初中数学七年级上册《绝对值》知识简要与举例

合集下载

初中数学《绝对值化简》讲义及练习

初中数学《绝对值化简》讲义及练习

内容 基本要求略高要求较高要求绝对值 借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩ ②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0a b c ++=,则0a =,0b =,0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-; (2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a ab b=(0)b ≠; (4)222||||a a a ==;(5)a b a b a b -≤+≤+,对于a b a b +≤+,等号当且仅当a 、b 同号或a 、b 中至少有一个0时,等号成立; 对于a b a b -≤+,等号当且仅当a 、b 异号或a 、b 中至少有一个0时,等号成立.板块一:绝对值代数意义及化简【例1】 (2级)⑴ 下列各组判断中,正确的是 ( )中考要求例题精讲绝 对 值 化 简A .若a b =,则一定有a b =B .若a b >,则一定有a b > C. 若a b >,则一定有a b > D .若a b =,则一定有()22a b =-⑵ 如果2a >2b ,则 ( ) A .a b > B .a >b C .a b < D a <b⑶ 下列式子中正确的是 ( ) A .a a >- B .a a <- C .a a ≤- D .a a ≥-⑷ 对于1m -,下列结论正确的是 ( ) A .1||m m -≥ B .1||m m -≤ C .1||1m m --≥ D .1||1m m --≤ ⑸ (2002年江苏省竞赛题)若220x x -+-=,求x 的取值范围.【解析】 ⑴ 选择D .⑵ 选择B .⑶ 我们可以分类讨论,也可以用特殊值法代入检验,对于绝对值的题目我们一般需要代正数、负数、0,3种数帮助找到准确答案.易得答案为D .⑷ 我们可以用特殊值法代入检验,正数、负数、0,3种数帮助找到准确答案C . ⑸ ()22x x -=--,所以20x -≤,即2x ≤.【巩固】 (2级)绝对值等于5的整数有 个,绝对值小于5的整数有 个 【解析】 2;9个【巩固】 (2级)绝对值小于31⋅的整数有哪些?它们的和为多少? 【解析】 绝对值小于31⋅的整数有0,1±,2±,3±,和为0.【巩固】 (2级)有理数a 与b 满足a b >,则下面哪个答案正确 ( ) A .a b > B .a b = C .a b < D .无法确定 【解析】 选择D .【例2】 (2级)已知:⑴52a b ==,,且a b <;⑵()2120a b ++-=,分别求a b ,的值 【解析】 因为55a a ==±,因为22b b ==±,又因为a b <,所以22a b =-=±,即52a b =-=,或52a b =-=-,⑵由非负性可知12a b =-=,【例3】 (2级)已知2332x x -=-,求x 的取值范围【解析】 因为23x -的绝对值等于它的相反数,所以230x -≤,即32x ≤【巩固】 (4级)若a b >且a b <,则下列说法正确的是( )A .a 一定是正数B .a 一定是负数C .b 一定是正数D .b 一定是负数 【解析】 由分析可知a b ,中的较小数b 一定是负数,故选D【例4】 (6级)(2010人大附中练习题)求出所有满足条件1a b ab -+=的非负整数对()a b ,【解析】 根据题意a b -和ab 两个代数式的值只能在0与1中取,用逐一列举的方法,求得满足条件的非负整数对有三对()()()011011,,,,,【巩固】 (6级)(2005年江苏省数学文化节基础闯关试题)非零整数m n ,满足50m n +-=,所有这样的整数组()m n ,共有 【解析】 16【例5】 (4级)(人大附单元测试)如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.【解析】 先判断每个绝对值符号内部的正负,而后化简原式()(1)()(1)a b b a c c =-++-+---112a b b a c c =--+-+--+=-【巩固】 (6级)已知00x z xy y z x <<>>>,,,那么x z y z x y +++--= 【解析】 由00xy x z ><<,可得0y z <<,又因为y z x >>,所以y x z <<,原式0x z y z x y =+---+=【例6】 (10级)(第4届希望杯2试)abcde 是一个五位自然数,其中a 、b 、c 、d 、e 为阿拉伯数码,且a b c d <<<,则a b b c c d d e -+-+-+-的最大值是 . 【解析】 当a b c d e <<<≤时,a b b c c d d e e a -+-+-+-=-,当9e =,1a =时取得最大值8;当a b c d <<<,且a e >时,2a b b c c d d e d a e -+-+-+-=--,当9d =,1a =,0e =时取得最大值17.所以a b b c c d d e -+-+-+-的最大值是17.【例7】 (8级)(河南省竞赛试题)已知2020y x b x x b =-+-+--,其中02020b b x <<,≤≤,那么y的最小值为【解析】 ()()20202040y x b x x b x b x b x =-+--+---=--++=-⎡⎤⎡⎤⎣⎦⎣⎦,当20x =,y 的最小值为20【巩固】 (10级)(华罗庚金杯赛前培训题)a 、b 、c 分别是一个三位数的百、十、个位上的数字,且a b c ≤≤,则a b b c c a -+-+-可能取得的最大值是多少?【解析】 由a b c ≤≤,得2()a b b c c a b a c b c a c a -+-+-=-+-+-=-,要想结果尽可能大,取9c =,1a =即可,最大值为16.【例8】 (8级)(希望杯邀请赛试题)设a b c ,,为整数,且1a b c a -+-=,求c a a b b c -+-+-的值 【解析】 因为a b c ,,为整数,且1a b c a -+-=故a b -与c a -一个为0,一个为1,从而()()1b c b a a c -=-+-=,原式2=【巩固】 (6级)(北京市迎春杯竞赛试题)已知123a b c ===,,,且a b c >>,那么a b c +-= 【解析】 2或0【例9】 (6级)(1)(第10届希望杯2试)已知1999x =,则2245942237x x x x x -+-++++= .(2)(第12届希望杯2试)满足2()()a b b a a b ab -+--=(0ab ≠)有理数a 、b ,一定不满足的关系是( )A . 0ab <B . 0ab >C . 0a b +>D . 0a b +< (3)(第7届希望杯2试)已知有理数a 、b 的和a b +及差a b -在数轴上如图所示,化简227a b a b +---.a-ba+b【解析】 (1)容易判断出,当1999x =时,24590x x -+>,2220x x ++>,所以 224594223710819982x x x x x x -+-++++=-+=-这道题目体现了一种重要的“先估算+后化简+再代入求值”的思想.(2)为研究问题首先要先将题干中条件的绝对值符号通过讨论去掉, 若a b ≥时,222()()()()0a b b a a b a b a b ab -+--=---=≠, 若a b <时,2222()()()()2()a b b a a b a b b a a b ab -+--=-+-=-=,从平方的非负性我们知道0ab ≥,且0ab ≠,所以0ab >,则答案A 一定不满足. (3)由图可知01a b <-<,1a b +<-,两式相加可得:20a <,0a <进而可判断出0b <,此时20a b +<,70b -<, 所以227a b a b +---(2)2()(7)7a b a b =-+--+-=-.【巩固】 (8级)(第9届希望杯1试)若1998m =-,则22119992299920m m m m +--+++= .【解析】211999(11)999199819879990m m m m +-=+-=⨯->, 222999(22)999199819769990m m m m ++=+-=⨯+>,故22(11999)(22999)2020000m m m m +--+++=.【补充】(8级)若0.239x =-,求131********x x x x x x -+-++-------的值.【解析】 法1:∵0.239x =-,则原式(1)(3)(1997)(2)(1996)x x x x x x =-------+++++- 135199721996x x x x x x x =-+-+-+--+++-++-1(32)(54)(19971996)=+-+-++- 111999=+++=法2:由x a b <≤,可得x b x a b a ---=-,则原式(1)(32)(19971996)x x x x x x =--+---++---111999=+++=点评:解法二的这种思维方法叫做构造法.这种方法对于显示题目中的关系,简化解题步骤有着重 要作用.【例10】 (10级)设2020A x b x x b =-+----,其中020b x <≤≤,试证明A 必有最小值 【解析】 因为020b x <≤≤,所以0200200x b x x b ----<≥,≤,,进而可以得到: 2220A x b x x x =--=--≥≥,所以A 的最小值为20-【例11】 (8级)若24513a a a +-+-的值是一个定值,求a 的取值范围.【解析】 要想使24513a a a +-+-的值是一个定值,就必须使得450a -≥,且130a -≤,原式245(13)3a a a =+---=,即1435a ≤≤时,原式的值永远为3.【巩固】 (8级)若1232008x x x x -+-+-++-的值为常数,试求x 的取值范围. 【解析】 要使式子的值为常数,x 得相消完,当10041005x ≤≤时,满足题意.【例12】 (2级)数,a b 在数轴上对应的点如右图所示,试化简a b b a b a a ++-+--【解析】 ()()()2a b b a b a a a b b a b a b ++-+--=-++-+--=.【巩固】 (2级)实数a b c ,,在数轴上的对应点如图,化简a c b a b a c +--++-【解析】 由题意可知:0000a c b a b a c <->+<-<,,,,所以原式2c a =-【巩固】 (2级)若a b <-且0ab>,化简a b a b ab -+++.【解析】 若a b <-且0ab>,0,0a b <<,0,0a b ab +<>2a b a b ab a b a b ab ab a -+++=-+--+=-【例13】 (8级)(北大附中2005-2006学年度第一学期期中考试)设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-.【解析】 0a a +=,a a =-,0a ≤;ab ab =,0ab ≥;0c c -=,c c =,0c ≥所以可以得到0a <,0b <,0c >;()()()b a b c b a c b a b c b a c b -+--+-=-++----=.【例14】 (6级)如果010m <<并且10m x ≤≤,化简1010x m x x m -+-+--.【解析】 1010101020x m x x m x m x m x x -+-+--=-+-++-=-.【巩固】 (2级)化简:⑴3x -; ⑵12x x +++【解析】 ⑴原式()()3333x x x x ⎧-<⎪=⎨-⎪⎩≥;⑵原式()()()232121231x x x x x --<-⎧⎪=-<-⎨⎪+-⎩≤≥【巩固】 (6级)若a b <,求15b a a b -+---的值. 【解析】 15154b a a b b a a b -+---=-++--=-.【巩固】 (8级)(第7届希望杯2试)若0a <,0ab <,那么15b a a b -+---等于 .【解析】 0a <,0ab <,可得:0b >,所以0b a ->,0a b -<,15154b a a b b a a b -+---=-++--=-.【巩固】 (2级)已知15x <≤,化简15x x -+-【解析】 因为15x <≤,所以1050x x --<≤,,原式154x x =-+-=【例15】 (8级)已知3x <-,化简321x +-+.【解析】 当3x <-时,3213213333x x x x x x +-+=+++=++=--=-=-.【巩固】 (8级)(第16届希望杯培训试题)已知112x x ++-=,化简421x -+-. 【解析】 由112x x ++-=的几何意义,我们容易判断出11x -≤≤.所以421x -+-421434311x x x x x =-+-=--=-+=+=+.【例16】 (8级)若0x <,化简23x x x x---.【解析】 223333x x x x xx x xx x----===----+.【巩固】 (8级)(四中)已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++--. 【解析】 ∵a a =-,∴0a ≤,又∵0b <,∴240a b +<,∴24(24)2(2)a b a b a b +=-+=-+,∴22242(2)2(2)(2)2a ba b a b a b a b+-+-==+++又∵20a b +<,∴4442(2)2a b a b a b-=-=+-++ 又∵230a -<,∴2222143(23)242424323b a a b a b a b b a -=-=-==++-++++-- ∴原式24132222a b a b a b a b=-++=++++ 点评:详细的过程要先判断被绝对值的式子x ,再去绝对值的符号.、【例17】 (8级)(第14届希望杯邀请赛试题)已知a b c d ,,,是有理数,916a b c d --≤,≤,且25a b c d --+=,求b a d c ---的值【解析】 因916a b c d --≤,≤,故91625a b c d -+-+=≤,又因为 ()()2525a b c d a b d c a b d c =--+=-+--+-≤≤,所以916a b c d -=-=,,故原式7=-板块二:关于a a的探讨应用【例18】 (6级)已知a 是非零有理数,求2323a a a a a a++的值.【解析】 若0a >,那么23231113a a a a a a ++=++=;若0a <,那么23231111a a a a a a++=-+-=-.【例19】 (10级)(2006年第二届“华罗庚杯”香港中学竞赛试题)已知a b c abc x abcabc=+++,且a b c ,,都不等于0,求x 的所有可能值 【解析】 4或0或4-【巩固】 (10级)(北京市迎春杯竞赛试题)已知a b c ,,是非零整数,且0a b c ++=,求a b c abca b c abc+++的值【解析】 因为a b c ,,是非零有理数,且0a b c ++=,所以a b c ,,中必有一正二负,不妨设000a b c ><<,,,则原式()()11110a b c abca b c abc=+++=+-+-+=--【巩固】 (2级)若0a >,则_____aa =;若0a <,则_____a a=. 【解析】 1;1-.重要结论一定要记得.【巩固】 (6级)当3m ≠-时,化简33m m ++【解析】 3m ≠-,30m +≠,当3m >-,即30m +>时,33m m +=+,所以313m m +=+; 当3m <-,即30m +<时,3(3)m m +=-+,所以313m m +=-+.【例20】 (8级)(2009年全国初中数学竞赛黄冈市选拔赛试题)若01a <<,21b -<<-,则1212a b a ba b a b-++-+-++的值是( ) A .0 B .1- C .3- D .4-【解析】 ⑴ C .特殊值法:取0.5a =, 1.5b =-代入计算即可.【巩固】 (2级)下列可能正确的是( )A .1a b a b +=B .2a b ca b c++=C .3c d a b a b c d +++= D .4a b c d a b c d a b c d abcd+++++++= 【解析】 选D .排除法比较好或特殊值法1,1,1,1-.【巩固】 (6级)如果20a b +=,则12a ab b-+-等于( ) A .2 B .3 C .4 D .5【解析】 B【例21】 (8级)如果000a b c a b c a b c +->-+>-++>,,,则200220022002a b c a b c ⎛⎫⎛⎫⎛⎫-+ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值等于( )A .1B .1-C .0D .3【解析】 易知200220022002111a b c a b c ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,,,所以原式1=,故选择A【例22】 (8级)已知0abc ≠,求ab ac bcab ac bc++的值. 【解析】 ∵0abc ≠,∴a 、b 、c 三个数都不为零.若a 、b 、c 三个数都是正数,则ab 、ac 、bc 也都是正数,故原式值为3. 若a 、b 、c 中两正、一负,则ab 、ac 、bc 中一正、两负,故原式值为1-. 若a 、b 、c 中一正、两负,则ab 、ac 、bc 中一正、两负,故原式值为1-. 若 a 、b 、c 中三负,则ab 、ac 、bc 中三正,故原式值为3.【巩固】 (6级)若a ,b ,c 均不为零,求a b ca b c ++.【解析】 若a ,b ,c ,全为正数,则原式3=;若a ,b ,c ,两正一负,则原式1=;若a ,b ,c ,一正两负,则原式1=-;若a ,b ,c ,全为负数,则原式3=-.【例23】 (6级)(第13届希望杯1试)如果20a b +=,求12a ab b-+-的值. 【解析】 由20a b +=得2b a =-,进而有1222a a a a b a a a ===⋅--⋅,122a a ab a a==-⋅- 若0a >,则111212322a a b b -+-=-+--=, 若0a <,则111212322a ab b -+-=--+-=.【巩固】 (6级)若a ,b ,c 均不为零,且0a b c ++=,求a b cabc++. 【解析】 根据条件可得a ,b ,c 有1个负数或2个负数,所以所求式子的值为1或1-【例24】 (8级)a ,b ,c 为非零有理数,且0a b c ++=,则a b b c c aa b b c c a ++的值等于多少? 【解析】 由0a b c ++=可知a ,b ,c 里存在两正一负或者一正两负;a b b c c a b c aa b c a b b c c a a b b c c a++=⋅+⋅+⋅ 若两正一负,那么1111b c aa b c a b b c c a⋅+⋅+⋅=--=-; 若一正两负,那么1111b c aa b c a b b c c a ⋅+⋅+⋅=--=-. 综上所得1a b b c c a a bb cc a++=-.【巩固】 (10级)(海口市竞赛题)三个数a ,b ,c 的积为负数,和为正数,且ab ac bc a b c x a b c ab ac bc=+++++, 求321ax bx cx +++的值.【解析】 a ,b ,c 中必为一负两正,不妨设0a <,则0,0b c >>; 1111110ab ac bca b c x a b c ab ac bc=+++++=-++--+=,所以原式=1.【巩固】 (8级)(第13届希望杯培训试题)如果0a b c +->,0a b c -+>,0a b c -++>,求200220032004()()()a b ca b c-+的值. 【解析】 由0a b c +->,0a b c -+>,0a b c -++>,两两相加可得:0a >,0b >,0c >,所以原式结果为1.若将此题变形为:非零有理数a 、b 、c ,求1b =等于多少?从总体出发:2008()1aa =,所以原式1111=-+=.【例25】 (8级)(“祖冲之杯”初中数学邀请赛试题)设实数a ,b ,c 满足0a b c ++=,及0abc >,若||||||a b c x a b c =++,111111()()()y a b c b c a c a b =+++++,那么代数式23x y xy ++的值为______. 【解析】 由0a b c ++=及0abc >,知实数a ,b ,c 中必有两个负数,一个正数,从而有1x =-.又111111()()()y a b c b c a c a b =+++++=3a b c a b c---++=-,则231692x y xy ++=--+=.【例26】 (8级)有理数a b c ,,均不为零,且0a b c ++=,设a b c x b ca ca b=+++++,则代数式20042007x x -+的值为多少? 【解析】 由0a b c ++=易知a b c ,,中必有一正两负或两正一负,不妨设000a b c ><<,,或000a b c <>>,,所以1a b c x a b a c a b =--=+++或者1a b c x b c a c a b=-++=-+++,所以1x =,所以原式2004=【巩固】 (8级)有理数a b c ,,均不为零,且0a b c ++=,设a b c x b ca ca b=+++++,则代数式19992000x x -+的值为多少?【解析】 由0a b c ++=易知a b c ,,中必有一正两负或两正一负,不妨设000a b c ><<,,或000a b c <>>,,所以1a b c x a b a c a b =--=+++或者1a b cx b c a c a b=-++=-+++,所以当1x =时,原式1902= 当1x =-时,原式2098=【巩固】 (8级)已知a 、b 、c 互不相等,求()()()()()()()()()()()()a b b c b c c a c a a b a b b c b c c a c a a b ------++------的值.【解析】 由题意可得()()()0a b b c c a ---≠且()()()0a b b c c a -+-+-=,把a b -,b c -,c a -当成整体分类讨论:① 两正一负,原式值为1-;② 两负一正,原式值为1-.【例27】 (8级)(第18届希望杯2试)若有理数m 、n 、p 满足1m n p m n p ++=,求23mnp mnp 的值. 【解析】 由1m n p m n p++=可得:有理数m 、n 、p 中两正一负,所以0mnp <,所以1mnpmnp=-, 222333mnp mnp mnp mnp =⋅=-.【巩固】 (6级)已知有理数a b c ,,满足1a b c a b c ++=,则abcabc=( ) A .1 B .1- C .0 D .不能确定【解析】 提示:其中两个字母为正数,一个为负数,即0abc <【巩固】 (8级)有理数a ,b ,c ,d 满足1abcd abcd =-,求a b c da b c d+++的值.【解析】由1abcd abcd=-知0abcd <,所以a ,b ,c ,d 里含有1个负数或3个负数:若含有1个负数,则2a b c d a b c d+++=;若含有3个负数,则2a b c d a b c d +++=-.【例28】 (6级)已知0ab ≠,求a bab+的值 【解析】 ⑴若a b ,异号,则0a ba b += ⑵若a b ,都是正数,则2a ba b+= ⑶若a b ,都是负数,则2a bab+=-【巩固】 (6级)已知0ab ≠,求a b a b--的值.【解析】 分类讨论:当0a >,0b >时,110a b a b --=-=. 当0a >,0b <时,1(1)2a b a b --=--=. 当0a <,0b >时,112a b ab--=--=-.当0a <,0b <时,1(1)0a b ab--=---=.综上所述,a b a b --的值为2-,0,2.【例29】 (6级)若a b c ,,均为非零的有理数,求a b ca b c++的值 【解析】 ⑴当a b c ,,都是正数时,原式3a b ca b c=++= ⑵当a b c ,,都是负数时,原式3=- ⑶当a b c ,,有两个正数一个负数时,原式1=- ⑷当a b c ,,有两个负数一个正数时,原式1=-【巩固】 (6级)(第16届希望杯培训试题)若0abc <,求a b ca b c+-的值. 【解析】 由0abc <可得,a 、b 、c 中有3个负数或1个负数,当a 、b 、c 中有3个负数时,原式11(1)1=----=-;当a 、b 中有1个是负数时,原式1111=-+-=-; 当c 是负数时,原式11(1)3=+--=.板块三:零点分段讨论法(中考高端,可选讲)【例30】 (4级)(2005年云南省中考试题)阅读下列材料并解决相关问题:我们知道()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数范围内,零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下3中情况:·⑴当1x <-时,原式()()1221x x x =-+--=-+ ⑵当12x -<≤时,原式()123x x =+--= ⑶当2x ≥时,原式1221x x x =++-=-综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥通过阅读上面的文字,请你解决下列的问题: ⑴分别求出2x +和4x -的零点值 ⑵化简代数式24x x ++-【解析】 ⑴分别令20x +=和40x -=,分别求得2x =-和4x =,所以2x +和4x -的零点值分别为2x =-和4x =⑵当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当24x -<≤时,原式 ()246x x =+--=;当4x ≥时,原式2422x x x =++-=-所以综上讨论,原式()()()222624224x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥【例31】 (6级)求12m m m +-+-的值.【解析】 先找零点,0m =,10m -=,20m -=,解得0m =,1,2.依这三个零点将数轴分为四段:0m <,01m ≤<,12m ≤<,2m ≥. 当0m <时,原式()()1233m m m m =-----=-+;当01m ≤<时,原式()()123m m m m =----=-+; 当12m ≤<时,原式()()121m m m m =+---=+; 当2m ≥时,原式()()1233m m m m +-+-=-.【例32】 (4级)化简:212x x ---【解析】 由题意可知:零点为102x x ==,当12x <时,原式1x =--当122x <≤时,原式33x =- 当2x ≥时,原式1x =+【巩固】 (4级)(2005年淮安市中考题)化简523x x ++-. 【解析】 先找零点.50x +=,5x =- ; 32302x x -==,,零点可以将数轴分成三段. 当32x ≥,50x +>,230x -≥,52332x x x ++-=+;当352x -<≤,50x +≥,230x -<,5238x x x ++-=-; 当5x <-,50x +<,230x -<,52332x x x ++-=--.【巩固】 (6级)(北京市中考模拟题)化简:121x x --++.【解析】 先找零点.10x -=,1x =.10x +=,1x =-.120x --=,12x -=,12x -=或12x -=-,可得3x =或者1x =-;综上所得零点有1,-1,3 ,依次零点可以将数轴分成四段.⑴ 3x ≥,10x ->,120x --≥,10x +>,12122x x x --++=-; ⑵ 13x <≤,10x -≥,120x --<,10x +>,1214x x --++=; ⑶ 11x -<≤,10x -<,120x --<,10x +≥,12122x x x --++=+; ⑷ 1x <-,10x -<,120x --<,10x +<,12122x x x --++=--.【例33】 (6级)(选讲)(北京市中考题)已知2x ≤,求32x x --+的最大值与最小值. 【解析】 法1:根据几何意义可以得到,当2x ≤-时,取最大值为5;当2x =时,取最小值为3-.法2:找到零点3、2-,结合2x ≤可以分为以下两段进行分析:当22x -≤≤时,323212x x x x x --+=---=-,有最值3-和5; 当2x <-时,32325x x x x --+=-++=;综上可得最小值为3-,最大值为5.【巩固】 (8级)(第10届希望杯2试)已知04a ≤≤,那么23a a -+-的最大值等于 . 【解析】 (法1):我们可以利用零点,将a 的范围分为3段,分类讨论(先将此分类讨论的方法,而后讲几何意义的方法,让学生体会几何方法的优越性)(1)当02a ≤≤时,2352a a a -+-=-,当0a =时达到最大值5; (2)当23a <≤时,231a a -+-=(3)当34a <≤时,2325a a a -+-=-,当4a =时,达到最大值3 综合可知,在04a ≤≤上,23a a -+-的最大值为5(法2):我们可以利用零点,将a 的范围分为3段,利用绝对值得几何意义分类讨论,很 容易发现答案:当0a =时达到最大值5.【巩固】 (6级)如果122y x x x =+-+-,且12x -≤≤,求y 的最大值和最小值 【解析】 当10x -<≤时,有12223y x x x x =+-+-=+,所以13y <≤;当02x ≤≤时,有12232y x x x x =+-+-=-,所以13y -≤≤ 综上所述,y 的最大值为3,最小值为1-【巩固】 (6级)(2001年大同市中考题)已知759x -≤≤,求x 取何值时13x x --+的最大值与最小值. 【解析】 法1:13x x --+表示x 到点1和3-的距离差,画出数轴我们会发现当,79x =时两者的距离差最小为329-,即()min 32139x x --+=-;当53x -≤≤-时,两者的距离差最大为4,即max (13)4x x --+=.法2:分类讨论:先找零点,根据范围分段,当53x -≤<-时,134x x --+=;当739x -≤≤时,1322x x x --+=--,当79x =有最小值329-;当3x =-有最大值4.综上所得,当53x --≤≤时,最大值为4;当79x =时,最小值为329-.练习 1. (2级)若ab ab <,则下列结论正确的是 ( ) A. 00a b <<, B. 00a b ><, C. 00a b <>, D. 0ab < 【解析】 答案BC 不完善,选择D .练习 2. (2级)(人大附期中考试)如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c++--+的值.【解析】 原式()()()0a b a c b c =-++-++=练习 3. (6级)已知0,0,x z xy y z x <<>>>,求x z y z x y +++--的值. 【解析】 由0,0x z xy <<>可得:0y z <<,又y z x >>,可得:y x z <<; 原式0x z y z x y =+---+=.练习 4. (8级)(第13届希望杯培训试题)若200122002x =,则|||1||2||3||4||5|x x x x x x +-+-+-+-+-= . 【解析】 因为200122002x =,所以23x <<,原式(1)(2)(3)(4)(5)9x x x x x x =+-+-------=.练习 5. (6级)(2006年七台河市中考题)设2020y x b x x b =-+-+--,其中020,20b b x <<≤≤,求y 的最小值.【解析】 2020(20)(20)40y x b x x b x b x x b x =-+-+--=------=-,则20x =时,y 有最小值为20.练习 6. (4级)若0a <,化简a a --.课后练习【解析】 22a a a a a a --=+==-.练习 7. (6级)若0a <,试化简233a a a a--.【解析】2323553443a a a a a a a a a a-+===-----.练习 8. (6级)若245134x x x +-+-+的值恒为常数,则x 应满足怎样的条件?此常数的值为多少? 【解析】 要使245134x x x +-+-+的值恒为常数,那么须使450x ->,130x -<,即1435x <<,原式2451342453147x x x x x x =+-+-+=+-+-+=.练习 9. (8级)(第6届希望杯2试)a 、b 、c 的大小关系如图所示,求a b b c c a ab aca b b c c a ab ac-----++----的值.【解析】 从图中可知a b c <<且0a <,0b <,0c >,所以0a b -<,0b c -<,0c a ->,0ab >,0ac <, 所以0ab ac ->,原式(1)(1)112=---++=.练习 10. (8级)若0a b c ++=,0abc >,则b c c a a ba b c+++++= . ∵0a b c ++=,0abc >,∴a 、b 、c 中一正二负,∴1b c c a a b a b ca b c a b c+++---++=++=. 练习 11. (6级)求15y x x =--+的最大值和最小值.【解析】 法1:根据几何意义可以得答案;法2:找到零点5-,1,可以分为以下三段进行讨论: 当5x ≤-时,15156y x x x x =--+=-++=;当51x -<<时,151524y x x x x x =--+=---=--; 当1x ≥时,15156y x x x x =--+=---=-; 综上所得最小值为6-,最大值为6.练习 12. (6级)(第2届希望杯2试)如果12x <<,求代数式2121x x xx x x ---+--的值.【解析】 当12x <<时,0x >,10x ->,20x -<,原式21111121x x xx x x--=++=-++=--.。

七年级绝对值知识点总结

七年级绝对值知识点总结

七年级绝对值知识点总结在初中数学中,绝对值是一个重要的概念,也是许多数学题目必不可少的一部分。

本文将对七年级绝对值的基础知识进行总结。

一、什么是绝对值绝对值是一个数与0之间的距离,因此它的值永远是正数。

用符号表示则为|a|,a为任意一个实数,则当a≥0时,|a|=a当a<0时,|a|=-a二、绝对值的运算法则1.绝对值与加减运算对于任意实数a,b,则①|a+b|≤|a|+|b|②|a-b|≥|a|-|b|特别地,当a,b同号时①式改为|a+b|=|a|+|b|;当a,b异号时,②式改为|a-b|=|b|-|a|2.绝对值与乘法运算对于任意实数a,b,则|ab|=|a|·|b|特别地,若a,b的符号相同,则|a|·|b|=ab,反之,|a|·|b|=-ab3.绝对值与除法运算对于任意a≠0,b≠0,则|a/b|=|a|/|b|三、绝对值的应用1. 解绝对值方程对于任意实数a,则|a|=b的解为a=b或a=-b,即把|a|看作一个未知数,转换为一元一次方程求解,得到方程的解即为绝对值方程的解。

例如,|2x-3|=7,可转化为2x-3=7和2x-3=-7两个方程,解得x=5和x=-2.2. 求绝对值大小根据绝对值的定义及运算法则,可以求出有关绝对值的大小。

例如,|3-8|=|-5|=5,|5·(-6)|=|-30|=30。

3. 比较大小根据绝对值的定义,对于任意实数a,b,有|a|>|b|,当且仅当a>b或a<-b。

例如,比较|-5|和|3|,由于|-5|>-3,因此|-5|>|3|。

四、绝对值相关的常用不等式1.柯西-施瓦茨不等式对于任意n个实数a1,a2,…… ,an和b1,b2,……,bn,有|(a1b1+a2b2+……+anbn)|≤√(a1²+a2²+……+an²)√(b1²+b2²+……+ bn²)2. 三角不等式对于任意两个实数a,b,则|a+b|≤|a|+|b|3. 平均值不等式对于任意n个正数a1,a2,……,an,则(a1+a2+……+an)/n ≥ √(a1·a2·……·an)五、总结本文主要总结了七年级数学中绝对值的基础知识及运算法则,并介绍了绝对值在方程求解、大小比较、不等式证明等方面的应用。

[初中数学]绝对值+课件++人教版数学七年级上册

[初中数学]绝对值+课件++人教版数学七年级上册

(2)a,b表示任意有理数,若|a|=|b|,则a与b之间有什么关 系? 解:a=±b.
19 一条直线流水线上有5个机器人,它们站的位置在数轴 上依次用点A1,A2,A3,A4,A5表示,如图所示.
(1)站在点___A_1上的机器人表示的数的绝对值最大,站 在点__A_和2 点___A_5,点___A_3和点___A上4 的机器人到原点 的距离分别相等;
7 (7) --72 =_2_;
(2) -(-1)=_1__; (4) -|-11|=__-__1_1_; (6) +|-20|=__2_0_;
(8) |-3.1|+|1.9|=__5_.
绝对值的应用 6.一只蚂蚁从某点P出发在一条直线上来回爬行,假定向右爬行的路 程记为正,向左爬行的路程记为负,爬行的各段路程依次为(单位: 米): +5,-4,+10,-8,-5,+12,-10. 若蚂蚁共用了9分钟完成上面的路程,那么蚂蚁每分钟走多少路程?
14 下列各式中,等号不成立的是( D )
A. |-5|=5 B.-|-4|=-|4| C. |-3|=3 D.-|-2|=2
15 若a与1互为相反数,则|a+2|等于( C ) A. 2 B.-2 C.1 D.-1
16 如图,已知数轴上A,B两点表示的数分别是a,b,则 计算|b|-|a|正确的是( C ) A. b-a B.a-b C.a+b D.-a-b
17.若 a,b 都是非零的有理数,那么|aa|+|bb|的值是多少? 解:当 a>0,b>0 时,|aa|+|bb|=2;
当 a,b 异号时,|aa|+|bb|=0;
当 a<0,b<0 时,|aa|+|bb|=-2.
综上所述,|aa|+|bb|的值是±2 或 0.
1.|-6|=( B ) A.-6 C.-16

人教版七年级数学上册:1.2.4《绝对值》说课稿4

人教版七年级数学上册:1.2.4《绝对值》说课稿4

人教版七年级数学上册:1.2.4《绝对值》说课稿4一. 教材分析《人教版七年级数学上册:1.2.4《绝对值》》这一节内容,主要介绍了绝对值的概念及其性质。

绝对值是数学中一个重要的概念,它体现了数轴上点到原点的距离,具有鲜明的几何特征。

教材通过简单的例子引入绝对值的概念,再引导学生探究绝对值的性质,从而使学生掌握绝对值的基本概念和运用。

二. 学情分析七年级的学生已经具备了一定的数学基础,对数轴有了初步的认识。

但他们对绝对值的理解还较为模糊,需要在教学中通过具体例子和几何直观来加深对绝对值概念的理解。

此外,学生在这一阶段正处于从小学到初中的过渡,学习方式和方法需要进行一定的调整,因此在教学过程中,教师需要关注学生的学习习惯和思维方式的培养。

三. 说教学目标1.知识与技能目标:通过本节课的学习,使学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些实际问题。

2.过程与方法目标:通过观察、思考、探究、交流等过程,培养学生的逻辑思维能力和解决实际问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们积极思考、勇于探索的精神。

四. 说教学重难点1.教学重点:绝对值的概念及其性质。

2.教学难点:绝对值性质的推导和运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、积极交流。

2.教学手段:利用多媒体课件、数轴模型等辅助教学,增强教学的直观性和趣味性。

六. 说教学过程1.导入新课:通过一个简单的例子,引导学生思考绝对值的概念,激发学生的学习兴趣。

2.讲解绝对值的概念:结合数轴,讲解绝对值的几何意义,使学生理解并掌握绝对值的概念。

3.探究绝对值的性质:引导学生观察、分析、总结绝对值的性质,并通过小组讨论加深理解。

4.运用绝对值解决实际问题:布置一些实际问题,让学生运用绝对值的知识进行解决,巩固所学内容。

5.课堂小结:对本节课的内容进行总结,强调绝对值的概念和性质。

人教版初中七年级数学上册《绝对值》重点知识

人教版初中七年级数学上册《绝对值》重点知识

人教版初中七年级数学上册《绝对值》重点知识总结【学法点津】用数形结合法,在数轴上探索绝对值概念产生的过程。

由特殊数的绝对值推导出任意有理数a的绝对值。

利用分类讨论法概括出绝对值a的三种可能。

用熟悉的温度计类比数轴,观察到数轴上有理数的大小排列规律,并结合绝对值探索出负数与负数比较大小的简便方法。

解题当中应该把数轴、相反数、绝对值的知识点有机地结合起来,使各个知识点相互接应。

【学点归纳总结】一、知识要点总结1、一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值等于它本身;一个负数的绝对值等于它的相反数;0的绝对值是0 。

(1)当a是正数时,︱a︱= a ;(2)当a是负数时,︱a︱= -a ;(3)当a=0时,︱a︱= 0 ;求解一个数的绝对值时应先判断这个数是正数、0、还是负数,然后相应地根据上面的结论来推导。

2、由在数轴上左边的数小于右边的数,推导出(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。

两数比较大小,应先化简,再判断化简后的两数是正数、0、还是负数,然后相应地根据上面的结论推导。

特别地,当两个负数比较大小时应先求出它们的绝对值。

二、规律方法总结1、绝对值概念,可以利用数形结合的方法在数轴上探索得出。

2、求解任意有理数a的绝对值,利用分类讨论法,归纳、总结出三种可能。

3、推导两数的大小规律,把数轴和温度计进行对比,可以利用类比法。

三、易错问题误区点拨【典例1】绝对值等于4的数是______.【错解分析】4。

误以为题目是求4的绝对值。

【正解分析】4和-4。

从“形”上理解,就是求到原点距离是4的点,应该在原点两边各有一点,分别是4和-4表示的点;从“数”上理解,4和-4的绝对值都是4。

【典例2】写出绝对值不大于2的整数【错解分析】0,1,2。

没意识到负整数取绝对值就是正整数了。

【正解分析】-1,-2,0,1,2。

绝对值问题要分类来考虑,注意负数的绝对值是它的相反数。

人教版七年级数学上册:1.2.4《绝对值》说课稿1

人教版七年级数学上册:1.2.4《绝对值》说课稿1

人教版七年级数学上册:1.2.4《绝对值》说课稿1一. 教材分析《绝对值》是人教版七年级数学上册第一章第二节第四个小节的内容。

绝对值是数学中的一个基本概念,它表示一个数在数轴上所对应的点与原点的距离。

这个概念在初中数学中非常重要,它不仅涉及到实数的概念,还与代数、几何等多个数学领域有着密切的联系。

在后续的学习中,绝对值的概念会不断出现,因此,让学生深刻理解绝对值的意义和应用是非常必要的。

二. 学情分析七年级的学生已经具备了一定的实数基础,对于数轴的概念也有了一定的了解。

但是,他们对于抽象的概念的理解还相对较弱,需要通过具体的实例和实际操作来帮助理解。

同时,七年级的学生正处于青春期,注意力容易分散,因此,在教学过程中,需要通过多种教学手段来吸引他们的注意力,激发他们的学习兴趣。

三. 说教学目标1.知识与技能:让学生理解绝对值的定义,掌握绝对值的性质,能够运用绝对值解决实际问题。

2.过程与方法:通过实例和实际操作,让学生体验绝对值的概念,培养学生的抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力。

四. 说教学重难点1.教学重点:绝对值的定义和性质。

2.教学难点:绝对值在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法,通过提问引导学生思考,激发学生的学习兴趣。

2.教学手段:利用多媒体课件,结合板书,以实例和实际操作的方式进行教学。

六. 说教学过程1.导入:通过一个实际问题,引出绝对值的概念,激发学生的学习兴趣。

2.新课导入:介绍绝对值的定义和性质,让学生通过实例来体验绝对值的概念。

3.课堂讲解:通过讲解和实际操作,让学生理解绝对值的性质,能够运用绝对值解决实际问题。

4.课堂练习:设计一些练习题,让学生运用绝对值的知识来解决问题,巩固所学的内容。

5.课堂小结:对本节课的内容进行总结,让学生明确学习的重点。

七. 说板书设计板书设计要清晰、简洁,能够突出绝对值的概念和性质。

初中数学教学素材绝对值中蕴涵的数学思想新人教版

初中数学教学素材绝对值中蕴涵的数学思想新人教版

绝对值中蕴涵的数学思想绝对值是初中数学的重要概念,绝对值的图形意义,体现了数形结合的数学思想,绝对值的数学意义又体现了分类讨论的数学思想. 绝对值的图形意义:数轴上表示数a 的点与原点的距离叫做数a 的绝对值.记作a . 绝对值的数学意义:一个正数的绝对值等于它本身;一个负数的绝对值等于它的相反数;0的绝对值等于0.即当a >0时,a =a ;当a =0时,a =0;当a <0时,a =-a .例1.绝对值大于3且小于5的整数是 . 解析:在数轴上,绝对值大于3的整数所表示的点,离开原点的距离大于3,应位于表示-3的点的左侧或表示3的点的右侧;绝对值小于5的整数所表示的点,到原点的距离小于5,位于表示-5与5的两个点之间.如图.因此,符合条件的整数有两个:-4和4.归纳:从数轴上看,一个数的绝对值就是表示这个数的点到原点的距离.离原点越近,绝对值越小;离原点越远,绝对值越大.“数无形时少直观,形无数时难入微”,利用数形结合思想解题,可以化难为易,化繁为简.例2.已知:3,4x y ==,求x y +的值. 解析:由绝对值的意义可知,已知3,4x y ==,可求得3,4x y =±=±,从而进一步求出x y +的值. 因为3,4x y ==,所以3,4x y =±=±.当3,4x y ==时,347x y +=+=;当3,4x y ==-时,3(4)1x y +=+-=-;当3,4x y =-=时,(3)41x y +=-+=;当3,4x y =-=-时,(3)(4)7.x y +=-+-=- 归纳:当问题中包含多种可能情况时,必须按可能出现的所有情况来分类讨论.分类讨论要做到不重不漏.本题不能只分3,4x y ==和3,4x y =-=-两种情况进行讨论.思考:已知a 、b 、c 均不为零,求ab c a b c ab c a b c +++的值. 请大家把自己的做法和下面的解法对比,并与同学们讨论! 解:当a 为正数时,1aa a a ==;当a 为负数时,1a aa a ==--.b 、c 的情况类似.本题应根据a 、b 、c 所有可能出现的符号情况进行讨论.解:(1)当a 、b 、c 均为正数时,11114;abca b ca b c a b c +++=+++=(2)当a 、b 、c 中,有两个正数,一个负数时,不妨设a 、b 为正,c 为负.11(1)(1)0;abca b ca b c a b c +++=++-+-=(3)当a 、b 、c 中,有一个正数,两个负数时,不妨设a 为正, b 、c 为负. 1(1)(1)10;abca b ca b c a b c +++=+-+-+=(4)当a、b、c均为负数时,a b c a b c(1)(1)(1)(1) 4.+++=-+-+-+-=-a b c a b c因此,原式的值为-4,0,4 .。

优秀的初中数学绝对值的重要知识点总结

优秀的初中数学绝对值的重要知识点总结

优秀的初中数学绝对值的重要知识点总结初中数学绝对值的重要知识点总结知识要领:在数轴上,表示一个数a的点到数b的点之间的距离,叫做a-b的绝对值,记作|a-b|。

绝对值几何的意义在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5。

代数的意义非负数的绝对值是它本身,非正数的绝对值是它的相反数。

互为相反数的两个数的绝对值相等。

a的绝对值用“|a|”表示.读作“a的绝对值”。

实数a的绝对值永远是非负数,即|a|≥0。

互为相反数的两个数的绝对值相等,即|-a|=|a|。

若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3.应用举例正数的绝对值是它本身。

负数的绝对值是它的相反数。

0的绝对值还是0。

任何有理数的绝对值都是非负数,也就是说任何有理数的绝对值都≥0。

0的绝对值还是0。

特殊的零的绝对值既是他的本身又是他的相反数,写作|0|=0。

|3|=3=|-3|当a≥0时,|a|=a当a存在|a-b|=|b-a|两个负数比较大小,绝对值大的反而小比如:若|2(x—1)—3|+|2(y—4)|=0,则x=___,y=____。

(||是绝对值)。

答案:2(X-1)-3=0,且2Y-8=0解得X=5/2,且Y=4。

一对相反数的绝对值相等:例+2的绝对值等于—2的绝对值(因为在数轴上他们离原点的单位长度相等)知识归纳:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值,绝对值用“||”来表示。

初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

3绝对值-初中七年级上册数学(教案)(北师大版)

3绝对值-初中七年级上册数学(教案)(北师大版)
2.教学难点
-难点1:绝对值的抽象理解。对于绝对值的抽象概念,学生可能难以理解其背ቤተ መጻሕፍቲ ባይዱ的数学意义。教师需要通过数轴、实际例子等直观手段帮助学生理解。
-举例:通过数轴上点的移动,解释绝对值表示距离的概念。
-难点2:绝对值的性质理解。性质的理解需要学生具备一定的逻辑思维能力,尤其是对称性的理解,学生可能会感到困惑。
-举例:用数轴上的点来解释|-a| = |a|,展示无论点在数轴的正方向还是负方向,到原点的距离是相同的。
-难点3:绝对值方程的求解。学生在求解含绝对值的一元一次方程时,可能会不知道如何处理绝对值符号。
-举例:讲解如何将含绝对值的方程分为两种情况讨论,如求解方程|x - 2| = 3,需要分别讨论x - 2 ≥ 0和x - 2 < 0的情况。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“绝对值在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的数学抽象能力:通过绝对值的学习,使学生理解数的非负性和距离概念,提高数学抽象思维。
2.培养学生的逻辑推理能力:在学习绝对值的性质和计算过程中,引导学生运用逻辑推理,分析解决问题。
3.培养学生的数学建模能力:让学生在实际问题中运用绝对值,建立数学模型,解决具体问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解绝对值的基本概念。绝对值表示一个数与0之间的距离,它是非负的,无论这个数是正数、负数还是0。绝对值在数学中非常重要,它帮助我们理解数的大小关系和距离概念。

人教版七年级数学上册:1.2.4《绝对值》教案4

人教版七年级数学上册:1.2.4《绝对值》教案4

人教版七年级数学上册:1.2.4《绝对值》教案4一. 教材分析《绝对值》是人教版七年级数学上册第一章第二节第四个小节的内容。

绝对值是实数的一个基本概念,也是初中数学中的重要内容。

它不仅涉及到有理数的分类,而且还是解一元一次方程、不等式以及函数等数学问题的重要工具。

本节课主要让学生了解绝对值的概念,掌握绝对值的性质,并能够运用绝对值解决一些实际问题。

二. 学情分析学生在学习本节课之前,已经学习了有理数、实数等基础知识,对于数的概念有一定的了解。

但是,对于绝对值这一概念,学生可能较为陌生,需要通过实例和讲解来理解和掌握。

同时,学生需要具备一定的抽象思维能力,能够从具体的实例中提炼出绝对值的性质。

三. 教学目标1.让学生了解绝对值的概念,能够正确理解绝对值的定义。

2.让学生掌握绝对值的性质,能够运用绝对值的性质解决一些实际问题。

3.培养学生的抽象思维能力,提高学生解决数学问题的能力。

四. 教学重难点1.绝对值的概念和性质。

2.运用绝对值解决实际问题。

五. 教学方法1.采用情境教学法,通过具体实例引入绝对值的概念,让学生在实际情境中理解和掌握绝对值。

2.采用讲授法,讲解绝对值的性质,引导学生通过归纳总结出绝对值的性质。

3.采用练习法,让学生通过解决实际问题,巩固对绝对值的理解和运用。

六. 教学准备1.准备相关的实例,用于引入绝对值的概念。

2.准备PPT,用于展示绝对值的性质和实例。

3.准备一些练习题,用于巩固学生对绝对值的理解和运用。

七. 教学过程1.导入(5分钟)通过一个具体实例,如“小明的家距离学校5公里,请问小明从学校出发,走到家还是走到学校,距离分别是多少?”让学生思考并解答,引出绝对值的概念。

2.呈现(15分钟)PPT展示绝对值的性质,引导学生通过观察和思考,归纳总结出绝对值的性质。

同时,对学生的回答进行点评和指导。

3.操练(15分钟)让学生通过解决一些实际问题,运用绝对值的性质进行计算和解答。

部编版七年级数学上册《绝对值》说课稿

部编版七年级数学上册《绝对值》说课稿

部编版七年级数学上册《绝对值》说课稿一、教材解读本节课主要内容来自部编版七年级数学上册,是关于绝对值的教学内容。

绝对值是数学中的一个重要概念,也是初中数学中非常基础的知识点。

通过研究绝对值的性质和应用,能够培养学生的逻辑思维能力和问题解决能力。

本节课的教学目标主要是让学生掌握解绝对值不等式的方法和技巧,并能够运用所学知识解决实际问题。

二、教学目标•知识与技能:–掌握绝对值的定义和性质;–掌握解绝对值不等式的方法;–学会应用绝对值解决实际问题。

•过程与方法:–引导学生分析问题,培养逻辑思维能力;–通过例题与练习巩固知识,提高解题能力;–组织学生开展小组合作学习,培养合作与沟通能力。

•情感态度与价值观:–培养学生尊重数学科学的态度;–培养学生合作、交流、分享的价值观。

三、教学内容及重点本节课的教学内容主要包括: 1. 绝对值的定义和性质;2. 解绝对值不等式的方法; 3. 应用绝对值解决实际问题。

本节课的重点是让学生掌握解绝对值不等式的方法和技巧,并能够运用所学知识解决实际问题。

四、教学过程1. 导入新课首先,通过一个生活中的例子引入本节课的内容,例如:小明走路上学的距离可以是正数,也可以是负数,那么如何表示这个距离的大小呢?提出这个问题,引导学生思考。

2. 知识讲解和讨论接下来,讲解绝对值的定义和性质。

通过几个简单的例子,让学生理解绝对值的含义,并帮助学生归纳绝对值的性质,如:绝对值大于0,绝对值相等等。

3. 解绝对值不等式的方法讲解解绝对值不等式的方法。

首先,介绍绝对值不等式的含义,并通过具体的例子讲解解绝对值不等式的步骤和技巧,如:根据不等式的形式进行分情况讨论,将绝对值不等式转化为两个简单的不等式等。

4. 练习与巩固组织学生进行练习与巩固。

提供一些练习题目,让学生运用所学方法解答。

同时,教师在黑板上进行讲解,引导学生思考和讨论,解答他们可能遇到的问题,确保学生对所学内容的理解。

5. 实际问题的应用引导学生将所学知识应用到实际问题中。

初中数学七年级上册绝对值

初中数学七年级上册绝对值
0 (3)当a=0时,|a|=___ .
负数的绝对值 是它的相反数
( a 0) a | a | a ( a 0) 0 ( a 0)
0的绝对值是0
思考
相反数、绝对值的联系是什么? 互为相反数的两个数的绝对值相等.
绝对值相等
|+5|=5
互为相反数,符号相反
|-5|=5
绝对值相等,符号相反的两个数互为相反数.
典例精析
例1 求下列各数的绝对值. 3 12, -7.5, 0. 5 解: |12|=12; 正数的绝对值等于它本身 3 3 | |= ; 5 5 负数的绝对值等于它的相反数 |-7.5|=7.5; |0|=0. 0的绝对值是0
例2
填一填 (1)绝对值等于0的数是___, 0
(2)绝对值等于5.25的正数是_____, 5.25 -5.25 (3)绝对值等于5.25的负数是______, (4)绝对值等于2的数是_______. 2或-2
说明. 答:第五个排球的质量好一些,因为它的绝对值 最小,也就是离标准质量的克数最近.
课堂小结
1.数轴上表示数a的点与原点的距离叫做数a的绝对值. 2.绝对值的性质
(1)|a|≥0;
( a 0) a | a | (2) a ( a 0) 0 ( a 0)
非负数 的绝对值 0 的相反数是它本身,_______ 2.____ 非正数 的绝对值是它的相反数. 是它本身,_______ 3.|-
1 3
|的相反数是 ±2 _____.
1 - 3
;若|
a |=2,则
a=
1 ,-2.8. 4.求下列各数的绝对值:3,3.14, 5
解:|3|=3;|3.14|=3.14; 1 1 = ;|-2.8|=2.8. 5 5

初中数学-绝对值(提高)知识讲解

初中数学-绝对值(提高)知识讲解

绝对值(提高)【学习目标】1.掌握一个数的绝对值的求法和性质;2.进一步学习使用数轴,借助数轴理解绝对值的几何意义;3.会求一个数的绝对值,并会用绝对值比较两个负有理数的大小;4.理解并会熟练运用绝对值的非负性进行解题.【要点梳理】要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|.要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下: 两数同号同为正号:绝对值大的数大 同为负号:绝对值大的反而小两数异号 正数大于负数-数为0正数与0:正数大于0负数与0:负数小于0 要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2) 比较绝对值的大小:(3)判定两数的大小.3.作差法:设a 、b 为任意数,若a -b >0,则a >b ;若a -b =0,则a =b ;若a -b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立. 若a 、b 为任意负数,则与上述结论相反.5.倒数比较法:如果两个数都大于零,那么倒数大的反而小.【典型例题】类型一、绝对值的概念(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩1.计算:(1)145--(2)|-4|+|3|+|0|(3)-|+(-8)|【答案与解析】运用绝对值意义先求出各个绝对值再计算结果.(1)111444555⎡⎤⎛⎫--=---=-⎪⎢⎥⎝⎭⎣⎦,(2)|-4|+|3|+|0|=4+3+0=7,(3)-|+(-8)|=-[-(-8)]=-8.【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解,一种是利用绝对值的代数意义求解,后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的代数意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是零.从而求出该数的绝对值.2.如果|x|=6,|y|=4,且x<y.试求x、y的值.【思路点拨】6和-6的绝对值都等于6,4和-4的绝对值都等于4,所以要注意分类讨论.【答案与解析】因为|x|=6,所以x=6或x=-6;因为|y|=4,所以y=4或y=-4;由于x<y,故x只能是-6,因此x=-6,y=±4.【总结升华】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法但要注意若一个数的绝对值是正数,则此数有两个,且互为相反数.此外,此题x=-6,y=±4,就是x=-6,y=4或x=-6,y=-4.举一反三:【变式1】(1)如果|x|=6,|y|=4,且x>y,则x、y的值各是多少?【答案】x=6,y=±4【变式2】如果数轴上的点A到原点的距离是6,则点A表示的数为.如果|x-2|=1,那么x=;如果|x|>3,那么x的范围是.【答案】6或-6;1或3;x>3或x<-3【变式3】已知| a |=3,| b |=4,若a,b同号,则| a +b |=_________;若a,b异号,则| a+b |=________.据此讨论| a+b |与| a | + | b |的大小关系.【答案】7,1;若a,b同号或至少有一个为零,则|a+b|=|a|+|b|;若a,b异号,则|a+b|<|a|+|b|,由此可得:|a+b|≤|a|+|b| .类型二、比大小3.比较下列每组数的大小:(1)-(-5)与-|-5|;(2)-(+3)与0;(3)45-与34--;(4)π-与| 3.14|--.【思路点拨】先化简符号,去掉绝对值号再分清是“正数与零、负数与零、正数与负数、两个正数还是两个负数”,然后比较.【答案与解析】 (1)化简得:-(-5)=5,-|-5|=-5. 因为正数大于一切负数,所以-(-5)>-|-5|.(2)化简得:-(+3)=-3.因为负数小于零,所以-(+3)<0.(3)化简得:3344--=-.这是两个负数比较大小,因为44165520-==,33154420-==,且16152020>.所以4354-<--. (4)化简得:-|-3.14|=-3.14,这是两个负数比较大小,因为 |-π|=π,|-3.14|=3.14,而π>3.14,所以-π<-|-3.14|.【总结升华】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断. 举一反三:【高清课堂:绝对值比大小 例(简单举例)】【变式1】比大小:(1)-0.331-(2)⎪⎭⎫ ⎝⎛--91 101--. 【答案】>;>【高清课堂:绝对值比大小 典型例题2(最后两个)】 【变式2】比大小:(1) 1.38-______-1.384;(2) -π___-3.14.【答案】>;<【变式3】若m >0,n <0,且|m |>|n |,用“>”把m ,-m ,n ,-n 连接起来.【答案】解法一:∵ m >0,n <0,∴ m 为正数,-m 为负数,n 为负数,-n 为正数.又∵ 正数大于一切负数,且|m |>|n |,∴ m >-n >n >-m .解法二:因为m >0,n <0且|m |>|n |,把m ,n ,-m ,-n 表示在数轴上,如图所示.∵ 数轴上的数右边的数总比左边的数大,∴ m >-n >n >-m .类型三、含有字母的绝对值的化简4.把下列各式去掉绝对值的符号.(1)|a -4|(a ≥4);(2)|5-b |(b >5).【答案与解析】(1)∵ a ≥4,∴a -4≥0,∴ |a -4|=a -4.(2)∵ b >5,∴ 5-b <0,∴ |5-b |=-(5-b )=b -5.【总结升华】由字母的取值范围来判断绝对值里面的符号情况,再根据绝对值的意义去掉绝对值的符号.举一反三:【变式1】已知有理数a ,b ,c 在数轴上对应的点的位置如图所示:化简:【答案】由图所示,可得. ∴ 30a c ->,,, ∵.∴ 原式. 【变式2】求的最小值. 【答案】法一:当2x <-时,则23(2)[(3)]23215x x x x x x x ++-=-++--=---+=-+≥ 当时,则23(2)[(3)]235x x x x x x ++-=++--=+-+= 当时,则23(2)(3)23215x x x x x x x ++-=++-=++-=-≥综上:当时,取得最小值为:5.法二:借助数轴分类讨论: ①; ②; ③. 的几何意义为对应的点到-2对应点的距离与对应点到3对应点的距离和.由图明显看出时取最小值. 所以,时,取最小值5类型四、绝对值非负性的应用5.已知a 、b 为有理数,且满足:12,则a =_______,b =________. 【答案与解析】由,,,可得∴【总结升华】由于任何一个数的绝对值大于或等于0,要使这两个数的和为0,需要这两个数都为0.几个非负数的和为0,则每一个数均为0.举一反三: 【变式1】已知,则x 的取值范围是________. 【答案】;提示:将看成整体,即,则,故,. 【变式2】已知b 为正整数,且a 、b 满足,求的值. 【答案】 由题意得∴ 所以,2b a 类型五、绝对值的实际应用6.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案与解析】 因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【总结升华】绝对值越小,越接近标准.举一反三:【变式】一只可爱的小虫从点O 出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm )依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm 就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻【答案】:小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm )小虫得到的芝麻数为54×2=108(粒)答:小虫一共可以得到108粒芝麻.。

七年级绝对值化简的解题技巧

七年级绝对值化简的解题技巧

绝对值化简的解题技巧
绝对值化简是初中数学中的一个重要知识点,主要涉及到有理数的绝对值、相反数等概念。

以下是一些七年级绝对值化简的解题技巧:
1. 理解绝对值的定义:一个数的绝对值等于它到0的距离。

例如,|3| = 3,|-3| = 3,|0| = 0。

2. 利用绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

3. 利用绝对值的性质进行化简:当一个数与另一个数相加或相减时,如果它们的符号相同,那么它们的绝对值也相同;如果它们的符号不同,那么它们的绝对值之和或之差就是它们的绝对值。

4. 利用绝对值的性质进行比较:当两个数的绝对值相等时,这两个数可能相等,也可能互为相反数。

例如,|3| = |-3|,但3 ≠-3。

5. 利用绝对值的性质进行化简加减法:当一个数与另一个数相加或相减时,可以先去掉绝对值符号,然后按照有理数的加减法法则进行计算。

6. 利用绝对值的性质进行化简乘除法:当一个数与另一个数相乘或相除时,可以先去掉绝对值符号,然后按照有理数的乘除法法则进行计算。

7. 利用绝对值的性质进行化简混合运算:当一个算式中既有加减法又有乘除法时,可以先去掉绝对值符号,然后按照有理数的混合运算法则进行计算。

8. 利用绝对值的性质进行化简方程:当一个方程中含有绝对值时,可以先去掉绝对值符号,然后按照一元一次方程的解法求解。

9. 利用绝对值的性质进行化简不等式:当一个不等式中含有绝对值时,可以先去掉绝对值符号,然后按照一元一次不等式的解法求解。

苏教版初中数学七年级上册绝对值知识点总结

苏教版初中数学七年级上册绝对值知识点总结

苏教版初中数学七年级上册绝对值知识点总结1、绝对值的几何定义一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

2、绝对值的代数定义(1)一个正数的绝对值是它本身;(2)一个负数的绝对值是它的相反数;(3)0的绝对值是0。

3、可用字母表示为(1)如果a>0,那么|a|=a;(2)如果a<0,那么|a|=-a;(3)如果a=0,那么|a|=0。

4、可归纳为(1)a≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。

)(2)a≤0,<═> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。

)5、绝对值的性质任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。

所以,a取任何有理数,都有|a|≥0。

即(1)0的绝对值是0;绝对值是0的数是0.即:a=0 <═> |a|=0;(2)一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;(3)任何数的绝对值都不小于原数。

即:|a|≥a;(4)绝对值是相同正数的数有两个,它们互为相反数。

即:若|x|=a(a>0),则x=±a;(5)互为相反数的两数的绝对值相等。

即:|-a|=|a|或若a+b=0,则|a|=|b|;(6)绝对值相等的两数相等或互为相反数。

即:|a|=|b|,则a=b或a=-b;(7)若几个数的绝对值的和等于0,则这几个数就同时为0。

即|a|+|b|=0,则a=0且b=0。

(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)6、有理数大小的比较(1)利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;(2)利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。

7、绝对值的化简(1)当a≥0时, |a|=a ;(2)当a≤0时, |a|=-a。

技术支持的课堂导入 《绝对值》是人教版初中数学代数七年级上册第一章的内容

技术支持的课堂导入  《绝对值》是人教版初中数学代数七年级上册第一章的内容

《绝对值》是人教版初中数学代数七年级上册第一章的内容。

在前面相关知识的学习过程中,学生已经经历了归纳、比较、交流等一些活动,解决了一些简单的现实问题,感受到了数学活动的重要性;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力,但是绝对值的概念是教学难点。

绝对值是学生所认识的第一个非负数,对于从没有学习过类似知识的六年级学生来说,接受起来有点难和慢,尤其在绝对值的意义方面有一定的难度。

绝对值知识是解决有理数比较大小、距离等知识的重要依据,同时它也是我们后面学习有理数运算的基础。

因此,教学开始时,让学生观看视频,理解绝对值的概念,这样既直观又能记忆深刻。

并且充分利用多媒体教学手段加强直观教学,增大思维密度,有利地突出重点,突破难点。

人教版初中数学同步讲义七年级上册第04讲 绝对值(解析版)

人教版初中数学同步讲义七年级上册第04讲 绝对值(解析版)

【即学即练 1】
14.画一条数轴,然后在数轴上画出表示下列各数的点;并比较大小. ﹣1 ,2,3,﹣2.7,1 ,﹣3,0. 【解答】解:画出数轴并在数轴上表示出各数:
故答案为:±5.
【即学即练 2】
9.已知 a=﹣5,|a|=|b|,则 b 的值为( )
A.±5
B.﹣5
C.+5
【解答】解:|b|=|a|=|﹣5|=5,
则 b=±5.
故选:A.
【即学即练 3】
10.绝对值等于 5 的数是
,它们互为

【解答】解:∵一个数的绝对值等于 5,
设这个数位 a,
则|a|=5,
A.
B.
C.
D.
【解答】解:∵|a|=a,|b|=﹣b,
∴a≥0,b≤0,
∵|a|>|b|,
∴a>﹣b.
. 故选:C.
知识点 06 有理数的大小比较
1. 有理数的大小比较: ①定义法:正数 > 0,0 > 负数,所以正数 > 负数。负数与负数进行比较时,绝对
值大的负数反而 小 。 ②数轴比较法:数轴上右边所表示的数一定 > 数轴上左边所表示的数。 ③两个负数进行比较时,绝对值大的数反而 小 。 题型考点:①根据绝对值求范围。
D.﹣3
则 x﹣y=2﹣1=1,
所以 x﹣y 的相反数为﹣1.
故选:A.
【即学即练 2】
5.若|a|+|b|=0,则 a 与 b 的大小关系是( )
A.a=b=0
B.a 与 b 互为倒数
C.a 与 b 异号
D.a 与 b 不相等
【解答】解:∵|a|+|b|=0,|a|≥0,|b|≥0,
∴|a|=0,|b|=0,

七年级绝对值的代数知识点

七年级绝对值的代数知识点

七年级绝对值的代数知识点
在初中数学中,“绝对值”这个概念是很重要的,也是比较难掌
握的。

接下来,我们来一起学习关于七年级绝对值的代数知识点。

一、绝对值的定义
绝对值又叫“绝对数”,是一个数与0点的距离,用符号“|x|”表示。

例如,|3|=3,|-3|=3。

二、绝对值的性质
1.非负性:对于任何一个数x,|x|≥0。

2.正反性:若x>0,|x|=x;若x≤0,|x|=-x。

3.三角不等式:对于任何两个实数x、y,有| x+y|≤|x|+|y|。

4.乘除法性质:对于任何实数x、y,有| xy|=|x|·|y|,若y≠0,则| x/y|=|x|/|y|。

三、绝对值的应用
1.解不等式:如果| x−a|<b,则a−b<x<a+b,用于解代数不等式。

2.求模(绝对值)函数的值域:对于f(x)=| x−a|+b,当x≤a时,
f(x)=b−x+a;当x≥a时,f(x)=x−a+b。

3.解绝对值方程:当| x−a|=b时,有两个解,分别为x=a+b和
x=a−b。

以上是关于七年级绝对值的代数知识点,希望能够对大家有所
帮助。

在学习中,一定要认真练习,多做题,掌握基本方法,才
能够更好地应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学七年级上册
《绝对值》知识简要与举例
1.绝对值的概念是代数的重要概念之一,它是学习代数后续内容的基础.同时,利用绝对值的概念,能使我们进一步认识已学过的概念.例如,我们可以把任何一个有理数看成是由符号与绝对值两部分组成;又如,互为相反数的两个数,其实质是绝对值相等而符号相反的两个数.像-6和6,它们的符号相反,而其绝对值|-6|=|6|=6.
2.理解绝对值的意义,应注意以下三点:
(1)绝对值的非负性即任何一个数a的绝对值,总是非负的.即|a|≥0.当a≠0时,|a|>0;当a=0时,|a|=0.
(2)绝对值相等的两个数或相等,或互为相反数.如|2|=|+2|=2,|+2|=|-2|=2.一般地,若|x|=|y|,则有x=y或x=-y.
(3)学习了绝对值的几何意义后,数轴的概念、画法、利用数轴比较数的大小、相反数以及绝对值,借助数轴,这些知识便都联系到一起了.
3.用正负数可以表示具有相反意义的量.但在实际生产和生活中,有时不考虑方向性.如:计算汽车的耗油量时,知道行驶单位路程的耗油量,只需求出汽车行驶的总路程,便可求出耗油量,与行驶的方向无关而汽车所走的路程就只需用正数表示,因此,引出绝对值的概念.
4.绝对值的三种表达方法.
(1)文字语言表达法(绝对值的概念):
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零.
(2)用数学式子法:
设a为任意有理数,则
(3)绝对值的几何意义:
一个数的绝对值就是表示这个数的点离开原点的距离.
[例1]判断题
(2)|-0.01|<0.( )
(3)-(-4)<|-4|.( )
(4)|a|=a.( )
(5)当a≤0时,|a|+a=0.( )
答案:(1)√;(2)×;(3)×;(4)×;(5)√.
说明:在有理数的大小比较中,如果含有绝对值或相反数时,可先化简,然后再进行比较.
[例2]填空题
(5)______________与它的绝对值互为相反数;
(6)如果|a|=|-7|,那么a=________.
说明:如果两个数相等或互为相反数,那么这两个数的绝对值相等;反之,如果这两个数的绝对值相等,那么这两个数相等或互为相反数.
[例3]a为何值时,下列各式成立?
(1)|a|=a;(2)|a|=-a;(3)|a|≥a;
(4)|a|<a;(5)|a|=5;(6)|a|=-5.
解:(1)a≥0;
(2)a≤0;
(3)a为任意有理数时,都使|a|≥a成立;
(4)a为任意有理数时,|a|<a都不成立;
(5)a=±5;
(6)a为任意有理数时,|a|=-5都不成立.
说明:本题解决的关键是牢固掌握绝对值的非负性,即|a|≥0.另外,(3)、
(4)小题还要准确理解有理数大小的比较法则.
[例4]比较大小:
[例5]把下列各数按照从大到小的顺序用“>”连接起来:
说明:学了绝对值的概念之后,比较两有理数大小的基本方法,我们便有了两种:(1)数轴法;(2)绝对值法.在这小节的后一部分,介绍了利用绝对值比较两个负数的大小的办法.这既可巩固绝对值的概念,又把比较有理数大小的方法提高了一步.利用绝对值来比较两有理数大小的方法是我们常用的方法之一.前面提到绝对值的概念是代数中重要的概念之一,我们应该很好地掌握它.
[例6](1)若a>3,则|a-3|=________;
(2)若a=3,则|a-3|=________;
(3)若a<3,则|a-3|=________.
分析:要想正确地化简|a-3|的结果.关键是确定a-3的符号.当a>3时,a -3>0,即a-3为正,由正数的绝对值是它本身,可得结果为a-3;当a=3时,a -3=0,所以|a-3|=|0|=0;当a<3时,a-3<0,即a-3为负数,由负数的绝对值等于它的相反数可得|a-3|=-(a-3).
解:(1)a>3时,|a-3|=a-3;
(2)a=3时,|a-3|=0;
(3)a<3时,|a-3|=-(a-3)
说明:由本题的解法说明,化简含有字母的式子的绝对值时,必须先讨论这个式子的计算结果的正负性.否则会出现错误,如|a-3|=a-3(×).。

相关文档
最新文档