的100为车主中,甲、乙两种保险都不购买的车主数,求X 的期望。

19.(本小题满分12分)如图,四棱锥S-ABCD 中,//,AB CD BC CD ⊥,侧面SAB 为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD SAB ⊥平面;(Ⅱ)求AB 与平面SBC 所成的角的大小。

2011年新课标高考数学理科试卷(带详解)

2011年新课标高考数学理科试卷(带详解)

2011年普通高等学校招生全国统一考试理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数2i12i+-的共轭复数是 ( ) A.3i 5- B.3i 5C.i -D.i 【测量目标】复数代数形式的四则运算. 【考查方式】给出复数,求其共轭复数. 【难易程度】容易 【参考答案】C 【试题解析】2i (2i)(12i)i 12i 5+++==-,共轭复数为-i,选C.2.下列函数中,既是偶函数又在+∞(0,)单调递增的函数是 ( )A.3y x =B. 1y x =+C.21y x =-+D. 2x y -=【测量目标】函数奇偶性及单调性的判断.【考查方式】给出四个函数,判断其是否为偶函数并在定义域单调递增. 【难易程度】容易 【参考答案】B【试题解析】由3y x =不是偶函数,则A 错,(步骤1)21y x =-+在(0,)+∞单调递减,则C 错,(步骤2) 2xy -=在(0,)+∞单调递减,则D 错,所以选B.(步骤3)3.执行右面的程序框图,如果输入的N 是6,那么输出的p 是 ( ) A.120 B.720 C.1440 D.5040第3题图【测量目标】循环结构的程序框图.【考查方式】给出程序框图,由输入值与p 和k 的关系求输出值. 【难易程度】容易 【参考答案】B【试题解析】框图表示1n n a n a -= ,且11a =所求6a =720,选B.4.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34【测量目标】随机事件与概率.【考查方式】给出问题情境,根据列举法求解概率. 【难易程度】容易 【参考答案】A【试题解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为3193P ==,选A. 5.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=( )A.45-B.35-C.35D.45【测量目标】诱导公式.【考查方式】由所给条件去化简求值. 【难易程度】容易 【参考答案】B 【试题解析】由题知,tan 2θ=,222222cos sin 1tan 3cos 2cos sin 1tan 5θθθθθθθ--===-++,选B.6.在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的侧视图可以为 ( )第6题图A Yxj 68B Yxj69C Yxj 70D Yxj71【测量目标】平面图形的三视图.【考查方式】已知平面图形的正视图和俯视图,求其侧视图. 【难易程度】容易 【参考答案】D【试题解析】条件对应的几何体是由底面棱长为r 的 正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的.故选D.7.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为 ( )【测量目标】双曲线的几何性质及离心率.【考查方式】由直线与双曲线的位置关系求其离心率. 【难易程度】容易 【参考答案】B【试题解析】通径224b AB a a==,得22222222+3b a a b c c a e =⇒=⇒=⇒=,选B.8.512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( )A.-40B.-20C.20D.40【测量目标】二项式定理.【考查方式】已知二项式的展开式各系数之和,求展开式的常数项. 【难易程度】中等 【参考答案】D【试题解析】方法 1.令1x =得1a =.故原式=511()(2)x x x x +-,51(2)x x-的通项为51552155C (2)()C (1)2r r r rr r r r T x x x ----+=-=-,(步骤1) 由5-2r =1得r =2,对应的常数项=80,由5-2r =-1得r =3,对应的常数项=-40,故所求的常数项为40 ,选D.(步骤2)方法2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x ,从余下的5个括号中选2个提出x ,选3个提出1x ;若第1个括号提出1x,从余下的括号中选2个提出1x,选3个提出x .(步骤3) 故常数项=223322335353111C (2)C ()C ()C (2)x x x x x x-+- =-40+80=40(步骤4)9.由曲线y ,直线2y x =-及y 轴所围成的图形的面积为 ( )A.103 B.4 C.163D.6 【测量目标】定积分及封闭图形面积的解法.【考查方式】已知曲线与直线方程,求其与y 轴围成的图形的面积. 【难易程度】中等 【参考答案】C【试题解析】用定积分求解32420421162)(2)0323S x dx x x x =+=-+=⎰,选C10.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题其中的真命题是 ( )12:10,3p θπ⎡⎫+>⇔∈⎪⎢⎣⎭a b 22:1,3p θπ⎛⎤+>⇔∈π ⎥⎝⎦a b3:10,3p θπ⎡⎫->⇔∈⎪⎢⎣⎭a b 4:1,3p θπ⎛⎤->⇔∈π ⎥⎝⎦a bA.14,p pB.13,p pC.23,p pD.24,p p【测量目标】不等式比较大小及向量的线性运算. 【考查方式】给出四个不等式,判断是否为真命题. 【难易程度】中等 【参考答案】A【试题解析】1+==a b 得, 1cos 2θ>-,2π0,3θ⎡⎫⇒∈⎪⎢⎣⎭,(步骤1)由1-==>a b 得1cos 2θ<π,π3θ⎛⎤⇒∈ ⎥⎝⎦, 选A (步骤2)11.设函数π()s i n ()c o s ()(0,)2f x x x ωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则 ( )A.()f x 在π0,2⎛⎫ ⎪⎝⎭单调递减B.()f x 在π3π,44⎛⎫⎪⎝⎭单调递减C.()f x 在π0,2⎛⎫⎪⎝⎭单调递增D.()f x 在π3π,44⎛⎫⎪⎝⎭单调递增【测量目标】三角函数的周期性、奇偶性、单调性.【考查方式】已知三角函数()f x 及其最小正周期、奇偶性,求其单调减区间或单调增区间. 【难易程度】中等 【参考答案】A【试题解析】π())4f x x ωϕ=++,所以2ω=,(步骤1)又()f x 为偶函数,πππππ,424k k k ϕϕ∴+=+⇒=+∈Z ,π())22f x x x ∴=+=,选A (步骤2)12.函数11y x =-的图象与函数2sin π(24)y x x =-剟的图象所有交点的横坐标之和等于 ( ) A.2 B.4 C. 6 D.8【测量目标】三角函数的图象.【考查方式】已知两函数的解析式,通过函数图象求解.【难易程度】中等 【参考答案】D 【试题解析】11y x =-的对称中心是(1,0)也是2sin π(24)y x x =-剟的中心,(步骤1)24x-剟他们的图象在1x =的左侧有4个交点,则1x =右侧必有4个交点.不妨把他们的横坐标由小到大设为12345678,,,,,,,x x x x x x x x ,则18273642x x x x x x x x +=+=+=+=,所以选D.(步骤2)第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.若变量,x y 满足约束条件329,69,x y x y +⎧⎨-⎩剟剟则2z x y =+的最小值为 .【测量目标】二元线性规划求目标函数的最值.【考查方式】已知二元不等式组,通过图象解出目标函数的最小值. 【难易程度】容易 【参考答案】-6【试题解析】画出区域图知,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.第13题图14.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为2.过1F 的直线l 交C 于,A B 两点,且2ABF △的周长为16,那么C 的方程为 .【测量目标】椭圆的标准方程.【考查方式】已知离心率及直线与椭圆的位置关系,求椭圆的标准方程. 【难易程度】容易【参考答案】221168x y += 【试题解析】由2416c a a ⎧=⎪⎨⎪=⎩得4,a c ==(步骤1)从而2228,1168x y b =∴+=为所求.(步骤2)15.已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==,则棱锥O ABCD -的体积为【测量目标】立体几何中两点距离及体积的求解.【考查方式】已知立体几何中线段的长及直线的关系求棱锥的体积. 【难易程度】中等【参考答案】【试题解析】设ABCD 所在的截面圆的圆心为M ,则AM ==2OM ==,(步骤1)1623O ABCD V -=⨯⨯=.(步骤2)16.在ABC V中,60,B AC == 2AB BC +的最大值为 .【测量目标】正弦定理、利用三角函数求最值.【考查方式】给出三角形的边长及角的大小,求所给向量的最大值. 【难易程度】中等【参考答案】【试题解析】120120A C C A +=⇒=- ,(0,120)A ∈ ,22sin sin sin BC ACBC A A B==⇒=(步骤1)22sin 2sin(120)sin sin AB ACAB C A C B==⇒==-sin A A =+;(步骤2)25sin sin())AB BC A A A A ϕϕ∴+++=+,故最大值是.(步骤3)三、解答题:解答应写出文字说明,证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年普通高等学校招生全国统一考试
理科数学(必修+选修II )
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页,第II 卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷
注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题上作答无效........。

3.第I 卷共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数z =1+i ,z 为z 的共轭复数,则z z -z -1=
(A )-2i (B )-i (C )i (D )2i
(2)函数y =x ≥0)的反函数为
(A )y =24x (x ∈R ) (B )y =2
4x (x ≥0) (C )y =24x (x ∈R ) (D )y =24x (x ≥0)
(3)下面四个条件中,使a >b 成立的充分而不必要的条件是
(A )a >b +1 (B )a >b -1 (C )2a >2b (D )3a >3b
(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差d = 2, 224k k S S +-=,则k =
(A ) 8 (B) 7 (C) 6 (D) 5
(5) 设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移
3
π个单位长度后,所得的图像与原图像重合,则ω的最小值等于
(A )13
(B )3 (C )6 (D )9 (6)已知直二面角α –ι- β, 点A ∈α ,AC ⊥ ι ,C 为垂足,B ∈β,BD ⊥ ι,D 为垂足,若AB=2,AC=BD=1,则D 到平面ABC 的距离等于( )
(A )3 (B )3 (C) 3
(D) 1 (7) 某中学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位
朋友,每位朋友1本,则不同的赠送方法共有( )
(A )4种 (B) 10种 (C) 18种 (D)20种
(8)曲线
21x y e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为
(A )13 (B )12 (C )2
3 (D )1
(9)设()f x 是周期为2的奇函数,当01x ≤≤时,()f x 2(1)x x =-,则
5()2f -= (A )12-
(B )14- (C )14 (D )12 (10)已知抛物线C:
2y =4x 的焦点为F ,直线y=2x-4与C 交于A,B 两点,则
cos<AFB=( ) (A) 54 (B)53 (C).—53 (D) —54
(11)已知平面α截一球面得圆M,过圆心M 且与 成60 二面角的平面β截该球面得N 。

若该球面的半径为4,圆M 的面积为4л,则圆N 的面积为( )
(A) .7л (B). 9л (C). 11л (D). 13л
(12)设向量,,a b c 满足
1a b ==,12a b =-,0,60a c b c --=,则c 的最大值
等于( )
(A )2 (B (D)1 注意事项:
1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己凡人名字、准考证号填写清楚,然后贴好条形码,请认真核条形码上凡人准考证号、姓名和科目。

2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.........。

3.第Ⅱ卷共10小题,共90分。

二、填空题:本大题共4小题,每小题5分,共20分。

把答案填在题中横线上。

(注意:在试题卷上作答无效.........

(13)(1-)20的二项展开式中,x 的系数与x 9的系数之差为____________________.
(14)已知(,)2
παπ∈ ,sin α= 5,则tan2α =______________ (15)已知F 1、F 2分别为双曲线C: 22
1927
x y -=的左、右焦点,点A C ∈ ,点M 的坐标为(2,0),AM 为∠F 1AF 2的平分线,则2AF ______________
(16)已知E 、F 分别在正方形ABCD 、A 1B 1C 1D 1楞BB 1,CC 1上,且B 1F=2EB ,CF=2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于_______________。

三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分10分)(注意:在试题卷上作答无效.........

△ ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知A-C=90°,,求C.
(18)(本小题满分12分)(注意:在试题卷上作答无效.........
) 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.
(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种概率;
(Ⅱ)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X 的期望.
(19)(本小题满分12分)(注意:在试题卷上作答无效)
如图,棱锥S ABCD -中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,
AB =BC =2,CD =SD =1。

(I )证明:SD ⊥平面SAB ;
(II )求AB 与平面SBC 所成的角的大小。

(20)(本小题满分12分)(注意:在试题卷上作答无效)
设数列{}n a 满足10a =且111111n n
a a -=-+-。

(I )求{}n a 的通项公式;
(II
)设n b =,记1n
n k k S b ==∑,证明:1n S <。

(21)(本小题满分12分)(注意:在试题...卷上答无效.....
) 已知O 为坐标原点,F 为椭圆C :2
2
12y x +=在y 轴正半轴上的焦点,过F 且斜率为
的直线l 与C 交于A 、B 两点,点P 满足
.
(Ⅰ)证明:点P 在C 上; (Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上。

(22)(本小题满分12分)(注意:在试题卷上答无效........
) (Ⅰ)设函数2()ln(1)2
x f x x x =+-+,证明:当x >0时,()f x >0; (Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互补相同的概率为p .证明:p <(
910)19<
21e
.。

相关文档
最新文档