二阶动态电路响应的研究
电路原理课件 二阶电路的冲激响应讲解
冲激响应电流为
i(t) ?
C duC (t) ? dt
s1
I0 ? s2
( s1e s1t
?
s2e s2t )ε(t )
s1 ? ? α ?
uc(t) ? 2C
I0
( e s1t ? e s2t ) ε ( t )
α2
?
ω
2 0
s2 ? ? α ?
α 2 ? ω02 α 2 ? ω02
i (t ) ? C du C ? dt 2
解:将R、L、C的值代入计算出固有频率
R s1,2 ? ? 2L ?
则
??
R
2
?? ?
1
? ?3?
? 2L ? LC
32 ? 52 ? ? 3 ? j4
uC(t) ? e?3t[ K1 cos(4t) ? K2 sin(4t)]
(t ? 0? )
uC (t )
?
e? 3t [
K1 cos4t
?
K2 sin(4t) ]
初始条件为
uC (0? ) ? uC (0? ) ? 0
uC?(0? ) ?
i(0? ) ? C
I0 C
A1 ? 0
? ?
? αA1 ?
A2
?
I0 ? C ??
A1 ? 0
A2 ?
I0 C
uC (t ) ?
I0t e?? t?(t)
C
i(t) ?
C
du dt
?
(1 ?
?
t)I0e?? t?(t)
非振荡放电(临界阻尼放电)
R s1,2 ? ? 2L ?
?
R
2
?
?? 2L ??
二阶电路分析
第九章
二阶电路分析
由二阶微分方程描述的电路称为二阶电路。 分析二阶电路的方法仍然是建立二阶微分方程,
(9 5)
式中的两个常数K1,K2由初始条件iL(0)和uc(0) 确定。
uC (0) K1 K 2
对式(9-5)求导,再令t=0得到
(9 6)ห้องสมุดไป่ตู้
duC ( t ) dt
t 0
i L ( 0) K 1 s1 K 2 s2 C
(9 7)
求解以上两个方程,可以得到
1 K1 = s2 -s1 1 K2 = s1 -s 2 iL ( 0) s2 uC (0) C iL ( 0) s1 uC (0) C
uC ( t ) e 3t [ K 1 cos 4t K 2 sin( 4t ) ]
iL(0)=0.28A得到以下两个方程
uC (0) K 1 duC ( t ) dt
t 0
( t 0)
利用电容电压的初始值uC(0)=3V和电感电流的初始值
3 K 1 4 K 2
i L ( 0) 7 C
电 容 电 压 的 零 输 入 响 应 波 形
i2 (t) =ε( t)*[(
.690
)* exp ( -.500
t)]cos(
4.97
t +66.08 )
iL (t ) 0.69e0.5t cos(4.97t 66.08 )(t )A
电路理论第11章二阶电路
响应性质
等幅振荡 (无 阻尼 ) 衰减振荡 (欠阻尼 )
自由分量形式
K sin( 0t )
Ke t sin(t )
L t 相 等 的 实 根 非振荡放电 (临界阻尼 ) e ( A1 A2 t ) C
R2
L 不 等 的 实 根 非振荡放电 ( 过阻尼 ) C
u ,i uC O i
临界状 态
电流
12
电压:
U 0 t te L uL U 0e t (1 t ) i
2019年5月7日
uL
t
小结
第11章 11.1
1. 一阶电路是单调的响应,可用时间常数表示过渡过程。 2. 二阶电路用特征根来表示动态响应。 特征根
R 0 共轭虚根
L R2 共轭复根 C
A1e p1t A2e p2t
13
3. 电路是否振荡取决于特征根,特征根仅仅取决于电路的结 构和参数,而与初始条件和激励的大小没有关系。
2019年5月7日
第11章 11.2
§11-2 二阶电路的零状态响应和阶跃响应
零状态响应: 与一阶电路相同
阶跃响应: 二阶电路在阶跃激励下的零状态响应.
零状态响应 =强制分量+自由分量
duC U 0 t e sin t dt L
uL L
di 0 U 0e t sin( t ) dt
i C
C
+
-
L
t
11
2019年5月7日
第11章 11.1
L 3. R 2 C
临界情况
1 2
U0 ( p2e p t p1e p t ) 此时,p1,p2为两个相等的实根 uC p2 p1
实验2二阶系统的阶跃响应及稳定性分析实验
实验室二二阶系统的阶跃响应及稳定性分析实验一.实验目的1.熟悉二阶模拟系统的组成。
2.研究二阶系统分别工作在等几种状态下的阶跃响应。
3.学习掌握动态性能指标的测试方法,研究典型系统参数对系统动态性能和稳定性的影响。
二,实验内容1.ZY17AutoC12BB自动控制原理实验箱。
2.双踪低频慢扫示波器。
四.实验原理典型二阶系统的方法块结构图如图2.1所示:图2.1其开环传递函数为,为开环增益。
其闭环传递函数为,其中取二阶系统的模拟电路如图2.2所示:该电路中该二阶系统的阶跃响应如图所示:图2.3.1,2.3.2,2.3.3,2.3.4和2.3.5分别对应二阶系统在过阻尼,临界阻尼,欠阻尼,不等幅阻尼振荡(接近于0)和零阻尼(=0)几种状态下的阶跃响应曲线。
改变元件参数Rx大小,可研究不同参数特征下的时域响应。
当Rx为50k时,二阶系统工作在临界阻尼状态;当Rx<50K时,二阶系统工作在过阻尼状态;当Rx>50K时,二阶系统工作在欠阻尼状态;当Rx继续增大时,趋近于零,二阶系统输出表现为不等幅阻尼振荡;当=0时,二阶系统的阻尼为零,输出表现为等幅振荡(因导线均有电阻值,各种损耗总是存在的,实际系统的阻尼比不可能为零)。
五. 实验步骤1.利用实验仪器,按照实验原理设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路。
此实验可使用运放单元(一),(二),(三),(五)及元器件单元中的可调电阻。
(1)同时按下电源单元中的按键开关S001,S002,再按下S003,调节可调电位器W001,使T006(-12V—+12V)输出电压为+1V,形成单位阶跃信号电路,然后将S001,S002再次按下关闭电源。
(2)按照图2.2连接好电路,按下电路中所用到运放单元的按键开关。
(3)用导线将连接好的模拟电路的输入端于T006相连接,电路的输出端与示波器相连接。
(4)同时按下按键开关S001,S002时,利用示波器观测该二阶系统模拟电路的阶跃特性曲线,并由实验测出响应的超调量和调节时间,将结果记录下来。
自动控制原理实验二阶系统的阶跃响应
自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。
二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。
特征根的实部决定了系统的稳定性,实部小于零时系统稳定。
2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。
三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。
2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。
四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。
根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。
2.连接模拟输入信号。
在搭建的二阶系统的输入端接入一个阶跃信号发生器。
3.连接模拟输出信号。
在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。
4.调整增益和特征根。
通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。
记录实际调整参数的数值。
5.使用MATLAB进行仿真绘制。
根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。
6.对比分析实际曲线与仿真曲线。
通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。
五、实验结果与分析1.实际曲线的绘制结果。
根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。
2.仿真曲线的绘制结果。
利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。
3.实际曲线与仿真曲线的对比分析。
通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。
六、实验讨论与结论1.实验过程中遇到的问题。
二阶动态电路分析
待定常数A1,A2由初始条件确定。
uC (0 ) uC (0 ) A1 U0
iL (0 )
iL (0 )
C
duC dt
t0
0
A1
A2
0
A1 U0 A2 U0
uC (t) U0et (1 t) t 0
电路中其它响应:
i(t) C duC dt
2CUOtet
uL (t)
L
di dt
R=0是欠阻尼的特例。此时
R 0
2L
d 0
1 LC
uC (t) U0 cosdt U0 cos0t
i(t) 0CU0 sindt 0CU0 sin0t uL (t) U0 cosdt U0 cos0t
R=0时,i(t),uC (t),uL (t) 的波形曲线
可见,当电路中R=0时,各响应作无阻尼等幅自由振荡,
i(t) C
duC dt
02CU0 d
et sin dt
uL (t)
L
di dt
0 d
U 0e t cos( d t
)
i(t),uC (t),uL (t) 的波形曲线
0
d
衰减uC,(t)、称ei为(t)响衰、t 应减uL有系(t衰)数减,振d荡是的振特荡性的,角其频振率荡。幅度按指数规律
第5章 二阶动态电路分析
5-1 RLC串联电路的零输入响应 5-2 RLC串联电路的全响应 5-3 GCL并联电路的分析 5-4 一般二阶电路分析
5-1 RLC串联电路的零输入响应
电路如图所示,设uC(0-)=U0,iL(0-)=0。t=0时,开关
K闭合。在图示电流、电压参考方向下,由KVL,可得:
uC
2. 实验二 二阶系统阶跃响应
实验二二阶系统阶跃响应一、实验目的1. 研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响,定量分析ζ和ωn与最大超调量σp和调节时间ts之间的关系。
2. 进一步学习实验系统的使用。
3. 学会根据系统的阶跃响应曲线确定传递函数。
4. 学习用MATLAB仿真软件对实验内容中的电路进行仿真。
二、实验原理典型二阶闭环系统的单位阶跃响应分为四种情况:1)欠阻尼二阶系统如图1所示,由稳态和瞬态两部分组成:稳态部分等于1,瞬态部分是振荡衰减的过程,振荡角频率为阻尼振荡角频率,其值由阻尼比ζ和自然振荡角频率ωn决定。
(1)性能指标:: 单位阶跃响应C(t)进人±5%(有时也取±2%)误差带,并且不再超出该误差带的调节时间tS最小时间。
超调量σ% ;单位阶跃响应中最大超出量与稳态值之比。
单位阶跃响应C(t)超过稳态值达到第一个峰值所需要的时间。
峰值时间tP :结构参数ξ:直接影响单位阶跃响应性能。
(2)平稳性:阻尼比ξ越小,平稳性越差长,ξ过大时,系统响应迟钝,(3)快速性:ξ过小时因振荡强烈,衰减缓慢,调节时间tS调节时间t也长,快速性差。
ξ=0.7调节时间最短,快速性最好。
ξ=0.7时超调量σ%<5%, S平稳性也好,故称ξ=0.7为最佳阻尼比。
2)临界阻尼二阶系统(即ξ=1)系统有两个相同的负实根,临界阻尼二阶系统单位阶跃响应是无超调的,无振荡单调上升的,不存在稳态误差。
3)无阻尼二阶系统(ξ=0时) 此时系统有两个纯虚根。
4)过阻尼二阶系统(ξ>1)时此时系统有两个不相等的负实根,过阻尼二阶系统的单位阶跃响应无振荡无超调无稳态误差,上升速度由小加大有一拐点。
三、 实验内容1. 搭建模拟电路典型二阶系统的闭环传递函数为:其中,ζ 和ωn 对系统的动态品质有决定的影响。
搭建典型二阶系统的模拟电路,并测量其阶跃响应:二阶系统模拟电路图其结构图为:系统闭环传递函数为:式中, T=RC ,K=R2/R1。
自动控制原理实验——二阶系统的动态过程分析
实验二二阶系统的动态过程分析一、 实验目的1. 掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。
2. 定量分析二阶系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
3. 加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质。
4. 了解和学习二阶控制系统及其阶跃响应的Matlab 仿真和Simulink 实现方法。
二、 实验内容1. 分析典型二阶系统()G s 的ξ和n ω变化时,对系统的阶跃响应的影响。
2. 用实验的方法求解以下问题:设控制系统结构图如图2.1所示,若要求系统具有性能:%20%,1,p p t s σσ===试确定系统参数K 和τ,并计算单位阶跃响应的特征量d t ,r t 和s t 。
图2.1 控制系统的结构图3. 用实验的方法求解以下问题:设控制系统结构图如图2.2所示。
图中,输入信号()r t t θ=,放大器增益AK 分别取13.5,200和1500。
试分别写出系统的误差响应表达式,并估算其性能指标。
图2.2 控制系统的结构图三、实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。
将每个典型环节的模拟电路按系统的方块图连接起来,就得到控制系统的模拟电路图。
通常,二阶控制系统222()2nn nG ssωξωω=++可以分解为一个比例环节、一个惯性环节和一个积分环节,其结构原理如图 2.3所示,对应的模拟电路图如图2.4所示。
图2.3 二阶系统的结构原理图图2.4 二阶系统的模拟电路原理图图2.4中:()(),()()r cu t r t u t c t==-。
比例常数(增益系数)21RKR=,惯性时间常数131T R C=,积分时间常数242T R C=。
其闭环传递函数为:12221112()1()(1)crKU s TTKKU s T s T s K s sT TT==++++(0.1) 又:二阶控制系统的特性由两个参数来描述,即系统的阻尼比ξ和无阻尼自然频率n ω。
二阶电路的响应.
二阶电路的响应
实验目的 实验要求
知识点
难点指导
⑷当R=0时,称为等幅振荡(无阻尼)过程。其响应为
uc (t ) U 0 sin(0t ) 2
i(t )
U0 sin(0t ) 0 L
(方波幅值选1V至2V,频率选1至3KHz)。 2、调整R值,将uC(t)接示波器,观察uC(t)轨迹并记 录波形。
报告要求
1、记录不同参数时电路响应波形。 2、总结二阶电路零状态响应的特点及其参数对电路响应 的影响。 3、分析电路动态过程的性质。
二阶电路的响应
实验目的 实验要求
知识点
难点指导
⑴当R 2 应为
uc (t )
L 时,称为非振荡(过阻尼)放电过程。其响 C
U0 P2t 1 ( p2e Pt Pe ) 1 P2 p1
1 t duc U0 P2 i(t ) C e dt L( P2 P 1)
P
⑵当 R 2
知识点
难点指导
令:
R 2L
1 = 0 LC
1 R ( ) 2 d 2 LC 2 L
(称衰减系数) (称固有振荡角频率) (ω d称振荡角频率)
则:
2 2 P 1、 2
P 1 jd
P2 jd
显然,电路的响应与电路参数有关,当电路参数为 不同值时,电路的响应可能出现以下情况:
2、震荡频率ωd与衰减系数σ的实验测量方法: 当电路出现衰减振荡时,其响应为: t t i ( t ) A e sin d t uc (t ) Ae sin( t ) 2 1 d 将uc(t) (或i(t))送入示波器,显示出电压(或电流)波形, 如图10-3所示。
二阶系统的时间响应及动态性能介绍
二阶系统的时间响应及动态性能介绍二阶系统是指具有两个自由度的动力系统,例如二阶电路、二阶机械系统等。
在控制系统和信号处理的领域中,二阶系统有着广泛的应用。
二阶系统的时间响应和动态性能是评价系统性能的重要指标之一在阶跃信号输入时,二阶系统的时间响应可以分为三个阶段:超调阶段、振荡阶段和稳定阶段。
超调阶段是指系统在初期反应过程中,输出信号的幅值超过了稳态值。
振荡阶段是指系统在超调过程之后,输出信号会出现一定的振荡现象。
稳定阶段是指系统输出信号逐渐趋于稳定的阶段。
超调量是指系统在初期反应过程中,输出信号的峰值与稳态值之间的差值,通常用百分比表示。
超调量越小,系统的动态性能越好。
调节时间是指系统从初始状态到达稳态的时间。
当输出信号接近稳态值时,调节时间结束。
调节时间越短,系统的动态性能越好。
上升时间是指系统从初始状态到达信号波形上升至稳定值的时间。
上升时间越短,系统的动态性能越好。
峰值时间是指系统输出信号达到超调量峰值的时间。
峰值时间越短,系统的动态性能越好。
除了上述指标外,二阶系统的频率响应和阶数也是评价系统性能的重要指标之一、频率响应是指系统对不同频率的输入信号的响应特性。
系统的阶数表示系统的自由度,同时也反映了系统的复杂性。
综上所述,二阶系统的时间响应和动态性能是评价系统性能的重要指标。
不同的二阶系统在时间响应和动态性能上有不同的特点和表现。
对于
不同应用场景的二阶系统,我们可以根据需要选择合适的指标和方法进行评估和优化,以提高系统的性能和效果。
实验十二二阶动态电路响应的研究
实验十二 二阶动态电路响应的研究一、实验目的1. 测试二阶动态电路的零状态响应和零输入响应, 了解电路元件参数对响应的影响。
2. 观察、分析二阶电路响应的三种状态轨迹及其特点, 以加深对二阶电路响应的认识与理解。
二、原理说明一个二阶电路在方波正、负阶跃信号的激励下,可获得零状态与零输入响应,其响应的变化轨迹决定于电路的固有频率。
当调节电路的元件参数值,使电路的固有频率分别为负实数、共轭复数及虚数时,可获得单调地衰减、衰减振荡和等幅振荡的响应。
在实验中可获得过阻尼,欠阻尼和临界阻尼这三种响应图形。
简单而典型的二阶电路是一个RLC 串联电路和GCL 并联电路,这二者之间存在着对偶关系。
本实验仅对GCL 并联电路进行研究。
三、实验设备四、实验内容动态电路实验板与实验十一相同,如图11-3所示。
利用动态电路板中的元件与开关的配合作用,组成如图12-1所示的GCL 并联电路。
令R 1=10K Ω,L =4.7mH , C =1000PF ,R 2为10K Ω可调电 阻。
令脉冲信号发生器的输出为 U m =1.5V ,f =1KHz 的方波脉冲, 通过同轴电缆接至图中的激励端, 同时用同轴电缆将激励端和响应 输出接至双踪示波器的Y A 和Y B两个输入口。
图 12-11. 调节可变电阻器R 2之值, 观察二阶电路的零输入响应和零状态响应由过阻尼过渡到临界阻尼,最后过渡到欠阻尼的变化过渡过程,分别定性地描绘、记录响应的典型变化波形。
2. 调节R 2使示波器荧光屏上呈现稳定的欠阻尼响应波形, 定量测定此时电路的衰减常数α和振荡频率ωd 。
3. 改变一组电路参数,如增、减L 或C 之值,重复步骤2的测量,并作记录。
随后仔五、实验注意事项1. 调节R2时,要细心、缓慢,临界阻尼要找准。
2. 观察双踪时,显示要稳定,如不同步,则可采用外同步法触发(看示波器说明)。
六、预习思考题1. 根据二阶电路实验电路元件的参数,计算出处于临界阻尼状态的R2之值。
动态电路仿真实验报告
一、实验目的1. 掌握使用Multisim软件进行动态电路仿真的基本方法。
2. 理解并验证一阶、二阶动态电路的基本特性。
3. 分析电路参数对动态电路响应的影响。
4. 通过仿真实验,加深对动态电路理论知识的理解。
二、实验原理动态电路是指电路中元件的参数(如电阻、电容、电感等)随时间变化的电路。
动态电路的特性主要取决于电路的结构和元件参数。
本实验主要研究一阶和二阶动态电路的响应特性。
三、实验仪器1. PC机一台2. Multisim软件四、实验内容1. 一阶动态电路仿真(1)搭建RC电路使用Multisim软件搭建一个RC电路,电路参数如下:R=1kΩ,C=1μF。
将电路连接到函数信号发生器上,输出一个5V的方波信号。
(2)仿真分析① 零输入响应:将电容C的初始电压设为5V,观察电容电压uc随时间的变化情况,并记录时间常数τ。
② 零状态响应:将电容C的初始电压设为0V,观察电容电压uc随时间的变化情况,并记录时间常数τ。
③ 完全响应:将电容C的初始电压设为5V,观察电容电压uc随时间的变化情况,并记录时间常数τ。
2. 二阶动态电路仿真(1)搭建RLC电路使用Multisim软件搭建一个RLC电路,电路参数如下:R=1kΩ,L=1mH,C=1μF。
将电路连接到函数信号发生器上,输出一个5V的方波信号。
(2)仿真分析① 零输入响应:将电感L的初始电流设为5A,观察电感电流iL随时间的变化情况,并记录时间常数τ。
② 零状态响应:将电感L的初始电流设为0A,观察电感电流iL随时间的变化情况,并记录时间常数τ。
③ 完全响应:将电感L的初始电流设为5A,观察电感电流iL随时间的变化情况,并记录时间常数τ。
五、实验结果与分析1. 一阶动态电路(1)零输入响应:电容电压uc随时间呈指数衰减,时间常数τ=1s。
(2)零状态响应:电容电压uc随时间呈指数增长,时间常数τ=1s。
(3)完全响应:电容电压uc随时间呈指数衰减和增长,时间常数τ=1s。
电路原理5.6.3二阶电路的动态响应 - 二阶电路的动态响应1
- e p2t )
+ uC
-
C
iR + uL L -
动态电路的时域分析
2 uC,i,uL响应曲线
a.
uC
=
U0 p2 -
p1
(
p2e
p1t
-
p1e p2t )
p1<0, p2<0,且 |p2| > |p1|,则uC 中第一项比第二项衰减的慢。
uC
p2U 0
|p1|小
p2 - p1
U0
p1
-
R 2L
用初始条件确定未知参数A、β
初始条件: uC (0+ ) U0 , i(0+ ) 0
uC (0+ ) U0
Asin U0
duC - i(0+ ) 0
dt t0+
C
- sin + cos 0
动态电路的时域分析
Asin U0
A U0
sin
ω0 =
1 LC
- sin + cos 0
i = -C duC dt
duC dt
t 0+
-i(0+ ) C
0
p1A1
+
p2A2
0
则
A1
=
p2
p2 -
p1
U0
A2
=
- p1 p2 - p1
U0
动态电路的时域分析
a.电容电压响应uC:
uC = A1e p1t + A2e p2t
(t=0)
+
uC -
C
iR + uL L -
p1,2
=
二阶动态电路分析
e t ( A1 cos t A2 sin t) A1 K1 K2 , A2 j(K1 1K4 2 )
e t A12 A2 2 cos( t )
Ae t cos( t )
A
A12
A22 ,
tg 1
A2 A1
,
90
,
tg 1
这里:uC (0)
A1, uC ' (0)
e p1t e p2t 0 6
① uC , iL 始终不改变方向, uC iL < 0, 电容放电; ② uL 改变一次方向,t = tm 时, uL = 0 ; ③ t < tm ,电感吸收能量( uLiL > 0 ),建立磁场; t > tm 电感释放能 量( uL iL < 0 ),磁场逐渐衰减,趋向消失;
uR R i 11.56(e268 t e3732 t ) V
uL
L
di dt
(10.77 e3732 t
0.773 e268 t )
V
(2) imax
tm
1 p1
p2
ln
p2 p1
7.6 104 S
760
S
imax
i t tm
2.89(e268 t e3732 t ) t tm
2.19
(0)
duC dt
0
1 C
i(t)
0
1 C
i(0)
零输入响应:上述线性二阶常系数微分方程中 u0C(t)=0 的响应
LC
d 2uC dt 2
RC
duC dt
uC
0
或
d 2uC dt 2
R L
duC dt
1 LC
二阶RLC电路的动态特性和频率特性综合研究A9CAC
02
二阶RLC电路的基本理论
RLC电路的组成与工作原理
RLC电路由电阻(R)、电感(Lபைடு நூலகம்和 电容(C)三个基本元件组成。
工作原理:当交流电源施加于RLC电 路时,电流和电压将按照一定的规律 在电阻、电感和电容之间进行能量转 换和传递。
二阶RLC电路的数学模型
数学模型
二阶RLC电路可以用微分方程表示,描述 了电压、电流和时间之间的关系。
二阶rlc电路的动态特性和频 率特性综合研究a9cac
目录
• 引言 • 二阶RLC电路的基本理论 • 二阶RLC电路的频率特性分析 • 二阶RLC电路的阻尼特性分析 • 二阶RLC电路的应用研究 • 结论与展望
01
引言
研究背景与意义
01
实际电路中广泛存在二阶RLC电 路,其动态特性和频率特性对电 路性能具有重要影响。
在调频通信中,二阶RLC电路可以用 于实现频率调制和解调功能,从而实 现信息的传输和接收。
振荡器设计
二阶RLC电路可以构成振荡器,用于 产生特定频率的信号,如本机参考信 号或时钟信号。
在电力电子系统中的应用
电源滤波
二阶RLC电路可以作为电源滤波器,用于抑制电源中的谐波干扰, 提高电力电子系统的稳定性和可靠性。
阻尼比与时间常数的关系
阻尼比与时间常数之间存在一定的关系。在欠阻尼状态下,时间常数越大,阻尼比越小;在过阻尼状态下,时间 常数对阻尼比无影响。
05
二阶RLC电路的应用研究
在通信系统中的应用
信号滤波
调频和解调
二阶RLC电路可以作为带通或带阻滤 波器,用于提取或抑制特定频率范围 的信号,从而提高通信系统的性能。
频率特性的基本概念
描述相位随频率变化的特 性。
二阶系统阶跃响应实验报告
实验二、二阶系统阶跃响应一、实验目的1.研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响。
定量分析ζ和ωn与最大超调量Mp和调节时间t S之间的关系。
2.进一步学习实验系统的使用方法3.学会根据系统阶跃响应曲线确定传递函数。
二、实验设备1.EL-AT-II型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
2. 域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
2) 检查USB线是否连接好,在实验项目下拉框中选中任实验,点击按钮,出现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。
3)连接被测量典型环节的模拟电路。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将两个积分电容连在模拟开关上。
检查无误后接通电源。
4)在实验项目的下拉列表中选择实验二[二阶系统阶跃响应] 。
5)鼠标单击按钮,弹出实验课题参数设置对话框。
在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果6)利用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:Y MAX - Y∞Ó%=——————×100%Y∞T P与T P:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P与T P。
试验二二阶系统阶跃响应分析
《工程控制基础》课程基础实验指导书电子科技大学目录实验一典型环节动态特性分析 (3)实验二二阶系统阶跃响应分析 (7)实验三系统频率特性分析 (10)实验四控制系统校正 (14)实验一 典型环节动态特性分析一、实验目的本实验的目的是运用电子模拟线路构成比例、惯性、积分等典型环节,并研究这些环节及电路的动态特性。
即:1、掌握运用运算放大器构成各种典型环节的方法,观察比例、惯性、积分环节的阶跃响应,并分析其动态性能。
2、了解参数变化对典型环节动态特性的影响。
二、实验原理1、比例环节比例环节也称为放大环节,其方框图如图1-1(a)所示。
传递函数为:G(S) =)()(S Ur S Uc = K 比例环节模拟线路如图1-1(b)所示。
这种线路也称作比例或P 调节器。
其中:K =1R R = 2() (b )图1-1 比例环节的模拟图U rt t (a)输入波形 (b)输出波形图1-2 比例环节波形图改变R 1的值(U r 一定),观察其阶跃响应曲线。
若按图 (b)接线,设U r 为-5V ,则图(b)的输入U r 和输出U c 实验波形如图1-2所示。
2、一阶惯性环节一阶惯性环节的方框图如图1-3(a)所示。
传递函数为:G(S) =)()(S Ur S U c = 1TS K一阶惯性环节含有弹性或容性储能元件和阻性耗能元件,其输出落后于输入,与比例环节相比,此环节具有“惯性”,在阶跃输入时,输出不能立即(需经历一段时间)接近所要求的阶跃输出值,因此其输出不可能显现线形,而是一指数函数图象。
惯性大小由时间常数T 衡量。
一阶惯性环节模拟线路图如图1-3(b )所示。
这种线路也称作惯性或T 调节器。
其中:K = 01R R T = R 1C分别改变R 1、C 的值(U r 一定),观察其阶跃响应曲线。
一阶惯性环节的模拟图(a)输入波形 (b)输出波形图1-4 一阶惯性环节波形图若按图 (b)接线,设U r 为-5V ,则图(b)的输入U r 和输出U c 实验波形如图1-4所示。
二阶动态电路响应的研究实验报告
二阶动态电路响应的研究实验报告嘿,大家好!今天咱们聊聊一个让人兴奋的话题——二阶动态电路响应。
听上去是不是有点深奥?别担心,我来给你们揭开这个神秘的面纱。
这就像是一个电路在回应我们的“指令”,就像小狗听到主人的口令一样,乖乖地反应。
不过呢,这种反应可不是简单的坐下、转圈圈,而是复杂得多。
想象一下,我们把电路看成是一位艺术家,二阶动态电路就像是他用来创作的画笔。
这画笔的灵敏度、反应速度,还有画出的每一笔,每一划,都是我们研究的重点。
二阶动态电路有两个能量储存元件——电感和电容,它们就像是电路里的双胞胎,一起工作,互相影响。
你可能会问,这双胞胎到底有多厉害?嘿,这可得看看它们的“化学反应”了。
在我们的实验中,我们设置了一些有趣的场景,让电路在不同条件下进行“表演”。
想象一下,你调高音量,看看电路是怎么回应的。
嘿,瞬间,你就能看到电压和电流的波动,简直像是在看一场电气交响乐!这些变化就像是电路在告诉你,它感受到了什么。
就像人在舞台上跳舞,随着音乐的节奏而舞动。
我们称这些反应为“响应”,就像小猫看到鱼一样,立刻就能“扑”上去。
我们还得提到一个小秘密,那就是“自然频率”。
这是电路的“特色”,就像每个人都有自己独特的声音。
当我们施加一个信号,电路就会在这个频率上表现得特别活跃。
想想看,就像一个歌手在高音区时,整个气氛都被点燃了。
我们通过实验观察到,电路在自然频率附近的反应特别明显,像个兴奋的小孩子,跃跃欲试,恨不得马上就来个大展示。
实验中也不乏一些小插曲。
我们的电路表现得不太“听话”,比如出现了过冲和下冲,就像小孩闹脾气一样。
这个时候,我们就得耐心点,调整电路的参数,试图让它回到正常的“轨道”上。
你要知道,电路就像一个情绪丰富的孩子,有时候需要些耐心和引导,才能让它表现得更好。
咱们得聊聊数据分析。
这部分虽然有点严肃,但其实也挺有趣的。
我们用一些图表来展示电路的响应情况,就像是在看运动会的成绩单。
每一条曲线、每一个数据点,都是电路表演的证据。
(大学物理电路分析基础)第7章二阶电路分析
作用
阻尼比决定了二阶电路的响应 速度和振荡幅度,对电路的稳 定性有很大影响。
分类
根据阻尼比的大小,可以分为 欠阻尼、临界阻尼和过阻尼三
种情况。
自然频率
定义
自然频率是二阶电路在没有外部激励时自由振荡的频率,表示为ωn, 它等于电路的总电感与总质量的比值。
计算公式
自然频率的计算公式为ωn = sqrt(K/m),其中K是弹簧常数,m是电 路的总质量。
赫尔维茨判据
赫尔维茨判据也是一种基于系统 极点的判据,通过计算系统函数 的零点和极点来判断系统的稳定 性。
乃奎斯特判据
乃奎斯特判据是一种基于频率域 分析的判据,通过分析系统的频 率响应来判断系统的稳定性。
稳定性分析方法
时域分析法
时域分析法是一种直接分析法,通过求解电路的微分方程来分析系统的动态响应和稳定 性。
大学物理电路分析基 础 第7章 二阶电路分 析
目 录
• 二阶电路的概述 • 二阶电路的响应分析 • 二阶电路的稳定性分析 • 二阶电路的阻尼比和自然频率 • 二阶电路的实例分析
01
二阶电路的概述
二阶电路的定义
二阶电路
由两个或更多电容元件或电感元 件组成的电路,其中每个元件有 两个端子。
定义中的关键点
频域分析法
频域分析法是一种间接分析法,通过将电路方程转化为频率域下的传递函数来分析系统 的稳定性。
04
二阶电路的阻尼比和自 然频率
阻尼比
定义
阻尼比是衡量二阶电路中阻尼作 用的参数,表示为ζ,它等于阻 尼电阻与电路总电阻的比值。
计算公式
阻尼比的计算公式为ζ = R/2L, 其中R是阻尼电阻,L是电路的总 电感。
二阶电路必须包含两个电容元件 或电感元件,且每个元件有两个 端子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U0
U0
U0
0
ωt 0
ωt
0
ωt
欠阻尼波形
过阻尼波形 临界阻尼波形
当电路参数R 、L 、C取值不同时,
8
如何用示波器测量输出波形,并计算出衰减系数
调节R ,使示波器荧光屏上呈现稳定的欠 阻尼响应波形,定量测定此时电路的衰 减常数α 和振荡频率ω d。
U0
uo = K e-? t sin(wdt + b)
五、实验报告
? 1. 根据观测结果,在方格纸上描绘二阶电路过 阻尼、 临界阻尼和欠尼的响应波形。绘坐标图 时,绘出1.5 ~ 2个周期的波形即可。在波形图
旁标出R、L、C的取值。
? 2. 测算欠阻尼振荡曲线上的 ? 与ωd 。 ? 3. 归纳、总结电路元件参数的改变对响应变化
趋势的影响。 。
R,分别使电路工作在过阻尼,欠阻尼和 衰减振荡状态,测量出输出波形。并进行 数据计算,求出衰减系数 ? 、振荡角频率
ωd 。结果填入下表 10-1。
表10-1
L=10mH C = 0.022 μ F f0 = 1.5KHz
?= R
2L
ω =d w02 - ? 2
电路状态
R1=51Ω
R2=1kΩ
R3=3kΩ
波形
? 2 测量不同参数下的衰减系数和波形
? 保证电路一直处于欠阻尼状态,取三个不同 阻值的电阻,用示波器测量输出波形,并计 算出衰减系数?,= R 将波形和数据填入表10-2。
2L
改为R1=51 R2=100 R3=200
? 3. 测量临界电阻值
? 将图10-4所示的接线图中的R改为实验箱上 的20K电位器RP,调节RP,波形出现临界状 态时,在断电情况(拔掉相连电线)下用万用表 测出此时的电位器RP值,即为临界电阻值。 与理论值进行如图所示衰减振荡波形看出,若测得第一个波峰出现的时间为
t设1,测第得T二d第个=一波t个2峰-正出t向1现峰的,值角时为频间U率为m为t12,,第w则二d自个=由正2T振?向d荡峰周值期为为U:m2 ,由
于
U m1 = kUe -? t1
U m 2 = kUe -? t2
二阶动态电路 响应的研究
华东理工大学信息学院电信系
一、实验目的
? 研究R、L、C串联电路的电路参数与其暂态过 程的关系。
? 观察二阶电路过阻尼、临界阻尼和欠阻尼三种 情况下的响应波形。利用响应波形,计算二阶 电路暂态过程的有关参数。
? 掌握观察动态电路状态轨迹的方法
二、原理说明
1 .串联 RLC 电路的响应特性
U = e m2
-? (t2 -t1 )
U m1
? = 1 ln Um1
t2 - t1 U m2
三、实验设备
序号
名称 型号与规格 数量
1
函数信号发
1
生器
2
双踪示波器
1
3
二阶实验线
1
路板
备注 DGJ-03
四、实验说明
1 将电阻,电容,电感串联成如图所示的接线 图,Up-p=1V 方波信号,f=1.5K 改变电阻