第四章图形认识初步(教案)
七年级数学上第四章图形的初步认识单元教学计划
七年级数学上第四章图形的初步认识单元教学计划第四章:图形认识初步本章介绍了多种图形,包括立体图形和平面图形。
其中,点、线、角等是最基本的图形。
通过自主探究和实例,我们可以探索“两点确定一条直线”和“两点间线段最短”的性质,认识角以及角的表示方法、度量、画法、比较、余角和补角等。
此外,我们还可以探索比较线段长短的方法和线段中点。
这些概念都是认识复杂图形的基础,因此,本章在初中数学中占有重要的地位。
本章涉及到的主要数学思想和方法包括分类讨论思想、方程的思想和由特殊到一般的思想。
分类讨论思想可以解决直线上的点点位置不确定的问题,或者从公共端点出发的一条射线在角内或角外的不确定问题。
方程的思想则可以用于涉及线段和角度的计算中,通过列方程求解,可以清楚简捷地表示出几何图形中的数量关系。
由特殊到一般的思想则主要体现在依靠图形寻找规律的题中。
本章的教学重点包括角的比较与度量、余角和补角的概念和性质,以及直线、射线、线段和角的概念和性质。
教学难点则在于正确表达概念和性质的几何语言,以及建立空间观念。
本章的教学目标包括体验、感受和认识以生活中的事物为原型的几何图形,初步了解从具体事物中抽象出几何概念的方法,以及特殊与一般的辩证关系。
我们还可以画出从不同方向看一些基本几何体以及它们的简单组合得到的平面图形,了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象和制作立体模型。
通过丰富的实例,我们可以进一步认识点、线、面、体,理解它们之间的关系,并在平面图形和立体图形相互转换的过程中,初步建立空间观念,发展几何直觉。
此外,我们还可以逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形。
四、主要教学方法、手段、选用的教学媒体本章教学采用小组合作、讲授法和练法相结合的教学方法。
在教学过程中,将使用小黑板和班班通等多种教学媒体辅助教学。
五、课时安排本章教学时间约为16课时,具体分配如下:4.1几何图形约4课时,主要介绍基本几何图形的定义、性质及分类。
初中数学《第四章 图形认识初步》教学设计
初中数学《第四章图形认识初步》教学设计第四章图形认识初步单元要点分析教学内容本章主要内容有多姿多彩的图形,直线、射线、线段,角的度量,角的比较与运算.教材从生活中常见的立体与平面图形入手,通过实例,在丰富的现实情境中,使学生经历对几何体的研究的数学活动过程,认识一些常见的几何体及点、线、面的一些特征和性质;通过裁剪、展开、制作及从不同方向看等活动,在几何体与平面图形的转换过程中发展学生的空间观念;通过实例,在丰富的现实情境中,使学生经历对简单的平面图形直线、射线、线段与角的研究的数学活动过程,通过动手画图、线段的大小比较及角的度量、比较与运算等活动过程,理解并掌握这些图形的一些简单性质,感受丰富多彩的图形世界,并为今后进一步学习平面几何知识奠定基础.三维目标1.知识与技能(1)经历探究物体的形状与几何体的关系过程,•能从现实物体中抽象得出立体图形.(2)经历立体图形与平面图形的转换过程,•掌握一些简单的立体图形与平面图形的互相转化的技能.(3)经历对点、线、面、体关系的研究的数学活动过程,•建立平面图形与立体图形的联系.(4)经历画图等数学活动过程,掌握直线和角的一些简单性质;掌握直线、•射线、线段和角的表示方法;掌握角的度量方法.(5)在现实情境中,探索两条线段、两个角的比较方法及比较的结果,•探索线段与线段之间、角与角之间的数量关系.(6)认识线段的等分点,角的平分线、角角和补角的概念.2.过程与方法(1)会用掌握的几何体知识描述现实物体的形状,•在探索立体图形与平面图形的关系中,发展空间观念.(2)通过对本章的学习,学会在具体的现实情境中,抽象概括出数学原理.(3)学会在解决问题的过程中,进行合理的想象,进行简单的、•有条理的思考.(4)能在现实物体中,发现立体图形和平面图形.(5)能在具体的现实情境中,发现并提出一些数学问题.(6)通过小组合作、动手操作、实验验证的方法解决数学问题.3.情感态度与价值观.(1)积极参与数学活动的过程,敢于面对数学活动中的困难,•并能独立地或通过小组合作的方法,运用数学知识克服困难,解决问题.(2)通过对本章的学习,培养和提高抽象概括能力和空间想象能力,•体验数学活动中探索性和创造性,感受丰富多彩的图形世界.重、难点与关键1.重点:(1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;•初步建立空间观念.(2)掌握两点确定一条直线的性质,掌握两点之间线段最短的性质,•会用符号表示直线、射线和线段,会比较线段的大小,会画一条线段等于已知线段,了解两点距离的定义.(3)会用符号表示一个角,学会度量一个角,掌握余角和补角的性质,•理解角的平分线的定义,会比较两个角的大小,确定几个角的运算关系.2.难点:(1)立体图形与平面图形之间的互相转化.(2)从现实情境中,抽象概括出图形的性质,•用数学语言对这些性质进行描述.3.关键:(1)从实际出发,用直观的形式,让学生感受图形的丰富多彩,•激发学生学习的兴趣.(2)结合具体问题,让学生感受到学习空间与图形知识的重要性和必要性.课时划分4.1 多姿多彩的图形 2课时4.2 直线、射线、线段 2课时4.3 角 4课时数学活动 1课时回顾与思考 2课时教学设计4.1 多姿多彩的图形4.1.1 几何图形1.知识与技能(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,•探索平面图形与立体图形之间的关系.2.过程与方法(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力.(2)经历问题解决的过程,提高解决问题的能力.3.情感态度与价值观(1)积极参与教学活动过程,形成自觉、认真的学习态度,•培养敢于面对学习困难的精神,感受几何图形的美感;(2)倡导自主学习和小组合作精神,在独立思考的基础上,•能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性.重、难点与关键1.重点:从现实物体中抽象出几何图形,•把立体图形转化为平面图形是重点.2.难点:立体图形与平面图形之间的转化是难点.3.关键:从现实情境出发,通过动手操作进行实验,•结合小组交流学习是关键.教学过程一、引入新课1.打开电视,播放一个城市的现代化建筑,学生认真观看.2.提出问题:在同学们所观看的电视片中,有哪些是我们熟悉的几何图形?二、新授1.学生在回顾刚才所看的电视片后,充分发表自己的意见,•并通过小组交流,补充自己的意见,积累小组活动经验. 2.指定一名学生回答问题,并能正确说出这些几何图形的名称.学生回答:有圆柱、长方体、正方体等等.教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征.3.立体图形的概念.(1)长方体、正方体、球、圆柱、圆锥等都是立体图形.(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)(3)用幻灯机放映课本4.1-4的幻灯片(或用教学挂图).(4)提出问题:在这个幻灯片中,包含哪些简单的平面图形?(5)探索解决问题的方法.①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念.长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形.注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形.5.立体图形和平面图形的转化.(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,•让学生从不同方向看.(2)提出问题.从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?(3)探索解决问题的方法.①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形.②进行小组交流,评价各自获得的结论,得出正确结论.③指定三名学生,板书画出的图形.6.思考并动手操作.(1)学生活动:在小组中独立完成课本第119页的探究课题,然后进行小组交流,评价.(2)教师活动:教师对学生完成的探究课题给出适当、正确的评价,•并对学生给予鼓励,激发学生的探索热情.7.操作试验.(1)学生活动:让学生把准备好的墨水瓶包装盒裁剪并展开,•并在小组中进行交流,得出一个长方体它的平面展开图具有的一个特征:多样性.许多立体图形都能展开成平面图形.(2)学生活动:观察展开图,看看它的展开图由哪些平面图形组成?•再把展开的纸板复原为包装,体会立体图形与平面图形的关系.三、课堂小结1.本节课认识了一些常见的立体图形和平面图形.2.一个立体图形从不同方向看,可以是一个平面图形;•可以把立体图形进行适当的裁剪,把它展开成平面图形,或者把一个平面图形复原成立体图形,即立体图形与平面图形可以互相转换.注:小结可采取师生互动的方式进行,由学生归纳,教师进行评价、补充.四、作业布置1.课本第123页至第124页习题4.1第1~6题.2.选用课时作业设计.课时作业设计一、填空题.1.如下图所示,这些物体所对应的立体图形分别是:___________.二、选择题.2.如下图所示,每个图片都是由6个大小相同的正方形组成的,其中不能折成正方体的是().A B C D3.如下图所示,经过折叠能围成一个棱柱的是().A.①② B.①③ C.①④ D.②④三、解答题.4.桌上放着一个圆柱和一个长方体[如下图(1)],请说出下列三幅图[如下图(2)]分别是从哪个方向看到的.5.如下图,用4个小正方体搭成一个几何体,分别画出从正面、•左面和上面看该几何体所得的平面图形.6.如下图,动手制作:用纸板按图画线(长度单位是mm),沿虚线剪开,做成一个像装墨水瓶纸盒那样的长方体模型.答案:一、1.正方体、圆柱、圆锥、球、棱柱二、2.C 3.D三、4.分别是从左面、上面和正面看到的. 5~6.略4.1.1几何图形一、教学目标知识与技能通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.过程与方法:(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力.(2)经历问题解决的过程,提高解决问题的能力.情感态度与价值观:从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动,主动与他人合作交流的意识。
2023七年级数学上册第4章图形的初步认识4.5最基本的图形——点和线1点和线教案(新版)华东师大版
3. 随堂测试:
- 学生在随堂测试中能够准确回答问题和完成题目,表明他们对点和线的基本概念和性质有扎实的掌握。
- 学生能够运用所学的点和线的基本概念和性质解决实际问题,显示出良好的应用能力和解决问题的能力。
- 学生在测试中表现出良好的时间管理和答题策略,能够有效地完成题目。
4. 作业完成情况:
- 学生能够按时完成作业,作业质量符合要求,表明他们对课堂所学的内容有深入的理解和掌握。
- 学生在作业中能够正确运用点和线的基本概念和性质,解决实际问题,显示出良好的应用能力和解决问题的能力。
2. 对于难点内容,可以采取以下策略:
- 通过引导学生观察和分析实际问题,让学生亲身体验和感知点和线的性质,从而更好地理解和运用。
- 提供一些典型的例题和练习题,让学生通过动手操作和思考,逐步掌握解决实际问题的方法和技巧。
- 鼓励学生积极参与讨论和交流,引导学生运用逻辑推理和数学思维来解决问题,提高其解决问题的能力。
本节课的内容与学生的日常生活紧密相关,便于学生理解和接受。教学过程中,教师需要结合课本中的例题和练习题,让学生通过观察、思考、动手操作等方式,掌握点、线的基本概念和性质。同时,教师还需注意引导学生运用所学的知识解决实际问题,提高学生的数学应用能力。
在教学过程中,教师应注重培养学生的观察能力、思考能力和动手操作能力。通过本节课的学习,学生应能掌握点、线的基本概念和性质,并能在实际问题中运用这些知识。
设计课堂互动环节,提高学生学习点和线的积极性和主动性。
(二)课堂导入(预计用时:3分钟)
激发兴趣:
提出问题或设置悬念,引发学生的好奇心和求知欲,引导学生进入点和线的学习状态。
教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形
教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形《多姿多彩——几何图形》教案设计【教材分析】多姿多彩的图形中的几何图形,是人教版教材《数学》七年级上册第四章第一节的第一课时。
所含内容在小学阶段学生已有了感性认识,本课时以现实背景为素材,让学生亲自经历将实际问题抽象成数学模型的过程,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对空间图形的认识和感受。
本节课的知识是进一步学习平面几何以及立体几何的基础,具有承上启下的作用。
本节课是学习空间与图形的第一课时需要在情感上激发学生兴趣,培养学生学习数学的热情。
【教学目标】知识与技能:通过观察生活中的大量图片或实物,能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能认识一些简单几何体,能用语言描述它们的基本特性,并能对它们进行简单的分类;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系.过程与方法:经历探索平面图形与立体图形之间的关系,发展空间观念,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对几何图形的感性认识;培养动手操作能力,培养观察、抽象、归纳、概括、判断等思维能力以及分类的数学思想。
情感态度与价值观:经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩;激发对学习空间与图形的兴趣;通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识。
【教学重点】简单几何体的识别与分类。
【教学难点】从具体实物中抽象出几何图形及常见几何体的分类。
【教学关键】从现实情境出发,通过动手操作进行实验,结合小组交流学习是关键。
【教学方法】情境教学、实践探究、多媒体演示相结合。
【教学资源】多媒体辅助教学;圆柱、圆锥、正方体、长方体、棱柱、棱锥等简单几何体的实物和模型;三角形、正方形、长方形、正六边形纸片;牙签、胶泥等。
【教学过程】(一)创设情景,设疑导入师:同学们,我们的世界是五彩缤纷、绚丽多彩的。
新人教版初中数学七年级上册《第四章几何图形初步:4.3角》公开课教案_2
四、教学方法及教学思路
本人在农村中学任教,面对的都是乡土气息浓厚的农村孩子。由于诸多方面的原因,造成这样的现状:绝大多数学生基础薄弱,没有学习习惯,学习品质、竞争意识差,更没有学习中知难而上的信心和毅力。所以面对这样的教育主体,我们在激发学生的学习兴趣、引导探究发现的同时,一定要注意学生的听课状态,降低难度,干启不发时,直接入主题。同时不能过分强调和主张学生课后的自主学习,因为绝大多数学生没有自主学习的习惯和能力。所以很多技能需在课上培养、训练和提高。我这里的教学,接近“一对一”的教,“手把手”的学。很多问题课前就有预见,准备好解决策略和途径。
中学数学(角)
一、教案背景
课时:1课时
二、教学课题
1.教养方面:
通过系统学习,进一步认识角。
通过实物和具体模型,了解从物体外形抽象出来的平面图形。
初步认识图形,培养学生对学习图形与几何的兴趣,建立数学来源于生产、生活,服务于生产、生活的理念。
2.教育方面:
通过模型理解角的两种描述方法。
经历角的画法,进一步理解、认识角,提高画图技能,增强对图形的理解,为今后几何的学习做好准备。
能准确找出和表示简单至复杂图形中的角。
通过强化、重复训练,夯实角的认识,提高学习几何的信心。
三、教材分析
人教版七年级数学(上)《第四章 图形认识初步》第三部分的第一节 《角》的第一课时。
本章是图形与几何的起始章,是图形学习的第三学段。在本章,要进一步丰富学生对几何图形的感性认识,还要引导学生逐步认识一些基本图形的特征和性质。但这并不意味着要用严格的逻辑推理方式来展开学习,还是要强调在实际背景中直观理解图形的概念和特征,经历探索图形性质的过程。
第四章图形认识初步学案
第四章图形认识初步4.1.1几何图形(第一课时)年级: 七年级科目:数学执笔: 任旭审核:内容:第116—118页课型: 新课时间:2011-7学习目标1、通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2、能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.3、从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动,主动与他人合作交流的意识。
学习重点:识别简单几何体学习难点:从具体事物中抽象出几何图形学习过程一、探究与思考1.请同学们回答,小学时我们学过哪些图形?比如:___________________等等归纳:几何图形的定义是________________________。
立体图形的定义是________________________。
平面图形的定义是________________________。
2.几何图形的分类几何图形有很多,比如:棱锥、球、棱柱等立体图形,以及学过的三角形、梯形等平面图形圆柱柱体棱柱圆锥立体图形锥体棱锥球体几何图形长方形平面图形三角形圆……二、巩固训练1.先让我们来认识几种生活中常见的几何体,请在如图所示的横线上填写几何体的名称。
2.下列图形不是立体图形的是()A.球 B.圆柱 C.圆锥 D.圆3.下列立体图形中属于棱柱的是( )4.下列各图形都属于锥体的一组是()三、 学习检测 1. 判断题:A.每个棱锥的顶点只有一个。
( )B.棱柱没有顶点. ( )C.侧面上的棱都是侧棱。
( )D.长方体是棱柱,但正方体不是棱柱 ( )2.下列有关圆柱、圆锥相同点和不同点的描述错误的是( )A.围成圆柱、圆锥的面都是有曲面。
B.两者都有一个面是圆形的。
2022年人教版七年级上册数学第四章几何图形初步单元教案
第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形◇教学目标◇【知识与技能】1.通过实物和具体模型,认识从实物中抽象出来的几何图形;2.了解立体图形和平面图形的概念,并能归纳常见的立体图形和平面图形.【过程与方法】经历探索立体图形与平面图形之间的关系,发展空间观念.【情感、态度与价值观】体会把实物抽象出几何图形的过程.◇教学重难点◇【教学重点】识别一些基本几何图形.【教学难点】认识从物体外形抽象出来的几何图形.◇教学过程◇一、情境导入观察下图中的“鸟巢”,你能抽象出熟悉的几何图形吗?二、合作探究探究点立体图形与平面图形典例1下列图形中不是立体图形的是()A.四棱锥B.长方形C.长方体D.正方体[解析]几何图形的各部分不都在同一平面内的图形叫立体图形,几何图形的各部分都在同一平面内的图形叫平面图形.由定义可知A,C,D均为立体图形.[答案] B下列各组图形中都是平面图形的一组是()A.三角形、圆、球、圆锥B.点、线段、数学书的封面、长方体C.点、三角形、四边形、圆D.点、直线、线段、正方体[答案] C典例2将下列的几何体进行分类,并说出每个几何体的名称.[解析]分别根据柱体、锥体、球体的定义进行分类.[答案]柱体有(1)(2)(4)(7);锥体有(5)(6);球体有(3).(1)长方体(四棱柱);(2)三棱柱;(3)球;(4)圆柱;(5)圆锥;(6)四棱锥;(7)六棱柱.将下列几何体分类,柱体有;锥体有.(只填序号)[答案]①②③⑤⑥三、板书设计认识几何图形立体图形{柱体{棱柱圆柱锥体{棱锥圆锥台体{棱台圆台球体:球◇教学反思◇本节课的内容较简单,课堂上通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识;通过自主探究活动,让学生感受图形的形状特点,提升学生的空间想象能力.第2课时折叠、展开与从不同方向观察立体图形◇教学目标◇【知识与技能】1.会识别从正面、左面、上面看物体所得的平面图形;2.会画一些常见几何体及简单组合体从正面、左面、上面看物体所得的平面图形;3.直观认识简单立体图形的平面展开图.【过程与方法】在平面图形和立体图形的相互转化中,初步发展空间观念,发展几何直觉.【情感、态度价值观】通过探讨现实生活中的实物制作,激发学生学习的热情.【情感、态度与价值观】培养敢于面对困难的精神,感受几何图形的美感.◇教学重难点◇【教学重点】识别、画出简单几何体从正面、左面、上面看物体所得的平面图形,了解直棱柱、棱锥、圆柱、圆锥的平面展开图.【教学难点】由从正面、左面、上面看物体所得的平面图形,还原为实物图,根据平面展开图想象相应的几何体.◇教学过程◇一、情境导入对于一些立体图形的问题,常把它们转化为平面图形来研究处理,从不同的方向看立体图形,往往会得到不同形状的平面图形.例如放在桌面上的茶杯,从不同侧面得到不同的图形,你能用学过的诗句描述这种现象吗?二、合作探究探究点1会从正面、左面、上面看物体所得的平面图形典例1如图的几何体是由一个正方体切去一个小正方体形成的,从正面看得到的图形是()[答案] D下列水平放置的四个几何体中,从正面看得到的图形与其他三个不相同的是()[答案] D典例2一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小方块的个数,则从正面看到几何体的形状图是()[答案] D探究点2会画从正面、左面、上面看物体所得的平面图形典例3如图是由4个大小相等的正方体搭成的几何体,你能画出从正面、左面、上面看得到的平面图形吗?[解析]从正面、左面、上面看得到的平面图形分别如图所示:探究点3探究立体图形的展开图典例4如图所示,下列四个选项中,不是正方体表面展开图的是()[答案] C三、板书设计折叠、展开与从不同方向观察立体图形1.从不同的方向观察立体图形2.立体图形的展开图◇教学反思◇本节课的内容有点难度,主要是培养学生的空间观念和空间想象力.应鼓励学生多动手画图,让学生自主探索立体图形与平面图形之间的对应关系.4.1.2点、线、面、体◇教学目标◇【知识与技能】1.认识点、线、面、体的几何特征,感受它们之间的关系;2.探索点、线、面运动后形成的几何图形.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感、态度与价值观】培养学生积极主动的学习态度和自主学习的方式.◇教学重难点◇【教学重点】了解点、线、面、体是组成几何图形的基本元素,认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】探索点、线、面运动后形成的几何图形.◇教学过程◇一、情境导入如图是一个长方体,它有几个面?面和面相交的地方形成了几条棱?棱和棱相交成几个顶点?二、合作探究探究点1从静态角度认识点、线、面、体典例1如图所示的几何体是由几个面围成的?面与面相交成几条线?它们是直的还是曲的?[解析] 从图中可以看出该几何体由4个面组成,4个面相交成6条线,有2条是曲的.圆柱由 面围成,它有 个底面,是平的,有 个侧面,是曲的,底面与侧面相交形成的线有 条,是 (填“直的”或“曲的”). [答案] 3 2 1 两 曲的探究点2 从动态角度认识点、线、面、体典例2 将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为 ()[解析] 圆柱是由一长方形绕其一边长旋转而成的;圆锥是由一直角三角形绕其直角边旋转而成的;C 中该几何体是由直角梯形绕其下底旋转而成的;D 中该几何体是由直角三角形绕其斜边旋转而成的. [答案] D如图所示的图形绕虚线旋转一周,所形成的几何体是 ( )[答案] B 三、板书设计点、线、面、体点、线、面、体{定义关系{静态关系动态关系◇教学反思◇本节课在学生已有的数学知识基础上,由学生自己观察、发现、探究从对点的认识到对线、面、体的进一步认识,使学生经历运用图形描述现实世界的过程,进一步发展学生的抽象思维能力.4.2直线、射线、线段第1课时直线、射线、线段的概念◇教学目标◇【知识与技能】理解直线、射线、线段的概念及它们的联系与区别,掌握它们的表示方法.【过程与方法】能在现实情境中,进行抽象的数学思考,提高抽象概括能力.【情感、态度与价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】理解直线、射线、线段的概念、表示方法及它们的联系与区别.【教学难点】直线、射线、线段的表示方法;实现文字、图形、符号三种语言的相互转化.◇教学过程◇一、情境导入我们在小学已经学过线段、射线和直线,你能说说它们的区别和联系吗?二、合作探究探究点1探究直线的性质典例1下列语句中正确的个数是 ()①延长直线AB;②延长射线OA;③在线段AB的延长线上取一点C;④延长线段BA至C,使AC=AB.A.1个B.2个C.3个D.4个[答案] B探究点2线段在生活中的应用典例2我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州——宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印制的不同种类的火车票为()A.6种B.15种C.20种D.30种[解析]车票需要考虑往返情况,故有2(1+2+3+4+5)=30.[答案] D乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要制定种不同的票价.[答案]10三、板书设计直线、射线、线段的概念直线、射线、线段{直线:无端点,无长度射线:一端点,无长度线段:两端点,有长度◇教学反思◇本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象,教师在教学时要体现新课程的三维目标,并在有效地利用学生已有的旧知来引导学生学习新知.第2课时线段的比较◇教学目标◇【知识与技能】1.了解尺规作图的概念,会用尺规作图作一条线段等于已知线段;了解度量线段的两种方法,对线段进行大小比较.2.理解线段中点的概念,利用和、差、倍、分关系计算线段的长度.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.◇教学重难点◇【教学重点】线段的大小比较,利用和、差、倍、分关系计算线段的长度.【教学难点】线段的等分点表示方法及运用.◇教学过程◇一、情境导入小明和小华在比身高,以下是他们的对话:小明:“我身高1.5 m.”小华:“我身高1.53 m,比你高3 cm.”怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?二、合作探究探究点1尺规作图典例1如图,已知线段a,b,c(a>b),用圆规和直尺画线段,使它等于a-b+2c.[解析]如图所示:线段AE=a-b+2c.探究点2探索比较线段长短的方法典例2A,B,C三点在同一直线上,线段AB=5 cm,BC=4 cm,那么线段AC的长度是()A.1 cmB.9 cmC.1 cm或9 cmD.以上答案都不对[解析]第一种情况:C点在AB之间上,故AC=AB-BC=1 cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9 cm.[答案] C三、板书设计线段的比较线段的长短比较{度量法叠合法◇教学反思◇教师要尝试让学生自主学习,优化课堂数学的反馈与评价,通过评价激发学生的求知欲,坚定学生学习的自信心.第3课时线段的性质◇教学目标◇【知识与技能】1.掌握“两点之间,线段最短”的性质,并能熟练应用;2.理解两点的距离,并能计算线段中两点的距离.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】掌握“两点之间,线段最短”的性质及应用.【教学难点】两点的距离定义及计算.◇教学过程◇一、情境导入如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.二、合作探究探究点1探究线段性质典例1如图所示,设A,B,C,D为4个村庄,现在需要在四个村庄中间建一个自来水中心,请你确定一个点,使这4个村庄的居民到该中心的距离之和最小.[解析]如图,连接AC,BD交于O点,此时距离之和AC+BD为最小.如图所示,A,B是两个村庄,若要在河边l上修建一个水泵站往两村输水,问水泵站应修在河边的什么位置,才能使铺设的管道最短,并说明理由.[解析]如图所示,根据两点之间,线段最短,连接AB,交l于O点,则O点为水泵站位置.“两点之间,线段最短”这一定理在生活中有许多应用,例如修高速路时,隧道将路变直;铺水管时,走最短的路线等.探究点2两点间的距离典例2已知线段AB=10 cm,点C在直线AB上,试探讨下列问题:(1)是否存在一点C,使它到A,B两点的距离之和等于8 cm?并说明理由;(2)是否存在一点C,使它到A,B两点的距离之和等于10 cm?若存在,它的位置是唯一的吗?(3)当点C到A,B两点距离之和等于20 cm,试说明点C的位置,并举例说明.[解析](1)根据两点之间,线段最短,AC+BC最短距离为10 cm,故不存在合条件的点.(2)存在,这样的点不唯一,线段AB上任意一点均满足条件.(3)存在,在A、B两点外5 cm处的点均满足条件.三、板书设计线段的性质1.线段性质:两点之间线段最短2.两点的距离:连接两点间的线段的长度,叫做这两点间的距离◇教学反思◇本节课通过引导学生主动参与学习过程,探究出线段的性质,从中培养学生动手和合作交流的能力,解决生活中的数学问题是为了进一步巩固两点之间的距离的意义,渗透数形结合思想解决线段长问题,渗透分类讨论思想,训练学生思维严谨性.4.3角4.3.1角◇教学目标◇【知识与技能】1.从实例中建立角的概念,从静态和动态两方面理解角的形成,掌握角的两种定义形式;2.掌握角的四种表示方法,角的度量单位及其换算.【过程与方法】提高学生的识图的能力,学会用运动变化的观点看问题.【情感、态度与价值观】保持学习兴趣,养成积极探索的精神和合作意识,感受数学的价值.◇教学重难点◇【教学重点】角的概念与角的表示方法.【教学难点】角的度量单位及其换算.◇教学过程◇一、情境导入时钟的时针、分针组成的形状是?二、合作探究探究点1探究角的定义及表示方法典例1看图解答下列问题:(1)以A为顶点共有几个角?如何表示?(2)以D为顶点共有几个角?如何表示?(3)图中能用一个大写字母表示的角有几个?分别是哪些角?∠BAC能用∠A表示吗?为什么?(4)图中共有几个角?[解析](1)以A为顶点共有3个角,分别是∠3,∠4,∠BAC.(2)以D为顶点共有8个角,分别是∠5,∠6,∠BDA,∠7,∠EDC,∠8,∠ADG,∠BDG.(3)能用一个大写字母表示的角有2个,分别是∠B,∠C;∠BAC不能用∠A表示,因为以A为顶点的角不止一个角.(4)图中共有17个角.探究点2角的度量典例2(1)填空:①57.18°=度分秒;②17°31'48″=度.(2)解答:38°15'与38.15°相等吗?如不等,谁大?[解析](1)①571048②17.53(2)因为38.15°=38°9',38°9'<38°15',所以38°15'大.(1)36.33°可化为()A.36°30'3″B.36°33'C.36°30'30″D.36°19'48″(2)15°24'36″=°.[答案](1)D(2)15.41°【技巧点拨】用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位乘以进率;而小单位化大单位要除以进率.三、板书设计角角{角的概念角的表示方法度、分、秒的换算◇教学反思◇通过本节课的学习,学生做到了以下三个方面:首先,理解角的定义并掌握角的四种表示方法.其次,能够熟练进行度、分、秒的换算,为接下来角的和差运算打下良好的基础.最后,形成严谨的学习态度.4.3.2角的比较与运算◇教学目标◇【知识与技能】1.掌握角的大小比较方法和角的和差运算;2.理解角平分线的定义及表示方法并能在实际情景中应用.【过程与方法】经历比较角的大小、用量角器画角平分线、用折纸法确定角平分线的过程,积累活动经验,培养动手操作能力.【情感、态度与价值观】让学生认识到用新知识构建新意义的过程,增强学生学习数学的愿望和信心,培养学生爱思考,善于交流的良好的学习习惯.◇教学重难点◇【教学重点】理解角平分线的定义.【教学难点】角平分线的定义、表示及应用.◇教学过程◇一、情境导入前面我们已经学习了比较两条线段的方法,那么怎样比较两个角的大小呢?二、合作探究探究点1角的大小比较典例1如图,射线OC,OD分别在直角∠AOB的内部,外部,则下列各式正确的是()A.∠AOB<∠BOCB.∠AOB=∠CODC.∠AOB<∠AODD.∠BOC>∠DOC[解析]∠BOC在∠AOB的内部,所以∠AOB>∠BOC,A错误;∠AOB与∠COD无重叠的边,∠AOB在∠AOD的内部,所以∠AOB<∠AOD,C正确;同理可得D错误.[答案] C探究点2探究角的和差运算典例2计算:(1)65°53'26″+37°14'53″;(2)106°27'30″-98°25'42″;(3)23°25'24″×4;(4)102°48'21″÷3.[解析](1)65°53'26″+37°14'53″=102°8'19″.(2)106°27'30″-98°25'42″=8°1'48″.(3)23°25'24″×4=93°41'36″.(4)102°48'21″÷3=34°16'7″.计算:(1)45°4'+2°58'=;(2)180°-72°55'=;(3)108°×5=;(4)180°26'÷5=.[答案](1)48°2'(2)107°5'(3)540°(4)36°5'12″探究点3探究角平分线的定义及表示典例3如图,OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,如果∠AOE =130°,求∠BOD 的度数.[解析] 因为OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,所以∠COB =12∠AOC ,∠COD =12∠COE ,所以∠BOD =∠COB +∠COD =12(∠AOC +∠COE )=12∠AOE =65°.三、板书设计角的比较与运算角的比较与运算{角的大小比较角的和差运算角平分线的定义及相关计算◇教学反思◇在讲授知识的过程中必须对旧的知识进行适当的复习,使学生能对角的知识有一个更深的记忆.在角的形象比较中,要努力引导学生的思维方向.重叠法是一个难点,但此法比较适用于实际中的比较.对于角度的计算要设计各个类型的教学.4.3.3余角和补角◇教学目标◇【知识与技能】1.掌握余角、补角的定义、性质及应用;2.理解方位角的意义,会画方位角.【过程与方法】经历余角、补角性质的推导和应用过程,初步掌握图形语言与符号语言之间的相互转化,进一步提高识图能力,发展空间观念.【情感、态度与价值观】通过互余、互补性质的学习过程,培养善于观察、独立思考、合作交流的良好学习习惯.◇教学重难点◇【教学重点】方位角的辨析与应用.【教学难点】余角、补角的性质及应用.◇教学过程◇一、情境导入知识回顾(1)叙述直角、平角的概念.(2)画出直角、平角的图形.二、合作探究探究点1探究余角、补角的性质典例1点A,O,B在一直线上,射线OD,OE分别平分∠AOC和∠BOC.(1)图中互余的角有对;(2)∠3的补角是.[解析](1)由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对;(2)∠3的补角是∠AOE.[答案](1)4(2)∠AOE探究点2角的计算还多1°,求这个角.典例2一个角的补角与这个角的余角的和是平角的34×180+1,解得[解析]设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,则(90-x+180-x)=34x=67.答:这个角为67°.,则这个角的度数是.一个角的补角与它的余角的2倍的差是平角的13[答案]60°探究点3方位角典例3如图,O点是学校所在位置,A村位于学校南偏东42°方向,B村位于学校北偏东25°方向,C村位于学校北偏西65°方向,在B村和C村间的公路OE(射线)平分∠BOC.(1)求∠AOE的度数;(2)公路OE上的车站D相对于学校O的方位是什么?(以正北、正南方向为基准)[解析](1)因为A村位于学校南偏东42°方向,所以∠1=42°,则∠2=48°.因为C村位于学校北偏西65°方向,所以∠COM=65°.因为B村位于学校北偏东25°方向,所以∠4=25°,所以∠BOC=90°.因为OE(射线)平分∠BOC,所以∠COE=45°,∠EOM==20°,所以∠AOE=20°+90°+48°=158°.(2)由(1)可得∠EOM=20°,则车站D相对于学校O的方位是北偏西20°.三、板书设计余角和补角余角和补角{余角、补角的性质余角、补角的计算方位角◇教学反思◇对于七年级学生来说,他们在生活中已有一定的确定位置的经验,方位角的概念、方位角的表示是学生在小学就有所了解的,但根据题意画出方位角以及运用方位角的知识确定点的方位是学生不熟悉的.。
华东师大版七年级数学上册第四章图形的初步认识优秀教案
华东师大版七年级数学上册第四章图形的初步认识优秀教案华东师大版七年级数学上册第四章图形的初步认识优秀教案4.1生活中的立体图形教学目标知识技能目标能把生活中的空间与图形转化为数学问题,初步认识图形的分类.过程性目标1.通过观察,使学生对身边的立体图形有初步的感受;2.提高空间想象力,培养好奇心和求知欲,激发学习几何的热情.教学过程一.创设情境师: 同学们, 不知你们有没有认真地观察过我们生活的周围,如果你认真观察的话,你会发觉我们周围的物体的形状是千姿百态的.其实这些美好的事物,跟我们的数学有很大的联系,因为它包含着许多图形的知识.我们生活在三维的世界中,随时随地看到的和接触到的物体都是立体的.有些物体,像石头、植物等呈现出极不规则的奇形怪状;同时也有许多物体具有较为规则的形状.师: 请同学举出一些生活中的立体图形.比一比谁想出的图形最多〔由学生答复,教师总结〕.生: 橙子、苹果、西瓜、菠萝等;其它,还有人类制造的:中国传统建筑、钟楼、书、蛋筒冰湛淋等等.二.归纳探究师: 请同学认真观察上面的图形,想一想,你能发觉这些物体与以下图中的立体图形的关系吗?请学生答复:比拟一下这些图形,看看这些图形有什么相同的地方,有什么不相同的地方?教师归纳:如图1.图2所表示的立体图形我们把它叫做柱体;图3.图5所表示的立体图形我们把它叫做锥体, 图4所表示的立体图形我们把它叫做球体.图1和图2.图3和图5之间还有肯定的差异.图1表示的图形我们把它叫做圆柱.图2表示的图形叫做棱柱,棱柱按棱数分类又可以分为三棱柱、四棱柱、五棱柱、六棱柱等等〔如以下图〕.图3所表示的图形叫做圆锥,图5表示的图形叫做棱锥.棱锥按棱数分类又可以分为三棱锥、四棱锥、五棱锥、六棱锥等等〔如上图〕.同学们请思考一下,上图中的图形有什么共同的特征吗?请学生自己探讨总结:生: 上图中的立体图形都有一个共同的特征,就是它们的面都是平的.师: 如果一个立体图形的面都是平的,像这样的立体图形,我们把它叫做多面体.三.实践应用写出以下立体图形的名称.〔1〕〔2〕〔3〕〔4〕.(答案)〔1〕四棱柱;〔2〕圆柱;〔3〕长方体;〔4〕圆锥.4.1生活中的立体图形教学目标:知识与技能目标:通过本节课的学习,让学生直观认识规则的立体图形,正确识别各类立体图形。
2022年人教版七年级数学上册第四章几何图形初步教案 直线、射线、线段(第1课时)
第四章几何图形初步4.2 直线、射线、线段第1课时一、教学目标【知识与技能】1.知道直线的两个基本特征,会用两种方法表示一条直线.2.知道点和直线的两种位置关系,会按照语句画出点和直线位置关系的图形.3.知道两条直线相交及交点的意义,会按照语句画出直线相交的图形.【过程与方法】能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.【情感态度与价值观】初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】射线,线段的概念及表示法.【教学难点】射线的表示法和直线,射线,线段之间的区别与联系.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规、铅笔。
六、教学过程(一)导入新课同学们,你们注意过吗,建筑工人在砌墙时经常会在墙的两头分别固定两根木桩,然后在木桩之间拉一条细绳,沿着细绳砌砖.这样做有什么道理呢?(出示课件2)(二)探索新知1.师生互动,探究直线、线段、射线的概念教师问1:过一点O可以画几条直线?过两点A,B可以画几条直线?(出示课件4)学生回答:过一点可以画无数条直线;过两点只能画一条直线.教师讲解:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线.教师问2:如果你想将一根木条固定在墙上并使其不能转动,至少需要几个钉子?你知道这样做的依据是什么吗?学生回答:至少需要两个钉子;依据;两点确定一条直线。
教师问3:如图,有哪些方法可以表示下列直线?(出示课件9)师生共同探究:我们可以用一条直线上的两点来表示这条直线.譬如,直线上一点是点C,直线上另一点是点E,这条直线可以记作直线CE或者直线EC.需要强调的是,点必须用大写字母表示,所以这里的A、B都是大写字母.教师问4:表示直线还有第二种方法.如何表示呢?师生共同解答如下:在这条直线的旁边写上小写字母m,这条直线可以记作直线m。
《认识基本图形》教案设计
《认识基本图形》教案设计一、教学内容本节课选自教材《数学》第一册第四章《几何初步》,详细内容为第一课时“认识基本图形”。
通过本节课的学习,学生将认识并掌握基本的二维图形,包括正方形、长方形、圆形、三角形和梯形。
二、教学目标1. 知识与技能:学生能够识别并描述基本图形,理解图形的基本属性,如边和角。
2. 过程与方法:培养学生运用观察、比较、分类等方法,提高解决问题的能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养细心观察、积极思考的良好习惯。
三、教学难点与重点教学重点:认识基本图形,掌握图形的基本属性。
教学难点:区分不同图形的特征,理解图形之间的联系。
四、教具与学具准备教具:多媒体课件、实物模型。
学具:练习本、铅笔、直尺、圆规。
五、教学过程1. 导入:通过展示生活中常见的图形,引导学生观察并说出它们的名字,激发学生的学习兴趣。
2. 新课导入:讲解基本图形的定义和特征,通过实物模型和多媒体课件进行演示。
教学细节:教师讲解,学生观看演示,教师提问,学生回答。
3. 例题讲解:通过讲解典型例题,引导学生运用所学知识解决问题。
教学细节:教师讲解例题,学生跟随解题过程,教师进行点评。
4. 随堂练习:学生独立完成练习题,巩固所学知识。
教学细节:学生做题,教师巡回指导,解答疑问。
六、板书设计1. 认识基本图形2. 内容:(1)基本图形:正方形、长方形、圆形、三角形、梯形(2)图形属性:边、角(3)图形之间的关系七、作业设计1. 作业题目:(2)观察生活中的图形,选择一个进行描述,说明其特点。
2. 答案:(1)见学生作业。
(2)示例:我选择的图形是红绿灯。
它由三个圆形组成,分别为红色、黄色和绿色。
这三个圆形依次排列,表示交通信号灯的三个阶段。
八、课后反思及拓展延伸本节课通过讲解和实践,使学生掌握了基本图形的认识。
课后,教师应关注学生的学习反馈,对学生的作业进行认真批改和指导。
拓展延伸:引导学生观察生活中的图形,发现更多的图形特点,提高学生的观察能力和创新能力。
七年级数学第四章教案
4.1.1几何图形(第1课时)一、教学目标1.知道图形分为立体图形和平面图形,能辨认常见的立体图形和平面图形.2.知道立体图形的某些面是平面图形,会在立体图形中指出平面图形,培养空间观念.二、教学重点和难点1.重点:辨认常见的立体图形.2.难点:辨认棱柱、棱锥.三、教学过程(教学说明:本节课用到的教具较多,课前需要作认真的准备)(一)创设情境,导入新课师:从今天开始,我们将学习第四章图形认识初步.(板书:第四章几何图形初步)本节课我们首先学习什么是图形.(板书:图形)(二)尝试指导,讲授新课师:什么是图形?在小学里,在日常生活中,我们已经接触过很多图形.师:(出示正方体模型)这是什么图形?生:正方体.(没有学生知道,教师直接告诉)师:(将画有正方体的纸贴到黑板上)这张纸上画的是什么图形?生:正方体.(师板书:正方体)(以下师依次出示长方体、圆柱、圆锥、球的模型,教学过程同上)师:(出示三棱柱模型)这是什么图形?生:……(学生很可能回答不出)师:这个图形叫棱柱.师:(将画有三棱柱的纸贴到黑板上)这张纸上画的是什么图形?生:棱柱.(师板书:棱柱)师:(出示六棱柱模型)这又是什么图形?生:……(学生很可能回答不出)师:这个图形也是棱柱.师:(将画有六棱柱的纸贴到黑板上)这张纸上画的是什么图形?生:棱柱.(师板书:棱柱)师:(三棱柱、六棱柱的棱垂直桌面放置)这两个图形都是棱柱,但它们的形状还是有不一样的地方,有什么不一样的地方?生:……(多让几位同学说)师:(演示三棱柱)这个棱柱相对的这两个面都是三角形,(演示六棱柱)这个棱柱相对的这两个面都是六边形,所以我们把这个棱柱叫做三棱柱,(板书:三)把这个棱柱叫做六棱柱.(板书:六)师:(三棱柱的棱平行桌面放置)三棱柱像我们生活中见过的什么东西?生:……(多让几位同学说)师:三棱柱挺像是一个帐篷.师:(六棱柱的棱垂直桌面放置)六棱柱像我们生活中的什么东西?生:……(多让几位同学说)师:六棱柱挺像是一个茶叶盒.(也可说其它东西)(以下师依次出示四棱锥、五棱锥,教学过程与棱柱教学基本相同)师:(指模型)刚才我们看了正方体、长方体、圆柱、圆锥、球、棱柱、棱锥,这些图形有什么共同的特点呢?(稍停)它们都是立体图形.(板书:立体图形)师:(指板书)这些立体图形在我们生活中都是常见的,请大家把课本翻到118页,(稍停)上面一排印了一些实物,这些实物是什么东西?生:地球仪、魔方、现代汉语词典、沙堆、铅笔、建筑物.师:这些实物是什么立体图形呢?请大家把实物与下面一排的图形用线连起来.(生连线,师巡视)师:说说你是怎么连线的?生:……师:这位同学连得对不对?(有不对的,其他同学纠正)(三)试探练习,回授调节1.师出示一些大图片,让学生找立体图形.(四)试探练习,回授调节练习.2.课本P116(只要求学生回答:各立体图形的表面中包含哪些平面图形?如第一个立体图形的表面中有2个圆,又如第三个立体图形的表面中有2个五边形、5个长方形.如果学生对第五个立体图形的感知有困难,师可以告诉这个立体图形的构成,即上面是一个棱锥,下面是一个长方体.答题用口答形式)(五)归纳小结,布置作业师:本节课我们学习了什么是图形,图形分为立体图形和平面图形.虽然立体图形和平面图形是两种不同的图形,但它们之间是有联系的,什么联系呢?生:立体图形的某些面是平面图形.(作业:P习题1.2.3.做在课本上)121四、课后反思4.1.2点、线、面、体(第1课时)一、教学目标1.认识体、面、线、点的概念,从静态角度认识体、面、线、点之间的关系,即“体由面围成,面面相交成线,线线相交成点”.2.从动态角度认识点、线、面、体之间的关系,即“点动成线,线动成面,面动成体”.3.通过观察图形,了解图形是由点、线、面、体组成的.二、教学重点和难点1.重点:点、线、面、体的概念及其关系.2.难点:点动成线,线动成面,面动成体.三、教学过程(一)创设情境,导入新课师:上节课我们学习了什么是图形,通过学习我们知道,图形分为立体图形和平面图形.(边讲边出示模型)正方体、长方体、圆柱、圆锥、球、棱柱、棱锥都是立体图形,而正方形、长方形、三角形、平行四边行、梯形、五边形、六边形、圆、扇形都是平面图形.立体图形与平面图形相互之间是有联系的,立体图形的某些面是平面图形.无论立体图形还是平面图形都是图形,无论我们走到哪里,我们所看到的无处不是图形,我们生活在图形的世界里!小到一粒沙子是图形,大到整座城市也是图形.大家可以欣赏欣赏课本115页上的那个图形,(稍等)这个图形画的是什么?生:北京奥林匹克公园.师:你能把北京奥林匹克公园的情况向大家介绍一下吗?生:北京奥林匹克公园的中心是可容纳8万人的国家体育场,周围分布着田径、体操、游泳等14个场馆,整个公园占地1215公顷,总建筑面积约200万平方米.师:这么大的北京奥林匹克公园也可以看成是一个图形,这个图形真是够大的.大家仔细看看这个图形,里面到底有一些什么东西?生:……(学生列举出来的可能是实物,如建筑物、树等等,要多让几位同学说)师:在这个图形中同学们找出了不少东西,但恐怕还没有找全.老师不用看图形,就敢说,北京奥林匹克公园这个图形中只有四样东西.这么大的图形中怎么只有四样东西?是的,只有四样东西.这就神了,这四样东西是什么东西呢?这四样东西就是点、线、面、体.(板书课题:4.1.2点、线、面、体)本节课我们就来学习点、线、面、体.(二)尝试指导,讲授新课师:任何复杂的图形都是由点、线、面、体组成.(板书:图形由点、线、面、体组成)师:什么是体?(板书:体)有体积的东西都是体.长方体、正方体、圆柱、圆锥、球、棱柱、棱锥都是体.师:你能举出生活中是体的东西?生:……(多让几位同学说)师:生活中的体有很多很多,一个土豆是体,一头牛是体,一个人的身体是体,一幢房子也是体.一样东西只要有体积,不管是什么形状,都是体.师:什么是面?(板书:面,并演示长方体模型)包围着体的是面.这个长方体共有几个面?生:6个.师:(演示长方体模型)这6个面都是平平的.师:(出示圆柱模型)包围着圆柱的是面,这个圆柱有几个面?生:……师:(演示圆柱模型)这个圆柱有3个面,这个面和这个面是平平的,这个面是弯曲的.师:(出示圆锥模型)包围着圆锥的也是面,这个圆锥有2个面,哪一个是平平的?哪一个是弯曲的?(生上台指出来)师:从上面的讨论,我们可以知道,面有两种,一种是平面,一种是曲面.(板书:(平面、曲面))在生活中,我们也能找到平面和曲面的例子,譬如,平静的水面给我们留下平面的印象,而有浪的水面给我们留下曲面的印象.师:什么是线?(板书:线)这就是线.(边讲边画一条直线、一条曲线)线也有两种,笔直的是直线,弯曲的是曲线.(板书:(直线、曲线))师:(指模型)你能在这些立体图形中找出直线和曲线吗?(多让一些学生找)师:在生活中,我们同样能找到很多线的例子,譬如,课桌的边沿、织卡垫的线、寺庙壁画优美的线条、夜晚流星划过天空时的那一道光线,这些都给我们留下线的印象.师:什么是点?(板书:点)这就是点.(边讲边画点)师:知道了点、线、面、体是什么,就不难想像,任何图形都是由点、线、面、体组成的,北京奥林匹克公园这个图形当然也是由点、线、面、体组成的.(三)试探练习,回授调节2.课本P122练习1,2.(四)归纳小结,布置作业师:本节课我们学习了点、线、面、体.图形是由点、线、面、体组成的,点、线、面、体之间有两种联系,第一种关系是什么?生:……师:第二种关系是什么?生:……(作业:阅读4.1几何图形P114-P117)四、课后反思4.2直线、射线、线段(第1课时)一、教学目标1.知道射线、线段的意义,会表示射线和线段,会按语句画出射线和线段.2.知道直线、射线、线段的区别和联系3.会画线段的和、线段的差. 二、教学重点和难点1.重点:画线段的和、差.2.难点:画线段的差. 三、教学过程(一)基本训练,巩固旧知1.用尺子量的方法画一条线段AB ,使线段AB =a.2.用圆规截取的方法画一条线段BC ,使线段BC =b.(二)尝试指导,讲授新课(师出示右图) 师:(指图)这是线段a ,这是线段b ,线段a 与线段b 的和是什么意思? 生:……(多让几位同学发表意见,要肯定学生回答中的合理部分) 师:(在图中比划)把线段a 、线段b 的端点接起来,得到一条线段,这条线段就是线段a 与线段b 的和.怎么画出线段a 线段b 的和呢?请大家做下面的探究题.3.探究题:如图,已知线段a 、b ,画一条线段,使这条线段等于a +b.(生做探究题,师将探究题板书后巡视)师:不少同学画出了线段a 与线段b 的和,你是怎么画的?把你的画法在小组里交流.abba b a(生小组交流,师巡视倾听) 师:(以下师生同步画)下面我们一起来画线段a 与线段b 的和.(边讲边画)先画一条直线,再在直线上画线段AB =a ,怎么画线段AB =a ? 生:……(用尺子量或用圆规截取)师:用圆规截取要方便一些.(边讲边用圆规截取,并标上字母A 、B )然后再画线段BC =b (边讲边用圆规截取,并标上字母C ) 师:(指图)哪一条线段等于a +b ? 生:AC.(多让几位同学回答) 师:(指准图)从画图过程可以看出,AB =a ,BC =b,所以AC =a +b.线段AC 就是所要画的线段(板书:线段AC 就是所要画的线段).师:(指图)这是线段a ,这是线段b ,线段a 与线段b 的差是什么意思? 生:……(多让几位同学发表看法,要肯定学生回答中的合理部分) 师:(在图中比划)在线段a 中减去线段b ,剩下的得到一条线段,这条线段就是线段a 与线段b 的差.怎么画出线段a 与线段b 的差呢?请大家做下面探究题.(师将黑板上探究题中的a +b 改为a -b )4.探究题:如图,已知线段a 、b ,画一条线段, 使这条线段等于a -b.(生做探究题,师巡视引导)师:画好的同学请举手.(生举手)请大家把自己的画法在小组里交流. (生小组交流,师巡视倾听) 师:(以下师生同步画)下面我们一起来画线段a 与线段b 的差.(边讲边画)先画一条直线,再在直线上画线段AB =a.画线段AB =a 可以用尺子量的方法来画,也可以用圆规截取的方法来画,一般来说,用圆规截取方法来画比较方便,我们就用圆规截取方法来画(边讲边用圆规截取,并标上字母A 、B ).然后再画线段BD =b (边讲边用圆规截取,并标上字母D ),(指图)因为画的是线段的差,所以BD 的截取方向与BC 的截取方向正好相反. 师:(指图)哪一条线段等于a -b ? 生:AD.(多让几位同学回答) 师:(指准图)从画图过程可以看出,AB =a ,BD =b,所以AD =a -b.线段AD 就是所要画的线段(板书:线段AD 就是所要画的线段). (三)试探练习,回授调节5.如图,已知线段a 、b 、c ,画一条线段, 使它等于a +b -c.6.如图,已知线段a 、b ,画一条线段,使它等于2a -b.7.如图,填空:(1)BC +CD = ; (2)AC +CD = ;bac ba ba D C B(3)AC-AB=;(4)AD-AB=.(四)归纳小结,布置作业师:本节课我们学习了如何画线段的和、线段的差,哪位同学能用自己的话说说画线段的和与画线段的差有什么不一样?生:……(多让几位同学说)习题9.)(作业:P130四、课后反思:4.3.1角(第1课时)一、教学目标1.会用量角器量角,会用量角器画出任何给定度数的角.2.知道1°=60′,1′=60″,会进行度分互化.二、教学重点和难点1.重点:用量角器量角,画角.2.难点:度分互化.三、教学过程(一)尝试指导,讲授新课师:同学们会用尺子量出一条线段的长度吗?生:会.师:用尺子能量出一条线段的长度,用量角器也能量出一个角的角度,如何用量角器量出一个角的角度呢?请大家完成这道探究题.(师出示探究题)1.探究题:用量角器量出下面两个角的度数.(生做探究题,师巡视指导)师:有些同学已经量出了这两个角的度数,你是怎么量的呢?把你的想法告诉小组里的其他同学.(生小组交流,师巡视倾听)师:下面我们一起来量一量(指第一个角)这个角的度数.(以下师生同步操作)怎么用量角器量角的度数呢?(板书:用量角器量角)第一步:对线(板书:对线),使量角器的零度线与角的一边重合,注意:零度线不是量角器的边缘;第二步:对中(板书:对中),使量角器的圆心与角的顶点重合;第三步:读数(板书:读数),看角的另一边落到量角器的哪一条刻度线上,读出角的度数.这个角的度数是多少?生:45°.(师在图中画弧并标上45°)(以上教学要慢点,必要时可以重复,要讲一步检查一步,检查每一个学生的操作是否到位)师:按照对线、对中、读数三步,请大家再量一下(指第二个角)这个角的度数,(生量角,师巡视)师:下面我们一起来量一量(指第二个角)这个角的度数.(教学过程同上) (二)试探练习,回授调节 2.填空:(1)如图,用量角器量角,∠B = ;(2)如图,用量角器量角,∠O(3)如图,用量角器量角,∠E(4)如图,用量角器量角,∠P = ; 3.如图,填空:(1)如图,用量角器量角,∠A = °; (2)如图,用量角器量角,∠B = °; (3)如图,用量角器量角,∠C = °;(4)∠A +∠B +∠C = °+°+ °= °. (三)尝试指导,讲授新课B AE A P AB C师:给我们一个角,我们会用量角器量出它的度数;反过来,告诉我们一个角的度数,又怎么画出这个角呢?请大家独立完成下面的探究题.(师出示探究题)4.探究题:请你用量角器画出36°角和108°角,通过画角你认为用量角器画角有哪几步?(生做探究题,师巡视指导)师:下面我们一起来画36°角.(以下师生同步操作)怎么用量角器画角呢?(板书:用量角器画角)第一步:画线(板书:画线),画一条射线,射线的端点就是要画角的顶点;第二步:画点(板书:画点),使量角器的零度线与这条射线重合,使量角器的圆心与这条射线的端点重合,在量角器36°刻度线上画点;第三步:画线(板书:画线),以这(指准点)一点为端点,经过这(指准点)一点画射线.这样我们就画出了36°角.(在角上画弧线并标上36°)师:按照画线、画点、画线三步,请大家再画一下108°角.(生画角,师巡视)师:下面我们一起来画108°角.(教学过程同上)(四)试探练习,回授调节5.用量角器画出60°角、120°角.(五)尝试指导,讲授新课师:(出示1度角)这个角的度数是1度,1度角张口已是很小了,为了更精密地度量角,(比划等分过程)我们把1度角60等分,可以想象,每一份角的张口就很小很小了,这每份叫做1分角.所以1度等于60分(边讲边板书:1°=60′).同样道理,我们还可以把1分角60等分,可以想象,每一份角的张口就更小更小了,这每份角叫做1秒角.所以1分等于60秒(边讲边板书:1′=60″).例1 填空:(1)180′=°;(2)43°78′=°′;(3)90°=°60′;(4)51.6°=°′.(六)试探练习,回授调节6.填空:(1)120′=°;(2)5°=′;(3)26°305′=°′; (4)43.2°=°′.(七)归纳小结,布置作业师:本节课我们学习了什么?生:……(作业:P134练习 1.2.P139习题 2.)四、课后反思:4.3.2角的比较与运算(第1课时)一、教学目标1.知道角平分线的意义,会画一个角的平分线.2.会结合图形进行角度的运算. 二、教学重点和难点1.重点:角平分线的意义,角度的运算.2.难点:结合图形进行角度的运算. 三、教学过程(一)尝试指导,讲授新课(师出示右图) 师:(指图)∠AOC 是一个角,(边讲边用彩笔画)射线OB 把∠AOC 分成了两个角,是哪两个角?生:∠AOB 与∠BOC.(师在角上加弧) 师:(指准图)如果∠AOB =∠BOC 的话(板书:∠AOB =∠BOC ),我们就说射线OB 是∠AOC 的角平分线(板书:射线OB 是∠AOC 的平分线) 师:由这个例子,哪位同学来说说什么是角平分线? 生:……(多让几位同学说) 师:(指准图)把一个角分成相等的两个角的射线,叫做这个角的平分线. (二)试探练习,回授调节1.如图,射线AC 是∠BAD 的平分线,∠BAC =25°, 则∠CAD = °,∠BAD = °2.如图,射线OB 是∠AOC 的平分线,∠AOC =120°, 则∠AOB = °,∠BOC = °3.如图,射线OC 是∠AOB 的平分线,则:(1)∠AOB=2∠ =2∠ ;(2)∠(第2题图) (第3题图)COACD BAOB AC4.如图,射线OP 是∠AOB 的平分线,则: (1)∠AOB = °; (2)∠AOP = °.5.用量角器画出下面各角的平分线OP.6.思考题:如图,射线OB 是∠AOC 的平分线, ∠AOC =60°,∠AOD =80°,则 (1)∠BOC = °; (2)∠COD = °; (3)∠BOD = °. (三)尝试指导,讲授新课例1 计算:(1)37°28′+44°49′; (2)25°36′×4; (先让生尝试,师再讲解)例2 如图,O 是直线AB 上一点,∠AOC =53°17′,求∠BOC 的度数.师:请大家对照这个图,仔细地把题目读几遍,弄清楚这道题目已知是什么,要求的是什么.(生读题) 师:(指准图)O 是直线AB 上一点,可见∠AOB 是平角,∠AOB =180°. 师:(指准图)∠AOC =53°17′(在图中标上53°17′),求∠BOC 的度数(在图中标上问号).怎么求∠BOC 的度数? 生:…… 师:(指准图)∠BOC =∠AOB -∠AOC ,∠AOB =180°,∠AOC =53°17′,所以可以求出∠BOC 的度数.(以下师边讲边按下面样子板书)解:∠BOC =∠AOB -∠AOC =180°-53°17′=179°60′-53°17′P AOBABC D OA B C O OBAOBABAOB=126°43′.(四)试探练习,回授调节7.计算:(1)27°48′+53°34′= (2)90°-78°19′= (3)40°24′×3=8.填空:如图,∠AOB =135°,OC 是∠AOB 的平分线,则∠AOC = ° ′.9.填空:如图,OC 是∠AOB 的平分线,∠COD =31°28′,则∠AOC = °,∠AOD = ° ′.(第8题图) (第9题图) (五)归纳小结,布置作业师:本节课我们学习了一个角的平分线的概念,还学习了角度的运算.什么是一个角的平分线? 生:……(作业:P 139习题3.5.选做题P 140习题9.) 四、课后反思:4.3.3余角和补角(第1课时)一、教学目标1.知道互为余角、互为补角的意义,会求一个角余角和补角的度数.2.知道等角的补角或余角相等,培养初步的推理能力. 二、教学重点和难点1.重点:余角与补角的概念,等角的补角或余角相等.2.难点:证明等角的补角或余角相等.三、教学过程 (一)基本训练,巩固旧知A BC D A O C B CB1.如图,∠AOC 是直角,填空: (1)∠AOB +∠BOC = °;(2)如果∠AOB =30°,那么∠BOC = °. 2.如图,∠AOB 是平角,填空: (1)∠BOC +∠AOC = °;(2)如果∠AOC =140°,那么∠BOC = °. (二)尝试指导,讲授新课(师出示右图)师:(指图)图中有两个角,∠1与∠2,把这两个角拼在一起,也就是∠1+∠2.现在请问:∠1+∠2等于多少度? 生:90°.(师板书:∠1+∠2=90°)师:如果两个角的和等于90°,就说这两个角互为余角.(指图)∠1与∠2的和等于90°,就说∠1与∠2互为余角(板书:∠1与∠2互为余角),也就是说∠1是∠2的余角,∠2也是∠1的余角. (师出示右图)师:(指图)图中有两个角,∠3与∠4,把这两个角拼在一起,也就是∠3+∠4.现在请问:∠3+∠4等于多少度?生:180°.(师板书:∠3+∠4=180°)师:如果两个角的和等于180°,就说这两个角互为补角.(指图)∠3与∠4的和等于180°,就说∠3与∠4互为补角(板书:∠3与∠4互为补角),也就是说∠3是∠4的补角,∠4也是∠3的补角. (三)试探练习,回授调节5.填空:∠1=35°,∠1的余角= °,∠1的补角= °.6.已知:∠1=29°,∠2=51°,∠3=61°,∠4=129°,则∠ 与∠互为余角,∠ 与∠ 互为补角.7.如图,填空:(1)∠AOD 的余角是∠ ; (2)∠COD 的余角是∠ ;(3)∠AOD 的补角是∠ ;(4)∠BOD 的补角是∠ . 8.课本P 139习题7. (四)尝试指导,讲授新课 (师出示例1)2134D A O B C CBO A例1 如图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?师:请大家结合图形把例1默读两遍.(生默读)师:同桌之间互相说说例1的意思,例1告诉了我们什么?问的是什么?(同桌之间互相说)师:让我们一起来看看例1告诉了我们什么?问的是什么? 师:(指准图)∠1与∠2互补是什么意思? 生:∠1+∠2=180°. 师:(指准图)∠3与∠4互补是什么意思? 生:∠3+∠4=180°.师:除了∠1与∠2互补,∠3与∠4互补这两个条件,例1还告诉了我们什么? 生:∠1=∠3. 师:(指准图)根据∠1与∠2互补,∠3与∠4互补,∠1=∠3这三个已知条件,你认为∠2与∠4相等吗? 生:相等.(多让几位同学回答后板书:答:∠2与∠4相等)师:∠2与∠4为什么相等呢?你能根据上面说的三个已知条件,说服别人,让别人真正相信∠2与∠4相等吗? 生:……(多让几位同学说)师:让我们一起来看看,从例1的三个已知条件,如何得到∠2与∠4相等? 师:因为∠1与∠2互补(板书:因为∠1与∠2互补),所以∠2=180°-∠1(板书:所以∠2=180°-∠1);因为∠3与∠4互补(板书:因为∠3与∠4互补),所以∠4=180°-∠3(板书:所以∠4=180°-∠3);又因为∠1=∠3(板书:又因为∠1=∠3),所以∠2=∠4.(板书:所以∠2=∠4) 师:请大家仔仔细细地把这个说理过程默读上几遍.(生默读) 师:对∠2=∠4的说理过程大家有什么疑问吗?(师要鼓励学生提出疑问,学生可能对疑问表述不清,师要“猜出”学生的疑问,并帮助他们把疑问表述清楚,在此基础上可先让其他同学解答,然后师再解答,要尽量让学生把各种疑问都说出来,本节课一定要舍得在这里花时间) 师:大家提了不少疑问,老师也有一个疑问要提.什么疑问呢?∠2与∠4相等,这从图上就看得出来,何必还要搞一个说理过程呢? 生:……(多让几位同学发表看法)师:通过同学们的开导,老师明白了,光凭眼睛看就得出∠2=∠4是不一定靠得住,根据三个已知条件,通过说理过程,才能证明∠2=∠4.这就好比法官要3412证明一个人是小偷,法官不能说,因为这个人像小偷,所以这个人就是小偷,法官必须拿出证据,通过说理过程,才能证明这个人是小偷.法官拿出来的证据就相当于例1中的三个已知条件,法官证明的结论:这个人是小偷,就相当于例1中要证明的结论:∠2=∠4.既然法官需要有一个证明某人是小偷的过程,同样,我们也需要有一个证明∠2=∠4的过程.师:好了,例1告诉我们,(指准图)∠1与∠2互补,∠3与∠4互补,∠1=∠3,那么∠2=∠4.通过例1,我们能得到补角的一个什么性质呢? 生:……(多让几位同学说)师:等角的补角相等(板书:等角的补角相等).师:哪位同学来解释一下,等角的补角相等是什么意思? 生:…… 师:(指准图)∠1与∠3是等角,∠2是∠1的补角,∠4是∠3的补角,所以∠2与∠4相等,这就是等角的补角相等. (五)试探练习,回授调节9.完成下面的解答过程:如图,∠1与∠2互余,∠3与∠4互余, 如果∠1=∠3,那么∠2与∠4相等吗? 为什么?答:∠ 与∠ 相等.因为∠1与∠2互余,所以∠2= . 因为∠3与∠4互余,所以∠4= .又因为∠1=∠3,所以∠ =∠ . 从中,你得出的结论是 .(六)归纳小结,布置作业师:本节课我们学习了余角和补角(板书课题:4.3.3余角和补角),什么叫做互为余角?什么叫做互为补角? 生:……师:关于补角和余角有两个结论,是哪两个结论? 生:……(作业:P 139练习2.3.P 138练习1.P 140复习题13.) 四、课后反思:友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!1243。
七年级数学上册第四章 几何图形初步教案
第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形【教学目标】1.通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2.知道什么是立体图形和平面图形,能够认识立体图形和平面图形.一、自主预习阅读教材P114~116,完成下列内容.1.几何图形包括平面图形和立体图形.2.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,这样的几何图形叫做平面图形.3.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,这样的几何图形叫做立体图形.二、例题精讲知识点1认识平面图形例1(教材P115“思考”)图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来.解:答案见图中连线.【跟踪训练1】(《名校课堂》4.1.1第1课时习题)请写出图中的立体图形的名称.(1)(2)(3)(4)(1)圆柱;(2)三棱柱;(3)三棱锥;(4)圆锥.知识点2认识平面图形例2(教材P116“思考”) 如图,下列各图中包含哪些简单平面图形?请再举出一些平面图形的例子.解:第①个图形包含长方形、五角星;第②个图形包含圆;第③个图形包含正方形、长方形、三角形、圆;第④个图形包含正方形、三角形;第⑤个图形包含长方形、正方形、三角形;第⑥个图形包含圆、长方形、正方形、梯形.举例:【跟踪训练2】(《名校课堂》4.1.1第1课时习题)下图中包含哪些简单的平面图形?解:图中包含圆、正方形、长方形、三角形、平行四边形.三、巩固训练1.下面几种几何图形中,属于平面图形的是(A)①三角形;②长方形;③正方体;④圆;⑤四棱锥;⑥圆柱.A.①②④B.①②③C.①②⑥D.④⑤⑥2.下面的几何体中,属于棱柱的有(C)A.1个B.2个C.3个D.4个3.如图是一座房子的平面图,组成这幅图的几何图形有(C)A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形第3题图第4题图4.如图所示,电镀螺杆呈现出了两个几何体的组合,则这两个几何体分别是圆柱体,六棱柱.5.观察图中的立体图形,分别写出它们的名称.,球),圆锥),正方体),圆柱体),长方体) 四、课堂小结1.知道常见的立体图形,平面图形.2.生活中很多图案都由简单的几何图形构成,我们也有能力设计美观、有意义的图案.第2课时展开、折叠与从不同方向观察立体图形【教学目标】1.能够识别常见立体图形从不同方向看到的图形并能够正确的画出它们.2.能够识别常见立体图形的平面展开图.一、自主预习阅读教材P117~118,思完成列内容.1.从三个方向看立体图形包括哪三种?解:从三个方向看立体图形:从正面看,从左面看,从上面看.2.什么是立体图形的展开图?解:将立体图形的表面适当剪开,展开成平面图形,这样的平面图形为立体图形的展开图.二、例题精讲知识点1从不同方向观察立体图形例1(教材P117“探究”)如图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么平面图形?解:从正面看从左面看从上面看【跟踪训练1】(《名校课堂》4.1.1第2课时习题)下列基本几何体中,从正面、上面、左面观察都是相同图形的是(C)A.圆柱B.三棱柱C.球D.长方体知识点2立体图形的展开与折叠例2(教材P118“探究”)你还记得长方体和圆柱的展开图吗?下图是一些立体图形的展开图,用它们能围成什么样的立体图形?把它们画在一张硬纸片上,剪下来,折叠、粘贴,看看得到的图形和你想象的是否相同.解:第一个图形能围成正方体;第二个图形能围成圆柱(含上、下底面);第三个图形能围成三棱柱(含上、下底面);第四个图形能围成圆锥(含底面);第五个图形能围成四棱柱(或长方体).【跟踪训练2】(《名校课堂》4.1.1第2课时习题)下列图形中,不可以作为一个正方体的展开图的是(C)A B C D三、巩固训练1.如图是书桌上放的一本书,则从上面看得到的平面图形是(A)A B C D2.在下面的四个几何体中,从左面和正面看得到的图形不相同的几何体是(B)A B C D3.下面形状的四张纸板,按图中线经过折叠可以围成一个三棱柱的是(C)A B C D4.一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中,和“值”字相对的字是(A)A.记B.观C.心D.间5.请分别指出与图中表面展开图相应的立体图形的名称.(1)(2)(3)(4)解:(1)三棱柱.(2)圆柱.(3)四棱锥.(4)圆锥.四、课堂小结1.知道常见立体图形从三个方向看得到的图形.2.学会简单几何体(如棱柱、正方体等)的平面展开图,知道按不同的方式展开会得到不同的展开图.3.学会动手实践,与同学合作.4.不是所有立体图形都有平面展开图.4.1.2点、线、面、体【教学目标】1.了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面.2.了解几何图形构成的基本元素是点、线、面、体及其关系,能正确判定由点、线、面、体经过运动变化形成的简单的几何图形.3.激发学生对数学的好奇心和求知欲,体验数学活动中小组合作的重要性.一、自主预习阅读教材P119~120,完成下列问题.1.几何图形都是由点、线、面、体组成的,点是构成图形的基本元素.2.体是由面组成,面与面相交成线,线与线相交成点.3.点没有大小之分,线没有粗细之分.二、例题精讲知识点1点、线、面、体例1(《名校课堂》4.1.2习题)如图所示的是一个棱柱,请问:(1)这个棱柱由几个面围成?各面的交线有几条?它们是直的还是曲的?(2)这个棱柱的底面和侧面各是什么形状?(3)该棱柱有几个顶点?解:(1)这个棱柱由5个面围成,各面的交线有9条,它们是直的.(2)棱柱的底面是三角形,侧面是长方形.(3)有6个顶点.【跟踪训练1】给出下列结论:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个面是平的,1个面是曲的;③球仅由1个面围成,这个面是曲的;④长方体由6个面围成,这6个面都是平的.其中正确的是(B)A.①②③B.②③④C.①③④D.①②④知识点2由平面图形旋转而成的立体图形例2(教材P120练习T2)如图,上面的平面图形绕轴旋转一周,可以得出下面的立体图形,把有对应关系的平面图形与立体图形连接起来.解:答案见图中连线.【跟踪训练2】下列图形绕着它的一边所在的直线旋转一周,能得到圆柱的是(B)A.三角形B.长方形C.五边形D.半圆三、巩固训练1.笔尖在纸上写字说明点动成线;车轮旋转时看起来像个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.2.如图的几何体有4个面,6条棱,4个顶点.3.围成下面这些立体图形的各个面中,哪些面是平的,哪些面是曲的?解:球的表面、圆柱和圆锥的侧面都是曲面.其余的面都是平面.4.用第一行的平面图形绕轴旋转一周,便得到第二行中的某个几何体,用线连一连.解:如图.四、课堂小结1.多姿多彩的图形是由点、线、面、体组成.点是构成图形的基本元素.2.点无大小,线有直线和曲线,面有平面和曲面.3.体由面围成,面与面相交成线,线与线相交成点.4.点动成线,线动成面,面动成体.4.2直线、射线、线段第1课时直线、射线、线段【教学目标】1.能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,能用几何语言描述直线性质.2.会用字母表示直线、射线、线段,会根据语言描述画出图形.掌握三者的联系和区别.3.培养学生的基本画图能力.一、自主预习阅读教材P125~126,回忆直线、射线、线段的一些基本概念和基本知识,并认真总结下列问题,体会直线的公理.1.直线、射线、线段的联系与区别.图形表示方法端点个数延伸方向线段线段AB或线段a 两个不向任何一方延伸射线射线AB或射线a 一个向一方无限延伸直线直线AB或直线a 0 向两方无限延伸2.直线公理:两点确定一条直线.【点拨】(1)表示线段、射线、直线的时候,都要在字母前注明“线段”“射线”“直线”.(2)用两个大写字母表示直线或线段时,两个字母可以交换位置,表示射线的两个大写字母不能交换位置,必须把端点字母放在前面.二、例题精讲例1(教材P126练习T2)按下列语句画出图形:(1)直线EF经过点C;(2)点A在直线l外;(3)经过点O的三条线段a,b,c;(4)线段AB,CD相交于点B.解:(1)如图所示:(2)如图所示:(3)如图所示:(4)如图所示:【跟踪训练】(《名校课堂》4.2第1课时习题)下列表示方法正确的是(B)①②③④A.①②B.②④C.③④D.①④三、巩固训练1.下列语句:①点a在直线l上;②直线的一半就是射线;③延长直线AB到C;④射线OA与射线AO是同一条射线.其中正确的语句有(A)A.0句B.1句C.2句 D.3句2.如图给出的直线、射线、线段,根据各自的性质,能相交的是(D)A B C D3.下列事实可以用“经过两点有且只有一条直线”来说明的是(B)A.从王庄到李庄走直线最近B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C.向远方延伸的铁路给我们一条直线的印象D.数轴是一条特殊的直线4.线段有2个端点,射线有1个端点,直线没有端点.5.如图,图中共有6条线段,8条射线.6.平面上有三点A、B、C,①连接其中任意两点,共可得线段3条;②经过任意两点画直线,共可得到直线1条或3条.7.如图,已知平面上四点A、B、C、D.(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于点E;(4)连接AC、BD相交于点F.解:略四、课堂小结1.掌握直线、射线、线段的表示方法.2.理解直线、射线、线段的联系和区别. 3.知道直线的性质.4.经过两点有一条直线,并且只有一条直线.第2课时 比较线段的长短及线段的性质【教学目标】1.掌握线段比较的两种方法,会表示线段的和差.2.理解线段中点的意义及表示方法,理解两点的距离的意义. 3.会运用“两点之间,线段最短”的性质解决生活中的实际问题. 一、自主预习阅读教材P126~129,完成下列内容.1.在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图. 2.点M 把线段AB 分成相等的两条线段AM 与MB ,点M 叫做线段AB 的中点. 3.两点的所有连线中,线段最短,简单说成:两点之间,线段最短. 4.连接两点间的线段的长度,叫做这两点的距离. 二、例题精讲知识点1 线段的中点及等分点例1 (《名校课堂》4.2第2课时习题)如图,点C 是线段AB 上的点,点D 是线段BC 的中点.(1)若AB =10,AC =6,求CD 的长; (2)若AC =30,BD =10,求AB 的长. 解:(1)因为点D 是线段BC 的中点, 所以CD =12BC.因为AB =10,AC =6, 所以BC =AB -AC =10-6=4. 所以CD =12BC =2.(2)因为点D 是线段BC 的中点, 所以BC =2BD. 因为BD =10, 所以BC =2×10=20. 因为AB =AC +BC , 所以AB =30+20=50.【跟踪训练1】 如图,在直线上顺次取A ,B ,C 三点,使AB =4 cm ,BC =3 cm ,如果O 是线段AC 的中点,求线段OB 的长度.解:因为AB =4 cm ,BC =3 cm , 所以AC =AB +BC =7 cm. 因为点O 是线段AC 的中点, 所以OC =12AC =3.5 cm.所以OB =OC -BC =3.5-3=0.5(cm). 知识点2 线段的性质例2 如图,这是A 、B 两地之间的公路,在公路工程改造计划时,为使A 、B 两地行程最短,应如何设计线路?在图中画出,并说明你的理由.解:如图所示,连接AB.理由:两点的所有连线中,线段最短.【跟踪训练2】 如图,平面上有A 、B 、C 、D 四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P 的位置,使它与4个村庄的距离之和最小.解:连接AC 、BD 的交点即为P 点的位置,如图. 三、巩固训练1.下列说法正确的是(D)A .连接两点的线段就叫做两点间的距离B .在所有连接两点的线中直线一定最短C .线段AB 就是表示点A 到点B 的距离D .线段AB 的长度是点A 到点B 的距离 2.如图,下列关系式中与图不符合的式子是(C)A .AD -CD =AB +BC B .AC -BC =AD -BD C .AC -BC =AC +BD D .AD -AC =BD -BC3.为比较两条线段AB 与CD 的大小,小明将点A 与点C 重合使两条线段在一条直线上,点B 在CD 的延长线上,则(B)A.AB<CD B.AB>CDC.AB=CD D.以上都有可能4.如图,从A到B有4条路径,最短的路径是③,理由是(D)A.因为③是直的B.两点确定一条直线C.两点间距离的定义D.两点之间线段最短5.已知线段AB=6,若C为AB的中点,则AC=3.6.若线段AB=5 cm,BC=2 cm,且A,B,C三点在同一条直线上,则点C可能在AB上,也可能在AB的延长线上,则AC的长等于3__cm或7__cm.7.如图,已知线段a和b,且a>b,用直尺和圆规作一条线段,使它等于2a+b.解:图略.8.已知,如图,AB=16 cm,C是AB上一点,且AC=10 cm,D是AC的中点,E是BC的中点,求线段DE 的长.解:因为D是AC的中点,AC=10 cm,所以DC=12AC=5 cm.又因为AB=16 cm,所以BC=AB-AC=6 cm.因为E是BC的中点,所以CE=12BC=3 cm.所以DE=DC+CE=8 cm.四、课堂小结线段⎩⎪⎨⎪⎧线段的大小比较⎩⎪⎨⎪⎧度量法叠合法线段的中点线段的性质:两点之间,线段最短4.3角4.3.1角【教学目标】1.理解角的两种定义,识别角的符号.2.知道角的几种表示方法,并能够正确表示.3.掌握角的度量单位及度、分、秒的进位制,能够熟练的进行转换.一、自主预习阅读教材P132,知道角的定义、角的表示方法、周角、平角,完成下列内容.1.角是由两条具有公共端点的射线组成的图形,角也可以看作一条射线绕端点旋转而形成的图形.2.如果一个角的终边旋转到与始边成一条直线时,所成的角叫做平角.继续旋转,当终边旋转到与始边重合时,所成的角叫做周角.3.角的表示方法:角用“∠”表示,读做“角”.(1)用三个大写字母表示;(2)用表示角的顶点的字母表示;(3)用一个数字或一个希腊字母(α、β、γ、θ)表示.(4)度、分、秒是角的基本度量单位:1°的角等分成60份就是1′的角;1′的角等分成60份就是1″的角.角度制:1°=60′,1′=(160)°,1′=60″,1″=(160)′,1°=3__600″.【点拨】度、分、秒是60进制的.二、例题精讲知识点1角的定义和表示方法例1(《名校课堂》4.3.1习题)如图,∠1,∠2表示的角可分别用大写字母表示为∠ABC,∠BCN;∠A也可表示为∠BAC,还可以表示为∠MAN.【跟踪训练1】如图,能用∠1,∠ACB ,∠C三种方法表示同一个角的是(C)A B C D知识点2角的度量例2(教材P134练习T2)(1)35°等于多少分?等于多少秒?(2)38°15′和38.15°相等吗?如不相等,哪一个大?解:(1)35°=35×60=2 100×60=126 000秒.(2)38.15°=38.15×60=2 289分.38°15′=38×60+15=2 295分.所以38°15′>38.15°.【跟踪训练2】已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是(A)A.∠1=∠3 B.∠1=∠2C.∠1<∠2 D.∠2=∠3三、巩固训练1.下列关于角的说法正确的个数是(A)①角是由两条射线组成的图形;②角的边越长,角越大;③在角一边的延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形.A.1 B.2 C.3 D.42.若∠A=20°20′,∠B=20.20°,∠C =20.5°,则下面的结论正确的是(D)A.∠A=∠B B.∠A=∠CC.∠C=∠B D.∠A,∠B,∠C两两不等3.如图,能用一个字母表示的角有∠B,用三个大写字母表示∠1为∠MCB,∠2为∠AMC.第3题图第4题图4.如图,A,O,D三点在一条直线上,写出图中小于平角的角:∠AOC,∠AOE,∠COE,∠COD,∠EOD.5.如图是一个时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于135°.(1)以B 为顶点的角有几个?把它们表示出来; (2)指出以射线BA 为边的角;(3)以D 为顶点,DC 为一边的锐角有几个?分别表示出来.解:(1)以B 为顶点的角有3个,分别是∠ABD 、∠ABC 、∠DBC. (2)以射线BA 为边的角有2个,分别是∠ABD 和∠ABC. (3)以D 为顶点,DC 为一边的锐角有1个,是∠CDE.7.如图,在∠AOB 的内部,从顶点O 引出1条射线,此图中共有几个角?如果引出2条?引出3条呢?依此规律,引出n 条可得到多少个角?解:从顶点O 引出1条射线,图中共有3个角;引出2条射线,图中共有6个角;引出3条射线,图中共有10个角;引出n 条射线,可得到(n +1)(n +2)2个角.四、课堂小结 角⎩⎪⎨⎪⎧角的概念角的表示方法角的度量与换算4.3.2 角的比较与运算【教学目标】1.会用量角器度量角,并会比较两个角的大小. 2.会根据图形判断角的和差倍分. 3.记住角平分线的定义. 一、自主预习阅读教材P134~136,完成下列内容.1.比较两个角的大小,我们可以用量角器量出角的度数,然后比较它们的大小,也可以把它们叠合在一起比较它们的大小,这两种方法分别叫度量法和叠合法.2.角平分线的定义:从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.如:如图,若OB 是∠AOC 的平分线,则∠AOC =2∠AOB =2∠BOC ,∠AOB =∠BOC =12∠AOC .二、例题精讲知识点1 角的大小比较例1 (教材补充例题)如图,点A ,O ,B 在一条直线上,OD 平分∠AOB ,回答下列问题:(1)试比较∠AOB 、∠AOD 、∠AOE 、∠AOC 的大小; (2)找出图中的三个等量关系.解:(1)因为点A ,O ,B 在一条直线上, 所以∠AOB 是平角. 因为OD 平分∠AOB , 所以∠AOD =12∠AOB =90°.由图知∠AOC 是钝角、∠AOD 是直角、∠AOE 是锐角, 所以∠AOB >∠AOC >∠AOD >∠AOE. (2)等量关系有:∠COE =∠EOD +∠COD , ∠AOB =2∠AOD =∠AOE +∠BOE , ∠DOB =∠COD +∠BOC. 【点拨】 角的大小比较的方法:(1)如果已知角是锐角、直角、周角、平角、钝角,就可以直接由它们之间的关系比较大小; (2)可以通过量角器量角度来比较大小;(3)可以根据各角在同一图中的位置关系比较角的大小.【跟踪训练1】 在∠AOB 的内部任取一点C ,作射线OC ,则一定存在(A) A .∠AOB >∠AOC B .∠AOB <∠BOC C .∠BOC >∠AOC D .∠AOC >∠BOC 知识点2 角度的运算 例2 计算: (1)90°-36°12′15″ (2)32°17′53″+42°42′7″ (3)25°12′35″×5;(4)53°÷6.解:(1)90°-36°12′15″=53°47′45″. (2)32°17′53″+42°42′7″=74°59′60″=75°.(3)25°12′35″×5=125°60′175″=126°2′55″. (4)53°÷6=8°50′.【点拨】 度、分、秒的运算方法:(1)在进行角度的加法运算时,先算秒,再算分,最后算度,满60″时,把60″化为1′,满60′时,把60′化为1°; (2)进行角度的减法时,不够减,借1°化为60′,借1′化为60″;(3)关于度、分、秒的乘法运算,把度、分、秒分别乘乘数,满60″时,把60″化为1′,满60′时,把60′化为1°; (4)关于度、分、秒的除法运算,把度的余数化成分或把分的余数化为秒后再进行除法运算. 知识点3 与角平分线有关的计算例3 如图,OC 是∠AOD 的平分线,OE 是∠DOB 的平分线. (1)如果∠AOB =130°,那么∠COE 是多少度?(2)在(1)的条件下,如果∠COD =20°,那么∠BOE 是多少度?解:(1)因为OC 是∠AOD 的平分线, 所以∠COD =12∠AOD.因为OE 是∠BOD 的平分线, 所以∠DOE =12∠BOD.所以∠COD +∠DOE =12∠AOD +12∠BOD =12(∠AOD +∠BOD).因为∠COD +∠DOE =∠COE ,∠AOD +∠BOD =∠AOB , 所以∠COE =12∠AOB.因为∠AOB =130゚, 所以∠COE =65°.(2)因为∠COE =65°,∠COD =20°, 所以∠DOE =∠COE -∠COD =45°. 又因为OE 平分∠DOB , 所以∠BOE =∠DOE =45°. 【跟踪训练2】如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,则∠MON 等于135°.三、巩固训练1.射线OC在∠AOB内部,下列四个选项不能判定OC是∠AOB的平分线的是(C)A.∠AOB=2∠AOC B.∠AOC=12∠AOBC.∠AOC+∠BOC=∠AOB D.∠AOC=∠BOC2.如图,在横线上填上适当的角:(1)∠BOD=∠BOC+∠COD=∠AOD-∠AOB;(2)∠AOB=∠AOC-∠COB=∠AOD-∠BOD;(3)∠BOC=∠AOC-∠AOB=∠AOD-∠COD-∠AOB.第2题图第3题图3.如图,若OC平分∠AOB,∠AOB=60°,则∠1=30°.4.已知∠AOB=80°,∠AOC=40°,则∠BOC的度数为120°或40°.5.计算:(1)15°37′+42°51′;(2)90°-68°17′50″;(3)5°26′×3; (4)178°53′÷5.解:(1)原式=58°28′.(2)原式=21°42′10″.(3)原式=16°18′.(4)原式=35°46′36″.6.如图,已知O是直线CD上的点,OA平分∠BOC,∠AOC=35°,求∠BOD的度数.解:因为O是直线CD上的点,OA平分∠BOC,∠AOC=35°,所以∠BOC=2∠AOC=70°.所以∠BOD=180°-∠BOC=110°.四、课堂小结角的大小比较和运算⎩⎪⎨⎪⎧角的大小比较⎩⎪⎨⎪⎧度量法叠合法角的运算角平分线4.3.3 余角和补角【教学目标】1.了解两个角互余或互补的意义.2.掌握同角或等角的余角相等,同角或等角的补角相等. 3.理解方位角的概念,会用角描述方向,解决实际问题. 一、自主预习阅读教材P137~138,完成下列内容.1.一般地,如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角.几何语言表示为:如果∠1+∠2=90°,那么∠1与∠2互为余角.2.一般地,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.几何语言表示为:如果∠1+∠2=180°,那么∠1与∠2互为补角. 3.性质:等角(同角)的余角相等,等角(同角)的补角相等. 4.判断题:(1)90度的角叫余角,180度的角叫补角.(×)(2)若∠1+∠2+∠3=90°,则∠1,∠2,∠3互为余角.(×) (3)如果一个角有补角,那么这个角一定是钝角.(×) (4)互补的两个角不可能相等.(×) (5)钝角没有余角,但一定有补角.(√)(6)互余的两个角一定都是锐角,两个锐角一定互余.(×) (7)如果∠A =25°,∠B =75°,那么∠A 与∠B 互为余角.(×) (8)如果∠A =x°,∠B =(90-x)°,那么∠A 与∠B 互余.(√) 二、例题精讲 知识点1 余角、补角例1 如图,点O 在直线AB 上,OD 平分∠COA ,OE 平分∠COB.(1)∠COB+∠AOC=180°,∠EOD=90°;(2)图中互余的角有4对,互补的角有5对.【跟踪训练】1.若∠1+∠2=180°,∠2+∠3=180°,则∠1=∠3.理由是同角的补角相等.2.已知一个角的补角是这个角的余角的3倍,求这个角的度数.解:设这个角是x,则这个角的补角为180°-x,余角为90°-x,所以3(90°-x)=180°-x,整理,得2x=90°,解得x=45°,即这个角的度数为45°.知识点2方位角例2如图1,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上.同时,在它北偏东40°、南偏西10°、西北(即北偏西45°)方向上又分别发现了客轮B、货轮C和海岛D.仿照表示灯塔A方位的方法,画出表示客轮B、货轮C和海岛D方向的射线.图1图2画法:以点O为顶点,表示正北方向的射线为角的一边,画40°的角,使它的另一边OB落在东与北之间.射线OB 的方向就是北偏东40°(图2),即客轮B所在的方向.请你在图2上画出表示货轮C和海岛D方向的射线.解:略.【跟踪训练】3.(《名校课堂》习题)如图,根据点A,B,C,D,E在图中的位置填空.(1)射线OA 表示东北方向; (2)射线OB 表示北偏西30°;(3)射线OC 表示南偏西60°;(4)射线OD 表示正南方向;(5)射线OE 表示南偏东50°.三、巩固训练1.若∠1=40°,则∠1的余角的度数是(C)A .20°B .40°C .50°D .60°2.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为(C)A .69°B .111°C .141°D .159° 3.下列结论正确的个数为(C)①互余且相等的两个角是45°;②锐角的补角是钝角;③锐角没有余角,钝角没有补角;④两个钝角不可能互补.A .1B .2C .3D .44.如图,OD 平分∠BOC ,OE 平分∠AOC.若∠BOC =70°,∠AOC =50°.(1)求出∠AOB 及其补角的度数;(2)请求出∠DOC 和∠AOE 的度数,并判断∠DOE 与∠AOB 是否互补,并说明理由.解:(1)∠AOB =∠BOC +∠AOC =70°+50°=120°,其补角为180°-∠AOB =180°-120°=60°.(2)∠DOC =12∠BOC =35°,∠AOE =12∠AOC =25°.∠DOE 与∠AOB 互补.理由:∠DOE =∠DOC +∠COE =35°+25°=60°,∠DOE +∠AOB =60°+120°=180°,故∠DOE 与∠AOB 互补.四、课堂小结1.余角、补角的概念:(1)和为90°的两个角互为余角;(2)和为180°的两个角互为补角.2.余角、补角的性质:(1)等角(同角)的余角相等;(2)等角(同角)的补角相等.。
图形初步认识教案初中
图形初步认识教案初中课程目标:1. 了解和掌握基本图形的特征和性质。
2. 能够识别和分类常见图形。
3. 能够运用图形的基本知识解决实际问题。
教学重点:1. 基本图形的特征和性质。
2. 图形分类和识别。
教学难点:1. 图形分类和识别。
教学准备:1. 教学课件或黑板。
2. 各种图形卡片或实物。
教学过程:一、导入(5分钟)1. 引导学生观察教室里的各种图形,如窗户、桌子、椅子等。
2. 提问:你们能说出这些图形的名称吗?它们有什么特征?二、新课(20分钟)1. 介绍基本图形的名称和特征,如圆形、方形、三角形、矩形等。
2. 通过课件或黑板展示各种图形,让学生观察和记忆它们的特征。
3. 讲解图形的性质,如圆形的周长和面积公式,方形的对角线长度等。
4. 举例说明如何运用图形的基本知识解决实际问题,如计算面积、周长等。
三、练习(15分钟)1. 发放图形卡片或实物,让学生进行观察和分类。
2. 要求学生说出每个图形的名称和特征,并进行分类。
3. 让学生尝试解决一些实际问题,如计算图形的面积、周长等。
四、总结(5分钟)1. 回顾本节课所学的图形名称和特征。
2. 强调图形分类和识别的重要性。
3. 鼓励学生在日常生活中观察和运用图形知识。
教学反思:本节课通过引导学生观察教室里的各种图形,激发学生的学习兴趣。
通过展示课件和黑板,让学生直观地了解基本图形的特征和性质。
在练习环节,通过发放图形卡片或实物,让学生进行观察和分类,巩固所学知识。
在总结环节,回顾本节课所学的图形名称和特征,并强调图形分类和识别的重要性。
通过本节课的学习,学生能够识别和分类常见图形,并能够运用图形的基本知识解决实际问题。
人教版数学七年级上册第四章几何图形初步(教案)
3.培养学生的逻辑思维和推理能力,能够运用所学几何知识进行严密的论证和解决问题。
4.培养学生的创新意识和实践能力,通过平面图形的密铺等实际应用,激发学生将几何知识应用于现实生活的兴趣,提高解决实际问题的能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解线段、射线、直线等基本概念。线段是有两个端点的有限长度的部分,射线是一个端点出发无限延伸的部分,直线则是无端点无限延伸的部分。它们是构成各种几何图形的基础,也是我们研究几何学的重要起点。
2.案例分析:接下来,我们来看一个具体的案例。比如,我们教室的黑板边缘可以看作是一条直线,而黑板擦则可以看作是一个线段。这些实际例子能帮助我们更好地理解几何图形的概念。
-多边形的内角和与外角和定理:理解并掌握多边形内角和与外角和的计算方法,能够应用于实际计算。
-举例:三角形的内角和为180度,外角和为360度;四边形的内角和为360度,外角和为360度。
2.教学难点
-线段、射线、直线的区分与应用:学生容易混淆线段、射线、直线的概念,需通过实例讲解和练习加强理解。
-举例:线段AB与射线AB的区别在于射线无限延伸,而线段有限定长度。
3.重点难点解析:在讲授过程中,我会特别强调线段、射线、直线的区别和多边形的内角和与外角和的计算。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与几何图形相关的实际问题,如三角形和四边形的性质和应用。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用直尺和量角器测量角的度数,或用几何图形拼图来理解平面图形的密铺。
人教版-数学-七年级上册--4.3角 余角和补角 教案
《七年级第四章图形认识初步》教案4.3. 3余角和补角【教学目标】1、在具体情境中了解余角与补角.懂得等角的余角相等,等角的补角相等.并能运用这些性质解决一些简单的实际问题;理解方位角的意义,掌握方位角的判别与应用.2、经历观察、操作、推理、交流等活动,发展学生的空间观念,培养学生的推理能力和有条理的表达能力;通过现实情境,充分利用学生的生活经验去体会方位角的意义.3、体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心,帮助学生体验数学在生活中的用处,激发学生对数学的学习兴趣【教学重点】余角与补角的性质【教学难点】方位角的判别与应用【教学准备】量角器、三角尺、角的纸片数【教学过程】一、提出问题1、用量角器理出图中的两个角的度数,并求出这两个角的和。
2、说出一副三角尺中各个角的度数。
二、探究新知1、余角与补角的概念在一副三角尺中,每块都有一个角是90度,而其他两个角的和是90度。
一般情况下,如果两个角的和等于90(直角),我们就说这两个角互为余角,即其中一个角是另一个角的余角.例如,∠1与∠2互为余角,∠1是∠2的余角,∠2也是∠1的余角的余角.同样,如果两个角的和等于180度 (平角),就说这两个角互为补角,即其中一个角是另一个角的补角.2、余角与补角的性质问题1:如果∠1与∠2互余,∠3与∠4互余,并且∠1=∠3,那么∠2与∠4相等吗?为什么?问题2,如果∠1与∠2互补,∠3与∠4互补,并且∠1=∠3,那么∠2与∠4相等吗?为什么?学生分组讨论、交流,说出各自的理由,最后师生共同归纳余角与补角的性质:等角的余角相等;等角的补角相等。
三、巩固新知例1 比一比,看谁填得快。
例2:已知一个角的补角是这个角的余角的3倍,求这个角。
例3:一个角是另一个角的3倍,且小角的余角与大角的余角之差为20°,求这两个角的度数.解:设第一个角为x°,则另一个角为3x°,依题义列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30.答:一个角为10°,另一个角为30°.例4:判断正误:(1)在∠AOB的边OA的延长线上取一点D.(2)大于90°的角是钝角.(3)任何一个角都可以有余角.(4)∠A是锐角,则∠A的所有余角都相等.(5)两个锐角的和一定小于平角.(6)直线MN是平角.(7)互补的两个角的和一定等于平角.(8)如果一个角的补角是锐角,那么这个角就没有余角,(9)钝角一定大于它的补角.(10)经过三点一定可以画一条直线.解:(1)错.因为角的两边是射线,而射线是可以向一方无限延伸的,所以就不能再说射线的延长线了.(2)错.钝角的定义是:大于直角且小于平角的角,叫做钝角.(3)错.余角的定义是:如果两个角的和是一个直角,这两个角互为余角.因此大于直角的角没有余角.(4)对.∠A的所有余角都是90°-∠A.(5)对.若∠A<90°,∠B<90°则∠A+∠B<90°+90°=180°.(6)错.平角是一个角就要有顶点,而直线上没有表示平角顶点的点.如果在直线上标出表示角的顶点的点,就可以了.(7)对.符合互补的角的定义.(8)对.如果一个角的补角是锐角,那么这个角一定是钝角,而钝角是没有余角的.(9)对.因为钝角的补角是锐角,钝角一定大于锐角.(10)错.这个题应该分情况讨论:如果这三点在同一条直线上,这个结论是正确的.如果这三个点不在同一条直线上,那么过这三个点就不能画一条直线.四、解决问题1、在长方形的台球桌面上,选择适当的角度击打白球,可以使白球经过两次反弹后将黑球直接撞入袋中.此时∠1=∠2,∠3=∠4,并且∠2+∠3=090,∠4+∠5=090.如果黑球与洞口的连线和台球桌面边缘的夹角090,∠5=040,那么∠1应等于多少度才能保证黑球准确入袋?请说明理由。
课题 4.1.1认识几何图形(1)
第四章 图形认识初步课题 4.1.1认识几何图形(1)【学习目标】:1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;2、能由实物形状想象出几何图形,由几何图形想象出实物形状;3、能识别一些简单几何体,正确区分平面图形与立体图形。
【重点难点】:识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。
【导学指导】一、知识链接同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的图形。
图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。
二、自主探究1.几何图形(1)仔细观察图4.1-1,一起感受丰富多彩的图形世界;(2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题:从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。
我们把这些图形称为几何图形。
注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。
2.立体图形思考第115页思考题并出示实物(如茶叶桶、地球仪、字典及铅笔、苹果等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。
想一想:生活中还有哪些物体的形状类似于这些立体图形呢?思考:课本116页图4.1-4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。
3.平面图形平面图形的概念(1)纸盒(1)长方体 (2)长方形(3)正方形(4)线段 点线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
2024秋七年级数学上册第四章几何图形初步4.1几何图形1认识几何图形教学设计(新版)新人教版
科目
授课时间节次
--年—月—日(星期——)第—节
指导教师
授课班级、授课课时
授课题目
(包括教材及章节名称)
2024秋七年级数学上册第四章几何图形初步4.1几何图形1认识几何图形教学设计(新版)新人教版
教学内容分析
核心素养目标
本节课的核心素养目标主要有以下几点:
1.逻辑推理:通过学习几何图形的基本概念和性质,培养学生运用逻辑推理能力,能够从已知信息推出未知信息。
2.空间想象:培养学生空间想象力,能够直观地认识和理解几何图形,并在脑海中形成清晰的图像。
3.几何直观:培养学生运用几何直观能力,能够运用图形语言表达问题和解决问题的能力。
-线:由无数个点组成,有长度没有宽度
-面:由无数个线组成,有长度和宽度
-体:由无数个面组成,有长度、宽度和高度
2.几何图形的性质和特点
- ①几何图形具有稳定性
- ②几何图形具有有序性
- ③几何图形具有简洁性
3.几何图形在实际生活中的应用
- ①几何图形在建筑设计中的应用
- ②几何图形在艺术创作中的应用
-讨论法:学生分组讨论几何图形的问题,促进学生之间的交流和合作。
-案例研究:分析实际问题中的几何图形,培养学生运用几何知识解决问题的能力。
-项目导向学习:学生分组完成几何图形相关的项目,提高学生的自主学习和综合运用知识的能力。
2.设计具体的教学活动:
-角色扮演:学生扮演几何图形的角色,通过情景模拟的方式,加深对几何图形特点的理解。
-《几何图形的故事》:通过讲述几何图形的历史和发展,激发学生对几何图形学习的兴趣。
第四章 图形认识初步整章讲学稿
几何图形一、学习目标1.通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形;2.认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性;3.能识别这些几何体.二、学习过程(一)自主学习:阅读课文P116-118,完成下列问题:⑴对于生活中各种各样的物体,数学(几何学)关注的是它们的、、。
⑵常见的立体图形有:⑶常见的平面图形有:。
⑷立体图形与平面图形的区别:尝试应用1.如下图所示,这些物体所对应的立体图形分别是:.2.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;.其中属于立体图形的是()A. ①②③;B. ③④⑤;C. ③⑤;D.④⑤3.图中的一些物体与我们学过的哪些图形相类似?把相应的物体和图形连接起来例看一看、想一想:说说圆柱、棱柱、圆锥、棱锥的异同1、下列立方体图形有9个面的是()A、六棱锥B、八棱锥C、六棱柱D、八棱柱2.如图,左面的几何体叫三棱柱,它有五个面,9条棱,6个顶点,中间和右边的几何体分别是四棱柱和五棱柱。
(1)四棱柱有个顶点,条棱,个面;(2)五棱柱有个顶点,条棱,个面;(3)你能由此猜出,六棱柱、七棱柱各有几个顶点,几条棱,几个面吗?(4)那么n棱柱呢?A .B .C .D .几何图形(2)----立体图形的三视图一、学习目标1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看.2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形 二、学习过程:苏东坡《题西林壁》:横看成岭侧成峰,远近高低各不同。
不识庐山真面目,只缘身在此山中。
从数学的角度看:这首诗中蕴含何数学道理? 从不同方位看立体图形得到的图形一般是 的.探究一:要设计如图示的一个工件,你认为设计师要画出哪几张平面图形来表示它?请你画出来。
一般地:我们把从正面看到的图形叫 ,从左面看到的图形叫 ,从上面看到的图形叫 ,画一画:长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.练习1. 如图(1)放置的一个机器零件,若从正面看是如图(2),则其左面看是( )2. 若右图是某几何体的三种不同方向的图,则这个几何体是( )A.圆柱B.正方体C.球D.圆锥 3. 图所示的物体,从左面看得到的图是( )探究二:分别从正面、左面、上面观察这个图形,画出得到的平面图形练习1. 如图所示是由四个相同的小正方体组成的立体 图形,它的俯视图为( )2. 如图所示,一个斜插吸管的盒装饮料从正面看的图形是( )如图2,这是一3. 个正三棱柱,则从上面看到的图为( )4. 如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是( )(A ) (B ) (C ) (D )( 2)( 1)正面 左面 上面A .B .C .D . 正面A .B .C .D .DCBA ⑵ ⑴建 设和 谐 凉 山几何图形(3)----立体图形的平面展开图一、学习目标1.能直观认识立体图形和展开图,了解研究立体图形方法。
华师版七年级数学上册(HS)教案 第4章 图形的初步认识 角
4.6 角1. 角1.理解角的概念,掌握角的表示方法.2.理解平角、周角的概念,掌握角的常用度量单位:度、分、秒,及它们之间的换算关系,并会进行简单的换算. (重、难点)一、情境导入观察了下面实物,你发现这些实物给我们共同的形象是什么?二、合作探究探究点一:角的定义及表示方法【类型一】角的定义下列关于角的说法正确的个数是( )①角是由两条射线组成的图形;②角的边越长,角越大;③在角一边延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形.A.1个 B.2个 C.3个 D.4个解析:①角是由有公共端点的两条射线组成的图形,错误;②角的大小与开口大小有关,角的边是射线,没有长短之分,错误;③角的边是射线,不能延长,错误;④角可以看作由一条射线绕着它的端点旋转而形成的图形,说法正确.所以只有④正确.故选A.方法总结:本题主要是对角的定义的考查,正确理解角的定义是解题的关键:有公共端点的两条射线组成的图形叫做角,需要熟练掌握.【类型二】角的表示方法下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是( )A. B. C.D.解析:在角的顶点处有多个角时,用一个字母表示这个角,这种方法是错误的.所以A、C、D错误,故选B.方法总结:角的两个基本元素中,边是两条射线,顶点是这两条射线的公共端点.解题时要善于排除一些似是而非的说法的干扰,选出能准确描述“角”的说法.用三个大写字母表示角,表示角顶点的字母在中间.【类型三】判断角的数量如图所示,在∠AOB的内部有3条射线,则图中角的个数为( )A .10B .15C .5D .20解析:可以根据图形依次数出组成角的个数;或者根据公式求图中角的个数是:12×5×(5-1)=10.故选A. 方法总结:若从一点发出n 条射线,则构成12n(n -1)个角. 探究点二:角的度量(1)用度、分、秒表示48.26°;(2)用度表示37°24′36″.解析:(1)度、分、秒是常用的角的度量单位.根据1度=60分,即1°=60′,1分=60秒,即1′=60″把大单位化成小单位乘以60即可;(2)根据度分秒之间60进制的关系计算.解:(1)48.26°=48°+0.26×60′=48°15′+0.6×60″=48°15′36″;(2)根据1°=60′,1′=60″得36″÷60=0.6′,24.6′÷60=0.41°,所以37°24′36″用度来表示为37.41°.方法总结:用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位,乘以进率;而小单位化大单位要除以进率.探究点三:方位角M地是海上观测站,从M地发现两艘船A、B的方位如图所示,下列说法中正确的是( )A.船A在M的南偏东30°方向B.船A在M的南偏西30°方向C.船B在M的北偏东40°方向D.船B在M的北偏东50°方向解析:船A在M的南偏西90°-30°=60°方向,故A、B选项错误;船B在M的北偏东90°-50°=40°方向,故C正确,D错误.故选C.方法总结:用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.三、板书设计1.角的概念(1)有公共端点; (2)两条射线.2.角的表示方法(1)三个大写字母,端点字母在中间;(2)一个大写字母;(3)数字或希腊字母.3.度、分、秒的换算1°=60′,1′=60″.4.方位角本节的教学从学生熟悉的实物出发,点出课题,引导学生明确角的初步概念.课中给学生提供了主动探索的时间、空间、能让学生表述的要让学生自己去表述,能让学生总结的要让学生自己推导出结论,能让学生思考的要让学生自己去思考,能让学生观察的要让学生自己去观察.有针对性的设计例题、习题,从而完成教学目标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 图形认识初步 4.1.1认识几何图形(一)【教学目标】:1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;2、能由实物形状想象出几何图形,由几何图形想象出实物形状;3、能识别一些简单几何体,正确区分平面图形与立体图形。
【重点难点】:识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。
预 习 案一、预习自学(看课本P116—118完成下列问题) 1.几何图形(1)仔细观察图4.1-1,并抽象出有哪些图形; (2)让同学们观察图4.1-2回答问题:从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?(3)我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。
我们把这些图形称为______图形。
(4)几何图形主要关注物体的______、______和_____.它是数学研究的主要对象之一.而物体的颜色、重量、材料等则是其它学科所关注的。
2.立体图形(1)仔细观察图4.1-3,并思考这些几何图形有什么共同点;(2)什么是立体图?____________________________________________________________。
(3)做课本118页思考题(图4.1-4) 3.平面图形(1)平面图形的概念:线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,(1)纸盒(1)长方体(2)长方形(3)正方形(4)线段 点它们是平面图形。
(2)思考:课本118页图4.1-5的图中包含哪些简单的平面图形?请再举出一些平面图形的例子。
______、______、_____、______、______、_____、______、______、_____等4.思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系?________________________________________________________________________探究案1.做课本119页练习2.做课本123-124页第1、2、3题巩固练习1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A. ①②③;B. ③④⑤;C. ①③⑤;D. ③④⑤⑥2.课本125页第7题课堂小结:1.知识方面2.数学思想方法板书设计:教学反思:4.1.1几何图形(二)【教学目标】:1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看;2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形;【学习重点】:识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形【学习难点】:画出从正面、左面、上面看正方体及简单组合体的平面图形预习案一、预习自学(看课本P119完成下列问题)1.请学生背诵苏东坡《题西林壁》并说说诗中意境,从数学的角度来理解是什么意思呢?2.说一说:分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(1)乒乓球:从正面看是__________、从左面看是__________、从上面看是__________。
(2)粉笔盒:从正面看是__________、从左面看是__________、从上面看是__________。
(3)茶叶盒:从正面看是__________、从左面看是__________、从上面看是__________。
3.画一画:长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(1)长方体:从正面看是__________、从左面看是__________、从上面看是__________。
(2)圆锥:从正面看是__________、从左面看是__________、从上面看是__________。
4. 做课本124页第4题探究案1.从正面、左面、上面观察得到的平面图形你能画出来吗?小组合作学习,动手画一画,并进行展示2.分别从正面、左面、上面观察课本119页图4.1-8这个图形,分别画出得到的平面图形。
A .B .C .D .3.做课本120页练习14.做课本125页第10题巩固练习1. 如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是( )2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。
3. 课本126页第13题课堂小结:1.知识方面 2.数学思想方法 板书设计:教学反思:4.1.1几何图形(三)【教学目标】:1.能直观认识立体图形和展开图,了解研究立体图形方法。
2.通过观察和动手操作,经历和体验平面图形和立体图形相互转换的过程,培养动手操作能力,初步建立空间观念,发展几何直觉。
【学习重点】:了解基本几何体与其展开图之间的关系,体会一个立体按照不同方式展开可得到不同的平面展开图。
【学习难点】:正确判断哪些平面图形可以折叠为立体图形;某个立体图形的展开图可以是哪些平面图形预习案一、预习自学(看课本P120完成下列问题)1.展开图(1)看课本P120找出展开图的含义。
(2)你知道长方体、圆柱、圆锥和三棱柱的展开图是什么样子的吗?想象一下。
(3)剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会? 再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种, 请你画出其余5种。
2.立体图形的折叠(1)看课本P120探究题并思考它们分别是什么立体图形的展开图?通过怎样的折叠方式可以还原成原立体图形,凭想象回答,回答不出来的,就把它画在纸片上,剪下来折叠。
(2)做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?建 设和 谐 沾益名称: _________ _________ _________ _________。
二、我的疑惑:探 究 案1.做课本121页练习22.做课本124页第5题3.做课本125页第11题4.做课本126页第12题巩固练习1.下列图形中,不是正方体的表面展开图的是( )A .B .C .D .2. 一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是() A .和 B .谐 C .沾D .益课堂小结:1.知识方面 2.数学思想方法 板书设计:教学反思:4.1.2点、线、面、体【教学目标】:(1)了解几何体、平面和曲面的意义,•能正确判定围成几何体的面是平面还是曲面;(2)了解几何图形构成的基本元素是点、线、面、体及其关系,•能正确判定由点、面、体经过运动变化形成的简单的几何图形;【学习重点】:正确判定围成立体图形的面是平面还是曲面,探索点、线、面、•体之间的关系。
【学习难点】:探索点、线、面、体运动变化后形成的图形。
预习案一、预习自学(看课本P121—123完成下列问题)1.一个长方体,请同学们认真思考回答问题:这个长方体有几个面?面与面相交成了几条线?•线与线相交成几个点?2.几何体的概念:看书P121找出几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________。
(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?_______________________________________________________________________。
3.面的分类通过对上面问题的解决,得出面的分类:____面和___面。
面与面相交成线,线有___线和____线;线与线相交成_____。
4. 点、线、面、体学生看课本第121~122页内容,•观察图片能发现什么结论?点、线、面、体的关系:点动成_____,线动成___________,面动成________。
5.点、线、面、体与几何图形关系.指导学生阅读课本第123页内容,总结出点、线、面、体与几何图形的关系。
几何图形都是由_______________________组成的,________是构成图形的基本元素。
二、我的疑惑:探究案1.做课本第122页练习1、2;2. 将三角形绕直线L旋转一周,可以得到如下图所示立体图形的是()A B C D巩固练习1.人在雪地上走,他的脚印形成一条_______,这说明了______的数学原理;2.体是由_______围成的,面和面相交形成_______,线和线相交形成______;3.点动成________,线动成______,面动成_______;课堂小结:1.知识方面2.数学思想方法板书设计:教学反思:4.2直线、射线、线段(一)【教学目标】:1.能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,•能用几何语言描述直线性质;2.会用字母表示直线、射线、线段,会根据语言描述画出图形;【重点难点】:理解并掌握直线性质,会用字母表示图形和根据语言描述画出图形;预习案一、预习自学(看课本P128—129完成下列问题)1.在小学已经学过了直线、射线、线段.请你画出一条直线、一条射线、一条线段?直线射线线段图形:2.填写下列表格:3.直线的性质(1)如果你想将一根细木条固定在墙上,至少需要几个钉子?操作一下,试试看。
答:(2)经过一个已知点的直线,可以画多少条直线?请画图说明。
答: O ·(3)经过两个已知点画直线,可以画多少条直线?请画图试试。
··答: A B猜想:如果将细木条抽象成直线,将钉子抽象为点,你可以得到什么结论?4.直线的基本性质经过两点有条直线,并且条直线;简述为:举例说明直线的性质在日常生活中的应用:(1) 在挂窗帘时,只要在两边钉两颗钉子扯上线即可,这是因为 (2)建筑工人在砌墙时拉参照线,木工师傅锯木板时,用墨盒弹墨线,都是根据(3)你还能从生活中举出应用直线的基本性质的例子吗?试试看:5.直线有两种表示方法:①用一个 表示;②用 表示。
如:6.平面上一个点与一条直线的位置有什么关系? ① ;② 。
如:7.当两条直线有一个共公点时,我们就称这两条直线 ,这个公共点叫做它们的 。
如图:用几何语言描述出图形所表达的意思:8.射线和线段的表示方法:如图。
显然,射线和线段都是 的一部分。
图①中的线段记作 或 ;图②中的射线记作 或 注意:用两个大写字母表示射线时,表示端点的字母一定要写在 。
二、我的疑惑:板书设计:教学反思:BA 直线AB· · a直线a · B·A Oba ·a ·B A O Am ·②①4.2直线、射线、线段(二)【教学目标】:1、会用尺规画一条线段等于已知线段;2、会比较两条线段的长短;3、理解线段中点的概念,了解“两点之间,线段最短”的性质。