高中数学排列组合与概率统计习题

合集下载

【高中数学】排列组合概率(排列组合)选择题A

【高中数学】排列组合概率(排列组合)选择题A

YOU WIN 教学帮你会,不留疑问助你赢。

用方法注解效率 用行动助推梦想 用效果诠释责任A1.函数f:|1,2,3|→|1,2,3|满足f(f(x))= f(x),则这样的函数个数共有 ( D )(A)1个 (B)4个 (C)8个 (D)10个2.过平行六面体ABCD-A 1B 1C 1D 1任意两条棱的中点作直线,其中与平面DBB 1D 1平行的直线共有 ( D )A.4条B.6条C.8条D.12条3.某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 ( D )A.16种B.36种C.42种D.60种4.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有(B)(A )36个 (B )24个(C )18个 (D )6个5 .在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有( C )种.(A )34A (B )34 (C )43 (D )34C6.5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为( B . )(A )480 种 (B )240种 (C )120种 (D )96种 7 . 某交通岗共有3人,从周一到周日的七天中,每天安排一人值班,每人至少值2天,其不同的排法共有( D )种.(A )5040 (B )1260 (C )210 (D )6308. 用数字0,1,2,3,4组成没有重复数字的比1000大的奇数共有(D )(A )36个 (B )48个 (C )66个 (D )72个9.现有1角、2角、5角、1元、2元、5元、10元、50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是( D )(A)1024种 (B)1023种 (C)1536种 (D)1535种10 .现有8个人排成一排照相,其中有甲、乙、丙三人不能相邻的排法有( B )种.(A )5536A A ⋅ (B )336688A A A ⋅- (C )3335A A ⋅ (D )4688A A -11. 高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( C ).(A )16种 (B )18种 (C )37种 (D )48种。

高中数学排列组合与概率统计习题

高中数学排列组合与概率统计习题

高中数学必修 排列 组合和概率练习题一、选择题(每小题5分,共60分)(1) 已知集合A={1,3,5,7,9,11},B={1,7,17}.试以集合A 和B 中各取一个数作为点的坐标,在同一直角坐标系中所确定的不同点的个数是(A) 32 (B) 33 (C) 34 (D) 36解 分别以{}1357911,,,,,和{}1711,,的元素为x 和y 坐标, 不同点的个数为1163P P 分别以{}1357911,,,,,和{}1711,,的元素为y 和x 坐标, 不同点的个数为1163P P不同点的个数总数是1111636336P P P P +=个() (2) 从1,2,3,…,9这九个数学中任取两个,其中一个作底数,另一个作真数,则可以得到不同的对数值的个数为(A) 64 (B) 56 (C) 53 55 (D) 51解 ①从1,2,3,…,9这九个数学中任取两个的数分别作底数和真数的“对数式”个数为292P ;②1不能为底数,以1为底数的“对数式”个数有8个,而应减去;③1为真数时,对数为0,以1为真数的“对数式”个数有8个 ,应减去7个; ④23log 4log 92==,,应减去2个所示求不同的对数值的个数为29287255()C ---=个(3) 四名男生三名女生排成一排,若三名女生中有两名站在一起,但三名女生不能全排在一起,则不同的排法数有(A )3600 (B )3200 (C )3080 (D )2880解 ①三名女生中有两名站在一起的站法种数是23P ;②将站在一起的二名女生看作1人和其他5人排列的排列种数是66P ,其中的三名女生排在一起的站法应减去。

站在一起的二名女生和另一女生看作1人和4名男生作全排列,排列数为55P ,站在一起的二名女生和另一女生可互换位置的排列,故三名女生排在一起的种数是1525P P 。

符合题设的排列数为:26153625665432254322454322880P P P P -=⨯⨯⨯⨯⨯-⨯⨯⨯⨯=⨯⨯⨯⨯=种()()()(4) 由100展开所得x 多项式中,系数为有理项的共有(A )50项 (B )17项 (C )16项 (D )15项解 1000100110011r 100r r 10010033100100100100=C )+C )++C (3)(2)++C (2)x --可见通项式为:1003100230010010010010023666100100100100)666r rr rrr rrr rr rr r CC xC xC x ---++----===()且当r=06121896,,,,,时,相应项的系数为有理数,这些项共有17个, 故系数为有理项的共有17个. (5) 设有甲、 乙两把不相同的锁,甲锁配有2把钥匙,乙锁配有2把钥匙,这4把钥匙和不能开这两把锁的2把钥匙混在一起,从中任取2把钥匙能打开2把锁的概率是(A ) 4/15 (B ) 2/5 (C ) 1/3 (D ) 2/3解 从6把钥匙中任取2把的组合数为26P ,若从中任取的2把钥匙能打开2把锁,则取出的必是甲锁的2把钥匙之一和乙锁的2把钥匙之一。

高中数学概率统计难题集

高中数学概率统计难题集

高中数学概率统计难题集
1. 排列组合
1. 某班有10个男生和8个女生,从中选择5位同学参加一次数学竞赛,其中必须至少有2名男生和3名女生参赛。

求参赛人员的组合数。

2. 概率计算
2. 在一副有52张牌的扑克牌中,从中随机抽出5张牌,求抽到四张皇后的概率。

3. 离散型随机变量
3. 一批零件的质量服从正态分布,均值为80,标准差为5。

从中随机抽取一个零件,求质量小于75的概率。

4. 连续型随机变量
4. 一家餐厅餐桌到达的时间符合指数分布,平均每10分钟有一桌。

求在20分钟内没有餐桌到达的概率。

5. 相关性分析
5. 一对骰子同时抛掷,求两个骰子的和为7的概率。

这些难题涵盖了高中数学概率统计的不同概念和技巧,希望能
够提供给学生们一些有趣而具有挑战性的练题。

尝试解答这些问题,不断提升自己的数学思维能力和解题技巧。

> 注意:以上问题解析仅供参考,具体解答可能与题目提供的
信息有关。

在实际解题过程中,请根据题目给出的条件和公式进行
思考和推导,以获得正确的答案。

以上就是一份高中数学概率统计难题集的文档,希望对你有所
帮助!。

排列组合概率1

排列组合概率1

1 2
B. 3
C.
1 3
) C.
D. 2
C. f ( x ) e x
D. f ( x) sin x
5.如图所示,程序框图输出的结果为( A.
9 10
B.
10 11
8 9
D.
7 8
(第 1 题)
(第 2 题) (第 5 题) (第 6 题)
2.根据如图所示的框图,对大于 2 的整数 N ,输出的数列的通项公式是 A. an 2n1 B. an 2n C. an 2(n 1) )
1 ,第二次执行循环体, 1 2
5 . A 【解析】试题分析:第一次执行循环体, i 2, n 1, S 2. B 【解析】 : 根据题意及程序框图, 可知:S 1 , i 1 1 ,a 2i, 循环, 2 a2 22 , S 22 , i 3; 循环, a2 23 , S 23 , i 4 ,循环 a3 23 , S 23 , i 4, ,综上,输出的 an 2n .答案为 B. 3. A【解析】 : s 0 ,n 2 ;
(第 3 题)
(第 4 题)
15-16 河北衡水中学高二数学
寒假作业(一)
组编:高二 A 部
审核: A.
姓名: B. C.
学号: D.
日期:
A.
10 243
B.
2 243
C.
1 243
D.
5 243
10.已知三个正态分布密度函数 i x 示,则( )
y 2 x
1 e 2 i
P B | A
( )
15-16 河北衡水中学高二数学
寒假作业(一)

高考数学排列组合与概率统计专题卷

高考数学排列组合与概率统计专题卷

高考数学排列组合与概率统计专题卷一、单选题1.某汽车的使用年数x与所支出的维修费用y的统计数据如表:根据上表可得y关于x的线性回归方程= x﹣0.69,若该汽车维修总费用超过10万元就不再维修,直接报废,据此模型预测该汽车最多可使用()A. 8年B. 9年C. 10年D. 11年2.在5×5的棋盘中,放入3颗黑子和2颗白子,它们均不在同一行且不在同一列,则不同的排列方法种数为( )A. 150B. 200C. 600D. 12003.(x2+2)()5的展开式的常数项是()A. ﹣3B. ﹣2C. 2D. 34.的展开式中的常数项为()A. 12B. -12C. 6D. -65.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A. B. C. D.6.若,则的值为( )A. 2B. 0C. -1D. -27.二项式(x2﹣)11的展开式中,系数最大的项为()A. 第五项B. 第六项C. 第七项D. 第六和第七项8.从4男2女共6名学生中选派2人参加某项爱心活动,则所选2人中至少有1名女生的概率为()A. B. C. D.9.将个正整数1、2、3、…、()任意排成n行n列的数表.对于某一个数表,计算各行和各列中的任意两个数a、b(a>b)的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”最大值为( )A. B. C. 2 D. 310.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A. 26,16,8B. 25,17,8C. 25,16,9D. 24,17,911.下列四个命题中,正确的有( )①两个变量间的相关系数r越小,说明两变量间的线性相关程度越低;②命题p:“,”的否定:“,”;③用相关指数来刻画回归效果,若越大,则说明模型的拟合效果越好;④若,,,则c<a<b.A. ①③④B. ①④C. ③④D. ②③12.利用计算机在区间上产生两个随机数和,则方程有实根的概率为()A. B. C. D.二、填空题13.在一场比赛中,某篮球队的11名队员共有9名队员上场比赛,其得分的茎叶图如图所示.从上述得分超过10分的队员中任取2名,则这2名队员的得分之和超过35分的概率为________.14.已知、是互斥事件,,,则________15.已知一组样本数据按从小到大的顺序排列为-1,0,4. ,这组数据的平均数与中位数均为5,则其方差为________.16.某中学采用系统抽样方法,从该校高三年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是42,则在第1小组1~16中随机抽到的数是________.17.我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为“阳爻”和“阴爻”,如图就是重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是________.18.如果把四个面都是直角三角形的四面体称为“三节棍体”,那么从长方体八个顶点中任取四个顶点,则这四个顶点是“三节棍体”的四个顶点的概率为________.19.若的展开式中含有非零常数项,则正整数的最小值为________.20.若,则的值为________.三、解答题21.在一次射击考试中,编号分别为A 1 , A 2 , A 3 , A 4的四名男生的成绩依次为6,8,8,9环,编号分别为B 1 , B 2 , B 3的三名女生的成绩依次为7,6,10环,从这七名学生中随机选出二人. (1)用学生的编号列出所有的可能结果;(2)求这2人射击的环数之和小于15的概率.22.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米.(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率; (2)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.23.某企业有甲、乙两条生产线生产同一种产品,为了检测两条生产线产品的质量情况,随机从两条生产线生产的大量产品中各抽取了40件产品作为样本,检测某一项质量指标值 ,得到如图所示的频率分布直方图,若 ,亦则该产品为示合格产品,若,则该产品为二等品,若,则该产品为一等品.(1)用样本估计总体的思想,从甲、乙两条生产线中各随机抽取一件产品,试估计这两件产品中恰好一件为二等品,一件为一等品的概率;(2)根据图1和图2,对两条生产线从样本的平均值和方差方面进行比较,哪一条生产线更好; (3)从甲生产线的样本中,满足质量指标值 在的产品中随机选出3件,记为指标值 在中的件数,求的分布列和数学期望•24.在某单位的食堂中,食堂每天以10元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂购进了80斤米粉,以 (斤)(其中 )表示米粉的需求量,(元)表示利润.X 1 2 3 4 Y 51 48 45 42(1)估计该天食堂利润不少于760元的概率;(2)在直方图的需求量分组中,以区间中间值作为该区间的需求量,以需求量落入该区间的频率作为需求量在该区间的概率,求的分布列和数学期望.25.在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:(参考公式:= ,= ﹣)参考数据:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.(1)求数学成绩y关于物理成绩x的线性回归方程= x+ (精确到0.1),若某位学生的物理成绩为80分,预测他的数学成绩;(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.答案一、单选题1. D2. D3.D4. A5. D6.C7. C8.B9. A 10. B 11. C 12. A二、填空题13.14. 15.16. 10 17. 18.19.5 20.三、解答题21.解:(1){A1,A2},{A1,A3},{A1,A4},{A1,B1},{A1,B2},{A1,B3},{A2,A3},{A2,A4},{A2,B1},{A2,B2},{A2,B3},{A3,A4},{A3,B1},{A3,B2},{A3,B3},{A4,B1},{A4,B2},{A4,B3},{B1,B2},{B1,B3},{B2,B3}(2)以上21个结果对应的射击环数之和依次为14,14,15,13,12,16,16,17,15,14,18,17,15,14,18,16,15,19,13,17,16.其中环数之和小于15的结果为{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,B2},{A3,B2},{B1,B2}共7个所以这2人射击的环数之和小于15的概率为22.(1)解:所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为= ;(2)解:先求从所种作物中随机选取一株作物的年收获量为Y的分布列∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)∴只需求出P(X=k)(k=1,2,3,4)即可记n k为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3由P(X=k)= 得P(X=1)= ,P(X=2)= ,P(X=3)= = ,P(X=4)= =∴所求的分布列为数学期望为E(Y)=51× +48× +45× +42× =4623.(1)解:由频率分布直方图可知,甲生产线中二等品的概率为,—等品的概率为,乙生产线中二等品的概率为,一等品的概率为,所以两件产品中一件为二等品,一件为一等品的概率为.(2)解:设两条生产线样本的平均值分别为,则,,由频率分布直方图可知,甲生产线的数据较为分散,乙生产线的数据较为集中,所以甲生产线的数据方差大于乙生产线的数据方差,所以乙生产线更好.(3)解:甲生产线样本质量指标值在的件数为,质量指标值在的件数为,由题意可知的取值为0,1,2,3;所以,,,.所以的分布列为:的数学期望. 24.(1)解:一斤米粉的售价是元.当时,. 当时,.故设利润不少于760元为事件,利润不少于760元时,即.解得,即.由直方图可知,当时,.(2)解:当时,;当时,;当时,;当时,.所以可能的取值为460,660,860,960.,,,.故的分布列为25.(1)解:根据表中数据计算= ×(90+85+74+68+63)=76,= ×(130+125+110+95+90)=110,=902+852+742+682+632=29394,=90×130+85×125+74×110+68×95+63×90=42595,= = = ≈1.5,= ﹣=110﹣1.5×76=﹣4;∴x、y的线性回归方程是=1.5x﹣4,当x=80时,=1.5×80﹣4=116,即某位同学的物理成绩为80分,预测他的数学成绩是116(2)解:抽取的五位学生中成绩高于100分的有3人,X表示选中的同学中高于100分的人数,可以取1,2,3,P(X=1)= = ,P(X=2)= = ,P(X=3)= = ;故X的分布列为:X的数学期望值为E(X)=1× +2× +3× =1.8。

(完整版)排列组合概率练习题(含答案)

(完整版)排列组合概率练习题(含答案)

排列与组合练习题1.如图,三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==,从中任取三个数,则至少有两个数位于同行或同列的概率是(A )37 (B )47 (C )114 (D )1314 答案:D解析:若取出3个数,任意两个不同行也不同列,则只有6种取法;而从9个数中任意取3个的方法是39C .所以39613114C -=. 2.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有(A )6种 (B )9种 (C )11种 (D )13种答案:B解析:设四人分别是甲、乙、丙、丁,他们写的卡片分别为,,,a b c d ,则甲有三种拿卡片的方法,甲可以拿,,b c d 之一.当甲拿b 卡片时,其余三人有三种拿法,分别为,,badc bcda bdac .类似地,当甲拿c 或d 时,其余三人各有三种拿法.故共有9种拿法.3.在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴上有3个点,将x 轴正半轴上这5个点和y 轴正半轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有(A )30个 (B )20个 (C )35个 (D )15个答案:A解析:设想x 轴上任意两个点和y 轴上任意两个点可以构成一个四边形,则这个四边形唯一的对角线交点,即在第一象限,适合题意.而这样的四边形共有302325=⋅C C 个,于是最多有30个交点.推广1:.在平面直角坐标系中,x 轴正半轴上有m 个点,y 轴正半轴上有n 个点,将x 轴正半轴上这m 个点和y 轴正半轴上这n 个点连成15条线段,这15条线段在第一象限内的交点最多有22m n C C ⋅个变式题:一个圆周上共有12个点,由这些点所连的弦最多有__个交点.答案:412C4.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是(A )15 (B )25 (C )35 (D ) 45答案:B111213212223313233a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭解析:由古典概型的概率公式得522155222233232222=+-=A A A A A A A P . 5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34答案:A解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=. 6.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则(|)P B A =A .18B .14C .25D .12答案:B 解析:2()5P A =,1()10P AB =,()1(|)()4P AB P B A P A ==. 7.甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为A .12 B .35 C .23 D .34 答案:D解析:由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获得冠军的概率11132224P =+⋅=.所以选D . 8.如图,用K 、A 1、A 2三类不同的元件连成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为KA 2A 1A .0.960B .0.864C .0.720D .0.576答案:B解析:系统正常工作概率为120.90.8(10.8)0.90.80.80.864C ⨯⨯⨯-+⨯⨯=,所以选B.9.甲乙两人一起去“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是(A )136 (B )19 (C )536 (D )16 答案:D解析:各自独立地从1到6号景点中任选4个进行游览有1111111166554433C C C C C C C C 种,且等可能,最后一小时他们同在一个景点有11111116554433C C C C C C C 种,则最后一小时他们同在一个景点的概率是11111116554433111111116655443316C C C C C C C p C C C C C C C C ==,故选D . 10.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n =( ) (A )415 (B )13 (C )25 (D )23答案:B解析:基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)23515n C ==⨯=从选取个,.其中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四边形的为(2,3)(2,5);(2,1)(2,3); m=3+2=5故51153m n ==. 11.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A .14B .13C .12D .23答案:C解析:显然ABE ∆面积为矩形ABCD 面积的一半,故选C .12.在204(3)x y +展开式中,系数为有理数的项共有 项.答案:6解析:二项式展开式的通项公式为20204412020(3)(3)(020)r r r r r r r r T C x y C x y r --+==≤≤要使系数为有理数,则r 必为4的倍数,所以r 可为0.、4、8、12、16、20共6种,故系数为有理数的项共有6项.13.集合{1,2,3,4,5,6,7,8,9,10}M =,从集合M 中取出4个元素构成集合P ,并且集合P 中任意两个元素,x y 满足||2x y -≥,则这样的集合P 的个数为____.答案:35解析:其实就是从1到10这十个自然数中取出不相邻的四个数,共有多少方法的问题.因此这样的集合P 共有4735C =个.14.在一个正六边形的六个区域栽种观赏植物,如右图所示,要求同一块中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,则有___种栽种方案.答案:732解析:共分三类:(1)A 、C 、E 三块种同一种植物;(2)A 、B 、C 三块种两种植物(三块中有两块种相同植物,而与另一块所种植物不同);(3)A 、B 、C 三块种三种不同的植物.将三类相加得732.15.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(I)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X 的期望()E X .解:(I )设A 表示事件“购买甲种保险”,B 表示购买乙种保险. ()A B A A B =并且A 与A B 是互斥事件,所以()()()0.50.30.8P A B P A P A B =+=+=答:该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8. (II )由(I )得任意1位车主两种保险都不购买的概率为()10.80.2p p A B ==-=. 又(3,0.2)XB ,所以()20E X =.所以X 的期望()20E X =.。

利用排列组合计算概率的练习题

利用排列组合计算概率的练习题

利用排列组合计算概率的练习题在数学中,排列组合是一种十分重要的概念,特别是在概率计算中。

通过掌握排列组合的知识和技巧,我们可以解决各种与概率有关的问题。

本文将通过一些练习题来展示如何利用排列组合计算概率。

练习题1:从10个不同的球中,随机取3个,计算取出的球至少有一个是红色的概率。

假设我们用R表示红色球,用B表示蓝色球,那么我们可以列出所有可能的组合:RBB, RBR, RRB, RRR, BBB, BBR, BRB, BRR共有8种可能的组合。

其中,有3种组合至少有一个红色球,它们是:RBB, RBR和RRR。

因此,取出的球至少有一个是红色的概率为3/8。

练习题2:一副扑克牌共有52张牌,从中随机取5张,计算取到的牌全为黑桃的概率。

在一副扑克牌中,有13张黑桃牌。

我们需要计算从13张黑桃牌中选取5张的可能性,以及从52张牌中选取5张的可能性。

首先,我们计算从13张黑桃牌中选取5张的可能性,即13选5。

这个可以通过排列组合公式来计算:13! / (5! * (13-5)!) = 1287。

接下来,我们计算从52张牌中选取5张的可能性,即52选5。

也可以使用排列组合公式来计算:52! / (5! * (52-5)!) = 2598960。

所以,取到的牌全为黑桃的概率为1287 / 2598960,约为0.000495。

练习题3:一个由0和1组成的4位数,以及一个由1和2组成的3位数,它们的百位、十位、个位各位上的数字都不相同,计算两个数相加等于300的概率。

我们需要计算满足条件的组合有多少种,以及总的组合有多少种。

首先,我们计算满足条件的组合数。

对于由0和1组成的4位数,百位不能为0,但可以为1,十位、个位不能为0或1,所以满足条件的组合数为1 * 2 * 1 * 1 = 2。

对于由1和2组成的3位数,百位和十位不能为1,所以满足条件的组合数为1 * 1 * 1 = 1。

因此,两个数相加等于300且满足条件的概率为2 / (2 * 1) = 1/2。

排列组合概率统计(答案)

排列组合概率统计(答案)

排列组合二项式定理概率统计(理科适用)1.某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为() A.85B.86 C.91 D.90解析:由题意,可分三类考虑:(1)男生甲入选,女生乙不入选:C13C24+C23C14+C33=31;(2)男生甲不入选,女生乙入选:C14C23+C24C13+C34=34;(3)男生甲入选,女生乙入选:C23+C14C13+C24=21,∴共有入选方法种数为31+34+21=86.答案:B2.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种解析:将标号为1,2的卡片放入1个信封,有C13=3种方法,将剩下的4张卡片放入剩下的2个信封中,有C22·C24=6种方法,共有C13C24·C22=3×6=18种.答案:B3.从5张100元,3张200元,2张300元的运动会门票中任选3张,则选取的3张中至少有2张价格相同的不同的选法共有()A.70种B.80种C.90种D.100种解析:基本事件的总数是C310,在三种价格的门票中各自选取1张的方法数是C15C13C12,故其对立事件“选取的3张中至少有2张价格相同”的不同的选法共有C310-C15C13C12=90种.答案:C4.2012年春节放假安排:农历除夕至正月初六放假,共7天.某单位安排7位员工值班,每人值班1天,每天安排1人.若甲不在除夕值班,乙不在正月初一值班,而且丙和甲在相邻的两天值班,则不同的安排方案共有()A.1 440种B.1 360种C.1 282种D.1 128种解析:采取对丙和甲进行捆绑的方法:如果不考虑“乙不在正月初一值班”,则安排方案有:A66·A22=1 440种,如果“乙在正月初一值班”,则安排方案有:C11·A14·A22·A44=192种,若“甲在除夕值班”,则“丙在初一值班”,则安排方案有:A55=120种.则不同的安排方案共有1 440-192-120=1 128(种).答案:D5.霓虹灯的一个部位由7个小灯泡并排组成,每个灯泡均可以亮出红色或黄色,现设计每次变换只闪亮其中的三个灯泡,且相邻的两个灯泡不同时亮,则一共可以呈现出不同的变换形式的种数为()A.20 B.30 C.50 D.80解析:按照三个灯泡同色、三个灯泡两红一黄、三个灯泡一红两黄将问题分为三类:第一类:三个灯泡同色时,可以呈现出不同的变换形式的种数为C35×2=20种;第二类:三个灯泡两红一黄时,可以呈现出不同的变换形式的种数为C35×C23=30种;第三类:三个灯泡一红两黄时,可以呈现出不同的变换形式的种数为C35×C23=30种.故呈现出满足条件的不同的变换形式的种数为20+30+30=80.答案:D二、填空题6.(2012·本溪模拟)5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1、2号中至少有1名新队员的排法有________种.(以数字作答)解析:①只有1名老队员的排法有C12·C23·A33=36种.②有2名老队员的排法有C22·C13·C12·A22=12种;所以共48种.答案:487.(2012·北京模拟)三个人坐在一排八个座位上,若每个人的两边都要有空位,则不同的坐法种数为________.解析:法一:根据题意,两端的座位要空着中间六个座位坐三个人,再空三个座位,这三个座位之间产生四个空,可以认为是坐后产生的空,故共有A34=24种.法二:让人占座位之间的空,因有五个座位,它们之间四个空,人去插空,共有A34=24种.答案:24三、解答题8.将4个相同的白球、5个相同的黑球、6个相同的红球放入4个不同盒子中的3个中,使得有1个空盒且其他盒子中球的颜色齐全的不同放法共有多少种?解:先选1空盒:C14,将4白、5黑、6红分别放入其余三个盒中,每盒1个,剩1个白球有3种放法,剩2个黑球有3+C23=6种放法,剩3个红球有3+1+A23=10种放法,由分步乘法原理,得C14×6×3×10=720种.9.某中学高三年级共有12个班级,在即将进行的月考中,拟安排12个班主任老师监考数学,每班1人,要求有且只有8个班级是自己的班主任老师监考,则不同的监考安排方案共有多少种?解:先从12个班主任中任意选出8个到自己的班级监考,有C812种安排方案,设余下的班主任为A、B、C、D,自己的班级分别为1、2、3、4,安排班主任A有三种方法,假定安排在2班监考,再安排班主任B有三种方法,假定安排在3班监考,再安排班主任C、D有一种方法,因此安排余下的4个班主任共有9种方法,所以安排方案共有C812·9=4 455种.10.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中:(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙二人至少有一人参加,有多少种选法?(4)医疗队中至少有一名内科医生和一名外科医生,有几种选法?解:(1)只需从其他18人中选3人即可,共有C318=816种;(2)只需从其他18人中选5人即可,共有C518=8 568种;(3)分两类:甲、乙中有一人参加;甲、乙都参加.共有C12C418+C318=6 936种;(4)法一:(直接法):至少一名内科一名外科的选法可分四类:一内四外;二内三外;三内二外;四内一外,所以共有C112C48+C212C38+C312C28+C412C18=14 656种.法二:(间接法):由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C520-(C58+C512)=14 656种.1.甲:A1、A2是互斥事件;乙:A1、A2是对立事件.那么()A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件 解析:由互斥、对立事件的含义知选B 答案:B2.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在[160,175]的概率为0.5,那么该同学的身高超过175 cm 的概率为( )A .0.2B .0.3C .0.7D .0.8解析:因为必然事件发生的概率是1,所以该同学的身高超过175 cm 的概率为1-0.2-0.5=0.3.答案:B3.(2012·皖南八校联考)某种饮料每箱装6听,其中有4听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是( )A.115B.35C.815D.1415解析: 记4听合格的饮料分别为A 1、A 2、A 3、A 4,2听不合格的饮料分别为B 1、B 2,则从中随机抽取2听有(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,A 4),(A 2,B 1),(A 2,B 2),(A 3,A 4),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2),共15种不同取法,而至少有一听不合格饮料有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2),共9种,故所求概率为P =915=35.答案:B4.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为( )A.16B.15C.13D.25解析:由题意可知,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为55+4+3+2+1=13.答案:C5.(2012·合肥模拟)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,A =30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a 、b ,则满足条件的三角形有两个解的概率是( )A.16B.13C.12D.34解析:要使△ABC 有两个解,需满足的条件是⎩⎪⎨⎪⎧a >b sin A ,b >a 因为A =30°,所以⎩⎪⎨⎪⎧b <2a ,b >a满足此条件的a ,b 的值有b =3,a =2;b =4,a =3;b =5,a =3;b =5,a =4;b =6,a =4;b =6,a =5,共6种情况,所以满足条件的三角形有两个解的概率是636=16.答案:A 二、填空题6.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为________.答案:357.甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为________.解析:P =1-0.2×0.25=0.95. 答案:0.95 三、解答题8.已知7件产品中有2件次品,现逐一不放回地进行检验,直到2件次品都能被确认为止.(1)求检验次数为3的概率; (2)求检验次数为5的概率.解:(1)设“在3次检验中,前2次检验中有1次检到次品,第3次检验到次品”为事件A ,则检验次数为3的概率为P (A )=C 12C 15C 27·1C 15=221.(2)记“在5次检验中,前4次检验中有1次检到次品,第5次检验到次品”为事件B ,记“在5次检验中,没有检到次品”为事件C ,则检验次数为5的概率为P =P (B )+P (C )=C 12C 35C 47·1C 13+C 55C 57=521.9.已知向量a =(x 、y ),b =(1,-2),从6张大小相同、分别标有号码1、2、3、4、5、6的卡片中,有放回地抽取两张,x 、y 分别表示第一次、第二次抽取的卡片上的号码.(1)求满足a·b =-1的概率; (2)求满足a·b >0的概率.解:(1)设(x ,y )表示一个基本事件,则两次抽取卡片的所有基本事件有(1,1)、(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(2,1)、(2,2)、…、(6,5)、(6,6),共36个.用A 表示事件“a·b =-1”,即x -2y =-1,则A 包含的基本事件有(1,1)、(3,2)、(5,3),共3个,P (A )=336=112.(2)a·b >0,即x -2y >0,在(1)中的36个基本事件中,满足x -2y >0的事件有(3,1)、(4,1)、(5,1)、(6,1)、(5,2)、(6,2),共6个,所以所求概率P =636=16.10.某次会议有6名代表参加,A 、B 两名代表来自甲单位,C 、D 两名代表来自乙单位,E 、F 两名代表来自丙单位,现随机选出两名代表发言,问:(1)代表A 被选中的概率是多少?(2)选出的两名代表“恰有1名来自乙单位或2名都来自丙单位”的概率是多少? 解:(1)从这6名代表中随机选出2名,共有15种不同的选法,分别为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ).其中代表A 被选中的选法有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),共5种,则代表A 被选中的概率为515=13.(2)法一:随机选出的2名代表“恰有1名来自乙单位或2名都来自丙单位”的结果有9种,分别是 (A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ).则“恰有1名来自乙单位或2名都来自丙单位”这一事件的概率为915=35.法二:随机选出的2名代表“恰有1名来自乙单位”的结果有8种,概率为815;随机选出的2名代表“都来自丙单位”的结果有1种,概率为115.则“恰有1名来自乙单位或2名都来自丙单位”这一事件的概率为815+115=35.1.下列4个表格中,可以作为离散型随机变量分布列的一个是( ) A.B.C.D.解析:利用离散型随机变量的分布列的性质检验即可. 答案:C2.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是( )A .ξ=4B .ξ=5C .ξ=6D .ξ≤5解析:由条件知“放回5个红球”事件对应的ξ为6. 答案:C3.离散型随机变量X 的概率分布规律为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P (12<X <52)的值为( )A.23B.34C.45D.56解析:由(11×2+12×3+13×4+14×5)×a =1.知45a =1 ∴a =54. 故P (12<X <52)=P (1)+P (2)=12×54+16×54=56.答案:D4.(2012·福州模拟)一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为( )A.1220B.2755C.27220D.2125解析:由题意取出的3个球必为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220.答案:C5.一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,下列概率等于(n -m )A 2mA 3n的是( ) A .P (ξ=3) B .P (ξ≥2) C .P (ξ≤3)D .P (ξ=2)解析:由超几何分布知P (ξ=2)=(n -m )A 2mA 3n 答案:D 二、填空题6.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=______. 解析:∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.答案:237.设随机变量X 只能取5、6、7、…、16这12个值,且取每个值的概率相同,则P (X >8)=________,P (6<X ≤14)=________.解析:P (X >8)=23,P (6<X ≤14)=23.答案:23 23三、解答题8.(2012·扬州模拟)口袋中有n (n ∈N *)个白球,3个红球,依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X .若P (X =2)=730,求:(1)n 的值; (2)X 的分布列.解:(1)由P (X =2)=730知C 13C 1n +3×C 1nC 1n +2=730, ∴90n =7(n +2)(n +3).∴n =7.(2)X =1,2,3,4 且P (X =1)=710,P (X =2)=730,P (X =3)=7120,P (X =4)=1120.∴X 的分布列为9.一项试验有两套方案,每套方案试验成功的概率都是23,试验不成功的概率都是13.甲随机地从两套方案中选取一套进行这项试验,共试验了3次,且每次试验相互独立.(1)求3次试验都选择了同一套方案且都试验成功的概率;(2)记3次试验中,都选择了第一套方案并试验成功的次数为X ,求X 的分布列. 解:(1)记事件“一次试验中,选择第i 套方案并试验成功”为A i ,i =1,2,则P (A i )=1C 12×23=13. 3次试验选择了同一套方案且都试验成功的概率 P =P (A 1·A 1·A 1+A 2·A 2·A 2)=⎝⎛⎭⎫133+⎝⎛⎭⎫133=227.(2)由题意知X 的可能取值为0,1,2,3,则X ~B (3,23), P (X =k )=C k 3⎝⎛⎭⎫133-k ⎝⎛⎭⎫23k,k =0,1,2,3. X 的分布列为10.在某射击比赛中,比赛规则如下:每位选手最多射击3次,射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i (i =1,2,3)次射击时击中目标得4-i 分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.(1)求甲恰好射击两次的概率;(2)设选手甲停止射击时的得分总数为ξ,求随机变量ξ的分布列.解:(1)记“选手甲第i 次击中目标的事件”为A i (i =1,2,3),则P (A i )=0.8,P (A i )=0.2, 依题意可知:A i 与A j (i ,j =1,2,3,i ≠j )相互独立, 所求的概率为P (A 1A 2)=P (A 1)P (A 2)=0.8×0.2=0.16. (2)ξ的可能取值为0,3,5,6.P (ξ=0)=0.2,P (ξ=3)=0.8×0.2=0.16, P (ξ=5)=0.82×0.2=0.128,P (ξ=6)=0.83=0.512. 所以ξ的分布列为:1.若随机变量X 的分布列如下表,则E (X )等于( )A.118B.19C.209D.920解析:由分布列的性质可得2x +3x +7x +2x +3x +x =1,∴x =118.∴E (X )=0×2x +1×3x+2×7x +3×2x +4×3x +5x =40x =209.答案:C2.(2012·潍坊模拟)设X 为随机变量,X ~B ⎝⎛⎭⎫n ,13,若随机变量X 的数学期望E (X )=2,则P (X =2)等于( )A.1316B.4243C.13243D.80243解析:∵X ~B ⎝⎛⎭⎫n ,13,∴E (X )=n3=2.∴n =6. ∴P (X =2)=C 26⎝⎛⎭⎫132⎝⎛⎭⎫234=80243. 答案:D3.已知随机变量X ~B (6,22),则P (-2≤X ≤5.5)=( )A.78B.18C.6364D.3132解析:依题意,P (-2≤X ≤5.5)=P (X =0,1,2,3,4,5)=1-P (X =6)=1-C 66×(22)6=78. 答案:A4.已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧.其中a ,b ,c ∈{-3,-2,-1,0,1,2,3},在这些抛物线中,若随机变量X =|a -b |的取值,则X 的数学期望E (X )=( )A.89B.35C.25D.13解析:对称轴在y 轴的左侧(a 与b 同号)的抛物线有2C 13C 13C 17=126条,X 的可能取值有0,1,2.P (X =0)=6×7126=13,P (X =1)=8×7126=49,P (X =2)=4×7126=29,E (X )=89.答案:A5.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,a 、b 、c ∈(0,1),且无其他得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为( )A.148B.124C.112D.16解析:依题意得3a +2b +0×c =1,∵a >0,b >0,∴3a +2b ≥26ab ,即26ab ≤1,∴ab ≤124.当且仅当3a =2b 即a =25,b =35时等式成立.答案:B 二、填空题6.某射手射击所得环数ξ的分布列如下:已知ξ的期望E (ξ)=8.9,则y 的值为________.解析:依题意得⎩⎪⎨⎪⎧x +0.1+0.3+y =1,7x +0.8+2.7+10y =8.9,即⎩⎪⎨⎪⎧x +y =0.6,7x +10y =5.4,由此解得y =0.4. 答案:0.47.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量X 表示选出的志愿者中女生的人数,则数学期望E (X )=________(结果用最简分数表示).解析:首先X ∈{0,1,2}.∵P (X =0)=C 25C 27=1021,P (X =1)=C 12C 15C 27=1021,P (X =2)=C 22C 27=121.∴E (X )=0×1021+1×1021+2×121=1221=47.答案:47三、解答题8.某品牌汽车的4S 店,对最近100位采用分期付款的购车者进行了统计,统计结果如下表所示:已知分3期付款的频率为0.2,且4S 店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元.用η表示经销一辆汽车的利润.(1)若以频率作为概率,求事件A :“购买该品牌汽车的3位顾客中,至多有1位采用分3期付款”的概率P (A );(2)求η的分布列及其数学期望E (η).解:(1)由题意可知“购买该品牌汽车的3位顾客中有1位采用分3期付款”的概率为0.2,所以P (A )=0.83+C 13×0.2×(1-0.2)2=0.896.(2)由a100=0.2得a =20, ∵40+20+a +10+b =100,∴b =10. 记分期付款的期数为ξ,依题意得: P (ξ=1)=40100=0.4,P (ξ=2)=20100=0.2,P (ξ=3)=20100=0.2,P (ξ=4)=10100=0.1,P (ξ=5)=10100=0.1.由题意知η的可能取值为:1,1.5,2(单位:万元). P (η=1)=P (ξ=1)=0.4,P (η=1.5)=P (ξ=2)+P (ξ=3)=0.4; P (η=2)=P (ξ=4)+P (ξ=5)=0.1+0.1=0.2. ∴η的分布列为:∴η的数学期望E (η)=1×0.4+1.5×0.4+2×0.2=1.4(万元).9.(2012·广州调研)某商店储存的50个灯泡中,甲厂生产的灯泡占60%,乙厂生产的灯泡占40%,甲厂生产的灯泡的一等品率是90%,乙厂生产的灯泡的一等品率是80%.(1)若从这50个灯泡中随机抽取出一个灯泡(每个灯泡被取出的机会均等),则它是甲厂生产的一等品的概率是多少?(2)若从这50个灯泡中随机抽取出两个灯泡(每个灯泡被取出的机会均等),这两个灯泡中是甲厂生产的一等品的个数记为ξ,求E (ξ)的值.解:(1)法一:设事件A 表示“甲厂生产的灯泡”,事件B 表示“灯泡为一等品”,依题意有P (A )=0.6,P (B |A )=0.9,根据条件概率计算公式得P (AB )=P (A )·P (B |A )=0.6×0.9=0.54.法二:该商店储存的50个灯泡中,甲厂生产的灯泡有50×60%=30个,乙厂生产的灯泡有50×40%=20个,其中是甲厂生产的一等品有30×90%=27个,故从这50个灯泡中随机抽取出一个灯泡,它是甲厂生产的一等品的概率为2750=0.54.(2)依题意,ξ的取值为0,1,2,P (ξ=0)=C 223C 250=2531 225,P (ξ=1)=C 127C 123C 250=6211 225,P (ξ=2)=C 227C 250=3511 225,∴ξ的分布列为∴E (ξ)=0×2531 225+1×6211 225+2×3511 225=1.08.10.(2012·冀州模拟)今天你低碳了吗?近来,国内网站流行一种名为“碳排放计算器”的软件,人们可以由此计算出自己每天的碳排放量.例如:家居用电的碳排放量(千克)=耗电度数×0.785,汽车的碳排放量(千克)=油耗公升数×0.785等.某班同学利用寒假在两个小区逐户进行了一次生活习惯是否符合低碳观念的调查.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”.这二族人数占各自小区总人数的比例P 数据如下:(1)如果甲、乙来自A 小区,丙、丁来自B 小区,求这4人中恰有2人是低碳族的概率; (2)A 小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A 小区中任选25人,记ξ表示25个人中低碳族人数,求E (ξ).解:(1)记这4人中恰好有2人是低碳族为事件A , P (A )=12×12×15×15+4×12×12×45×15+12×12×45×45=33100.(2)设A 小区有a 人,2周后非低碳族的概率P =a ×12×(1-15)2a =825,2周后低碳族的概率P =1-825=1725, 依题意ξ~B (25,1725),所以E (ξ)=25×1725=17.1.二项式6)12(xx -的展开式中的常数项是( ) A .20 B .-20 C .160D .-160解析:二项式(2x -1x )6的展开式的通项是T r +1=C r 6·(2x )6-r ·⎝⎛⎭⎫-1x r =C r 6·26-r ·(-1)r ·x 6-2r .令6-2r =0,得r =3,因此二项式(2x -1x)6的展开式中的常数项是C 36·26-3·(-1)3=-160. 答案:D 2.若二项式nxx )2(2+的展开式中所有项的系数之和为243,则展开式中x -4的系数是( )A .80B .40C .20D .10解析:令x =1,则3n =243,解得n =5.二项展开式的通项公式是T r +1=C r 5x5-r ·2r ·x -2r=2r ·C r 5·x 5-3r ,由5-3r =-4,得r =3.故展开式中x -4的系数是23C 35=80.答案:A3.(1-x )8展开式中不含x 4项的系数的和为( ) A .-1 B .0 C .1D .2解析:二项式(1-x )8各项系数和为(1-1)8=0,二项式(1-x )8展开式的通项公式为(-1)r ·C r 8·2rx ,当r =8时,可得x 4项的系数为(-1)8·C 88=1,由此可得二项式(1-x )8展开式中不含x 4项的系数的和为0-1=-1.答案:A4.若nxx )2(+的展开式中的第5项为常数,则n =( ) A .8 B .10 C .12D .15解析:∵T 4+1=C 4n (x )n -4⎝⎛⎭⎫2x 4=C 4n 24122n x -为常数,∴n -122=0,n =12. 答案:C5.若(x +y )9按x 的降幂排列的展开式中,第二项不大于第三项,且x +y =1,xy <0,则x 的取值范围是( )A .(-∞,15)B .[45,+∞)C .(-∞,-45]D .(1,+∞)解析:二项式(x +y )9的展开式的通项是T r +1=C r 9·x 9-r ·y r 依题意有 ⎩⎪⎨⎪⎧C 19·x 9-1·y ≤C 29·x 9-2·y 2,x +y =1,xy <0.由此得⎩⎪⎨⎪⎧x 8·(1-x )-4x 7·(1-x )2≤0x (1-x )<0,由此解得x >1,即x 的取值范围是(1,+∞). 答案:D 二、填空题6.设二项式6)(xa x -(a >0)的展开式中x 3的系数为A ,常数项为B .若B =4A ,则a 的值是________.解析:对于T r +1=C r 6x 6-r 12ra x ⎛⎫- ⎪ ⎪⎝⎭=C r 6(-a )r 362rx -,B =C 46(-a )4,A =C 26(-a )2.∵B =4A ,a >0,∴a =2. 答案:27.(1+x )3(1+1x )3的展开式中1x的系数是________.解析:利用二项式定理得(1+x )3⎝⎛⎭⎫1+1x 3的展开式的各项为C r 3x r ·C n 3x -n =C r 3C n 3x r -n,令r -n =-1,故可得展开式中含1x 项的是C 03·C 13x +C 13·C 23x +C 23·C 33x =15x,即(1+x )3⎝⎛⎭⎫1+1x 3的展开式中1x 的系数是15. 答案:15。

专题二:排列组合与概率统计

专题二:排列组合与概率统计
(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;
(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.
33、某商场经销某商品,根据以往资料统计,顾客采用的付款期数 的分布列为
1234来自50.40.2
0.2
0.1
0.1
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元. 表示经销一件该商品的利润.
4.(09年)一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出人.
5、 展开式中,常数项为15,则n=A.3 B.4 C.5 D.6
8、(09年)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种
9、(09年)(1+2x2)(x-)8的展开式中常数项为。(用数字作答)
10、(10年) 的展开式中常数项为.(用数字作答).
11、(09年)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有_____种。
(Ⅰ)求事件 :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率 ;(Ⅱ)求 的分布列及期望 .
34、已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:
方案甲:逐个化验,直到能确定患病动物为止.

高二数学排列组合与概率题库

高二数学排列组合与概率题库

高二数学排列组合与概率题库在高二数学学习中,排列组合与概率是一个重要的知识点,它们在数学的实际应用中扮演着重要的角色。

本文将为大家提供一个高二数学排列组合与概率题库,帮助大家更好地理解和掌握这一知识点。

题库题目一:排列问题
1. 有5个人要排成一排,问有多少种不同的排法?
2. 一家六口人坐在一排电影院的座位上,问有多少种不同的座位安排方法?
3. 一位音乐老师要从6个学生中选出3人组成一个小合唱团,问一共有多少种不同的选择方法?
题库题目二:组合问题
1. 在字母A、B、C、D、E中,任选3个字母,问一共有多少种不同的组合方式?
2. 某班级有10个男生和8个女生,要从中选出5个人组成一个团队,其中至少要有2个女生,问一共有多少种不同的选择方式?
题库题目三:概率问题
1. 一副牌共有52张,从中随机抽取2张,问抽到两张红心的概率是多少?
2. 甲、乙、丙三个人按顺序抛掷一枚硬币,问乙抛到正面的概率是多少?
3. 一只箱子里有5个红球和3个蓝球,盲目摸出3个球,问其中至少有一个红球的概率是多少?
题库题目四:综合问题
1. 一位数学老师将一本题集分发给8名学生,其中有4个题目,每人得到其中的一个题目,问有多少种不同的分发方式?
2. 一支乐队有6名成员,其中有2名吉他手、2名鼓手和2名键盘手,问该乐队进行一次演出,乐手的排列方式有多少种?
通过以上题库的练习,相信大家对高二数学中的排列组合与概率问题有了更深入的了解。

希望大家能够灵活运用这些知识,解决实际问题。

同时也希望大家能够进一步扩充题库,增加自己的练习量,提高数学水平。

高中数学概率统计排列组合有答案

高中数学概率统计排列组合有答案

排列组合一、一、 选择题选择题1.从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有名女生的选法共有 ( A )A .36种B .30种C .42种D .60种 2.将5名大学生分配到3个乡镇去任职,每个乡镇至少一名,不同的分配方案有( B )种 .A 240 .B 150 .C 60 .D 1803.甲、乙、丙、丁、戌5人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为(人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为( C )A .72种B .54种C .36种D .24种 4.某班要从6名同学中选出4人参加校运动会的4×100m 接力比赛,其中甲、乙两名运动员必须入选,而且甲、乙两人中必须有一个人跑最后一棒,则不同的安排方法共有(入选,而且甲、乙两人中必须有一个人跑最后一棒,则不同的安排方法共有( B )A .24种B .72种C .144种D .360种 5.从0,2,4中取一个数字,从1,3,5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是(三位数的个数是( B )A .36 B .48 C .52 D .54 6.某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为(法种数为( C )A .12B .16C .24D .327.(7.(某小组有某小组有4人,负责从周一至周五的班级值日,每天只安排一人,每人至少一天,则安排方法共有C A .480种 B B..300种 C C..240种 D D..120 8.8.从从5男4女中选4位代表,其中至少有2位男生,且至少有1位女生,分别到四个不同的工厂调查,不同的分派方法有12. D A .100种 B B..400种 C C..480种 D D..2400种9、(江苏省启东中学高三综合测试三)有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位学要站在一起,则不同的站法有并且乙、丙两位学要站在一起,则不同的站法有A .240种B .192种C .96种D .48种 答案:B 10、将A、B、C、D四个球放入编号为1,2,3,4的三个盒子中,每个盒子中至少放一个球且A、B两个球不能放在同一盒子中,则不同的放法有且A、B两个球不能放在同一盒子中,则不同的放法有 ( )A.15;A.15; B.18;B.18; C.30;C.30; D.36;D.36; 11、在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( ) A 、56个B 、57个C 、58个D 、60个本题主要考查简单的排列及其变形. 解析:万位为3的共计A44=24个均满足;个均满足;万位为2,千位为3,4,5的除去23145外都满足,共3×3×A33A33-1=17个;个; 万位为4,千位为1,2,3的除去43521外都满足,共3×3×A33A33-1=17个;个;以上共计24+17+17=58个 答案:C 12、(北京市东城区2008年高三综合练习二)某电视台连续播放5个不同的广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,则不同的播放方式有广告不能连续播放,则不同的播放方式有( ) A .120种 B .48种C .36种D .18种答案:C 13、(北京市宣武区2008年高三综合练习一)编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是(的五个座位,其中有且只有两个的编号与座位号一致的坐法是( ) A 10种 B 20种 C 30种 D 60种 答案:B 14、(北京市宣武区2008年高三综合练习二)从1到10这是个数中,任意选取4个数,其中第二大的数是7的情况共有的情况共有 ( )A 18种 B 30种 C 45种 D 84种 答案:C 15、(福建省莆田一中2007~2008学年上学期期末考试卷)为迎接2008年北京奥运会,某校举行奥运知识竞赛,有6支代表队参赛,每队2名同学,12名参赛同学中有4人获奖,且这4人来自3人不同的代表队,则不同获奖情况种数共有(人不同的代表队,则不同获奖情况种数共有( ) A .412CB .1312121236C C C C CC .12121336C C C CD .221312121136A C C C C C答案:C 16、(甘肃省河西五市2008年高三第一次联考)某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排成节目单,如下表:节目编排成节目单,如下表:序号序号 1 2 3 4 5 6 节目节目如果A 、B 两个节目要相邻,且都不排在第3号位置,那么节目单上不同的排序方式有号位置,那么节目单上不同的排序方式有 ( )A 192种B 144种C 96种D 72种答案:B 17、(河南省濮阳市2008年高三摸底考试)设有甲、乙、丙三项任务,甲需要2人承担,乙、丙各需要1人承担,现在从10人中选派4人承担这项任务,不同的选派方法共有( ) A .1260种 B .2025种 C .2520种 D .5040种 答案:C 18、若x ∈A 则x 1∈A ,就称A 是伙伴关系集合,集合M={-1,0,31,21,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为(空子集中,具有伙伴关系的集合的个数为( ) A .15 B .16 C .28 D .25答案:A 具有伙伴关系的元素组有-1,1,21、2,31、3共四组,它们中任一组、二组、三组、四组均可组成非空伙伴关系集合,个数为C 14+ C 24+ C 34+ C 44=15, 选A .19、(吉林省吉林市2008届上期末)有5名学生站成一列,要求甲同学必须站在乙同学的后面(可以不相邻),则不同的站法有(,则不同的站法有( )A .120种B .60种C .48种D .150种 答案:B 20、若国际研究小组由来自3个国家的20人组成,其中A 国10人,B 国6人,C 国4人,按分层抽样法从中选10人组成联络小组,则不同的选法有(人组成联络小组,则不同的选法有( )种. )()))且甲车在乙车前开出,那么不同的调度方案有 种.种数是 . 种数是(2)能组成多少个无重复数字的四位偶数?)能组成多少个无重复数字的四位偶数?(3)能组成多少个无重复数字且被25个整除的四位数?个整除的四位数? (4)组成无重复数字的四位数中比4032大的数有多少个?大的数有多少个? 解:(1)1355300A A =(2)31125244156A A A A +=(3)11233421A A A +=(4)312154431112A A A A +++=8、()()34121x x +-展开式中x 的系数为__2_________。

排列组合和概率习题及答案

排列组合和概率习题及答案

C 2n k (1/2) 2n独立重复试验。

如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生K 次的概率为P n (K )=C n k P k (1-P) n-k(一夫妇生四孩子,问生2男2女的情况之几率;每次生男女概率相同,1/2,如抛硬币问题(抛四次,2次朝上),即C 42(1/2) 4=3/812、 有5个白色珠子和4个黑色珠子,从中任取3个,问其中至少有一个是黑色的概率。

1- C 53 /C 93 13、 自然数计划S 中所有满足n 100, 问满足n(n+1)(n+2) 被6整除的n 的取值概率?由于3个连续自然数必包括一个偶数及一个可被3整除的数,因此100% 14、 设0为正方形ABCD[ 坐标为(1,1),(1,-1),(-1,1),(-1,-1)]中的一点,求起落在x 2+y 2 1的概率。

面积法。

x 2+y 2=1为一个以原点为圆心,半径为1的圆,面积为л,正方形面积为4,ANSWER: л/415、 A>B (成功的概率)?(1) A 前半部分的成功概率为1%,B 前半部分成功概率为1.4%.(2) A 后半部分的成功概率为10%,B 后半部分成功概率为8.5%.C. P(A)=1%*10% P(B)=1.4%*8.5%16、 集合A 中有100个数,B 中有50个数,并且满足A 中元素于B 中元素关系a+b=10的有20对。

问任意分别从A 和B 中各抽签一个,抽到满足a+b=10的a,b 的概率。

C 201 /C 1001 C 50117、 有两组数,都是『1,2,3,4,5,6』,分别任意取出两个,其中一个比另一个大2的概率?2*4/ C 61 C 61由于注明分别,即分两次取。

18、 从0到9这10个数中任取一个数并且记下它的值,再取一个数也记下它的值。

当两个值的和为8时,出现5的概率是多少?2/9. 总共有{(8,0)(0,8)(1,7)(7,1)(6,2)(2,6)(5,3)(3,5)(4,4)}集合中不能有重复元素。

高三数学排列组合、概率与统计(理)

高三数学排列组合、概率与统计(理)

排列组合、概率与统计(理)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间120分钟第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1、下列两个变量之间不具有相关关系的是()A.正方体的棱长和体积B.角的弧度数和它的正弦值C.农田的水稻产量与施肥量D.单产为常数时,土地面积和总产量2、两个好朋友一起去一家公司应聘,公司人事主管通知他们面试时间的时候说:“我们公司要从面试的人中招3个人,你们同时被招聘进来的概率是”.据此推断面试的人共有()A.70个B.21个C.42个D.35个3、从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,则不同的种植方法共有()A.24种B.18种C.12种D.6种4、将一颗质地均匀的骰子先后抛掷3次,至少出现一次6点向上的概率为()A.B.C.D.5、已知(x2+1)(x-2)9=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+a11(x-1)11,则a1+a2+a3+…+a11=()A.a0B.2C.-2D.06、盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4只,那么等于()A.恰有1只是坏的概率B.恰有2只是坏的概率C.4只全是好的概率D.至多2只是坏的概率7、已知样本:10,8,6,10,13,8,10,12,11,7,8,9,11,9,12,9,10,11,12,12.则频率为0.35的范围是()A.5.5~7.5B.7.5~9.5C.9.5~11.5D.11.5~13.58、8次射击,命中3次,其中恰有2次连续命中的情形共有()A.15种B.30种C.48种D.60种9、甲、乙两台自动车床生产同种标准零件,表示甲生产1000件产品中的次品数;表示乙生产1000件产品中的次品数,经过一段时间的考察,的分布列如下:据此可判定()A.甲比乙质量好B.乙比甲质量好C.甲与乙质量相同D.无法判定10、某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本;另外,在丙地区中有20个特大型销售点,需从中抽7个调查其销售收入和售后服务等情况.则完成这两项调查采用的抽样方法依次是()A.分层抽样,系统抽样B.分层抽样,简单随机抽样C.系统抽样,分层抽样D.简单随机抽样,分层抽样11、袋内分别有红、白、黑球3、2、1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.至多有一个白球;恰有2个白球D.至少有一个白球,红、黑球各1个12、某班试用电子投票系统选举班干部侯选人,全班k名同学都有选举权和被选举权,他们的编号分别为1,2,…,k,规定:同意按“1”,不同意(含弃权)按“0”.令.其中i,j=1,2,…k则同时同意第1,2号同学当选的人数为()A.a11+a12+…+a1k+a21+a22+…+a2kB.a11+a21+…+a k1+a12+a22+…+a k2C.a11a12+a21a22+a k1a k2D.a11a21+a12a22+a1k a2k第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上。

高中数学必修二概率统计专题训练(经典必练题型)

高中数学必修二概率统计专题训练(经典必练题型)

高中数学必修二概率统计专题训练(经典必练题型)介绍本文档是针对高中数学必修二中的概率统计专题进行的训练,旨在帮助学生巩固和提高概率统计方面的知识和技能。

文档包含一系列经典必练题型,涵盖了该专题的重要内容。

题型一:排列组合1. 有5个不同的苹果和3个不同的橘子,从中任选3个水果,求共有几种选法。

2. 由字母A、B、C、D、E无重复组成的3位数共有多少种?题型二:事件与概率1. 一枚骰子被掷两次,求两次得到的点数之和为7的概率。

2. 从1至10的十个自然数中随机选择两个数,求两数之和为偶数的概率。

题型三:独立事件与复合事件1. 甲、乙、丙三个人独立地作一件事情成功的概率分别是1/2、1/3、1/4,求三人都成功的概率。

2. 一批零件共有100个,其中有5个次品。

从中连续取3个,求取出3个次品的概率。

题型四:条件概率1. 甲、乙两组各选一位同学参加足球比赛,甲组和乙组每组有5名同学,甲组中有两名女生和三名男生,乙组中有4名女生和一名男生。

从两组中各选出一位同学参加比赛,已知参赛者是女生,求该同学来自甲组的概率。

2. 甲、乙两个班级的数学成绩分别如下表所示,学生随机抽取一位,已知该学生是不及格的,求该学生来自乙班的概率。

题型五:概率分布1. 投掷一枚均匀硬币,正面向上为事件A,反面向上为事件B。

设事件A和事件B的概率分别为0.4和0.6,记为P(A)=0.4,P(B)=0.6。

求该硬币投掷一次出现事件A的概率。

2. 掷一个骰子,其点数的概率分布为:P(X=1)=1/6,P(X=2)=1/6,P(X=3)=1/6,P(X=4)=1/6,P(X=5)=1/6,P(X=6)=1/6。

求投掷一次出现点数为奇数的概率。

以上为高中数学必修二概率统计专题训练的经典必练题型,希望能够帮助学生加深对该专题的理解和应用。

专题09 排列组合与概率统计-2021年新高考数学名校地市必刷题(新高考专用)(解析版)

专题09 排列组合与概率统计-2021年新高考数学名校地市必刷题(新高考专用)(解析版)

2021年新高考数学名校地市必刷题(新高考专用)专题09 排列组合与概率统计姓名:__________________ 班级:______________ 得分:_________________1.(2019•重庆模拟)某班组织由甲,乙,丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为()A.B.C.D.【解答】解:设事件A={学生甲不是第一个出场,学生乙不是最后一个出场},事件B={学生丙第一个出场},所以P(AB)==P(A)==,所以P(B|A)===.故选:A.【知识点】条件概率与独立事件2.(2019•东莞市二模)欧拉三角形定义如下:△ABC的三个欧拉点(顶点与垂心连线的中点)构成的三角形称为△ABC的欧拉三角形.已知△ABC中,AB=AC=3,BC=2,△ABC的垂心为P,AP,BP,CP 的中点分别为A1,B1,C1,△A1B1C1即为△ABC的欧拉三角形,往△ABC中随机投掷一点,该点落在△P A1B1或△PB1C1内的概率为()A.B.C.D.【解答】解:依题意,在△ABC中,BC边上的高AD==2,所以△ABC的面积为S△ABC==2.△A1B1C1∽△ABC,且相似比为,所以△A1B1C1的面积为==.以D为坐标原点,BC所在直线为x轴,DA所在直线为y轴建立坐标系,设p(0,b),因为A(0,2),B(﹣1,0),C(1,0),所以=(1,﹣2),=(1,b),所以=1﹣2=0,所以b=,所以三角形BPC的面积为S△BPC==,所以三角形APC的面积为S△APC===,所以===,所以+=(1﹣)==.所以该点落在△P A1B1或△PB1C1内的概率为P(A)==.故选:D.【知识点】几何概型3.(2020•株洲一模)梅赛德斯﹣奔驰(Mercedes﹣Benz)创立于1900年,是世界上最成功的高档汽车品牌之一,其经典的“三叉星”商标象征着陆上、水上和空中的机械化.已知该商标由1个圆形和6个全等的三角形组成(如图),点O为圆心,∠OAB=15°,若在圆内任取一点,则此点取自阴影部分的概率为()A.B.C.D.【解答】解:由已知可得∠AOB=60°,则∠ABO=105°.又=,=.不妨设OA=4,则由正弦定理可得,则,所以阴影部分的面积为,圆O的面积为S=16π,则在圆内任取一点,则此点取自阴影部分的概率为.故选:D.【知识点】几何概型4.(2020•淮北一模)淮北市第一次模拟考试理科共考语文、数学、英语、物理、化学、生物六科,安排在某两日的四个半天考完,每个半天考一科或两科.若语文、数学、物理三科中任何两科不能排在同一个半天,则此次考试不同安排方案的种数有()(同一半天如果有两科考试不计顺序)A.648B.1728C.864D.324【解答】解:先对六科进行分组,共有=27种,再把这四组分到四个半天共有=24种分法,由分步乘法计数原理得,此次考试不同安排方案的种数27×24=648,故选:A.【知识点】排列、组合及简单计数问题5.(2020•青羊区校级模拟)国际羽毛球比赛规则从2006年5月开始,正式决定实行21分的比赛规则和每球得分制,并且每次得分者发球,所有单项的每局获胜分至少是21分,最高不超过30分,即先到21分的获胜一方赢得该局比赛,如果双方比分为20:20时,获胜的一方需超过对方2分才算取胜,直至双方比分打成29:29时,那么先到第30分的一方获胜.在一局比赛中,甲发球赢球的概率为,甲接发球赢球的概率为,则在比分为20:20,且甲发球的情况下,甲以23:21赢下比赛的概率为()A.B.C.D.【解答】解:根据题意,两人后4局的比赛输赢情况只能为:①输赢赢赢,②赢输赢赢,故P=+=,故选:B.【知识点】相互独立事件和相互独立事件的概率乘法公式6.(2019•葫芦岛一模)一个样本容量为10的样本数据,它们组成一个公差为2的等差数列{a n},若a1,a3,a7成等比数列,则此样本的平均数和中位数分别是()A.12,13B.13,13C.13,12D.12,14【解答】解:依题意a32=a1a7,∴(a1+4)2=a1(a1+6×2),解得a1=4,所以此样本的平均数为=13,中位数为=13.故选:B.【知识点】众数、中位数、平均数7.(2019•辽宁一模)关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验,受其启发,我们也可以通过设计下面的实验来估计π的值:第一步,请n名学生,每个学生随机写下一个都小于1的正实数对(x,y);第二步,统计两数能与1构成钝角三角形边的数对(x,y)的个数m;第三步,估计π的值.若n=100,m=31,则估计π的值()A.B.C.D.【解答】解:由题意,100对都小于1的正实数对(x,y)满足,其表示图形的面积为1.两个数能与1构成钝角三角形的数对(x,y)满足x2+y2﹣1<0,且,x+y>1,则不等式组表示图形的面积为﹣.则:.解得.故选:B.【知识点】用样本的数字特征估计总体的数字特征8.(2019•合肥一模)某商场进行购物摸奖活动,规则是:在一个封闭的纸箱中装有标号分别为1,2,3,4,5的五个小球,每次摸奖需要同时取出两个球,每位顾客最多有两次摸奖机会,并规定:若第一次取出的两球号码连号,则中奖,摸奖结束;若第一次未中奖,则将这两个小球放回后进行第二次摸球.若与第一次取出的两个小球号码相同,则为中奖.按照这样的规则摸奖,中奖的概率为()A.B.C.D.【解答】解:在一个封闭的纸箱中装有标号分别为1,2,3,4,5的五个小球,每次摸奖需要同时取出两个球,每位顾客最多有两次摸奖机会,并规定:若第一次取出的两球号码连号,则中奖,摸奖结束;若第一次未中奖,则将这两个小球放回后进行第二次摸球.若与第一次取出的两个小球号码相同,则为中奖.按照这样的规则摸奖,中奖的概率为:p=+=.故选:C.【知识点】列举法计算基本事件数及事件发生的概率9.(2019•河南模拟)某省示范高中将6名教师分配至3所农村学校支教,每所学校至少分配一名教师,其中甲必去A校,乙、丙两名教师不能分配在同一所学校的不同分配方法数为()A.36B.96C.114D.130【解答】解:甲去A校,再分配其他5个人,①如果都不去A校,则分配方法有A×2×2×2=16种;②如果5人分成1,1,3三组,则分配方法有(C﹣C)A=42种;③如果5人分成1,2,2三组,则分配方法有(﹣C)A=72种;由加法原理可得不同分配方法有16+42+72=130种.故选:D.【知识点】计数原理的应用10.(2019•延庆区一模)4名运动员参加一次乒乓球比赛,每2名运动员都赛1场并决出胜负.设第i位运动员共胜x i场,负y i场(i=1,2,3,4),则错误的结论是()A.x1+x2+x3+x4=y1+y2+y3+y4B.C.x1+x2+x3+x4为定值,与各场比赛的结果无关D.为定值,与各场比赛结果无关【解答】解:对于A,4人中每2人举行1场比赛,共举行6场比赛,所以胜6场负6场,即x1+x2+x3+x4=y1+y2+y3+y4=6,A正确;对于B,由题意知x i+y i=3,∴x i=3﹣y i,∴+++=+++=36﹣6(y1+y2+y3+y4)++++=36﹣36++++=+++,B正确;对于C,由题意知x1+x2+x3+x4=6为定值,与各场比赛结果无关,C正确;对于D,+++的值不是定值,它与各场比赛结果有关,D错误.故选:D.【知识点】众数、中位数、平均数二、填空题(共8小题)11.(2018•通州区三模)某学校开展一次“五•四”知识竞赛活动,共有三个问题,其中第1、2题满分都是15分,第3题满分是20分.每个问题或者得满分,或者得0分.活动结果显示,每个参赛选手至少答对一道题,有6名选手只答对其中一道题,有12名选手只答对其中两道题.答对第1题的人数与答对第2题的人数之和为26,答对第1的人数与答对第3题的人数之和为24,答对第2题的人数与答对第3题的人数之和为22.则参赛选手中三道题全答对的人数是;所有参赛选手的平均分是.【解答】解:设x1、x2、x3分别表示答对1题,2题,3题的人数,则有,解得x1=14,x2=12,x3=10;又只答对一题的人数为6,只答对两题的人数为12,设答对三题的人数为x,则全班人数为6+12+x;∴6×1+12×2+3x=36,解得x=2,∴三道题全答对的人数是2;所有参赛选手的平均分是=×(14×15+12×15+10×20)=29.5.故答案为:2,29.5.【知识点】众数、中位数、平均数12.(2018•丹东二模)已知某种商品的广告费支出x(单位:万元)与销售额y(单位:万元)之间有如下对应数据:根据上表可得回归方程=x+,其中=7,据此估计,当投入10万元广告费时,销售额为万元;【解答】解:由题意可得:,线性回归方程过样本中心点,则:,∴,线性回归方程为:,据此估计,当投入10万元广告费时,销售额为万元.故答案为:85.【知识点】线性回归方程13.(2019•潍坊模拟)在边长为2的正方形ABCD中有一个不规则的图形M,用随机模拟方法来估计不规则图形的面积.若在正方形ABCD中随机产生了10000个点,落在不规则图形M内的点数恰有2000个,则在这次模拟中,不规则图形M的面积的估计值为.【解答】解:由题意,∵在正方形ABCD中随机产生了10000个点,落在不规则图形M内的点数恰有2000个,∴概率P==,∵边长为2的正方形ABCD的面积为4,∴不规则图形M的面积的估计值为=.故答案为:【知识点】模拟方法估计概率14.(2019•烟台二模)己知随机变量ξ~N(3,σ2),且P(ξ<1)=0.1,则P(3<ξ<5)=【解答】解:P(3<ξ<5)=P(1<ξ<3)=P(ξ<3)﹣P(ξ<1)=0.5﹣0.1=0.4.故答案为:0.4【知识点】正态分布曲线的特点及曲线所表示的意义15.(2018•青岛一模)已知定义在R上的偶函数f(x)在[0,+∞)上单调递减,在[﹣4,4]上随机地取一个数x,则事件“不等式f(x﹣1)≥f(1)”发生的概率是.【解答】解:若f(x)在[0,+∞)上单调递减,则f(x)在(﹣∞,0)递增,由不等式f(x﹣1)≥f(1),|x﹣1|≤1,解得:0≤x≤2,故满足条件的概率p==,故答案为:.【知识点】几何概型、奇偶性与单调性的综合16.(2019•江门一模)在直角坐标系Oxy中,记表示的平面区域为Ω,在Ω中任取一点M(x0,y0),3x0﹣y0≥1的概率P=.【解答】解:由约束条件作出可行域如图,作出直线3x﹣y=1,区域Ω表示三角形OAB,满足3x0﹣y0≥1的点M(x0,y0)在三角形ABC内,联立,解得B(2,1),联立,解得C(,),∵|OB|=,|OC|=,∴.∴3x0﹣y0≥1的概率P=.故答案为:.【知识点】几何概型17.(2019•泰安模拟)(1++)(1+x2)5展开式中x2的系数为【解答】解:(1++)(1+x2)5=(1+x2)5+(1+x2)5+(1+x2)5,∴展开式中x2项的系数之和为:C+C=5+10=15.故答案为:15.【知识点】二项式定理18.(2020•奉贤区一模)若甲、乙两人从6门课程中各选修3门,则甲、乙所选修的课程中只有1门相同的选法种数为.【解答】解:根据题意,甲乙所选的课程有1门相同,有C61×C52×C32=180种情况.故答案为180【知识点】排列、组合及简单计数问题三、解答题(共6小题)19.(2019•江苏二模)平面上有2n(n≥3,n∈N*)个点,将每一个点染上红色或蓝色.从这2n个点中,任取3个点,记3个点颜色相同的所有不同取法总数为T.(1)若n=3,求T的最小值;(2)若n≥4,求证:.【解答】解:(1)当n=3时,共有6个点.若染红色的点的个数为0个或6个,则T=C=20;若染红色的点的个为1个或5个,则T=C=10,若染红色的点的个数为2个或4个,则T=C=4:若染红色的点的个数为3,则T=C+C=2.因此T的最小值为为2.(2)首先证明,任意n,k∈N*,n≥k,有C>C.证明:因为C﹣C=C>0所以C>C.,设2n个点中含有p,(p∈N,p≤2n)个染红色的点,①当p∈{0,1,2}时,T=C≥C==4×∵n≥4,∴2n﹣3>n,于是T>4×=4C>2C,②当p∈{2n﹣2,2n﹣1,2n}时,T=C≥C,同上可得T>2C,③当3≤p≤2n﹣3时,T=C:+C,3≤p≤2n﹣3,当3≤p≤2n﹣4时,f(p+1)﹣f(p)=C+C﹣C﹣C=C﹣C显然p≠2n﹣p﹣1.当p>2n﹣p﹣1,即n≤p≤2n﹣4时,f(p+1)>f(p),当p<2n﹣p﹣1,即3≤p≤n﹣1时,f(p+1)<f(p),即f(n)<f(n+1)<…<f(2n﹣3);f(3)>f(4)>…>f(n):因此f(p)≥f(n)=2C.即T≥2C.综上,当n≥4时,T≥2C.【知识点】排列及排列数公式20.(2018•江苏二模)已知(1+x)2n+1=a0+a1x+a2x2+…+a2n+1x2n+1,n∈N*.记T n=(2k+1)a n﹣k.(1)求T2的值;(2)化简T n的表达式,并证明:对任意的n∈N*,T n都能被4n+2整除.【解答】解:由二项式定理,得a i=(i=0,1,2,…,2n+1);(1)T2=a2+3a1+5a0=+3+5=30;……(2分)(2)因为(n+1+k)=(n+1+k)•==(2n+1),……(4分)所以T n=(2k+1)a n﹣k=(2k+1)=(2k+1)=[2(n+1+k)﹣(2n+1)]=2(n+1+k)﹣(2n+1)=2(2n+1)﹣(2n+1)=2(2n+1)••(22n+)﹣(2n+1)••22n+1=(2n+1);……(8分)T n=(2n+1)=(2n+1)(+)=2(2n+1);因为∈N*,所以T n能被4n+2整除;……(10分)注意:只要得出T n=(2n+1),就给(8分),不必要看过程.【知识点】二项式定理21.(2019•邵阳三模)某娱乐节目参赛选手分初赛培训、复赛三个阶段选拔,将50位参选手的初赛成绩(总分150分)分成[90,100),[100,110),[110,120),[120,130),[130,140)5组进行统计,得到如图(四)所示的频率分布直方图.(1)根据频率分析直方图,估算这50个选手初赛成绩的平均分若节日组规定成绩大于或等于120分的选手可获得节目组组织的培训资格,120分以下(不包括120)的则被淘汰,求这50个人中获得培训资格的人数;(2)节目组从获得培训资格的人员中选拔部分人员进入复赛.为增加节目的娱乐性,节目组提供了以下两种进入复赛的方式(每位选手只能选择其中一种)第一种方式:利用分层抽样的方法抽取6名选手参加复赛;第二种方式:每人最多有5次答题机会,累计答对3题或答错3题终止答题,答对3题可参加复赛①已知甲的初赛成绩在[120,130)内,他答对每一个问题的概率为,并且互相之间没有影响甲要想参加复赛,选择那种方式更有利?②若甲选择第二种方式,求他在答题过程中答题个数X的分布列和数学期望.【解答】解:(1)平均成绩=(95×0.01+105×0.02+115×0.04+125×0.02+135×0.01)×10=115,所有获得培训资格的人数为(0.02+0.01)×10×50=15.(2)①由题图可知,成绩不低于120分的选手的人数分别为10人,5人,设“甲能参加培训”为事件A,若甲采用第一种方式,则用分层抽样的方法抽取6名人员,在第4组,第5组中分别抽取4人,2人,∴P(A)==,若选手选择第二组方式,则因为甲答对第一道题的概率为p=,∴所以甲答题3次且答对的概率为p3=.甲答题4次且恰有3次答对的概率为=,甲答题5次且恰有3次答对的概率为=,由此可得P(A)==,∵=,∴甲想参加复赛选择第二种方式更有利.②甲答对每一题的概率为p=,答题个数X的可能取值为3,4,5,且P(X=3)=p3+(1﹣p)3=,P(X=4)=+=,P(X=5)==,∴X的分布列为:∴X的数学期望E(X)=3×+4×=.【知识点】频率分布直方图、离散型随机变量的期望与方差22.(2019•河东区二模)某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一个阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别为、、,且各阶段通过与否相互独立.(1)求该选手在复赛阶段被淘汰的概率;(2)该选手在竞赛中回答问题的个数为ξ,求ξ的分布列与均值.【解答】解:(1)记“该选手通过初赛”为事件A,“该选手通过复赛”为事件B,“该选手通过决赛”为事件C,则P(A)=,P(B)=,P(C)=;…(2分)那么该选手在复赛阶段被淘汰的概率为P=P(A)=P(A)P()=;…(4分)(2)由题意知ξ可能取值为1,2,3;…(5分)计算P(ξ=1)=1﹣=,…(6分)P(ξ=2)=,…(7分)P(ξ=3)=+=;…(9分)所以ξ的分布列为:…(10分)数学期望为Eξ═1×+2×+3×=2.…(12分)【知识点】离散型随机变量的期望与方差、离散型随机变量及其分布列23.(2019•南开区二模)如图的茎叶图记录了甲、乙两代表队各10名同学在一次英语听力比赛中的成绩(单位:分),已知甲代表队数据的中位数为76,乙代表队数据的平均数是75.(1)求x,y的值;(2)若分别从甲、乙两队随机各抽取1名成绩不低于80分的学生,求抽到的学生中,甲队学生成绩不低于乙队学生成绩的概率;(3)判断甲、乙两队谁的成绩更稳定,并说明理由(方差较小者稳定).【解答】解:(1)因为甲代表队的中位数为76,其中已知高于76的有77,80,82,88,低于76的有71,71,65,64,所以x=6,因为乙代表队的平均数为75,其中超过75的差值为5,11,13,14,和为43,少于75的差值为3,5,7,7,19,和为41,所以y=3,(2)甲队中成绩不低于80的有80,82,88;乙队中成绩不低于80的有80,86,88,89,甲乙两队各随机抽取一名,种数为3×4=12,其中甲队学生成绩不低于乙队学生成绩的有80,80;82,80;88,80;88,86;88,88.种数为3+1+1=5,所以甲队学生成绩不低于乙队学生成绩的概率为p=,(3)因为甲的平均数为:=(64+65+71+71+76+76+77+80+82+88)=75,所以甲的方差S2甲=[(64﹣75)2+(65﹣75)2+2×(71﹣75)2+2×(76﹣75)2+(77﹣75)2+(80﹣75)2+(82﹣75)2+(88﹣75)2]=50.2,又乙的方差S2乙=[(56﹣75)2+2×(68﹣75)2+(70﹣75)2+(72﹣75)2+(73﹣75)2+(80﹣75)2+(86﹣75)2+(88﹣75)2+(89﹣75)2]=100.8,因为甲队的方差小于乙队的方差,所以甲队成绩较为稳定.【知识点】极差、方差与标准差、茎叶图24.(2019•厦门一模)某公司生产一种产品,从流水线上随机抽取100件产品,统计其质量指数并绘制频率分布直方图(如图1):产品的质量指数在[50,70)的为三等品,在[70,90)的为二等品,在[90,110]的为一等品,该产品的三、二、一等品的销售利润分别为每件1.5,3.5,5.5(单位:元).以这100件产品的质量指数位于各区间的频率代替产品的质量指数位于该区间的概率.(1)求每件产品的平均销售利润;(2)该公司为了解年营销费用x(单位:万元)对年销售量y(单位:万件)的影响,对近5年的年营销费用x i和年销售量y i(i=1,2,3,4,5)数据做了初步处理,得到的散点图(如图2)及一些统计量的值.表中u i=lnx i,v i=lny i,=u i,=v i根据散点图判断,y=a•x b可以作为年销售量y(万件)关于年营销费用x(万元)的回归方程.(i)建立y关于x的回归方程;(ⅱ)用所求的回归方程估计该公司应投入多少营销费,才能使得该产品一年的收益达到最大?(收益=销售利润﹣营销费用,取e4.159=64)参考公式:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为=,=﹣.【解答】解:(1)设每件产品的销售利润为ξ元,则ξ的所有可能的取值是1.5,3.5,5.5,由直方图可得,一,二,三等品的频率分别是:0.4,0.45,0.15,故P(ξ﹣1.5)=0.15,P(ξ﹣3.5)=0.45,P(ξ﹣5.5)=0.4,故随机变量ξ的分布列为:故E(ξ)=1.5×0.15+3.5×0.45+5.5×0.4=4,故每件产品的平均销售利润为4元;(2)(i)由y=a•x b得:lny=ln(a•x b)=lna+blnx,令u=lnx,v=lny,c=lna,则v=c+bu,由表中数据得:==0.25,则=﹣=﹣0.25×=4.159,故=4.159+0.25u,即ln=4.159+0.25lnx=ln(e4.159•),∵e4.159=64,故=64,故所求回归方程是:y=64;(ii)设年收益为z万元,则z=(Fξ)•y﹣x=256﹣x,设t=,f(t)=256t﹣t4,则f′(t)=256﹣4t4=4(64﹣t4),当t∈(0,4)时,f′(t)>0,f(t)在(0,4)递增,当t∈(4,+∞)时,f′(t)<0,f(t)在(4,+∞)递减,故t=4即x=256时,z的最大值是768,故该厂应投入256万元营销费,能使得该产品一年的收益达到最大值768万元.【知识点】线性回归方程、散点图、频率分布直方图。

排列组合与概率统计专项训练6—高中数学—精品答案解析—可编辑

排列组合与概率统计专项训练6—高中数学—精品答案解析—可编辑

排列组合与概率统计专项训练一、选择题(共16题)1. (2018-2019学年湖北省武汉市华中师大一附中高二(上)期末数学试卷(文科))某校为了解高三学生英语听力情况,抽查了甲、乙两班各十名学生的一次英语听力成绩,并将所得数据用茎叶图表示(如图所示),则以下判断正确的是()A .甲组数据的众数为28B .甲组数据的中位数是22C .乙组数据的最大值为30D .乙组数据的极差为162. (2016•陕西模拟)如图为2015年6月份北京空气质量指数AQI-PM2.5历史数据的折线图,以下结论不正确的是()指数数值与等级水平表:A .6月份空气质量为优的天数为8天B .6月份连续2天出现中度污染的概率为C .6月份北京空气质量指数AQI-PM2.5历史数据的众数为160D .北京6月4至7日这4天的空气质量逐渐变好3. (2014秋•邢台校级月考)用样本的频率分布来估计总体情况时,下列选项中正确的是()A .估计准确与否值与所分组数有关B .样本容量越大,估计结果越准确C .估计准确与否值域总体容量有关D .估计准确与否与样本容量无关不同的抽样调查,你认为抽样比较合理的是()A .在公园调查了1000名老年人的健康状况B .在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况5. (2016春•西安期中)为了检查一批光盘的质量,从中抽取了500张进行检测,则这个问题中的样本容量是()A .500张光盘B .500C .500张光盘的质量D .光盘的全体6. 某校高三年级共有30个班,学校心理咨询室为了解同学们的心里状况,将每个班编号,依次为1到30,现用系统抽样方法,抽取6个班进行调查,若抽到的编号之和为87,则抽到的最小编号为()A .2B .3C .4D .57. (2016•潍坊二模)要从编号为1~50的50名学生中用系统抽样方法抽出5人,所抽取的5名学生的编号可能是()A .5,10,15,20,25B .3,13,23,33,43C .1,2,3,4,5D .2,4,8,16,328. (2016春•福建校级期中)将参加夏令营的400名学生编号为:1,2,…,400.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为5.这400名学生分住在A、B、C三楼,从1到200在A楼,从201到300在B楼,从301到400在C楼,三个楼被抽中的人数依次为()A .26,12,12B .25,13,12C .25,12,13D .24,13,13某校从高中1200名学生中抽取50名学生进行问卷调查,如果采用系统抽样的方法,将这1200名学生从1开始进行编号,已知被抽取到的号码有15,则下列号码中被抽取到的还有()A .255B .125C .75D .3510. (2017年山东省潍坊市高考数学三模试卷(理科))一个总体中有600个个体,随机编号为001,002,…,600,利用系统抽样方法抽取容量为24的一个样本,总体分组后在第一组随机抽得的编号为006,则在编号为051~125之间抽得的编号为()A .056,080,104B .054,078,102C .054,079,104D .056,081,10611. (2019年湖北荆门市钟祥市高考数学一模试卷(理科))某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号, 001,002,……,699,700.从中抽取70个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()322118342978645407325242064438122343567735789056428442125331345786073625300732862345788907236896080432567808436789535577348994837522535578324577892345A .623B .328C .253D .00712. (2016•成都模拟)已知田径队有男运动员56人,女运动员42人,若按男女比例用分层抽样的方法,从全体运动员中抽出14人参加比赛,则抽到女运动员的人数为()A .2B .4C .613. (2018年北京市夏季普通高中会考数学试卷)某校高中三个年级共有学生1500人,其中高一年级有学生550人,高二年级有学生450人,为了解学生参加读书活动的情况,现采用分层抽样的方法从中抽取容量为300的样本进行调查,那么应抽取高三年级学生的人数为()A .90B .100C .110D .12014. (2017-2018学年甘肃省武威十八中高二(上)期末数学试卷(文科))某中学高一年级560人,高二年级540人,高三年级520人,用分层抽样的方法抽取容量为81的样本,则在高一、高二、高三三个年级抽取的人数分别是()A .28、27、26B .28、26、24C .26、27、28D .27、26、2515. (2015秋•太原校级期末)下列问题中,应采用哪种抽样方法()①有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取10个入样;①有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个入样;①有甲厂生产的300个篮球,抽取10个入样;①有甲厂生产的300个篮球,抽取50个入样.A .分层抽样、分层抽样、抽签法、系统抽样B .分层抽样、分层抽样、随机数法、系统抽样C .抽签法、分层抽样、随机数法、系统抽样D .抽签法、分层抽样、系统抽样、随机数法16. (2016•怀化二模)某班对一模考试数学成绩进行分析,利用随机数表法抽取样本时,先将70个同学按00,01,02,…,69进行编号,然后从随机数表第9行第9列的数开始向右读,则选出的第10个样本中第8个样本的编号是()(注:如表为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.A .07B .44C .38二、计算题(共13题)17. (2016春•潍坊期中)(2016春•潍坊期中)如图茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中用X表示.(①)如果乙组同学植树棵数的平均数=,求X的值和乙组同学植树棵数的方差;(①)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.18. (2016•德州二模)(2016•德州二模)为了解甲、乙两个班级(人数均为60人,入学数学平均分和优秀率都相同,学生勤奋程度和自觉性都一样)的数学成绩,现随机抽取甲、乙两个班级各8名同学的数学考试成绩,并做出茎叶图,但是不慎污损.已知两个班级所抽取的同学平均成绩相同,回答下面的问题并写出计算过程:(I)求出甲班中被污损的一名学生的成绩;(①)样本中考试分数在70~90分之问的同学里,两班各任选一名同学座谈,甲乙两班被选出的两名同学分数均在80~90分的概率为多少?19. (2016•西城区一模)某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(1)体育成绩大于或等于70分的学生常被称为“体育良好”,已知该校高一年级有1000名学生,试估计高一全校中“体育良好”的学生人数;机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在[60,70)的概率;(3)假设甲、乙、丙三人的体育成绩分别为a,b,c,且分别在[70,80),[80,90),[90,100]三组中,其中a,b,c①N,当数据a,b,c的方差s2最小时,写出a,b,c的值.(结论不要求证明)(注:s2=[(x1+)2+(x2-)2+…+(xn-)2],其中为数据x1,x2,…,x n的平均数)20. (2016•丰台区一模)(2016•丰台区一模)如图是根据某行业网站统计的某一年1月到12月(共12个月)的山地自行车销售量(1k代表1000辆)折线图,其中横轴代表月份,纵轴代表销售量,由折线图提供的数据回答下列问题:(①)在一年中随机取一个月的销售量,估计销售量不足200k的概率;(①)在一年中随机取连续两个月的销售量,估计这连续两个月销售量递增(如2月到3月递增)的概率;(①)根据折线图,估计年平均销售量在哪两条相邻水平平行线线之间(只写出结果,不要过程).21. (2016•江门模拟)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准〜用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了100位居民某年的月均用水量(单位:t),制作了频率分布直方图.(1)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;(2)用样本估计总体,如果希望80%的居民每月的用水量不超出标准〜则月均用水量的最低标准定为多少吨,请说明理由;(3)从频率分布直方图中估计该100位居民月均用水量的众数,中位数,平均数(同一组中的数据用该区间的中点值代表).22. (2016春•漳平市期中)(2016春•漳平市期中)如图是根据部分城市某年6月份的平均气温(单位:①)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].已知样本中平均气温不大于22.5①的城市个数为11,则样本中平均气温不低于25.5①的城市个数为.23. (2016春•潍坊期中)(2016春•潍坊期中)某时段内共有100辆汽车经过某一雷达地区,发现时速(单位:km/h)都在区间[30,80]内,其频率分布直方图如图所示,则时速不低于60km/h的汽车数量为.24. (2016•池州二模)近年来空气污染是生活中一个重要的话题,PM2.5就是空气质量的其中一个重要指标,各省、市、县均要进行实时监测.空气质量指数要求PM2.524小时浓度均值分:估[0,35]、良(35,75],轻度污染(75,115],中度污染(115,150],重度污染(150,250],严重污染(250,500]六级.如图是池州市2016年2月1日至3月1日共30天的PM2.5 24小时浓度均值数据.(①)根据数据绘制频率分布表,并求PM2.5 24小时浓度均值的中位数;(①)专家建议,空气质量为优、良、轻度污染时可以正常进行户外活动,中度污染及以上时,取消一切户外活动.池州市某家庭准备在2016年2月1日至3月1日间连续两天在外郊游(假设数据为出游前的预报数据),家庭考虑小孩的因素,选择空气质指数为优时出游,求该家庭外出郊游的概率.25. (2016•泸州模拟)某校拟调研学生的身高与运动量之间的关系,从高二男生中随机抽取100名学生的身高数据,得到如下频率分布表:(1)求频率分布表中①、①位置相应的数据;(2)为了对比研究学生运动量与身高的关系,学校计划采用分层抽样的方法从第1、5组中随机抽取6名学生进行跟踪调研,求第1、5组每组抽取的学生人数;(3)在(2)的前提下,学校决定从这6名学生中随机抽取2名学生接受调研访谈,求抽取的2名学生均来自第5组的频率.26. 在学校组织的数学智力竞赛中,甲、乙、丙三位同学获得的成绩分别为:甲95分,乙99分,丙89分,如果分别用1,2,3,表示甲、乙、丙三位同学,试用矩阵表示各位同学的得分情况.27. 为迎接校运动会的到来,某校团委在高一年级招募了12名男志愿者和18名女志愿者(18名女志愿者中有6人喜欢运动).(①)如果用分层抽样的方法从男、女志愿者中共抽取10人组成服务队,求女志愿者被抽到的人数;(①)如果从喜欢运动的6名女志愿者中(其中恰有4人懂得医疗救护),任意抽取2名志愿28. (2016春•湖北期中)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为48的样本,则老年人、中年人、青年人分别应抽取的人数是.29. (2016•永州三模)(2016•永州三模)2016年1月1日,我国实施“全面二孩”政策,中国社会科学院在某地(已婚男性约15000人)随机抽取了150名已婚男性,其中愿意生育二孩的有100名,经统计,该100名男性的年龄情况对应的频率分布直方图如下;(1)求这100名已婚男性的年龄平均值和样本方差s2(同组数据用区间的中点值代替,结果精确到个位);(2)(①)试估计该地愿意生育二孩的已婚男性人数;(①)由直方图可以认为,愿意生育二孩的已婚男性的年龄ξ服从正态分布N(μ,δ2),其中μ近似样本的平均值,δ2近似为样本的方差s2,试问:该地愿意生育二孩且处于较佳的生育年龄ξ(ξ①(26,31))的总人数约为多少?(结果精确到个位)附:若ξ~N(μ,δ2),则P(μ-δ<ξ<μ+δ)=0.6826,P(μ-2δ<ξ<μ+2δ)=0.9544.三、填空题(共8题)30. (2017-2018学年吉林省实验中学高二(上)期末数学试卷(理科))2012年的NBA全明星赛,于美国当地时间2012年2月26日在佛罗里达州奧兰多市举行.如图是参加此次比赛的甲、乙两名篮球运动员以往几场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是______ .31. (四川省泸县第二中学高二泸州市联考模拟考试(文科)(数学))函数在上的最小值为_____________________.14设函数,可以用随机模拟方法近似计算由曲线及直线、所围成的封闭图形的面积.先产生两组在区间上的均匀随机数、、…、和由此得到个点()(),再数出其中满足()的点数,那么由随机模拟方法可得的近似值为.15从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.16已知是抛物线的焦点,为抛物线上的动点,且的坐标为,则的最小值是.32. (江西省乐安县第一中学高二年级1月份月考(理科)(数学))统计某校1000名学生的数学学业考试成绩,得到样本频率分布直方图如图所示,若规定不低于80分的为优秀,则优秀学生人数为______.33. 如图所示是某日调查部分城市空气质量情况的统计图:看图回答下面的问题:(1)空气质量达到优和良的城市共有个,轻微污染的城市共有个;(2)轻微污染的城市占所有调查城市的百分之几?34. (2016春•南阳期中)为了估计水库中鱼的尾数,可以使用以下的方法:先从水库中捕出M尾,给每尾鱼作上记号,不影响其存活,然后放回水库,经过适当的时间,让它们和水库中其余的鱼充分混合,再从水库中捕出m尾鱼,查看其中有记号的鱼有n尾.由此可以估计水库内鱼的尾数为.35. (2015-2016学年四川省成都市金堂中学高二(下)开学数学试卷(理科))某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中36. (2018年普通高等学校招生全国统一考试(新课标全国卷①)数学(文科))某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是______ .37. (2018-2019学年湖北省武汉市华中师大一附中高二(上)期末数学试卷(文科))某单位有职工900人,其中青年职工有450人,中年职工有270人,老年职工有180人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工有10人,则样本容量为______.四、解答题(共4题)38. (2016-2017学年广西桂林一中高一(下)期中数学试卷)如图,从参加环保知识竞赛的学生中抽出80名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)[79.5,89.5)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格)39. (2017-2018学年吉林省实验中学高二(上)期末数学试卷(理科))某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(①)求图中a的值;(①)根据频率分布直方图,估计这100名学生语文成绩的平均分和中位数(要求写出计算过程,结果保留一位小数).40. (2018-2019学年湖北省武汉市华中师大一附中高二(上)期末数学试卷(文科))为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在15岁到65岁的人群中随机调查了100人,并得到如图所示的频率分布直方图,在这100人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如表:(1)由频率分布直方图,估计这100人年龄的平均数;(2)根据以上统计数据填写下面的2×2列联表,据此表,能否在犯错误的概率不超过5%的前提下,认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?参考公式:其中n=a+b+c+d 参考数据:41. (2016春•南京期中)某高校从参加自主招生考试的学生中随机抽取容量为100的学生成绩样本,得到频率分布表如表:(1)上表中①①位置的数据分别是多少?(2)为了更多了解第三组、第四组、第五组的学生情况,该高校决定在这三个组中用分层抽样法抽取6名学生进行考察,这三个组参加考核的人数分别是多少?参考答案及解析一、选择题1. 【答案】B【解析】解:根据茎叶图中的数据,得;甲组数据的众数是17,①A错误;甲组数据的中位数是=22,①B正确;乙组数据的最大数是24,①C错误;乙组数据的极差是24-16=8,①D错误.故选:B.根据茎叶图中的数据,结合众数、中位数、最大数与极差的概念,进行判断即可.本题考查了利用茎叶图中的数据判断众数、中位数、最大数与极差的应用问题,是基础题.2. 【答案】【解答】解:A.6月份空气质量为优的日子为:6月7日,8日,11日,12日,13日,18日,19日,30日,天数为8天,因此正确;B.6月份连续2天d的日子为29个,连续2天中度污染的日子2个:为第28和29天,第24和25天,所以概率为,正确;C.6月份北京空气质量指数AQI-PM2.5历史数据的众数为42,因此错误;D.北京6月4至7日这4天的图象逐渐下降,空气质量逐渐变好,正确.故选:C.【解析】【分析】对于A.6月份空气质量为优的日子为:6月7日,8日,11日,12日,13日,18日,19日,30日,即可判断出真假;对于B.6月份连续2天d的日子为29个,连续2天中度污染的日子2个:为第28和29天,第24和25天,即可得出概率;对于C.6月份北京空气质量指数AQI-PM2.5历史数据的众数为42,即可判断出真假;对于D.北京6月4至7日这4天的图象逐渐下降,空气质量逐渐变好,即可判断出真假.3. 【答案】【解答】解:用样本的频率分布估计总体情况时,所取的样本容量越大,分组时组数越多,对应的组距越小,得到的频率折线图越接近总体密度曲线;总体密度曲线反映了总体在这个范围内的取值的百分比,所以样本容量越大,估计的结果越准确.故选:B.【解析】【分析】用样本估计总体时,样本容量越大,估计越准确,分组越多,折线图也越接近总体密度曲线.4. 【答案】【解答】解:由抽样的特征,抽取样本注意事项就是要考虑样本具有广泛性与代表性,而公园,医院,10名老年邻居地理位置比较特殊,不具备广泛性与代表性故A,B,C错误,利用派出所的户籍网随机调查了该地区10%的老年人的健康状况具有广泛性与代表性,故D正确.故选:D.【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现5. 【答案】【解答】解:从中抽取了500张进行检测,则这个问题中的样本容量是500,故选:B.【解析】【分析】直接根据样本容量及样本中个体的数目即可求出.6. 【答案】【解答】解:该系统抽样的抽取间隔为=5;设抽到的最小编号x,则x+(5+x)+(10+x)+(15+x)+(20+x)+(25+x)=87,所以x=2.故选:A.【解析】【分析】求出系统抽样的抽取间隔,设抽到的最小编号x,根据编号的和为87列出方程,即可求出x.7. 【答案】【解答】解:样本间隔为50÷5=10,则用系统抽样方法确定所选取的5名学生的编号可能是3,13,23,33,43,故选:B【解析】【分析】根据系统抽样的定义求出样本间隔即可.8. 【答案】【解答】解:系统抽样的抽取间隔为400÷50=8,在随机抽样中,首次抽到005号,以后每隔8个号抽到一个人,则分别是005、013、021、构成以5为首项,8为公差的等差数列,故可分别求出在001到200中有25人,在201至300号中共有12人,则301到400中有13人故答案为:C.【解析】【分析】根据系统抽样的方法的要求,确定分段间隔,根据随机抽得的号码为005,分别计算从001到200,从201到300,从301到400的人数.9. 【答案】A【解析】解:根据系统抽样得样本间隔为1200÷50=24,已知被抽取到的号码有15,则其他抽取的号码为15+24(n−1)=24n−9,则当n=11时,号码为24×11−9=255,故选:A根据系统抽样的定义求出样本间隔,然后进行计算即可.本题主要考查系统抽样的应用,根据条件求出样本间隔是解决本题的关键.10. 【答案】D【解析】【分析】根据系统抽样的方法的要求,先随机抽取第一数,再确定间隔.本题主要考查系统抽样方法的应用,解题时要认真审题,是基础题.【解答】解:依题意可知,在随机抽样中,首次抽到006号,以后每隔60024=25个号抽到一个人,则以6为首项,25为公差的等差数列,即所抽取的编号为6,31,56,81,106,故选D.11. 【答案】A【解析】解:从表中第5行第6列开始向右读取数据,得到的前6个编号分别是:253,313,457,007,328,623,则得到的第6个样本编号是623.故选:A.从表中第5行第6列开始向右读取数据,求出得到的前6个编号,由此能得出结果.本题考查样本编号的求法,考查系统抽样的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12. 【答案】【解答】解:每个个体被抽到的概率等于=,则样本中女运动员的人数为42×=6.故选:C.【解析】【分析】先求出每个个体被抽到的概率,再用女运动员的人数乘以此概率,即得所求.13. 【答案】B【解析】解:高三年级有学生为1500-550-450=500人,用分层抽样法从中抽取容量为300的样本,应抽取高三年级学生的人数为300×=100.故选:B.求出高三年级的学生人数,再根据分层抽样法原理计算从中抽取的样本人数.本题考查了分层抽样原理应用问题,是基础题.14. 【答案】A【解析】解:根据题意得,用分层抽样在各层中的抽样比为81560+540+520=120,则在高一年级抽取的人数是560×120=28人,高二年级抽取的人数是540×120=27人,高三年级抽取的人数是520×120=26人,故选:A.根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在各年级中抽取的人数.本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在各层中抽取的个体数目.15. 【答案】【解答】解:总体容量较小,用抽签法;总体由差异明显的两个层次组成,需选用分层抽样;总体容量较大,样本容量较小,宜用随机数法;总体容量较大,样本容量也较大,宜用系统抽样,故选C.【解析】【分析】如果总体和样本容量都很大时,采用随机抽样会很麻烦,就可以使用系统抽样;如果总体是具有明显差异的几个部分组成的,则采用分层抽样;从包含有N个个体的总体中抽取样本量为n个样本,总体和样本容量都不大时,采用随机抽样.16. 【答案】【解答】解:70个同学按00,01,02,…,69进行编号,从随机数表第9行第9列的数开始向右读,选出的第10个样本数分别是29,(78舍去),64,56,07,(82舍去),52,42,(07舍去),44,38,15,51;第8个样本的编号是38.故选:C.【解析】【分析】根据题意,写出从随机数表选出的10个样本数中第8个样本的编号即可.二、计算题17. 【答案】【解答】解:(①)由茎叶图可知,乙组同学的植树棵数是:x,8,9,10,…(1分)因为平均数为==;所以x=8.…(3分)此时乙的方差为=[(8-+(8-+(9-+(10-]=.…(6分)(①)记甲组四名同学为A1,A2,A3,A4,他们植树的棵数依次为9,9,11,11;…(7分)乙组四名同学为B1,B2,B3,B4,他们植树的棵数依次为9,8,9,10,…(8分)分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(A3,B1),(A2,B2),(A3,B3),(A1,B4),(A4,B1),(A4,B2),(A4,B3),(A4,B4),…(10分)用C表示:“选出的两名同学的植树总棵数为19”这一事件,则C中的结果有4个,它们是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),…(11分)故所求概率为P(C)==.…(12分)【解析】【分析】(①)由茎叶图可知,乙组同学的植树棵数是:x,8,9,10,由平均数能求出x=8,从而能求出此时乙的方差.(①)记甲组四名同学为A1,A2,A3,A4,他们植树的棵数依次为9,9,11,11,由此利用列举法能求出这两名同学的植树总棵数为19的概率.18. 【答案】【解答】解:(①)①两班样本总数都为8人,平均数相等,①=,解得x=85.(①)根据题意,甲班在70~90分之间共有6人,分别为88,85,84,81,79,72,乙班在70~90分之间共有6人,分别为87,82,81,79,77,76,设事件A为“两班各任选一名同学座谈,两名同学分数在80~90”之间,则基本事件空间为:Ω={(88,87),(88,82),(88,81),(88,79),(88,77),(88,76),(85,87),(85,82),(85,81),(85,79),(85,77),(85,76),(84,87),(84,82),(84,81),(84,79),(84,77),(84,76),(81,87),(81,82),(81,81),(81,79),(81,77),(81,76),(79,87),(79,82),(79,81),(79,79),(79,77),(79,76),(72,87),(72,82),(72,81),(72,79),(72,77),(72,76)},共有36个基本事件,事件A包含的基本事件有:(88,87),(88,82),(88,81),(85,87),(85,82),(85,81),(84,87),(84,82),(84,81),(81,87),(81,82),(81,81),共12个基本事件,①甲乙两班被选出的两名同学分数均在80~90分的概率P(A)==.【解析】【分析】(①)由两班样本总数都为8人,平均数相等,列出方程能求出x.(①)根据题意,甲班在70~90分之间共有6人,分别为88,85,84,81,79,72,乙班在70~90分之间共有6人,分别为87,82,81,79,77,76,利用列举法能求出甲乙两班被选出的两名同学分数均在80~90分的概率.19. 【答案】【解答】解:(1)由折线图得样本中体育成绩大于或等于70分的学生有30人,①该校高一年级学生中,“体育良好”的学生人数大约有:1000×=750人.(2)设“至少有1人体育成绩在[60,70)”为事件A,由题意,得P(A)=1-=1-=,①至少有1人体育成绩在[60,70)的概率是.(3)①甲、乙、丙三人的体育成绩分别为a,b,c,且分别在[70,80),[80,90),[90,100]三组中,其中a,b,c①N,①当数据a,b,c的方差s2最小时,a,b,c的值分别是79,84,90或79,85,90.【解析】【分析】(1)由折线图求出样本中体育成绩大于或等于70分的学生人数,由此能求出该校高一年级学生中,“体育良好”的学生人数.(2)设“至少有1人体育成绩在[60,70)”为事件A,由对立事件概率计算公式能求出至少有1人体育成绩在[60,70)的概率.(3)当数据a,b,c的方差s2最小时,a,b,c的值分别是79,84,90或79,85,90.20. 【答案】【解答】(本小题共13分)解:(①)设销售量不足200k为事件A,这一年共有12个月,其中1月,2月,6月,11月共4个的销售量不足200k,…(2分)所以P(A)==.…(4分)(①)设连续两个月销售量递增为事件B,在这一年中随机取连续两个月的销售量,有1,2月;2,3月;3,4月;4,5月;5,6月;6,7月;7,8月;8,9月;9,10。

高三数学排列组合概率测试题

高三数学排列组合概率测试题

排列 组合 概率测试题班级 姓名 得分 .一、选择题:1、有6名同学;如果甲必须站在乙的右边;不同站法总数是………………………………………( )(A )6621A (B ) 66A (C )266A (D ) 4425A A 2、3)2||1|(|-+x x 展开式中常数项的值为…………………………………………………………( ) (A )-20 (B )20 (C )-15 (D )-283、992除以9的余数为………………………………………………………………………………( )(A )1 (B )-1 (C )8 (D )04、以一个正三棱柱的顶点为顶点的四面体共有个数为……………………………………………( )(A )6 (B )8 (C )12 (D )305、含有10个元素的集合的全部子集数为S ;其中由3个元素组成的子集数为T ;则S T =……( ) (A )51160 (B ) 12815 (C ) 1021120 (D ) 6445 6、把一个圆24等份;过其中任意3个分点做三角形;其中的直角三角形个数为…………………( )(A )2024 (B )264 (C )132 (D )1227、n n n x a x a x a a x x 2222102)1(++++=++ ;如果n a a a a S 2420++++= ;则S=……( )(A )n 2 (B ) n 2+1 (C ))13(21-n (D ) )13(21+n 8、在83)12(xx -的展开式中;常数项为……………………………………………………………( ) (A )-28 (B ) -7 (C )7 (D )289、某人射击命中率为43;他连续射击2次;恰有一次命中的概率为………………………………( ) (A )169 (B )85 (C ) 43 (D )83 ……( )(A )都不是一等品 (B )恰有1件一等品 (C )至少1件一等品 (D ) 至多1件一等品11、从4台甲型、5台乙型电脑中;任取3台;其中至少要有甲型、乙型各一台的概率为………( )(A )75 (B ) 145 (C ) 65 (D ) 125 12、10颗骰子同时掷出;共掷出5次;则至少有一次全部出现同一个点的概率为………………( ) (A )510])65(1[- (B ) 105])65(1[- (C )1-510])61(1[- (D )1-105])61(1[-二、填空题:13、空间有8个不同的平面;其中有并且只有3个互相平行;其余在无两个平面平行;也无三个平面相交于同一条直线;则这8个平面共有 条交线.14、102)1()1()1(x x x ++++++ 展开式中6x 的系数为 .15、甲乙两人投篮;甲投篮命中率为0.8;乙投篮命中率为0.7;每人投3次;两人恰好都投中两次的概率为 (精确到0.001)16、如果以连续抛掷两次骰子得到的点数m 、n 为点P 的横、纵坐标;那么点P (m 、n )落在圆1622=+y x 内的概率为 .三、解答题:17、若集合A 、B 各有12个元素;A ∩B 中有4个元素;试求同时满足下列条件的集合C 的个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分别以 和 的元素为 和 坐标,不同点的个数为
不同点的个数总数是 ,其中重复的数据有 ,所以只有34个
(2)从1,2,3,…,9这九个数学中任取两个,其中一个作底数,另一个作真数,则可以得到不同的对数值的个数为
(A)64(B)56(C)53(D)51
解①从1,2,3,…,9这九个数学中任取两个的数分别作底数和真数的“对数式”个数为 ;
(17)展开式的通项为 ,r=0,1,2,…,n
由已知: 成等差数列

∴n=8……2分
(Ⅰ) ……4分
(Ⅱ) ……8分
(Ⅲ)令x=1,各项系数和为 ……12分
(18)(Ⅰ)C52A54=1200(种)……4分
(Ⅱ)A55-1=119(种)……8分
(Ⅲ)不满足的情形:第一类,恰有一球相同的放法:
C51×9=45
(Ⅰ)每次取出的2个球都是1个白球和1个红球的概率;
(Ⅱ)有2次每次取出的2个球是1个白球和1个红球,还有1次取出的2个球同色的概率;
(Ⅲ)有2次每次取出的2个球是1个白球和1个红球,还有1次取出的2个球是红球的概率
解(Ⅰ)∵

(Ⅱ)∵
∴可以使用n次独立重复试验
∴所求概率为 ……8分
(Ⅲ)本题事件可以表示为A·A·C+A·C·A+C·A·A
①没有相同的(也即5个全部不同), 种[参考第(16)题分析];
②有1个相同(也即有4个不同),有 种;
③有2个相同(也即有3个不同),有 种;
④有3个相同(也即有2个不同),有 种;
⑤有5个相同(也即没有不相同的),有 种;
本小题求的是③、④、⑤这三类的相同数这种之和,或者说是①~⑤各类的总数减去①~②二类之和。因此,如每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的投放方法的种数是:
所有的两位数中,能被2或3整除二位数所占比例是 .因此,在所有的两位数中,任取一个数,则这个数能被2或3整除的概率是
(7)先后抛掷三枚均匀的硬币,至少出现一次正面的概率是
(A)1/8(B)3/8(C)7/8(D5/8
解恰好出现一次正面的概率为
恰好出现二次正面的概率为
恰好出现三次正面的概率为
至少出现一次正面的概率是
(A) (B) (C) (D)
二、填空题(每小题4分,共16分)
(13)已知A、B是互相独立事件, 与 分别是互斥事件,已知 , , ,则 至少有一个发生的概率 ____________
解A、B同时发生的概率
A发生而Байду номын сангаас没有发生的概率
A没有发生而B发生的概率
C发生的概率
至少有一个发生的概率
(14) 展开式中的常数项是
因此,所求概率为:
(11)某电脑用户计划使用不超过500元的资金购买单价分别为60元 70元的单片软件和盒装磁盘,根据需要至少买3片软件,至少买2盒磁盘,则不同的选购方式共有
(A)5种(B)6种(C)7种D)8种
解设选购 片软件, 盒磁盘,则:
,解得: ,
软件和磁盘数量的选购方式分别为 ,共7种。
(12)已知 ,且 ,而 按 的降幂排列的展开式中,T2≤T3,则 的取值范围是
(A)4/15(B)2/5(C)1/3(D)2/3
解从6把钥匙中任取2把的组合数为 ,若从中任取的2把钥匙能打开2把锁,则取出的必是甲锁的2把钥匙之一和乙锁的2把钥匙之一。假设分二次取钥匙,第一次取到甲锁的钥匙,第二次取到乙锁的钥匙,取法的种数为 ;当然,第一次取到乙锁的钥匙,第二次取到甲锁的钥匙,取法的种数也为 。这二种取法都能打开2把锁。故从中任取2把钥匙能打开2把锁的概率是:
第二类,五个球的编号与盒子编号全不同的放法:
∴满足条件的放法数为:
A55-45-44=31(种)……12分
(19)设Ai表示第i颗骰子出现1点或6点,i=1,2,3,则Ai互相独立,Ai与 之间也互相独立,
(1)
……6分
(2)设D表示“恰好一颗骰子出现1点或6点的概率”
则 ……8分
因 互斥

……12分
②1不能为底数,以1为底数的“对数式”个数有8个,而应减去;
③1为真数时,对数为0,以1为真数的“对数式”个数有8个,应减去7个;
④ , ,应减去4个
所示求不同的对数值的个数为
(3)四名男生三名女生排成一排,若三名女生中有两名站在一起,但三名女生不能全排在一起,则不同的排法数有
(A)3600(B)3200(C)3080(D)2880
解 , , , ,
(Ⅰ)从集 及 中各取一个元素作直角坐标系中点的坐标组成不同的点,就是从集合 中任选2个元素排列分别作点的坐标组成点与从集合 中任选1个元素既作 坐标又作 坐标组成点,所求不同的点的点数为:
(Ⅱ)三个不同元素组成三位数有6个,其中从左到右的数字要逐渐增大的三位数只有1个,故所求三位数的个数是:
解法二设该5人分别为 ,调整前的工作分别是 。
①求恰有2人调整工作的种数:
②求恰有3人调整工作的种数:
从5人中选3人的组合数为 ,这10组及它们的排列数与工作调整的方式数分别如下:
恰有3人调整工作的种数: [ ]
③求恰有4人调换工作的种数:
从5人中选4人的组合数为 ,这10组及它们的排列数与工作调整的方式数分别如下:
高中数学必修排列组合和概率练习题
一、选择题(每小题5分,共60分)
(1)已知集合A={1,3,5,7,9,11},B={1,7,17}.试以集合A和B中各取一个数作为点的坐标,在同一直角坐标系中所确定的不同点的个数是C
(A)32(B)33(C)34(D)36
解分别以 和 的元素为 和 坐标,不同点的个数为
(20)A={3,4,5,6,7},B={4,5,6,7,8}……2分
(Ⅰ)A62+4=34(个)……4分
(Ⅱ)C63=20(个)……8分
(Ⅲ)A中取3有C31A53种
A中不取3,有A54种
∴共有C31A53+A54=300(种)……12分
(21)记事件A为“一次取出的2个球是1个白球和1个红球”,事件B为“一次取出的2个球都是白球”,事件C为“一次取出的2个球都是红球”,A B C互相独立
(6)在所有的两位数中,任取一个数,则这个数能被2或3整除的概率是
(A)5/6(B)4/5(C)2/3(D)1/2
解①所有两位数的个数为90个;
②能被2或3整除的二位数的个数 :能被2整除的二位数的个数是有 ,能被3
整除的二位数的个数为有24个(从 中选2的排列 , 九组中各选2的排列有 ),能被3整除的二位数中有9个( )也能被3整除,故能被2或3整除的二位数的个数是 ;
恰有4人调换工作的种数: [ ]
④求恰有5人调换工作的种数:
换任 的工作的排列:
11种调整方式
换任 的工作的排列:
11种调整方式
换任 的工作的排列:
11种调整方式
换任 的工作的排列:
11种调整方式
恰有5人调换工作的种数共有 [ ]
故后至少有2人与原来工作不同工作的调整方法的种数是:10+20+45+44=119(种)
(A)1(B)-1(C)0(D)2

(10)从集合 中任取3个数,这3个数的和恰好能被3整除的概率是
(A)19/68(B)13/35(C)4/13(D)9/34
解从集合 中任取3个数的取法种数为 ;
取到的数含3或6时,其余二数为12、15、24、27、45、57,能被3整除的数的个数为 ;
取到的数不含3或6和能被3整除的三个数是1、4、7,取法种数有 种;
(8)在四次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率中的取值范围是
(A) (B) (C) (D
解设事件A在一次试验中发生的概率为 ,由题设得
对于 ,有
对于 ,有
根据概率的性质, 的取值范围为
(9)若 ,则(a0+a2+a4+…+a100)2-(a1+a3+…+a99)2的值为

(19)掷三颗骰子,试求:
(Ⅰ)没有一颗骰子出现1点或6点的概率;
(Ⅱ)恰好有一颗骰子出现1点或6点的概率。
解设 表示第 颗骰子出现1点或6点, ,则 互相独立, , 与 之间也互相独立。
(Ⅰ)
(Ⅱ)掷一颗骰子出现1点或6点的概率为 ,将掷三颗骰子看作掷一颗骰子三次,根据公式⑸ ,可知恰好有一颗骰子出现1点或6点的概率是:
解(Ⅰ)从5个盒子中任选4个来放球(其中的任1个盒放2个球),有 种选法;从5个球中任选2个球(不分先后)的选法有 ,故盒子的 种选法中的每一种都有 种放球的方法。因此投放方法种数为:
(Ⅱ)5个球的全排列中减去球号与盒号相同的一种排列即为所求:
(种)
(Ⅲ) 五个球分别放在 五个盒子中,则球的球的编号与盒子编号全部相同; 五个球分别放在 五个盒子中,则有2个球的编号与盒子编号不相同。所以球号与盒号相同度情况分类如下:
我的做法用插空法,先将4个男生全排再用插空
(4)由 展开所得x多项式中,系数为有理项的共有
(A)50项(B)17项(C)16项(D)15项

可见通项式为:
且当 时,相应项的系数为有理数,这些项共有17个,故系数为有理项的共有17个.
(5)设有甲、乙两把不相同的锁,甲锁配有2把钥匙,乙锁配有2把钥匙,这4把钥匙与不能开这两把锁的2把钥匙混在一起,从中任取2把钥匙能打开2把锁的概率是
∴P(A·A·C+A·C·A+C·A·A)=C31P(A)P(A)P(C)=0.324……14分
[网上参考解答]
一、选择题
(1)D(2)C(3)D(4)B(5)A(6)C(7)C(8)A(9)A
相关文档
最新文档