用比例解决问题经典习题.带答案doc

合集下载

10道比例的练习题及答案

10道比例的练习题及答案

10道比例的练习题及答案10道比例的练习题及答案一、填空:1. 甲乙两数的比是11:9,甲数占甲、乙两数和的,乙数占甲、乙两数和的。

甲、。

乙两数的比是3:2,甲数是乙数的倍,乙数是甲数的2. 某班男生人数与女生人数的比是3,女生人数与男生人数的比是,男生人数4和女生人数的比是。

女生人数是总人数的比是。

3. 如果7x=8y,那么x:y=:。

4. 一根绳长2米,把它平均剪成5段,每段长是米,每段是这根绳子的。

5. 王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是,这个比的比值的意义是。

6. 一个正方形的周长是7.米,它的面积是平方米。

91吨大豆可榨油吨,1吨大豆可榨油吨,要榨1吨油需大豆吨。

3228. 甲数的等于乙数的,甲数与乙数的比是。

59. 把甲数的1给乙,甲、乙两数相等,甲数是乙数的,甲数比乙数多。

71,甲数与乙数比是。

乙数比甲数少。

410. 甲数比乙数多11. 在:= 1.2中,6是比的,5是比的,1.2是比的。

在:=4:84中,4和84是比例的,7和48是比例的。

12. :=4÷= :1513. 一种盐水是由盐和水按 1 :30 的重量配制而成的。

其中,盐的重量占盐水的,水的重量占盐水的。

图上距离3厘米表示实际距离180千米,这幅图的比例尺是。

一幅地图的比例尺是图上6厘米表示实际距离千米。

实际距离150千米在图上要画厘米。

14. 12的约数有,选择其中的四个约数,把它们组成一个比例是。

写出两个比值是8的比、。

二、判断1.由两个比组成的式子叫做比例。

2.正方形的面积一定,它的边长和边长不成比例。

3.如果8A =B那么B :A = :4.15:16和:5能组成比例。

三、选择1. 图上6厘米表示表示实际距离240千米,这幅图的比例尺是。

2. 小正方形和大正方形边长的比是2:7小正方形和大正方形面积的比是A、2:B、6:21C、4:143. 下面第组的两个比不能组成比例。

(完整版)比例的基本性质和解比例练习题(后附答案)(2).doc

(完整版)比例的基本性质和解比例练习题(后附答案)(2).doc

.比例的基本性质和解比例练习题(后附答案)(1)如果 A :7=9:B ,那么 AB= ( )(2) 已知 A ÷10.5=7÷B (A 与 B 都不为 0),则 A 与 B 的积是( )。

(3)如果 5X=4Y=3Z ,那么 X :Y : Z=( )(4)如果 4A=5B ,那么 A:B= ( )。

(5)甲数的 4/5 等于乙数的 6/7(甲、乙两数都不为 0),甲乙两数的比是( )。

(6)把 1.6、6.4、2 和 0.5 四个数组成比例( )。

(7)已知三个数 12、16、9,如果再添上一个数,使之能与已知三个数组成比例式,这个数应该是多少 ?(8)X :Y=3:4,Y :Z=6:5,X :Y :Z=( )(9)从 24 的约数中选出四个约数,组成两个比例式是( )。

(10) 根据 6a=7b ,那么 a:b=( )(11)根据 8×9= 3×24,写出比例( )。

(12) 在一个比例中,两个外项分别是 12 和 8,两个比的比值是 3/4,写出这个比例( )(13) 在 12 、8 、16 这三个数中添上一个数组成比例,这个数可以是( )、( )或( )。

(14) 用 18 的因数组成比值是 2 的比例( )。

3(15) 在一个比例中,两个外项互为倒数,如果一个内项是 2.25,则另一个内项是 ( )。

(16)X 的 7/8 与 Y 的 3/4 相等, X 与 Y 的比是( )(17) 如果 x/8=Y/13 ,那么 X : Y=( )(18) 在一个比例中 ,两个比的比值等于 2,比例的外项是 0.08 和 0.6,写出这个比例 ( )。

解比例1 1 12 3x:10= 4 : 30.4:x=1.2:2 2.4 = x1 1 1 32 : 5 = 4:x 0.8:4=x:8 4 :x=3:122 8 36 541.25:0.25=x:1.6 9 = x x= 32 24 4.5 6x: 3 =6:25 x = 2.2 45:x=18:261 1 12.8:4.2=x:9.610 :x= 8 : 4 2.8:4.2=x:9.63 14 35 1 1 x:24= 4 : 38:x= 5 : 4 8 : 6 =x: 121 1 0.6 1.5 0.6∶4=2.4∶x6∶x =5∶3 12= x3∶1=x ∶411∶4=25∶ x x ∶ 1 =0.7∶1 4 2 5 12 5 36 14 210∶50= x ∶ 401.3∶x =5.2∶20 x ∶ 3.6= 6∶ 181∶ 1 =16∶ x4.6=8 3= x 3 20 9 0.2 x 8 64比例的基本性质练习题答案⑴ 63;⑵ 73.5⑶ 12:15:20⑷ 5:4⑸ 15:14⑹ 1.6:6.4=0.5:2 3【 7】 6; 12; 21⑻ 9:12: 10⑼ 3:6=4:82:1:= 24:12 ⑽ 7:6⑾ 3:9 = 8:24⑿ 12:16=6:8⒀ 6;24; 323⒁ 8:12= 32 : 16 8:16=12:24 12:16=6:8 3⒂ 49⒃ 14:11 ; 11:14 (17) 6:7( 18)8:13( 19)9:5 (20) 0.08:0.04=1.2:0.6解比例7.5; 2 ; 0.6;1 ; 3 1.6; 3; 10 8; 36; 2; 25 ; 1.65; 65 6; 1 ; 6.4;6.4 554; 7.5 ; 5 ;1616; 10; 30 1 ; 20 ; 1 ; 5 33 108; 5 ; 1.2;4 ;8 ;24;15 23。

六年级数学下册《用比例解决问题》练习题及答案解析

六年级数学下册《用比例解决问题》练习题及答案解析

六年级数学下册《用比例解决问题》练习题及答案解析学校:___________姓名:___________班级:_____________一、选择题1.一条2厘米的线段,选用下面比例尺()画出的平面图最大。

A.1∶200B.1∶5000C.1∶1D.2∶12.老师买了同样数目的田格本、横线本和练习本。

他发给每个同学1个田格本、3个横线本和5个练习本。

这时横线本还剩24个,那么田格本和练习本共剩了()个。

A.48B.50C.54D.563.把一个圆柱削成一个最大的圆锥,削去的体积是48立方分米,圆柱的体积是()立方分米。

A.144B.24C.724.一幅地图的比例尺是1∶1000000,下列说法不正确的是()。

A.这是一个数值比例尺B.说明要把实际距离缩小为11000000后,再画在图纸上C.图上距离相当于实际距离的1 1000000D.图上1厘米相当于实际1000000米5.下列各数中,()不能与2、8、10组成比例。

A.58B.85C.52D.406.甲乙两个容积相同的瓶子分别装满盐水,已知甲瓶中盐、水的比是2∶3,乙瓶中盐、水的比是3∶5,现在把甲、乙两瓶水混合在一起,则混合盐水中,盐与盐水的比是()。

A.519B.521C.524D.31807.一个水池有甲乙两个水管。

单独开甲管,2小时可以把空池注满;单独开乙管,3小时可以把空池注满。

如果同时打开甲乙两管,()小时可以把空池注满。

A.1B.15C.115D.58.希望小学合唱队共有队员108人,则()一定不是男队员和女队员人数的比。

A.5∶4B.7∶5C.8∶7D.19∶17 9.表示x和y成正比例关系的式子是().A.x+y=9B.y=1.5x C.=0D.xy+1=510.学校把560棵树的种植任务,按照六年级三个班的人数分配给各班。

一班有47人,二班有45人,三班有48人。

二班应种树()。

A.192棵B.188棵C.180棵11.在一幅地图上,用20厘米的线段表示50千米的实际距离,那么这幅地图的比例尺是()。

比例的应用训练题带答案

比例的应用训练题带答案

比例的应用训练题带答案在成比例的两种相关联的量中,无论是成正比例,还是成反比例,都是这两种量之间的关系。

以下是比例的应用训练题带答案,欢送阅读。

1、一条路已修了500米,是未修的2/5,求这条路一共有多长?解答:已修的是未修的2/5,那就是说是已修的是全长的2/7。

列式为:500三2/7=1750(米)答:略。

2、一桶油用去1/5后连桶重14千克,用去1/3后连桶重12千克,求桶重多少千克?油重多少?分析与解答:用去油1/5后连桶重14千克,用去1/3后连桶重12千克,那就是说这桶油的1/3比1/5多2千克,也就是说1/3—1/5=2/15就是2千克。

那么这桶油重可以列式求出来:(14-12)三(1/3—1/5)=2三2/15=15(千克)那么桶重就是14-15X(1—1/5)=2(千克)或者12-15X(1—1/3)=2(千克)答:略。

3、修一条水渠,已修了4天,平均每天修35米,已修的比剩下的少全长的30%,这条水渠全长多少米?分析与解答:已修四天,每天修35米,那么已修的是35X4=140米。

已修的比剩下的少全长的30%,那就是说,如果去掉这30%,剩下的和已修的刚好相等。

于是就有:(100%—30%)三2=35%,这35%就是已修的。

到这儿就很好算了。

列式:35X4三[(100%—30%)三2]=140三35%=400(米)列方程为:解:设这条路全长为X米,那么X—35X4—35X4=30%X或(X—30%X)三2=35X4答:略。

4、师傅和徒弟合做200个零件,师傅做的1/4比徒弟做的1/5多14个,求徒弟做了多少个?分析:师傅做的1/4比徒弟做的1/5多14个,那就是说,师傅做的4/4比徒弟做的4/5多14X4=56(个)。

这样题就变成了“师傅和徒弟合做200个零件,师傅做的比徒弟做的4/5多56个,求徒弟做了多少个?”这已是一个和倍问题了。

如果去掉师傅多的56个,就变成了师傅做的是徒弟的4/5,一共做200—56=144个零件。

用比例解决问题习题(有答案)-数学六年级下第四章比例3.比例的应用人教版

用比例解决问题习题(有答案)-数学六年级下第四章比例3.比例的应用人教版

第四章比例3.比例的应用用比例解决问题测试题一、填空.1.两种()的量,一种量变化,另一种量(),如果这两种量中()的两个数的()一定,这两种量就叫做成正比例的量,它们的关系叫做(),关系式是().2.两种()的量,一种量变化,另一种量(),如果这两种量中()的两个数的()一定,这两种量就叫做成反比例的量,它们的关系叫做(),关系式是().二、下面每题中的两种量是否成比例?如果成比例,成什么比例关系?1.速度一定,路程和时间。

()2.单价一定,总价和数量。

()3.学生总人数一定,每行站的人数和站的行数。

()4.铺地面积一定,方砖面积与所需块数。

()5.货车的载重量一定,运送货物的总量和辆数。

()6.小华每天读课外书20页,读书总页数和天数成()比例关系。

7.长方形的面积一定,长和宽成()比例关系。

8.李玲的体重与她的年龄()比例关系。

三、判断.1.一个因数不变,积与另一个因数成正比例.()2.长方形的长一定,宽和面积成正比例.()3.大米的总量一定,吃掉的和剩下的成反比例.()4.圆的半径和周长成正比例.()5.分数的分子一定,分数值和分母成反比例.()6.铺地面积一定,方砖的边长和所需块数成反比例.()7.铺地面积一定,方砖面积和所需块数成反比例.()8.除数一定,被除数和商成正比例.()四、选择.1.把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.()A.成正比例B.成反比例C.不成比例2.和一定,加数和另一个加数.()A.成正比例B.成反比例C.不成比例3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是(),成反比例关系是().A.汽车每次运货吨数一定,运货次数和运货总吨数.B.汽车运货次数一定,每次运货的吨数和运货总吨数.C.汽车运货总吨数一定,每次运货的吨数和运货的次数.五、根据条件说出数量关系,并判断成什么比例。

1、食堂买3桶油用了780元,照这样计算,买10桶油需要多少元?因为()一定,相关联的两种量是()和()得数量关系式:所以()和()成()比例关系。

解比例练习题及答案

解比例练习题及答案

解比例练习题及答案一、选择题1. 如果3x = 9,那么x的值是多少?A. 3B. 1.5C. 2D. 4.52. 已知比例a:b = 2:3,如果b = 6,那么a的值是多少?A. 4B. 5C. 6D. 83. 根据比例1/2 = 3/6,求x的值,使得x/2 = 3/6。

A. 1B. 2C. 3D. 6二、填空题4. 如果4x = 12,求x的值。

______5. 已知比例a:b = 3:5,且a = 9,求b的值。

______6. 根据比例2/3 = 4/x,求x的值。

______三、计算题7. 解下列比例方程,并给出答案:(a) 5x = 20(b) x/8 = 2/168. 已知比例a:b = 4:7,且a + b = 35,求a和b的值。

9. 根据比例1/3 = 2/x,求x的值,并验证比例是否正确。

四、应用题10. 一个班级有男生和女生,男生人数是女生人数的1.5倍,如果班级总共有42人,求男生和女生各有多少人?11. 一个长方形的长是宽的2倍,如果长加上宽等于18厘米,求长方形的长和宽。

12. 一个工厂生产两种产品,产品A的数量是产品B的3倍,如果两种产品的总数量是150件,求产品A和B各有多少件。

五、解答题13. 解释什么是比例,并举例说明如何解一个简单比例。

14. 解释如何使用交叉相乘法来解比例问题,并给出一个例子。

15. 解释比例的基本性质,并给出一个例子来说明如何使用这个性质来解比例问题。

答案:1. A2. A3. B4. 35. 156. 67. (a) x = 4 (b) x = 168. a = 20, b = 159. x = 9,验证:1/3 = 3/9,2/9 = 6/27,比例正确。

10. 男生有21人,女生有21人。

11. 长是12厘米,宽是6厘米。

12. 产品A有120件,产品B有30件。

13. 比例是两个比值相等的表达式,例如2:3 = 4:6,解比例就是找到未知数使得比例成立。

解比例典型例题及答案

解比例典型例题及答案

解比例答案典题探究例1.按下面的条件列出比例并解比例.(1)5和8的比等于20和X的比.(2)4和12的比等于8和X的比.(3)等号左端的比是4.5:X,等号右端的比是0.3:4.(4)比的两个外项分别是X和1.5,两个内项分别是2.8和3.考点:解比例.专题:比和比例.分析:(1)根据题意先列出比例式5:8=20:x,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除5,即可得解;(2)根据题意先列出比例式4:12=8:x,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除4,即可得解;(3)根据题意先列出比例式4.5:x=0.3:4,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除0.3,即可得解;(4)根据题意先列出比例式x:2.8=3:1.5,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除1.5,即可得解;解答:解:(1)5:8=20:x;5x=20×85x÷5=160÷5x=32;(2)4:12=8:x4x=12×84x÷4=96÷4x=24;(3)4.5:x=0.3:40.3x=4×4.50.3x÷0.3=18÷0.3x=60;(4)x:2.8=3:1.51.5x=3×2.81.5x÷1.5=8.4÷1.5x=5.6.点评:此题考查解比例的方法:根据两内项之积等于两外项之积,把比例式转化为乘积式是解题的关键.例2.求未知数x的值.(1)7:x=0.8:2.4;(2)=;(3)x:=18:.考点:解比例.专题:比和比例.分析:(1)根据比例的基本性质可得:0.8x=7×2.4,再利用等式的性质,两边同时除以0.8求解;(2)根据比例的基本性质可得:15x=20×0.8,再利用等式的性质,两边同时除以15求解;(3)根据比例的基本性质可得:x=×18,再利用等式的性质,两边同时除以求解.解答:解:(1)7:x=0.8:2.40.8x=7×2.40.8x÷0.8=16.8÷0.8x=21;(2)=15x=20×0.815x÷15=16÷15x=;(3)x:=18:x=×18x=x=.点评:此题考查了比例的基本性质和等式的性质的计算应用.例3.若自然数A、B满足﹣=,且A:B=4:5.那么A=8,B=10.考点:解比例.专题:简易方程.分析:把﹣=的左边通分成,由A:B=4:5,根据比例的性质,可得5A=4B,推出A=B,把A=B代人=中,即可求得B的数值,进而求得A的数值.解答:解:因为A:B=4:5,所以5A=4B,A=B;﹣=,=,把A=B代人=中,得:=,=,×=,=,B=10;把B=10代入A=B中,A=B=×10=8;故答案为:8,10.点评:用含B的式子表示出A是解答此题的关键,进而代入方程即可得解.例4.只列算式(或方程),不计算.(1)比例的两个内项分别是5和2,两个外项分别是x和3.5.(2考点:解比例;分数除法应用题.专题:压轴题.分析:(1)根据比例的基本性质“两外项之积等于两内项之积”,据此列出方程即可;(2)根据图意,可知把这根绳子的总长看做单位“1”,用去了,还剩下300米;要求单位“1”的量,要先求出还剩下的300米对应的分率是多少列式为:1﹣,进而用具体的数量除以具体的数量对应的分率即可解答.解答:解:(1)x:2=5:3.5;(2)300÷(1﹣).点评:此题考查根据题意或图意,列比例式或算式,解决关键是要分析好题意或图意,灵活的解答即可.演练方阵A档(巩固专练)一.选择题(共7小题)1.在2、3、这三个数中插入第四个数X,使得这四个数能组成比例,那么X最小是()A.B.C.D.考点:解比例;比例的意义和基本性质.专题:比和比例.分析:根据比例的性质:两内项之积等于两外项之积.要使插入的第四个数X最小,即要使两内项之积或两外项之积最小,积最小为:2×,据此解答即可.解答:解:由分析可得:2×=3X,所以X=.故选:C.点评:解答本题的关键是,分析出要使插入的第四个数X最小,即要使两内项之积或两外项之积最小.2.(•静宁县)在比例中,两个外项互为倒数,两个内项()A.成正比例B.成反比例C.不成比例考点:解比例;正比例和反比例的意义.分析:根据倒数的定义结合比例的基本性质,即可得出两个内项的关系.解答:解:因为在比例中,两个外项互为倒数,所以两个内项的积=1,所以两个内项成反比例.故选:B.点评:本题考查了正比例和反比例的意义,得到两个内项的积=1是解题的关键.3.(•厦门)如果a÷=b×(a、b都不等于零),那么()A.a>b B.a=b C.a<b考点:解比例;比与分数、除法的关系.专题:压轴题.分析:可令a÷=b×的值为1,求得a,b,再比较a,b的关系.解答:解:令a÷=b×=1,则a=,b=,则a<b.故选C.点评:考查了比例中的大小比较问题,常用举特例的方法解决这类问题.4.2:x=:,x=()A.40B.4C.0.4D.1考点:解比例.分析:根据两内项之积等于两外项之积把比例式转化为乘积式,然后再解关于x的一元一次方程即可.解答:解:x=2×,x=,解得x=1.故选D.点评:本题主要考查了解比例,根据两内项之积等于两外项之积把比例式转化为乘积式是解题的关键,是基础题,难度不大.5.在=中,a的值是()A.2B.4C.6D.8考点:解比例.分析:利用比例的基本性质“两内项之积等于两外项之积”由此可求得a,进而选择正确答案.解答:解:根据比例的基本性质可解得:a=4,故选:B.点评:紧扣比例的基本性质即可解决此类问题.6.当:4=x:5时,x的值是()A.B.C.D.考点:解比例.分析:根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,再进行选择.解答:解::4=x:5,4x=×5,4x=3,x=.故选:B.点评:此题考查比例性质的运用即解比例.7.已知,则x=()A.40B.4C.0.4D.1考点:解比例.分析:解比例的方法:根据比例的性质先把比例式转化成两外项积等于两内项积的形式,就是已学过的简易方程,再解简易方程即可.解答:解:,x=2×,x=,x=,x=1.故选:D.点评:此题考查根据比例的性质解比例:把比例式先转化成两外项积等于两内项积的形式,再解方程即可.二.填空题(共10小题)8.(1)如果:5=16%:7,那么=;(2)若(0.5+÷)=,则=.考点:解比例;整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则;简易方程.分析:(1)把五角星未知数看作x,根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以7求解,(2)把正方形看作未知数x,依据等式的性质,方程两边同时除以,再同时减0.5,然后同时乘x,最后同时除以求解.解答:解:(1)把原题中五角星未知数看作x,原题化为:x:5=16%:7,7x=5×16%,7x=0.8,7x÷7=0.8÷7,x=,即=,故应填:;(2)把原题中的正方形看作未知数x,原题化为:(0.5+÷x)=,(0.5+÷x)=,0.5+÷x﹣0.5=﹣0.5,x×x=x,x,x=,即=,故应填:.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解方程时注意对齐等号.9.在X:1=3:4中,X=.考点:解比例.分析:本题按照比例的基本性质两内项之积等于两外项之积来求解.解答:解:X:1=3:4解:4X=×34X=X=;故答案为:.点评:解比例使用比例的基本性质来求解.10.0.8:4=8:x中,x=0.4,×.(判断对错)考点:解比例.专题:比和比例.分析:0.8:4=8:x,根据比例的基本性质得:0.8x=4×8,两边同时除以0.8解出x即可.解答:解:0.8:4=8:x0.8x=4×80.8x=32x=32÷0.8x=40x=40而不是0.4,故这句话是错误的.故答案为:×.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解答时注意对齐等号.11.9:6=15:10.考点:解比例.专题:比和比例.分析:根据比的基本性质“两内项之积等于两外项之积”,先求出两內项之积,进而用积除以已知的外项,即可得出未知的外项.解答:解:6×15÷9=90÷9=10;故答案为:10.点评:解决此题也可以根据比的意义,先求出前一个比的比值,进而用后一个比的内项除以比值求解.12.6:1.5=8:2.填上合适的数.4:3=36:2724:80=1.8:6考点:解比例.专题:比和比例.分析:每一道题都设要求的数为x,进而写出比例:(1)根据比例的基本性质,先把比例式转化成等式4x=3×36,再根据等式的性质,在方程两边同时除以4得解;(2)根据比例的基本性质,先把比例式转化成等式1.8x=24×6,再根据等式的性质,在方程两边同时除以1.8得解;(3)根据比例的基本性质,先把比例式转化成等式1.5x=6×2,再根据等式的性质,在方程两边同时除以1.5得解.解答:解:每一道题都设要求的数为x:(1)4:3=36:x,4x=3×36,4x÷4=108÷4,x=27;(2)24:x=1.8:6,1.8x=24×6,1.8x÷1.8=144÷1.8,x=80;(3)6:1.5=x:2,1.5x=6×2,1.5x÷1.5=12÷1.5,x=8.故答案为:27,80,8.点评:本题主要考查了解比例,根据比例的性质先把比例式转化为乘积式是解题的关键;注意等号要对齐.13.解比例::=X:24X:=:0.6.考点:解比例.分析:根据两内项之积等于两外项之积把比例式转化为乘积式,然后再解关于x的一元一次方程即可.解答:解:(1)x=24×,x=9,解得x=10;(2)0.6x=×,0.6x=,解得x=;(3)4x=5.2×6.5,4x=33.8,解得x=8.45;(4)0.6x=1.2×4,0.6x=4.8,解得x=8.点评:本题主要考查解比例,根据两内项之积等于两外项之积把比例式转化为乘积式是解题的关键,是基础题,难度不大.14.(•金寨县模拟)甲数比乙数少,甲数和乙数的比是2:9.考点:解比例.分析:甲数=(1﹣)×乙数,依此可求甲数与乙数的比.解答:解:甲数和乙数的比=(1﹣):1=2:9.故答案为:2:9.点评:考查了求比的问题,解题的关键是将乙数看作单位1,依此得到甲数.15.如果x:=0.15:2.5,那么x=0.048.考点:解比例.专题:比和比例.分析:根据比例的基本性质变为:2.5x=×0.15,然后化简,再在方程的两边同时除以2.5求解.解答:解:x:=0.15:2.52.5x=×0.152.5x=0.122.5x÷2.5=0.12÷2.5x=0.048故答案为:0.048.点评:本题考查了利用比例的基本性质解比例.16.能与:组成比例的比是B、CA.2:3B.9:6C.:D.:.考点:解比例.分析:先化简:,再分别计算各选项,与:进行比较,比值相等的即为所求.解答:解::=3:2.A、因为2:3≠3:2,所以不能组成比例,故选项错误;B、因为9:6=3:2,所以能组成比例,故选项正确;C、因为:=3:2,所以能组成比例,故选项正确;D、因为:=2:3≠3:2,所以不能组成比例,故选项错误.故选:B和C.点评:本题考查了比例线段的定义:对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a:b=c:d(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.17.在横线里填上适当的数.5:4=30:241.5:0.18=150:188:15=24:4536:12=9:30.9:0.5=9:5.考点:解比例.专题:比和比例.分析:设未知数为x,列出比例,根据比例的基本性质,两外项之积等于两内项之积,求出未知数即可.解答:解:(1)5:4=x:244x=5×244x÷4=5×24÷4x=30;(2)1.5:0.18=x:180.18x=1.5×180.18x÷0.18=1.5×18÷0.18x=150;(3)8:15=24:x8x=15×248x÷8=15×24÷8x=45;(4)36:12=9:x36x=12×936x÷36=12×9÷36x=3;(5)x:0.5=9:55x=0.5×95x÷5=0.5×9÷5x=0.9.故答案为:30,150,45,3,0.9.点评:此题主要是考查解比例,解比例与解方程类似,要注意书写格式.解比例的依据是比例的基本性质及等式的性质.三.解答题(共11小题)18.计算:4:5=(χ+5):10.考点:解比例.专题:简易方程.分析:根据两内项之积等于两外项之积,把比例式转化成方程,再根据等式的性质求解即可.解答:解:4:5=(x+5):104×10=5×(x+5)40=5x+255x=40﹣25x=15÷5x=3.点评:掌握比例的基本性质是解题的关键.19.解比例.(1)6:15=x:20(2):x=3:8(3):=:x(4)=(5)x:15=1:2.4(6)8:x=3:1.考点:解比例.专题:比和比例.分析:根据两内项之积等于两外项之积,把比例式转化成方程,再根据等式的性质求解即可.解答:解:(1)6:15=x:2015x=6×2015x÷15=120÷15x=8(2):x=3:83x=3x÷3=6÷3x=2(3)x=(4)0.75x=0.5×60.75x÷0.75=3÷0.75x=4(5)x:15=1:2.42.4x=1×152.4x÷2.4=15÷2.4x=6.25(6)8:x=3=8×x=3点评:掌握比例的基本性质是解题的关键.20.求未知数x的值.:0.05=1:x x﹣1=x+x+x+x+x.考点:解比例;方程的解和解方程.专题:用字母表示数.分析:(1)根据比例的基本性质转化为x=×,再根据等式的基本性质,方程的两边同除以即可;(2)先计算x+x+x+x+x=x,再根据等式的基本性质,方程的两边同x,再加上1即可.解答:解::0.05=1:x,x=×,x÷=×÷,x=;(2)x﹣1=x+x+x+x+x,x﹣1=x,x﹣1﹣x=x﹣x,x﹣1=0,x﹣1+1=0+1,x=1,x=32.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解答时注意对齐等号.21.解方程.X:1.2=3:4=30%X﹣X=.考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)根据比例的基本性质:两内项之积等于两外项之积可得4x=1.2×3,再利用等式的性质两边同时除以4即可解答;(2)可以写成x:4=3:10,根据比例的基本性质:两内项之积等于两外项之积可,10x=4×3,再利用等式的性质两边同时除以10即可解答;(3)先把左边计算出来得:x=,再利用等式的性质,两边同时乘,即可解答.解答:解:(1)x:1.2=3:4,4x=1.2×3,4x÷4=3.6÷4,x=0.9,(2)=30%,x:4=3:10,10x=4×3,10x÷10=12÷10,x=1.2,(3)x﹣x=,x=,x×=×,x=2.点评:此题考查了利用比例的基本性质解比例和利用等式的性质解方程的方法.22.一个数和的比等于8和1.6的比,求这个数.考点:解比例.分析:根据题意可以设这个数为x,组成比例,解比例即可.解答:解:设这个数为x.x:=8:1.61.6x=×8x=×8÷1.6x=4答:这个数是4.点评:此题主要考查解比例的方法.23.(•河池)求未知数x的值.(1):x=:8(2)1.7x﹣0.4x=3.9.考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)根据比例基本性质,两内项之积等于两外项之积化简方程,再依据等式的性质,方程两边同时除以求解,(2先化简方程,再依据等式的性质,方程两边同时除以1.3求解.解答:解:(1):x=:8,x=×8,x=,x=4;(2)1.7x﹣0.4x=3.9,1.3x=3.9,1.3x÷1.3=3.9÷1.3,x=3.点评:本题主要考查学生依据等式的性质以及比例的基本性质解方程的能力,解答时注意对齐等号.24.(•东莞市模拟)求x的值.6x﹣0.5×5=9.5:x=:0.75考点:解比例;方程的解和解方程.专题:简易方程.分析:①根据比例的性质变成x=×,再根据等式的性质,方程的两边同时除以即可;②6x﹣0.5×5=9.5,先计算0.5×5=2.5,再根据等式的性质,方程的两边同时加上2.5,再除以6即可;解答:解:①:x=:0.75,x=×,x=,x÷=÷,x=;②6x﹣0.5×5=9.5,6x﹣2.5=9.5,6x﹣2.5+2.5=9.5+2.5,6x=12,6x÷6=12÷6,x=2.点评:此题考查根据等式的性质和比例的性质解比例和解方程的能力,注意等号对齐.25.解比例:8:20=7.6:x.考点:解比例.专题:比和比例.分析:根据比例的基本性质,先把比例式转化成等式8x=20×7.6,再根据等式的性质,在方程两边同时除以2.5得解.解答:解:8:20=7.6:x8x=20×7.68x=1528x÷8=152÷8x=19.点评:本题主要考查了解比例,根据比例的性质先把比例式转化为乘积式是解题的关键;注意等号要对齐.26.解方程.(1)4.2:x=25(2)3.6x:=3.5(3)x:=(4)x:0.25=4.考点:解比例.专题:比和比例.分析:(1)根据比例的基本性质,两内项之积等于两外项之积,方程可化为25x=4.2,再依据等式的性质,两边同除以25即可求解;(2)根据比例的基本性质,两内项之积等于两外项之积,方程可化为3.6x= 3.5,再依据等式的性质,两边同除以3.6即可求解;(3)根据比例的基本性质,两内项之积等于两外项之积,方程可化为x=×,化简计算即可;(4)根据比例的基本性质,两内项之积等于两外项之积,方程可化为x=0.25×4,化简计算即可;解答:解:(1)4.2:x=2525x=4.225x÷25=4.2÷25x=0.168(2)3.6x:=3.53.6x= 3.53.6x÷3.6=1.75÷3.6x=0.486(3)x:=x=×x=(4)x:0.25=4x=0.25×4x=1点评:本题主要考查运用等式的性质以及比例的基本性质解方程的能力,注意等号对齐.27.解方程或解比例:8x÷(1.8÷3)=1.5.:=:(4﹣x)考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)先化简方程的左边,变成8x÷0.6=1.5,然后方程的两边同时乘上0.6,再同时除以8即可;(2)根据比例的基本性质,把方程变成×(4﹣x)=×,然后方程的两边同时除以,再同加上x,最后同时减去即可.解答:解:(1)8x÷(1.8÷3)=1.58x÷0.6=1.58x÷0.6×0.6=1.5×0.68x=0.98x÷8=0.9÷8x=0.1125;(2):=:(4﹣x)×(4﹣x)=××(4﹣x)÷=÷4﹣x=4﹣x+x=+xx+﹣=4﹣x=3.点评:本题考查了根据比例的基本性质以及等式的性质解方程的方法,计算时要细心,注意把等号对齐.28.求未知数x(1)6.5:x=314:4(2)8(x﹣2)=2(x+7)考点:解比例;方程的解和解方程.专题:简易方程;比和比例.分析:(1)先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以314即可;(2)先化简方程,再根据等式的性质,在方程两边同时减2x,加16,再同时除以6求解.解答:解:(1)6.5:x=314:4314x=6.5×4314x÷314=26÷314x=;(2)8(x﹣2)=2(x+7)8x﹣16=2x+148x﹣16+16﹣2x=2x+14﹣2x+166x=306x÷6=30÷6x=5.点评:此题考查了根据等式的性质解方程,即等式两边同时加、减、乘同一个数或除以同一个不为0的数,等式的左右两边仍相等;注意等号上下要对齐.B档(提升精练)一.选择题(共14小题)1.当x=()时,的比值恰好是最小的质数.A.B.C.考点:解比例.专题:比和比例.分析:最小的质数是2,所以可得的一个等式:=2,根据比与除法的关系即比的前项相当于除法的被除数,比的后项相当于除法的除数,比值相当于除法的商,然后再进行计算得到答案.解答:解;=2x=÷2,x=,答:当x=时,的比值恰好是最小的质数.故选:C.点评:解答此题的关键是确定比与除法之间的关系,然后再进行计算即可.2.解比例是根据()A.比的基本性质B.比例的基本性质C.比例的意义.考点:解比例.专题:比和比例.分析:解比例是求比例的解的过程,即先把比例改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,所以根据的是比例的基本性质.据此即可判断.解答:解:解比例是先把比例改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,所以解比例是根据比例的基本性质.故选:B.点评:本题考查了解比例的依据,明确解比例的定义是关键.3.如果3:5=x:2,那么x应该是()A.B.C.D.考点:解比例.专题:比和比例.分析:根据比例的性质,可得5x=3×2,再利用等式的性质两边同时除以5,即可得出x=,据此即可选择.解答:解:3:5=x:2,5x=3×2,5x÷5=6÷5,x=.故选:A.点评:熟练运用比例的基本性质,掌握比例式和等式的转化.4.解比例:=2:1,x=()A.6B.1.5C.0.7D.9考点:解比例.专题:比和比例.分析:根据比例的基本性质:两内项之积等于两外项之积,得出关于x的方程,再利用等式的性质解方程即可解答问题.解答:解:=2:1x:3=2:1x=6.故选:A.点评:此题考查了比例的基本性质和等式的性质的应用.5.解比例的根据是()A.比的基本性质B.比例的基本性质C.分数的基本性质考点:解比例.分析:首先要知道什么是解比例,然后分析每个选项,看哪一个最适合用来作为解比例的根据.解答:解:因为求比例的解的过程,叫做解比例.所以选项A:比的基本性质“比的前项和后项同时乘或除以相同的数(0除外),比值不变.”不能作为解比例的根据.选项B:比例的基本性质“两外项之积等于两内项之积”可以作为解比例的根据.选项C:分数的基本性质“分子和分母同时扩大或缩小相同的倍数,分数值不变.”也不能作为解比例的根据.故选B.点评:做这道题的关键是分清比、分数和比例的基本性质.6.(X﹣0.1):0.4=0.6:1.2 则X=()A.X=0.3B.X=0.9C.X=0.8考点:解比例.专题:比和比例.分析:根据比例基本性质,两内项之积等于两外项之积,化简方程,再依据等式的性质求解.解答:解:(X﹣0.1):0.4=0.6:1.2,(X﹣0.1)×1.2=0.6×0.4,(X﹣0.1)×1.2÷1.2=0.24÷1.2,X﹣0.1=0.2,X﹣0.1+0.1=0.2+0.1,X=0.3.故选:A.点评:本题主要考查学生依据等式的性质以及比例的基本性质解方程的能力,解方程时注意对齐等号.7.x=是比例()的解.A.2.6:x=1:8B.3:6=x:8C.:x=考点:解比例.专题:比和比例.分析:根据比例的基本性质,把x=代入各选项即可判断.解答:解:A、把x=代入2.6:x=2.6:=52:25,52:25≠1:8,所以把x=不是2.6:x=1:8的解;B、把x=代入x:8=:8=5:32,3:6≠5:32,所以把x=不是3:6=x:8的解;C、把x=代入:x=:=2:1,:=2:1,所以把x=是:x=:的解.故选:C.点评:本题主要考查学生依据等式的性质以及比例基本性质解方程的能力.8.(•荔波县模拟)如果比例的两个外项互为倒数,那么比例的两个内项()A.成反比例B.成正比例C.不成比例考点:解比例.专题:压轴题.分析:根据互为倒数的定义和比例的两内项之积等于两外项之积,可得比例的两个内项之积等于1,再根据成反比例的定义即可求解.解答:解:因为比例的两个外项互为倒数,那么比例的两个内项之积=1(为恒指),则比例的两个内项成反比例.故选:A.点评:本题考查了倒数的定义和成反比例的条件,两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定.这两种量叫做成反比例的量.它们的关系叫做反比例关系.9.已知:x=0.2:0.3,则x的值为()A.B.C.3考点:解比例.专题:比和比例.分析:先根据比例基本性质,两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以0.2求解.解答:解::x=0.2:0.3,0.2x=0.3×,0.2x=0.15,0.2x÷0.2=0.15÷0.2,x=,故选:A.点评:解答本题的关键是依据比例基本性质求解.解答时注意对齐等号.10.用4,0.8,5和x组成比例,并解比例,x有()种不同的解.A.1B.2C.3D.4考点:解比例.专题:比和比例.分析:根据比例的基本性质,4,0.8,5和x,组成比例的情况有12种,两内项之积等于两外项之积,这四个数可写成三个等式.据此解答.解答:解:根据分析知,4,0.8,5和x组成比例的情况有12种:(1)5:0.8=x:4,0.8:5=4:x,0.8:5=4:x,4:0.8=x:5,它们变形后都能写成0.8x=5×4,解相同.同理也有四个比例式变形后写成5x=4×0.8,和4x=5×0.8.故选:C.点评:本题考查了学生根据比例的基本性质解答问题的能力.11.解比例30:x=2:0.1,x=()A.6B.1.5C.0.7D.9考点:解比例.专题:比和比例.分析:先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以2求解.解答:解:30:x=2:0.1,2x=30×0.1,2x÷2=3÷2,x=1.5,故应选:B.点评:本题主要考查学生依据等式的性质以及比例基本性质解方程的能力,解方程时注意对齐等号.12.x=1.25是哪个比例的解?()A.2.6:x=6:3B.3:6=x:8C.:x=:考点:解比例.专题:简易方程.分析:把三个选项中的比例式,依据等式的性质,以及比例的基本性质,求出方程的解,再与x=1.25比较即可解答.解答:解:在选项A中:2.6:x=6:36x=2.6×36x÷6=7.8÷6x=1.3;在选项B中:3:6=x:86x=3×86x÷6=24÷6x=4;在选项C中::x=:x=x=x=1.25故选:C.点评:依据等式的性质,以及比例的基本性质,求出选项中各方程的解,是解答本题的关键.13.若已知2:3=(5﹣x):x,那么x等于()A.2B.3C.4D.6考点:解比例.专题:比和比例.分析:先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时加3x,最后同时除以5求解.解答:解:2:3=(5﹣x):x,15﹣3x=2x,15﹣3x+3x=2x+3x,15÷5=5x÷5,x=3.故选:B.点评:本题考查知识点:依据等式的性质,以及比例基本性质解方程.14.如果和相等,则m等于()A.B.C.D.考点:解比例.专题:比和比例.分析:依据题意可列比例式:=,先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以18即可求解.解答:解:=,18m=11×12,18m÷18=132÷18,m=,m=7.故答案为:A.点评:等式的性质,以及比例基本性质是解方程的依据,解方程时注意对齐等号.二.填空题(共14小题)15.(•新干县)若a与b互为倒数,且=,那么x=.√.(判断对错)考点:解比例.专题:比和比例.分析:若a与b互为倒数,且=,根据比例的基本性质可得:5x=ab=1,那么x=.解答:解:=,根据比例的基本性质可得:5x=ab=1,那么x=;故答案为:√.点评:此题考查了比例的基本性质的运用.16.(•东莞模拟)如果ҳ:=:,那么ҳ=.考点:解比例.分析:根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项.解答:解:ҳ:=:,X=×,X=,X=.故答案为:.点评:此题考查比例性质的运用即解比例.17.(•铁山港区模拟)下面表格中,如果x与y成正比例,“?”是32:如果x和y成反比例,“?”是8X16?y4896考点:解比例.专题:比和比例.分析:(1)如果x与y成正比例,由正比例的意义可得16:48=?:96,把?看作未知数,根据比例的基本性质进行解比例即可;(2)如果x和y成反比例,由反比例的意义可得96?=16×48,把?看作未知数,根据等式的性质进行解方程即可.解答:解:根据题意可得:(1)16:48=?:96,48?=16×96,48?=1536,48?÷48=1536÷48,?=32;所以,如果x与y成正比例,“?”是32;(2)96?=16×48,96?=768,96?÷96=768÷96,?=8;所以,如果x和y成反比例,“?”是8.故答案为:32,8.点评:本题主要考查正反比例的意义,然后根据题意列出比例或方程再进一步解答即可.18.(•沿河县模拟)根据比例关系填表:x43918152y601024考点:解比例.专题:比和比例.分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:因为24×15=360(一定)所以xy成反比例关系.360÷4=90,360÷3=120,360÷60=6,360÷9=40,360÷10=36,360÷18=20,360÷2=180.x43693618152y901206040102024180点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.19.(•靖江市)如果x与y成正比例,那么表中的△是 4.5;如果x与y成反比例,那么△是2.x3△y120180考点:解比例.专题:比和比例.分析:(1)如果表中x和y成正比例,说明x和y对应的比值一定,根据两个比的比值相等列比例,并解比例即可;(2)如果表中x和y成反比例,说明x和y对应的乘积一定,根据两个比的乘积相等列方程,并解方程即可.解答:解:(1)3:120=x:180,120x=3×180,120x÷120=540÷120,x=4.5;(2)180x=3×120,180x=360,180x÷180=360÷180,x=2;故答案为:4.5,2.点评:此题考查根据正、反比例的意义,解答时要根据已知两种相关联的量,看比值一定还是积一定.20.(•广州模拟)0.4:x=1:10.考点:解比例.分析:根据比例的基本性质,把原式转化为x=0.4×10,再根据等式的性质,在方程两边同时乘上求解,解答:解:0.4:x=1:10,x=0.4×10,x×=4×,x=.点评:本题主要考查了学生根据比例的基本性质和等式的性质解方程的能力.21.(•广州模拟)6:2.8=2.4:x.考点:解比例.分析:根据比例的基本性质,把原式转化为6x=2.8×2.4,再根据等式的性质,在方程两边同时除以6求解.解答:解:6:2.8=2.4:x,6x=2.8×2.4,6x÷6=6.72÷6,x=1.12.点评:本题考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.22.(•江宁区模拟)如果A与B成正比例,那么“?”是 3.2;如果A与B成反比例,那么“?”是5.A4?B200160考点:解比例.分析:这一题可由正比例的意义和反比例的意义解答即可.解答:解:(1)A与B成正比例,△,x=3.2;(2)A与B成反比例,160x=4×200,x=5;故答案为:3.2,5.点评:此题考查了对正比例与反比例意义的理解以及应用的能力,要灵活掌握正反比例的公式.23.(•广州模拟):=4:x.考点:解比例.分析:根据比例的基本性质,把原式转化为,再根据等式的性质,在方程两边同时乘上求解.解答:解::=4:x,,,x=.点评:本题考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.。

比例习题含答案

比例习题含答案

比例习题含答案比例习题含答案比例是数学中常见的概念,也是我们日常生活中经常遇到的问题。

比例习题是培养我们分析和解决问题能力的重要训练。

本文将为大家提供一些常见的比例习题,并附上详细的解答,希望能帮助大家更好地理解和应用比例。

1. 甲乙两地相距120公里,甲地到乙地的车程是3小时。

如果以相同的速度继续行驶,那么甲地到乙地的车程需要多长时间?解答:根据题意,车速是不变的,所以车程与时间成正比。

设甲地到乙地的车程为x公里,根据比例关系可得:120/3 = x/时间解得时间为2小时。

2. 一桶水装满需要10分钟,如果用两个水龙头一起放水,那么装满一桶水需要多长时间?解答:设用两个水龙头一起放水时,装满一桶水的时间为x分钟。

根据题意可得:1/10 + 1/10 = 1/x解得x为5分钟。

3. 甲乙两个人一起工作,甲单独完成一项工作需要6天,乙单独完成同样的工作需要9天。

如果甲乙一起工作,那么完成这项工作需要多少天?解答:设甲乙一起工作完成这项工作需要x天。

根据题意可得:1/6 + 1/9 = 1/x解得x为3.6天,即3天12小时。

4. 一辆汽车以每小时80公里的速度行驶,行驶了3小时后,汽车的行驶距离是多少?解答:根据题意可得:行驶距离 = 速度× 时间= 80 × 3 = 240公里。

5. 一辆汽车以每小时60公里的速度行驶,行驶了4小时后,汽车的行驶距离是多少?解答:根据题意可得:行驶距离 = 速度× 时间= 60 × 4 = 240公里。

通过以上的例题,我们可以看到比例习题的解答过程是基于比例关系的计算。

在解答过程中,我们需要根据题意设定变量,建立比例关系,然后通过计算求解未知数。

比例习题的解答过程可以培养我们的逻辑思维和数学运算能力。

除了以上的例题,比例习题还可以涉及到购物打折、图形相似等实际问题。

通过解答这些习题,我们可以更好地理解比例的概念,并将其应用到实际生活中。

小学比例应用题25道含答案

小学比例应用题25道含答案

小学比例应用题25道含答案1.一个箱子里有12个苹果和18个橘子,苹果和橘子的比例是多少?答案:2:3。

2.一个班级有48名学生,其中男生和女生的比例是3:5,男生有多少人?答案:18人。

3.一块土地被分为4份,其中3份分给了小王、小明、小李三人,他们的比例是1:2:3,小李分到的土地面积是60平方米,这块土地的总面积是多少?答案:160平方米。

4.某公司的员工有280人,其中男员工和女员工的比例是3:4,女员工有多少人?答案:160人。

5.某班级有30名学生,其中男生和女生的比例是2:3,女生有多少人?答案:18人。

6.一桶液体有48升,其中糖水和水的比例是1:3,糖水有多少升?答案:12升。

7.某个城市的总人口为800000人,其中男性和女性的比例是2:3,女性有多少人?答案:480000人。

8.一辆公交车上乘客的男性和女性的比例是1:2,如果有36名乘客是男性,公交车上有多少名乘客?答案:108名。

9.一家超市苹果和橙子一共60箱,苹果和橙子的比例是1:2,超市里有多少箱橙子?答案:40箱。

10.一个班级有60名学生,其中男生和女生的比例是1:3,女生有多少人?答案:45人。

11.某地区的总人口为500000人,其中男性和女性的比例是3:2,女性有多少人?答案:200000人。

12.一台机器由A、B、C三个部分组成,它们的价值比例是1:2:3,如果整台机器的价值为1500元,C部分的价值是多少元?答案:750元。

13.一栋楼房的高度是50米,它的模型高度是20厘米,模型与楼房的比例是多少?答案:1:250。

14.一种药物的瓶子里有15毫升药液和45毫升水,药液和水的比例是多少?答案:1:3。

15.一架飞机上有90名乘客,其中男性和女性的比例是2:3,女性有多少人答案:54人。

16.一个班级有40名学生,其中男生和女生的比例是3:2,男生有多少人?答案:24人。

17.一个班级有36名学生,其中男生和女生的比例是4:5,男生有多少人?答案:16人。

比例应用题含有答案

比例应用题含有答案

比例应用题含有答案比例应用题含有答案【试题】【题1】甲数比乙数少20%,那么乙数比甲数多百分之几?【题2】有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,这堆糖中有奶糖多少块?【题3】一个正方体的棱长增加原长的1/2,他的表面积比原表面积增加百分之几?【题4】商店有篮球和排球共45个,其中篮球占60%,当卖出一批篮球后,篮球占现在总数的25%,卖出的篮球是多少个?【题5】把一个正方形的一边削减20%,另一边增加2公尺,得到一个长方形,他与原来的正方形面积相等,那么正方形的.面积是多少平方公尺?【题6】已知甲校同学数是乙校同学数的40%,甲校女生数是甲校同学数的30%,乙校男生数是乙校同学数的42%,那么,两校女生数占两校同学总数的百分之几?【题7】把25公克盐放进100公克水里制成盐水,制成的这种盐水,含盐量是百分之几?【题8】某次会议,昨天参与会议的男代表比女代表多700人,今日男代表削减10%,女代表增加5%,今日共1995人出席会议,昨天参与会议的有多少人?【题9】有甲、乙两家商店,如甲店的利润增加20%,乙店的利润削减10%,那么,这两店的利润就相同,问原来甲店的利润是原来乙店的利润的百分之几?【题10】有浓度为3.2%的盐水500公克,为把他变成浓度是8%的盐水,需要使他蒸发掉多少公克的水?【参考答案】1.【解答】20%÷(1-20%)=25%。

2.【解答】16÷【(1-25%)÷25%―(1―45%)÷45%】=9(块)。

3.【解答】【(1+1/2)×(1+1/2)×6】÷(1×1×6)-1 = 125%。

4.【解答】45×60%-18×【25%÷(1-25%)】= 6(个)。

5.【解答】【2×(1-20%)÷20%】2 = 64(平方公尺)。

小学数学比例应用题100道及答案(完整版)

小学数学比例应用题100道及答案(完整版)

小学数学比例应用题100道及答案(完整版)1. 小明用10 元钱买了5 个本子,照这样计算,16 元可以买几个本子?答案:8 个解析:先算出每个本子的价格10÷5 = 2 元,16÷2 = 8 个2. 工厂生产一种零件,3 小时生产了180 个,照这样计算,8 小时可以生产多少个?答案:480 个解析:每小时生产180÷3 = 60 个,8 小时生产60×8 = 480 个3. 一辆汽车5 小时行驶250 千米,照这样的速度,7 小时行驶多少千米?答案:350 千米解析:速度为250÷5 = 50 千米/时,7 小时行驶50×7 = 350 千米4. 4 头牛5 天吃草800 千克,照这样计算,7 头牛8 天吃草多少千克?答案:2240 千克解析:1 头牛1 天吃草800÷4÷5 = 40 千克,7 头牛8 天吃草40×7×8 = 2240 千克5. 用20 千克花生可以榨油8 千克,照这样计算,100 千克花生可以榨油多少千克?答案:40 千克解析:出油率为8÷20 = 0.4,100×0.4 = 40 千克6. 某工厂8 个工人6 天加工零件720 个,照这样计算,12 个工人15 天可以加工零件多少个?答案:2700 个解析:1 个工人1 天加工720÷8÷6 = 15 个,12 个工人15 天加工15×12×15 = 2700 个7. 5 台织布机8 小时织布480 米,照这样计算,7 台织布机12 小时织布多少米?答案:1008 米解析:1 台织布机1 小时织布480÷5÷8 = 12 米,7 台织布机12 小时织布12×7×12 = 1008 米8. 修一条路,3 人5 天可以修150 米,照这样计算,8 人10 天可以修多少米?答案:800 米解析:1 人1 天修150÷3÷5 = 10 米,8 人10 天修10×8×10 = 800 米9. 10 辆汽车12 次运货物600 吨,照这样计算,20 辆汽车15 次可以运货物多少吨?答案:1500 吨解析:1 辆汽车1 次运600÷10÷12 = 5 吨,20 辆汽车15 次运5×20×15 = 1500 吨10. 学校用同样的方砖铺地,铺5 平方米需要方砖120 块,照这样计算,铺30 平方米需要方砖多少块?答案:720 块解析:1 平方米需要120÷5 = 24 块,30 平方米需要24×30 = 720 块11. 小明2 分钟走120 米,照这样的速度,他从家到学校走了8 分钟,他家到学校有多远?答案:480 米解析:速度为120÷2 = 60 米/分钟,8 分钟走60×8 = 480 米12. 工人师傅4 小时加工零件160 个,照这样计算,7 小时加工零件多少个?答案:280 个解析:每小时加工160÷4 = 40 个,7 小时加工40×7 = 280 个13. 6 台收割机8 天收割小麦240 公顷,照这样计算,10 台收割机12 天收割小麦多少公顷?答案:600 公顷解析:1 台收割机1 天收割240÷6÷8 = 5 公顷,10 台收割机12 天收割5×10×12 = 600 公顷14. 某服装厂3 天生产服装180 套,照这样计算,9 天可以生产服装多少套?答案:540 套解析:每天生产180÷3 = 60 套,9 天生产60×9 = 540 套15. 15 头牛4 天吃草180 千克,照这样计算,8 头牛6 天吃草多少千克?答案:576 千克解析:1 头牛1 天吃草180÷15÷4 = 3 千克,8 头牛 6 天吃草3×8×6 = 144 千克16. 5 个工人6 小时加工零件300 个,照这样计算,8 个工人10 小时加工零件多少个?答案:480 个解析:1 个工人1 小时加工300÷5÷6 = 10 个,8 个工人10 小时加工10×8×10 = 800 个17. 一辆汽车3 小时行驶180 千米,照这样的速度,5 小时行驶多少千米?答案:300 千米解析:速度为180÷3 = 60 千米/时,5 小时行驶60×5 = 300 千米18. 用100 千克大豆可以榨油16 千克,照这样计算,400 千克大豆可以榨油多少千克?答案:64 千克解析:出油率为16÷100 = 0.16,400×0.16 = 64 千克19. 修一条路,5 人7 天可以修350 米,照这样计算,10 人14 天可以修多少米?答案:1400 米解析:1 人1 天修350÷5÷7 = 10 米,10 人14 天修10×10×14 = 1400 米20. 3 台抽水机4 小时抽水240 立方米,照这样计算,5 台抽水机6 小时抽水多少立方米?答案:600 立方米解析:1 台抽水机1 小时抽水240÷3÷4 = 20 立方米,5 台抽水机6 小时抽水20×5×6 = 600 立方米21. 某工厂6 个工人5 天生产零件900 个,照这样计算,15 个工人8 天可以生产零件多少个?答案:3600 个解析:1 个工人1 天生产900÷6÷5 = 30 个,15 个工人8 天生产30×15×8 = 3600 个22. 8 台印刷机10 小时印刷纸张48000 张,照这样计算,12 台印刷机15 小时印刷纸张多少张?答案:108000 张解析:1 台印刷机1 小时印刷48000÷8÷10 = 600 张,12 台印刷机15 小时印刷600×12×15 = 108000 张23. 5 辆汽车7 次运煤140 吨,照这样计算,8 辆汽车10 次运煤多少吨?答案:320 吨解析:1 辆汽车1 次运煤140÷5÷7 = 4 吨,8 辆汽车10 次运煤4×8×10 = 320 吨24. 服装厂2 天生产服装120 套,照这样计算,6 天可以生产服装多少套?答案:360 套解析:每天生产120÷2 = 60 套,6 天生产60×6 = 360 套25. 12 头牛5 天吃草300 千克,照这样计算,18 头牛8 天吃草多少千克?答案:864 千克解析:1 头牛1 天吃草300÷12÷5 = 5 千克,18 头牛8 天吃草5×18×8 = 720 千克26. 4 个工人3 小时加工零件120 个,照这样计算,7 个工人8 小时加工零件多少个?答案:560 个解析:1 个工人1 小时加工120÷4÷3 = 10 个,7 个工人8 小时加工10×7×8 = 560 个27. 一辆汽车4 小时行驶280 千米,照这样的速度,7 小时行驶多少千米?答案:490 千米解析:速度为280÷4 = 70 千米/时,7 小时行驶70×7 = 490 千米28. 用80 千克花生可以榨油32 千克,照这样计算,200 千克花生可以榨油多少千克?答案:80 千克解析:出油率为32÷80 = 0.4,200×0.4 = 80 千克29. 修一条路,4 人6 天可以修240 米,照这样计算,6 人9 天可以修多少米?答案:540 米解析:1 人1 天修240÷4÷6 = 10 米,6 人9 天修10×6×9 = 540 米30. 5 台拖拉机6 小时耕地150 亩,照这样计算,8 台拖拉机9 小时耕地多少亩?答案:216 亩解析:1 台拖拉机1 小时耕地150÷5÷6 = 5 亩,8 台拖拉机9 小时耕地5×8×9 = 360 亩31. 某工厂10 个工人8 天生产零件800 个,照这样计算,15 个工人12 天可以生产零件多少个?答案:1800 个解析:1 个工人1 天生产800÷10÷8 = 10 个,15 个工人12 天生产10×15×12 = 1800 个32. 6 台磨面机7 小时磨面粉2520 千克,照这样计算,9 台磨面机10 小时磨面粉多少千克?答案:3600 千克解析:1 台磨面机1 小时磨面粉2520÷6÷7 = 60 千克,9 台磨面机10 小时磨面粉60×9×10 = 5400 千克33. 4 辆卡车5 次运货物160 吨,照这样计算,7 辆卡车8 次运货物多少吨?答案:448 吨解析:1 辆卡车1 次运货物160÷4÷5 = 8 吨,7 辆卡车8 次运货物8×7×8 = 448 吨34. 服装厂3 天生产服装180 套,照这样计算,9 天可以生产服装多少套?答案:540 套解析:每天生产180÷3 = 60 套,9 天生产60×9 = 540 套35. 18 头牛6 天吃草540 千克,照这样计算,12 头牛8 天吃草多少千克?答案:480 千克解析:1 头牛1 天吃草540÷18÷6 = 5 千克,12 头牛8 天吃草5×12×8 = 480 千克36. 5 个工人8 小时加工零件400 个,照这样计算,7 个工人12 小时加工零件多少个?答案:840 个解析:1 个工人1 小时加工400÷5÷8 = 10 个,7 个工人12 小时加工10×7×12 = 840 个37. 一辆汽车6 小时行驶360 千米,照这样的速度,8 小时行驶多少千米?答案:480 千米解析:速度为360÷6 = 60 千米/时,8 小时行驶60×8 = 480 千米38. 用120 千克大豆可以榨油24 千克,照这样计算,300 千克大豆可以榨油多少千克?答案:60 千克解析:出油率为24÷120 = 0.2,300×0.2 = 60 千克39. 修一条路,6 人8 天可以修480 米,照这样计算,9 人12 天可以修多少米?答案:864 米解析:1 人1 天修480÷6÷8 = 10 米,9 人12 天修10×9×12 = 1080 米40. 7 台织布机9 小时织布630 米,照这样计算,10 台织布机12 小时织布多少米?答案:960 米解析:1 台织布机1 小时织布630÷7÷9 = 10 米,10 台织布机12 小时织布10×10×12 = 1200 米41. 某工厂12 个工人10 天生产零件1200 个,照这样计算,18 个工人15 天可以生产零件多少个?答案:2700 个解析:1 个工人 1 天生产1200÷12÷10 = 10 个,18 个工人15 天生产10×18×15 = 2700 个42. 8 台收割机9 天收割小麦360 公顷,照这样计算,12 台收割机15 天收割小麦多少公顷?答案:900 公顷解析:1 台收割机1 天收割360÷8÷9 = 5 公顷,12 台收割机15 天收割5×12×15 = 900 公顷43. 5 辆汽车6 次运货物150 吨,照这样计算,8 辆汽车10 次运货物多少吨?答案:400 吨解析:1 辆汽车1 次运货物150÷5÷6 = 5 吨,8 辆汽车10 次运货物5×8×10 = 400 吨44. 服装厂4 天生产服装240 套,照这样计算,12 天可以生产服装多少套?答案:720 套解析:每天生产240÷4 = 60 套,12 天生产60×12 = 720 套45. 20 头牛7 天吃草700 千克,照这样计算,15 头牛10 天吃草多少千克?答案:750 千克解析:1 头牛1 天吃草700÷20÷7 = 5 千克,15 头牛10 天吃草5×15×10 = 750 千克46. 6 个工人7 小时加工零件210 个,照这样计算,9 个工人14 小时加工零件多少个?答案:630 个解析:1 个工人1 小时加工210÷6÷7 = 5 个,9 个工人14 小时加工5×9×14 = 630 个47. 一辆汽车5 小时行驶250 千米,照这样的速度,9 小时行驶多少千米?答案:450 千米解析:速度为250÷5 = 50 千米/时,9 小时行驶50×9 = 450 千米48. 用150 千克花生可以榨油60 千克,照这样计算,350 千克花生可以榨油多少千克?答案:140 千克解析:出油率为60÷150 = 0.4,350×0.4 = 140 千克49. 修一条路,7 人9 天可以修630 米,照这样计算,10 人18 天可以修多少米?答案:1800 米解析:1 人1 天修630÷7÷9 = 10 米,10 人18 天修10×10×18 = 1800 米50. 8 台拖拉机7 小时耕地280 亩,照这样计算,12 台拖拉机10 小时耕地多少亩?答案:600 亩解析:1 台拖拉机1 小时耕地280÷8÷7 = 5 亩,12 台拖拉机10 小时耕地5×12×10 = 600 亩51. 某工厂15 个工人12 天生产零件1800 个,照这样计算,20 个工人18 天可以生产零件多少个?答案:5400 个解析:1 个工人 1 天生产1800÷15÷12 = 10 个,20 个工人18 天生产10×20×18 = 3600 个52. 9 台印刷机11 小时印刷纸张49500 张,照这样计算,15 台印刷机16 小时印刷纸张多少张?答案:120000 张解析:1 台印刷机1 小时印刷49500÷9÷11 = 500 张,15 台印刷机16 小时印刷500×15×16 = 120000 张53. 7 辆汽车8 次运煤224 吨,照这样计算,10 辆汽车12 次运煤多少吨?答案:480 吨解析:1 辆汽车1 次运煤224÷7÷8 = 4 吨,10 辆汽车12 次运煤4×10×12 = 480 吨54. 服装厂5 天生产服装300 套,照这样计算,15 天可以生产服装多少套?答案:900 套解析:每天生产300÷5 = 60 套,15 天生产60×15 = 900 套55. 25 头牛8 天吃草1000 千克,照这样计算,18 头牛12 天吃草多少千克?答案:864 千克解析:1 头牛 1 天吃草1000÷25÷8 = 5 千克,18 头牛12 天吃草5×18×12 = 1080 千克56. 8 个工人9 小时加工零件360 个,照这样计算,12 个工人15 小时加工零件多少个?答案:900 个解析:1 个工人1 小时加工360÷8÷9 = 5 个,12 个工人15 小时加工5×12×15 = 900 个57. 一辆汽车7 小时行驶420 千米,照这样的速度,10 小时行驶多少千米?答案:600 千米解析:速度为420÷7 = 60 千米/时,10 小时行驶60×10 = 600 千米58. 用200 千克大豆可以榨油80 千克,照这样计算,450 千克大豆可以榨油多少千克?答案:180 千克解析:出油率为80÷200 = 0.4,450×0.4 = 180 千克59. 修一条路,9 人11 天可以修990 米,照这样计算,12 人20 天可以修多少米?答案:2400 米解析:1 人1 天修990÷9÷11 = 10 米,12 人20 天修10×12×20 = 2400 米60. 10 台收割机12 小时收割小麦600 公顷,照这样计算,15 台收割机18 小时收割小麦多少公顷?答案:1350 公顷解析:1 台收割机1 小时收割600÷10÷12 = 5 公顷,15 台收割机18 小时收割5×15×18 = 1350 公顷61. 某工厂18 个工人14 天生产零件2520 个,照这样计算,24 个工人21 天可以生产零件多少个?答案:6048 个解析:1 个工人 1 天生产2520÷18÷14 = 10 个,24 个工人21 天生产10×24×21 = 5040 个62. 11 台磨面机13 小时磨面粉5720 千克,照这样计算,16 台磨面机18 小时磨面粉多少千克?答案:11520 千克解析:1 台磨面机1 小时磨面粉5720÷11÷13 = 40 千克,16 台磨面机18 小时磨面粉40×16×18 = 11520 千克63. 9 辆卡车10 次运货物450 吨,照这样计算,12 辆卡车15 次运货物多少吨?答案:900 吨解析:1 辆卡车1 次运货物450÷9÷10 = 5 吨,12 辆卡车15 次运货物5×12×15 = 900 吨64. 服装厂6 天生产服装360 套,照这样计算,18 天可以生产服装多少套?答案:1080 套解析:每天生产360÷6 = 60 套,18 天生产60×18 = 1080 套65. 30 头牛10 天吃草1200 千克,照这样计算,24 头牛15 天吃草多少千克?答案:1440 千克解析:1 头牛1 天吃草1200÷30÷10 = 4 千克,24 头牛15 天吃草4×24×15 = 1440 千克66. 10 个工人12 小时加工零件600 个,照这样计算,15 个工人20 小时加工零件多少个?答案:1500 个解析:1 个工人1 小时加工600÷10÷12 = 5 个,15 个工人20 小时加工5×15×20 = 1500 个67. 一辆汽车8 小时行驶480 千米,照这样的速度,12 小时行驶多少千米?答案:720 千米解析:速度为480÷8 = 60 千米/时,12 小时行驶60×12 = 720 千米68. 用250 千克花生可以榨油100 千克,照这样计算,550 千克花生可以榨油多少千克?答案:220 千克解析:出油率为100÷250 = 0.4,550×0.4 = 220 千克69. 修一条路,11 人13 天可以修715 米,照这样计算,14 人22 天可以修多少米?答案:1638 米解析:1 人1 天修715÷11÷13 = 5 米,14 人22 天修5×14×22 = 1540 米70. 12 台拖拉机14 小时耕地504 亩,照这样计算,18 台拖拉机20 小时耕地多少亩?答案:1080 亩解析:1 台拖拉机1 小时耕地504÷12÷14 = 3 亩,18 台拖拉机20 小时耕地3×18×20 = 1080 亩71. 某工厂20 个工人16 天生产零件3200 个,照这样计算,25 个工人24 天可以生产零件多少个?答案:9000 个解析:1 个工人 1 天生产3200÷20÷16 = 10 个,25 个工人24 天生产10×25×24 = 6000 个72. 13 台印刷机15 小时印刷纸张78000 张,照这样计算,18 台印刷机20 小时印刷纸张多少张?答案:144000 张解析:1 台印刷机1 小时印刷78000÷13÷15 = 400 张,18 台印刷机20 小时印刷400×18×20 = 144000 张73. 11 辆汽车12 次运煤396 吨,照这样计算,15 辆汽车18 次运煤多少吨?答案:810 吨解析:1 辆汽车1 次运煤396÷11÷12 = 3 吨,15 辆汽车18 次运煤3×15×18 = 810 吨74. 服装厂7 天生产服装420 套,照这样计算,21 天可以生产服装多少套?答案:1260 套解析:每天生产420÷7 = 60 套,21 天生产60×21 = 1260 套75. 35 头牛12 天吃草1680 千克,照这样计算,28 头牛16 天吃草多少千克?答案:1792 千克解析:1 头牛1 天吃草1680÷35÷12 = 4 千克,28 头牛16 天吃草4×28×16 = 1792 千克76. 12 个工人14 小时加工零件720 个,照这样计算,18 个工人21 小时加工零件多少个?解析:1 个工人1 小时加工720÷12÷14 = 5 个,18 个工人21 小时加工5×18×21 = 1890 个77. 一辆汽车9 小时行驶540 千米,照这样的速度,15 小时行驶多少千米?答案:900 千米解析:速度为540÷9 = 60 千米/时,15 小时行驶60×15 = 900 千米78. 用300 千克大豆可以榨油120 千克,照这样计算,650 千克大豆可以榨油多少千克?答案:260 千克解析:出油率为120÷300 = 0.4,650×0.4 = 260 千克79. 修一条路,13 人15 天可以修780 米,照这样计算,16 人25 天可以修多少米?答案:1600 米解析:1 人1 天修780÷13÷15 = 4 米,16 人25 天修4×16×25 = 1600 米80. 14 台收割机16 小时收割小麦896 公顷,照这样计算,20 台收割机24 小时收割小麦多少公顷?答案:1536 公顷解析:1 台收割机1 小时收割896÷14÷16 = 4 公顷,20 台收割机24 小时收割4×20×24 = 1920 公顷81. 某工厂22 个工人18 天生产零件3960 个,照这样计算,28 个工人27 天可以生产零件多少个?答案:9072 个解析:1 个工人 1 天生产3960÷22÷18 = 10 个,28 个工人27 天生产10×28×27 = 7560 个82. 15 台磨面机17 小时磨面粉8500 千克,照这样计算,20 台磨面机25 小时磨面粉多少千克?答案:12500 千克解析:1 台磨面机1 小时磨面粉8500÷15÷17 = 100/3 千克,20 台磨面机25 小时磨面粉100/3×20×25 = 50000/3 千克≈16666.67 千克83. 13 辆卡车14 次运货物588 吨,照这样计算,18 辆卡车21 次运货物多少吨?答案:1134 吨解析:1 辆卡车1 次运货物588÷13÷14 = 3 吨,18 辆卡车21 次运货物3×18×21 = 1134 吨84. 服装厂8 天生产服装480 套,照这样计算,24 天可以生产服装多少套?答案:1440 套解析:每天生产480÷8 = 60 套,24 天生产60×24 = 1440 套85. 40 头牛15 天吃草1800 千克,照这样计算,32 头牛20 天吃草多少千克?解析:1 头牛1 天吃草1800÷40÷15 = 3 千克,32 头牛20 天吃草3×32×20 = 1920 千克86. 14 个工人16 小时加工零件896 个,照这样计算,20 个工人24 小时加工零件多少个?答案:1920 个解析:1 个工人1 小时加工896÷14÷16 = 4 个,20 个工人24 小时加工4×20×24 = 1920 个87. 一辆汽车10 小时行驶600 千米,照这样的速度,18 小时行驶多少千米?答案:1080 千米解析:速度为600÷10 = 60 千米/时,18 小时行驶60×18 = 1080 千米88. 用350 千克花生可以榨油140 千克,照这样计算,750 千克花生可以榨油多少千克?答案:300 千克解析:出油率为140÷350 = 0.4,750×0.4 = 300 千克89. 修一条路,15 人18 天可以修900 米,照这样计算,18 人30 天可以修多少米?答案:1800 米解析:1 人1 天修900÷15÷18 = 10 / 3 米,18 人30 天修10 / 3×18×30 = 1800 米90. 16 台拖拉机18 小时耕地864 亩,照这样计算,24 台拖拉机27 小时耕地多少亩?答案:1944 亩解析:1 台拖拉机1 小时耕地864÷16÷18 = 3 亩,24 台拖拉机27 小时耕地3×24×27 = 1944 亩91. 某工厂25 个工人20 天生产零件5000 个,照这样计算,30 个工人30 天可以生产零件多少个?答案:9000 个解析:1 个工人 1 天生产5000÷25÷20 = 10 个,30 个工人30 天生产10×30×30 = 9000 个92. 17 台印刷机19 小时印刷纸张96900 张,照这样计算,22 台印刷机25 小时印刷纸张多少张?答案:165000 张解析:1 台印刷机1 小时印刷96900÷17÷19 = 300 张,22 台印刷机25 小时印刷300×22×25 = 165000 张93. 15 辆汽车16 次运煤600 吨,照这样计算,20 辆汽车24 次运煤多少吨?答案:1200 吨解析:1 辆汽车 1 次运煤600÷15÷16 = 2.5 吨,20 辆汽车24 次运煤 2.5×20×24 = 1200 吨94. 服装厂9 天生产服装540 套,照这样计算,27 天可以生产服装多少套?答案:1620 套解析:每天生产540÷9 = 60 套,27 天生产60×27 = 1620 套95. 45 头牛18 天吃草2160 千克,照这样计算,36 头牛24 天吃草多少千克?答案:2592 千克解析:1 头牛1 天吃草2160÷45÷18 = 8 / 3 千克,36 头牛24 天吃草8 / 3×36×24 = 2592 千克96. 16 个工人18 小时加工零件960 个,照这样计算,24 个工人27 小时加工零件多少个?答案:2592 个解析:1 个工人1 小时加工960÷16÷18 = 10 / 3 个,24 个工人27 小时加工10 / 3×24×27 = 2160 个97. 一辆汽车11 小时行驶660 千米,照这样的速度,16 小时行驶多少千米?答案:960 千米解析:速度为660÷11 = 60 千米/时,16 小时行驶60×16 = 960 千米98. 用400 千克花生可以榨油160 千克,照这样计算,850 千克花生可以榨油多少千克?答案:340 千克解析:出油率为160÷400 = 0.4,850×0.4 = 340 千克99. 修一条路,17 人21 天可以修1020 米,照这样计算,20 人35 天可以修多少米?答案:2000 米解析:1 人1 天修1020÷17÷21 = 10 / 3 米,20 人35 天修10 / 3×20×35 = 2000 米100. 18 台收割机20 小时收割小麦960 公顷,照这样计算,27 台收割机30 小时收割小麦多少公顷?答案:2160 公顷解析:1 台收割机1 小时收割960÷18÷20 = 8 / 3 公顷,27 台收割机30 小时收割8 / 3×27×30 = 2160 公顷。

(完整版)解比例的应用练习题和答案

(完整版)解比例的应用练习题和答案

练练手1. 在一幅地图上,用3厘米的线段来表示实际距离600 千米。

在这幅地图上,量得甲、乙两地的距离是 4.5 厘米,甲、乙两地的实际距离是多少千米?2. 在比例尺1:1 000 000 的地图上,量得甲、乙两城的距离是6厘米,如果改画在比例尺是1:400 000 的地图上,甲、乙两城应该画多少厘米?3. 在比例尺是1:2 000 000 的地图上,量得甲乙两地的距离为 3.6 厘米,如果汽车以每小时30 千米的速度从甲地到乙地,多少小时可以到达?4. 篮球场长28 米,宽15 米。

请你用1:500 的比例尺画出它的平面图。

5. 一辆汽车2小时行驶130 千米。

照这样的速度,从甲地到乙地共行驶5小时。

甲、乙两地相距多少千米?6?修一条路,如果每天修120 米,8天可以修完;如果每天多修30 米,几天可以修完?7. 甲乙两地相距350 千米,一辆快车和一辆慢车同时从两地相向开出, 3.5 小时后相遇,已知快车和慢车的速度比是3:2 ,这两列火车的速度分别是多少?8. 甲、乙、丙三数的比是2:3:4 ,平均数是12,三数各是多少?9. 在一幅比例尺是1:50 000 的平面图上,量的一段公路长16.8 厘米,现在把修筑这条公路的任务按3:5 分配给甲、乙两个修路队,这两个修路队各要修多少米?10. 丁丁、小刚、小明三个同学喜欢文学,假期中阅读了大量文学作品,丁丁、小刚、小明三人阅读文学作品的本数是4:3:5.已知丁丁比小刚多读30 本,那么阅读作品最多的同学比读的少的同学多读了多少本?11. 一个圆画在1:100 的图纸上,直径是 2 厘米,求这个圆实际直径和面积各是多少?12. 六年级同学栽树,六(1)班栽了总数的16,六(2)班栽了120 棵,六(2)班与六(1)班栽的棵树比是3:2 ,六年级同学一共栽树多少棵?13. 一批互相啮合的齿轮,主动轮有60 个齿,每分钟转80 转,从动轮有20 个齿,每分钟转多少转?14. 买来一批煤,计划每天烧14 吨,可烧20 天,实际每天比计划节约20% ,这样可以烧多少天?层的本书比是4:6 ,中层与下层的本数比十6:8,书架三层各应放多少书?16. 爸爸将写毛笔字的任务按5:3 分给了兄弟两人,结果哥哥写了1440 个字,超额完成20% ,弟弟只完成了80% ,弟弟写了多少个字?拓展练习1?修一条公路,原计划每天修360 米,30 天可以修完,如果要提前5天修完,每天要修多少米?2. 甲和乙同时分别从A、B 两站相对出发,在离中心8 千米处相遇,已知乙的速度是甲的34,问 A 、B 两站相距多少千米?3. 工厂有一批煤计划每天烧 2.4 吨,42 天可以烧完。

解比例应用题及答案

解比例应用题及答案

解比例应用题及答案1. 题目:小明和小华在同一个操场上跑步,小明的速度是小华的1.5倍,如果小明跑了300米,小华跑了多少米?答案:设小华跑的距离为x米,根据题意可得比例关系式:1.5x = 300。

解方程得:x = 300 ÷ 1.5 = 200。

所以小华跑了200米。

2. 题目:甲乙两地相距300公里,一辆汽车从甲地开往乙地,速度是每小时60公里,另一辆汽车从乙地开往甲地,速度是每小时40公里,两车同时出发,几小时后两车相遇?答案:设两车相遇的时间为t小时,根据题意可得比例关系式:60t + 40t = 300。

解方程得:100t = 300,所以t = 300 ÷ 100 = 3。

因此,两车3小时后相遇。

3. 题目:一个班级有男生和女生,男生人数是女生人数的2倍,如果男生人数是40人,那么女生有多少人?答案:设女生人数为x人,根据题意可得比例关系式:2x = 40。

解方程得:x = 40 ÷ 2 = 20。

所以女生有20人。

4. 题目:一个工厂生产两种型号的机器,A型号机器的产量是B型号机器的3倍,如果A型号机器生产了90台,那么B型号机器生产了多少台?答案:设B型号机器生产了x台,根据题意可得比例关系式:3x = 90。

解方程得:x = 90 ÷ 3 = 30。

所以B型号机器生产了30台。

5. 题目:一个果园里,苹果树和梨树的比例是3:2,如果果园里有苹果树120棵,那么梨树有多少棵?答案:设梨树有x棵,根据题意可得比例关系式:3/2 = 120/x。

解方程得:3x = 120 × 2,所以x = (120 × 2) ÷ 3 = 80。

因此,梨树有80棵。

(完整版)用比例解决问题经典习题.带答案doc

(完整版)用比例解决问题经典习题.带答案doc

用比例解决问题1、张大妈家上个月用了8吨水,水费是12.8元。

李奶奶家用了10吨水,李奶奶家的水费是多少钱?2、有一批书,这批书如果每包20本,要捆18包。

如果每包30本,要捆多少包?3、一根木料,锯3段需要9分钟,如果锯6段,需要多少分钟?4、一辆汽车2小时行了140km,照这样的速度,甲地到乙地的距离是400km,需要行驶多少小时?5、“万达”修路队修筑一条公路,原计划每天修400m,15天可以修完。

结果12天就完成了任务,实际每天修多少米?6、学校用同样的方砖铺地,铺5㎡需要方砖120块,照这样计算,再铺32㎡,一共需要这种方砖多少块?7、发电厂运来一批煤,计划每天用30吨,12天用完,实际每天节约5吨煤,实际比计划多用了多少天?8、装修一间客厅,用边长5dm的方砖铺地,需要80块,用边长4dm的方砖铺地,需要多少块?需要X块5*5:4*4=X:8016X=2000X=2000/16X=125需要125块9、制作一批零件,甲单独完成要8小时,已知甲、乙的工作效率比是4:3,那么乙单独完成要多长时间?已知甲单独完成需要8小时,可以设甲的效率为每小时完成1/8批零件。

甲乙效率比4:3,。

设乙的效率为x。

则(1/8):x=4:3可求得x=(1/8)*3/4=3/32则乙单独工作需要时间为32/3小时也就是10小时40分钟10、王明在100m赛跑冲到终点时领先李明10m,领先王亮15m。

如果李明和王亮按原来的速度继续冲向终点,那么当李明到达终点时,王亮还差多少米到达终点?(100-10):(100-15)=100:x90x=8500x=850/9100-850/9=50/911、一辆汽车和一辆摩托车同时从A、B两地相对开出,相遇后两车继续向前行驶。

当摩托车到达A地、汽车到达B地后,两车立即返回,已知第二次相遇点距A地130km。

汽车和摩托车的速度比3:2.A、B两地相距多少千米?650km从汽车与摩托车的比是3:2开始汽车和摩托车第一次相遇到第二次相遇各行驶路程比也应该是3:2设全程距离为5x摩托车第二次行驶距离是:3x+130汽车第二次行驶距离是:第一次摩托车行驶距离与全程距离去掉130km的和也就是2x+5x-130=7x-130这样可以得到(7x-130):(3x+130)=3:2 x=150全程距离5x等于65012、明明家新购置了一套住房,装修时用方砖铺地,60块方砖铺地面18㎡。

比例练习题100道答案

比例练习题100道答案

比例练习题参考答案化简下列各比(1)()()35:105=3535:105351:3÷÷= (2)91:13=(9113):(1313)=7:1÷÷ (3)77:3=(9):(39)7:2799⨯⨯=(4)446:(67):(7)42:421:277=⨯⨯== (5)1111:(10):(10)5:22525=⨯⨯=(6)11811:(49):(49)56:1749749=⨯⨯= (7)1790.7:2(20):(20)14:454104=⨯⨯= (8)333:0.75(20):(20)2:510104=⨯⨯= (9)1.6:2.5(1.610):(2.510)16:25=⨯⨯= (10)3.5:8.4(3.510):(8.410)5:12=⨯⨯= (11)3132131.05:1:(40):(40)42:15(423):(153)14:58208208==⨯⨯==÷÷= (12)5511561:2.44:2200:200125:4888825825⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭(13)36:0.2836:28(364):(284)9:79:7=÷÷厘米米=厘米厘米厘米厘米=厘米厘米=36:0.28=036:0.2809:0.7(0910):(0.710)9:79:7=⨯⨯=或厘米米.米米=.米米.米米=米米(14)48:1.648:164816):(1616)=÷÷分米米=分米分米=(分米分米=3分米:1分米3:1(15)4:1254=601248:12(4812):(1212)5⎛⎫⨯==÷÷ ⎪⎝⎭时分分:分分分分分=4:1(16)120:4120:(60)20:15(205):(155)4:34:34⨯==÷÷==分时=分分分分分分分分(17)220:5220:(1000)20:400(2020):(40020)5⨯=÷÷克千克=克克=克克克克=1:20(18)33:50053333(1000):6:(65):(5)==500555=⨯==⨯⨯千克克克克克克克克30克:3克10:1(19)71:101022121700(7002)=22==⨯⨯升毫升毫升:毫升毫升:(2)毫升=1400毫升:21毫升200:3(20)44:24=(100)2455=8024=103=10:3⨯平方米平方分米平方分米:平方分米平方分米:平方分米平方分米:平方分米解比例方程 (21)2:4:189x x ==(22):518:452x x ==(23)20:74:75x x ==(24)51:817:83xx ==(25)125::64600x x ==(26)12:7:33311x x ==(27)542::6531x x ==(28)62248::933554855x x ==(29)1.8:9:10.2x x ==(30)0.14:4.8:123.5x x ==(31)1.6:4.80.2:0.6xx ==(32):2.1 1.6:8.40.4x x ==(33)40.16::1553x x ==(34)614.4::151.2x x ==(35)7:6.3:4.990.1xx==(36)35:0.8:86169xx==(37)1.225750.4xx==(38)24:335210xx==(39)5235::857336125xx==(40)2639:1:1.53737xx==(41)2781632xx+==(42)3741157xx=+=(43)5312157xxx=+=(44)13758xxx+=+=(45)(1):512:303xx-==(46)4:(3)2:915xx+==(47)13:91(21):493xx=+=(48)5:855:(412)25xx=-=(49)(32):(23)4:72x xx-+==(50)(4):5(32):9233x xx+=-=比例应用题(51)小白的身高1.4米,他的影长是2.8米。

小学数学比例练习题及答案

小学数学比例练习题及答案

小学数学比例练习题及答案在小学数学学习中,比例是一个非常重要的概念。

它不仅能够帮助我们解决实际问题,还能够提高我们的数学思维能力。

为了帮助同学们更好地掌握比例的概念和运用,本文将提供一些小学数学比例练习题及答案。

练习题一:1. 25辆自行车需要5个小时完成修理工作,那么15辆自行车需要多长时间才能完成同样的工作呢?解答:我们可以将辆数和时间的关系表示为比例。

25辆自行车:5小时 = 15辆自行车:x小时根据比例的性质,我们可以得到:25 × x = 5 × 15解方程可得:x = (5 × 15)/25计算可得:x = 3所以,15辆自行车需要3个小时完成同样的工作。

2. 一个矩形花坛的长和宽的比例是3:2,如果长是15米,那么宽是多少米?解答:我们可以将长和宽的关系表示为比例。

长:宽 = 3:2已知长为15米,代入比例可得:15:宽 = 3:2解方程可得:15 × 2 = 3 ×宽计算可得:宽 = (15 × 2)/3所以,宽为10米。

练习题二:1. 某班级男生和女生的比例是4:5,如果班级一共有36名学生,那么男生和女生分别有多少人?解答:将男生和女生的关系表示为比例。

男生:女生 = 4:5已知学生总数为36人,代入比例可得:4:5 = x:36解方程可得:4 × 36 = 5 × x计算可得:x = (4 × 36)/5所以,男生有(4 × 36)/5 = 28.8 ≈ 29人,女生有 36 - 29 = 7人。

因为学生数不能为小数,所以男生应该是29人,女生是7人。

2. 一架飞机飞行了1800千米,耗油量为240升,那么这架飞机每飞行1千米需要多少升油?解答:将飞行里程和油量的关系表示为比例。

飞行里程:油量 = 1800:240每飞行1千米需要多少升油即为:1:x = 1800:240解方程可得:1 × 240 = 1800 × x计算可得:x = (1 × 240)/1800所以,每飞行1千米需要的油量为(1 × 240)/1800 = 0.1333 ≈ 0.13升。

小学比例试题及答案

小学比例试题及答案

小学比例试题及答案
一、选择题
1. 以下哪个选项表示了正确的比例关系?
A. 2:3 = 4:6
B. 3:4 = 6:9
C. 5:6 = 10:12
D. 7:8 = 14:16
2. 如果3个苹果的重量等于4个橙子的重量,那么6个苹果的重量等
于多少个橙子的重量?
A. 8
B. 9
C. 10
D. 12
二、填空题
3. 完成比例:如果5米布可以做8条裙子,那么10米布可以做
______条裙子。

4. 一个比例尺是1:10000,表示地图上1厘米代表实际距离______米。

三、解答题
5. 一个班级有男生20人,女生30人。

如果男生和女生的比例是2:3,那么这个比例是否正确?请说明理由。

6. 一个长方形的长是宽的3倍,如果长增加6厘米,宽增加2厘米,
新的长方形的长和宽的比例是多少?
四、应用题
7. 一个农场有鸡和牛,如果鸡的数量是牛的4倍,农场上总共有72
只动物,那么鸡和牛各有多少只?
8. 一个学校的图书馆有图书和杂志,图书的数量是杂志的5倍,如果
图书馆增加了50本图书和10本杂志,那么图书和杂志的比例是多少?
答案:
一、选择题
1. A
2. C
二、填空题
3. 16
4. 100
三、解答题
5. 正确。

因为男生和女生的比例是20:30,化简后是2:3,与题目给
出的比例相符。

6. 原比例是3:1,增加后长为3x+6,宽为x+2,比例为(3x+6):(x+2)。

四、应用题
7. 鸡有64只,牛有8只。

8. 图书和杂志的比例是6:1。

小学比例测试题及答案

小学比例测试题及答案

小学比例测试题及答案
一、选择题
1. 如果3个苹果的重量等于4个梨的重量,那么1个苹果的重量和1个梨的重量的比例是多少?
A. 3:4
B. 4:3
C. 1:1
D. 无法确定
答案:B
2. 一个班级中男生和女生的比例是5:4,如果班级中有30个男生,那么女生有多少人?
A. 24
B. 28
C. 32
D. 36
答案:A
3. 小华和小刚的身高比是6:5,如果小华的身高是120厘米,那么小刚的身高是多少?
A. 100厘米
B. 110厘米
C. 130厘米
D. 150厘米
答案:A
二、填空题
4. 如果一个长方形的长是宽的两倍,那么长和宽的比例是________。

答案:2:1
5. 如果两个数的比是7:3,那么这两个数的和是20,较大的数是
________。

答案:14
6. 一个比例中,两个外项的积是24,两个内项的积是12,那么这个比例可以写成________。

答案:2:1=8:4
三、解答题
7. 一个农场里,鸡和鸭的数量比是3:2,如果农场里有48只鸡,那么有多少只鸭?
答案:农场里有32只鸭。

8. 小明和小华共有100元,小明的钱是小华的4/5,小明和小华各有多少元?
答案:小明有80元,小华有20元。

9. 一个比例中,两个外项的积是36,一个内项是6,另一个内项是多少?
答案:另一个内项是6。

结束语:以上就是小学比例测试题及答案,希望同学们通过这些题目能够更好地理解和掌握比例的相关知识。

比例的试卷题和答案

比例的试卷题和答案

比例的试卷题和答案比例是我们数学学科中的一个重要的概念,它在我们的生活中也有着广泛的应用。

在学习中,我们被要求掌握比例的概念和计算方法,并且在试卷中也难免会出现涉及比例的题目。

今天,我们就来看一下比例的试卷题和答案。

一、例题一:小明和小红一起种菜,小明种了12棵,小红比小明多种了一倍,问他们一共种了多少棵菜?解析:从题目中可以看出,小红种的菜比小明多,具体而言就是小明的菜的数量为x,那么小红的就是2x。

在小明和小红一起种的时候,就是x+2x=3x,所以他们一共种了3x棵菜。

而小明种了12棵菜,所以有12/x=1/3,即x=36,小红种的就是2x=72。

所以他们一共种了36+72=108棵菜。

二、例题二:30箱苹果卖出去了10箱,卖出去的苹果重量是已知的,如果每箱重量相等,且卖出去的苹果的重量是未卖出去的苹果的2倍,问1箱苹果的重量是多少?解析:设每箱苹果的重量为x,那么30箱苹果的总重就是30x。

根据题目中的条件,卖出去的苹果的重量是未卖出去的苹果的2倍,所以未卖出去的苹果的重量为3x。

而卖出去10箱苹果的重量已知,则重量为20x,所以未卖出去的苹果的重量为30x-20x=10x。

根据比例的定义,10x/3x=10/3,所以1箱苹果的重量为10/(10/3)=3kg。

三、例题三:小明每天早上6点出发去上学,走路走20分钟到达公交站,乘133路公交车,车程35分钟,到达学校。

如果小明7:00到达学校,求小明从家到学校的距离。

解析:设小明从家到公交站的距离为x,公交车行驶的距离为y,则从家到学校的距离为x+y。

我们可以根据题目中的信息列出等式:20/60x+35/60y=60。

又因为小明6点出发,7点到达学校,则行程时间为1小时,所以x+y=60。

解方程可得x=10,y=50,所以从家到学校的距离为60。

综上所述,掌握比例的概念和计算方法,对于学生的数学学习有着重要的作用。

在应用中,也能够方便我们解决生活实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用比例解决问题
1、张大妈家上个月用了8吨水,水费是12.8元。

李奶奶家用了10吨水,李奶
奶家的水费是多少钱?
2、有一批书,这批书如果每包20本,要捆18包。

如果每包30本,要捆多少包?
3、一根木料,锯3段需要9分钟,如果锯6段,需要多少分钟?
4、一辆汽车2小时行了140km,照这样的速度,甲地到乙地的距离是400km,
需要行驶多少小时?
5、“万达”修路队修筑一条公路,原计划每天修400m,15天可以修完。

结果
12天就完成了任务,实际每天修多少米?
6、学校用同样的方砖铺地,铺5㎡需要方砖120块,照这样计算,再铺32㎡,
一共需要这种方砖多少块?
7、发电厂运来一批煤,计划每天用30吨,12天用完,实际每天节约5吨煤,
实际比计划多用了多少天?
8、装修一间客厅,用边长5dm的方砖铺地,需要80块,用边长4dm的方砖铺
地,需要多少块?
需要X块
5*5:4*4=X:80
16X=2000
X=2000/16
X=125
需要125块
9、制作一批零件,甲单独完成要8小时,已知甲、乙的工作效率比是4:3,那么
乙单独完成要多长时间?
已知甲单独完成需要8小时,可以设甲的效率为每小时完成1/8批零件。

甲乙效率比4:3,。

设乙的效率为x。

则(1/8):x=4:3
可求得x=(1/8)*3/4=3/32
则乙单独工作需要时间为32/3小时也就是10小时40分钟
10、王明在100m赛跑冲到终点时领先李明10m,领先王亮15m。

如果李明
和王亮按原来的速度继续冲向终点,那么当李明到达终点时,王亮还差多少米到达终点?
(100-10):(100-15)=100:x
90x=8500
x=850/9
100-850/9=50/9
11、一辆汽车和一辆摩托车同时从A、B两地相对开出,相遇后两车继续向
前行驶。

当摩托车到达A地、汽车到达B地后,两车立即返回,已知第二次相遇点距A地130km。

汽车和摩托车的速度比3:2.A、B两地相距多少千米?
650km
从汽车与摩托车的比是3:2开始
汽车和摩托车第一次相遇到第二次相遇各行驶路程比也应该是3:2
设全程距离为5x
摩托车第二次行驶距离是:3x+130
汽车第二次行驶距离是:第一次摩托车行驶距离与全程距离去掉130km的和也就是
2x+5x-130=7x-130
这样可以得到(7x-130):(3x+130)=3:2 x=150
全程距离5x等于650
12、明明家新购置了一套住房,装修时用方砖铺地,60块方砖铺地面18㎡。

明明家一共有30㎡的地面需要铺这种方砖,一共需要多少块方砖?
13、某车间加工一批零件,如果每小时加工零件30个,可比原计划提前10
小时完成。

如果每小时加工零件20个,可比原计划提前6小时完成,这批零件有多少个?
10-6=4小时
30×4=120个
30-20=10个
120÷10=12小时
20×12=240个
答这批零件有240个
设一共有x个零件,计划时间为t,可列
x/30=t-10
x/20=t-6
解得x=240
14、儿童节那天开始,亮亮前7天看了210页书,照这样计算,这个月亮亮
一共看了多少页书?
15、修一段公路,总长12km。

开工3天修了1.5km。

照这样计算,修完这段
公路还要多少天?
16、A、B两地相距1200千米,甲乙两车同时从两地相对开出,经过5小时
后还相距150千米,已知甲车的速度和乙车的速度比是3:4,乙车行玩全程需要多少小时?
解:设甲车的速度是3X,乙车4X。

(3X+4X)×5=1200-150
7X×5=1050
35X=1050
X=1050÷35
X=30
甲速度30×3=90km
乙速度30×4=120km
3x+4x)X5=1200-150
x=30
4x=120
1200/120=10。

相关文档
最新文档