高中数学必修四向量练习题(附解析)

合集下载

(压轴题)高中数学必修四第二章《平面向量》测试题(含答案解析)

(压轴题)高中数学必修四第二章《平面向量》测试题(含答案解析)

一、选择题1.已知两个单位向量a ,b ,其中向量a 在向量b 方向上的投影为12.若()()2a b a b λ+⊥-,则实数λ的值为( )A .14-B .12-C .0D .122.已知向量()2,3a =,()4,2b =,那么向量a b -与a 的位置关系是( ) A .平行B .垂直C .夹角是锐角D .夹角是钝角3.已知ABC 是顶角A 为120°腰长为2的等腰三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )A .12-B .32-C .14-D .-14.过点()3,1P 的直线l 与函数21()26x f x x -=-的图象交于A ,B 两点,O 为坐标原点,则()OA OB OP +⋅=( )A B .210C .10D .205.已知向量()1,2a =,()2,3b =-,若向量c 满足()//c a b +,()c a b ⊥+,则c =( )A .7793⎛⎫ ⎪⎝⎭,B .7739⎛⎫-- ⎪⎝⎭, C .7739⎛⎫ ⎪⎝⎭,D .7793⎛⎫-- ⎪⎝⎭, 6.已知M 、N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则PM PN +的取值范围为( )A .5+⎡⎣B .10⎡-⎣C .5-+⎡⎣D .10-+⎡⎣7.已知向量,a b 满足2(1,2),(1,)+==a b m b m ,且a 在b ,则实数m =( )A .2±B .2C .D 8.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==9.如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.若有(7,16)λ∈,则在正方形的四条边上,使得PE PF λ=成立的点P 有( )个.A .2B .4C .6D .010.在ABC 中,D 为AB 的中点,E 为AC 边上靠近点A 的三等分点,且BE CD ⊥,则cos2A 的最小值为( )A .267B .27-C .17-D .149-11.在ABC ∆中,2,3,60,AB BC ABC AD ==∠=为BC 边上的高,O 为AD 的中点,若AO AB BC λμ=+,其中,R λμ∈,则λμ+等于( ) A .1 B .12C .13 D .2312.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .23二、填空题13.圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为_____.14.在△ABC 中,D 为BC 中点,直线AB 上的点M 满足:32(33)()AM AD AC R λλλ=+-∈,则AM MB=__________.15.已知向量2a =,1b =,223a b -=,则向量a ,b 的夹角为_______.16.如图,边长为2的菱形ABCD 的对角线相交于点O ,点P 在线段BD 上运动,若1AB AO ⋅=,则AP PD ⋅的最大值为______.17.已知平面非零向量,,a b c 两两所成的角相等,1a b c ===,则a b c ++的值为_____.18.如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点5BA CA ⋅=,2BF CF ⋅=-,则BE CE ⋅的值是________.19.已知O 为ABC 内一点,且满足305OA OB OC =++,延长AO 交BC 于点D .若BD DC λ=,则λ=_____.20.已知ABC 的重心为G ,过G 点的直线与边AB 和AC 的交点分别为M 和N ,若AM MB λ=,且AMN 与ABC 的面积之比为2554,则实数λ=__________. 三、解答题21.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数m 和n ; (3)若()(2)a kc b a +⊥-,求实数k .22.在OAB 的边OA ,OB 上分别有一点P ,Q ,已知:1:2OP PA =,:3:2OQ QB =,连接AQ ,BP ,设它们交于点R ,若OA a =,OB b =.(1)用a 与b 表示OR ;(2)过R 作RH AB ⊥,垂足为H ,若1a =,2b =,a 与b 的夹角2,33ππθ⎡⎤∈⎢⎥⎣⎦,求BHBA的范围.23.已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为1F 、2F ,左顶点为A ,若122F F =,椭圆的离心率为12e =. (1)求椭圆的标准方程.(2)若P 是椭圆上的任意一点,求1PF PA⋅的取值范围. 24.如图,在直角△ABC 中,点D 为斜边BC 的靠近点B 的三等分点,点E 为AD 的中点,3,6AB AC ==(1)用,AB AC 表示AD 和EB ; (2)求向量EB 与EC 夹角的余弦值.25.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.26.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足1cos cos sin sin 2b A C a B C b -=.(1)求B 的大小;(2)设1BA BC ⋅=-,D 为边AC 上的点,满足2AD DC =,求BD 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】记a 与b 的夹角为θ,则a 在b 上的投影为1cos 2a θ=,然后向量垂直转化为数量积为0可计算λ. 【详解】记a 与b 的夹角为θ,则a 在b 上的投影为cos a θ,则1cos 2a θ=, ∵()()2a b a b λ+⊥-,∴()()()221322221(2)022a b a b a b a b λλλλλλ+⋅-=-+-⋅=-+-⋅==, 故0λ=, 故选:C . 【点睛】结论点睛:本题考查平面向量的数量积及其几何意义.向量垂直的数量积表示. (1)设,a b 向量的夹角为θ,则a 在b 方向上的投影是cos a b a bθ⋅=;(2)对两个非零向量,a b ,0a b a b ⊥⇔⋅=.2.D解析:D 【分析】首先根据题中所给的向量的坐标,结合向量数量积运算法则,求得其数量积为负数,从而得到其交集为钝角. 【详解】因为()2,3a =,()4,2b =,222()23(2432)131410a b a a a b -⋅=-⋅=+-⨯+⨯=-=-<,所以向量a b -与a 的位置关系是夹角为钝角, 故选:D. 【点睛】该题考查的是有挂向量的问题,涉及到的知识点有向量数量积的运算律,数量积坐标公式,根据数量积的符号判断其交集,属于简单题目.3.A解析:A 【分析】以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,表示出向量PA ,PB ,PC ,得到2()22(1)PA PB PC x y y ⋅+=--,进而可求出结果. 【详解】如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则(0,1)A ,(3,0)B ,(3,0)C ,设(,)P x y ,所以(,1)PA x y =--,(3,)PB x y =--,(3,)PC x y =-, 所以(2,2)PB PC x y +=--,2()22(1)PA PB PC x y y ⋅+=--2211122()222x y =+--≥-当1(0,)2P 时,所求的最小值为12-.故选:A 【点睛】方法点睛:向量求最值的方法有以下: 1.利用三角函数求最值; 2.利用基本不等式求最值; 3.建立坐标系求最值;本题的关键在于建立坐标系,列出相应的式子求解4.D解析:D 【分析】判断函数()f x 的图象关于点P 对称,得出过点()3,1P 的直线l 与函数()f x 的图象交于A ,B 两点时,得出A ,B 两点关于点P 对称,则有 2OA OB OP +=,再计算()OA OB OP +⋅的值.【详解】()52121263x f x x x -==+-- ,∴函数21()26x f x x -=-的图象关于点()3,1P 对称,∴过点()3,1P 的直线l 与函数()2126x f x x -=-的图象交于A ,B 两点,且A ,B 两点关于点()3,1P 对称,∴ 2OA OB OP +=,则()()222223120OA OB OP OP +⋅==⨯+=.故选D . 【点睛】本题主要考查了函数的对称性,以及平面向量的数量积运算问题,是中档题.5.D解析:D 【分析】设出(,)c x y =,根据向量的共线与垂直的坐标运算,列出方程组,即可求解. 【详解】设(,)c x y =,向量()1,2a =,()2,3b =-,可得(1,2),(3,1)c a x y a b +=+++=-, 由()//c a b +,可得3(1)2(2)x y -⨯+=+,即3270x y ++=, 由()c a b ⊥+,可得30x y -=,联立方程组327030x y x y ++=⎧⎨-=⎩,解得77,93x y =-=-,即77(,)93c =--.故选:D. 【点睛】本题主要考查了向量的坐标表示,以及向量的共线与垂直的坐标运算及应用,其中解答中熟记向量的共线和垂直的坐标运算时解答的关键,着重考查推理与运算能力.6.B解析:B 【分析】作出图形,可求得线段MN 的中点Q 的轨迹方程为2234x y +=,由平面向量加法的平行四边形法则可得出2PM PN PQ +=,求得PQ 的取值范围,进而可求得PM PN +的取值范围.【详解】由1MN =,可知OMN 为等边三角形,设Q 为MN 的中点,且3sin 602OQ OM ==Q 的轨迹为圆2234x y +=,又()3,4P ,所以,3322PO PQ PO -≤≤+,即3355PQ ≤≤+. 由平面向量加法的平行四边形法则可得2PM PN PQ +=,因此2103,103PM PN PQ ⎡+=∈+⎣.故选:B. 【点睛】本题考查平面向量模长的取值范围的计算,考查了圆外一点到圆上一点距离的取值范围的计算,考查数形结合思想的应用,属于中等题.7.A解析:A 【分析】根据2(1,2),(1,)+==a b m b m 可得0,2m a ⎛⎫= ⎪⎝⎭,结合25||cos a θ=,列出等式,即可解出答案. 【详解】因为向量,a b 满足2(1,2),(1,)a b m b m +==,22(0,)a a b b m =+-=,所以20,,22m m a a b ⎛⎫=⋅= ⎪⎝⎭,若向量,a b 的夹角为θ,则2225||(||cos )152m b a m a b θ=+⋅=⋅=, 所以42516160m m --=,即()()225440m m +-=,解得2m =±. 故选:A . 【点睛】本题主要考查向量的投影及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是||||cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角,cos ||||a ba b θ⋅=⋅(此时a b ⋅往往用坐标形式求解);(2)求投影,a 在b 上的投影是||a bb ⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb +的模(平方后需求a b ⋅). 8.B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.9.B解析:B 【分析】建立坐标系,逐段分析·PE PF 的取值范围及对应的解. 【详解】以DC 为x 轴,以DA 为y 轴建立平面直角坐标系,如图,则()()0,4,6,4E F ,(1)若P 在CD 上,设(,0),06P x x ≤≤,(,4),(6,4)PE x PF x ∴=-=-,2616PE PF x x ∴⋅=-+, [0,6],716x PE PF ∈∴≤⋅≤, ∴当=7λ时有一解,当716λ<≤时有两解;(2)若P 在AD 上,设(0,),06P y y <≤,(0,4),(6,4)PE y PF y ∴=-=-, 22(4)816PE PF y y y ∴⋅=-=-+, 06,016y PE PF <≤∴⋅<,∴当=0λ或4<<16λ时有一解,当716λ<≤时有两解; (3)若P 在AB 上,设(,6),06P x x <≤,(,2),(6,2)PE x PF x =--=--,264PE PF x x ∴⋅=-+, 06,54x PE PF <≤∴-≤⋅≤,∴当5λ=-或4λ=时有一解,当54λ-<<时有两解;(4)若P 在BC 上,设(6,),06P y y <<,(6,4),(0,4)PE y PF y ∴=--=-, 22(4)816PE PF y y y ∴⋅=-=-+,06y <<,016PE PF ∴⋅<,∴当0λ=或416λ≤<时有一解,当04λ<<时有两解,综上可知当(7,16)λ∈时,有且只有4个不同的点P 使得PE PF λ⋅=成立. 故选:B. 【点睛】本题主要考查平面向量数量积的运算,二次函数的根的个数判断,属于中档题.10.D解析:D 【分析】作出图形,用AB 、AC 表示向量BE 、CD ,由BE CD ⋅可得出2232cos 7c b A bc+=,利用基本不等式求得cos A 的最小值,结合二倍角的余弦公式可求得cos2A 的最小值. 【详解】 如下图所示:13BE AE AB AC AB =-=-,12CD AD AC AB AC =-=-, BE CD ⊥,则2211711032623BE CD AC AB AB AC AB AC AB AC ⎛⎫⎛⎫⋅=-⋅-=⋅--= ⎪ ⎪⎝⎭⎝⎭,即22711cos 0623cb A c b --=,可得22322626cos 777c b bc A bc bc +=≥=, 当且仅当62b =时,等号成立, 所以,22261cos 22cos 121749A A ⎛⎫=-≥⨯-=- ⎪ ⎪⎝⎭. 故选:D. 【点睛】本题考查二倍角余弦值最值的求解,考查平面向量垂直的数量积的应用,同时也考查了基本不等式的应用,考查计算能力,属于中等题.11.D解析:D 【分析】根据题设条件求得13BD BC =,利用向量的线性运算法则和平面向量的基本定理,求得1126AO AB BC =+,得到11,26λμ==,即可求解.【详解】 在ABC ∆中,2,60,AB ABC AD =∠=为BC 边上的高, 可得1sin 212BD AB ABC =∠=⨯=, 又由3BC =,所以13BD BC =, 由向量的运算法则,可得13AD AB BD AB BC =+=+, 又因为O 为AD 的中点,111226AO AD AB BC ==+, 因为AO AB BC λμ=+,所以11,26λμ==,则23λμ+=. 故选:D. 【点睛】本题主要考查了平面向量的线性运算法则,以及平面向量的基本定理的应用,其中解答中熟记向量的运算法则,结合平面向量的基本定理,求得1126AO AB BC =+是解答的关键,着重考查推理与运算能力.12.B解析:B 【分析】由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解. 【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=,故选:B . 【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题.二、填空题13.3【分析】根据向量关系即可确定的形状再根据向量投影的计算公式即可求得结果【详解】因为圆O 为△ABC 的外接圆半径为2若故可得是以角为直角的直角三角形又因为且外接圆半径是故可得则故向量在向量方向上的投影解析:3 【分析】根据向量关系,即可确定ABC 的形状,再根据向量投影的计算公式,即可求得结果.【详解】因为圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=, 故可得ABC 是以角A 为直角的直角三角形.又因为OA AC =,且外接圆半径是2, 故可得224BC OA AC ===,则AB =,2AB cos ABC BC ∠==,故向量BA 在向量BC 方向上的投影为3AB cos ABC ⨯∠==. 故答案为:3. 【点睛】本题考查向量数量积的几何意义,属中档题.14.1【解析】设∵D 为BC 中点所以可以化为3x=λ()+(3-3λ)化简为(3x-λ)=(3-2λ)只有3x-λ=3-2λ=0时(3x-λ)=(3-2λ)才成立所以λ=x=所以则M 为AB 的中点故答案为1解析:1 【解析】设 AM AB λ=,∵D 为BC 中点,所以12AD AB AC ()=+,() 3233AM AD AC λλ=+- 可以化为3x AB =λ(AB AC +)+(3-3λ)AC ,化简为(3x-λ)AB =(3-2λ)AC ,只有3x-λ=3-2λ=0时,(3x-λ)AB =(3-2λ)AC 才成立,所以λ=32,x=12所以12AM AB =,则M 为AB 的中点 故答案为1点睛:本题考查向量的基本定理基本定理及其意义,考查向量加法的三角形法则,考查数形结合思想,直线AB 上的点M 可设成 AM AB λ=,D 为BC 中点可得出12AD AB AC ()=+,代入已知条件整理可得.15.【分析】已知式平方后求得再由数量积的定义可得夹角【详解】由得∴∴∴故答案为:【点睛】本题考查求向量的夹角解题关键是掌握向量的模与数量积的关系由模求得数量积后可得解析:23π 【分析】已知式223a b -=平方后求得a b ⋅,再由数量积的定义可得夹角. 【详解】由223a b -=得222(2)4444412a b a a b b a b -=-⋅+=-⋅+=,∴1a b ⋅=-, ∴cos ,2cos ,1a b a b a b <>=<>=-,1cos ,2a b <>=-,∴2,3a b π<>=.故答案为:23π. 【点睛】本题考查求向量的夹角,解题关键是掌握向量的模与数量积的关系,由模求得数量积后可得.16.【分析】以为原点和分别为和轴建立的平面直角坐标系求得设得到即可求解【详解】以为原点和分别为和轴建立如图所示的平面直角坐标系设则因为可得联立方程组解答所以设则当时取得最大值最大值为故答案为:【点睛】本解析:34【分析】以O 为原点,OC 和OD 分别为x 和y 轴建立的平面直角坐标系,求得(1,0),A D -,设(0,),[P t t ∈,得到23(4AP PD t ⋅=--+,即可求解. 【详解】以O 为原点,OC 和OD 分别为x 和y 轴建立如图所示的平面直角坐标系, 设(,0),(0,),0,0A a B b a b -->>,则224a b +=, 因为1AB AO ⋅=,可得2(,)(,0)1a b a a -⋅==,联立方程组,解答1,a b ==(1,0),A D -,设(0,),[P t t ∈,则2233(1,))(244AP PD t t t t ⋅=⋅=-+=--+≤,当t =AP PD ⋅取得最大值,最大值为34.故答案为:34.【点睛】本题主要考查了平面向量的数量积的运算及应用,此类问题通常采取建立直角坐标系,利用平面向量的坐标运算求解,着重考查转化思想,以及运算与求解能力,属于基础题.17.3或0【分析】由于三个平面向量两两夹角相等可得任意两向量的夹角是或由于三个向量的模已知当两两夹角为时直接算出结果;当两两夹角为时采取平方的方法可求出三个向量的和向量的模【详解】由题意三个平面向量两两解析:3或0 【分析】由于三个平面向量两两夹角相等,可得任意两向量的夹角是0或120︒,由于三个向量的模已知,当,,a b c →→→两两夹角为0时,直接算出结果;当,,a b c →→→两两夹角为120︒时,采取平方的方法可求出三个向量的和向量的模. 【详解】由题意三个平面向量两两夹角相等,可得任意两向量的夹角是0或120︒, 当,,a b c →→→两两夹角为0时,,,a b c →→→方向相同,则3a b c →→→++=; 当,,a b c →→→两两夹角为120︒时,由于1a b c ===, 则2222222a b c a b c a b a c b c→→→→→→→→→++=+++⋅+⋅+⋅111211cos120211cos120211cos1200=+++⨯⨯⨯︒+⨯⨯⨯︒+⨯⨯⨯︒=,则20a b c →→→++=,∴0a b c →→→++=. 综上a b c →→→++的值为3或0. 故答案为:3或0. 【点睛】本题考查平面向量的模的求法,涉及向量的夹角和向量的数量积运算,解题的关键是理解向量夹角的定义,考查运算能力.18.【分析】将均用表示出来进而将表示成与相关可以求出同时可用表示即可求出结果【详解】因为因此故答案为:【点睛】研究向量的数量积一般有两个思路一是建立平面直角坐标系利用坐标研究向量的数量积;二是利用一组基解析:58【分析】将,,,BA CA BF CF 均用,BC AD 表示出来,进而将BA CA ⋅,BF CF ⋅表示成与,FD BC 相关,可以求出 2223,827FD BC ==,同时BE CE ⋅可用,FD BC 表示,即可求出结果. 【详解】因为222211436=52244AD BC FD BC BA CA BC AD BC AD ()()--⋅=-⋅--==, 2211114223234FD BCBF CF BC AD BC AD ()()-⋅=-⋅--==-,因此2223,827FD BC ==,222211416.224458ED BC FD BC BE CE BC ED BC ED ()()--⋅=-⋅--===故答案为:58. 【点睛】研究向量的数量积,一般有两个思路,一是建立平面直角坐标系,利用坐标研究向量的数量积;二是利用一组基底表示所有向量,两种思路实质相同,但坐标法更易理解和化简. 对于涉及中线的向量问题,一般利用向量加、减法的平行四边形法则进行求解.19.【分析】将已知条件转化为结合得到设列出关于的方程组由此求得【详解】由于所以所以即因为即化简得设所以解得故答案为:【点睛】本小题主要考查平面向量的基本定理考查平面向量的线性运算考查化归与转化的数学思想解析:53【分析】将已知条件转化为1539AO AB AC =+,结合BD DC λ=,得到111AD AB AC λλλ=+++,设AO k AD =,列出关于,k λ的方程组,由此求得λ. 【详解】 由于305OA OB OC =++,所以()()350OA AB AO AC AO +-+-=,所以935AO AB AC =+,即1539AO AB AC =+. 因为BD DC λ=,即()AD AB AC AD λ-=-, 化简得111AD AB AC λλλ=+++, 设11k k AO k AD AB AC λλλ==+++, 所以113519k k λλλ⎧=⎪⎪+⎨⎪=⎪+⎩,解得53λ=.故答案为:53【点睛】本小题主要考查平面向量的基本定理,考查平面向量的线性运算,考查化归与转化的数学思想方法,属于中档题.20.5或【分析】利用重心的性质把AG 用AMAN 表示再由MGN 三点共线得关于的方程再由三角形面积比得关于的另一方程联立即可求得实数入的值【详解】如图设因为G 为的重心所以因为三点共线所以即①②由①②解得或故解析:5或54【分析】利用重心的性质,把AG 用AM 、AN 表示,再由M ,G ,N 三点共线得关于,u λ的方程,再由三角形面积比得关于,u λ的另一方程,联立即可求得实数入的值. 【详解】 如图,设AN AC μ→→=, 因为G 为ABC 的重心, 所以11111(1)3333AG AB AC AM AN λμ=+=++, 因为,,M G N 三点共线, 所以111(1)133λμ++=,即112uλ+=①, 5425ABC AMN S S ∆∆=, 1sin 542125sin 2AB AC AAM AN A ⋅⋅∴=⋅⋅, 1154(1)25u λ∴+⋅=②,由①②解得,559u λ=⎧⎪⎨=⎪⎩或 5456u λ⎧=⎪⎪⎨⎪=⎪⎩, 故答案为:5或54【点睛】关键点点睛:根据重心及三点共线可求出λ和u 的关系,再根据三角形的面积比得出λ和u 的另一关系,联立方程求解是关键,属于中档题.三、解答题21.(1)6;(2)58,99m n ==;(3)1118k =-.【分析】(1)利用向量加法的坐标运算得到()320,6a b c +-=,再求模长即可;(2)先写mb nc +的坐标,再根据a mb nc =+使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可. 【详解】解:(1)由(3,2),(1,2),(4,1)a b c ==-=,得3(9,6),(1,2),2(8,2)a b c ==-=∴()()32918,6220,6a b c +-=--+-=,∴23206a b c +-=+=;(2)()(),2,4,mb m m nc n n =-=, ∴()4,2mb nc n m m n +=-+,a mb nc =+,∴()4,2(3,2)a n m m n ==-+,故4322n m m n -=⎧⎨+=⎩,解得58,99m n ==;(3)(3,2),(4,)a kc k k ==,∴()34,2a kc k k +=++,(3,2),2(2,4)a b ==-,∴()25,2b a -=-,()()2a kc b a +⊥-,∴()()20a kc b a +⋅-=,即()()534220k k -+++=,解得1118k =-. 【点睛】 结论点睛:若()()1122,,,a x y b x y == ,则//a b 等价于12210x y x y -=;a b ⊥等价于12120x x y y +=.22.(1)1162OR a b =+;(2)171,422⎡⎤⎢⎥⎣⎦.【分析】(1)利用,,A R Q 三点共线和,,B R P 三点共线,结合平面向量共线定理,可构造方程组求得结果;(2)设BHt BA=,利用0BH AB ⋅=,结合平面向量线性运算将两个向量转化为用,a b 表示的向量,利用平面向量数量积的运算律可整理得到t 关于cos θ的函数形式,利用cos θ的范围即可求得结果. 【详解】(1)设OR OA OQ λμ=+,,,A R Q 三点共线,1λμ∴+=,又:3:2OQ QB =,35OQ OB ∴=,35OR OA OB μλ∴=+; 设OR mOP nOB =+,同理可得:1m n +=,3mOR OA nOB =+,,OA OB 不共线,335m n λμ⎧=⎪⎪∴⎨⎪=⎪⎩,51331m n m n ⎧+=⎪∴⎨⎪+=⎩,解得:1212m n ⎧=⎪⎪⎨⎪=⎪⎩,1162OR OA OB ∴=+,即1162OR a b =+.(2)设BHt BA=,则BH tBA =,()()1162RH BH BR tBA OR OB t OA OB OA OB ⎛⎫=-=--=--- ⎪⎝⎭11116262t OA t OB t a t b ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 又AB OB OA b a =-=-,BH AB ⊥,0BH AB ∴⋅=,()2211112262623t a t b b a t a t b t a b⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴-+-⋅-=-+-+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦14134244cos 54cos cos 06363t t t t t θθθ⎛⎫=-+-+-=-+-= ⎪⎝⎭, 整理可得:134cos 138cos 136354cos 3024cos 33024cos t θθθθθ--===+---,2,33ππθ⎡⎤∈⎢⎥⎣⎦,11cos ,22θ⎡⎤∴∈-⎢⎥⎣⎦,171,422t ⎡⎤∴∈⎢⎥⎣⎦, 即BHBA 的取值范围为171,422⎡⎤⎢⎥⎣⎦. 【点睛】思路点睛:本题考查了平面向量线性运算和数量积运算的综合应用,处理数量积运算问题时,通常利用线性运算将所求向量进行等价转化,利用模长和夹角已知的两个向量来表示所求向量,如本题中利用,a b 表示出,BH AB ,再结合数量积的运算律来进行求解.23.(1)22143x y +=;(2)[0,12]. 【分析】(1)由椭圆的离心率及焦距,可得1,2c a ==,b =(2)设()00,P x y ,(2,0)A -,1(1,0)F -,再将向量的数量积转化为坐标运算,研究函数的最值,即可得答案;【详解】 解:(1)由题意,∵122F F =,椭圆的离心率为12e =, ∴1,2c a ==, ∴b =∴椭圆的标准方程为22143x y +=. (2)设()00,P x y ,(2,0)A -,1(1,0)F -,∴()()22200001001232PF P x x y x A x y ⋅----+=+++=, ∵P 点在椭圆上,∴2200143x y +=,2200334y x =-, ∴21001354PF PA x x ⋅=++, 由椭圆方程得022x -≤≤,二次函数开口向上,对称轴062x =-<-,当02x =-时,取最小值0,当02x =时,取最大值12.∴1PF PA⋅的取值范围是[0,12]. 【点睛】本题考查椭圆标准方程的求解、向量数量积的取值范围,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意问题转化为二次函数的最值问题.24.(1)2133AD AB AC =+,2136EB AB AC =-,(2)7130130- 【分析】 (1)利用平面向量基本定理和向量的加减法法则进行求解即可(2)如图,以AC ,AB 所在的方向分别为x 轴,y 轴的正方向,建立平面直角坐标系,然后表示出向量EB 与EC 的坐标,再利用向量夹角的坐标公式求解【详解】解:(1)因为D 为斜边BC 的靠近点B 的三等分点,所以1111()3333BD BC AC AB AC AB ==-=-, 所以2133AD AB BD AB AC =+=+, 因为E 为AD 的中点, 所以112111223336AE AD AB AC AB AC ⎛⎫==+=+ ⎪⎝⎭, 所以2136EB AB AE AB AC =-=-, (2)1536EC AC AE AB AC =-=-+, 如图,以AC ,AB 所在的方向分别为x 轴,y 轴的正方向,建立平面直角坐标系, 则(0,3),(6,0)B C ,所以21(1,2)36EB AB AC =-=-,15(5,1)36EC AB AC =-+=- ,所以(1)52(1)7EB EC ⋅=-⨯+⨯-=-,2222(1)25,5(1)26EB EC =-+==+-=设向量EB 与EC 夹角为θ,则7130cos 130526EB ECEB EC θ⋅===-⨯⋅ 【点睛】此题考查平面向量基本定理的应用,考查向量夹角公式的应用,考查计算能力,属于中档题25.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =. 因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<,则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ, 使AF EG μ=,即1133[()]3544m n m n μλ+=+-,整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=, 故310CGCB =. 【点睛】 本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.26.(1)23B π=;(2)23. 【分析】 (1)由正弦定理化简已知等式,结合sin 0B ≠,可得1cos cos sin sin 2A C A C -=,利用两角差的余弦函数公式,诱导公式,三角形内角和定理可求1cos 2B =-,结合范围由()0,B π∈,可得B 的值; (2)利用平面向量数量积的运算可求2ac =,由题意利用平面向量的运算可得2133BD BA BC =+,两边平方利用基本不等式可求BD 的最小值. 【详解】 (1)由sin sin sin a b c A B C ==,得1sin cos cos sin sin sin sin 2B AC A B C B -=, 又∵在ABC ∆中,sin 0B ≠, ∴1cos cos sin sin 2A C A C -=,即1cos()2A C +=,而A B C π++= ∴1cos 2B =-, 故23B π=. (2)cos 1BA BC ac B ⋅=⋅=-,∴2ac =,∴1121()3333BD BA AD BA AC BA BC BA BA BC =+=+=+-=+, ∴222414999BD BA BC BA BC =++⋅22414444999999c a ac =+-≥-=, ∴23BD ≥,当且仅当2a c =时取到. 故BD 的最小值为23.【点睛】本题主要考查了正弦定理,两角差的余弦函数公式,诱导公式,三角形内角和定理,平面向量的运算以及基本不等式的应用,考查了转化思想,属于中档题.。

高中数学必修四平面向量测试题及答案

高中数学必修四平面向量测试题及答案

高中数学必修四平面向量测试题一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。

A、-9B、-6C、9D、6bb上的投影为()。

=(-4,7),则 2.已知 =(2,3), 在 D、、B、 CA、 =(-1按向量,-1),B(3,5,将向量)平移后得 3.设点A(1,2)。

向量)为(A、(2,3) B、(1,2) C、(3,4) D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。

A、直角三角形B、等边三角形C、等腰三角形D、等腰直角三角形bbb|等于()。

的夹角为60°,则5.已知| |=4, | | |=3, 与+D C、、 A、 B、所成的比为2,则()。

、已知OA、B为平面上三点,点C分有向线段 6.B、 A、、DC、 ABC所在平面上一点,且满足条件.O是Δ,7则点O是ΔABC的()。

A、重心B、垂心C、内心D、外心b均为平面内任意非零向量且互不共线,则下列4、个命题:、 8.设22222bbbbbb)+-|| =( (3)| (1)( ·)= · +(2)| +|≥|bb a不一定垂直。

其中真命题的个数是(-() ))。

与(4)(4、 D 3 、 C 2 、 B 1 、A.等中,A=60°,b=1,,则 9.在ΔABC 。

于() D、A、、B C、2bb=0的解的情况是(、不共线,则关于x的方程) x+。

x+ 10.设A、至少有一个实数解 B、至多只有一个实数解 D、可能有无数个实数解、至多有两个实数解 C.).分,满分16分二、填空题:(本大题共4小题,每小题4CAAB 22=_________AC=ABC中,斜边,则11.在等腰直角三角形ACABAD babABCDEFa为.已知则用为正六边形,______.且,=表示=,,12速度为的小船要从河的一边驶向,.有一两岸平行的河流,水速为113对岸,为使所行路程最短,小船应朝________方向行驶。

(压轴题)高中数学必修四第二章《平面向量》测试题(包含答案解析)(1)

(压轴题)高中数学必修四第二章《平面向量》测试题(包含答案解析)(1)

一、选择题1.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .162.如图,在ABC 中,13AN NC =,P 是BN 上的一点,若2299AP m AB BC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .13C .1D .33.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6 B .4 C .3 D .24.已知M 、N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则PM PN +的取值范围为( )A .53,53+⎡⎣B .103,103⎡-⎣C .523,523-+⎡⎣D .1023,1023-+⎡⎤⎣⎦5.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( )A .(0,21⎤-⎦B .(0,21⎤+⎦C .21,21⎡⎤-+⎣⎦D .)21,⎡-+∞⎣ 6.在平行四边形ABCD 中,3DE CE =,若AE 交BD 于点M .且AM AB AD λμ=+,则λμ=( ) A .23 B .32 C .34 D .437.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( )A .14B .12C .2D .48.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-9.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( )A .42,0B .4,42C .16,0D .4,010.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的时间为6 min ,则客船在静水中的速度为( )A .2B .8 km/hC .34D .10 km/h11.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( )A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定12.已知2a b ==,0a b ⋅=,()()0c a c b -⋅-=,若2d c -=,则d 最大值为( )A .22B .122+C .222+D .42 二、填空题13.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G ,作用在行李包上的两个拉力分别为1F ,2F ,且12F F =,1F 与2F 的夹角为θ.给出以下结论:①θ越大越费力,θ越小越省力;②θ的范围为[]0,π;③当2πθ=时,1F G =; ④当23πθ=时,1F G =. 其中正确结论的序号是______.14.在△ABC 中,D 为BC 中点,直线AB 上的点M 满足:32(33)()AM AD AC R λλλ=+-∈,则AMMB =__________.15.把单位向量OA 绕起点O 逆时针旋转120︒,再把模扩大为原来的3倍,得到向量OB ,点C 在线段AB 上,若12AC CB =,则OC BA ⋅的值为__________. 16.如图,在△ABC 中,13AN NC =,P 是BN 上的一点,若AP =m 211AB AC +,则实数m 的值为_____.17.如图,在矩形ABCD 中,3AB =,4=AD ,圆M 为BCD △的内切圆,点P 为圆上任意一点, 且AP AB AD λμ=+,则λμ+的最大值为________.18.在ABC ∆中,1AC BC ==,3AB =,且CE xCA =,CF yCB =,其中(),0,1x y ∈,且41x y +=,若M ,N 分别为线段EF ,AB 中点,当线段MN 取最小值时x y +=__________.19.如图所示,已知OAB ,由射线OA 和射线OB 及线段AB 构成如图所示的阴影区(不含边界).已知下列四个向量:①12=+OM OA OB ; ②23143OM OA OB =+;③33145=+OM OA OB ;④44899=+OM OA OB .对于点1M ,2M ,3M ,4M 落在阴影区域内(不含边界)的点有________(把所有符合条件点都填上)20.设λ是正实数,三角形ABC 所在平面上的另三点1A 、1B 、1C 满足:()1AA AB AC λ=+,()1BB BC BA λ=+,()1CC CA CB λ=+,若三角形ABC 与三角形111A B C 的面积相等,则λ的值为_____. 三、解答题21.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE . (2)当2AE EB =时,求证:AD CE ⊥.22.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,向量()()sin sin ,sin sin ,sin sin ,sin m B C A B n B C A =++=-,且m n ⊥.(1)求角C 的大小;(2)若3c =2a b +的取值范围.23.已知向量()1,2a =,(),1b x =.(1)若|2|||a b a b -=+,求实数x 的值;(2)若2x =,求2a b -与a b +的夹角.24.如图,在正方形ABCD 中,点E 是BC 边上中点,点F 在边CD 上.(1)若点F 是CD 上靠近C 的三等分点,设EF AB AD λμ=+,求λ+μ的值. (2)若AB =2,当AE BF ⋅=1时,求DF 的长.25.已知,,a b c 是同一平面内的三个向量,其中(1,2)a =(1)若||25c =,且//c a ,求c 的坐标;(2)若5||b =,且2 a b +与2a b -垂直,求a 与b 的夹角θ. 26.在平面直角坐标系xOy 中,已知向量(1,2)a =-,(1,)b k =.(1)若()a a b ⊥+,求实数k 的值; (2)若对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值.【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-, AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=.故选:D.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用. 2.A解析:A【解析】 因为2299AP m AB BC ⎛⎫=++ ⎪⎝⎭29mAB AC =+,设BP tBN =,而31()()(1)44AP AB BP AB t BC CN AB t BC AC t AB t AC =+=++=+-=-+,所以1m t =-且249t =,故811199m t =-=-=,应选答案A . 3.C解析:C【分析】 根据向量的运算法则,求得12AM AD AB =+,2132MN AD AB =-+,再结合向量的数量积的运算公式,即可求解.【详解】由题意,作出图形,如图所示: 由图及题意,根据向量的运算法则,可得12AM AD DM AD AB =+=+, 2132MN CN CM CB CD =-=-21213232BC DC AD AB =-+=-+, 所以2212121||||23234AM MN AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=. 故选C .【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力. 4.B解析:B【分析】作出图形,可求得线段MN 的中点Q 的轨迹方程为2234x y +=,由平面向量加法的平行四边形法则可得出2PM PN PQ +=,求得PQ 的取值范围,进而可求得PM PN +的取值范围. 【详解】 由1MN =,可知OMN 为等边三角形,设Q 为MN 的中点,且3sin 602OQ OM ==Q 的轨迹为圆2234x y +=, 又()3,4P ,所以,33PO PQ PO -≤≤+,即3355PQ ≤≤+. 由平面向量加法的平行四边形法则可得2PM PN PQ +=,因此2103,103PM PN PQ ⎡+=∈+⎣.故选:B.【点睛】本题考查平面向量模长的取值范围的计算,考查了圆外一点到圆上一点距离的取值范围的计算,考查数形结合思想的应用,属于中等题.5.C解析:C【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出22OB x y d =+=,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 取得最小值21-,O 在BM 的延长线上时,OB 取得最大值21+.故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,()()2222222ax cy a c x y x y +≤++=+,取等号条件:ay cx =,令22OB x y d =+=,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得2121d -≤≤+.故选:C【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.6.B解析:B【分析】根据已知找到相似三角形,用向量AB 、AD 线性 表示向量AM .【详解】如图,平行四边形ABCD 中,3DE CE =,ABM EDM ,3322DE DC AB ∴==,()22223323555255AM ME AE AD DE AD AB AB AD ⎛⎫===+=+=+ ⎪⎝⎭. 32λμ= 故选:B【点睛】此题考查平面向量的线性运算,属于中档题.7.C解析:C【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos 62b a b t a a π⋅=-=-时,()g t 取得最小值1,变形可得22sin 16b π=,从而可求出b【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos1)06a b a b a b π∆=⋅-=-<, 所以()g t 恒大于零, 所以当232cos 622b b a b t a a a π⋅=-=-=-时,()g t 取得最小值1, 所以2223332122b b b g a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =, 所以2b =,故选:C【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题8.C解析:C【分析】建立直角坐标系,利用向量的坐标运算求解即可.【详解】以点A 为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF ∴==21124AE AF ∴⋅=⨯+⨯=故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.9.D解析:D【分析】利用向量的坐标运算得到|2|a b -用θ的三角函数表示化简求最值.【详解】解:向量()a cos sin θθ=,,向量()31b =-,,则2a b -=(2cosθ32sinθ+1), 所以|2|a b -2=(2cosθ3-2+(2sinθ+1)2=8﹣3cosθ+4sinθ=8﹣8sin(3πθ-), 所以|2|a b -2的最大值,最小值分别是:16,0; 所以|2|a b -的最大值,最小值分别是4,0;故选:D .【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性.10.A解析:A【解析】设客船在静水中的速度大小为 /v km h 静,水流速度为 v 水,则2/v km h =水,则船实际航行的速度v v v =+静水,60.160t h =,由题意得100.1AB v ≤=. 把船在静水中的速度正交分解为x y v v v 静=+, ∴0.660.1y v ==,在Rt ABC 中,221060.8BC =-=.. ∵80.1x x BCv v v v +=+==水水,∴826x v =-= ∴2262x yv v v 静=+=设v v 静水<,>=θ,则tan 1yxv v θ==,∴2cos 2θ=.此时222272242410102v v v v v v v +=+⋅+=+⨯+=≤静水静静水水= ,满足条件,故选A.11.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()bc a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.12.C解析:C【分析】不妨设(2,0),(0,2)a b ==,设(,),(,)c m n d x y ==,则由()()0c a c b -⋅-=求出点(,)a b 满足的关系(点(,)C a b 在一个圆上),而2d c -=表示点(,)D x y 在以(,)C a b 为圆心,2为半径的圆上,d 表示该圆上的点到原点的距离,由几何意义可得解. 【详解】∵2a b ==,0a b ⋅=,∴不妨设(2,0),(0,2)a OA b OB ====,如图,设(,)c OC m n ==,(,)d OD x y ==,则()()(2,)(,2)(2)(2)0c a c b m n m n m m n n -⋅-=-⋅-=-+-=,即22(1)(1)2m n -+-=,∴点(,)C m n 在以(1,1)M 为圆心,2为半径的圆M 上, 又2d c -=,∴(,)D x y 在以(,)C a b 为圆心,2为半径的圆C 上, 则2d OC ≤+,当且仅当D 在OC 延长线上时等号成立, 又OC 的最大值是圆M 的直径22, ∴d 最大值为222+. 故选:C .【点睛】本题考查平面向量的数量积与向量的模,解题关键是引入坐标表示向量,用几何意义表示向量,求解结论.二、填空题13.①④【分析】根据为定值求出再对题目中的命题分析判断正误即可【详解】解:对于①由为定值所以解得;由题意知时单调递减所以单调递增即越大越费力越小越省力;①正确对于②由题意知的取值范围是所以②错误对于③当解析:①④. 【分析】根据12G F F =+为定值,求出()22121cos GF θ=+,再对题目中的命题分析、判断正误即可. 【详解】解:对于①,由12G F F =+为定值, 所以()2222121212cos 21cos G F F F F F θθ=++⨯⨯=+,解得(22121cos GF θ=+;由题意知()0,θπ∈时,cos y θ=单调递减,所以21F 单调递增, 即θ越大越费力,θ越小越省力;①正确.对于②,由题意知,θ的取值范围是()0,π,所以②错误. 对于③,当2πθ=时,2212GF =,所以12F G =,③错误. 对于④,当23πθ=时,221F G =,所以1F G =,④正确.综上知,正确结论的序号是①④. 故答案为:①④. 【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题14.1【解析】设∵D 为BC 中点所以可以化为3x=λ()+(3-3λ)化简为(3x-λ)=(3-2λ)只有3x-λ=3-2λ=0时(3x-λ)=(3-2λ)才成立所以λ=x=所以则M 为AB 的中点故答案为1解析:1 【解析】设 AM AB λ=,∵D 为BC 中点,所以12AD AB AC ()=+,() 3233AM AD AC λλ=+- 可以化为3x AB =λ(AB AC +)+(3-3λ)AC ,化简为(3x-λ)AB =(3-2λ)AC ,只有3x-λ=3-2λ=0时,(3x-λ)AB =(3-2λ)AC 才成立,所以λ=32,x=12所以12AM AB =,则M 为AB 的中点 故答案为1点睛:本题考查向量的基本定理基本定理及其意义,考查向量加法的三角形法则,考查数形结合思想,直线AB 上的点M 可设成 AM AB λ=,D 为BC 中点可得出12AD AB AC ()=+,代入已知条件整理可得.15.【分析】由题意可得与夹角为先求得则再利用平面向量数量积的运算法则求解即可【详解】单位向量绕起点逆时针旋转再把模扩大为原来的3倍得到向量所以与夹角为因为所以所以故答案为【点睛】本题主要考查平面向量几何 解析:116-【分析】由题意可得3OB =,OA 与OB 夹角为120︒,先求得1(2)3OC OA AC OA OB =+=+,则1(2)()3OC BA OA OB OA OB ⋅=+⋅-,再利用平面向量数量积的运算法则求解即可. 【详解】单位向量OA 绕起点O 逆时针旋转120︒,再把模扩大为原来的3倍,得到向量OB , 所以3OB =,OA 与OB 夹角为120︒, 因为12AC CB =,所以111()(2)333OC OA AC OA AB OA OB OA OA OB =+=+=+-=+,所以()2211(2)()233OC BA OA OB OA OB OA OB OA OB ⋅=+⋅-=--⋅ 11291332⎡⎤⎛⎫=--⨯⨯- ⎪⎢⎥⎝⎭⎣⎦116=-,故答案为116-. 【点睛】 本题主要考查平面向量几何运算法则以及平面向量数量积的运算,属于中档题. 向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差;(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).16.【解析】由得设=n 所以+n=+n()=(1-n)=m 由n=得m=1-n= 解析:311【解析】由13AN NC =,得14AN AC =. 设BP =n BN ,所以AP AB BP AB =+=+n BN =AB +n (AN AB -)=(1-n )14AB nAC +=m 211AB AC +. 由14n=211,得m=1-n=311. 17.【分析】以点B 为坐标原点建立平面直角坐标系如下图所示由已知条件得出点坐标圆M 的方程设由得出再设(为参数)代入中根据三角函数的值域可求得最大值【详解】以点B 为坐标原点建立平面直角坐标系如下图所示因为在 解析:116【分析】以点B 为坐标原点,建立平面直角坐标系如下图所示,由已知条件得出点坐标,圆M 的方程,设(),P x y ,由AP AB AD λμ=+,得出134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩,再设3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),代入λμ+中,根据三角函数的值域,可求得最大值. 【详解】以点B 为坐标原点,建立平面直角坐标系如下图所示,因为在矩形ABCD 中,3AB =,4=AD ,所以圆M 的半径为3+4512r -==, 所以()0,0B ,()0,3A ,()4,0C ,()4,3D,()3,1M ,圆M 的方程为()()22311x y -+-=,设(),P x y ,又AP AB AD λμ=+,所以()()(),30,34,0x y λμ-=-+,解得134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩, 又点P 是圆M 上的点,所以3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),所以()1sin 3cos 517sin 1+1+34312124+y x θθβθλμ+=+--+=-=,其中3tan 4β=,所以,当()sin 1βθ-=时,λμ+取得最大值116, 故答案为:116.【点睛】本题考查向量的线性表示,动点的轨迹中的最值问题,属于中档题.18.【分析】根据平面向量的数量积运算求得的值再利用中线的性质表示出由此求得计算当的最小时的值即可【详解】解:连接如图所示:由等腰三角形中知所以∵是的中线∴同理可得∴又∴故当时有最小值此时故答案为:【点睛 解析:47【分析】根据平面向量的数量积运算求得CA CB 的值,再利用中线的性质表示出CM 、CN ,由此求得MN ,计算当||MN 的最小时x y +的值即可. 【详解】解:连接CM ,CN ,如图所示:由等腰三角形中,1AC BC ==,3AB =120ACB ∠=︒,所以1=2CA CB ⋅-.∵CM 是CEF ∆的中线,∴()()1122CM CE CF xCA yCB =+=+. 同理可得()1=2CN CA CB +. ∴()()111122MN CN CM x CA y CB =-=-+-, ()()()()222111111114224MN x x y y ⎛⎫=-+--⨯-+- ⎪⎝⎭, 又41x y +=,∴222131424MN y y =-+,(),0,1x y ∈. 故当17y =时,2MN 有最小值,此时3147x y =-=. 故答案为:47. 【点睛】本题考查了平面向量数量积公式及其运算性质问题,也考查了二次函数求最值的应用问题,属于中档题.19.①②④【分析】射线与线段的公共点记为根据平面向量基本定理可得到由在阴影区域内可得实从而且得出结论【详解】解:设在阴影区域内则射线与线段有公共点记为则存在实数使得且存在实数使得从而且又由于故对于①中解解析:①②④ 【分析】射线OM 与线段AB 的公共点记为N ,根据平面向量基本定理,可得到(1)ON tOA t OB =+-,由M 在阴影区域内可得实1r ≥,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥得出结论【详解】解:设M 在阴影区域内,则射线OM 与线段AB 有公共点,记为N , 则存在实数(0,1]t ∈,使得(1)ON tOA t OB =+-,且存在实数1r ≥,使得OM rON =,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥.又由于01t ≤≤,故(1)0r t -≥. 对于①中1,(1)2rt r t =-=,解得313,r t ==,满足1r ≥也满足(1)0r t -≥,故①满足条件. 对于②中31,(1)43rt r t =-=,解得139,1213r t ==,满足1r ≥也满足(1)0r t -≥,故②满足条件, 对于③31,(15)4rt r t =-=,解得19,152019r t ==,不满足1r ≥,故③不满足条件, 对于④,(189)49rt r t =-=,解得,4133r t ==,满足1r ≥也满足(1)0r t -≥,故④满足条件.故答案为:①②④. 【点睛】本题主要考查平面向量基本定理,向量数乘的运算及其几何意义,属于中档题.20.【分析】设的重心为点可知与关于点对称利用重心的向量性质可求得实数的值【详解】设的重心为点则由于和的面积相等则与关于点对称则解得故答案为:【点睛】本题考查了平面向量的数乘运算和线性运算涉及三角形重心向解析:23【分析】设ABC ∆的重心为点G ,可知ABC ∆与111A B C ∆关于点G 对称,利用重心的向量性质可求得实数λ的值. 【详解】设ABC ∆的重心为点G ,则3AB AC AG +=,()13AA AB AC AG λλ∴=+=, 由于ABC ∆和111A B C ∆的面积相等,则ABC ∆与111A B C ∆关于点G 对称, 则12AA AG =,32λ∴=,解得23λ=. 故答案为:23. 【点睛】本题考查了平面向量的数乘运算和线性运算,涉及三角形重心向量性质的应用,考查计算能力,属于中等题.三、解答题21.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点,∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3ay =, 所以,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭,所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 22.(1)2C 3π=;(2)(323,.【分析】(1)根据向量m n ⊥得到22sin sin (sin sin )sin 0B C A B B -++=,再由正弦定理将边化为角的表达式,结合余弦定理求得角C 的值.(2)利用正弦定理求的△ABC 的外接圆半径,将2a b +表示成A 与B 的三角函数式,利用辅助角公式化为角A 的函数表达式;再由角A 的取值范围求得2a b +的范围. 【详解】 (1)∵m n ⊥ ∴0m n ⋅=∴22sin sin (sin sin )sin 0B C A B B -++= ∴222c a b ab =++ ∴1cos 2C =- 又()0,C π∈ . ∴23C π=.(2)∵23C π=,c = ∴△ABC 外接圆直径2R=2∴24sin 2sin a b A B +=+4sin 2sin 3A A π⎛⎫=+- ⎪⎝⎭4sin sin A A A =+-3sin A A =6A π⎛⎫=+ ⎪⎝⎭∵0,3A π⎛⎫∈ ⎪⎝⎭∴,662A πππ⎛⎫+∈ ⎪⎝⎭∴1sin ,162A π⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭∴2a b + 的取值范围是 .【点睛】本题考查了向量垂直的坐标表示,正弦定理、余弦定理的综合应用,辅助角公式化简三角函数表达式,知识点多,较为综合,属于中档题. 23.(1)12;(2)4π. 【分析】(1)求出向量2a b -与a b +的坐标,然后由模的坐标运算列出方程可求得x ; (2)求出向量2a b -与a b +的坐标,由向量夹角的坐标运算计算. 【详解】(1)因为()1,2a =,(),1b x =, 所以()22,3a b x -=-,()1,3a b x +=+. 因为|2|||a b a b -=+,=解得12x =. (2)当2x =时,()20,3a b -=,()3,3a b +=, 所以()()203339a b a b -⋅+=⨯+⨯=,23a b -=,32a b +=.设2a b -与a b +的夹角为θ.则(2)()cos |2|||332a b a b a b a b θ-⋅+===-⋅+⋅. 又[]0,θπ∈,所以4πθ=,即2a b -与a b +的夹角为4π. 【点睛】 本题考查向量模的坐标运算,考查向量夹角的坐标运算,掌握向量的坐标运算是解题基础.24.(1)16;(2)32. 【分析】(1)先转化得到13CF AB =-,12EC AD =,再表示出1132EF AB AD =-+,求出λ13=-,μ12=,最后求λ+μ的值; (2)先得到12AE AB AD =+和0AB AD ⋅=,再建立方程421λ-+=求解λ14=,最后求DF 的长.【详解】 (1)∵点E 是BC 边上中点,点F 是CD 上靠近C 的三等分点,∴1133CF DC AB =-=-,1122EC BC AD ==, ∴1132EF EC CF AB AD =+=-+, ∴λ13=-,μ12=, 故λ+μ111326=-+=. (2)设CF =λCD ,则BF BC CF AD =+=-λAB ,又12=+=+AE AB BE AB AD ,AB AD ⋅=0, ∴AE BF ⋅=(12AB AD +)•(AD -λAB )=﹣λAB 2212AD +=-4λ+2=1, 故λ14=, ∴DF =(1﹣λ)×232=. 【点睛】 本题考查利用向量的运算求参数,是基础题25.(1)(2,4)或(2,4)--;(2)π.【分析】(1)根据共线向量的坐标关系运算即可求解;(2)由向量垂直及数量积的运算性质可得52a b ⋅=-,再利用夹角公式计算即可. 【详解】(1)设(,)c x y =,||25c =且//c a , 222020x y x y ⎧+=∴⎨-=⎩,解得24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩, (2,4)c ∴=或(2,4)c =--;(2)由 已知得(2)(2),(2)(2)0a b a b a b a b +⊥-∴+⋅-= ,即2252320,253204a ab b a b +⋅-=∴⨯+⋅-⨯=, 整理得52a b ⋅=-,cos 1||||a b a b θ⋅∴==-, 又[0,π]θ∈,πθ∴=.【点睛】本题主要考查了共线向量的坐标运算,数量积的运算,夹角公式,属于中档题. 26.(1)2k =-;(2)2k ≠-.【分析】(1)根据向量垂直,其数量积等于0,利用向量数量积公式得到对应的等量关系式,求得结果;(2)平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,其等价结果为向量(1,2)a =-和向量(1,)b k =是两个不共线向量,根据坐标关系得到结果.【详解】(1)若()a a b ⊥+,则有()0a a b ⋅+=,即20a a b +⋅=,又因为(1,2)a =-,(1,)b k =,所以222[(1)2](1)120a a b k +⋅=-++-⋅+=,即5120k -+=,解得2k =-;(2)对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,所以向量(1,2)a =-和向量(1,)b k =是两个不共线向量,所以121k -⋅≠⋅,即2k ≠-,所以实数k 的取值范围是2k ≠-.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,平面向量基本定理,一组向量可以作为基底的条件,属于基础题目.。

必修四向量复习题附答案

必修四向量复习题附答案

向量复习题一.选择题(共30小题)1.已知平面向量,,则向量的模是()A.B.C. D.52.已知正方形的边长为1,,则等于()A.0 B.3 C.D.3.已知向量=(2,m),=(m,2),若,则实数m等于()A.﹣2 B.2 C.﹣2或2 D.04.下列命题正确的是()A.单位向量都相等B.模为0的向量与任意向量共线C.平行向量不一定是共线向量D.任一向量与它的相反向量不相等5.已知=(3,1),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4)C.(﹣1,4)D.(1,4)6.设D、E、F分别为△ABC三边BC、CA、AB的中点,则++=()A.B.C.D.7.已知向量,则=()A.(﹣4,﹣9)B.(﹣8,﹣9)C.(8,11) D.(﹣5,﹣6)8.给出下面四个命题:①+=;②+=;③﹣=;其中正确的个数为()A.1个B.2个C.3个D.0个9.在平行四边形ABCD中,对角线AC与BD交于点O,若+=,则λ的值为()A.2 B.1 C.D.﹣110.已知三棱锥O﹣ABC,点M,N分别为AB,OC的中点,且=,=,=,用,,表示,则等于()A.B.) C.D.11.已知单位向量满足,则与的夹角是()A.B.C.D.12.如图,点M是△ABC的重心,则为()A.B.4C.4D.413.已知不共线的两个非零向量,满足,则()A.B.C.D.14.在△ABC中,,点G是△ABC的重心,则的最小值是()A.B.C.D.15.在△ABC中,若点D满足,则=()A.B.C.D.16.在平行四边形ABCD中,点E为CD的中点,BE与AC的交点为F,设=,=,则向量=()A.+B.﹣﹣C.﹣+D.﹣17.平行四边形ABCD中,M是BC的中点,若,则λ+μ=()A.B.2 C.D.18.如图,在△ABC中,=,=,若=λ+μ,则λ+μ=()A.B.﹣C.D.﹣19.已知平面向量=(1,2),=(﹣2,m),且∥,则|+|=()A.B.2C.3D.420.设向量和满足:,,则=()A.B.C.2 D.321.已知向量=(4,2),=(x,3)向量,且,则x=()A.1 B.5 C.6 D.922.向量=(2,x),=(6,8),若∥,则x的值为()A.B.2 C.D.﹣23.已知点A(﹣1,2),B(1,﹣3),点P在线段AB的延长线上,且=3,则点P 的坐标为()A.(3,﹣)B.(,﹣)C.(2,﹣)D.(,﹣)24.已知点P1(3,﹣5),P2(﹣1,﹣2),在直线P1P2上有一点P,且|P1P|=15,则P点坐标为()A.(﹣9,﹣4)B.(﹣14,15)C.(﹣9,4)或(15,﹣14)D.(﹣9,4)或(﹣14,15)25.已知||=3,||=4,与的夹角为120°,则在方向上的投影为()A.﹣ B.﹣C.﹣2 D.﹣226.△ABC外接圆圆心O,半径为1,2=且||=||,则向量在向量方向的投影为()A.B.C.D.27.已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.028.如图,在圆C中,弦AB的长为4,则=()A.8 B.﹣8 C.4 D.﹣429.若向量,的夹角为,且||=4,||=1,则||=()A.2 B.3 C.4 D.530.△ABC的外接圆的圆心为O,半径为1,2=,且||=||,则向量在方向上的投影为()A.B.C.D.二.填空题(共10小题)31.在△ABC中,,满足|﹣t|≤||的实数t的取值范围是.32.已知向量,,若,则x=.33.已知在菱形ABCD中,∠DAB=60°,||=2,则|+|=.34.已知平行四边形ABCD中,对角线AC,BD相交于点O,已知,=,则,则=.35.化简=.36.已知O为坐标原点,,,=(0,a),,记、、中的最大值为M,当a取遍一切实数时,M的取值范围是.37.已知点P在线段AB上,且,设,则实数λ=.38.已知,为平面内两个不共线向量,则,若M,N、P三点共线,则λ=.39.已知向量=(1,),=(﹣2,4),=(),若=(λ∈R),若,则实数λ的值为.40.已知向量=(1,2),=(x,﹣2),若∥,则实数x=.三.解答题(共10小题)41.求证:以A(﹣4,﹣1,﹣9),B(﹣10,1,﹣6),C(﹣2,﹣4,﹣3)为顶点的三角形是等腰直角三角形.42.已知,是同一平面内两个不共线的向量,(1)如果=+,=2﹣,=4+,求证A、B、D三点共线;(2)试确定实数k的值,使和共线.43.如图,已知△OAB中,点C是点B关于A的对称点,点D是线段OB的一个靠近B 的三等分点,DC和OA交于E,设=a,=b(1)用向量与表示向量;(2)若=,求实数λ的值.44.如图.已知向量、,求作向量.45.设A、B、C、D、E、F是正六边形的顶点,,试用表示.46.化简下列各式(1)5(2﹣2)+4(2﹣3);(2)(x+y)﹣(x﹣y).47.如图在平行四边形ABCD中,E,F分别是BC,DC的中点,,,,表示和.48.如图所示,已知正六边形ABCDEF,O是它的中心,若=,=,试用,将向量,,,,表示出来.49.已知点A(2,3),B(5,4),C(7,10),若(λ∈R).试当λ为何值时,点P在第三象限内?50.已知向量=(1,0),=(1,1),=(﹣1,1).(Ⅰ)λ为何值时,+λ与垂直?(Ⅱ)若(m+n)∥,求的值.向量复习题参考答案与试题解析一.选择题(共30小题)1.【解答】解:向量,,∴向量=﹣=(﹣2,﹣2),∴||==2.故选:C.2.【解答】解:∵+=,||==.∴=|2|=2.故选:D.3.【解答】解:向量,,若,可得m2=4,解得m=±2.故选:C.4.【解答】解:在A中,单位向量大小相等都是1,但方向不同,故单位向量不一定相等,故A错误;在B中,零向量与任意向量共线,故B正确;在C中,平行向量一定是共线向量,故C错误;在D中,零向量与它的相反向量相等,故D错误.故选:B.5.【解答】解:=(3,1),向量=(﹣4,﹣3),则向量=﹣=(﹣4,﹣3)﹣(3,1)=(﹣7,﹣4),故选:A.6.【解答】解:因为D、E、F分别为△ABC的三边BC、AC、AB的中点,所以++=(+)+(+)+(+)=(+)+(+)+(+)=,故选:D.7.【解答】解:∵,∴=(﹣2,1)﹣(6,10)=(﹣8,﹣9),故选:B.8.【解答】解::①+=正确,②+=;正确,③﹣=,故③不正确;故选:B.9.【解答】解:如图所示,平行四边形ABCD中,对角线AC与BD交于点O,∴+==2,∴λ=2.故选:A.10.【解答】解:由题意知=﹣=﹣(+)∵=,=,=,∴=(﹣﹣)故选:D.11.【解答】解:∵,∴=,∴•=0,⊥,如图所示:,则与的夹角是,故选:D.12.【解答】解:设AB的中点为F∵点M是△ABC的重心∴.故选:C.13.【解答】解:由,∴+2•+=4﹣4•+,∴6•=3,∴=2•,=2||×||cosθ,其中θ为、的夹角;∴||=2||cosθ,又、是不共线的两个非零向量,∴||<|2|.故选:A.14.【解答】解:根据题意,△ABC中,,则有•=||||cos120°=﹣3,变形可得||||=6,点G是△ABC的重心,则=(+),则||2=(+)2=(||2+||2+2•)=(||2+||2﹣6)≥(2||||﹣6)=,则≥的最小值是;故选:B.15.【解答】解:如图所示,△ABC中,,∴==(﹣),∴=+=+(﹣)=+.故选:D.16.【解答】解:如图所示,∵点E为CD的中点,CD∥AB,∴==2,∴=,==﹣,∴==﹣+,故选:C.17.【解答】解:∵,.∴=,∴⇒则λ+μ=.故选:D.18.【解答】解:△ABC中,=,=,∴=+=+=+(﹣)=+•=+(﹣)=﹣+;又=λ+μ,∴λ=﹣,μ=,∴λ+μ=﹣+=﹣.故选:D.19.【解答】解:平面向量=(1,2),=(﹣2,m),且∥,可得m=﹣4,|+|=|(﹣1,﹣2)|=.故选:A.20.【解答】解:∵,;∴,,两式相减得:;∴.故选:C.21.【解答】解:∵向量=(4,2),=(x,3)向量,且,∴4×3﹣2x=0,∴x=6,故选:C.22.【解答】解:∵=(2,x),=(6,8),且∥,∴2×8﹣6x=0,即x=.故选:A.23.【解答】解:点A(﹣1,2),B(1,﹣3),点P在线段AB的延长线上,且=3,如图所示;设点P的坐标为(x,y),则=(x+1,y﹣2),=(1﹣x,﹣3﹣y);且=﹣3,即,解得x=2,y=﹣,所以点P为(2,﹣).故选:C.24.【解答】解:由已知得点P在P1P2的延长线上或P2P1的延长线上,故有两解,排除选项A、B,选项C、D中有共同点(﹣9,4),只需验证另外一点P是否适合|P1P|=15.若P的坐标为(15,﹣14),则求得|P1P|=15,故选:C.25.【解答】解:∵||=3,||=4,与的夹角为120°,∴=﹣6=,∴,即为在方向上的投影.故选:A.26.【解答】解:由2=知,O为BC的中点,如图所示;又O为△ABC外接圆的圆心,半径为1,∴BC为直径,且BC=2,OA=AB=1,∠ABC=;∴向量在向量方向的投影||cos=.故选:C.27.【解答】解:向量,满足||=1,=﹣1,则•(2)=2﹣=2+1=3,故选:B.28.【解答】解:如图所示,在圆C中,过点C作CD⊥AB于D,则D为AB的中点;在Rt△ACD中,AD=AB=2,可得cosA==,∴•=||×||×cosA=4×||×=8.故选:A.29.【解答】解:向量,的夹角为,且||=4,||=1,可得•=4×1×cos=4×=2,则||====4,故选:C.30.【解答】解:△ABC的外接圆的圆心为O,半径为1,2=,且||=||,可得O为斜边BC的中点,∠BAC=90°,∠ABC=60°,||=||=1,则向量在方向上的投影为||cos120°=﹣1×=﹣,故选:D.二.填空题(共10小题)31.【解答】解:△ABC中,AB=,即AC=1;则=;∴由得:;∴;整理得:2t2﹣3t≤0;解得;∴实数t的取值范围是.故答案为:.32.【解答】解:∵=(2,1),=(x,﹣2),由‖,得2×(﹣2)﹣x=0,解得x=﹣4.故答案为﹣4.33.【解答】解:在菱形ABCD中,∠DAB=60°,||=2∵|+|2=||2+||2+2||•||cos∠DAB=4+4+2×2×2×=12,∴|+|=|+|=2,故答案为:2.34.【解答】解:由向量的三角形法则可得:==,∴=.故答案为.35.【解答】解:原式==.故答案为.36.【解答】解:∵,,=(0,a),当a=0时,M≥当a=7时,(A,B,C三点共线)时,则当P落在AB的中点上时,M取最小值,M 当a≠0,且a≠7时,当P落在△ABC的外心Q上时,且Q最小时,M有最小值∵Q所在的直线与AB垂直,故Q落在直线y=x上若PA2≥PB2,则y≥x;当y≥x时M2=max{PA2,PC2}∵到点C的距离等于到x轴的距离的点的轨迹是抛物线:(x﹣3)2=8(y﹣2),交直线y=x于P(7﹣2,7﹣2),∴M min=7﹣2,∴当a=2时,M取最小值7﹣2,故M的取值范围是故答案为:37.【解答】解:如图所示,点P在线段AB上,且,∴==;又,∴λ=.故答案为:.38.【解答】解:∵,,且M,N、P三点共线,∴,即,则,解得.故答案为:﹣4.39.【解答】解:向量=(1,),=(﹣2,4),=(),∴==(1﹣2λ,+4λ),若,则•=0,∴(1﹣2λ)+2(+4λ)=0,化简得1﹣2λ+2+8λ=0,解得λ=﹣.∴实数λ的值为﹣.故答案为:﹣.40.【解答】解:由=(1,2),=(x,﹣2),且∥,得1×(﹣2)﹣2x=0,解得x=﹣1.故答案为:﹣1.三.解答题(共10小题)41.【解答】证明:,,,∵d2(A,B)+d2(A,C)=d2(B,C)且d(A,B)=d(A,C).∴△ABC为等腰直角三角形.42.【解答】(1)证明:∵=,∴与共线,又与有公共点B,∴A,B,D三点共线;(2)解:∵若使和共线.∴存在实数λ,使得=λ()成立,∴.∵,是同一平面内两个不共线的向量,∴,解得.∴实数k的值是±2.43.【解答】解:(1)△OAB中,∵点C是点B关于A的对称点,∴==,∴=﹣,∴=+=﹣+(﹣)=﹣﹣;又∵=2=2,点D是线段OB的一个靠近B的三等分点,∴=;又∵=+=﹣+,∴=+=2+(﹣+)=+;(2)∵=+,设=+=+x,=y,x、y∈R;∴+=y+xy,即,解得y=,x=;∴=,=;∴当=时,λ=.44.【解答】解:如图所示,作,连接OE,以EO,EF为邻边作平行四边形OCFE,连接BC,则==.45.【解答】解:如图:==﹣=﹣,=﹣=2﹣=2(﹣)﹣=2﹣346.【解答】解:(1)5(2﹣2)+4(2﹣3)=10﹣10+8﹣12=﹣2﹣2.(2)(x+y)﹣(x﹣y)=x﹣=2y.47.【解答】解:==﹣=,===.48.【解答】解:依题意得,所以=+,…(2分)所以==+;…(3分)由于A,B,O,F四点也构成平行四边形ABOF,所以=+=+=++=2+;…(6分)同样在平行四边形BCDO中,===+(+)=+2;…(9分)===﹣.…(12分)49.【解答】解:设=(x,y)﹣(2,3)=(x﹣2,y﹣3)=(x,y)﹣(2,3)=(x﹣2,y﹣3)=(3+5λ,1+7λ)∵∴(x﹣2,y﹣3)=(3+5λ,1+7λ)∴∴∵P在第三象限内∴∴∴λ<﹣1,即λ<﹣1时,P点在第三象限.50.【解答】解:(Ⅰ)∵向量=(1,0),=(1,1),=(﹣1,1).∴=(1+λ,λ),∵+λ与垂直,∴()•=1+λ+0=0,解得λ=﹣1,∴λ=1时,+λ与垂直.(Ⅱ)∵=(m,0)+(n,n)=(m+n,n),又(m+n)∥,∴(m+n)×1﹣(﹣1×n)=0,∴=﹣2.∴若(m+n)∥,则=﹣2.。

(典型题)高中数学必修四第二章《平面向量》检测卷(答案解析)

(典型题)高中数学必修四第二章《平面向量》检测卷(答案解析)

一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( ) A .1 B .3 C .7 D .32.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .16 3.已知ABC 中,2AB AC ==,120CAB ∠=,若P 是其内一点,则AP AB ⋅的取值范围是( )A .(4,2)--B .(2,0)-C .(2,4)-D .(0,2)4.若向量a ,b 满足|a 10 ,b =(﹣2,1),a •b =5,则a 与b 的夹角为( ) A .90° B .60° C .45° D .30°5.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A 2B .1C .2D .226.已知ABC ,若对任意m R ∈,BC mBA CA -≥恒成立,则ABC 为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不确定 7.已知向量()a 1,2=,()b x,2=-,且a b ⊥,则a b +等于( ).A 5B .5C .42D 31 8.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( )A .18- B .116- C .316- D .09.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( )A .8B .4C .6D .310.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23πC .3πD .6π 11.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .23 12.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ;②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =;④若//a b ,则一定存在唯一的实数λ,使得a b λ=.A .①③B .①④C .②③D .②④二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题:①若1AB λ=,1AC μ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心;③若1λμ+=,且0μ>,则点P 在线段BC 上;④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内.其中真命题为______14.已知平面向量,,a b c 满足()()||2,||2||a c b c a b a b -⋅-=-==.则c 的最大值是________.15.圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为_____.16.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 17.已知腰长为2的等腰直角△ABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值 ________.18.已知平面向量2a =,3b =,4c =,4d =,0a b c d +++=,则()()a b b c +⋅+=______. 19.在矩形ABCD 中,2AB =,1AD =,动点P 满足||1AP =,设向量AP AB AD λμ=+,则λμ+的取值范围为____________.20.在ABC △中,已知4CA =,3CP =,23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.三、解答题21.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE . (2)当2AE EB =时,求证:AD CE ⊥.22.已知a ,b ,c 在同一平面内,且()1,2a =.(1)若35c =,且//a c ,求c ;(2)若2b =,且()()2a b a b +⊥-,求a 与b 的夹角的余弦值. 23.已知()()1,,3,2a m b ==-.(1)若()a b b +⊥,求m 的值;(2)若·1a b =-,求向量b 在向量a 方向上的投影.24.已知单位向量1e ,2e 的夹角为60︒,向量12a e e =+,21b e te =-,t R ∈. (1)若//a b ,求t 的值;(2)若2t =,求向量a ,b 的夹角.25.已知单位向量1e ,2e ,的夹角为23π,向量12a e e λ=-,向量1223b e e =+. (1)若//a b ,求λ的值;(2)若a b ⊥,求||a .26.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cos sin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ; (2)若22212a b c =+,试求sin()A B -的值【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题.【详解】设a 、b 所成角为θ,由||||2==a b ,2a b, 则1cos 2θ=,因为0θπ≤≤ 所以3πθ=, 记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴,建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离,由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点3,22Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为 P 到,A Q 两点的距离和最小,()P x 在直线y =上, ()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛ ⎝⎭两点间的距离,考查了运算求解能力. 2.D解析:D【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值.【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-, AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.3.C解析:C【分析】以A 为坐标原点,以过点A 垂直于BC 的直线为y 轴,建立平面直角坐标系,求出()3,1B --,()3,1C -,设(),P x y ,因为点P 是其内一点,所以3x 3-<<,10y -<<,计算3AP AB x y ⋅=--得最值,即可求解.【详解】建立如图所示的空间直角坐标系:则()0,0A ,因为120CAB ∠=,所以30ABC ACB ∠=∠=,可得2cos303= ,2sin301,所以()3,1B -- ,()3,1C -, 设(),P x y ,因为点P 是其内一点,所以33,10x y <<-<<,()(),3,13AP AB x y x y ⋅=⋅--=--, 当3x =1y =-时AP AB ⋅最大为((()3314-⨯--=,当3,1x y ==-时AP AB ⋅最小为(()3312--=-, 所以AP AB ⋅的取值范围是(2,4)-,故选:C【点睛】关键点点睛:本题解题的关键点是建立直角坐标系,将数量积利用坐标表示,根据点(),P x y 是其内一点,可求出,x y 的范围,可求最值.4.C【详解】 由题意可得22(2)15b =-+=,所以2cos ,52a b a b a b ⋅===⋅,又因为,[0,180]<>∈a b ,所以,45<>=a b ,选C.5.B解析:B【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值.【详解】如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B.【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.6.C解析:C【分析】在直线AB 上取一点D ,根据向量减法运算可得到DC CA ≥,由垂线段最短可确定结论.【详解】在直线AB 上取一点D ,使得mBA BD =,则BC mBA BC BD DC -=-=,DC CA ∴≥.对于任意m R ∈,都有不等式成立,由垂线段最短可知:AC AD ⊥,即AC AB ⊥, ABC ∴为直角三角形.故选:C .【点睛】本题考查与平面向量结合的三角形形状的判断,关键是能够利用平面向量数乘运算和减法运算的几何意义准确化简不等式.7.B解析:B【分析】由向量垂直可得0a b ⋅=,求得x ,及向量b 的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模.【详解】 由a b ⊥,可得0a b ⋅=,代入坐标运算可得x-4=0,解得x=4,所以a b + ()5,0=,得a b +=5,选B. 【点睛】求向量的模的方法:一是利用坐标()22,a x y a x y =⇒=+,二是利用性质2a a =,结合向量数量积求解.8.C解析:C【分析】建立平面直角坐标系,()0,P t ,t ≤,则 223(2416⋅=-=--AP CP t t ,进而可求最小值.【详解】以D 点为坐标原点,DC 所在直线为y 轴,DA 所在直线为x 轴建立直角坐标系,1(,0)2A ,1(,0)2B -,(0,2C ,设()0,P t ,其中2t ≤1(,)2AP t =-,(0,CP t ==,223(16⋅==-AP CP t t ,当t =时取最小值为316-,所以AP CP ⋅的最小值为316-. 故选:C【点睛】本题考查了平面向量的数量积运算,用坐标法求最值问题,考查了运算求解能力,属于一般题目.9.D解析:D【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF .【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D.【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.10.B解析:B【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C .【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-. ()20,,3C C ππ∈∴=. 故选:B.【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.11.B解析:B【分析】 由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解.【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=, 故选:B .【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题. 12.B解析:B 【分析】根据向量共线定理判断①④,由模长关系只能说明向量a ,b 的长度关系判断②,举反例判断③.【详解】对于①,由向量共线定理可知,//a b ,则存在唯一的实数1λ,使得1λa b ,//b c ,则存在唯一的实数2λ,使得2λb c ,由此得出存在唯一的实数12λλ⋅,使得12a c λλ=⋅,即//a c ,则①正确;对于②,模长关系只能说明向量a ,b 的长度关系,与方向无关,则②错误; 对于③,当a b =时,由题意可得()5x y a a +=,则5x y +=,不能说明2x =,3y =,则③错误;由向量共线定理可知,④正确;故选:B.【点睛】本题主要考查了向量共线定理以及向量的定义,属于中档题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断.【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】设根据得到取中点为D 又由中点坐标得到再由得到的范围然后由求解【详解】设如图所示:因为所以取中点为D 因为所以解得所以所以点C 是以D 为圆心半径为的圆上运动又因为所以当AOB 共线时取等号所以所以【解析:3【分析】设,,OA a OB b OC c ===,根据||2,||2||a b a b -==,得到||2,||2||AB OA OB ==,取AB 中点为D ,又()()2a c b c CA CB -⋅-=⋅=,由中点坐标得到CD ==⎭2OA OB AB -≤=,得到||OA OD ⎛= 范围,然后由||||||||3c OC OD DC OD =≤+≤+.【详解】设,,OA a OB b OC c ===, 如图所示:因为||2,||2||a b a b -==, 所以||2,||2||AB OA OB ==, 取AB 中点为D ,因为()()2a c b c CA CB -⋅-=⋅=,所以2222||||24AB CB CA CB CA CB CA =-=+-⋅=, 解得228CB CA +=,所以22212322CB CA CD CB CA CB CA ⎛⎫+==++⋅= ⎪⎝⎭所以点C 是以D 3的圆上运动, 又因为2OA OB AB -≤=,所以2OB ≤,当A ,O ,B 共线时,取等号,所以2221||222OA OB OD OB OA OB OA ⎛⎫+==++⋅ ⎪⎝⎭, ()222112104322OB OA AB OB =+-=-≤, 所以||||||||333c OC OD DC OD =≤+≤+≤. 【点睛】关键点点睛:平面向量的中点坐标公式的两次应用:一是22CB CA CD ⎛⎫+= ⎪⎝⎭||2,||2||AB OA OB ==求得定值,得到点C 是以D 为圆心的圆上,实现数形结合;二是||2OA OD ⎛= ⎝⎭2OA OB AB -≤=确定范围,然后由||||||c OC OD DC =≤+求解.15.3【分析】根据向量关系即可确定的形状再根据向量投影的计算公式即可求得结果【详解】因为圆O 为△ABC 的外接圆半径为2若故可得是以角为直角的直角三角形又因为且外接圆半径是故可得则故向量在向量方向上的投影解析:3 【分析】根据向量关系,即可确定ABC 的形状,再根据向量投影的计算公式,即可求得结果.【详解】因为圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=, 故可得ABC 是以角A 为直角的直角三角形.又因为OA AC =,且外接圆半径是2, 故可得224BC OA AC ===,则AB =,AB cos ABC BC ∠==,故向量BA 在向量BC 方向上的投影为32AB cos ABC ⨯∠==. 故答案为:3. 【点睛】本题考查向量数量积的几何意义,属中档题.16.6【分析】建立平面直角坐标系求得点P 的坐标进而得到的坐标再利用数量积的坐标运算求解【详解】如图所示建立平面直角坐标系:则设因为解得所以所以所以故答案为:【点睛】本题主要考查平面向量的坐标表示和数量积解析:6 【分析】建立平面直角坐标系,求得点P 的坐标,进而得到,PA PB 的坐标,再利用数量积的坐标运算求解. 【详解】如图所示建立平面直角坐标系:则()()()()04,00,40,44A B C D ,,,,,设(),P x y ,()(),,4,4BP x y PD x y ==--, 因为3BP PD =,()()3434x x y y ⎧=⨯-⎪⎨=⨯-⎪⎩,解得33x y =⎧⎨=⎩,所以()3,3P ,所以()()3,1,3,3PA PB =-=--, 所以()()()33136PA PB ⋅=-⨯-+⨯-=, 故答案为:6. 【点睛】本题主要考查平面向量的坐标表示和数量积运算,还考查了运算求解的能力,属于中档题.17.【详解】如图建立平面直角坐标系∴当sin 时得到最小值为故选 解析:48322-【详解】如图建立平面直角坐标系,()((P 2cos θ2sin θA 22B22M 02-,,,,,,,∴()()((42cos θ2θ22cos θ2θ24PA PB PC PM ⎡⎤⋅+⋅=+⋅-++⎣⎦,,()(22cos θ2sin θ2cos θ2sin θ216sin θ322sin θ32⎡⎤⋅+=++⎣⎦,,, 当sin θ1=-时,得到最小值为48322-48322-18.【分析】根据得到然后两边平方结合求得再由求解即可【详解】因为所以所以所以因为所以故答案为:【点睛】本题主要考查平面向量的数量积运算还考查了运算求解的能力属于中档题解析:52【分析】根据0a b c d +++=,得到++=-a b c d ,然后两边平方结合2a =,3b =,4c =,4d =,求得⋅+⋅+⋅a b a c b c ,再由()()a b b c +⋅+=2⋅+⋅+⋅+a b a c b c b 求解即可. 【详解】因为0a b c d +++=, 所以++=-a b c d ,所以()()22++=-a b cd ,所以()()()()2222222+++⋅+⋅+⋅=-a b c a b a c b c d ,因为2a =,3b =,4c =,4d =, 所以132⋅+⋅+⋅=-a b a c b c , ()()a b b c +⋅+=252⋅+⋅+⋅+=a b a c b c b . 故答案为:52【点睛】本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题.19.【分析】由已知得应用向量的运算律求出关系利用三角换元结合正弦函数的有界性即可求解【详解】在矩形中令其中最小值最大值分别为的取值范围为故答案为:【点睛】本题考查向量的模长以及向量的数量积运算解题的关键解析:⎡⎢⎣⎦. 【分析】由已知得2||1AP =,应用向量的运算律,求出,λμ关系,利用三角换元结合正弦函数的有界性,即可求解. 【详解】在矩形ABCD 中,,0AB AD AB AD ⊥∴⋅=22222222||()41AP AB AD AB AD λμλμλμ=+=+=+=,令12cos ,sin ,cos sin sin()22λθμθλμθθθϕ==+=+=+,其中1tan 2ϕ=,λμ+最小值、最大值分别为22-,λμ+的取值范围为55,⎡⎤-⎢⎥⎣⎦. 故答案为:55,⎡⎤-⎢⎥⎣⎦【点睛】本题考查向量的模长以及向量的数量积运算,解题的关键用换元法将问题转化为求三角函数的最值,属于中档题.20.6【分析】根据平方处理求得即可得解【详解】在中已知点是边的中点解得则故答案为:6【点睛】此题考查平面向量的基本运算关键在于根据向量的运算法则求出模长根据数量积的运算律计算求解解析:6 【分析】 根据()12CP CA CB =+,平方处理求得2CB =,()12CP CA CA CB CA ⋅=+⋅即可得解. 【详解】在ABC △中,已知4CA =,3CP 23ACB π∠=,点P 是边AB 的中点, ()12CP CA CB =+ ()222124CP CA CB CA CB =++⋅ 211316842CB CB ⎛⎫⎛⎫=++⨯- ⎪ ⎪⎝⎭⎝⎭,解得2CB = 则()()21111162462222CP CA CA CB CA CA CB CA ⎛⎫⎛⎫⋅=+⋅=+⋅=+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:6 【点睛】此题考查平面向量的基本运算,关键在于根据向量的运算法则求出模长,根据数量积的运算律计算求解.三、解答题21.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点, ∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3a y =, 所以,2a AD a ⎛⎫=-⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.22.(1)()3,6c =或()3,6c =--;(2)10-. 【分析】(1)设(),c x y =,由平面向量平行的坐标表示及模的坐标表示可得2y x=⎧=即可得解;(2)由平面向量垂直可得()()20a b a b +⋅-=,再由平面向量数量积的运算可得1a b ⋅=-,最后由cos ,a ba b a b⋅=⋅即可得解. 【详解】(1)设(),c x y =,因为()1,2a =,//a c ,35c =,所以235y x x y =⎧+=⎪⎩36x y =⎧⎨=⎩或36x y =-⎧⎨=-⎩, 所以()3,6c =或()3,6c =--;(2)因为()1,2a =,所以14a =+又()()2a b a b +⊥-,2b =,所以()()22225220a b a b aa b ba b +⋅-=+⋅-=+⋅-⨯=,所以1a b ⋅=-, 所以cos ,5a b a b a b⋅===⨯⋅【点睛】本题考查了平面向量共线及模的坐标表示,考查了平面向量数量积的应用及运算求解能力,属于中档题. 23.(1)8m =(2)【分析】(1)先得到()4,2a b m +=-,根据()a b b +⊥可得()0a b b +⋅=,即可求出m ;(2)根据·1a b =-求出m=2,再根据cos ,a b b a b b a b⋅=⋅求b 在向量a 方向上的投影.【详解】()()14,2a b m +=-;()a b b +⊥;()34220m ∴⋅--=;8m ∴=;()2321a b m ⋅=-=-;2m ∴=;()1,2a ∴=;b ∴在向量a 方向上的投影为cos ,55a b b a b b a b⋅=⋅==-.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题. 24.(1)1t =-;(2)23π. 【分析】(1)根据题意,设a kb =,则有122112()()e e k e te kte ke +=-=-+,分析可得11ktk=-⎧⎨=⎩,解可得t 的值;(2)根据题意,设向量a ,b 的夹角为θ;由数量积的计算公式可得a 、||b 以及a b , 由cos a b a bθ⋅=计算可得答案.【详解】(1)∵根据题意,向量12a e e =+,21b e te =-,若//a b ,则设a kb =, 则有122112()()e e k e te kte ke +=-=-+,则有11kt k =-⎧⎨=⎩,解可得1t =-;(2)根据题意,设向量a ,b 的夹角为θ;若2t =,则212b e e =-,则2221||(2)3b e e =-=,则||3b =, 又由12a e e =+,则2212||()3a e e =+=,则||3a =, 又由12213()(2)2a b e e e e =+-=-,则312cos 2||||3a b a b θ-===-⨯,又由0θπ,则23πθ=; 故向量a ,b 的夹角为23π. 【点睛】本题考查向量数量积的计算,涉及向量模的计算公式,属于基础题.25.(1)23-;(2 【分析】(1)由//a b ,所以存在唯一实数t,使得b ta =,建立方程组可得答案;(2)由已知求得12e e ⋅,再由a b ⊥得()()1212230e e e e λ-⋅+=,可解得λ,再利用向量的模的计算方法可求得答案. 【详解】(1)因为//a b ,所以存在唯一实数t,使得b ta =,即()121223e e t e e λ+=-, 所以23t tλ=⎧⎨=-⎩,解得23λ=-;(2)由已知得122111cos32e e π⋅=⨯⨯=-,由a b ⊥得()()1212230e e e e λ-⋅+=,即()12+32302λλ⎛⎫-⨯--= ⎪⎝⎭,解得4λ=,所以124a e e =-,所以22121212||416821a e e e e e e =-=+-⋅=||21a =.【点睛】本题考查向量平行的条件和向量垂直的条件,以及向量的模的计算,属于中档题.26.(1)60C =︒;(2. 【分析】(1)利用两个向量垂直的性质,两个向量数量积公式以及二倍角公式,求得cos C 的值,可得C 的值.(2)利用两角差的正弦公式,正弦定理和余弦定理化简,可得结果. 【详解】(1)由题意知,0m n =,即222cos2sin 02CC -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒. (2)2222221122a b c a b c =+⇒-=,222222sin()sin cos sin cos 2222a a c b b b c a A B A B B A R ac R bc+-+--=-=- ()222214442a b c c sinC cR cR R -=====. 【点睛】本题主要考查两个向量数量积公式,两角差的正弦公式,正弦定理和余弦定理的应用,属于中档题.。

(完整word版)高中数学必修四向量练习题(附解析)

(完整word版)高中数学必修四向量练习题(附解析)

向量专项练习参考答案一、选择题1.(文)(2014·郑州月考)设向量a =(m,1),b =(1,m ),如果a 与b 共线且方向相反,则m 的值为( )A .-1B .1C .-2D .2[答案] A[解析] 设a =λb (λ<0),即m =λ且1=λm .解得m =±1,由于λ<0,∴m =-1. [点评] 1.注意向量共线与向量垂直的坐标表示的区别,若a =(x 1,y 1),b =(x 1,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0,当a ,b 都是非零向量时,a ⊥b ⇔x 1x 2+y 1y 2=0,同时还要注意a ∥b 与x 1x 2=y 1y 2不等价. 2.证明共线(或平行)问题的主要依据:(1)对于向量a ,b ,若存在实数λ,使得b =λa ,则向量a 与b 共线(平行). (2)a =(x 1,y 1),b =(x 2,y 2),若x 1y 2-x 2y 1=0,则向量a ∥b . (3)对于向量a ,b ,若|a ·b |=|a |·|b |,则a 与b 共线. 要注意向量平行与直线平行是有区别的.(理)(2013·荆州质检)已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n =( )A .-2B .2C .-12D .12[答案] C[解析] 由向量a =(2,3),b =(-1,2)得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1),因为m a +n b 与a -2b 共线,所以(2m -n )×(-1)-(3m +2n )×4=0,整理得m n =-12.2.(2014·山东青岛期中)设a ,b 都是非零向量,下列四个条件中,一定能使a |a |+b|b |=0成立的是( )A .a =-13bB .a ∥bC .a =2bD .a ⊥b[答案] A[解析] 由题意得a |a |=-b |b |,而a |a |表示与a 同向的单位向量,-b|b |表示与b 反向的单位向量,则a 与b 反向.而当a =-13b 时,a 与b 反向,可推出题中条件.易知B ,C ,D 都不正确,故选A.[警示] 由于对单位向量、相等向量以及共线向量的概念理解不到位从而导致错误,特别对于这些概念:(1)单位向量a|a |,要知道它的模长为1,方向同a 的方向;(2)对于任意非零向量a 来说,都有两个单位向量,一个与a 同向,另一个与a 反向;(3)平面内的所有单位向量的起点都移到原点,则单位向量的终点的轨迹是个单位圆;(4)相等向量的大小不仅相等,方向也必须相同,而相反向量大小相等,方向是相反的;(5)相等向量和相反向量都是共线向量,但共线向量不一定是相等向量,也有可能是相反向量.3.(2015·广州执信中学期中)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)[答案] B[解析] 由条件知,PC →=2PQ →-P A →=2(1,5)-(4,3)=(-2,7), ∵BP →=2PC →=(-4,14), ∴BC →=BP →+PC →=(-6,21).4.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a ,b 不共线,则四边形ABCD 为( )A .平行四边形B .矩形C .梯形D .菱形 [答案] C[解析] ∵AD →=AB →+BC →+CD →=-8a -2b =2BC →, ∴四边形ABCD 为梯形.5.(文)(2014·德州模拟)设OB →=xOA →+yOC →,x ,y ∈R 且A ,B ,C 三点共线(该直线不过点O ),则x +y =( )A .-1B .1C .0D .2[答案] B[解析] 如图,设AB →=λAC →,则OB →=OA →+AB →=OA →+λAC →=OA →+λ(OC →-OA →) =OA →+λOC →-λOA →=(1-λ)OA →+λOC → ∴x =1-λ,y =λ,∴x +y =1.[点评] 用已知向量来表示另外一些向量是用向量解题的基本功.在进行向量运算时,要尽可能将它们转化到平行四边形或三角形中,以便使用向量的运算法则进行求解.充分利用平面几何的性质,可把未知向量用已知向量表示出来.(理)(2013·安庆二模)已知a ,b 是不共线的两个向量,AB →=x a +b ,AC →=a +y b (x ,y ∈R ),若A ,B ,C 三点共线,则点P (x ,y )的轨迹是( )A .直线B .双曲线C .圆D .椭圆[答案] B[解析] ∵A ,B ,C 三点共线, ∴存在实数λ,使AB →=λAC →.则x a +b =λ(a +y b )⇒⎩⎪⎨⎪⎧x =λ,1=λy ⇒xy =1,故选B.6.(2014·湖北武汉调研)如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH → B .OG → C.EO → D .FO →[答案] D[解析] 由平行四边形法则和图示可知,选D.二、填空题7.已知a =(2,-3),b =(sin α,cos 2α),α∈⎝⎛⎭⎫-π2,π2,若a ∥b ,则tan α=________. [答案] -33[解析] ∵a ∥b ,∴sin α2=cos 2α-3,∴2cos 2α=-3sin α,∴2sin 2α-3sin α-2=0, ∵|sin α|≤1,∴sin α=-12,∵α∈⎝⎛⎭⎫-π2,π2,∴cos α=32,∴tan α=-33. 8.(文)(2014·宜春质检)如图所示,在△ABC 中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM →=λAB →+μAC →,则λ+μ=________.[答案] 12[分析] 由B ,H ,C 三点共线可用向量AB →,AC →来表示AH →.[解析] 由B ,H ,C 三点共线,可令AH →=xAB →+(1-x )AC →,又M 是AH 的中点,所以AM →=12AH →=12xAB →+12(1-x )·AC →,又AM →=λAB →+μAC →.所以λ+μ=12x +12(1-x )=12.[点评] 应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用.当基底确定后,任一向量的表示都是唯一的.(理)(2014·河北二调)在△ABC 中,AC =1,AB =2,A =2π3,过点A 作AP ⊥BC 于点P ,且AP →=λAB →+μAC →,则λμ=________.[答案]1049[解析] 由题意知AB →·AC →=2×1×cos 2π3=-1,∵AP ⊥BC ,∴AP →·BC →=0,即(λAB →+μAC →)·(AC →-AB →)=0,∴(λ-μ)AB →·AC →-λAB →2+μAC →2=0,即μ-λ-4λ+μ=0,∴μ=52λ,①∵P ,B ,C 三点共线,∴λ+μ=1,②由①②联立解得⎩⎨⎧λ=27μ=57,即λμ=27×57=1049.9.(文)已知G 是△ABC 的重心,直线EF 过点G 且与边AB 、AC 分别交于点E 、F ,AE →=αAB →,AF →=βAC →,则1α+1β=______.[答案] 3[解析] 连结AG 并延长交BC 于D ,∵G 是△ABC 的重心,∴AG →=23AD →=13(AB →+AC →),设EG →=λGF →,∴AG →-AE →=λ(AF →-AG →),∴AG →=11+λAE →+λ1+λAF →,∴13AB →+13AC →=α1+λAB →+λβ1+λAC →, ∴⎩⎪⎨⎪⎧ α1+λ=13,λβ1+λ=13,∴⎩⎪⎨⎪⎧1α=31+λ,1β=3λ1+λ,∴1α+1β=3.三、解答题10.(文)已知O (0,0)、A (2,-1)、B (1,3)、OP →=OA →+tOB →,求 (1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第四象限? (2)四点O 、A 、B 、P 能否成为平行四边形的四个顶点,说明你的理由. [解析] (1)OP →=OA →+tOB →=(t +2,3t -1). 若点P 在x 轴上,则3t -1=0,∴t =13;若点P 在y 轴上,则t +2=0,∴t =-2;若点P 在第四象限,则⎩⎪⎨⎪⎧t +2>03t -1<0,∴-2<t <13.(2)OA →=(2,-1),PB →=(-t -1,-3t +4). 若四边形OABP 为平行四边形,则OA →=PB →.∴⎩⎪⎨⎪⎧-t -1=2-3t +4=-1无解. ∴ 四边形OABP 不可能为平行四边形.同理可知,当t =1时,四边形OAPB 为平行四边形,当t =-1时,四边形OP AB 为平行四边形.(理)已知向量a =(1,2),b =(cos α,sin α),设m =a +t b (t 为实数). (1)若α=π4,求当|m |取最小值时实数t 的值;(2)若a ⊥b ,问:是否存在实数t ,使得向量a -b 和向量m 的夹角为π4,若存在,请求出t ;若不存在,请说明理由.[解析] (1)∵α=π4,∴b =(22,22),a ·b =322,∴|m |=(a +t b )2=5+t 2+2t a ·b =t 2+32t +5=(t +322)2+12, ∴当t =-322时,|m |取到最小值,最小值为22.。

(典型题)高中数学必修四第二章《平面向量》测试题(有答案解析)

(典型题)高中数学必修四第二章《平面向量》测试题(有答案解析)

一、选择题1.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的个数为( )①当0x =时,[]2,3y ∈②当P 是线段CE 的中点时,12x =-,52y =③若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段 ④x y -的最大值为1- A .1 B .2C .3D .42.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .3.若12,e e 是夹角为60︒的两个单位向量,则向量1212,2a e e b e e =+=-+的夹角为( ) A .30B .60︒C .90︒D .120︒4.在AOB ∆中,0,5,25,OA OB OA OB AB ⋅===边上的高为,OD D 在AB 上,点E 位于线段OD 上,若34OE EA ⋅=,则向量EA 在向量OD 上的投影为( ) A .12或32B .1C .1或12D .325.已知1a ,2a ,1b ,2b ,()*k b k ⋅⋅⋅∈N是平面内两两互不相等的向量,121a a-=,且对任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈,则k 最大值为( ) A .3B .4C .5D .66.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6B .4C .3D .27.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A B .1C .2D .8.已知向量,a b 满足2(1,2),(1,)+==a b m b m ,且a 在b ,则实数m =( )A .2±B .2C .5±D 9.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-10.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,AB =,2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 11.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( ) A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定12.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23π C .3π D .6π 二、填空题13.已知平面向量a ,b ,c ,d 满足1a b ==,2c =,0a b ⋅=,1c d -=,则2a b d ++的取值范围为______.14.已知向量1e ,2e 是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当12OP xe ye =+时,则称有序实数对(),x y 为点P 的广义坐标,若点A 、B 的广义坐标分别为()11,x y 、()22,x y ,对于下列命题: ① 线段A 、B 的中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭;② A 、B③ 向量OA 平行于向量OB 的充要条件是1221x y x y =; ④ 向量OA 垂直于向量OB 的充要条件是12120x x y y +=. 其中的真命题是________(请写出所有真命题的序号)15.如图,在Rt ABC ∆中,2,60,90AB BAC B =∠=︒∠=︒,G 是ABC ∆的重心,则GB GC ⋅=__________.16.在平面内,定点,,A B C 满足DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点,P M 满足1AP PM MC ==,则2BM 的最大值为________.17.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.18.如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN 的最小值是_____.19.已知O 为ABC 内一点,且满足305OA OB OC =++,延长AO 交BC 于点D .若BD DC λ=,则λ=_____.20.已知平面向量a ,b 满足3a b +=,3a b -=,则向量a 与b 夹角的取值范围是______.三、解答题21.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数m 和n ; (3)若()(2)a kc b a +⊥-,求实数k . 22.已知向量a 与b 的夹角为3π,且1a =,2b =. (1)求a b +;(2)求向量a b +与向量a 的夹角的余弦值. 23.已知向量,a b 满足:16,()2a b a b a ==⋅-=,. (1)求向量a 与b 的夹角; (2)求2a b -.24.如图,正六边形ABCDEF 的边长为1.M ,N 分别是BC ,DE 上的动点,且满足BM DN =.(1)若M ,N 分别是BC ,DE 的中点,求AM AN ⋅的值; (2)求AM AN ⋅的取值范围.25.已知向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭且函数()f x u v =⋅,若函数f (x )的图象上两个相邻的对称轴距离为2π. (1)求函数f (x )的解析式; (2)将函数y =f (x )的图象向左平移12π个单位后,得到函数y =g (x )的图象,求函数g (x )的表达式并其对称轴;(3)若方程f (x )=m (m >0)在0,2x π⎡⎤∈⎢⎥⎣⎦时,有两个不同实数根x 1,x 2,求实数m 的取值范围,并求出x 1+x 2的值.26.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用向量共线的充要条件判断出①错,③正确;利用向量的运算法则求出OP ,求出x ,y 判断出②正确,利用三点共线解得④正确 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故①错 当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ ()11153(2)32222OB OB AB OB OB OB OA OA OB =+-+=-+-=-+,故②对x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故③对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N , 则:OP ON OM =+;又OP xOA yOB =+;0x ∴≤,1y ≥;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故④正确 所以选项②③④正确. 故选:C 【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.2.C解析:C 【解析】,,又,,则,故选3.B解析:B 【分析】首先分别求出12a e e =+与122b e e =-+的数量积以及各自的模,利用数量积公式求之. 【详解】 由已知,1212e e ⋅=,所以(()1212)2e e e e +-+=32,|12e e +3,|122e e -+3, 设向量1212,2a e e b e e =+=-+的夹角为α,则312cos ,2333παα==∴=⋅.故答案为B 【点睛】(1)本题主要考查向量的夹角的求法,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 求两个向量的夹角一般有两种方法,方法一:·cos ,ab a b a b=,方法二:设a =11(,)x y ,b =22(,)x y ,θ为向量a 与b 的夹角,则121222221122cos x y x yθ=+⋅+.4.A解析:A 【解析】Rt AOB 中,0OA OB ⋅=,∴2AOB π∠=,∵5OA =,25OB =,∴225AB OA OB += , ∵AB 边上的高线为OD ,点E 位于线段OD 上,建立平面直角坐标系,如图所示; 则)5,0A、(025B ,、设(),D m n ,则OAD BAO ∽,∴OA ADAB OA=, ∴1AD =,∴15AD AB =, 即()(155,255m n =-,,求得45m =, ∴4525D ⎝⎭;则45254525OE OD λλ⎫===⎪⎪⎝⎭⎝⎭, 45255,EA ⎛⎫= ⎪ ⎪⎭;∵34OE EA ⋅=, ∴2454525354⎫⎫⋅-=⎪⎪⎪⎪⎭⎝⎭, 解得34λ=或14λ=;∴向量EA 在向量OD 上的投影为))452511ED OD OE λλ⎛⎫=-=-- ⎪⎪⎝⎭, 当34λ=时,5512ED ⎛== ⎝⎭;当14λ=时,353532ED ==⎝⎭. 即向量EA 在向量OD 上的投影为12或32,故选A.5.D解析:D 【分析】根据向量的几何意义把抽象问题具体化,转化到圆与圆的位置关系问题. 【详解】如图所示,设11OA a =,22OA a =,此时121A A =,由题意可知:对于任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈, 作j j OB b =则有1j A B 等于1或2,且2j A B 等于1或2, 所以点(1,2,,)j B j k =同时在以(1,2)i A i =为圆心,半径为1或2的圆上,由图可知共有6个交点满足条件,故k 的最大值为6.故选:D. 【点睛】本题主要考查平面向量的线性运算和平面向量的应用.6.C解析:C 【分析】根据向量的运算法则,求得12AM AD AB =+,2132MN AD AB =-+,再结合向量的数量积的运算公式,即可求解. 【详解】由题意,作出图形,如图所示:由图及题意,根据向量的运算法则,可得12AM AD DM AD AB =+=+, 2132MN CN CM CB CD =-=-21213232BC DC AD AB =-+=-+,所以2212121||||23234AM MN AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=.故选C .【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力.7.B解析:B 【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值. 【详解】 如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B. 【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.8.A解析:A 【分析】根据2(1,2),(1,)+==a b m b m 可得0,2m a ⎛⎫= ⎪⎝⎭,结合||cos a θ=,列出等式,即可解出答案. 【详解】因为向量,a b 满足2(1,2),(1,)a b m b m +==,22(0,)a a b b m =+-=,所以20,,22m m a a b ⎛⎫=⋅= ⎪⎝⎭,若向量,a b 的夹角为θ,则2225||(||cos )152m b a m a b θ=+⋅=⋅=, 所以42516160m m --=,即()()225440m m +-=,解得2m =±. 故选:A . 【点睛】本题主要考查向量的投影及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是||||cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角,cos ||||a ba b θ⋅=⋅(此时a b ⋅往往用坐标形式求解);(2)求投影,a 在b 上的投影是||a bb ⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb +的模(平方后需求a b ⋅). 9.C解析:C 【分析】对=2a b -两边平方后,结合2·cos 3a b a b π=⋅进行化简可得:224a b b +⋅+=;由基本不等式可得222a b a b +⋅,于是推出403a b<⋅,再结合平面向量数量积即可得解. 【详解】因为2a b -=,所以 2224a a b b -⋅+=,所以2222cos 43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a ba b +⋅,403a b∴<⋅, 所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭. 故选:C . 【点睛】本题主要考查平面向量数量积运算,考查利用基本不等式求最值,难度一般.对于平面向量的模长问题,一般采用平方处理,然后结合平面向量数量积的运算公式求解即可.10.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.11.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()b c a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.12.B解析:B 【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C . 【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-.()20,,3C C ππ∈∴=.故选:B. 【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.二、填空题13.【分析】用几何意义求解不妨设则在圆心在原点半径为2的圆上设则在以为圆心半径为1的圆上运动后形成的轨迹是圆心在原点大圆半径为3小圆半径为1的圆环表示圆环内的点与定点的距离由图形可得最大值和最小值【详解解析:3⎡⎤⎣⎦【分析】用几何意义求解.不妨设()1,0a =,()0,1b =,(),c x y =,则(,)C x y 在圆心在原点,半径为2的圆上,设(),d x y '=',则(,)D x y ''在以C 为圆心半径为1的圆上,C 运动后,D 形成的轨迹是圆心在原点,大圆半径为3,小圆半径为1的圆环,2a b d ++表示圆环内的点D 与定点()2,1P --的距离,由图形可得最大值和最小值.【详解】令()1,0a =,()0,1b =,(),c x y =,设C 的坐标为(),x y ,C 的轨迹为圆心在原点,半径为2的圆上.设(),d x y '=',D 的坐标为(),x y '',D 的轨迹为圆心在原点,大圆半径为3,小圆半径为1的圆环上.()22,1a b d d ++=---表示D 与点()2,1P --的距离,由图可知,故2a b d ++的取值范围为0,53⎡⎤+⎣⎦. 故答案为:0,53⎡⎤+⎣⎦【点睛】本题考查向量模的几何意义,考查模的最值,解题关键是设()1,0a =,()0,1b =,(),c x y =,(),d x y '=',固定,a b 后得出了,C D 的轨迹,然后由模2a b d ++的几何意义得出最值.14.①③【分析】根据点的广义坐标分别为利用向量的运算公式分别计算①②③④得出结论【详解】点的广义坐标分别为对于①线段的中点设为M 根据=()=中点的广义坐标为故①正确对于②∵(x2﹣x1)A 两点间的距离为解析:①③ 【分析】根据点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,利用向量的运算公式分别计算①②③④,得出结论.【详解】点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,对于①,线段A 、B 的中点设为M ,根据OM =12(OA OB +)=12112211()()22x x e y y e +++∴中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,故①正确. 对于②,∵AB =(x 2﹣x 1)()1212e y y e +-,∴A 、B 12e ,故②不一定正确.对于③,向量OA 平行于向量OB ,则t OA OB =,即(11,x y )=t ()22,x y ,1221x y x y ∴=,故③正确.对于④,向量OA 垂直于向量OB ,则OA OB =0,221211221121220x x e x y x y e e y y e ∴+++=(),故④不一定正确.故答案为①③. 【点睛】本题在新情境下考查了数量积运算性质、数量积定义,考查了推理能力与计算能力,属于中档题.15.【解析】分析:建立平面直角坐标系结合平面向量数量积的坐标运算整理计算即可求得最终结果详解:建立如图所示的平面直角坐标系则:由中心坐标公式可得:即据此有:结合平面向量数量积的坐标运算法则可得:点睛:求 解析:209-【解析】分析:建立平面直角坐标系,结合平面向量数量积的坐标运算整理计算即可求得最终结果.详解:建立如图所示的平面直角坐标系,则:()0,2A ,()0,0B ,()C ,由中心坐标公式可得:2003G ⎫++⎪⎪⎝⎭,即23G ⎫⎪⎭, 据此有:233GB ⎛⎫=-- ⎪⎝⎭,4233GC ⎛⎫=-⎪⎭, 结合平面向量数量积的坐标运算法则可得:222203339GB GC ⎛⎛⎫⎛⎫⋅=--⨯-=- ⎪ ⎪⎝⎝⎭⎝⎭.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.16.【分析】由可得为的外心又可得为的垂心则为的中心即为正三角形运用向量的数量积定义可得的边长以为坐标原点所在直线为轴建立直角坐标系求得的坐标再设由中点坐标公式可得的坐标运用两点的距离公式可得的长运用三角 解析:494【分析】由DA DB DC ==,可得D 为ABC ∆的外心,又DA DB DB DC DC DA ⋅=⋅=⋅,可得D 为ABC ∆的垂心,则D 为ABC ∆的中心,即ABC ∆为正三角形.运用向量的数量积定义可得ABC ∆的边长,以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy ,求得,B C 的坐标,再设(cos ,sin ),(02)P θθθπ≤<,由中点坐标公式可得M 的坐标,运用两点的距离公式可得BM 的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值. 【详解】解: 由DA DB DC ==,可得D 为ABC ∆的外心, 又DA DB DB DC DC DA ⋅=⋅=⋅,可得()0,(DB DA DC DC DB ⋅-=⋅ )0DA -=,即0DB AC DC AB ⋅=⋅=, 即有,DB AC DC AB ⊥⊥,可得D 为ABC ∆的垂心, 则D 为ABC ∆的中心,即ABC ∆为正三角形, 由2DA DB ⋅=-,即有||||cos1202DA DB ︒⋅=-, 解得||2DA =,ABC ∆的边长为4cos3023︒=以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy , 可得B(3,3),C(3,3),D(2,0)-, 由||1AP =,可设(cos ,sin ),(02)P θθθπ≤<,由PM MC =,可得M 为PC 中点,即有3cos 3sin (2M θθ++,则2223cos3sin||3=3+2BMθθ⎛⎫++⎛⎫-+⎪⎪ ⎪⎝⎭⎝22(3cos)(33sin)376cos63sin4θθθθ-+-+=+=3712sin64πθ⎛⎫+-⎪⎝⎭=,当sin16πθ⎛⎫-=⎪⎝⎭,即23πθ=时,取得最大值,且为494.故答案为:494.【点睛】本题考查向量的定义和性质,以及模的最值的求法,注意运用坐标法,转化为三角函数的最值的求法,考查化简整理的运算能力,属于中档题.17.【分析】延长BC作圆M的切线设切点为A1切线与BD的交点D结合数量积的几何意义可得点A运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC作圆M的切线设切点为A1切解析:2-【分析】延长BC,作圆M的切线,设切点为A1,切线与BD的交点D,结合数量积的几何意义可得点A运动到A1时,CA在CB上的投影最小,设CP x=,将结果表示为关于x的二次函数,求出最值即可.【详解】如图,延长BC,作圆M的切线,设切点为A1,切线与BD的交点D,由数量积的几何意义,CA CB⋅等于CA在CB上的投影与CB之积,当点A运动到A1时,CA在CB上的投影最小;设BC中点P,连MP,MA1,则四边形MPDA1为矩形;设CP=x,则CD=2-x,CB=2x,CA CB⋅=()()222224212x x x x x--⋅=-=--,[]02x∈,,所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.18.【分析】根据条件及向量数量积运算求得连接由三角形中线的性质表示出根据向量的线性运算及数量积公式表示出结合二次函数性质即可求得最小值【详解】根据题意连接如下图所示:在等腰三角形中已知则由向量数量积运算 解析:77【分析】根据条件及向量数量积运算求得AB AC ⋅,连接,AM AN ,由三角形中线的性质表示出,AM AN .根据向量的线性运算及数量积公式表示出2MN ,结合二次函数性质即可求得最小值. 【详解】根据题意,连接,AM AN ,如下图所示:在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒则由向量数量积运算可知1cos 11cos1202AB AC AB AC A ⋅=⋅=⨯⨯=- 线段EF BC 、的中点分别为M N 、则()()1122AM AE AF AB AC λμ=+=+ ()12AN AB AC =+ 由向量减法的线性运算可得11112222MN AN AM AB AC λμ⎛⎫⎛⎫=-=-+-⎪ ⎪⎝⎭⎝⎭所以2211112222MN AB AC λμ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦222211111111222222222AB AC AB AC λμλμ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭221111111112222222222λμλμ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭因为41λμ+=,代入化简可得22221312111424477MN μμμ⎛⎫=-+=-+ ⎪⎝⎭因为(),0,1λμ∈且41λμ+=10,4μ⎛⎫∴∈ ⎪⎝⎭所以当17μ=时, 2MN 取得最小值17因而minMN==故答案为: 7【点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.19.【分析】将已知条件转化为结合得到设列出关于的方程组由此求得【详解】由于所以所以即因为即化简得设所以解得故答案为:【点睛】本小题主要考查平面向量的基本定理考查平面向量的线性运算考查化归与转化的数学思想解析:53【分析】将已知条件转化为1539AO AB AC =+,结合BD DC λ=,得到111AD AB AC λλλ=+++,设AO k AD =,列出关于,k λ的方程组,由此求得λ. 【详解】 由于305OA OB OC =++,所以()()350OA AB AO AC AO +-+-=,所以935AO AB AC =+,即1539AO AB AC =+. 因为BD DC λ=,即()AD AB AC AD λ-=-, 化简得111AD AB AC λλλ=+++, 设11k k AO k AD AB AC λλλ==+++,所以1 13519kkλλλ⎧=⎪⎪+⎨⎪=⎪+⎩,解得53λ=.故答案为:53【点睛】本小题主要考查平面向量的基本定理,考查平面向量的线性运算,考查化归与转化的数学思想方法,属于中档题.20.【分析】由已知得由得由不等式可知再由得最后由可得解【详解】由得即由得即由得由得所以故答案为:【点睛】本题考查了向量及其模的运算考查了向量的夹角公式和基本不等式考查了计算能力属于中档题解析:0,3π⎡⎤⎢⎥⎣⎦【分析】由已知,得22222923a ab ba ab b+⋅⎧⎪⎨⎪+=-⋅+=⎩②①,由+①②,得226a b+=,由不等式可知3a b ≤,再由-①②,得32a b⋅=,最后由cos,a ba ba b⋅=可得解.【详解】由3a b+=,3a b-=,得()()2239baab⎧⎪⎨⎪-==+⎩,即22222923a ab ba ab b+⋅⎧⎪⎨⎪+=-⋅+=⎩②①由+①②,得226a b+=,即226a b+=由-①②,得32a b⋅=由222a b a b +≥,得3a b ≤1cos ,2a b a b a b⋅=≥所以,0,3a b π≤≤.故答案为:0,3π⎡⎤⎢⎥⎣⎦【点睛】本题考查了向量及其模的运算,考查了向量的夹角公式和基本不等式,考查了计算能力,属于中档题.三、解答题21.(1)6;(2)58,99m n ==;(3)1118k =-.【分析】(1)利用向量加法的坐标运算得到()320,6a b c +-=,再求模长即可;(2)先写mb nc +的坐标,再根据a mb nc =+使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可. 【详解】解:(1)由(3,2),(1,2),(4,1)a b c ==-=,得3(9,6),(1,2),2(8,2)a b c ==-=∴()()32918,6220,6a b c +-=--+-=,∴23206a b c +-=+=;(2)()(),2,4,mb m m nc n n =-=, ∴()4,2mb nc n m m n +=-+,a mb nc =+,∴()4,2(3,2)a n m m n ==-+,故4322n m m n -=⎧⎨+=⎩,解得58,99m n ==;(3)(3,2),(4,)a kc k k ==,∴()34,2a kc k k +=++,(3,2),2(2,4)a b ==-,∴()25,2b a -=-,()()2a kc b a +⊥-,∴()()20a kc b a +⋅-=,即()()534220k k -+++=,解得1118k =-. 【点睛】 结论点睛:若()()1122,,,a x y b x y == ,则//a b 等价于12210x y x y -=;a b ⊥等价于12120x x y y +=.22.(1;(2. 【分析】(1)由已知利用平面向量数量积公式可得1a b ⋅=,平方后根据向量数量积的运算可求||a b +的值.(2)结合(1),根据已知条件,由向量夹角的余弦公式即可求解.【详解】(1)向量a 与b 的夹角为3π,且||1a =,||2b =, ∴||||cos a b a b a ⋅=<,112cos12132b π>=⨯⨯=⨯⨯=.222||()2142a b a b a b a b ∴+=+=++⋅=++=.(2)设向量a b +与向量a 的夹角θ,22()||27cos ||||||||||||71a b a a a b a a b a b a a b a a b a θ+⋅+⋅+⋅∴=====+⋅+⋅+⋅⨯. 【点睛】本题主要考查了向量数量积的运算及计算公式,向量夹角的余弦公式,属于中档题.23.(1)π3;(2) 【分析】(1)设向量a 与b 的夹角θ,利用向量的数量积公式计算()2a b a ⋅-=,可得向量的夹角;(2)利用向量的模长公式:2a a =,代入计算可得. 【详解】 (1)设向量a 与b 的夹角θ, ()16cos 12a b a a b θ⋅-=⋅-=-=,解得1cos 2θ=, 又[]0πθ∈,,π3θ∴= (2)由向量的模长公式可得:()222a b a b -=-==. 【点睛】 本题主要考查向量数量积公式的应用,向量模长的计算,求向量的模长需要熟记公式2a a =,考查学生的逻辑推理与计算能力,属于基础题.24.(1)118;(2)31.2⎡⎤⎢⎥⎣⎦. 【分析】 (1)首先以点A 为坐标原点建立平面直角坐标系.求AM ,AN 的坐标,再求数量积;(2)首先利用BM DN =,设BM DN t ==,表示向量AM ,AN ,利用数量积的坐标表示转化为二次函数求取值范围. 【详解】 (1)如图,以AB 所在直线为x 轴,以A 为坐标原点建立平面直角坐标系.因为ABCDEF 是边长为1的正六边形,且M ,N 分别是BC ,DE 的中点, 所以53,44M ⎛⎫ ⎪ ⎪⎝⎭,132N ⎛ ⎝, 所以5311848AM AN ⋅=+=. (2)设BM DN t ==,则[]0,1t ∈.所以31,22t M ⎛⎫+ ⎪ ⎪⎝⎭,(13N t -. 所以()()223113*********t AM AN t t t t t ⎛⎫⋅=+⋅-+=-++=--+ ⎪⎝⎭. 当0t =时,AM AN ⋅取得最小值1;当1t =时,AM AN ⋅取得最大值32. 所以AM AN ⋅的取值范围为31.2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查数量积的坐标表示,重点考查计算能力,属于基础题型.25.(1)()26f x sin x π⎛⎫=- ⎪⎝⎭;(2)()2g x sin x =, 对称轴为,42k x k Z ππ=+∈;(3)112m ≤<,,1223x x π+=. 【分析】 (1) 根据向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭和函数()f x u v =⋅,利用数量积结合倍角公式和辅助角法得到,()26πω⎛⎫=-⎪⎝⎭f x sin x ,再根据函数f (x )的图象上两个相邻的对称轴距离为2π求解. (2)依据左加右减,将函数y =f (x )的图象向左平移12π个单位后,得到函数()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,令2,2ππ=+∈x k k Z 求其对称轴. (3)作出函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上图象,根据函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点求解.再令2,62x k k Z πππ-=+∈,求对称轴. 【详解】(1)()()21122ωωωωωω=-=-f x sin x sin x x sin x xcos x ,1222226πωωω⎛⎫=-=- ⎪⎝⎭sin x cos x sin x ∵函数f (x )的图象上两个相邻的对称轴距离为2π, ∴22T π=, ∴2(0)2ππωω=>, ∴ω=1, 故函数f (x )的解析式为()sin 26f x x π⎛⎫=-⎪⎝⎭; (2)依题意,()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦, 令2,2ππ=+∈x k k Z ,则,42ππ=+∈k x k Z , ∴函数g (x )的对称轴为,42ππ=+∈k x k Z ;(3)∵0,2x π⎡⎤∈⎢⎥⎣⎦, ∴52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, ∴12,162sin x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的草图如下,依题意,函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点,则112m ≤<, 令2,62x k k Z πππ-=+∈,则,32k x k Z ππ=+∈, ∴函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的对称轴为3x π=,则1223x x π+=. 【点睛】 本题主要考查了平面向量和三角函数,三角函数的图象和性质及其应用,还考查了数形结合的思想和运算求解的能力,属于中档题.26.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =.因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<, 则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ,使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=, 故310CGCB =. 【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.。

高一数学必修4平面向量练习题及答案

高一数学必修4平面向量练习题及答案

b = (1, — 1),c =( — 1,2),则 c 等于(A 、a 与b 的夹角等于B 、(a + b)丄(a — b)C 、a // b、选择题平面向量练习题3b 2C 、3a 1b2 22、 已知,A (2, 3),B (-4, 5),则与AB 共线的单位向量是3 .10 1010、冇) e (空,卫)或(』10 10 10 10、7T )C 、 6,2) (6,2)或(6,2) 3、 已知 (1,2),b (3,2), ka b 与a 3b 垂直时k 值为 17 18 C 、 19D 、 20 4、 已知向量 OP =(2 , 1), OA =(1, 7), OB =(5 , 1),设X 是直线OP 上的一点(O 为坐标原点),那么XA XB 的最小值是 A 、-16 B 、-85、若向量m (1, 2),n (2, 1)分别是直线 ax+(b — a)y - a=0 禾口 ax+4by+b=O 的方向向量,则 a, b 的值分别可以是2,6、若向量 a=(cos,sin ),b=(cos ,sin),则a 与b 一定满足A 、B、 c 、一2 2D 、&设02 ,已知两个向量 ORcos , sin,OF 2 2 sin ,2cos ,则向量PP ,长度的最大值是( )A 、 2B 、-3C、32 D 、二、填空题9、已知点 A(2 , 0) , B(4 , 0), 动点 P 在抛物线y 2 = — 4x 运动,则使AP BP 取得最小值的点P 的坐标与0Q 的夹角,则 等于( ) 1、若向量 a =(1,1), 7、设i , j 分别是x 轴,y 轴正方向上的单位向量, OP 3cos i 3sin j ,(°,严i 。

若用来表示OP是____________________________________ 、10、把函数y ,3cosx sinx的图象,按向量a m, n (m>0)平移后所得的图象关于y轴对称,则m的最小正值为___________________ 、11、已知向量OA ( 1,2),OB (3,m),若OA AB,则m三、解答题12、求点A (- 3, 5)关于点P (- 1, 2)的对称点A/、13、平面直角坐标系有点P(1,cosx),Q (cos x,1), x [,].4 4(1)求向量OP和OQ的夹角的余弦用x表示的函数f(x);(2)求的最值、14、设OA (2sinx,cos2x),OB ( cosx,1),其中x€ [0, 卜2(1)求f(x)= OA OB的最大值和最小值;uur uuu uuu⑵当OA丄OB,求| AB卜215、已知定点A(0,1)、B(0, 1)、C(1,0),动点P 满足:AP BP k | PC |、(1)求动点P的轨迹方程,并说明方程表示的图形;(2)当k 2时,求| AP BP |的最大值和最小值、、选择题1、B ;2、B ;3、C ;4、B ;5、 二、填空题11、4 三、解答题5•• 一 W2+ 一 <—44 43 —n 时,f(x) min =8⑵ OA OB 即 f(x)=0 , 2x+ 一 = — , • x= 一、4 28此时 |AB |(2sinx cosx)2 (cos2x 1)2=4sin 2x cos x 4sinxcosx (cos2x 1)27 7 2 =一 一cos2x 2sin 2x cos 2x .2 2参考答案9、(0, 0) 510、 m 12、解:x,y ),则有3 x2 5 y 213 、OP cosf(x)2cosx cosxmin14、解:⑴ f(x)= 2cos x3.2cosx1,解得OQ 2cosx,|OP||OQ|cosxcosx1 、所以A / 12cos x, cos(1,― 1) °OP OQ |OP||OQ|2cosx 21 cos xf(x) ( 2 )f (x) 1,即◎3coscosx [2^21 max呐匚OA OB = -2sinxcosx+cos2x= 2 cos(2x2、•••当 2x+—= 4即 x=0 时,f(x) max =1 ;D ; 6、B ; 7、 D ; 8、 •/ 0$<—2 当2x+= n, 4即x=7 7 2=.一一cos —2 sin—cos2 2 4 4 4=116 3.2、215、解:(1 )设动点P的坐标为(x,y),则AP(x,y 1) , BP(x,y 1), PC(1x, y)、.x2 y2k (x1)22y ,T AP BP k | PC |2,•1即(1k)x2(1 k)y22kx k 10。

人教A版高中数必修四向量练习题.doc

人教A版高中数必修四向量练习题.doc

向量练习题1、若AB =3e 1,CD =-5e 1,且|AD |=|BC |,则四边形ABCD 是( ) A.平行四边形B.菱形C.等腰梯形D.不等腰梯形【解析】 ∵AB =3e 1,CD =-5e 1,∴CD =-35AB ,∴AB 与CD 平行且方向相反,易知|CD |>|AB |,又∵|AD |=|BC |,∴四边形ABCD 是等腰梯形.【答案】 C2、设点 在有向线段 的延长线上,分所成的比为 ,则( A )A . B . C . D . 3、若||=2sin15°,||=4cos375°、,夹角为30°,则·=(B ).A .23 B .3 C .32 D .214、若|a |=|b |=|a -b |,则b 与a +b 的夹角为 ( A )A .30°B .60°C .150°D .120°5、已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值,最小值分别( D )A .0,24B .24,4C .16,0D .4,06、在正六边形ABCDEF 中,O 为其中心,则=+++ED BO AB FA 2______FD7、设向量a 和b 的长度分别为4和3,夹角为600,则|a +b | =_____378、1e 和2e 是表示平面内所有向量的一组基底,则下面的四个向量中,不能作为一组基底的是__⑵_(1)1e + 2e 和1e -2e ;(2)31e -22e 和42e -61e ;(3)1e + 22e 和2e +21e ;(4)2e 和 2e +1e9、已知△ABC 的顶点A (2,3),B (8,-4),和重心G (2,-1),则点C 的坐标是_(-4,-2)____10、“a 与b 为共线向量”是“a 与b 方向相同”的__必要不充分___条件11、已知,a b 是两个非零向量,则b a 与不共线是||||||||||||b a b a b a +<-<-的充要 _条件12、设a =(-1,2),b =(1,-1),c =(3,-2),用a ,b 作基底可将c 表示c =p a +q b ,则实数p 、q 的值为_____ P=1,q=4___.13、已知a =(1,1),b =(0,-2)当k= -1 时, b a k -与b a +共线.14、命题①若b ≠0,且a ·b =c ·b ,则a =c ;②若a =b ,则3a <4b ;③(a ·b ) ·c =a ·(b ·c ), 对任意向量a ,b ,c 都成立;④a 2·b 2=(a ·b )2;正确命题的个数为____ (0)15、知A 、B 、C 三点共线,且A 、B 、C 三点的纵坐标分别为2,5,10,则A 点分BC 所得的比为____(83-) 16、同一直线上的三点顺次为A (-y ,6),B (-2,y ),C (x ,-6),若AB BC 2= ,则x=__-2,y=__217、若a =(2,3),b =(-4,7),则a 在b 方向上的投影为______(565) 18、已知|a |=2,b =(-23,2),若a ∥b ,则a =________()1,3(),1,3(--) 19、已知由向量AB =(3,2),AC =(1,k )确定的△ABC 为直角三角形,则k= 。

高中数学必修4平面向量解答题专项练习附答案 教师版

高中数学必修4平面向量解答题专项练习附答案 教师版

2﹣ t 2﹣
• t =﹣ ×3﹣ ×1﹣ ×1
=﹣ .
【解析】【分析】1、由向量的线性运算即得。 2、由平面向量数量积的运算即得。
5.已知 a,b,c 为△ABC 的三个内角的对边,向量→=(2cosB,1),→=(1﹣sinB,sin2B﹣1),→⊥→ .
(1)求∠B 的大小; (2)若 a=1,c=2,求 b 的值. 【答案】 解:(1)∵→⊥→;
(1)试用向量 , t 表示向量 , ; (2)若 • t =1,AD=1,AB= ,求 • .
【答案】 (1)解: = + = t ﹣ = (
﹣ t )﹣
=﹣
﹣ t;
= + = ( ﹣ t )+ t =
+ t;
(2)解:若 • t =1,AD=1,AB=
则 • =(﹣
﹣ t )•(
, + t)
=﹣
求出答案。
2.已知平面向量
,
(I)若
,求 ;
(Ⅱ)若
,求 ∴
即:
可得

(Ⅱ)依题意



即䁪 䁪 ͺ ,
解得
,∴

设向量 与 的夹角为 ,∴ cos
【解析】【分析】(1)利用共线向量的坐标表示求出 x 的值。
(2)利用两向量垂直数量积为 0 的等价关系结合数量积的坐标表示求出 x 的值,再利用 x 的值结合数量
9.已知向量 =(cosα,﹣1), =(2,sinα),其中
, ,且

(1)求 cos2α的值;
(2)若 sin(α﹣β)= ,且
, ,求角β.
【答案】 (1)解:∵向量

=2cosα﹣sinα=0,

高中数学必修4平面向量测试试卷典型例题(含详细问题详解)

高中数学必修4平面向量测试试卷典型例题(含详细问题详解)

适用标准高中数学平面向量组卷一.选择题(共 18 小题)1.已知向量与的夹角为θ,定义× 为与的“向量积”,且×是一个向量,它的长度 | × |=| || |sinθ,若=( 2, 0),﹣ =( 1,﹣),则 | ×( + )|=()A. 4 B .C.6D. 22.已知,为单位向量,其夹角为60°,则( 2﹣) ?=()A.﹣ 1 B . 0C.1D. 23.已知向量=( 1,), =( 3,m),若向量,的夹角为,则实数 m=()A. 2 B .C.0D.﹣4.向量,,且∥ ,则=()A. B .C.D.5.如图,在△ ABC 中, BD=2DC .若,,则=()A. B .C.D.6.若向量=(2cosα,﹣ 1), =(, tanα),且∥,则 sin α=()A. B .C.D.7.已知点 A ( 3, 0), B( 0,3),C(cosα, sinα),O( 0, 0),若,则的夹角为()A. B .C.D.8.设向量= , =不共线,且 |+ |=1, |﹣|=3,则△ OAB 的形状是()A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形9.已知点 G 是△ABC的重心,若 A=, ?=3,则 ||的最小值为()A. B .C.D. 210.如图,各棱长都为 2 的四周体 ABCD 中,=,=2 ,则向量?=()A.﹣ B .C.﹣D.11.已知函数 f( x) =sin( 2πx+ φ)的部分图象如下图,点B, C 是该图象与 x 轴的交点,过点 C 的直线与该图象交于 D ,E 两点,则() ?的值为()A.B.C.1D.212.已知 P 为三角形ABC 内部任一点(不包含界限),且知足(﹣)?(+﹣2)=0,则△ABC的形状一定为()A.等边三角形 B .直角三角形C.钝三角形D.等腰三角形13.如下图,设P 为△ABC 所在平面内的一点,而且=+,则△ABP与△ ABC的面积之比等于()A. B .C.D.14.在△ ABC 中, |AB|=3 , |AC|=2 , =,则直线 AD 经过△ ABC 的()A.垂心B.外心C.重心D.心里15.在△ ABC 中,∠ BAC=60 °,AB=2 , AC=1 , E,F 为边 BC 的三均分点,则=()A. B .C.D.16.已知空间向量知足,且的夹角为,O 为空间直角坐标系的原点,点A、B 知足,,则△ OAB 的面积为()A. B .C.D.17.已知点 P 为△ABC 内一点,且++3= ,则△APB ,△ APC,△ BPC 的面积之比等于()A.9:4:1B.1:4:9C.3: 2: 1D. 1: 2:318.在直角三角形ABC 中,点 D 是斜边 AB 的中点,点 P 为线段 CD 的中点,则=()A. 2 B . 4C.5D. 10二.解答题(共 6 小题)19.如图示,在△ ABC 中,若 A ,B 两点坐标分别为(2,0),(﹣ 3, 4)点 C 在 AB 上,且 OC 均分∠ BOA .(1)求∠ AOB 的余弦值;(2)求点 C 的坐标.20.已知向量=( cosθ, sinθ)和.( 1)若∥,求角θ的会合;(2)若,且|﹣|=,求的值.222221.如下图,若 D 是△ABC 内的一点,且AB ﹣ AC =DB ﹣DC .求证: AD ⊥ BC.22.已知向量,,此中A、B是△ ABC 的内角,.(1)求 tanA?tanB 的值;( 2)若 a、b、 c 分别是角 A 、 B 、C 的对边,当 C 最大时,求的值.23.已知向量且,函数f(x)=2( I)求函数f( x)的最小正周期及单一递加区间;( II )若,分别求tanx 及的值.24.已知,函数f(x)=.(1)求函数 f( x)的最小正周期;(2)求函数 f( x)的单一减区间;( 3)当时,求函数 f (x)的值域.高中数学平面向量组卷(2014年09月24日)参照答案与试题分析一.选择题(共 18 小题)1.已知向量与的夹角为θ,定义× 为与的“向量积”,且× 是一个向量,它的长度| × |=| || |sinθ,若=( 2, 0),﹣ =( 1,﹣),则 | ×(+ )|=()A. 4 B .C.6D. 2考点:平面向量数目积的运算.专题:平面向量及应用.剖析:利用数目积运算和向量的夹角公式可得.再利用平方关系可得=,利用新定义即可得出.解答:解:由题意,则,∴=6 ,==2,=2 .∴=== .即,得,由定义知,应选: D.评论:此题考察了数目积运算、向量的夹角公式、三角函数的平方关系、新定义,考察了计算能力,属于基础题.2.已知,为单位向量,其夹角为60°,则( 2﹣)?=()A.﹣ 1B.0C.1D.2考点:平面向量数目积的运算.专题:平面向量及应用.剖析:由条件利用两个向量的数目积的定义,求得、的值,可得( 2﹣)? 的值.解答:解:由题意可得,=1×1×cos60°= ,=1,∴( 2 ﹣)? =2﹣ =0,应选: B.评论:此题主要考察两个向量的数目积的定义,属于基础题.3.已知向量=( 1,),=( 3,m),若向量,的夹角为,则实数m=()A.2B.C.0D.﹣考点:数目积表示两个向量的夹角.专题:平面向量及应用.剖析:由条件利用两个向量的夹角公式、两个向量的数目积公式,求得m 的值.解答:解:由题意可得cos ===,解得m=,应选:B.评论:此题主要考察两个向量的夹角公式、两个向量的数目积公式的应用,属于基础题.4.向量,,且∥,则=()A.B.C.D.考点:平行向量与共线向量;同角三角函数间的基本关系;引诱公式的作用.专题:计算题;三角函数的求值.剖析:依据向量平行的条件成立对于α的等式,利用同角三角函数的基本关系与引诱公式,化简即可获得的值.解答:解:∵,,且∥,∴,即,得 sin α=,由此可得=﹣ sinα=.应选:B评论:此题给出向量含有三角函数的坐标式,在向量相互平行的状况下求的值.侧重考察了同角三角函数的基本关系、引诱公式和向量平行的条件等知识,属于基础题.5.如图,在△ ABC 中, BD=2DC .若,,则=()A.B.C.D.考点:向量的加法及其几何意义.专题:平面向量及应用.剖析:由题意可得=,而,,代入化简可得答案.解答:解:由题意可得=====应选C评论:此题考察平面向量的加法及其几何意义,波及向量的数乘,属基础题.6.若向量=(2cosα,﹣ 1), =(,tanα),且∥,则sinα=()A.B.C.D.考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.剖析:直接由向量共线的坐标表示列式计算.解答:解:∵向量=( 2cosα,﹣ 1),=(, tanα),且∥,则 2cosα?tanα﹣(﹣ 1)×=0,即 2sinα=.∴.应选: B .评论:共线问题是一个重要的知识点,在高考题中经常出现,常与向量的模、向量的坐标表示等联系在一同,要特别注意垂直与平行的差别.若=( a1,a2),=( b1,b2),则⊥? a1a2+b1b2 =0,∥? a1b2﹣ a2 b1=0.是基础题.7.已知点 A ( 3, 0), B( 0,3),C(cosα, sinα),O( 0, 0),若,则的夹角为()A.B.C.D.考点:平面向量数目积的坐标表示、模、夹角.专题:计算题.剖析:依据题意求出的坐标,再由它的模求出角α,从而求出点 C 的坐标,利用数目积的坐标表示求出和夹角的余弦值,再求出夹角的度数.解答:解:∵ A ( 3, 0), C( cosα, sinα), O( 0,0),∴=( 3+cosα,sinα),∵22,∴( 3+cosα) +sin α=13 ,解得, cos α= ,则 α= ,即C (, ),∴ 和 夹角的余弦值是 = = ,∴和的夹角是.应选: D .评论: 此题考察向量线性运算的坐标运算,以及数目积坐标表示的应用,利用向量坐标形式进行运算求出对应向量的模,以及它们的夹角的余弦值,从而联合夹角的范围求出夹角的大小.8.设向量=,= 不共线,且 | + |=1, |﹣ |=3,则 △ OAB 的形状是()A .等 边三角形B .直角三角形C . 锐角三角形D . 钝角三角形考点: 平面向量数目积的运算.专题: 计算题;平面向量及应用.剖析: 对| + |=1, | ﹣ |=3 分别平方并作差可得,由其符号可判断∠ AOB 为钝角,获得答案.解答:+ |=1,得=1 ,即① ,解:由 |由 | ﹣ |=3,得,即② ,① ﹣② 得,4=﹣8,解得<0,∴∠ AOB 为钝角, △ OAB 为钝角三角形,应选:D .评论: 此题考察平面向量数目积运算,属基础题.9.已知点 G 是 △ABC 的重心,若 A= , ?=3,则 | |的最小值为()A .B .C .D . 2考点: 平面向量数目积的运算.专题: 不等式的解法及应用;平面向量及应用.剖析: 由 A=,?=3 ,可求得=6,由点 G 是 △ ABC 的重心,得 =,利用不等式则 |2= (+6)≥,代入数值可得.| =解答:解:∵ A=, ? =3,∴=3,即=6 ,∵点 G 是 △ABC 的重心,∴ =,∴| |2== (+6)≥==2,∴ | |≥,当且仅当 =时取等号,∴ | |的最小值为,应选 B .评论: 此题考察平面向量数目积的运算、不等式求最值,注意不等式求最值时合用的条件.10.如图,各棱长都为2 的四周体 ABCD 中, = , =2 ,则向量 ? =( )A .﹣B .C.﹣D.考点:平面向量数目积的运算.专题:平面向量及应用.剖析:由向量的运算可得=(), =,由数目积的定义可得.解答:解:∵=,=2,∴= (),=,∴=====,∴?=()?()===应选:B评论:此题考察向量数目积的运算,用已知向量表示未知向量是解决问题的重点,属中档题.11.已知函数 f( x) =sin( 2πx+ φ)的部分图象如下图,点B, C 是该图象与 x 轴的交点,过点 C 的直线与该图象交于 D ,E 两点,则() ? 的值为()A.B.C.1D.2考点:平面向量数目积的运算;正弦函数的图象;正弦函数的定义域和值域.专题:平面向量及应用.剖析:依据三角函数的图象和性质,求出函数的周期,利用向量的基本运算和向量的数目积定义即可获得结论.解答:解:∵函数 f ( x) =sin( 2πx+ φ)的周期T=,则BC=,则C点是一个对称中心,则依据向量的平行四边形法例可知:=2 ?∴()?==2×=.评论:此题主要考察向量的数目积运算,利用三角函数的图象和性质是解决此题的重点.12.已知 P 为三角形ABC 内部任一点(不包含界限),且知足(﹣)?(+﹣2)=0,则△ABC的形状一定为()A.等边三角形 B .直角三角形C.钝三角形D.等腰三角形考点:平面向量数目积的运算.专题:平面向量及应用.剖析:利用向量的三角形法例和平行四边形法例、向量垂直于数目积的关系即可得出.解答:解:∵,=,(﹣)?(+﹣2)=0,∴=0.而必定经过边AB 的中点,∴垂直均分边AB ,即△ ABC 的形状必定为等腰三角形.评论:此题考察了向量的三角形法例和平行四边形法例、向量垂直于数目积的关系、等腰三角形的定义,考察了推理能力,属于难题.13.如下图,设P 为△ABC 所在平面内的一点,而且=+,则△ABP与△ ABC的面积之比等于()A.B.C.D.考点:向量在几何中的应用.专题:计算题;压轴题.剖析:此题考察的知识点是向量在几何中的应用,及三角形面积的性质,由△ABP 与△ ABC 为同底不等高的三角形,故高之比即为两个三角面积之间,连结CP 并延伸后,我们易获得CP 与 CD 长度的关系,进行获得△ ABP的面积与△ ABC 面积之比.解答:解:连结 CP 并延伸交 AB于 D,∵ P、C、D 三点共线,∴=λ+μ,且λ+μ=1设=k ,联合=+,得=+由平面向量基本定理解之,得λ=, k=3 且μ=,∴ =+,可得=,∵△ ABP 的面积与△ ABC 有同样的底边AB高的比等于 | |与 | |之比∴△ ABP的面积与△ ABC面积之比为,应选:C评论:三角形面积性质:同(等)底同(等)高的三角形面积相等;同(等)底三角形面积这比等于高之比;同(等)高三角形面积之比等于底之比.14.在△ ABC 中, |AB|=3 , |AC|=2 ,=,则直线AD 经过△ ABC 的()A.垂心B.外心C.重心D.心里考点:向量在几何中的应用.专题:综合题;平面向量及应用.剖析:第一依据已知条件可知||=||=,又因为=,设=,=,由向量加法的平行四边形法例可知四边形AEDF 为菱形,从而可确立直线AD 经过△ ABC 的心里.解答:解:∵ |AB|=3,|AC|=2∴ ||=||=.设=,=,则||=| |,∴== +.由向量加法的平行四边形法例可知,四边形AEDF 为菱形.∴ AD 为菱形的对角线,∴AD 均分∠ EAF .∴直线 AD 经过△ABC 的心里.应选: D .评论:此题考察向量加法的平行四边形法例及其几何意义,属于中档题.15.在△ ABC 中,∠ BAC=60 °,AB=2 , AC=1 , E,F 为边 BC 的三均分点,则=()A.B.C.D.考点:向量在几何中的应用;平面向量数目积的运算.专题:计算题.剖析:先判断三角形形状,而后成立直角坐标系,分别求出,向量的坐标,代入向量数目积的运算公式,即可求出答案.解答:解:∵在△ ABC 中,∠ BAC=60 °, AB=2 , AC=1 ,∴依据余弦定理可知BC=由 AB=2 ,AC=1 , BC=知足勾股定理可知∠BCA=90 °以 C 为坐标原点, CA 、 CB 方向为 x,y 轴正方向成立坐标系∵ AC=1 , BC=,则 C( 0, 0), A ( 1, 0), B( 0,)又∵ E, F 分别是 Rt△ ABC 中 BC 上的两个三均分点,则E( 0,), F( 0,)则=(﹣ 1,),=(﹣ 1,)∴=1+=应选 A.评论:此题考察的知识点是平面向量数目积的运算,此中成立坐标系,将向量数目积的运算坐标化能够简化此题的解答过程.16.已知空间向量知足,且的夹角为,O为空间直角坐标系的原点,点 A 、B 知足,,则△ OAB 的面积为()A.B.C.D.考点:平面向量数目积的运算;三角形的面积公式.专题:平面向量及应用.剖析:由向量的运算可得,,以及,代入夹角公式可得cos∠ BOA ,由平方关系可得sin∠ BOA ,代入三角形的面积公式S=,计算可得.解答:解:由题意可得====,同理可得====,而=() ?()=2﹣ 12=6×1= ,故 cos∠ BOA===,可得 sin∠ BOA==,所以△OAB 的面积 S===.应选 B评论:此题考察平面向量的数目积和三角形面积的求解,娴熟掌握公式是解决问题的重点,属中档题.17.已知点 P 为△ABC 内一点,且++3=,则△APB,△ APC,△ BPC的面积之比等于()A.9:4:1B.1:4:9C.3:2:1D.1: 2:3考点:向量在几何中的应用.专题:计算题;压轴题.剖析:先将已知向量式化为两个向量共线的形式,再利用平行四边形法例及向量数乘运算的几何意义,三角形面积公式确立面积之比解答:解:∵++3=,∴+ =﹣+),如图:∵,∴∴ F、 P、 G 三点共线,且PF=2PG, GF 为三角形ABC 的中位线∴====2而 S△APB= S△ABC∴△ APB ,△ APC ,△ BPC 的面积之比等于3: 2:1 应选C评论: 此题考察了向量式的化简,向量加法的平行四边形法例,向量数乘运算的几何意义等向量知识,充足利用向量共线是解决此题的重点18.在直角三角形 ABC 中,点 D 是斜边 AB 的中点,点P 为线段 CD 的中点,则 =( )A .2B . 4C . 5D . 10考点: 向量在几何中的应用.专题: 计算题;综合题.剖析: 以 D 为原点, AB 所在直线为 x 轴,成立坐标系,由题意得以 AB 为直径的圆必然经过C 点,所以设 AB=2r ,∠ CDB= α,获得 A 、 B 、 C 和 P 各点的坐标,运用两点的距离公式求出222的值,即可求出|PA| +|PB| 和 |PC|的值.解答: 解:以 D 为原点, AB 所在直线为 x 轴,成立如图坐标系,∵ AB 是 Rt △ ABC 的斜边,∴以AB 为直径的圆必然经过 C 点设 AB=2r ,∠ CDB= α,则 A (﹣ r , 0), B ( r , 0), C (rcos α,rsin α)∵点 P 为线段 CD 的中点,∴ P (rcos α, rsin α)∴ |PA|2=+ = +r 2 c os α,|PB| 2 =+=﹣ r 2 c os α,可得222又∵点 P 为线段 CD 的中点, CD=r|PA| +|PB| = r∴ |PC|2== r 2所以:= =10 应选 D评论: 此题给出直角三角形ABC 斜边 AB 上中线 AD 的中点 P ,求 P 到 A 、B 距离的平方和与 PC 平方的比值,侧重考察了用分析法解决平面几何问题的知识点,属于中档题.二.解答题(共 6 小题)19.如图示,在 △ ABC 中,若 A ,B 两点坐标分别为( 2,0),(﹣ 3, 4)点 C 在 AB 上,且 OC 均分∠ BOA .(1)求∠ AOB 的余弦值;(2)求点 C 的坐标.考点:向量在几何中的应用.专题:综合题.剖析:( 1)由题意可得,把已知代入可求( 2)设点 C( x,y),由 OC 均分∠ BOA 可得 cos∠ AOC=cos ∠ BOC 即=;再由点C 在 AB 即共线,成立对于x,y 的关系,可求解答:解:(1)由题意可得,,∴==(2)设点 C(x, y),由 OC 均分∠ BOA 可得 cos∠ AOC=cos ∠ BOC∵,∴=∴,∴ y=2x①又点 C在 AB 即共线,∴ 4x+5y ﹣ 8=0②由①②解得,∴点C的坐标为评论:此题注意考察了向量的夹角公式的坐标表示的应用,向量共线的坐标表示在三角形中的应用,解题的重点是借助于已知图象中的条件,灵巧的应用向量的基本知识.20.已知向量=( cosθ, sinθ)和.( 1)若∥,求角θ的会合;(2)若,且|﹣|=,求的值.考点:平面向量的坐标运算.专题:计算题.剖析:(1)由题意和共线向量的等价条件,列出对于角θ的方程,求出θ的一个三角函数值,再依据三角函数求出角θ的会合.( 2)由题意先求出﹣的坐标,依据此向量的长度和向量长度的坐标表示,列出方程求出cos(θ﹣),由余弦的二倍角公式和θ的范围求出的值.解答:解:(1)由题意知∥,则cosθ×cosθ﹣sinθ×(﹣sinθ)=0,∴sinθ=1,sinθ=,∴角θ的会合 ={ θ|θ= +2kπ或θ=+2kπ, k∈Z} ;( 2)由题意得,﹣=( cosθ﹣+sinθ, sinθ﹣ cosθ),∴|﹣|===2=,即 cos(θ﹣)=,由余弦的二倍角公式得,=① ,∵,∴<<,∴<﹣<,即cos(﹣)<0,∴由①得 cos(﹣)=﹣.评论:此题考察了共线向量的坐标表示和向量长度的坐标表示,利用两角正弦(余弦)和差公式和二倍角公式进行变形求解,注意由已知条件求出所求角的范围,来确立所求三角函数值的符号.222221.如下图,若 D 是△ABC 内的一点,且AB ﹣ AC =DB ﹣DC .求证: AD ⊥ BC.考点:向量在几何中的应用.专题:计算题;证明题;平面向量及应用.剖析:设=,=,=,=,=,将= +、 =+ 代入2﹣2的式子,化简整理2﹣22?=+2﹣ 2? ﹣2,联合题意2﹣22﹣2化简,可得 ?(﹣)=0,再联合向量的加减法法例获得?=0,=由此联合数目积的性质即可获得AD ⊥ BC.解答:解:设=,=,= ,=,=,则=+, =+.∴2﹣22﹣(+)222.=(+ )= +2?﹣2?﹣∵由已知22222﹣2222?﹣ 222﹣2,即 ?(﹣)=0.AB ﹣ AC =DB﹣DC ,得= ﹣,∴+2? ﹣ =∵=+=﹣,∴?=?(﹣) =0,所以,可得⊥,即 AD ⊥BC.评论:此题给出三角形 ABC 内知足平方关系的点 D ,求证 AD ⊥BC .侧重考察了平面向量的加减法例、向量的数目积及其运算性质等知识,属于中档题.22.已知向量,,此中A、B是△ ABC 的内角,.(1)求 tanA?tanB 的值;( 2)若 a、b、 c 分别是角 A 、 B 、C 的对边,当 C 最大时,求的值.考点:平面向量的综合题.专题:计算题.剖析:( 1)依据推测出=0,利用向量的数目积运算联合二倍角公式求得tanA ?tanB;( 2)因为 tanA ?tanB=> 0,利用基本不等式得出当且仅当时, c 获得最大值,再利用同角公式求出 sinC, sinA ,最后由正弦定理求的值.解答:解:(Ⅰ)由题意得=0即,﹣5cos( A+B ) +4cos( A ﹣ B) =0cosAcosB=9sinAsinB∴ tanA ?tanB=.(2)因为 tanA ?tanB= > 0,且 A 、 B 是△ABC 的内角,∴tanA >0, tanB> 0∴=﹣当且仅当取等号.∴ c 为最大边时,有,tanC=﹣,∴ sinC=,sinA=由正弦定理得:=.评论:此题是中档题,考察三角函数的化简与求值,正弦定理的应用,基本不等式的知识,是一道综合题,考察学生剖析问题解决问题的能力,公式的娴熟程度决定学生的能力的高低.23.已知向量且,函数f(x)=2( I)求函数f( x)的最小正周期及单一递加区间;( II )若,分别求tanx 及的值.考点:平面向量数目积的坐标表示、模、夹角;复合三角函数的单一性.专题:平面向量及应用.剖析:(I)化简函数f(x) =2=2sin ( 2x+),可得函数的周期,令2k π﹣≤2x+≤2kπ+,k∈z,求得 x 的范围,即可获得函数的单一递加区间.( II )由,求得tanx=,再由==,运算求得结果.解答:(I)解:函数f( x)=2=2sinxcosx+2cos 2x﹣ 1=sin2x+cos2x=2sin ( 2x+),故函数的周期为=π,令2kπ﹣≤2x+≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,故函数的单一递加区间为[k π﹣,kπ+], k∈z.( II )解:若,则sinx=cosx,即tanx=.∴====﹣.评论:此题主要考察两个向量的数目积的定义,三角函数的恒等变换及化简求值,正弦函数的增区间,三角函数的周期性和求法,属于中档题.24.已知,函数f(x)=.(1)求函数 f( x)的最小正周期;(2)求函数 f( x)的单一减区间;( 3)当时,求函数 f (x)的值域.考点:平面向量的综合题;三角函数中的恒等变换应用;三角函数的周期性及其求法;复合三角函数的单一性.专题:综合题.剖析:(1)依据向量的数目积公式,联合二倍角公式、协助角公式化简函数,利用周期公式,可求函数f( x)的最小正周期;( 2)由 2kπ+≤2x+≤2kπ+得kπ+≤x≤kπ+,从而可得f( x)的单一减区间;( 3)由,可得,从而可求函数f( x)的值域.解答:解:(1)∵,,∴函数 f ( x) ==5sinxcosx+sin 2x+6cos2x===5sin ( 2x+)+∴ f(x)的最小正周期;( 2)由 2k π+≤2x+≤2kπ+得kπ+≤x≤kπ+,k∈Z∴ (f x)的单一减区间为[k π+,kπ+ ](k∈Z)( 3)∵∴∴∴ 1≤f(x)≤即 f( x)的值域为 [1,] .评论:此题考察向量知识的运用,考察三角函数的化简,考察函数的单一性与值域,化简函数是重点.。

必修四向量练习题(简单,限时训练,含答案)

必修四向量练习题(简单,限时训练,含答案)

4.1平面向量及其线性运算 时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.如图J4-1-1,在平行四边形ABCD 中,下列结论中错误的是( ) A.AB →=DC → B .AD →+AB →=AC → C.AB →-A D →=BD → D .AD →+CB →=02.△ABC 中,BC →=a ,CA →=b ,则AB →等于( ) A .a +b B .-(a +b ) C .a -b D .b -a 3.化简AC →-BD →+CD →-AB →得( ) A.AB → B.DA → C.BC →D .04.设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则( ) A.PA →+PB →=0 B.PC →+PA →=0 C.PB →+PC →=0 D.PA →+PB →+PC →=0 5.如图J4-1-2,D 是△ABC 的边AB 上的中点,则向量CD →=( )A .-BC →+12BA →B .-BC →-12BA → C.BC →-12BA → D.BC →+12BA →6.若|OA →+OB →|=|OA →-OB →|,则非零向量OA →,OB →的关系是( ) A .平行 B .重合 C .垂直 D .不确定 二、填空题(每小题5分,共15分)7.将4(3a +2b )-2(b -2a )化简成最简式为______________.8.在▱ABCD 中,M 是BC 的中点,且AB →=a ,AD →=b ,AN →=3NC →,则MN →=______________. 9.若AB →=3a ,CD →=-5a ,且|AD →|=|BC →|,则四边形ABCD 的形状是______________. 三、解答题(共15分)10.如图J4-1-3,在△ABC 中,D ,E 为边AB 的两个三等分点,CA →=3a ,CB →=2b ,求CD →,CE →.图J4-1-34.2平面向量基本定理及坐标表示 时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.设平面向量a =(3,5),b =(-2,1),则a -2b =( ) A .(7,3) B .(7,7) C .(1,7) D .(1,3)2.已知向量a =(x ,y ),b =(-1,2),且a +b =(1,3),则|a |等于( ) A. 2 B.3 C. 5 D.103.已知向量a =(-3,2),b =(x ,-4),若a ∥b ,则x =( ) A .4 B .5 C .6 D .74.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D的坐标为( )A.⎝ ⎛⎭⎪⎫2,72B.⎝ ⎛⎭⎪⎫2,-12 C .(3,2) D .(1,3) 5.已知a =(1,2),b =(-3,2),当k a +b 与a -3b 平行时,k =( ) A.14 B .-14 C .-13 D.136.在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →等于( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4) 二、填空题(每小题5分,共15分)7.若A (0,1),B (1,2),C (3,4),则AB→-2BC →=________. 8.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC .已知A (-2,0),B (6,8),C (8,6),则D 点的坐标为________.9.已知向量a =(3,1),b =(1,3),c =(k,7),若(a -c )∥b ,则k =________. 三、解答题(共15分)10.已知a =(1,2),b =(-3,2),当实数k 取何值时,k a +2b 与2a -4b 平行?4.3平面向量的数量积 时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k =( ) A .-12 B .-6 C .6 D .122.已知向量a ,b ,满足|a |=1,|b |=4,且a·b =2,则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π23.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |=( ) A .4 B.10 C.13 D .134.若向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于( ) A .-π4 B.π6 C.π4 D.3π45.若平面向量a =(1,-2)与b 的夹角是180°,且|b |=3 5,则b 等于( ) A .(-3,6) B .(3,-6) C .(6,-3) D .(-6,3)6.设向量a =(1,0),b =⎝ ⎛⎭⎪⎫12,12,则下列结论中正确的是( )A .|a |=|b |B .a ·b =22 C .a ∥b D .a -b 与b 垂直 二、填空题(每小题5分,共15分)7.已知向量a 和向量b 的夹角为30°,|a |=2,|b |=3,则向量a 和向量b 的数量积a·b =______.8.若|a |=3,|b |=2,且a 与b 的夹角为60°,则|a -b |=______.9.已知向量a ,b 满足(a +2b )·(a -b )=-6,且|a |=1,|b |=2,则a 与b 的夹角为________. 三、解答题(共15分)10.设向量a ,b 满足|a |=|b |=1及|3a -2b |=7. (1)求a ,b 夹角的大小;(2)求|3a +b |的值.4.4平面向量的应用举例 时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.人骑自行车的速度是v 1,风速为v 2,则逆风行驶的速度为( ) A .v 1-v 2 B .v 1+v 2 C .|v 1|-|v 2| D.⎪⎪⎪⎪⎪⎪v 1v 22.若向量OF 1→=(1,1),OF 2→=(-3,-2)分别表示两个力F 1,F 2,则|F 1+F 2|为( )A.10 B .2 5 C. 5 D.153.一艘船以5 km/h 的速度在行驶,同时河水的流速为2 km/h ,则船的实际航行速度范围是( )A .(3,7)B .(3,7]C .[3,7]D .(2,7)4.在边长为1的正六边形ABCDEF 中,则AC →·BD →等于( ) A.52 B.32 C .1 D.125.已知P 是△ABC 所在平面内一点,若CB →=λPA →+PB →,其中λ∈R ,则点P 一定在( ) A .△ABC 的内部 B .AC 边所在直线上 C .AB 边所在直线上 D .BC 边所在直线上 6.已知点A (-2,0),B (3,0),动点P (x ,y )满足PA →·PB →=x 2,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 二、填空题(每小题5分,共15分)7.平面上有三个点A (-2,y ),B ⎝ ⎛⎭⎪⎫0,y 2,C (x ,y ),若AB→⊥BC →,则动点C 的轨迹方程为________.8.已知A ,B 是圆心为C ,半径为5的圆上的两点,且|AB |=5,则AC →·CB →=________.9.用两条成120°角的等长绳子悬挂一个灯具,已知灯具重量为10 N ,则每根绳子的拉力大小为________.三、解答题(共15分)10.已知向量a =(sin θ, 3),b =(1,cos θ),θ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)若a ⊥b ,求θ的值; (2)求|a +b |的最大值.参考答案: 4.11.C 2.B 3.D4.B 解析:如图D9,根据向量加法的几何意义,BC →+BA →=2BP →⇔P 是AC 的中点,∴PA→+PC →=0.图D95.A 6.C 7.16a +6b 8.14b -14a 9.等腰梯形 10.解:AB→=AC →+CB →=-3a +2b ,∵D ,E 为AB →的两个三等分点,∴AD →=13AB →=-a +23b =DE→.∴CD→=CA →+AD →=3a -a +23b =2a +23b .∴CE →=CD →+DE →=2a +23b -a +23b =a +43b. 4.21.A 2.C 3.C4.A 解析:设D (x ,y ),AD →=(x ,y -2),BC →=(4,3),又BC →=2AD →,∴⎩⎨⎧4=2x ,3=2y -4.∴⎩⎪⎨⎪⎧x =2,y =72.故选A.5.C 6.B 7.(-3,-3)8.(0,-2) 解析:设D 点的坐标为(x ,y ),由题意知BC →=AD →,即(2,-2)=(x +2,y ),所以x =0,y =-2,∴D (0,-2).9.510.解法一:∵2a -4b ≠0,∴存在唯一实数λ,使k a +2b =λ(2a -4b ). 将a ,b 的坐标代入上式,得(k -6,2k +4)=λ(14,-4). 得k -6=14λ,且2k +4=-4λ.解得k =-1. 解法二:同法一有k a +2b =λ(2a -4b ),即(k -2λ)a +(2+4λ)b =0.∵a 与b 不共线,∴⎩⎨⎧k -2λ=0,2+4λ=0.∴k =-1.4.31.D 2.C 3.C4.C 解析:2a +b =2(1,2)+(1,-1)=(3,3),a -b =(1,2)-(1,-1)=(0,3).在平面直角坐标系中,根据图形,得2a +b 与a -b 的夹角为π4.5.A6.D 解析:(筛选法)A 项,∵|a |=1,|b |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=22,∴|a |≠|b |;B 项,a ·b =1×12+0×12=12;C 项,∵1×12-0×12≠0,∴a 不平行于b ; D 项,∵a -b =⎝ ⎛⎭⎪⎫12,-12,(a -b )·b =⎝ ⎛⎭⎪⎫12,-12·⎝ ⎛⎭⎪⎫12,12=0,∴(a -b )⊥b . 7.3 8.79.π3 解析:由(a +2b )·(a -b )=-6,得a 2-2b 2+a ·b =-6.又|a |=1,|b |=2,所以a ·b =1.设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=11×2=12,而0≤θ≤π,所以θ=π3.10.解:(1)设a 与b 夹角为θ,(3a -2b )2=7,9|a |2+4|b |2-12a ·b =7,而|a |=|b |=1, ∴a ·b =12,∴|a ||b |cos θ=12,即cos θ=12.又θ∈[0,π],∴a ,b 所成的角为π3. (2)(3a +b )2=9|a |2+6a ·b +|b |2=9+3+1=13,∴|3a +b |=13.4.41.B2.C 解析:由于F 1+F 2=(1,1)+(-3,-2)=(-2,-1),所以|F 1+F 2|=(-2)2+(-1)2= 5.3.C 解析:实际航行的速度为静水中的速度与河水流速的合速度,所以||v 静|-|v 水||≤|v |≤|v 静|+|v 水|,即|5-2|≤|v |≤|2+5|,3≤|v |≤7.4.B 解析:AC →·BD →=(AB →+BC →)·(BC →+CD →)=1×1×cos60°+1×1×cos120°+1+1×1×cos60°=32.5.B 解析:由题意知,CB →-PB →=λPA →,即CB →+BP →=λPA →,∴CP →=λPA →,即CP →与PA →共线.∴点P 在AC 边所在直线上.6.D 解析:PA →=(-2-x ,-y ),PB →=(3-x ,-y ),∴PA →·PB →=(-2-x ,-y )·(3-x ,-y )=(-2-x )(3-x )+y 2=x 2.即y 2=x +6.7.y 2=8x 解析:AB →=⎝ ⎛⎭⎪⎫2,-y 2,BC →=⎝ ⎛⎭⎪⎫x ,y 2.∵AB →⊥BC →,∴AB →·BC→=2x -14y 2=0,即y 2=8x .8.-52 解析:由弦长|AB |=5,可知∠ACB =60°,AC →·CB →=-CA →·CB →=-|CA →||CB →|cos∠ACB =-52.9.10 N 解析:如图D10,由题意,得∠AOC =∠COB =60°,|OC →|=10,则|OA →|=|OB →|=10,即每根绳子的拉力大小为10 N.图D1010.解:(1)∵a ⊥b ,∴a ·b =sin θ+3cos θ=0.即tan θ=-3, 又θ∈⎝ ⎛⎭⎪⎫-π2,π2,故θ=-π3.(2)|a +b |2=(sin θ+1)2+(3+cos θ)2=5+4sin ⎝ ⎛⎭⎪⎫θ+π3.故当θ=π6时,|a +b |2的最大值为9,故|a +b |的最大值为3.。

高一数学必修4平面向量练习题及答案(完整版)

高一数学必修4平面向量练习题及答案(完整版)

a an t 1平面向量练习题一、选择题1、若向量= (1,1), = (1,-1), =(-1,2),则 等于()abc cA 、+B 、C 、D 、+ 21-a 23b 21a 23-b 23a 21-b23-a 21b2、已知,A (2,3),B (-4,5),则与共线的单位向量是( )AB A 、B 、)1010,10103(-=e 1010,10103()1010,10103(--=或e C 、D 、)2,6(-=e )2,6()2,6(或-=e 3、已知垂直时k 值为()b a b a k b a 3),2,3(),2,1(-+-==与A 、17B 、18C 、19D 、204、已知向量=(2,1), =(1,7), =(5,1),设X 是直线OP 上的一点(O 为坐标原点),那么的最OP OA OB XB XA ⋅小值是 ( )A 、-16B 、-8C 、0D 、45、若向量分别是直线ax+(b -a)y -a=0和ax+4by+b=0的方向向量,则 a,b 的值分别可以是)1,2(),2,1(-==n m ( )A 、 -1 ,2B 、 -2 ,1C 、 1 ,2D 、 2,16、若向量a =(cos ,sin ),b =(cos ,sin ),则a 与b 一定满足 ()αβαβA 、a 与b 的夹角等于-B 、(a +b )⊥(a -b )αβC 、a ∥bD 、a ⊥b7、设分别是轴,轴正方向上的单位向量,,。

若用 来表示j i ,x y j i OP θθsin 3cos 3+=i OQ -=∈),2,0(πθ与的夹角,则 等于()OP OQ A 、B 、C 、D 、θθπ+2θπ-2θπ-8、设,已知两个向量,,则向量长度的最大值是πθ20<≤()θθsin ,cos 1=OP ()θθcos 2,sin 22-+=OP 21P P ()A 、B 、C 、D 、2323二、填空题9、已知点A(2,0),B(4,0),动点P 在抛物线y 2=-4x 运动,则使取得最小值的点P 的坐标是BP AP ⋅i r t 2、10、把函数的图象,按向量(m>0)平移后所得的图象关于轴对称,则m 的最sin y x x =-(),a m n =-y 小正值为__________________、11、已知向量 、=⊥=-=m AB OA m OB OA 则若,),,3(),2,1(三、解答题12、求点A (-3,5)关于点P (-1,2)的对称点、/A 13、平面直角坐标系有点].4,4[),1,(cos ),cos ,1(ππ-∈=x x Q x P (1)求向量的夹角的余弦用x 表示的函数;OQ OP 和θ)(x f (2)求的最值、θ14、设其中x ∈[0,]、,)2cos ,sin 2(x x OA =,x ,OB )1cos (-=2π(1)求f(x)=的最大值和最小值;OB OA ·(2)当 ⊥,求||、OA OB AB 15、已知定点、)1,0(-B 、,动点P 满足:、)1,0(A )0,1(C 2||−→−−→−−→−=⋅PC k BP AP (1)求动点的轨迹方程,并说明方程表示的图形;P (2)当时,求的最大值和最小值、2=k ||−→−−→−+BP APa t i me l i ng i nt e n t 3参考答案一、选择题1、B ;2、B ;3、C ;4、B ;5、D ;6、B ;7、D ;8、C 二、填空题9、(0,0)10、56m π=11、4三、解答题12、解:设(x,y),则有,解得、所以(1,-1)。

高一数学必修4向量的加减法练习题含解析

高一数学必修4向量的加减法练习题含解析

2.2.1课时作业1.已知正方形ABCD 的边长为1,AB →=a ,AD →=b ,则|a +b |为( ) A .1 B. 2 C .2 D .2 2答案 B2.下列各式不正确的是( )①a +(b +c )=(a +c )+b ;②AB →+BA →≠0;③AC →=DC →+AB →+BD →. A .②③ B .② C .①D .③ 答案 B3.在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( )A.AB →=CD →,BC →=AD →B.AD →+OD →=DA →C.AO →+OD →=AC →+CD →D.AB →+BC →+CD →=DA →答案 C4.a ,b 为非零向量,且|a +b |=|a |+|b |,则( ) A .a ∥b ,且a 与b 方向相同 B .a ,b 是共线向量且方向相反 C .a =bD .a ,b 无论什么关系均可 答案 A5.如图,在正六边形ABCDEF 中,若AB =1,则|AB →+FE →+CD →|=( ) A .1 B .2 C .3 D .2 3 答案 B6.在Rt △ABC 中,若∠A =90°,|AC →|=2,|AB →|=3,则AC →+AB →的模等于( ) A.13 B .2 2 C .3D .5 答案 A解析 由题意知|AB →+AC →|=|AB →|2+|AC →|2=22+32=13,应选A. 7.向量(AB →+MB →)+(BO →+BC →)+OM →化简后等于( )A.BC →B.AB →C.AC →D.AM →答案 C8.已知O 是△ABC 内的一点,且OA →+OB →+OC →=0,则O 是△ABC 的( ) A .垂心 B .重心 C .内心D .外心答案 B9.如图,已知梯形ABCD ,AD ∥BC ,则OA →+AB →+CD →+BC →=______.答案 OD →10.已知正方形ABCD 的边长为1,则|AB →+BC →+AD →+DC →|等于________. 答案 2 2解析 |AB →+BC →+AD →+DC →|=|2AC →|=2 2.11.若a 表示向东走8 km ,b 表示向北走8 km ,则|a +b |=________km ,a +b 的方向是________.答案 82 北偏东45°解析 如图,a +b =OA →+AB →=OB →. ∵|a |=8,|b |=8,∴△OAB 为等腰直角三角形,∴|a +b |=|OB →|=8 2.方向是北偏东45°.12.如图(1),已知向量a 、b 、c ,求作向量a +b +c .解析 如图(2),在平面内任取一点D ,作DA →=a ,AB →=b ,BC →=c ,作DB →、DC →,则DB →=a+b ,DC →=(a +b )+c =a +b +c .∴向量DC →即为所作向量.13.如图所示,在四边形ABCD 中,AC →=AB →+AD →,试判断四边形的形状.解析 由向量加法的三角形法则,得AC →=AB →+BC →. ∵AC →=AB →+AD →,∴AD →=BC →,即AD ∥BC 且|AD →|=|BC →|,∴四边形ABCD 是平行四边形. 14.如图所示,P ,Q 是△ABC 的边BC 上两点,且BP =QC. 求证:AB →+AC →=AP →+AQ →. 证明 AB →=AP →+PB →,AC →=AQ →+QC →,∴AB →+AC →=AP →+PB →+AQ →+QC →. 因为PB →和QC →大小相等、方向相反, 所以PB →+QC →=0.故AB →+AC →=AP →+AQ →+0=AP →+AQ →.2.2.2课时作业1.给出下列3个向量等式:①AB →+CA →+BC →=0;②AB →-AC →-BC →=0;③AC →-BC →-AB →=0.其中正确的等式的个数为( ) A .0 B .1 C .2 D .3答案 C 解析 ①③对.2.如右图,▱ABCD 中,下列等式中错误的是( ) A.AD →=AB →+BD → B.AD →=AC →+CD → C.AD →=AB →+BC →+CD →D.AD →=DC →+CA → 答案 D解析 DC →+CA →=DA →.3.若O ,E ,F 是不共线的任意三点,则以下各式中成立的是( ) A.EF →=OF →+OE → B.EF →=OF →-OE → C.EF →=-OF →+OE → D.EF →=-OF →-OE →答案 B4.下列命题中,正确的是( )A .差向量的方向是由被减向量的终点指向减向量的终点B .若a 、b 是任意两个向量,则|a |-|b |=|a -b |C .与a 方向相反的向量叫做a 的相反向量D .从一个向量减去一个向量,等于加上这个向量的相反向量 答案 D5.在下列各等式中,正确的个数为( )①a -b =b -a; ②a +b -c =a -c +b ;③b -(-a )=b +a; ④0-a =-a ;⑤|a -b |=|b +a |; ⑥|a +b |=|a |+|b |. A .5 B .4 C .3 D .1答案 C6.边长为1的正三角形ABC 中,|AB →-BC →|的值为( ) A .1 B .2 C.32D. 3 答案 D7.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →等于( )A .a -b +cB .b -(a +c )C .a +b +cD .b -a +c答案 A8.若|AB →|=8,|AC →|=5,则|BC →|的取值范围是( ) A .[3,8]B .(3,8)C .[3,13]D .(3,13)答案 C解析 BC →=AC →-AB →(1)当AB →、AC →同向时,|BC →|=8-5=3; (2)当AB →、AC →反向时,|BC →|=8+5=13; (3)当AB →、AC →不共线时,3<|BC →|<13. 综上,可知3≤|BC →|≤13.9.已知△ABC 是以A 为直角顶点的直角三角形,则在下列各等式中不成立的为( ) A .|AC →-AB →|=|AC →+AB →| B .|AC →-AB →|=|CB →| C .|AB →-AC →|2=|AB →|2+|BC →|2 D .|BC →+CA →|2+|AC →|2=|BC →|2答案 C10.如图所示,在梯形ABCD 中,AD ∥BC ,AC 与BD 交于O 点,则BA →-BC →-OA →+OD →+DA →=________. 答案 CA →11.判断正误.(1)设非零向量a 、b ,则|a +b |=|a -b |⇔a ⊥b .(2)AB →+BC →+CA →=0⇔A 、B 、C 是某个三角形三个顶点. 答案 (1)正确 (2)不正确12.如图,在边长为1的正方形ABCD 中,设AB →=a ,AD →=b ,AC →=c ,求|a -b +c |.答案 |a -b +c |=213.如图四边形ABCD 的边AD 、BC 的中点分别为E 、F , 求证:EF →=12(AB →+DC →).证明 EF →=12(EB →+EC →)=12(EA →+AB →+ED →+DC →)=12(AB →+DC →)(∵EA →+ED →=0) 14.设平面内有四边形ABCD 和O ,OA →=a ,OB →=b ,OC →=c ,OD →=d ,若a +c =b +d ,试判断四边形ABCD 的形状.解析 ∵a +c =b +d ,即OA →+OC →=OB →+OD →. ∴OA →-OB →=OD →-OC →.即BA →=CD →.∴BA 綊CD. 故四边形ABCD 是平行四边形. ►重点班·选做题15.任给向量a ,b ,则下列各项中正确的是( ) A .|a +b |=|a |+|b | B .|a -b |=|a |-|b | C .|a -b |≤|a |-|b | D .|a -b |≤|a |+|b |答案 D16.已知|a |=|b |=1,|a +b |=1,则|a -b |=( ) A .1 B. 3 C.32D .2答案 B分析 根据向量的平行四边形法则,以a 和b 为邻边表示向量a +b 和a -b ,再根据向量模的关系判断平行四边形的形状求解.解析 如右图所示,根据向量加法的平行四边形法则可知,当|a |=|b |=1,|a +b |=1时,平行四边形ABDC 为菱形.又|a +b|=1, ∴△ABD 为正三角形.∴∠ABD =60°.容易得出|a -b|=|CB →|=2|OB →|=2|AB|2-|AO|2=2·12-(12)2= 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量专项练习参考答案
一、选择题
1.(文)(2014·郑州月考)设向量 a=(m,1),b=(1,m),如果 a 与 b 共线且方向相反,则
m 的值为( )
A.-1
B.1
C.-2
D.2
[答案] A
[解析] 设 a=λb(λ<0),即 m=λ 且 1=λm.解得 m=±1,由于 λ<0,∴m=-1.
[点评] 1.注意向量共线与向量垂直的坐标表示的区别,若 a=(x1,y1),b=(x1,y2), 则 a∥b⇔x1y2-x2y1=0,当 a,b 都是非零向量时,a⊥b⇔x1x2+y1y2=0,同时还要注意 a∥b 与xx12=yy12不等价.
要尽可能将它们转化到平行四边形或三角形中,以便使用向量的运算法则进行求解.充分利
用平面几何的性质,可把未知向量用已知向量表示出来.
(理)(2013·安庆二模)已知 a,b 是不共线的两个向量,A→B=xa+b,A→C=a+yb(x,y∈R),
若 A,B,C 三点共线,则点 P(x,y)的轨迹是( )
2.证明共线(或平行)问题的主要依据:
(1)对于向量 a,b,若存在实数 λ,使得 b=λa,则向量 a 与 b 共线(平行).
(2)a=(x1,y1),b=(x2,y2),若 x1y2-x2y1=0,则向量 a∥b.
(3)对于向量 a,b,若|a·b|=|a|·|b|,则 a 与 b 共线.
要注意向量平行与直线平行是有区别的.
∴2sin2α-3sinα-2=0,
∵|sinα|≤1,∴sinα=-12,
∵α∈-π2,π2,∴cosα=
23,∴tanα=-
3 3.
8.(文)(2014·宜春质检)如图所示,在△ABC 中,H 为 BC 上异于 B,C 的任一点,M 为
AH 的中点,若A→M=λA→B+μA→C,则 λ+μ=________.
若点 P 在 y 轴上,则 t+2=0,∴t=-2;
t+2>0 若点 P 在第四象限,则
3t-1<0
,∴-2<t<13.
(2)O→A=(2,-1),P→B=(-t-1,-3t+4).
若四边形 OABP 为平行四边形,则O→A=P→B.
-t-1=2

无解.
-3t+4=-1
∴ 四边形 OABP 不可能为平行四边形.
A.-1
B.1
C.0 [答案] B [解析] 如图,设A→B=λA→C,
D.2
则O→B=O→A+A→B=O→A+λA→C=O→A+λ(O→C-O→A) =O→A+λO→C-λO→A=(1-λ)O→A+λO→C
∴x=1-λ,y=λ,∴x+y=1. [点评] 用已知向量来表示另外一些向量是用向量解题的基本功.在进行向量运算时,
→ C.EO [答案] D
B.O→G D.F→O
[解析] 由平行四边形法则和图示可知,选 D.
二、填空题
7.已知 a=(2,-3),b=(sinα,cos2α),α∈-π2,π2,若 a∥b,则 tanα=________.
[答案]

3 3
[解析] ∵a∥b,∴si2nα=c-os23α,∴2cos2α=-3sinα,
A.直线
B.双曲线
C.圆
ห้องสมุดไป่ตู้
D.椭圆
[答案] B
[解析] ∵A,B,C 三点共线,
∴存在实数 λ,使A→B=λA→C.
x=λ,
则 xa+b=λ(a+yb)⇒
⇒xy=1,故选 B.
1=λy
6.(2014·湖北武汉调研)如图所示的方格纸中有定点 O,P,Q,E,F,G,H,则O→P+ O→Q=( )
→ A.OH
不正确,故选 A.
[警示] 由于对单位向量、相等向量以及共线向量的概念理解不到位从而导致错误,特
别对于这些概念:(1)单位向量|aa|,要知道它的模长为 1,方向同 a 的方向;(2)对于任意非零
向量 a 来说,都有两个单位向量,一个与 a 同向,另一个与 a 反向;(3)平面内的所有单位
向量的起点都移到原点,则单位向量的终点的轨迹是个单位圆;(4)相等向量的大小不仅相
[答案]
1 2
[分析] 由 B,H,C 三点共线可用向量A→B,A→C来表示A→H.
[解析] 由 B,H,C 三点共线,可令A→H=xA→B+(1-x)A→C,又 M 是 AH 的中点,所以A→M
=12A→H=12xA→B+12(1-x)·A→C,又A→M=λA→B+μA→C.所以 λ+μ=12x+12(1-x)=12.
(理)(2013·荆州质检)已知向量 a=(2,3),b=(-1,2),若 ma+nb 与 a-2b 共线,则mn =
() A.-2
B.2
C.-12
D.12
[答案] C
[解析] 由向量 a=(2,3),b=(-1,2)得 ma+nb=(2m-n,3m+2n),a-2b=(4,-1),
因为 ma+nb 与 a-2b 共线,所以(2m-n)×(-1)-(3m+2n)×4=0,整理得mn =-12.
A.(-2,7)
B.(-6,21)
C.(2,-7)
D.(6,-21)
[答案] B
[解析] 由条件知,P→C=2P→Q-P→A=2(1,5)-(4,3)=(-2,7),
∵B→P=2P→C=(-4,14),
∴B→C=B→P+P→C=(-6,21).
4.在四边形 ABCD 中,A→B=a+2b,B→C=-4a-b,C→D=-5a-3b,其中 a,b 不共线,
2.(2014·山东青岛期中)设 a,b 都是非零向量,下列四个条件中,一定能使|aa|+|bb|=0 成立的是( )
A.a=-13b C.a=2b
B.a∥b D.a⊥b
[答案] A [解析] 由题意得|aa|=-|bb|,而|aa|表示与 a 同向的单位向量,-|bb|表示与 b 反向的单位 向量,则 a 与 b 反向.而当 a=-13b 时,a 与 b 反向,可推出题中条件.易知 B,C,D 都
等,方向也必须相同,而相反向量大小相等,方向是相反的;(5)相等向量和相反向量都是
共线向量,但共线向量不一定是相等向量,也有可能是相反向量.
3.(2015·广州执信中学期中)在△ABC 中,点 P 在 BC 上,且B→P=2P→C,点 Q 是 AC 的
中点,若P→A=(4,3),P→Q=(1,5),则B→C=( )
则四边形 ABCD 为( )
A.平行四边形
B.矩形
C.梯形
D.菱形
[答案] C
[解析] ∵A→D=A→B+B→C+C→D=-8a-2b=2B→C,
∴四边形 ABCD 为梯形.
5.(文)(2014·德州模拟)设O→B=xO→A+yO→C,x,y∈R 且 A,B,C 三点共线(该直线不过
点 O),则 x+y=( )
λ=72 由①②联立解得
μ=57
,即 λμ=27×57=1409.
9.(文)已知 G 是△ABC 的重心,直线 EF 过点 G 且与边 AB、AC 分别交于点 E、F,A→E =αA→B,A→F=βA→C,则1α+1β=______.
[答案] 3 [解析] 连结 AG 并延长交 BC 于 D,∵G 是△ABC 的重心,∴A→G=23A→D=13(A→B+A→C), 设E→G=λG→F,
同理可知,当 t=1 时,四边形 OAPB 为平行四边形,当 t=-1 时,四边形 OPAB 为平
行四边形. (理)已知向量 a=(1,2),b=(cosα,sinα),设 m=a+tb(t 为实数). (1)若 α=π4,求当|m|取最小值时实数 t 的值; (2)若 a⊥b,问:是否存在实数 t,使得向量 a-b 和向量 m 的夹角为π4,若存在,请求
∴A→G-A→E=λ(A→F-A→G),∴A→G= 1 A→E+ λ A→F, 1+λ 1+λ
∴13A→B+13A→C=1+α λA→B+1λ+βλA→C,
1+α λ=13, ∴1+λβλ=13,
1α=1+3 λ, ∴β1=13+λλ,
∴1α+1β=3.
三、解答题 10.(文)已知 O(0,0)、A(2,-1)、B(1,3)、O→P=O→A+tO→B,求 (1)t 为何值时,点 P 在 x 轴上?点 P 在 y 轴上?点 P 在第四象限? (2)四点 O、A、B、P 能否成为平行四边形的四个顶点,说明你的理由. [解析] (1)O→P=O→A+tO→B=(t+2,3t-1). 若点 P 在 x 轴上,则 3t-1=0,∴t=13;
[答案]
10 49
[解析] 由题意知A→B·A→C=2×1×cos23π=-1,∵AP⊥BC,∴A→P·B→C=0,即(λA→B+
μA→C)·(A→C-A→B)=0,
∴(λ-μ)A→B·A→C-λA→B2+μA→C2=0,即 μ-λ-4λ+μ=0,∴μ=52λ,①
∵P,B,C 三点共线,∴λ+μ=1,②
[点评] 应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则
进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用.当基底确定后,
任一向量的表示都是唯一的.
(理)(2014·河北二调)在△ABC 中,AC=1,AB=2,A=23π,过点 A 作 AP⊥BC 于点 P, 且A→P=λA→B+μA→C,则 λμ=________.
出 t;若不存在,请说明理由. [解析] (1)∵α=π4,∴b=( 22, 22),a·b=32 2,
∴|m|= (a+tb)2= 5+t2+2ta·b
= t2+3 2t+5= (t+32 2)2+12,
∴当
t=-3 22时,|m|取到最小值,最小值为
2 2.
相关文档
最新文档