人教版高中数学必修5《解三角形应用举例》教案
人教A版高中数学必修5《一章 解三角形 1.2 应用举例 1.2 应用举例(通用)》优质课教案_11

《正余弦定理的应用(一)——距离测量问题》教学设计摘要:文章以人教A版高中数学教科书必修五为出发点,结合课程标准,通过对三维目标的设置和学生学情及教学重难点的分析,采用了小组讨论法、引导探究法、讲练结合法,按照复习回顾、讲授新课、随堂练习、小结、作业、教后反思等六个环节,就正余弦定理在距离测量问题方面的应用做了比较全面的教学设计,最后总结出解应用题的基本思路.设计在复习回顾部分特别加入了回顾小测,在例题讲解过程进行了点评和引申,在练习部分链接了相关的高考试题,这是该设计的三处亮点,旨在激发学生的学习热情和探究精神,也为高中数学一线教师的备课方式提供了一种案例参考.关键词:数学模型;正余弦定理;距离测量教学目标:知识目标:能够运用正弦定理和余弦定理等解三角形知识,解决不可到达点的距离测量问题.能力目标:能够将实际问题,尤其是距离测量问题转化成解三角形的问题进行解决.情感目标:(1)通过本节课所学知识解决一些生活中的实际问题,让学生体会数学的实用性;(2)通过小组讨论活动,培养学生的团队协作意识.学情分析:正余弦定理是高中数学中很重要的内容之一,在学生已经具备一些数学基本功的基础上,以正余弦定理本身为出发点,以其在实际生活中的应用为主线系统学习和掌握正余弦定理在诸如距离测量等的实际问题中的应用. 数学建模的过程是一个长期学习的过程,学生对数学必修内容的学习即将结束的时候,数学建模意识已经建立起来并达到成熟,教科书在必修5安排正余弦定理的应用是恰到好处,对教师的教和学都是有积极意义的.教学重点:分析测量问题的实际背景,从而找到测量距离的方法. 教学难点:从实际问题中抽象出正确的数学模型,同时做到操作的可行性.教学方法:小组讨论法、引导探究法、讲练结合法教学过程:一、 复习回顾1、正弦定理注:正弦定理可以解决以下的解三角形问题:(1)已知三角形的任意两边和其中一边的对角;(2)已知三角形的任意两角和一边.2、余弦定理注:余弦定理可以解决以下的解三角形问题:(1)已知三角形的三边;(2)已知三角形的任意两边和一角. R Cc B b A a 2sin sin sin === Cab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222-+=-+=-+=3、回顾小测(1)在ABC ∆中,若C B A 222sin sin sin +=,则ABC ∆的形状是______三角形.(2)在ABC ∆中,已知2a =,则cos cos b C c B +等于______.二、讲授新课一些实际问题:1、如何测量地球和月亮之间的距离;2、怎样在航行途中测出海上两个岛屿之间的距离;3、怎样测量不可到达的两点之间的距离.这将是我们今天要解决的问题.例1、设A 、B 两点在河的两岸,要测量两点之间的距离.测量者在A 的同测,在所在的河岸边选定一点C ,测出AC 的距离是55m , 51=∠BAC , 75=∠ACB ,求A 、B 两点间的距离(精确到0.1m ).分析:已知两角一边,可以用正弦定理解三角形.解:根据正弦定理,得B AC C AB sin sin =)(7.6554sin 75sin 55)7551180sin(75sin 55sin sin 55sin sin 000000m ABCACB ABC ACB AC AB ≈=--=∠∠=∠∠=答:A 、B 两点间的距离为65.7m .点评:1、AC 是根据测量的需要适当确定的线段,称其为基线.2、这是测量不能直接度量的两点的一种方案,可引申如下: 测量两点都不能到达的两点间距离,如下例.例2、A 、B 两点都在河的对岸(不可到达),设计一种测量两点间的距离的方法.分析:用例1的方法,可以计算出河的这一岸的一点C 到对岸两点的距离,再测出BCA ∠的大小,借助于余弦定理可以计算出A 、B 两点间的距离.解:测量者可以在河岸边选定两点C 、D ,测得CD a =,并且在C 、D 两点分别测得α=∠BCA ,β=∠ACD ,γ=∠CDB ,δ=∠BDA . 在BDC ADC ∆∆和中,应用正弦定理得:[])sin()sin()(180sin )sin(δγβδγδγβδγ+++=++-+=a a AC计算出AC 和BC 后,再在ABC ∆中,应用余弦定理计算出AB 两点间的距离请同学们想一想,还有没有别的测量方法?三、 随堂练习练习1、为了测量河宽,在岸的一边选定两点B A 、,望对岸的标记物C ,测得 45=∠CAB , 75=∠CBA ,120=AB 米,则河宽为 米.练习2、(2009年宁夏高考)为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A 、B 间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M 、N 间的距离的步骤.四、 小结解应用题的基本思路:[])sin(sin )(180sin sin γβαγγβαγ++=++-=a a BC αcos 222BC AC BC AC AB ⨯-+=五、作业P习题1.2A组1、2.19六、教后反思本节课是继正弦定理和余弦定理之后的应用型的章节,是基于正余弦定理基础之上的知识应用层次,正余弦定理的应用是高中重要且实用的章节,是知识层次的最高要求.能将实际问题转化为解三角形的问题,通过解三角形来求解实际问题是本节课的重点,也是知识能力的最高要求,通过学情分析,结合教材难易程度设计了本课,通过教学过程可以发现,学生对知识的应用已经上了一个台阶,需要在练习的过程中再加要求.基于以上分析,以后备课授课的过程中教师应该注意以下几点:首先,将课前测试科学合理的重视起来,做到新课前的小测巩固.这比单独的知识点的复习回顾效果明显,而且学生也有挑战感,让他们觉得自己是“跳起来吃到了桃子”,学生有成就感,教师也觉得开场有了激情,有了新课开演的前奏.其次,例题的教学分层次展开是本节课的一大亮点,这样做既降低了例题本身的难度,使得学生一节课后有一种自我整理为精华的感觉,更重要的是让学生在探究的过程中学会了化归思想,学会了如何将同类问题划归为基本问题.再次,课前准备这一环节也是必不可少的,比如本节课中要用到的距离测量的钢卷尺或者皮尺,角度测量的测角仪等,有的学生平时很少接触,可能不是很熟悉,这样的图片给学生做一课前演示准备是很有必要的,这样做无疑会让学生对新解决的问题产生“熟悉感”,会对新课的讲授起到一定的辅助作用.最后,练习的设计符合递进式原则,从易到难,也符合学生的认知规律,学生从做练习的过程中既能体会到成就感,也能感受到挑战性.在练习中加入一定难度的高考题链接,是遵循了新课改的基本理念的,以能力为基本要求,以知识点为基本依托,做到知识和考题的前呼后应.参考文献:[1] 张奠宙,宋乃庆.数学教育概论[M].北京:高等教育出版社,2004.10.[2] 傅佳.实施数学课堂教学有效性之我见[J]. 教育观察,2012, (06):71-72.[3] 张春莉,王小明.数学学习与教学设计[M].上海:上海教育出版社,2004.[4] 课程教材研究所.数学必修5[M].北京:人民教育出版社,2012.5.[5] 任志鸿.志鸿优化十年高考分类解析与应试策略(数学)[M] .海南:南方出版社,2013.1.。
人教A版高中数学必修5《一章 解三角形 1.2 应用举例》优质课教案_7

课题:解斜三角形的应用举例教学目标(一)知识目标:1、测量不可到达的两点间的距离的方法及航海问题;2、解斜三角形问题的类型。
(二)能力目标:1.掌握利用正弦定理及余弦定理解任意三角形的方法,会利用解任意三角形的知识解决一些实际问题;2.能够在解斜三角形应用过程中,灵活地选择正弦定理和余弦定理;3.通过解斜三角形应用举例进一步培养学生将实际问题转化为数学问题,用数学方法解决实际问题的能力。
(三)德育目标:使学生体会知识来源于实际生活,数学知识在实际生活的中的应用,从而培养学生学习数学的兴趣.重点、难点:利用解斜三角形解决相关实际问题.利用解斜三角形解决相关实际问题及运算问题.教学方式启发引导式教学、多媒体辅助教学教学过程一、动手实验闭上一只眼睛,将两只笔的笔尖相对;两只眼睛都睁开,再试一次,感受有何不同?想一想,为什么会出现这种状况?试想想:如果一个人的眼睛左右各长一只或者前后各长一只,会出现什么情况?从数学角度来分析该问题,从而引出解决测量问题的一般思路。
方法总结:构造三角形,把要求的这两点间的距离作为三角形的一边,通过解斜三角形可以得出两点间的距离。
让学生识别本例解斜三角形的类型,顺便复习正弦定理及其能解决的问题,引出课题(板书课题:解斜三角形的应用举例)二、新课1、案例一(1)设置情境:湖北四渡河大桥用火箭抛索架桥为世界首创四渡河特大桥位于巴东和长阳交界处,主跨900米,索塔顶至峡谷底高差达650米,正桥面到谷底高差达500余米,堪称“天路”上的“天桥”。
(2)提出问题①想一想:假如你是设计人员,在设计此桥前,你怎样得到主跨900米这个数据?(测量工具:测角仪,皮尺)②要测的A、B 两点有什么特点?(能相互看见,但不能相互到达,因此不能直接测得,只能采用间接的方法)③根据前面的方法总结,想想解决此问题的关键是什么?④怎样构造三角形?(见下图第三图)(3)带领学生构建三角形模型,抽象出数学问题(4)请学生解决该数学问题2、案例二(1)设置情境:沪蓉西高速路某段在沿清江河岸施工的过程中碰到一座山,需要设计一条隧道。
高中数学必修五解三角形教案

高中数学必修五解三角形教案高中数学必修五解三角形教案篇一:高中数学必修5解三角形知识总结及练习解三角形一、知识点:1、正弦定理:在C中,a、b、c分别为角?、?、C的对边,R 为C的外接圆的半径,则有abc2R.(两类正弦定理解三角形的问题:1、已知sin?sin?sinC两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角.)2、正弦定理的变形公式:①a?2Rsin?,b?2Rsin?,c?2RsinC;②sin??等式中)③a:b:c?sin?:sin?:sinC;abc,sin??,sinC?;(正弦定理的变形经常用在有三角函数的2R2R2Ra?b?cabc.sin??sin??sinCsin?sin?sinC1113、三角形面积公式:SC?bcsin??absinC?acsin? 222④?a2?b2?c2?2bccosA?2224.余弦定理:?b?a?c?2accos(本文来自: 教师联盟网:高中数学必修五解三角形教案)B 或?c2?b2?a2?2bacosC??b2?c2?a2?cosA?2bc?a2?c2?b2? ?cosB?2ac?? b2?a2?c2?cosC?2ab?(两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.)2225、设a、b、c是C的角?、?、C的对边,则:①若a?b?c,则C?90?为222222直角三角形;②若a?b?c,则C?90?为锐角三角形;③若a?b?c,则C?90?为钝角三角形.6.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.7.解题中利用?ABC中A?B?C??,以及由此推得的一些基本关系式进行三角变换的运算,如:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC, sinA?BCA?BCA?BC?cos,cos?sin,tan?cot 222222二、知识演练1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于()A.60°B.60°或120°C.30°或150°D.120°2、若(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC, 那么ΔABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形3.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ).A.90°B.120°C.130°D.150°2224.在△ABC 中,a?b?c?bc ,则A等于()A.60°B.45°C.120°D.30°5.在△ABC中,A为锐角,lgb-lgc=lgsinA=-lg2, 则△ABC为()A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形b6、锐角?ABC中,B=2A,则a的取值范围是()A(-2,2)B(0,2)C(2,2)D2,)7.在?ABC中.sinA?sinB?sinC?sinBsinC.则A的取值范围是222 ?A.(0,6]B.[ 6,?)C.(0,3]D.[ 3,?)?8.在△ABC中,a=x,b=2,B=45,若△ABC有两解,则x的取值范围是_______________9. ?ABC中,B?60?,AC,则AB+2BC的最大值为_________.10.a,b,c为△ABC的三边,其面积S△ABC=123,bc=48,b-c=2,求a11.在?ABC中,角A,B,C所对的边分别为a,b,c,且满足cosA?2,AB?AC?3.(I)求?ABC的面积;(II)若b?c?6,求a的值.12、在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足S?2a?b2?c2)。
人教A版高中数学必修5《一章 解三角形 1.2 应用举例 1.2 应用举例(通用)》优质课教案_14

1.2 解三角形应用举例(高度测量问题)(人教A版高中课标教材数学必修5)教学设计一、教学内容解析:本节课的内容是《普通高中课程标准实验教科书数学》人教A版必修5第一章《解三角形》1.2《应用举例》的第一课时,测量一点或两点不可到达的距离问题. 力于让学生学习应用正弦定理和余弦定理解决有关测量距离的问题,初步了解从实际背景中抽象数学模型,将“不可测”问题转化为“可以算”的问题,从而解决实际问题的研究方法.解三角形知识本身是从人类长期的生产和生活实践中产生和发展起来的,在实际问题中有着广泛的应用,如测量、航海等都要用到这方面的知识,本节内容具有显著的实践性,通过从实际背景中提出问题、分析问题、建构数学模型、应用数学知识计算,进而解决问题,使学生进一步巩固所学的知识,提高学生分析和解决实际问题的能力、动手操作的能力以及用数学语言表达和交流的能力,增强学生应用数学的意识,培养学生的数学建模能力.本节课的教学重点:1.通过对实际问题的解决,体会解三角形在生活中的广泛应用;2.通过对设计方案的分析,理解建构三角形模型的一般方法;3.结合用测量工具收集的数据,巩固应用正弦定理和余弦定理解三角形问题.二、教学目标解析:(一)教学目标:1.体会从实际情境中发现问题——设计方案建构数学模型——运用正弦定理、余弦定理等知识进行计算求解——检验的数学建模过程,培养学生的数学建模素养;2.归纳建构三角形模型的一般方法,解决有关一点或两点不可到达的测量问题;3.在试验报告中测量角度、距离等,收集数据,进行解三角形运算,使学生掌握正弦定理和余弦定理的应用;4.通过小组交流汇报的形式展示数学建模过程,让学生体会数学建模思想,培养学生的数学表达能力;5.创设问题情境、组织讨论交流提高学生参与学习的热情,通过小组合作学习方式,培养学生的合作意识和合作学习的能力,发展学生的创新意识和实践能力. (二)目标解析:1.高中数学学科素养包含数学抽象、逻辑推理、几何直观、数学运算、数据分析和数学建模六个方面,本节课重点培养学生的数学建模素养.数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程.本节课从实际背景出发,让学生亲自经历提出问题、建构模型、应用数学知识运算得到数学结果,反复检验得到符合实际的结果这样一个数学建模过程,培养学生数学建模素养;2.本节的例题是有关有关一点或两点不可到达的距离问题.由于不可到达,常常需要建构多个三角形,转化为一个或两个可到达的点所构成的三角形.本节课主要是研究解斜三角形在测量中的应用,关于测量问题,一是要数学测量工具皮尺、经纬的使用与限制,二是要会选点构建三角形模型,在几个三角形中找出已知与未知之间的关系,逐步逐层转化,最终归结为解三角形的问题;3.用数学是学数学的出发点和归宿,通过设计操作实验,让学生体验数学在解决问题中的应用价值;4.将探究问题与解三角形运算相结合,引导学生既要关注实际背景,又要重视基础落实,同时创造更多的实践机会在“做数学”中落实基础;5.通过小组合作的方式完成测量任务,在课上以小组汇报的形式展示实验报告,以小组为单位进行讨论交流,培养学生合作学习的能力.三、学情分析:1.学生学习背景:我校属于区属市重点学校,学生知识基础较好,学校有丰富的社团活动,学生有小组活动经验,具有一定的动手能力和表达能力.2.学生知识储备:学生在初中已经学习过解直角三角形,能够通过建立直角三角形模型解决实际问题中的长度和角度的测量,在必修一中学生已经学习过数学建模的知识,了解建模的基本过程.在本章第一节学生学习了正弦定理和余弦定理,这些知识都将为本节课的学习奠定基础,在此基础上进一步向探究构建多个三角形的问题自然过渡.教学难点:从实际问题出发,在有限的工具下自行设计方案解决问题四、教学策略分析:本节课以数学实验为抓手,以问题探究为载体,为学生提供动手操做、动脑思考和主动交流的机会,引导学生积极思考、合作探究,体现“重过程、重情感、重生活”的理念.教学中在学生体验测量过程的基础上,通过学生动手实践、动手画图等方法探究数学知识获取直接经验,进而培养学生学会数学地思考问题的能力,增进应用意识和问题意识.利用学生感兴趣的数学文化知识和生活中的问题,实现情感、态度、价值观目标.通过小组交流,互相取长补短,提高合作意识.五、教学过程:引入:古有嫦娥奔月,那嫦娥“奔”了多远?古人没有去探究。
人教版高中数学必修五高一数学必修五《解三角形》教案

1.1.3解三角形的进一步讨论(一)教学目标1.知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。
2. 过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。
3.情态与价值:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。
(二)教学重、难点重点:在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; 三角形各种类型的判定方法;三角形面积定理的应用。
难点:正、余弦定理与三角形的有关性质的综合运用。
(三)学法与教学用具学法:通过一些典型的实例来拓展关于解三角形的各种题型及其解决方法。
教学用具:教学多媒体设备(四)教学设想[创设情景]思考:在∆ABC 中,已知22a cm =,25b cm =,0133A =,解三角形。
(由学生阅读课本第9页解答过程)从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。
下面进一步来研究这种情形下解三角形的问题。
[探索研究]例1.在∆ABC 中,已知,,a b A ,讨论三角形解的情况 分析:先由sin sin b A B =可进一步求出B ; 则0180()C A B =-+ 从而sin a C c A= 1.当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解。
2.当A 为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论:(1)若sin a b A >,则有两解;(2)若sin a b A =,则只有一解;(3)若sin a b A <,则无解。
(以上解答过程详见课本第910页)评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且 sin b A a b <<时,有两解;其它情况时则只有一解或无解。
高中数学必修五第一章:2解三角形应用举例(4)教案

课题: 2.2 解三角形应用举例(4)第课时总序第个教课设计课型:复习课编写不时间:年月日履行时间:年月日教课目的:批知识与技术:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形注的问题 ,掌握三角形的面积公式的简单推导和应用过程与方法:本节课增补了三角形新的面积公式,奇妙设疑,指引学生证明,同时总结出该公式的特色,顺序渐进地详细运用于有关的题型。
此外本节课的证明题表现了前方所学知识的生动运用,教师要松手让学生探索,使学生在详细的论证中灵巧掌握正弦定理和余弦定理的特色,能不名一格,一题多解。
只需学生自行掌握了两定理的特色,就能很快宽阔思想,有益地进一步打破难点。
感情态度与价值观:让学生进一步稳固所学的知识,加深对所学定理的理解,提高创新能力;进一步培育学生研究和发现能力,让学生在研究中体验欢乐的成功体验教课要点:推导三角形的面积公式并解决简单的有关题目教课难点:利用正弦定理、余弦定理来求证简单的证明题教课器具:三角板,直尺,投影教课方法:本节课增补了三角形新的面积公式,奇妙设疑,指引学生证明,同时总结出该公式的特色,顺序渐进地详细运用于有关的题型。
教课过程:Ⅰ . 课题导入[ 创建情境 ]师:从前我们就已经接触过了三角形的面积公式,今日我们来学习它的另一个表达公式。
在ABC中,边 BC、CA、AB上的高分别记为h a、h b、h c,那么它们怎样用已知边和角表示?生: h aC B b=csinA Chc=asinB A =bsin =csin h=asin=bsina师:依据从前学过的三角形面积公式S= 1ah, 应用以上求出的高的公式如2h a =bsin C代入,能够推导出下边的三角形面积公式,S= 1absin C,大家能推2出其余的几个公式吗?生:同理可得,S= 1bcsin A, S=1acsinB 22师:除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的面积呢?生:如能知道三角形的随意两边以及它们夹角的正弦即可求解Ⅱ . 解说新课[ 典范解说 ]例 1、在ABC 中,依据以下条件,求三角形的面积S (精准到 0.1cm 2 )( 1)已知 a=14.8cm,c=23.5cm,B=148.5; ( 2)已知 B=62.7 ,C=65.8 ,b=3.16cm;( 3)已知三边的长分别为 a=41.4cm,b=27.3cm,c=38.7cm剖析:这是一道在不一样已知条件下求三角形的面积的问题, 与解三角形问题有密切的关系, 我们能够应用解三角形面积的知识, 察看已知什么, 尚缺什么?求出需要的元素,就能够求出三角形的面积。
最新高中数学必修5《应用举例》教案

最新高中数学必修5《应用举例》教案高中数学必修5《应用举例》教案【一】教学准备教学目标解三角形及应用举例教学重难点解三角形及应用举例教学过程一. 基础知识精讲掌握三角形有关的定理利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.二.问题讨论思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。
一. 小结:1.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2。
利用余弦定理,可以解决以下两类问题:(1) 已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
3.边角互化是解三角形问题常用的手段.三.作业:P80 闯关训练高中数学必修5《应用举例》教案【二】教学准备教学目标1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:.com测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;教学重难点1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;教学过程一、知识归纳1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;二、例题讨论一)利用方向角构造三角形四)测量角度问题例4、在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东。
人教A版高中数学必修5第一章解三角形1.2应用举例教案(1)

新编人教版精品教学资料1.2 应用举例教材分析三维目标知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题•过程与方法通过将实际问题建立数学模型,使学生充分认识到建立数学模型的重要性,进行测量,掌握数学术语及数学作图方法,体会数学的严谨性情感态度与价值观数学来源于生活,又应用于生活,一方面,三角形知识广泛应用于实际问题中,另一方面,实际问题的解决又推动了三角形的进一步完善和发展,通过亲自动手测量,写出实习报告等体会到数学市有用的,我能用数学,也能用好数学教学重点分析测量问题的实际情景,从而找到测量距离的方法教学难点实际问题向数学问题转化思路的确定,即根据题意建立数学模型,画出示意图.教学建议解三角形知识在实际问题中有着广泛的应用,如测量、航海等都要用到这方面的知识. 对于解三角形的实际问题,我们要在理解一些术语(如坡角、仰角、俯角、方位角、方向角等)的基础上,正确地将实际问题中的长度、角度看成三角形相应的边和角,创造可解的条件,综合运用三角函数知识以及正弦定理和余弦定理来解决. 学习这部分知识有助于增强学生的数学应用意识和解决实际问题的能力.本节的例1、例2是两个有关测量距离的问题•例1是测量从一个可到达的点到一个不可到达的点之间的距离问题,例2是测量两个不可到达的点之间距离的问题•对于例1可以引导学生分析这个问题实际上就是已知三角形两个角和一边解三角形的问题,从而可以用正弦定理去解决•对于例2首先把求不可到达的两点A、B之间的距离转化为应用余弦定理求三角形的边长的问题,然后把求未知的BC和AC的问题转化为例1中测量可到达的一点与不可到达的一点之间的距离问题.导入新课一湖北省十堰市郧县柳坡镇马蹄沟村,是一个世代被大山阻隔的小山村,在无法承载贫穷重负和生命重压之下,毅然决然以一己之力,用比较落后的方式,开始了一段长达五年的艰难的开山之旅。
他们经历了令人难以想象的风险,终于打通了一条长400米的隧洞,从而大大拉近了闭塞小山村与现代大都市的时代距离。
人教版必修5教案解三角形应用举例(四)三角形的面积公式及三角恒等式的证明

第一章解三角形§1.2应用举例(第四课时)【创设情景引入新知】杭州一避暑山庄占地的平面图如图所示,它由三个正方形和四个三角形构成,其中三个正方形的面积分别为18亩、20亩和26亩.你知道这个整个避暑山庄占地面积是多少吗?怎么计算呢?请同学们开动脑筋,想想办法吧!【探索问题形成概念】前面我们已知知道三角形的面积公式1,2ABCS ah∆=其中a为底面边长,h为底面上的高.三角形的面积公式除上式之外还有其它的表达形式吗?这节课我们首先将给出三角形面积公式的另一种表达形式.1、三角形的面积公式如右图,△ABC中,边BC、CA、AB上的高分别记为ha、hb、hc根据直角三角形中锐角三角函数的定义,容易证明:sin sinsin sinsin sinabch b C c Bh c A a Ch a B b A======将以上三式应用在三角形的面积公式12S ah=中,可以推导出下面的三角形面积公式;AB Ch ahbhc121212sin sin sin S ab C S ac B S bc A===已知三角形的任意两边及夹角便可求出三角形的面积.【例题】在 △ABC 中,根据下列条件,求三角形的面积S (精确到0.1cm 2) (1)已知a=14.8cm,c=23.5cm,B=148.5°; (2)已知B=62.7°,C=65.8°,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm. 【思路】(1)中已知两边及夹角,可直接应用公式求解;(2)中已知两角和一角的对边,先根据正弦定理求出另一角的对边,再根据三角形内角和定理求出剩余的一角,便可应用面积公式求解;(3)中已知三角形的三边,可根据余弦定理求出其中任意一角,从而应用面积公式求解.【解答】(1)应用S=21acsinB ,得 S=21⨯14.8⨯23.5⨯sin148.5︒≈90.9(cm 2) (2)根据正弦定理,B b sin = Cc sin ,c = BC b sin sinS = 21bcsinA = 21b 2BA C sin sin sin A = 180︒-(B + C)= 180︒-(62.7︒+ 65.8︒)=51.5︒要求三角形的面积需要知道什么条件?思考S = 21⨯3.162⨯︒︒︒7.62sin 5.51sin 8.65sin ≈4.0(cm 2) (3)根据余弦定理的推论,得cosB =ca b a c 2222-+=4.417.3823.274.417.38222⨯⨯-+≈0.7697sinB = B 2cos 1-≈27697.01-≈0.6384应用S=21acsinB ,得 S ≈21⨯41.4⨯38.7⨯0.6384≈511.4(cm 2)【反思】在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形的知识,求出需要的元素,从而求出三角形的面积.【例题】在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68 m,88 m,127 m,这个区域的面积是多少?(精确到0.1 c m 2)?【思路】把这一实际问题化归为一道数学题目,本题已知三角形的三边,先根据余弦定理求角,再利用三角形的面积公式求解。
高中数学必修5《解三角形应用举例》教案(4)

《解三角形应用举例》教案(4)教学目标1.能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用;2.通过综合训练强化学生的相应能力,让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三.3.进一步提高利用正弦定理、余弦定理解斜三角形的能力,提高运用数学知识解决实际问题的能力4.让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验.教学重点难点1.重点:推导三角形的面积公式并解决简单的相关题目.2.难点:利用正弦定理、余弦定理来求证简单的证明题.教法与学法1.教法选择:教学形式采用自主探究与尝试指导相结合,引导学生通过分析实践、自主探究、合作交流得出转化问题方法.2.学法指导:学生通过数学建模,自主探究、合作交流,在实践中体验过程,在过程中感受应用,在交流中升华.教学过程一、设置情境,激发学生探索的兴趣三、思维拓展,课堂交流 3AB AC ⋅=.(II )若b c +=,253AB AC ⋅=cos 3,A =bc ∴1sin 2bc A ==)对于5bc =,又5,1b c∴==或1,5b c==,由余弦定理得2222cos20a b c bc A=+-=,25a∴=四、归纳小结,课堂延展教学环节教学过程设计意图师生活动归纳小结利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状.特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用.回顾解斜三角形的一般题型,便于学生在复习中更深入的思考,更广泛的研究解三角形.由学生谈体会,师生共同归纳总结.巩固创新课堂延展1 .△ABC中,a=2bcosC,则此三角形一定是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形答案:A2.某城市有一条公路,自西向东经过A点到市中心O点后转向东北方向OB,现要修建一条铁路L,L在OA上设一站A,在OB上设一站B,铁路在AB部分为直线段,现要求市中心O与AB的距离为10 km,问把A、B分别设在公路上离中心O多远处才能使|AB|最短?并求其最短距离.(不要求作近似计算)答案:当AB分别在OA、OB上离O点既能保证全体学生的巩固应用,又兼顾学有余力的学生,同时将探究的空间由课堂延伸到课外.学生课下通过练习,巩固正余弦定理的理解.1.教材地位分析解三角形应用举例(4)是在学习了正弦定理、余弦定理的基础上安排的一节应用举例课程,是在学习了测量距离、高度、角度问题后,有了解三角形方法的初步体验,本节主要介绍了正弦定理和余弦定理在计算三角形面积、判断三角形形状、证明恒等式中的应用.本节课是解三角形应用举例第四阶段,为前面学习测量距离、高度、角度问题做了总结,是前面问题的进一步深化.2.学生现实状况分析通过正弦定理、余弦定理的学习,学生对解斜三角形已经有了直观地认识,能够从图形中找到解三角形的方法.但学生对正弦定理和余弦定理应用范围、应注意的问题缺乏清晰的概念.因此,本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型.另外本节课的证明题体现了前面所学知识的生动运用,要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解.只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点.。
人教课标版高中数学必修5第一章解三角形应用举例教案2

学生看图思考并讲述解题思路
教师根据学生的回答归纳分析:首先根据三角形的内角和定理求出
AC 边所对的角
可用余弦定理算出 AC边,再根据正弦定理算出 AC边和 AB边的夹角 CAB。
ABC,即
解:在 ABC中, ABC=180 - 75 + 32 =137 ,根据余弦定理,
AC= AB 2
BC 2
2 AB
=15
2
在 Rt ADE中, AE=ADsin60 =15 答:所求角 为 15 ,建筑物高度为 15m
解法二:(设方程来求解)设 DE= x, AE=h
在 Rt ACE中 ,(10 3 + x) 2 + h 2 =30 2
在 Rt ADE中 ,x 2 +h 2 =(10 3 ) 2
两式相减,得 x=5 3 ,h=15
答 : 此船应该沿北偏东 56.1 的方向航行 , 需要航行 113.15n mile
解法一:(用正弦
定理求解)由已知可得在
ACD中,
AC=BC=3,0 AD=DC=10 3 , ADC =180 -4 ,
10 3 =
30
。
sin 2 sin( 180 4 )
因为 sin4 =2sin2 cos2
cos2 = 3 , 得 2 =30
在 Rt ACE中 ,tan2 =
h
3 =
10 3 x 3
2 =30 , =15
答:所求角 为 15 ,建筑物高度为 15m
解法三:(用倍角公式求解)设建筑物高为 AE=8,由题意,得
BAC= ,
AC = BC =30m , AD = CD =10
3 m, 在 Rt ACE中, sin2 = x ① 30
高中数学必修五第一章:2解三角形应用举例(2)教案

课题:2.2解三角形应用举例(2)第课时总序第个教课设计课型:新讲课编写不时间:年月日履行时间:日教课目的:知识与技术:能够运用正弦定理、余弦定理等知识和方法解决一些相关底部不行抵达的物体高度丈量的问题过程与方法:本节课是解三角形应用举例的延长。
采纳启迪与试试的方法,让学生在温故知新中学会正确识图、绘图、想图,帮助学生逐渐建立知识框架。
经过年月批注3道例题的安排和练习的训练来稳固深入解三角形实质问题的一般方法。
教课形式要坚持指引——议论——归纳,目的不在于让学生记着结论,更多的要养成优秀的研究、探究习惯。
作业设计思虑题,供给学生更广阔的思虑空间感情态度与价值观:进一步培育学生学习数学、应用数学的意识及察看、归纳、类比、归纳的能力教课要点:联合实质丈量工具,解决生活中的丈量高度问题教课难点:能察看较复杂的图形,从中找到解决问题的要点条件教课器具:三角板,直尺教课方法:指引——议论——归纳教课过程:Ⅰ . 课题导入发问:现实生活中 , 人们是如何丈量底部不行抵达的建筑物高度呢?又如何在水平飞翔的飞机上丈量飞机下方山顶的海拔高度呢?今日我们就来共同商讨这方面的问题Ⅱ . 解说新课[ 典范解说 ]例 1、 AB 是底部 B 不行抵达的一个建筑物, A 为建筑物的最高点,设计一种丈量建筑物高度 AB的方法。
剖析:求AB 长的要点是先求AE,在ACE中,如能求出 C 点到建筑物顶部 A 的距离 CA,再测出由 C 点察看 A 的仰角,就能够计算出AE 的长。
解:选择一条水平基线HG,使 H、 G、 B 三点在同一条直线上。
由在H、 G两点用测角仪器测得 A 的仰角分别是、,CD= a,测角仪器的高是h,那么,在ACD 中,依据正弦定理可得AC AB ==asinsin()AE + h=AC+ hsin= a sin sin+ hsin()例 2、如图,在山顶铁塔上 B 处测得地面上一点 A 的俯角=54 40,在塔底 C 处测得 A 处的俯角=50 1。
2020年人教版高中数学必修5教案---5.解三角形应用举例教案(2)

备课人授课时间课题解三角形应用举例(2)课标要求能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题教学目标知识目标巩固深化解三角形实际问题的一般方法技能目标要养成良好的研究、探索习惯情感态度价值观进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力重点结合实际测量工具,解决生活中的测量高度问题难点能观察较复杂的图形,从中找到解决问题的关键条件教学过程及方法问题与情境及教师活动学生活动Ⅰ.课题导入提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题Ⅱ.讲授新课[范例讲解]例1、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。
分析:求AB长的关键是先求AE,在 ACE中,如能求出C点到建筑物顶部A的距离CA,再测出由C点观察A的仰角,就可以计算出AE的长。
解:选择一条水平基线HG,使H、G、B三点在同一条直线1教学过程及方法上。
由在H、G两点用测角仪器测得A的仰角分别是α、β,CD = a,测角仪器的高是h,那么,在∆ACD中,根据正弦定理可得AC =)sin(sinβαβ-aAB = AE + h= ACαsin+ h=)sin(sinsinβαβα-a + h例2、如图,在山顶铁塔上B处测得地面上一点A的俯角α=5404'︒,在塔底C处测得A处的俯角β=501'︒。
已知铁塔BC部分的高为27.3 m,求出山高CD(精确到1 m)师:根据已知条件,大家能设计出解题方案吗?(给时间给学生讨论思考)若在∆ABD中求CD,则关键需要求出哪条边呢?生:需求出BD边。
生:可首先求出AB边,再根据∠BAD=α求得。
解:在∆ABC中, ∠BCA=90︒+β,∠ABC =90︒-α,∠BAC=α- β,∠BAD =α.根据正弦定理,)sin(βα-BC=)90sin(β+︒AB所以AB =)sin()90sin(βαβ-+︒BC=)sin(cosβαβ-BC解Rt∆ABD中,得 BD =ABsin∠BAD=)sin(sincosβααβ-BC将测量数据代入上式,得BD =)1500454sin(0454sin150cos3.27'-'''︒︒︒︒=934sin0454sin150cos3.27'''︒︒︒≈177 (m)CD =BD -BC≈177-27.3=150(m)教学过程及方法答:山的高度约为150米.师:有没有别的解法呢?生:若在∆ACD中求CD,可先求出AC。
人教A版高中数学必修5《一章 解三角形 1.2 应用举例 1.2 应用举例(通用)》优质课教案_15

§1.2.1解三角形应用举例教学设计一、教学内容分析《解三角形应用举例》是人教版新课标教材高中数学必修五第一章《解三角形》第2节的内容,是学完了正弦定理和余弦定理后对定理的应用,共两课时,本节课为第一课时。
本节课重点是创设问题情境,通过对可达到的一点和不可达到的一点的距离和不可到达的两点的距离的测量方法的探究,运用正余弦定理来解决解三角形相关的问题,让学生亲身经历和体验运用三角函数来解决实际问题的过程,培养学生抽象、概括、分析问题和解决问题的能力,使学生感受到“生活处处有数学”,提高应用数学的意识。
二、学生学习情况分析在本节课以前,学生已经学习了正余弦定理,基本掌握了利用正余弦定理解三角形,但对生活中数学问题还有待提高,建模能力较弱。
三、设计思想本节课的设计遵循从具体到抽象、从特殊到一般的原则,适当的运用多媒体辅助教学的手段,通过讨论、交流、合作的机制,适当的点拨、启发,创设民主合作、宽松活跃的课堂气氛,使学生人人积极参与,个个体验到成功的喜悦,培养学生积极主动,勇于探索的习惯,让学生掌握解三角形的一些简单的应用,领会数学思想方法,展现数学在现实生活中的魅力。
四、教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。
其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。
对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版必修5课题:《解三角形应用举例》教材:人教版教学目标:(1)学会使用测角仪和皮尺等测量工具,根据实际问题设计合适的方案来测量距离;(2)能够运用直角三角形的边与角的关系以及正弦、余弦定理等解三角形的知识,解决不可到达点的距离测量问题;(3)数学建模思想的体会与运用,知识与生活联系,解决生活中的实际问题,学以致用;(4)培养学生的小组合作交流与自主研究学习的能力;(5)指导学生学会评价分析与改进优化。
教学重点、难点:分析测量问题的实际情景,从而找到合适的测量距离的方法。
教学方法与手段:学生小组合作探究问题——设计解决问题的方案——交流学习——评价分析,采用问题启发教学、开放式交流讨论教学与师生合作研究等教学方式,使学生在探究式、开放式的教学思想与模式下学会学习、学会探究、学会与人合作、学会评价分析与改进优化,掌握运用课堂学科知识解决生活中的实际问题,做到学以致用。
教学内容设计:一、情境导入位于珠江新城的双子塔(西塔与东塔,西塔已竣工,东塔正在建)与海心塔是广州的标志性建筑,它们隔着珠江相望,并与中信广场形成广州的新中轴,其效果图如下图所示:探究活动一:假设你处于海心塔所在的海心沙岛上,如何测量海心塔与西塔的距离?(假设海心塔与西塔的底部在同一水平线上)测量工具为:测角仪与皮尺首先通过示图,了解测角仪的原理与作用测角仪常用于测量:(1)仰角与俯角(如图1);(2)方向角(如图2);(3)方位角(如图3)图1 图2 图3此问题在课前作为课后研究学习的资料让学生分小组合作研究,提出测量的设计方案。
二、学生设计方案交流从学生提交的测量设计方案中选取优秀的几个方案,让学生在课堂上作简短的介绍,让同学们交流学习。
三、分析与解决问题学生每介绍完一个设计的方案,教师要对该方案进行评价分析,指导设计组的学生进一步改进方案,并指导同学们从中学习方法、积累经验,进而总结思想方法。
交流方案一:(以张靖同学为组长来介绍)如图4,线段CA 表示西塔,线段DB 表示海心塔在海心塔的底部B 可测得CA 的仰角α,西塔CA 的高 度可通过电脑查得,记为h ,则由直角CAB ∆得海心塔与西塔的距离αtan h AB =教师指导学生评价分析方案一 图4 优点:(1)简单、明了,图简单、测量简单、计算简单; (2)采用直角三角形,熟悉、方便;(3)从主视图的角度分析问题,采用线段表示物体,符合示意图的要求; (4)懂得利用电脑查询西塔的高度,多样化解决问题。
不足与改进:(1)测角仪器本身的高度没有考虑,会产生误差。
改进如图5; 则两塔间的距离为 αtan dh AB -=(2)如果在AB 间有一幢较高的楼房挡住了视线,让测量者无法看到西塔的底部A ,而也不知两塔的底部在不在同一水平线上,则仰角α无法测量。
改进如图6,把测量的地点改到能看到西塔底部的地方,或是岛上的其它点,或是在海心塔的顶部测俯角;图5 图6αcot 1h AE =,βcot 2h EB =,CA αB D h仰角 ABC俯角水平线方向角 测量点北西东南αC A α B Dh d C D α β A B E h 2h 1两塔间的距离为 AEB EB AE EB AE AB ∠⋅⋅-+=cos 2222(3)图4至图6的方法都必须在已知海心塔和西塔的高度前提下才能求出,假若不知两塔的高度,能否求出两塔间的距离?思考问题:假若不知两塔的高度,如何测量两塔间的距离?组织同学们进行小组讨论,研究测量方案。
选取优秀的方案,让同学们交流学习。
可能出现的可行方案有:图7 图8在图7与图8中,都选取了一条基线EB = m ,把不可到达点的距离转化为可到达点的距离,而且对西塔的高度h 都是设而不求。
交流方案二:(以李弘杰为组长来介绍)如图9,从俯视图看,点A 表示西塔,点B 表示海心塔,在B 处测得A 在B 的西偏北β的方位上,从B 往正东方向走m 的距离,到达C ,测得此时A 在C 的西偏北α的方位上,由正弦 定理得:)sin(sin αβα-=m AB 所以)sin(sin αβα-=m AB 教师指导学生评价分析方案二 图9 优点:(1)从俯视图的角度分析问题,可避免高度产生的误差; (2)俯视图中,用点表示物体,示意图简单明了;(3)运用了基线进行测量计算,计算简便;可进一步改善为图10,把方位角改为方向角,这 样基线BC 就可以是随意的方向,只需方便测量, 且在同一水平线上。
图10 四、知识要点归纳解三角形的常用知识:CAαBDhd mβEACαβd GH mBEF DA Cαβ m B1、直角三角形的边与角的关系;2、正弦定理:R CcB b A a 2sin sin sin === 3、余弦定理:A bc c b a cos 2222-+=, B ac c a b cos 2222-+=C ab b a c cos 2222-+=,五、思想方法总结1、解决的思想是转化为解三角形的问题;2、应用解三角形解决实际问题的步骤:(1)分析:理解题意,分清已知与未知,画出示意图.(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解三角形的数学模型.(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解. (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解. 3、常用的两种示意图分析思路:主视图与俯视图;4、基线的作用是把不可到达点的距离测量问题转化为可到达点的距离测量;5、实际问题要考虑操作的可行性与细节处理。
六、进一步研究问题探究活动二:假如你处于珠江的一艘游轮上,游轮正匀速地往一个方向直线行驶,你能否测量海心塔与西塔的距离?(假设海心塔与西塔的底部以及游轮甲板均在同一水平线上)可行的方案如上图11与图12,注意基线的选择与角的测量。
课后作业:可将此问题布置给学生课后通过小组合作研究完成,每小组提出方案,全班进行方案的公布与评选。
《解三角形应用举例》教案说明一、 教材分析解三角形应用举例的知识编写在人教版必修5的第一章,承接在正弦定理与余弦定理的学习之后,是运用解三角形的知识解决实际生活中的测量问题。
二、 目的分析ADα βmBCθγ AD α βm BC θγ学习的目的在于应用。
在实际的问题情景中,引导学生应用解三角形的数学知识和方法加以分析与解决,以使学生加深对数学概念本质的理解,认识数学知识与实际的联系,并学会通过建立数学模型,运用数学知识、思想和方法解决一些实际问题。
三、过程分析教案设计的教学流程是:(1)课前:提出问题——学生小组合作探究问题——设计解决问题的方案;(2)课堂上:个别学生介绍设想与方案——同学间相互交流学习——老师指导学生对方案进行评价分析——老师对好的方面加以肯定与总结——老师针对不足提出问题——学生思考讨论——形成改善或优化方案——不同方案的比较——总结思想方法——提出新的问题让学生思考与探究;(3)课后:学生小组合作探究新的问题——写出设计方案——班上评选与交流学习。
设计的意图是:(1)围绕核心问题展开教学;(2)培养学生的自主学习与探究的能力,增强学生小组合作研究的意识;(3)让课堂成为学生交流学习的平台,集思广益,让学生敢于把自己的想法说出来,同时学会从别人的观点与言论中学取有效的信息来完善与提升自己。
四、教法分析根据不同的环节采用不同的教学方法:(1)问题式启发教学法:重点围绕核心问题探讨解决方案,从方案评价中引发对新问题的思考与探讨;(2)开放式交流讨论教学法:师生交流设计方案、评价方案、改善与优化方案;(3)师生合作学习探究教学法:在问题的探究中,老师既是学生的引导者,也是学生的合作者,师生合作,共同探究,形成一种良好的教学与研究氛围。
五、评价分析教学反馈:从课前收集的设计方案来看,很多学生不懂得如何运用所学知识入手解决实际问题,提出的方案也存在不少的漏洞;而课后绝大部分学生反映基本掌握此类问题的解题的思路,并能对新的探究问题较快地提出较为完善的解决方案。
教学预设效果的达成情况:学生能积极参与问题的探究、思考、讨论与解决,较好地进行了设计方案的交流、评价与优化,学生基本掌握运用数学知识解决实际问题的思路和方法。
教学反思:1、结合多种形式、多个角度,集中解决一个核心问题,并做好思想方法总结,实效性较好;2、这样的教学方式能使得课堂气氛活跃起来,能充分调动学生学习的积极性,激活思维,受学生喜欢,可以作为传统数学课堂的有效补充与继承发展;3、问题启发式教学值得注意与有待加强的地方:(1)设计问题时应考虑该问题是否有深入研究学习的价值,对课堂教学是否有帮助,对学生的思维是否有提升;(2)提问题应精简、明确,有针对性、启发性,能突出重点,体现关键点;(3)启发要得当,老师不能全权代办;4、开放式交流讨论教学值得注意与有待加强的地方:(1)时间的把握。
本节课绝大部分时间在解决探究问题一,若能有时间让学生对探究问题二进行小组讨论研究,并交流设想的话,效果会更好,问题能得到更好的深化,能力能得以更好地提升;(2)避免跑题。
学生对问题进行开放式交流与讨论,容易把问题过于发散而造成偏离主题,老师应注意把控。
5、课前设计方案的征集与课堂上方案的介绍交流,可以让老师较好地了解学生已掌握了哪些知识,具备了哪些能力,存在哪些疑难,从而确定应在课堂上着重教会学生什么、怎么教,提高课堂的有效性;而课后的探究活动可在对课堂所学知识进一步深化拓展的同时,了解学生的掌握程度,从而指导接下的教学。