开关电源研发范例
开关电源的设计毕业论文
开关电源的设计毕业论文开关电源是一种高效率、小体积、轻质化的电源,随着现代电子设备的发展,应用越来越广泛。
开关电源的设计是电子工程专业毕业设计中的一个热门方向,本文将介绍开关电源的基本工作原理及设计方法,并以一个实际开关电源的设计为例,进行详细说明。
一、开关电源的基本工作原理开关电源的基本工作原理是将交流电源转换为直流电源,其核心部分是开关管。
开关管工作时,会在电路中产生一个高频矩形波形。
再经过滤波电路、输出稳压电路等处理后,最终输出所需要的稳定直流电源。
在开关电源中,开关管的切换是关键,它的导通和截止决定程序的整个运行。
开关管的导通与截止又是由控制器控制的,所以控制器设计是非常重要的。
二、开关电源的设计方法1.功率计算开关电源的功率计算是设计的第一步。
功率 = 电流×电压,在设计前应要明确设备所需的电流和电压值并通过功率计算公式计算得出所需的功率。
2.电路设计电路设计是开关电源设计中较为复杂的一步。
主要包括直流输入电路、开关管、反馈电路、滤波电容、输出稳压电路等部分。
这些部分需要合理的组合和设计,并应通过电路仿真进行验证。
3.控制器设计在控制器设计中,主要有PWM控制器和开环控制器。
PWM控制器通常采用电流反馈控制方式,能够减少在输出处的纹波电压,提高稳定性。
开环控制器的设计要更为复杂,但是更容易实现。
4.保护电路设计保护电路是开关电源中非常重要的一部分,保护电路通常包括电流限制保护、过压保护、过载保护,以及温度保护等。
这些保护电路能够提高开关电源的使用寿命,避免因电路故障引起的安全事故。
三、开关电源设计实例以12V60W的开关电源设计为实例。
1.功率计算P = U × I = 12V × 5A = 60W。
2.电路设计直流输入电路:直流输入电路主要包括整流桥、电容滤波器和保险丝等。
整流桥需要选择合适的电流、电压值,电容滤波器应该选择合适的容量,保险丝则是起到安全保障作用。
用uc3845b 设计开关电源实例
用uc3845b 设计开关电源实例Switching power supplies are widely used in various applications due to their high efficiency and compact design. One of the most common and popular control ICs used for designing switching power supplies is the UC3845B. This IC is known for its versatility and ease of use in various topologies such as flyback, forward, and boost.开关电源由于高效率和紧凑的设计而被广泛应用于各种领域。
在设计开关电源时常用的一个控制IC是UC3845B。
这个IC以其在飞行、正转和升压等各种拓扑结构中的通用性和易用性而闻名。
The UC3845B is a current mode PWM controller that operates at a fixed frequency and has a voltage feedforward design for improved transient response. It also has built-in soft start and frequency jitter features for reduced EMI emissions. These advanced features make the UC3845B a popular choice for designing efficient and reliable switch mode power supplies.UC3845B是一个固定频率工作的电流模式PWM控制器,具有电压前馈设计以提高瞬态响应。
基于DSP控制的PWM型开关电源的研究与开发共3篇
基于DSP控制的PWM型开关电源的研究与开发共3篇基于DSP控制的PWM型开关电源的研究与开发1随着现代电子技术的不断发展,各种电子设备已经成为了人们生活中必不可少的一部分。
而这些电子设备的电力供应往往都离不开一种被称作开关电源的技术。
在目前的众多开关电源技术中,一种基于数码信号处理器(Digital Signal Processor,DSP)控制的脉宽调制(Pulse-Width Modulation,PWM)型开关电源备受关注。
本文将立足于DSP控制的PWM型开关电源的研究与开发,从理论分析、电路设计以及实验测试等方面进行探讨。
一、理论分析在开展研究之前,我们需要先了解PWM型开关电源的基本原理。
PWM型开关电源是一种电源调节技术,它将输入电压转换为短脉冲信号,并通过改变信号的占空比来实现电压的调节。
在PWM型开关电源中,DSP作为核心控制器,通过对电源电路的控制实现对电压、电流等信号的输出控制。
因此,DSP控制技术具有快速、高效、精准等特点,是PWM型开关电源的重要控制手段。
二、电路设计在PWM型开关电源的电路设计中,首先要考虑的是所选用的数字信号处理器(DSP)。
在选择DSP时,需要考虑其性能、成本、可扩展性等因素。
其次,需要在选用的DSP的控制下设计整个PWM型开关电源的电路图。
其中,包括输入电源、滤波电路、开关管、功率变换电路、负载电路等部分,旨在将输入电压转化为输出大于或等于期望值的恒定电压。
另外,在电路设计过程中,还需要注意各部分之间的电气特性和电路参数,以便实现电源稳定、高效、低噪音的输出要求。
三、实验测试完成电路设计之后,需要进行实验测试以验证PWM型开关电源的控制效果和电气性能。
在实验过程中,我们可以通过测定输出的电压、电流大小、占空比等参数来评估所设计的PWM型开关电源的实际性能。
在实验过程中,还需要考虑到温度、负载变化等因素对PWM型开关电源的影响,以保证得到准确的实验结果。
芯片公司反激开关电源设计案例
芯片公司反激开关电源设计案例反激开关电源是一种常用的电源设计方案,它采用了开关元件的控制来实现高效率的能量转换。
对于芯片公司来说,设计一个稳定可靠的反激开关电源是至关重要的。
下面以一个具体案例来介绍芯片公司如何设计反激开关电源。
案例背景:芯片公司计划设计一款用于智能手表的反激开关电源。
该电源需要满足以下要求:输出电压为3.3V,最大输出电流为200mA,输入电压范围为3V到5V。
同时,该电源需要具备稳定可靠、高效率等特点。
设计步骤:1.电源需求分析:首先,需要对电源的工作条件进行分析。
智能手表作为一种可佩戴设备,体积小巧、功耗低是重要的特点。
因此,反激开关电源是一种理想的选择。
在电源需求分析中,需要确定输出电压和电流的要求,并考虑输入电压的范围。
2.开关电源拓扑选择:根据电源需求分析,可以选择反激开关电源作为设计方案。
反激开关电源可以提供相对较高的转换效率,并且适用于较宽的输入电压范围。
3.电源拓扑设计:在选择了反激开关电源后,需要设计电源的拓扑结构。
该案例中可以选择基于反激变换器的设计方案,使用变压器实现能量的传输。
通过选择合适的变压器匹配,可以实现输入电压到输出电压的转换。
4.元件选择:根据设计要求,选择合适的元件来搭建反激开关电源。
包括开关管、二极管、电感、电容等。
在选择元件时,需要考虑其参数和性能,并保证其可靠性和稳定性。
5.控制电路设计:反激开关电源需要一个控制电路来实现对开关管的控制。
控制电路可以采用传统的PWM或者脉冲频率调制(PFM)的控制方法。
通过控制开关管的导通与断开,实现对输出电压和电流的调节。
6.稳压电路设计:为了保证输出电压的稳定性,需要设计稳压电路。
可以采用负反馈稳压电路,通过对输出电压进行采样和比较,控制开关管的工作状态,使得输出电压能够稳定在设定值。
7.效率优化:为了提高转换效率,需要优化设计。
可以采用切换频率较高的开关管、合理选择电感和电容等方法。
通过优化设计,使能量转换更为高效。
新型开关电源优化设计与实例详解
新型开关电源优化设计与实例详解以新型开关电源优化设计与实例详解为标题,本文将从新型开关电源的基本原理、设计优化的方法以及实例分析等方面进行详细阐述。
一、新型开关电源的基本原理开关电源是一种将交流电转换为直流电的电源装置,其基本原理是通过开关管的开关动作来实现电源的开关控制。
传统的开关电源在工作过程中存在一些问题,如功率损耗大、效率低、噪声大等。
为了克服这些问题,新型开关电源采用了一些优化设计方法。
二、新型开关电源的设计优化方法1. 降低功率损耗:通过采用功率开关管的低导通电阻材料和优化电路设计,降低功率开关管的导通电阻,从而减少功率损耗。
2. 提高效率:采用高效的开关控制器和高效的变压器设计,减少能量的损耗,提高开关电源的转换效率。
3. 降低噪声:通过优化电路布局和选择低噪声元件,减少开关电源的噪声产生,提高工作环境的舒适性。
4. 提高稳定性:采用先进的控制算法和稳压电路设计,提高开关电源的稳定性,减少输出波动。
5. 减小体积:通过优化元件布局和采用高集成度的芯片设计,减小开关电源的体积,提高电源的集成度和便携性。
三、新型开关电源的实例分析以一款新型开关电源为例进行分析,该开关电源采用了先进的控制算法和高效的变压器设计,具有以下特点:1. 高效率:通过优化的开关控制器和变压器设计,该开关电源的转换效率达到了90%以上,相比传统开关电源提高了20%以上。
2. 低噪声:采用低噪声元件和优化的电路布局,该开关电源的噪声水平明显低于传统开关电源,提高了工作环境的舒适性。
3. 稳定性强:通过先进的控制算法和稳压电路设计,该开关电源的输出稳定性非常好,输出波动小于1%。
4. 小巧便携:采用高集成度的芯片设计和优化的元件布局,该开关电源的体积明显减小,非常适合便携式设备的使用。
以上是对新型开关电源优化设计与实例的详细阐述。
通过采用优化设计方法,新型开关电源在功率损耗、效率、噪声、稳定性和体积等方面都得到了显著提升,满足了现代电子设备对电源的高要求。
开关电源研发范例
1 目的希望以簡短的篇幅,將公司目前設計的流程做介紹,若有介紹不當之處,請不吝指教.2 設計步驟:2.1 繪線路圖、PCB Layout.2.2 變壓器計算.2.3 零件選用.2.4 設計驗證.3 設計流程介紹(以DA-14B33為例):3.1 線路圖、PCB Layout 請參考資識庫中說明.3.2 變壓器計算:變壓器是整個電源供應器的重要核心,所以變壓器的計算及驗証是很重要的,以下即就DA-14B33變壓器做介紹.3.2.1 決定變壓器的材質及尺寸:依據變壓器計算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 鐵心飽合的磁通密度(Gauss)➢ Lp = 一次側電感值(uH)➢ Ip = 一次側峰值電流(A)➢ Np = 一次側(主線圈)圈數➢ Ae = 鐵心截面積(cm 2)➢ B(max) 依鐵心的材質及本身的溫度來決定,以TDK FerriteCore PC40為例,100℃時的B(max)為3900 Gauss ,設計時應考慮零件誤差,所以一般取3000~3500 Gauss 之間,若所設計的power 為Adapter(有外殼)則應取3000 Gauss 左右,以避免鐵心因高溫而飽合,一般而言鐵心的尺寸越大,Ae 越高,所以可以做較大瓦數的Power 。
3.2.2 決定一次側濾波電容:濾波電容的決定,可以決定電容器上的Vin(min),濾波電容越大,Vin(win)越高,可以做較大瓦數的Power ,但相對價格亦較高。
3.2.3 決定變壓器線徑及線數:當變壓器決定後,變壓器的Bobbin 即可決定,依據Bobbin 的槽寬,可決定變壓器的線徑及線數,亦可計算出線徑的電流密度,電流密度一般以6A/mm 2為參考,電流密度對變壓器的設計而言,只能當做參考值,最終應以溫昇記錄為準。
3.2.4 決定Duty cycle (工作週期):由以下公式可決定Duty cycle ,Duty cycle 的設計一般以50%為基準,Duty cycle 若超過50%易導致振盪的發生。
一种高功率因素开关电源的研究与设计(优秀毕业设计)
摘要
第一章绪论
随着社会信息和工业技术的不断发展,作为电子电路、电器和电动设备的工作动力的电源装置的需求量日益增长,并对其体积、重量、效率、可靠性和性能等方面提出了更高的要求。
1.1线性电源和开关电源的对比
按功率管的工作方式划分,直流电源主要分为两类:线性电源和开关电源,线性电源中的功率管工作在线性放大区,开关电源则是在线性电源的基础上发展起来的,其功率管工作在开关状态,在很大程度上克服了线性电源的缺点,但其自身也有一定的不足。
1.1.1线性电源
线性电源的工作过程为:工频电压先经工频变压器降压后,进行整流滤波,然后经过功率管放大输出,再将取样电压和基准电压比较后经驱动电路驱动功率管进行输出电压调整,最后输出纹波电压和性能符合要求的直流电压。
70年代后期,随着各种功率晶体管、高频电容、开关二极管、高频变压器磁芯等器件被成功地研制出,使开关电源的发展走上了通过提高工作频率实现小型化的道路。
不难看出,开关电源的发展是与当今经济社会发展对科学技术的要求分不开的,开关电源的高效性适应了当今能源问题严峻的状况;它的高频化适应了现代化装置和设备对电源轻、薄、短、小的严格要求;它的控制器高度集成化,适应了任何电控设备对电源的高可靠性要求。
1.2.2
我国的晶体管直流变换器及开关稳压电源的研制工作始于60年代初期,到60年代中期进入实用阶段,70年代初开始研制无工频变压器开关稳压电源。近10多年来,许多研究机构、高校和工厂研制出多种类型的开关电源,并广泛用于电子计算机、通讯和彩色电视机等领域,效果较好。工作频率为100kHz~200kHz的高频开关稳压电源于90年代初试制成功,已走向应用阶段。90年代后,随着国外控制芯片的发展和引进,200kHz以上工作频率的开关电源研制也逐步走向成熟,并在许多领域替代了工作频率较低的开关电源。目前国内正在致力于研制高工作频率、多功能化、高效率的开关电源。
开关电源设计经典实例.pdf.pdf
摘要开关电源是应用于广泛领域的一种电力电子装置。
它具有电能转换效率高、体积小、重量轻、控制精度高和快速性好等优点,在小功率范围内基本取代了线性电源,并迅速想大功率范围推进,在很大程度上取代了晶闸管相控整流电源。
可以说,开关电源技术是目前中小功率直流电能变换装置的主流技术。
本文首先描述了开关电源的发展,对目前出现的几种典型的开关电源技术作了归纳总结和分析比较,在此基础上指出了开关电源技术的发展状况和开关电源产品的发展趋势。
并且对开关电源的发展史、应用范围、主电路的选择、控制方法作了简要的介绍。
在设计中主要采用了脉宽调制(PWM)、全桥整流、自锁保护等技术,应用了控制芯片UC3842做为PWM控制芯片,对变压器次级线圈采用堆叠式绕法,改进光耦反馈电路的选择,使电路能达到所需基本要求同时,力求稳定、高效。
关键字:开关电源,拓扑结构,变压器,正激式AbstractThe switch power supply is a kind of electric power electronics which applies in the extensive realm to be used.It has an electric power conversion's efficiency high, the physical volume is small, the weight is light, the control accuracy is high with fast etc. advantage, within the scope of small power replaced line power supply, and in high-power scope propulsion quickly, to a large extent,it replaced the thyristor phase - controlled rectifying power supply.We can say, the switch power supply technique is the essential technique which wins small electric power transformation of the power direct current to equip currently.This text described the development of switch power supply first, to a few kinds which appear currently typical model of the switch power supply technique made to induce summary and analysis comparison, pointing out the development trend of the technical development condition of the switch power supply and switch power supply product on this foundation.And introduce the switch power supply’s phylogeny,application, main electric circuit of power supply and controled a method. The design adopted PWM, the whole bridgeses commutated, lock protection etc. technique, applied control the chip UC3842 to be used as PWM control chip, the transformer adoprt adopt pile circle, improve the choice of the electric circuit, make the electric circuit be able to attain need basic request in the meantime, try hard for stability, efficiently.Key words:Switch power supply,topology,transform,Forward目录摘要 (I)Abstract ............................................................................................................................................ I I 目录 .. (III)1 绪论 (1)1.1 引言 (1)1.2 开关电源的发展历史 (1)1.2.1 国外发展历史 (1)1.2.2 国内发展状况 (2)1.3 目前需要克服的困难 (2)1.4 开关电源的发展趋势 (3)1.5 本文的设计要求 (4)2 开关电源的工作原理 (6)2.1 开关电源的基本构成 (6)2.2 开关电源常用的拓扑结构分析 (6)2.2.1 降压型 (6)2.2.2 升压型 (7)2.2.3 升降压型 (8)2.2.4 反激式 (9)2.2.5 正激式 (11)2.2.6 推挽式 (12)2.3 拓扑结构的确定 (13)3. 基于UC3842的开关电源的设计与实现 (14)3.1 开关电源电路的设计 (14)3.1.1 开关电源电路的总体简介 (14)3.1.2 基于UC3842的基本结构 (14)3.1.3 各部分功能简介 (14)3.2 UC3842芯片简介 (15)3.2.1 UC3842的特点 (15)3.2.2内部结构和引脚图 (16)3.2.3 引脚功能 (16)3.2.4 芯片工作原理 (17)3.3 各部分回路设计 (18)3.3.1 主回路的设计 (18)3.3.2 控制保护回路的设计 (21)3.3.3 反馈电路的设计 (23)3.4 外围主要器件的选取 (23)4. 开关电源变压器的设计 (28)4.1 与变压器相关的一些基本概念 (28)4.2 变压器用料介绍 (30)4.3 高频变压器的设计 (32)4.4 变压器的绕制方法 (35)结论 (38)致谢 (39)参考文献 (40)附录总原理图 (41)1 绪论1.1 引言电子技术的高速发展,电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入 90 年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电力检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。
毕业论文-小功率开关稳压电源设计【范本模板】
小功率开关稳压电源设计摘要随着电子设备的飞跃发展,电子系统的心脏——电源也得到了迅速的发展,并对其要求越来越高。
开关电源被誉为高效节能电源,它具有稳压范围宽、功率密度比大、重量轻等优点,同时它在开关管上较少的能量损耗,使它与线性电源相比具有较高的效率,最高效率可达90%以上,从而使它在移动便携式设备中得到了广泛的应用,因此开展开关电源项目研究具有重要意义。
目前开关电源正向集成化、智能化的方向发展.高度集成、功能强大的单片开关电源代表着当今开关电源发展的主流方向。
本论文围绕当前流行的单片开关电源芯片进行了小功率开关电源的研究,设计出一种实用的单路输出精密通用式开关稳压电源,可用作半导体激光器驱动电源中的精密电压源。
该设计由五个模块电路构成:输入整流滤波、功率转换电路、高频变换器、输出整流滤波和控制电路。
该电源共使用3片集成线路:TOP249Y6端单片开关电源(IC1)、线性光耦合器PC817A(IC2)、可调式精密并联稳压器TL431(IC3)。
本论文中对该电源的滤波、整流、反馈、启动及保护电路等分别作了细致的研究工作,并通过反复试验取得了高频变压器设计宝贵经验,掌握了单片开关电源设计的核心技术。
关键词:单片开关电源,脉宽调制,高频变压器,纹波The Design of Low Power Switching Power SupplyAbstractWith the rapid development of electronic equipment, electronic system of the heart —the power has been rapid development and its increasingly high demand。
Known as energy efficient switching power supply,it has wide voltage range, power density than large,light weight,etc。
一种BUCK型开关电源的研究与设计 毕业设计论文正文
一种BUCK型开关电源的研究与设计Xxx(浙江海洋学院机电工程学院,浙江舟山316000)摘要虽然开关电源起步比较晚,但是在近几十年电力电子技术飞速发展的推动下,使得开关电源的到了飞速的发展。
由以前几十千HZ的频率到现在的几百千HZ,由以前得低效率到现在的高效率(最高可以达到95%),开关电源的功率也在不断的加大。
这些变化使得开关电源在邮电通讯、仪表仪器、工业设备、医疗器械、家用电器等等领域应用十分广泛。
论文在研究开关电源发展现状及趋势的基础上,参考TOP221P在开关电源中的应用,分析了三种基本的拓扑结构芯片的工作原理,说明了高频变压器的设计方法。
最终提出了基于TOP221P以及PC817A的BUCK型开关电源的设计。
关键词:开关电源;TOP221P;拓扑结构;变压器AbstractAlthough switching power supply started quite late, but in recent decades, power electronic technology rapid development, makes the retreat move of switch power supply to rapid development. By previously dozens of thousands of hundreds of thousands HZ to now HZ, by previously gets lower efficiency to the present high efficiency (up to 95%), switching power supply power is also in constant increase. These changes make switching power supply in telecommunications, instrument, industrial equipment, medical equipment, household appliances etc widely used.Based on the research on modern power supply technology, the reference in the application of switch power supply TOP221P . Analysis of these three basic topological structure and working principle of the chip. Explains the design method of the high frequency transformer. And then the paper puts forward the TOP221P and the BUCK PC817A based on the type of switch power design.Keywords: switch power;TOP221P; Topological structure; transformer目录一、绪论 (1)1.1、开关电源的研究背景与意义 (1)1.2开关电源的发展趋势 (1)二、开关电源的基本拓扑结构 (4)2.1 BUCK开关型调整器 (4)2.1.1 BUCK调整器的基本工作方式 (5)2.1.2 BUCK调整器的主要电流波形 (6)2.2 BOOST开关调整器拓扑 (6)2.2.1 BOOST开关调整器的基本原理 (6)2.2.2 BOOST调整器的不连续工作模式 (7)2.2.3 BOOST调整器的连续工作模式 (8)2.3 BUCK-BOOST型拓扑结构 (10)2.3.1 BUCK-BOOST型拓扑结构的工作过程分析 (10)2.3.2电流连续相关的各种工作模式 (10)2.3.3 电压增益比 (11)三、开关电源中的高频变压器设计 (12)3.1 设计概述 (12)3.2 磁芯的几何尺寸确定 (12)3.3 变压器初级绕组匝数及电感量的独立设计 (13)3.4 开关电源变压器简略设计的步骤 (14)四、基于TOP221P以及PC817A的开关电源设计 (16)4.1 TOPSwitch器件简介 (16)4.1.1 封装形式 (16)4.1.2 性能特点 (17)4.1.3 TOPSwitch-Ⅱ的工作原理 (17)4.2电源设计 (18)结论 (21)致谢 (22)[参考文献] (23)一、绪论1.1、开关电源的研究背景与意义开关电源是利用现代电力电子技术,控制开关晶体管开通与关断的时间比率,从而维持输出电压稳定的一种电源。
新型开关电源的研发与应用研究
新型开关电源的研发与应用研究随着智能化时代的到来,各行各业都在加快推进数字化、智能化改造,从而使得电子电器产品的需求越来越大。
而这些电子电器产品的驱动源则离不开开关电源。
开关电源是一种将交流电转变为直流电的电源,而在现代电子中,大多数电路需要直流电作为电源。
开关电源的原理是利用电子元件的导通和截止特性,使电源即时提供所需输出电流,这种一种稳定输出的电源有着更好的性能指标、更高的效率,且工程应用与制造方面也更为便利。
因此,开关电源逐渐成为了现代电子装置及电气控制系统中不可或缺的一部分。
然而,由于开关电源从负载来看,其是幅度大,频率高的脉冲信号,因此容易引起电磁污染。
所以,为保证电子产品的工作稳定性和电磁兼容性,如何研发与应用新型的开关电源,是当前电子工业的一项重大挑战。
一、开关电源的研发1. 电源控制芯片的研发电源控制芯片是整个开关电源的核心部件,它能够控制开关管的导通和截止,从而控制输出电压和电流。
目前,业内应用比较广泛的控制芯片有UC3842和UC3843,这些成熟的芯片可以提供较高的效率和可靠性。
除此之外,因为数字化和智能化的需要,一些功率较大的设备需要使用更高级别、更复杂的控制芯片。
这些芯片通常需要具有更高的精度和速度,以达到更稳定的输出应用效果。
2. 电源模块的研发电源模块是一种带有完整的电源管理的电路板,它可以让产品制造商将测试、调试和验收步骤的工作量降到最低限度,且在整体的可靠性和配置上都更为优越。
目前,一些国内外公司如Infineon和ON Semiconductor等,都在研发有关电源模块的技术,从而让厂商更便于进行电源部分的设计和制造。
3. 集成电路的研发开关电源所使用的集成电路,通常也需要更高的复杂度和更高的精度。
在一些电子产品中,由于采用了能常规的输出调节器,因此需要集成电路提供更高的效率,同时可以通过更为智能化的时序与保护机制来提高产品的稳定性。
二、开关电源的应用开关电源的应用非常广泛,包括但不限于以下几个领域:1. 电子制造业电子制造业是开关电源的最大应用领域之一。
开关电源研发范例
1 目的希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教.2 设计步骤:2.1 绘线路图、PCB Layout.2.2 变压器计算.2.3 零件选用.2.4 设计验证.3 设计流程介绍(以DA-14B33为例):3.1 线路图、PCB Layout 请参考资识库中说明.3.2 变压器计算:变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33变压器做介绍.3.2.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) B(max) = 铁心饱合的磁通密度(Gauss)Lp = 一次侧电感值(uH)Ip = 一次侧峰值电流(A)Np = 一次侧(主线圈)圈数Ae = 铁心截面积(cm 2)B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite CorePC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。
3.2.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。
3.2.3 决定变压器线径及线数:当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。
3.2.4 决定Duty cycle (工作周期):由以下公式可决定Duty cycle ,Duty cycle 的设计一般以50%为基准,Duty cycle 若超过50%易导致振荡的发生。
开关电源设计举例
开关电源设计举例电源是各类产品中很重要的一部分,可以算是最基础的部分,任何电子器件缺少了电源都无法工作。
本人从事电路设计相关工作(不涉及电源设计),但需要了解电源的设计原理、性能、测试等信息。
通过收集资料整理出一份AC-DC开关电源的设计过程。
仙童半导体官网提供了较为详细的开关电源设计方案,本文以仙童的FSL1x6xRN系列芯片为例,介绍采用FPS的反激式隔离AC-DC开关电源的设计开发流程。
开关模式电源(SMPS)设计本质上就是一项费时的工作,需要作出许多权衡取舍并采用大量的设计变量进行迭代运算。
本文所描述的步进式设计程序能够帮助工程师完成SMPS的设计。
为了使设计效率更高,还提供了一个包含本文所述全部公式的软件设计工具—FPS设计助手(FPS design assistant)。
该设计助手是用电子表格将全部变量、公式集于一个工作表,通过参数的改变实现相关参数的更新,提高设计开发的进度。
图1 采用FPS的基本反激式隔离AC-DC转换器一、引言图1示出了采用FPS的基本反激式隔离AC-DC转换器的原理图,它同时也是本文所描述的设计程序的参考电路。
由于MOSFET和PWM控制器以及各附加电路都被集成在了一个封装中,因此,SMPS的设计比分立型的MOSFET和PWM控制器解决方案要容易得多。
本文提供了针对基于FPS的反激式隔离AC-DC转换器的进步式设计程序,也包括变压器设计、输出滤波器设计、元件选择和反馈闭合环路设计。
这里描述的设计程序具有足够的通用性,可适用于不同的应用。
本文介绍的设计程序还可以由一个软件设计工具(FPS设计助手)来实现,从而使得设计师能够在一个很短的时间内完成SMPS设计。
本文的附录给出了一个采用软件工具的步进式设计实例。
二、步进式设计程序在这一节中,我们以图1所示的原理为参考来介绍设计程序。
一般而言,如图1所示,大多数FPS 引脚1到引脚4的配置都是相同的。
(1)第一步:确定系统规格输入电压范围(V line min 和V line max )。
高效率开关电源设计实例
高效率开关电源设计实例--10W同步整流B u c k变换器以下设计实例中,包含了各种技巧来提高开关电源的总体效率;有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍;采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用;在将这些电源引入生产前,请注意这个问题;10W同步整流Buck变换器应用此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器;在设计同步整流开关电源时,必须仔细选择控制IC;为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好;很多运行性能的微妙之处不能确定,除非认真读过数据手册;例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃;这是因为买来的芯片功能或工作模式往往无法改变;更不用说,当发现现成方案不能满足需求时,是令人沮丧的见图20的电路图;设计指标输入电压范围: DC+10~+14V输出电压: DC+额定输出电流:过电流限制:输出纹波电压: +30mV峰峰值输出调整:±1%最大工作温度: +40℃“黑箱”预估值输出功率: +2A=最大输入功率: Pout/估计效率=/=功率开关损耗 0.5=续流二极管损耗: =输入平均电流低输入电压时/10V=高输入电压时:/14V=0.8A估计峰值电流: 1.4Ioutrated=1.4×2.0A=2.8A设计工作频率为300kHz;电感设计参见最恶劣的工作情况是在高输入电压时;式中 Vinmax ——可能的最大输入电压;Vout——输出电压;Ioutmin——最小负载时的电流;f sw ——工作频率;电感是个环形表面封装元件,市场上有多种标准表面封装的电感,这里选择的是Coileraft公司的D03340P-33333μH;功率开关和同步整流器MOSFET的选择功率开关:功率开关要用一个变压器耦合的N沟道功率MOSFET;这里打算使用一个S0-8封装的双N沟道MOSFET,以节省PCB空间;最大输入电压是DCl4V;因此,可以选用V DSS不低于DC+30V、峰值电流是2.8A的MOSFET;选择过程的第一步是确定所用MOSFET的最大R DSon,通过热模型可以确定这个值,最大的R DSon可由下式得到:同时希望器件的耗散功率小于1W,所以估计的R DSon应小于所以选FDS6912A双N沟道MOSFET,它是S0-8封装,10V栅极电压时的导通电阻为28mΩ;同步二极管:要用一个大约是同步MOSFET连续额定容量的30%的肖特基二极管与MOSFET内部二极管并联,30V时约为0.66A;这里使用MBRSl30,该二极管在流过0.66A时有0.35V的正向压降;可替换的元件:在写本书时,仙童半导体公司出品了一个集成的肖特基二极管和MOSFET,肖特基二极管直接并在MOSFET的硅片上syncFET;SyncFET有一个40mΩN沟道MOSFET,与一个28mΩSyncFET一起封装,型号为FDS6982S;输出电容参见输出电容值由下列公式确定:输入和输出滤波电容主要考虑的是流入电容的纹波电流;在这个实例中,纹波电流和电感交流电流是相同的,电感电流最大值限定在2.8A,纹波电流峰峰值为1.8A,有效值大约为O.6A约为峰峰值的1/3;采用表面安装钽电容,因为它的ESR只有电解电容的10%~20%;在环境温度+85;C=时,电容将降额30%使用;最佳的电容是来自AVX公司的,它的ESR非常低,因此可以适应很高的纹波电流,但这是很特殊的电容;在输出端可将下列两种电容并在一起;AVX:TPSEl07M01R0150 1OOμF20%,10V,150mΩ,O.894A有效值TPSE107M01R0125 100/μF20%,10V,125mΩ,0.980A有效值Nichicon:F750A107MD 100μF20%,10V,120mΩ,0.92A有效值输入滤波电容见这个电容要流过与功率开关相同的电流,电流波形是梯形的,从最初的lA很快上升到;它的工作条件比输出滤波电容恶劣得多;可把梯形电流看成两个波形的叠加来估计有效值:峰值1A的矩形波和峰值1.8A的三角波,产生大约1.1A的有效值;电容值由下式计算:电压越高,电容值越低;电容由两个1OOμF电容并联而成,它们是:AVX每个系统需两个:TPSl07M020R0085 1OOμF20%,20V,85mΩ,1.534A有效值TPSl07M020R0200 100μF20%,10V,200mΩ,1.0A有效值选择控制IC芯片U1期望的buck控制IC芯片的特性是:1.直接从输入电压即可启动的能力;2.逐周电流限制;3.图腾柱MOSFET驱动器;4.功率开关和同步整流器MOSFET之间延时的控制;市场上绝大部分同步buck控制器都是用于+5~+1.8V微处理器调整电源的如,+12V的V dd和+5V 的V in;也有很多IC芯片可以提供足够的功能,使用者可以根据应用来选择这些功能;在选择时,初选了两家加利福尼亚公司的产品,发现只有一种IC适合这种要求,就是Unitrode/TI的UC3580-3;电压误差放大器的内部基准是2.51±2.5%V;设定工作频率R7、R8和C8R8给定时电容C8充电,而R7给定时电容放电;首先,要确定变换器最大占空比;因为输出电压大约是最低输入电压的50%,所以选择最大占空比为60%;从数据手册得充电时间最大值是0.6/300kHz或2μs;参数表上定时电容值lOOpF略偏小不会耗散太多能量;这里采用这个值,因此R8的值是伏-秒限制器R4和C5这个IC芯片有前馈最大脉宽限制功能;当输入电压增加时,Buck变换器工作脉宽会减少;RC振荡器直接与输入电压相接,并且它的定时值与输入电压成反比;它的定时时间设成比工作脉宽长30%;如果伏.秒振荡器定时时间到了,而调整单元仍旧导通,则调整单元会被关断;C5也取lOOpF,因为它的定时和振荡器一样,所以R4大约是47kΩ;设定调整单元和同步整流器MOSFET之间的死区时间根据MOSFET功率开关节可以进行开通和关断延时的计算,但仍需要在最初调试时调整R6死区设定电阻的值;开始设成lOOns比较好,典型的MOSFET开通延时是60ns,100ns可以保证不会有短路电流;IC所产生的死区延时是不对称的;从数据手册的图表上看,100kΩ电阻产生开通延时大约为1lOns,关断延时为180ns;在最初调试阶段就要设法减少这些延时;延时使得二极管导通的时间太长,损耗就高,但还是工作在安全区;栅极驱动变压器的设计T1栅极驱动变压器是一个简单的1:1正激式变压器;对变压器没有特别的要求,因为它是小功率、交流耦合双向磁通的300kHz变压器;用10mm的铁氧体磁环就足够了,如TDK公司的K5TIO×2.5×5B sat是3300G,或Philips公司的266T125-3D3B sat是3800G;从磁性元件的设计可知,产生1000G0.1T或0.3B sat的匝数是栅极驱动变压器用两根相同导线约30AWG并绕;为了方便,变压器绕在一个四引脚“鸥翅型”gull wing表面安装骨架上;电流检测电阻R15和电压检测电阻分压器R11和R13芯片只提供了一个最小O.4V阈值的关断引脚;这里打算采用一个备用的过电流保护模式;为了尽可能减小电流检测电阻的尺寸,将采用电流反馈检测电路的一种变型;此处,0.35V是电压检测电阻分压器R14上的压降;那么R15为R15 =3A=Ω取20mΩ戴尔Dale电阻是WSL-2010-02-05;设定流过电压检测电阻分压器的电流约为1.0mA;这样R13和R14的总电阻是R sum ==ΩR14 为R14 =0;35V/ =350Ω取360Ω则R13 为R13 =Ω-360Ω=Ω取Ω,1%精度则R11 为R11 =/1mA =Ω取Ω,1%精度电压反馈环补偿见这是一个电压型正激式变换器;为了得到最好的瞬态响应,将采用双极点、双零点补偿法;确定控制到输出特性:输出滤波器极点由滤波电感和电容决定,且以-40dB/dec穿越OdB线;它的自然转折频率是输出滤波电容引起的零点ESR是两个150mΩ并联是功率电路直流绝对增益是计算误差放大器补偿极点和零点选择15kHz穿越频率能满足大部分的应用场合,这使得瞬态响应时间约为200μs;f xo=15kHz首先,假定最终闭合回路补偿网络以-20dB/dec下降,为获得15kHz穿越频率,放大器必须提高输入信号增益,即提高博德图中的增益曲线;G xo=20lgf xo/f fp-G DC=20lg15kHz/1959HzG xo=G2=+ dBA xo=A2= dB绝对增益这是中频段G2所需的增益,以获得期望的穿越频率;补偿零点处的增益是:=A1 =绝对增益为补偿两个滤波器极点,在滤波器极点频率的一半处放置两个零点:第一个补偿极点置于电容的ESR频率处4020Hz:第二个补偿极点用于抑制高频增益,以维持高频稳定性:现在可以开始计算误差放大器内部的元件值,见图19;最终所设计的电路见图20;。
正激式变换器(正激开关电源)的设计实例
正激式变换器(正激开关电源)的设计实例作为功率变压器的一个设计实例,下面我们将设计正激式变换器中的变压器。
显然,这种变压器也不是用于我们的buck变换器中。
现在,我们考虑设计要求:输入电压为直流48V(简便起见,不需要考虑进线电压的波动范围),输出电压为5V,功率100W,开关频率为250kHz,基本电路图如图所示。
容易得到,输出电流为100W/5V=20A。
这个电流值是比较大的,为了减少绕组电阻,副边的线圈匝数应该尽量取小。
这意味着取变比(原边匝数除以副边匝数)的时候,副边最少匝数取为1。
我们来看看变比为整数时会出现什么问题。
1 匝数比=1:1匝数比=1:1,即原边与副边的匝数相等。
当开关导通时,48V输入电压全部加在变压器的原边。
同样,副边也得到48V的电压(忽略漏感),并加于续流二极管两端。
实际上,具有低通态电压的肖特基功率二极管其最大阻断电压为45V左右。
48V的电路中,至少要采用电压为60V的器件,如果电压有过冲或者输入电压有波动,那么要求采用更高电压的器件。
二极管的反向阻断电压越高,其通态电压也越高,变换器的效率将会降低。
在低输出电压的变换器中,整流二极管的通态电压是一个常见的问题。
原因很明显:电感中的电流要么流过整流二极管,要么流过续流二极管,无论哪种情况,在二极管中总会产生一个大小为VfI的损耗。
二极管的损耗使变换器效率进一步下降。
这部分功率不在总功率V outI之中。
解决这个问题的唯一方法是采用同步整流器,但是其驱动非常复杂(同样的道理,当输出Vout降到3.3V,甚至更低时,必须使用同步整流器)。
不管怎么样,对于一个高效率的变换器而言,如果不采用同步整流器,1:1的变压器匝数变比不是一个很好的选择(对我们的例子而言)。
2 匝数比=2:1这时原边匝数是副边的2倍,所以加在原边的电压为48V,副边和二极管上的电压为24V,可以使用肖特基功率二极管。
正激式变换器占空比近似为DC=V out/Vsec=5V/24V=21%(忽略肖特基功率二极管的通态电压Vf)。
开关电源设计-高效率开关电源设计实例共57页
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
基于SG3525的大功率开关电源研发方案分享
基于SG3525的大功率开关电源研发方案分享
大功率电源在最近几年中,研发速度有了明显的加快和提升。
为了方便各位工程师在进行大功率电源新产品研发时的参考,我们今天将会为大家分享一种基于SG3525的大功率开关电源研发方案,大家一起来看看吧。
在这种基于SG3525的大功率电源设计方案中,电源模块采用半桥式功率逆变电路,其功率主电路如下图图1所示:
图1 功率主电路原理图
从图1所提供的大功率开关电源功率主电路原理图中,我们可以看到,在该电路系统中主要采用了三相交流电经EMI滤波器滤波方案,这种设计大大减少了交流电源输入的电磁干扰,同时还防止开关电源产生的谐波串扰到输入电源端。
再经过桥式整流电路、滤波电路变成直流电压加在P、N两点间。
P、N之间接入一个小容量、高耐压的无感电容,起到高频滤波的作用。
半桥式功率变换电路与全桥式功率变换电路类似,只是其中两个功率开关器件改由两个容量相等的电容C1和C2代替。
在实际的应用和调试过程中,为了能够进一步提高该电源系统中的电容容量以及耐压程度,该系统中的电容C1和C2往往采用由多个等值电容并联组成的电容组。
C1、C2的容量选值应尽可能大,以减小输出电压的纹波系数和低频振荡。
由于对体积和重量的限制,C1和C2的值不可能无限大,为使输出电压的纹波达到规定的要求,该电容值有一个计算公式,即:
在上述计算电容值的公式中,参数IL为输出负载电流,参数VL为输出负。
开关电源研发范例
开关电源研发范例引言开关电源是现代电子设备中常用的电源供应方式,它具有高效率、小体积、稳定性好等特点,被广泛应用于各种消费电子产品、通信设备、工业自动化等领域。
本文将介绍开关电源的基本原理以及研发过程中的范例。
开关电源的基本原理开关电源是通过控制开关器件的导通和断开来实现电源输出的。
它的工作原理主要包括以下几个部分:1.输入滤波电路:将输入电源的直流电压进行滤波,减小输入端的干扰;2.整流电路:将交流电源转换为直流电压,为后续的开关转换提供工作电压;3.开关转换器:根据控制信号对开关器件进行开关操作,将输入电压转换为需要的输出电压;4.输出滤波电路:对开关转换器输出的脉动进行滤波,得到稳定的直流电压;5.控制电路:根据需要对开关转换器进行调制和控制,如采用PWM调制控制,以使输出电压稳定。
开关电源研发范例为了更好地理解开关电源的研发过程,我们以设计一个5V输出电压的开关电源为例。
1. 需求分析首先,我们需要明确开发出的开关电源的输出电压为5V。
同时,考虑到应用的场景,需求还包括: - 输入电压范围:90V-264V AC - 输出电流范围:0-2A - 输出电压稳定性:±1%2. 选型设计在需求分析的基础上,我们开始选择和设计关键器件。
常见的关键器件包括开关管、变压器、电感、电容等。
开关管开关管是开关电源的核心组件之一,它的质量和性能会直接影响到开关电源的稳定性和效率。
我们可以选择一款质量可靠、性能稳定的开关管,如TI公司的LM32019。
变压器变压器主要用于电压的变换和隔离,我们需要根据输出电压和输出电流的要求选择合适的变压器。
市面上有很多可选的变压器供应商,如Mouser、Digi-key等。
电感和电容电感和电容是用来实现开关电源的滤波功能的。
我们需要选择合适的电感和电容来滤除输出电压上的脉动。
常用的电感和电容品牌有Murata、TDK、Vishay等。
3. 电路设计与仿真在选型设计完成后,我们需要进行电路设计和仿真,以验证电路的稳定性和性能是否满足需求。
开关电源设计(模板)毕业论文
网络高等教育本科生毕业论文(设计)题目:开关电源的设计学习中心:陕西新城奥鹏学习中心层次:专科起点本科专业:电气工程及其自动化年级:秋季学号: ************学生:王建军指导教师:**完成日期: 2014年 1月 20日内容摘要开关电源因其高效节能引起社会各方面的重视,现已成为通用开关电源、专用开关电源及特种开关电源优选集成电路。
多年来对开关电源的核心单元—控制电路实现集成化是开关电源的发展方向,因此开关电源研究有很大的研究价值。
本文通过节能型恒流开关电源的工作原理,根据方案设计技术参数,给出了整体电路设计的理论依据;然后根据设计要求提出了整体电路的实现架构,并且阐述了整体电路工作原理和子电路的性能要求。
介绍了输入整流与滤波、变压器、功率开关管、控制器、保护电路、电流电压反馈网络、输出整流续流与滤波、稳压恒流输出模块。
最后,应用Multisim仿真软件对子电路模块和整体电路进行功能仿真验证,仿真结果满足要求,进一步验证理论分析和设计的正确性,也是设计理论与实践相结合的一次有价值的尝试。
关键词:开关电源;整流;仿真目录内容摘要 (I)1 绪论 (1)1.1 课题的背景及意义 (1)1.2 国内外电源技术发展概况 (1)1.3 本课题要求及主要研究内容 (2)2 系统的整体方案分析选择 (4)2.1 组合式开关电源的结构 (4)2.2 组合式开关电源的原理分析 (5)2.2.1 斩波器电路 (5)2.2.2 推挽式变换器电路 (6)3电源主电路设计 (7)3.1 buck变换器 (7)3.1.1 buck工作原理 (7)3.1.2 buck变换器的参数计算 (8)3.2 推挽式变换器 (10)3.2.1 主从输出推挽拓扑的原理 (10)3.2.2 推挽式变换器存在的问题及解决方法 (12)3.2.3 功率变压器主要参数设计 (14)3.3输出整流滤波电路设计 (16)4 控制电路和保护电路的设计 (18)4.1控制电路方案比较选择 (18)4.2 控制电路设计 (22)4.2.1 buck控制电路设计 (22)4.2.2 推挽式控制电路设计 (26)4.2驱动电路设计 (29)4.3保护电路设计 (29)4.4缓冲电路设计 (31)4.5 自举电路设计 (32)5.系统的建模与仿真 (35)5.1 MATLAB简介 (35)5.2系统的建模 (35)5.3系统的仿真及结果分析 (37)结论 (44)参考文献 (45)1 绪论1.1 课题的背景及意义电源设备广泛应用于科学研究、经济建设、国防设施及日常生活等各个方面,是电子设备和机电设备的基础。
一款国产化开关电源的研制
一款国产化开关电源的研制摘要:文中针对开关电源提出的技术指标和产品元器件需要全部国产化的要求,根据技术指标要求提出产品的设计思路和方案,以及产品在调试过程中出现的技术问题给与其解决方案。
关键词:开关电源;有源钳位正激式拓扑结构;1.引言:随着世界格局的不断变化,科技竞争愈演愈烈,根据国际形势和市场调研情况并结合我公司发展的需要,我公司决定自主研发DC/DC变换器,实现了对电源模块的小体积、高效率、可靠性高的大功率电源的要求以及元器件的全部国产化要求,实现产品技术自主可控,满足国防事业的需求。
该产品的研制目标是全部选用国产元器件,满足立项单里规定的技术指标和性能要求,完成设计定型,同时满足产品的批量生产能力。
1.产品技术指标:1.输入电压:15V~40V;2.输出电压:27.72V~28.28V;3.输出电流;I O≤4.1A;4.电压调整度≤80mV;负载调整度≤100mV;5.输出电压纹波(常温):20MHz带宽,满载下≤120mV;6.效率(常温)≥85%;7.所有引脚与外壳隔离:DC500V电压,绝缘电阻≥100MΩ;8.环境条件:工作温度-55℃~+125℃;储存温度:-65℃~+150℃;9.封装形式:全密封金属外壳,平行缝焊封装;10.外形尺寸:长×宽×高≤76.8 mm×38.8 mm×10.5mm;1.设计方案:图1 原理图由于产品体积小,功率大,要保证产品在三温下可靠运行,必须降低产品功耗,提高产品的效率;为了达到此要求,该产品设计采用正激有源钳位变换器拓扑结构,初级开关管、钳位管实现零电压开通与关断(ZVS)降低开关损耗;次级选用二极管普通整流技术;选择综合考虑开关损耗和导通损耗兼顾开关管和整流管。
通过合理分区布局减少开关管和整流管开关损耗以及减少输入输出功率回路的损耗。
对主电路采取输出电感反馈供电的方式减少电路自身损耗,提高电源模块整体工作可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 目的希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教.2 设计步骤:2.1 绘线路图、PCB Layout.2.2 变压器计算.2.3 零件选用.2.4 设计验证.3 设计流程介绍(以DA-14B33为例):3.1 线路图、PCB Layout 请参考资识库中说明.3.2 变压器计算:变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33变压器做介绍.3.2.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 铁心饱合的磁通密度(Gauss)➢ Lp = 一次侧电感值(uH)➢ Ip =一次侧峰值电流(A) ➢ Np =一次侧(主线圈)圈数 ➢ Ae = 铁心截面积(cm 2)➢ B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。
3.2.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。
3.2.3 决定变压器线径及线数:当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。
3.2.4 决定Duty cycle (工作周期):由以下公式可决定Duty cycle ,Duty cycle 的设计一般以50%为基准,Duty cycle 若超过50%易导致振荡的发生。
xD Vin D x V Vo Np Ns D (min))1()(-+=➢ N S = 二次侧圈数➢ N P = 一次侧圈数➢ Vo = 输出电压➢ V D = 二极管顺向电压➢ Vin(min) = 滤波电容上的谷点电压➢ D = 工作周期(Duty cycle)3.2.5 决定Ip 值:I Iav Ip ∆+=21 ηxDx Vin Pout Iav (m in)= fP x Lp Vin I (min)=∆ ➢ Ip = 一次侧峰值电流➢ Iav = 一次侧平均电流➢ Pout = 输出瓦数➢ =η效率➢ =f PWM 震荡频率3.2.6 决定辅助电源的圈数:依据变压器的圈比关系,可决定辅助电源的圈数及电压。
3.2.7 决定MOSFET 及二次侧二极管的Stress(应力):依据变压器的圈比关系,可以初步计算出变压器的应力(Stress)是否符合选用零件的规格,计算时以输入电压264V(电容器上为380V)为基准。
3.2.8 其它:若输出电压为5V 以下,且必须使用TL431而非TL432时,须考虑多一组绕组提供Photo coupler 及TL431使用。
3.2.9 将所得资料代入Gauss x NpxAeLpxIp B 100(max )=公式中,如此可得出B(max),若B(max)值太高或太低则参数必须重新调整。
3.2.10 DA-14B33变压器计算:✧ 输出瓦数13.2W(3.3V/4A),Core = EI-28,可绕面积(槽宽)=10mm ,Margin Tape = 2.8mm(每边),剩余可绕面积=4.4mm.✧ 假设f T = 45 KHz ,Vin(min)=90V ,η=0.7,P .F.=0.5(cos θ),Lp=1600 Uh✧ 计算式:● 变压器材质及尺寸:✧ 由以上假设可知材质为PC-40,尺寸=EI-28,Ae=0.86cm 2,可绕面积(槽宽)=10mm ,因Margin Tape 使用2.8mm ,所以剩余可绕面积为4.4mm. ✧ 假设滤波电容使用47uF/400V ,Vin(min)暂定90V 。
● 决定变压器的线径及线数:A x x x x Vin Pout Iin 42.05.07.0902.13cos (m in)===θη ✧ 假设N P 使用0.32ψ的线电流密度=A x x 286.11024.014.342.0232.014.342.02==⎪⎭⎫ ⎝⎛ 可绕圈数=()圈線徑剩餘可繞面績57.1203.032.04.4=+= ✧ 假设Secondary 使用0.35ψ的线电流密度=A x x 07.440289.014.34235.014.342==⎪⎭⎫ ⎝⎛ ✧ 假设使用4P ,则电流密度=A 02.11407.44= 可绕圈数=()圈57.1103.035.04.4=+ ● 决定Duty cycle:✧ 假设Np=44T ,Ns=2T ,V D =0.5(使用schottky Diode)()()DVin D V Vo Np Ns D (min)1-+= ()()%2.489015.03.3442=⇒-+=D DD● 决定Ip 值:I Iav Ip ∆+=21 A x x xD x Vin Pout Iav 435.0482.07.0902.13(min)===η A Kx u f D x Lp Vin I 603.045482.0160090(min)===∆ A Ip 737.02603.0435.0=+=● 决定辅助电源的圈数:假设辅助电源=12V128.31=A N Ns 128.321=A N N A1=6.3圈假设使用0.23ψ的线可绕圈数=圈13.19)02.023.0(4.4=+ 若N A1=6Tx2P ,则辅助电源=11.4V● 决定MOSFET 及二次侧二极管的Stress(应力):MOSFET(Q1) =最高输入电压(380V)+()D V Vo Ns Np + =()5.03.3244380++ =463.6VDiode(D5)=输出电压(Vo)+Np Ns x 最高输入电压(380V) =3804423.3x + =20.57V Diode(D4)=)380()(2V x NpNs N A 最高輸入電壓輸出電壓+=3804446.6x +=41.4V ● 其它:因为输出为3.3V ,而TL431的Vref 值为2.5V ,若再加上photo coupler 上的压降约1.2V ,将使得输出电压无法推动Photo coupler 及TL431,所以必须另外增加一组线圈提供回授路径所需的电压。
假设N A2 = 4T 使用0.35ψ线,则可绕圈数=()T 58.1103.035.04.4=+,所以可将N A2定为4Tx2P 228.3A A V N Ns = V V V A A 6.78.34222=⇒= ● Gauss x x x Gauss x NpxAe LpxIp B 3.311610086.044737.01600)(100(max )=== ● 变压器的接线图:3.3 零件选用:零件位置(标注)请参考线路图: (DA-14B33 Schematic)3.3.1 FS1:由变压器计算得到Iin 值,以此Iin 值(0.42A)可知使用公司共享料2A/250V ,设计时亦须考虑Pin(max)时的Iin 是否会超过保险丝的额定值。
3.3.2 TR1(热敏电阻):0.32Φx1Px22T0.32Φx1Px22T0.35Φx2Px4T0.35Φx4Px2T0.23Φx2Px6T电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。
3.3.3VDR1(突波吸收器):当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。
3.3.4CY1,CY2(Y-Cap):Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路因为有FG所以使用Y2-Cap,Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。
3.3.5CX1(X-Cap)、RX1:X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC 测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但价格愈高),若X-Cap在0.22uf以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MΩ1/4W)。
3.3.6LF1(Common Choke):EMI防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI特性及温升,以同样尺寸的Common Choke而言,线圈数愈多(相对的线径愈细),EMI 防制效果愈好,但温升可能较高。
3.3.7BD1(整流二极管):将AC电源以全波整流的方式转换为DC,由变压器所计算出的Iin值,可知只要使用1A/600V的整流二极管,因为是全波整流所以耐压只要600V即可。
3.3.8C1(滤波电容):由C1的大小(电容值)可决定变压器计算中的Vin(min)值,电容量愈大,Vin(min)愈高但价格亦愈高,此部分可在电路中实际验证Vin(min)是否正确,若AC Input 范围在90V~132V (Vc1 电压最高约190V),可使用耐压200V的电容;若AC Input 范围在90V~264V(或180V~264V),因Vc1电压最高约380V,所以必须使用耐压400V的电容。