第七章 气体在液体中的溶解度

合集下载

复习资料化工原理下试卷答案2

复习资料化工原理下试卷答案2

第七章质量传递基础掌握一些基本概念:1、什么叫分子扩散?什么叫对流扩散?答:由于分子的无规则热运动而造成的物质传递现象称为分子扩散,简称为扩散。

对流扩散即湍流主体与相界面之间的分子扩散与涡流扩散两种传质作用的总称。

2、什么是菲克扩散定律?写出表达式3、简述双膜理论的基本论点?答:其基本论点如下:1)相互接触的气,液流体间存在着定态的相界面,界面两侧分别存在气膜和液膜,吸收质以分子扩散方式通过此两膜层。

2)在相界面处,气液两相处于平衡。

(3)膜内流体呈滞流流动,膜外流体呈湍流流动,全部组成变化集中在两个有效膜层内。

4、双膜理论是将整个相际传质过程简化为__________。

经由气、液两膜层的分子扩散过程5、掌握相组成的表示方法:试题某吸收塔的操作压强为110 KPa,温度为25 ℃,处理焦炉气1800 m3/h。

焦炉气中含苯156 kg/h,其他为惰性组分。

求焦炉气中苯的摩尔分数和物质的量之比(即摩尔比)。

第八章气体吸收一、填空题1、吸收因数S可表示为Mv/L,它是_平衡线斜率m_与_操作线斜率L/V_的比值。

2、用水吸收氨-空气混合气体中的氨,它是属于_气膜_控制的吸收过程,对于该过程来说,要提高吸收速率,则应该设法减小_气膜阻力_。

3、在吸收过程中,由于吸收质不断进入液相,所以混合气体量由塔底至塔顶逐渐减少。

在计算塔径时一般应以_塔底_的气量为依据。

4、吸收操作的依据是_各组分在同一种溶剂中溶解度的差异_,以达到分离气体混合物的目的。

混合气体中,能够溶解于溶剂中的组分称为_吸收质_或_溶质_。

5、若某气体在水中的亨利系数E值很大,说明该气体为_难溶_气体。

在吸收操作中_增加_压力和_降低_温度可提高气体的溶解度,有利于吸收。

6、用气相浓度△y为推动力的传质速率方程有两种,以传质分系数表达的速率方程为__ __N A =k y(y-y i)__,以传质总系数表达的速率方程为__N A =K y(y-y*)___。

九年级化学第七章:溶液;溶解度人教版知识精讲

九年级化学第七章:溶液;溶解度人教版知识精讲

九年级化学第七章:溶液;溶解度人教版【本讲教育信息】一. 教学内容:第七章(一)溶液1. 溶液溶质和溶剂的概念并能分辨溶质和溶剂。

2. 溶液的概念和基本特征。

3. 溶液在生活和生产中的应用。

(二)饱和溶液和不饱和溶液1. 饱和溶液和不饱和溶液的概念,并能区分浓溶液和稀溶液2. 饱和溶液和不饱和溶液在一定条件下的相互转化(三)溶解度1. 影响物质溶解性的因素2. 溶解度的概念和有关概念的计算二. 重点、难点:1. 溶液、饱和溶液、不饱和溶液的概念。

2. 溶解度的概念和有关概念的计算【教学过程】一. 溶液1. 概念:溶液是一种或几种物质分散到另一种物质里,形成均一的、稳定的混合物,叫溶液。

均一是均匀的意思,稳定意味静置后不会产生沉淀和分层的现象。

2. 在溶液里,能溶解其它物质的物质叫溶剂;被溶解的物质叫溶质。

例如,CuSO4溶液中,水是溶剂,CuSO4是溶质。

溶质可以是固体,也可以是液体或气体。

固体、气体溶于液体时,固体、气体是溶质,液体是溶剂。

两种液体相互溶解时,通常把量多的一种叫做溶剂,量少的一种叫做溶质。

当溶液中有水存在时,无论水的量有多少,习惯上把水看作溶剂。

通常不指明溶剂的溶液,一般是水溶液。

3. 注意事项⑴溶液一般是透明的,但透明不一定无色。

例如硫酸铜溶液是蓝色的。

溶液是由溶质和溶剂组成的。

溶液的质量等于溶质质量和溶剂质量之和。

但溶液体积不等于溶质体积和溶剂体积之和,这是受到分子间的间隔影响。

⑵物质在溶解的过程中发生了化学变化,在形成的溶液中,溶质是反应后的生成物。

例如,将锌与适量稀硫酸反应,锌逐渐溶解,但形成的溶液中溶质是硫酸锌,而不是锌。

也就是说,形成的溶液是硫酸锌的水溶液,而不是锌的硫酸溶液,。

又如,碳酸钙溶于稀盐酸,所得溶液中的溶质是氯化钙。

还有将蓝矾(胆矾)溶于水时,形成的溶液中溶质是硫酸铜,而不是胆矾。

二. 饱和溶液和不饱和溶液1. 概念:饱和溶液和不饱和溶液在一定温度下,在一定量溶剂里,不能再溶解某种溶质的溶液,叫做这种溶质的饱和溶液;还能继续溶解某种溶质的溶液,叫做这种溶质的不饱和溶液。

化学实验:气体的溶解度与溶解动力学

化学实验:气体的溶解度与溶解动力学

气体溶解度与压力、温度的关系
气体溶解度与压力 的关系:随着压力 的增加,气体溶解 度也增加。
气体溶解度与温度 的关系:随着温度 的升高,气体溶解 度降低。
压力对气体溶解度 的影响:压力越大 ,气体溶解度越高 。
温度对气体溶解度 的影响:温度越高 ,气体溶解度越低 。
溶解动力学
第二章
溶解动力学的定义
实验结果分析
实验数据记录:准确记录实验过程中的各项数据,包括气体溶解度、溶 解速率等。
数据处理:对实验数据进行整理、计算和分析,得出有意义的结果。
结果分析:根据实验结果,分析气体溶解度与溶解动力学之间的关系, 探究影响气体溶解度的因素。
结论总结:总结实验结果,得出结论,并与理论进行比较,验证理论的 正确性。
实验注意事项
第五章
安全注意事项
实验前必须穿戴好防护眼镜、 实验服等个人防护用品
实验室内严禁吸烟、饮食和带 入火种
实验中要保持室内通风良好, 防止中毒和爆炸事故发生
实验后要及时清理实验现场, 确保安全卫生
实验误差分析
气体纯度误差:气体不纯会 影响溶解度,导致实验结果 偏离真实值
温度误差:温度波动会影响 溶解度,导致实验结果不准 确
溶解动力学是研究物质在溶剂中的溶解速率和溶解过程的学科。 溶解动力学主要关注溶解过程中的速率控制步骤和机理。 溶解动力学对于理解物质溶解过程的本质和规律,以及优化溶解过程具有重要意义。 溶解动力学可以通过实验测定和理论计算等方法进行研究。
溶解速率的影响因素
温度:温度越高,溶解速率越快 压力:压力越大,溶解速率越快 搅拌:搅拌可以增加溶质与溶剂的接触面积,从而提高溶解速率 溶质与溶剂的相互作用:溶质与溶剂的相互作用也会影响溶解速率

气态污染物控制技术基础

气态污染物控制技术基础
所以,填料层高度的计算涉及物料衡算、传质速率与相 平衡三种关系式的应用。
四、化学吸收 为了增大对气态污染物的吸收率和吸收速
度,多采用化学吸收。 化学吸收是伴有显著化学反应的吸收过程,
被溶解的气体与吸收剂或原先溶于吸收剂中 的其他物质进行化学反应,也可以是两种同 时溶解进去的气体发生化学反应。
化学吸收机理远比物理吸收复杂,而且因 反应系统的情况不同而各有差异。
一、吸附剂 1、吸附剂的性质
硅胶和活性炭的内表面分别高达500和 1000m2/g
适合工业要求的吸附剂,必须具备以下条件:
(1)要具有巨大的内表面,
(2)对不同气体具有选择性的吸附作用。
一般地说,吸附剂对各种吸附组分的吸附能力,随吸附组 分沸点的升高而加大,在与吸附剂相接触的气体混合物中,首 先被吸附的是高沸点的组分。在多数情况下,被吸附组分的沸 点与不被吸附组分(即惰性组分)的沸点相差很大,因而惰性 组分的存在,基本上不影响吸附的进行。
U—喷淋密度,即单位时间内喷淋在单位 塔截面积上的液相体积。【重要概念】
3、界面浓度
气液界面上气相浓度和液相浓度难以用 取样分析法测定,常用作图法和解析法求算。
(1)作图法:稳定传质过程,气液界面两侧 气相传质速率和液相传质速率相等。(见 P19,图7-12)
(2)解析法:稀溶液服从亨利定律,可用解 析法求算。
气体吸收
吸收机理 气液平衡 物理吸收 化学吸收
第七章 气态污染物控制技术基础
第一节 吸收法净化气态污染物 第二节 吸附法净化气态污染物 第三节 催化法净化气态污染物
第一节 吸收法净化气态污染物
一、吸收机理
气体吸收是溶质从气相传 递到液相的相际间传质过程, 对于吸收机理以双膜理论模型 的应用最广。

化工原理 气液相平衡

化工原理 气液相平衡
6.2 气液相平衡
一、气体在液体中的溶解度
气液两相处于平衡状态时,溶质在液相中的含量。
pA
O2
CO2
SO2
由图可见,曲线愈平坦,
该组分的溶解度愈大;曲线
愈陡峭,溶解度愈小。
NH 3
cA
几种气体在水中的溶解度曲线图
当总压不太高(p<0.5MPa)时,
总压的变化不改变pA—CA之间的 关系。对于稀溶液,pA—CA符合 线性关系。
y2
x2
x2
y2 y2min
y1
x11 x1max
当吸收剂用量 L↓→x1↑→x1max=x1*=y1/m
x1
y1
L↑→y2↓→y2min=y2*=mx2
Hale Waihona Puke 3.计算过程的推动力y

y
x
x*
吸收 y y* x x*
推动力:y y y x x* x
y
y

x
x
解吸 y y* x x*
y y* y
推动力:
x x x
二、亨 利 (Henry)定 律
亨利定律:对稀溶液,溶解度曲线为一直线。
pA ExA
E——亨利系数
p
A
cA
/H
H——溶解度系数

y
A
mxA
m——相平衡常数
各参数之间的关系
p
A
cA
/
H= cM H
cA cM
cM H
xA
p
A
/
P总
E
P总
xA
E CM s
H MsH m E
P总
c
A
Hp A

气体的溶解度与压强的实验测定

气体的溶解度与压强的实验测定

气体的溶解度与压强的实验测定气体的溶解度指的是气体在溶剂中溶解的程度,是化学研究中一个重要的物理性质。

溶解度与气体的压强之间存在一定的关系,通过实验可以准确测定气体的溶解度与压强之间的依赖关系。

本文将介绍关于气体溶解度与压强的实验方法及实验结果的分析。

实验材料:1. 气体采样器:可用玻璃气体测量瓶代替;2. 溶液制备材料:溶液瓶、溶液瓶塞、胶头滴管、电子天平;3. 气体压力计:一般使用压力计或气管;4. 暖水器:用于加热溶液。

实验过程:1. 实验前准备:用溶液瓶装入适量的溶剂,并加上溶液瓶塞,将气体采样瓶插入溶液中,胶头滴管放入瓶子中。

2. 实验操作:在溶液中固定压力计,记录初始压强P1。

然后,按一定的时间间隔,将气体采样器中的气体放入溶液中,记录每次放气体后的压强P2,直到达到实验结束时的压强P3。

3. 实验结束后:取出气体采样器,用暖水器加热溶液使其温度恢复到实验前的温度,并记录最终的溶液温度T。

实验数据处理与分析:1. 计算压强变化量:ΔP = P3 - P1。

2. 计算溶液中溶解的气体量:n = ΔP / R(R为气体常数)。

3. 计算气体的溶解度:溶解度 = n / V(V为溶剂体积)。

4. 根据实验数据绘制溶解度与压强之间的曲线图。

5. 根据数据点的走势来分析溶解度与压强的关系,判断是否存在线性关系、指数关系或其他关系。

实验注意事项:1. 在实验过程中,保持溶液的温度稳定,避免温度变化对实验结果产生影响。

2. 确保气体采样器与溶液充分接触,使气体溶解度能够准确反映在溶液中的溶解程度。

3. 实验结束后,及时记录温度、压强和溶液体积等数据,并注意处理实验废物。

实验结果分析:根据实验数据绘制的溶解度与压强的曲线图显示,溶解度随着压强的增加而增加。

这说明溶解度与压强之间存在正相关关系。

进一步分析数据,可以发现溶解度与压强之间的关系不是线性的,而是近似于指数函数关系。

即溶解度随着压强的增加呈指数增长。

气体溶解度的含义-概述说明以及解释

气体溶解度的含义-概述说明以及解释

气体溶解度的含义-概述说明以及解释1.引言1.1 概述气体溶解度是指气体在液体或固体中溶解的程度,通常用单位体积的溶液中所含气体的量来表示。

气体溶解度是一个重要的物理化学现象,涉及到许多领域,包括化学工程、生物医学、环境科学等。

气体的溶解度与溶剂、溶质以及环境条件有关,是一个复杂的过程。

本文将从气体溶解度的定义、影响因素以及应用和重要性等方面进行详细介绍,以帮助读者更好地理解这一重要概念。

在接下来的章节中,我们将逐步展开这一主题,探讨气体溶解度在不同领域中的意义和影响。

1.2 文章结构文章结构部分的内容:文章结构包括引言、正文和结论三部分。

在引言部分,我们将概述气体溶解度的含义,介绍文章的结构和说明本文的目的。

在正文部分,我们将深入探讨气体溶解度的定义、影响气体溶解度的因素以及气体溶解度的应用和重要性。

最后,在结论部分,我们将对全文进行总结,阐述气体溶解度的意义,并展望未来可能的研究方向。

通过以上结构,读者可以全面了解气体溶解度的相关知识,为进一步深入研究提供基础。

1.3 目的本文旨在深入探讨气体溶解度的含义,通过对气体溶解度的定义、影响因素以及应用和重要性的分析,让读者更加全面地了解这一概念。

同时,通过本文的阐述,希望能够引起读者对气体溶解度的重视,认识到在许多领域中,包括化学、生物、环境等方面,气体溶解度都扮演着重要的角色。

最终,本文旨在启发读者对气体溶解度的意义有更深入的理解,增强对相关知识的学习和探究的兴趣。

2.正文2.1 气体溶解度的定义:气体溶解度是指单位压强条件下单位温度下溶液中溶解气体的数量。

一般来说,气体在液体中的溶解度随着压强的增加而增加,这符合亨利定律的描述。

亨利定律指出,在一定温度下,气体溶解度与气体的分压成正比关系。

气体溶解度的单位通常是摩尔溶质/升溶液。

当谈论气体溶解度时,常常提到溶解度的极限值,即在一定的条件下,气体在液体中的最大溶解度。

这个极限值对于许多工业和实验应用具有重要意义。

常用的气体溶解度计算公式

常用的气体溶解度计算公式

常用的气体溶解度计算公式气体溶解度是指气体在液体中溶解的程度,通常用单位体积的液体中溶解的气体的质量或体积来表示。

气体溶解度的计算对于许多领域都具有重要意义,比如在化工生产、环境保护、药物制备等方面都需要对气体溶解度进行准确的计算和预测。

在实际应用中,我们常用一些常用的气体溶解度计算公式来进行计算和预测。

一、亨利定律。

亨利定律是描述气体在液体中溶解度的一个基本规律。

亨利定律的数学表达式为:P = k·C。

其中,P表示气体在液体中的分压,k为亨利常数,C表示气体在液体中的浓度。

亨利定律适用于低溶解度的气体在液体中的溶解情况。

当液体中的溶解度较高时,亨利定律不再适用。

亨利定律可以用来计算气体在液体中的溶解度,也可以用来预测气体的溶解度随温度、压力的变化规律。

二、伦道尔定律。

伦道尔定律是描述气体在液体中溶解度与压力的关系的一个定律。

伦道尔定律的数学表达式为:C = k·P。

其中,C表示气体在液体中的浓度,k为伦道尔常数,P表示气体的分压。

伦道尔定律适用于气体在液体中的高溶解度情况。

当气体在液体中的溶解度较低时,伦道尔定律不再适用。

伦道尔定律可以用来计算气体在液体中的溶解度,也可以用来预测气体的溶解度随压力的变化规律。

三、亨利-伦道尔定律。

亨利-伦道尔定律是亨利定律和伦道尔定律的综合应用,描述了气体在液体中溶解度与温度、压力的关系。

亨利-伦道尔定律的数学表达式为:C = k·P·H(T)。

其中,C表示气体在液体中的浓度,k为亨利-伦道尔常数,P表示气体的分压,H(T)表示与温度有关的函数。

亨利-伦道尔定律适用于气体在液体中的各种溶解度情况,可以用来计算气体在液体中的溶解度,也可以用来预测气体的溶解度随温度、压力的变化规律。

四、温度和压力对气体溶解度的影响。

在实际应用中,气体在液体中的溶解度受到温度和压力的影响。

一般来说,随着温度的升高,气体在液体中的溶解度会减小;而随着压力的增大,气体在液体中的溶解度会增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解度常与它的气相分压成正比。
pi yi p kxi
(7-3)
式中,k是比例常数;对一定的溶质和溶剂,k仅与温度 有关,与组成xi无关。
能满足式(7-3)的溶解度值和分压值因系统而异,一 般的说,对许多常见系统的粗略规律是:分压不超过5bar或 10bar,溶解度不大于3%(摩尔分数)。
7.2 亨利定律及其热力学意义
关于溶解度的温度 效应,没有简单的通则 可循。
7.4 温度对气体溶解度的影响
7.4.2 溶解度温度效应和偏摩尔熵变之间的关系
如果知道一些关于溶解焓或溶解熵的信息,就可洞察 温度对溶解度的影响。
这里讨论比较简单的情况,即溶剂实际上不挥发以及 溶解度足够小,因而溶质的活度系数与摩尔分数无关的情 况。可以证明:
系数不变这一特征,构成了亨利定律的基本假设。
下标1代表溶剂; 下标2代表溶质。
7.2 亨利定律及其热力学意义
只要溶质的摩尔分数足够小,溶质的活度系数就几乎与 x2无关。
ln 2 通常可表示为(1-x2)的幂级数:
RT ln 2 A(1 x2 )2 B(1 x2 )3 (7-4)
现象: 亨利定律对某些系统即使在相当大的溶解度时仍有效, 而对于有些系统则在较小的溶解度时就不适用。
ln fiL p
T ,x
V mi RT
(7-5)
亨利常数的热力学定义:
Hi,溶剂
lim
xi 0
fiL xi
(在恒定的温度和压力下 ) (7-6)
将式(7-5)代入式(7-4),得:
ln Hi,溶剂 p
T
V mi RT
V mi
—溶质i在无限稀释
溶液中的偏摩尔体

(7-7)
7.3 压力对气体溶解度的影响
溶剂溶解度参数的减小而增长的趋势。
7.4 温度对气体溶解度的影响
7.4.3 溶解度温度效应和偏摩尔焓变之间的关系
ln 1
x2 T
p
H m2 R
H
L m2
H
G m2
R
分析方法和上节类似,这里只给出结论:
① 溶质和溶剂的内聚能密度差别越大,则混合焓越大,溶解 偏摩尔焓变为正值,溶解度随温度的升高而增加;
1
x2
f 纯L 2
f
G 2
expVmL2
1 2
RT
2
Φ12
f
L 纯
2
——虚拟的纯液体溶质的逸度;
1, 2 ——溶剂、溶质的溶解度参数;
Φ1 ——溶剂的体积分数。
7.5 气体溶解度的估算
7.5.3 由状态方程计算
基本条件是:状态方程必须适用于从零密度到液体密
度的溶质—溶剂混合物。
首先由状态方程计算出溶质在溶剂中的无限稀释逸度系
ln
f2 x2
ln H ( p1s ) 2,1
V m2 p RT
p1s
(7-9)
Krichevsky-Kasarnovsky方程。
7.3 压力对气体溶解度的影响
7.3.1 Krichevsky-Kasarnovsky方程
为说明Krichevsky-Kasarnovsky方程的应用和限制,来 研究Wiebe和Gaddy的N2在液氨中的高压溶解度数据。
当溶液的温度高于纯组分i的临界温度时, pis 的计算还
会遇到困难。在这种情况下,通常把纯组分i的饱和压力曲线 外推到高于临界温度的溶液温度。
如右图,虚拟液体的饱和 蒸汽压通常由饱和蒸汽压 对热力学温度倒数的半对 数图直线外推得到。
lg pis
虚拟流体 临界点
液体
1/T
7.1 气体的理想溶解度
由式(7-2)表示的理想溶解度有两个严重的缺陷:
这里只给出结果:
H p ( p1s )
s L,
2,1
12
V m2
p
n2
T ,V ,n1
p V T ,n1,n2 n2 0
A
RT 2
ln 2L
x2
p p1s ,T ,n2 0
需要可靠的稀薄混合物的状态方程。
7.4 温度对气体溶解度的影响
7.4.1 典型气体的亨利常数(bar)与温度的关系
7.5.4 定粒子理论计算气体的溶解度
如果总压不高,定标粒子理论给出:
Gmc
RT
6Y 1Y
2r2 r
18Y 2
1Y 2
r
1 2
2
ln 1
Y
(7-11)
式中, r a1 a2 2a1
Y a13N A
6Vm1
a1-溶质的硬球直径;a2-溶剂的硬球直径。
NA—阿伏伽德罗常数
7.5 气体溶解度的估算
因此更确切的说,溶质i的亨利定律应为:
fi i yi p Hi,溶剂 xi
H i ,—溶剂亨利常数,依赖于溶质i和溶剂的性质和温度,和组
成无关。
7.3 压力对气体溶解度的影响
7.3.1 Krichevsky-Kasarnovsky方程
压力效应在压力不大时可以忽略,但在高压下就不可忽
略。由热力学方程可以导出:
SmL2
R ln
x2
结论
7.4 温度对气体溶解度的影响
7.4.2 溶解度温度效应和偏摩尔熵变之间的关系
结论:
• 对溶解度很小的气体,偏摩尔熵变为正值,对溶解度很大 的气体,偏摩尔熵变为负值;
• 难溶气体的温度系数为正,溶解度随温度的升高而升高; • 易溶气体的温度系数为负。溶解度随温度的升高而下降; • 在溶解度不变时,气体溶解度温度系数的代数值,有随着
7.5.4 定粒子理论计算气体的溶解度
为了求 G mi ,先假定相互作用时没有熵的贡献;其次 假设某种描述溶质-溶剂分子间力的位能函数:
Gmi
32R
9Vm1
N
3
A 12 12
k
(7-12)
12和12—Lennard-Jones位能参数。
k—波尔兹曼常数
采用式(7-10)(7-11)(7-12)便可关联气体溶 解度数据。
① 如果A/RT=0, 则溶液是理想溶液,亨利定律在0~1全部浓 度范围内都适用。
② 如果A/RT比1小得多,则即使x2相当大,活度系数也没有 很大变化。
③ 如果A/RT很大,则即使x2不大,也会引起活度系数随组成 而显著的变化。
7.2 亨利定律及其热力学意义
式(7-3)中,亨利定律假设气相逸度等于分压,但这 个假设并不是必须的。第四章已经详细讨论过气相逸度的计 算,这个假设可以去除。
将由亨利定律求得的液相逸度与由通用方法求得的液相 逸度进行比较:
f
V i
fiL
pi yi p kxi
fi L i xi fiO
气相是理想的
fiV pi
f
L 2
kx2
H2,1
2x2
f2O
k
H2,1
2
f
O 2
又k与一x2无定关温,度故和活压度力系下数,标准态也逸必2 度须与f2xO2是无常关数。,正与是x活2无度关;
R
可以看出:如果溶液的偏摩尔熵变是正值,则溶解度随 温度的升高而增加,反之,就下降。
为了弄清这一熵变的意义,将它分成两部分:
Sm2
SmL2 SmG2
L
S m2
SmL2

S
L m
2是虚拟纯液体的熵)
右端第一项是纯气体的凝聚熵,一般是负值;
第二项是凝聚态溶质溶解的偏摩尔熵,假设理想混合:
L
S m2
H x * ( p1s )
2 2,1 2
KrichevskyIlinskaya方程
导出:
ln
f2 x2
ln H ( p1s ) 2,1
A RT
x12
1
V
m2
p RT
p1s
7.3 压力对气体溶解度的影响
7.3.3 状态方程计算Krichevsky-Ilinskaya方程的参数
如果实验数据不足,可利用状态方程计算KrichevskyIlinskaya方程的三个参数。
一是它与溶剂的性质无关,式(7-2)表明:在恒温和恒定 的分压下,气体在所有溶剂中具有相同的溶解度,实际并非 如此。
二是由式(7-2)预示:在恒定的分压下,气体的溶解度总 是随温度的升高而下降,这一预示通常是正确的但并非总是 正确的。
7.2 亨利定律及其热力学意义
亨利定律:在分压不大的情况下,气体在液相中的溶
解释:忽略式(7-4)中的高次项,只保留第一项时,系数A 是溶液非理想性的量度。如果A是正的,表明溶质和溶剂相 斥。如果A是负的,则A的绝对值可看作是溶质和溶剂形成 配位化合物倾向的量度。
7.2 亨利定律及其热力学意义
RT ln 2 A(1 x2 )2
A/RT的绝对值决定了亨利定律的适用范围。
第七章 气体在液体中的溶解度
7.1 气体的理想溶解度 7.2 亨利定律及其热力学意义 7.3 压力对气体溶解度的影响 7.4 温度对气体溶解度的影响 7.5 气体溶解度的估算
7.1 气体的理想溶解度
气体在液体中的溶解度由平衡方程确定。如果气相与液 相达到平衡,则任何组分i在各相的逸度必须相等:
fi气 fi液
(7-1)
要把上式转换成更实用的形式,最简单的方法是按拉乌 尔定律的形式进行重写。忽略所有的气相非理想性,忽略压 力对凝聚相的影响,忽略任何由溶质—溶剂相互作用引起的 非理想性,则平衡方程可大简化:
pi xi pis
(7-2)
由式(7-2)给出的溶解度xi,称为气体的理想溶解度。
7.1 气体的理想溶解度
ln 1
x2 T
p
H m2 R
H
L m2
相关文档
最新文档