模糊理论综述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊理论综述

引言

模糊理论(Fuzzy Logic)是在美国加州大学伯克利分校电气工程系的L.A.zadeh(扎德)教授于1965年创立的模糊集合理论的数学基础上发展起来的,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容.L.A.Zadeh教授在1965年发表了著名的论文,文中首次提出表达事物模糊性的重要概念:隶属函数,从而突破了19世纪末康托尔的经典集合理论,奠定模糊理论的基础。1974年英国的E.H.Mamdani成功地将模糊控制应用于锅炉和蒸汽机的控制,标志着模糊控制技术的诞生。随之几十年的发展,至今为止模糊理论已经非常成熟,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容。

模糊理论是以模糊集合为基础,其基本精神是接受模糊性现象存在的事实,而以处理概念模糊不确定的事物为其研究目标,并积极的将其严密的量化成计算机可以处理的讯息,不主张用繁杂的数学分析即模型来解决问题。

二、模糊理论的一般原理

由于客观世界广泛存在的非定量化的特点,如拔地而起的大树,人们可以估计它很重,但无法测准它实际重量。又如一群人,男性女性是可明确划分的,但是谁是“老年人”谁又算“中年人”;谁个子高,谁不高都只能凭一时印象去论说,而实际人们对这些事物本身的判断是带有模糊性的,也就是非定量化特征。因此事物的模糊性往往是人类推理,认识客观世界时存在的现象。虽然利用数学手段甚至精确到小数点后几位,实际仍然是近似的。特别是对某一个即将运行的系统进行分析,设计时,系统越复杂,它的精确化能力越难以提高。当复杂性和精确化需求达到一定阈值时,这二者必将出现不相容性,这就是著名的“系统不相容原理”。由于系统影响因素众多,甚至某些因素限于人们认识方法,水准,角度不同而认识不足,原希望繁荣兴旺,最后导致失败,这些都是客观存在的。这些事物的现象,正反映了我们认识它们时存在模糊性。所以一味追求精确,倒可能是模糊的,而适当模糊以达到一定的精确倒是科学的,这就是模糊理论的一般原理。

三、模糊理论的分支

它可分类为模糊数学、模糊系统,模糊信息,模糊决策,模糊逻辑与人工智能这五个分支,它们并不是完全独立的,它们之间有紧密的联系。例如,模糊控制就会用到模糊数学和模糊逻辑中的概念。从实际应用的观点来看,模糊理论的应用大部分集中在模糊系统上,尤其集中在模糊控制上。也有一些模糊专家系统应用于医疗诊断和决策支持。

模糊逻辑:模糊逻辑指模仿人脑的不确定性概念判断、推理思维方式,对于模型未知或不能确定的描述系统,以及强非线性,大滞后的控制对象,应用模糊集合和模糊规则进行推理,表达过渡性界限或定型知识经验,模拟人脑方式,实行模糊综合判断,推理解决常规方法难于对付的规则型模糊信息问题。模糊逻辑善于表达界限不清晰的定性知识与经验。它借助于隶属度函数概念,区分模糊集合,处理模糊关系,模拟人脑实施规则型推理,解决因“排中律”的逻辑破缺产生的种种不确定问题。模糊逻辑是处理部分真实概念的布尔逻辑扩展。经典逻辑坚持所有事物(陈述)都可以用二元项(0或1,黑或白,是或否)来表达,而模糊逻辑用真实度替代了布尔真值。这些陈述表示实际上接近于日常人们的问题和语意陈述,因为“真实”和结果在多数时候是部分(非二元)的和/或不精确的(不准确的,不清晰的,模糊的)。真实度经常混淆于概率,但是它们在概念上是不一样的;模糊真值表示在模糊定义的集合中的成员归属关系,而不是某事件或条件的可能度(likelihood)。要展示这种区别,考虑下列情节: Bob在有两个毗邻的屋子的房子中:厨房和餐厅。在很多情况下,Bob的状态是在事物“在厨房中”的集合内是完全明确的:他要么“在厨房中”要么“不在厨房中”。但

Bob站在门口的时候怎么办呢? 它可被认为是“部分的在厨房中”。量化这个部分陈述产生了一个模糊集合成员关系。比如,只有他的小脚趾在餐厅,我们可以说Bob是0.01“在厨房中”。只要Bob站在了门口,就没有事件(如抛硬币)能解决他完全的“在厨房中”或“不在厨房中”。模糊集合是基于集合的模糊定义而不是随机性。模糊逻辑允许在包含0和1的它们之间集合成员关系值,同于黑和白之间的灰色,在它的语言形式中,有不精确的概念如"稍微"、"相当"和"非常"。

2、模糊信息:模糊信息是指由模糊现象所获得的不精确的、非定量的信息。模糊信息并非不可靠的信息。在客观的世界,存在大量的模糊现象,如“两个人相像”,“好看不好看”,其界线是模糊的,人的经验也是模糊的东西。

3、模糊数学:模糊数学作为一个新兴的数学分支,使过去那些与数学毫不相关或关系不大的学科(如生物学、心理学、语言学、社会科学等)都有可能用定量化和数学化加以描述和处理,从而显示了强大的生命力和渗透力,使数学的应用范围大大扩展。模糊数学的研究内容主要有以下三个方面:第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系;第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断;第三,研究模糊数学的应用。模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。

4、模糊系统:输入、输出和状态变量定义在模糊集上的系统。模糊系统是确定性系统的一种推广(见系统、自动控制系统)。美国自动控制专家L.A.扎德于1965年提出模糊子集的概念。此后,模糊系统理论得到发展,并应用于模糊规划、模糊决策、模糊控制,以及人机对话系统、经济信息系统、医疗诊断系统、地震预测系统、天气预报系统等方面。在研究没有人参与的定量化的精确系统时有一系列行之有效的系统理论。但在人机系统、管理系统、经济系统、社会系统等与人的思维活动有某种联系的系统中,由于人脑的逻辑、推理、判断、决策并非完全精确,这种与人有关的系统就具有某种模糊性。随着电子数字计算机向智能机的方向发展,将出现越来越多的模糊系统。在通常的系统理论中,一个系统在某一时刻的状态和输入一经决定,下一时刻的状态和输出就明确地唯一决定,这种系统称为确定性系统,否则就称为非确定性系统。假定给出系统某一时刻的状态与输入,尽管不能唯一决定下一时刻的状态与输出,但能决定下一状态出现的概率分布,这种系统则称为随机系统,这是一类非确定性系统。如果不能决定下一状态出现的概率分布,但可以确定下一时刻所有可能状态的集合,这是另一类非确定性系统。如果把这种非确定性系统中可能状态的集合用模糊集合来表示,就成为模糊系统。

5、人工智能:人工智能,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语音识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的

相关文档
最新文档