(华师大版)八年级上期末模拟数学试卷(含答案)(2019级)
八年级数学上册第11章数的开方练习题新版华东师大版(含答案)
八年级数学上册:第11章 数的开方类型之一 平方根、立方根的概念和性质 1.[2020·桂林] 若√x -1=0,则x 的值是( ) A .-1B .0C .1D .22.[2019·通辽] √16的平方根是( ) A .±4B .4C .±2D .23.[2019·济宁] 下列计算正确的是( ) A .√(-3)2=-3 B .√-53=√53C .√36=±6D .-√0.36=-0.64.已知2a 的平方根是±2,3是3a+b 的立方根,求a-2b 的值. 类型之二 算术平方根的性质与应用5.a 2的算术平方根一定是( ) A .aB .|a|C .√aD .-a6.下列计算正确的是( ) A .√22=2 B .√22=±2 C .√42=2D .√42=±27.[2019·杭州西湖区月考] 若实数x 满足√x -2·|x+1|≤0,则x 的值为( ) A .2或-1 B .2≥x ≥-1 C .2D .-18.[2019·资中月考] 若(2x+8)2与√y -2的值互为相反数,则√x y = . 类型之三 实数的分类、大小比较及运算 9.[2019·日照] 在实数√83,π3,√12,43中,有理数有( ) A .1个B .2个C .3个D .4个10.下面四个选项中,结果比-5小的是( ) A .-8的绝对值 B .√2的相反数 C .-5的倒数D .-4与-3的和11.[2019·绵阳] 已知x 是整数,当|x-√30|取最小值时,x 的值是( )A.5B.6C.7D.83-√(-2)2+|1-√3|.12.计算:√9+√813.(1)计算:①2的平方根;②-27的立方根;③√16的算术平方根.(2)将(1)中求出的各个数表示在图1中的数轴上;(3)将(1)中求出的各个数按从小到大的顺序排列,并用“<”号连接.图114.已知√8+1在两个连续的自然数a和a+1之间,1是b的一个平方根.(1)求a,b的值;(2)比较a+b的算术平方根与√5的大小.类型之四数轴上的点与实数的一一对应关系15.[2020·福建]如图2,数轴上两点M,N所对应的实数分别为m,n,则m-n的结果可能是()A.-1B.1C.2D.3图2 图316.[2019·济南]实数a,b在数轴上的对应点的位置如图3所示,下列关系式不成立的是()A.a-5>b-5B.6a>6bC.-a>-bD.a-b>017.[2019·南京]实数a,b,c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()图418.如图5,在一条不完整的数轴上,从左向右有两个点A,B,其中点A表示的数为m,点B表示的数为4,C也为数轴上一点,且AB=2AC.(1)若m为整数,求m的最大值;(2)若点C表示的数为-2,求m的值.图5类型之五 数学活动19.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚非常迅速地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.华罗庚有条理地讲述了计算过程:①因为103=1000,1003=1000000,1000<59319<1000000,所以10<√593193<100,所以√593193是两位数;②因为59319的个位上的数字是9,只有个位上的数字是9的数的立方的个位上的数字依然是9,所以√593193的个位上的数字是9;③如果划去59319后三位只剩下59,因为33=27,43=64,而27<59<64,所以30<√593193<40,所以√593193的十位上的数字是3,所以59319的立方根是39. 根据上面的材料,请你解答问题: 求50653的立方根.20.对非负实数x 四舍五入到个位的值记为[x ],即当n 为非负整数时,若n-12≤x<n+12,则[x ]=n.如:[2.9]=3;[2.4]=2;…. 根据以上材料,解决下列问题:(1)填空:[1.8]= ,[√5]= ; (2)若[2x+1]=4,则x 的取值范围是 ; (3)求满足[x ]=32x-1的所有非负实数x 的值.答案1.C [解析] 因为√x -1=0, 所以x-1=0, 解得x=1, 则x 的值是1. 故选C .2.C [解析] 因为√16=4,±√4=±2,所以√16的平方根是±2,故选C .3.D [解析] A .√(-3)2=√9=3,故A 项错误;B .√-53=-√53,故B 项错误; C .√36=6,故C 项错误; D .-√0.36=-0.6,故D 项正确. 故选D .4.解:根据题意,得2a=4,3a+b=27, 解得a=2,b=21, 则a-2b=2-42=-40.5.B6.A [解析] √22=2,故A 项正确,B 项错误; √42=4,故C 项,D 项均错误. 故选A .7.C [解析] 根据算术平方根的性质,得√x -2≥0,x-2≥0,所以x ≥2,所以|x+1|>0.又因为√x -2·|x+1|≤0,所以√x -2=0,所以x=2.故选C . 8.4 [解析] 由题意,得(2x+8)2+√y -2=0,则2x+8=0,y-2=0,解得x=-4,y=2,则√x y =√(-4)2=4. 故答案为4.9.B [解析] 在实数√83,π3,√12,43中,√83=2,有理数有√83,43,共2个.故选B . 10.D [解析] -8的绝对值是8,8>-5,故A 选项不符合题意; √2的相反数是-√2,-√2>-5,故B 选项不符合题意; -5的倒数是-15=-0.2,-0.2>-5,故C 选项不符合题意; -4+(-3)=-7,-7<-5,故D 选项符合题意.故选D .11.A [解析] 因为√25<√30<√36,所以5<√30<6,且与√30最接近的整数是5,所以当|x-√30|取最小值时,整数x 的值是5.故选A . 12.解:原式=3+2-2+√3-1=2+√3. 13.解:(1)①2的平方根是±√2;②-27的立方根是-3;③√16=4,4的算术平方根是2.(2)如图所示:(3)-3<-√2<√2<2.14.解:(1)因为4<8<9,所以2<√8<3.又因为√8+1在两个连续的自然数a 和a+1之间,所以a=3. 因为1是b 的一个平方根,所以b=1. (2)由(1)知,a=3,b=1,所以a+b=3+1=4, 所以a+b 的算术平方根是2. 因为4<5,所以2<√5.15.C [解析] 因为M ,N 所对应的实数分别为m ,n ,所以-2<n<-1<0<m<1, 所以m-n 的结果可能是2.故选C .16.C [解析] 由图可知,b<0<a ,且|b|<|a|,所以a-5>b-5,6a>6b ,-a<-b ,a-b>0,所以关系式不成立的是选项C .故选C .17.A [解析] 因为a>b 且ac<bc ,所以c<0.选项A 符合a>b ,c<0的条件,故满足条件的对应点位置可以是A .选项B,C 不满足a>b ,选项C,D 不满足c<0,故满足条件的对应点位置不可以是B,C,D .故选A .18.解:(1)由题意可得m<4.因为m 为整数,所以m 的最大值为3. (2)因为点C 表示的数为-2,点B 表示的数为4, 所以点C 在点B 的左侧.①当点C 在线段AB 上时,因为AB=2AC ,所以4-m=2(-2-m ),解得m=-8.②当点C 在线段BA 的延长线上时,因为AB=2AC ,所以4-m=2(m+2),解得m=0. 综上所述,m 的值是-8或0.19.解:因为103=1000,1003=1000000,1000<50653<1000000, 所以10<√506533<100,所以√506533是两位数.因为50653的个位上的数字是3,只有个位上的数字是7的数的立方的个位上的数字是3, 所以√506533的个位上的数字是7. 如果划去50653后三位只剩下50,因为33=27,43=64,而27<50<64, 所以30<√506533<40,所以√506533的十位上的数字是3, 所以50653的立方根是37. 20.解:(1)2 2(2)因为[2x+1]=4,所以72≤2x+1<92,所以54≤x<74.故答案为54≤x<74. (3)设32x-1=m ,则x=2m+23,所以2m+23=m ,所以m-12≤2m+23<m+12,解得12<m ≤72.因为m 为整数,所以m=1或m=2或m=3, 所以x=43或x=2或x=83.。
2019—2020年最新华东师大版八年级数学上册《数的开方》综合测试题及答案解析.docx
《第11章数的开方》一、选择题(共10小题,每小题3分,满分30分)1.一个正数的正的平方根是m,那么比这个正数大1的数的平方根是()A.m2+1 B.±C.D.±2.一个数的算术平方根是,这个数是()A.9 B.3 C.23 D.3.已知a的平方根是±8,则a的立方根是()A.2 B.4 C.±2 D.±44.下列各数,立方根一定是负数的是()A.﹣a B.﹣a2C.﹣a2﹣1 D.﹣a2+15.已知+|b﹣1|=0,那么(a+b)2007的值为()A.﹣1 B.1 C.32007D.﹣320076.若=1﹣x,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤17.在﹣,,,﹣,2.121121112中,无理数的个数为()A.2 B.3 C.4 D.58.若a<0,则化简||的结果是()A.0 B.﹣2a C.2a D.以上都不对9.实数a,b在数轴上的位置如图,则有()A.b>a B.|a|>|b| C.﹣a<b D.﹣b>a10.下列命题中正确的个数是()A.带根号的数是无理数B.无理数是开方开不尽的数C.无理数就是无限小数D.绝对值最小的数不存在二、填空题11.若x2=8,则x= .12.的平方根是.13.如果有意义,那么x的值是.14.a是4的一个平方根,且a<0,则a的值是.15.当x= 时,式子+有意义.16.若一正数的平方根是2a﹣1与﹣a+2,则a= .17.计算:+= .18.如果=4,那么a= .19.﹣8的立方根与的算术平方根的和为.20.当a2=64时,= .21.若|a|=,=2,且ab<0,则a+b= .22.若a、b都是无理数,且a+b=2,则a,b的值可以是(填上一组满足条件的值即可).23.绝对值不大于的非负整数是.24.请你写出一个比大,但比小的无理数.25.已知+|y﹣1|+(z+2)2=0,则(x+z)2008y= .三、解答题(共40分)26.若5x+19的算术平方根是8,求3x﹣2的平方根.27.计算:(1)+;(2)++.28.解方程.(1)(x﹣1)2=16;(2)8(x+1)3﹣27=0.29.将下列各数按从小到大的顺序重新排成一列.2,,﹣,0,﹣.30.著名的海伦公式S=告诉我们一种求三角形面积的方法,其中p表示三角形周长的一半,a、b、c分别三角形的三边长,小明考试时,知道了三角形三边长分别是a=3cm,b=4cm,c=5cm,能帮助小明求出该三角形的面积吗?31.已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是2,求的平方根.32.已知实数a,b满足条件+(ab﹣2)2=0,试求+++…+的值.《第11章数的开方》参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.一个正数的正的平方根是m,那么比这个正数大1的数的平方根是()A.m2+1 B.±C.D.±【考点】平方根.【分析】这个正数可用m表示出来,比这个正数大1的数也能表示出来,开方可得出答案.【解答】解:由题意得:这个正数为:m2,比这个正数大1的数为m2+1,故比这个正数大1的数的平方根为:±,故选D.【点评】本题考查算术平方根及平方根的知识,难度不大,关键是根据题意表示出这个正数及比这个正数大1的数.2.一个数的算术平方根是,这个数是()A.9 B.3 C.23 D.【考点】算术平方根.【分析】根据算术平方根的定义解答即可.【解答】解:3的算术平方根是,所以,这个数是3.故选B.【点评】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.3.已知a的平方根是±8,则a的立方根是()A.2 B.4 C.±2 D.±4【考点】立方根;平方根.【分析】根据乘方运算,可得a的值,根据开方运算,可得立方根.【解答】解;已知a的平方根是±8,a=64,=4,故选:B.【点评】本题考查了立方根,先算乘方,再算开方.4.下列各数,立方根一定是负数的是()A.﹣a B.﹣a2C.﹣a2﹣1 D.﹣a2+1【考点】立方根.【分析】根据正数的立方根是正数,0的立方根是0,负数的立方根是负数,结合四个选项即可得出结论.【解答】解:∵﹣a2﹣1≤﹣1,∴﹣a2﹣1的立方根一定是负数.故选C.【点评】本题考查了立方根,牢记“正数的立方根是正数,0的立方根是0,负数的立方根是负数”是解题的关键.5.已知+|b﹣1|=0,那么(a+b)2007的值为()A.﹣1 B.1 C.32007D.﹣32007【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】本题首先根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0.”得到关于a、b的方程组,然后解出a、b的值,再代入所求代数式中计算即可.【解答】解:依题意得:a+2=0,b﹣1=0∴a=﹣2且b=1,∴(a+b)2007=(﹣2+1)2007=(﹣1)2007=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.若=1﹣x,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【考点】二次根式的性质与化简.【分析】等式左边为算术平方根,结果为非负数,即1﹣x≥0.【解答】解:由于二次根式的结果为非负数可知,1﹣x≥0,解得x≤1,故选D.【点评】本题利用了二次根式的结果为非负数求x的取值范围.7.在﹣,,,﹣,2.121121112中,无理数的个数为()A.2 B.3 C.4 D.5【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣,,﹣是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.若a<0,则化简||的结果是()A.0 B.﹣2a C.2a D.以上都不对【考点】二次根式的性质与化简.【分析】根据=|a|,再根据绝对值的性质去绝对值合并同类项即可.【解答】解:原式=||a|﹣a|=|﹣a﹣a|=|﹣2a|=﹣2a,故选:B.【点评】此题主要考查了二次根式的性质和化简,关键是掌握=|a|.9.实数a,b在数轴上的位置如图,则有()A.b>a B.|a|>|b| C.﹣a<b D.﹣b>a【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,绝对值的定义,不等式的性质,可得答案.【解答】解:A、数轴上的点表示的数右边的总比左边的大,b>a,故A正确;B绝对值是数轴上的点到原点的距离,|a|>|b|,故B正确;C、|﹣a|>|b,|得﹣a>b,故C错误;D、由相反数的定义,得﹣b>a,故D正确;故选:C.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,绝对值的定义,不等式的性质是解题关键.10.下列命题中正确的个数是()A.带根号的数是无理数B.无理数是开方开不尽的数C.无理数就是无限小数D.绝对值最小的数不存在【考点】命题与定理.【分析】根据各个选项中的说法正确的说明理由,错误的说明理由或举出反例即可解答本题.【解答】解:∵,故选项A错误;无理数是开放开不尽的数,故选项B正确;无限不循环小数是无理数,故选项C错误;绝对值最小的数是0,故选项D错误;故选B.【点评】本题考查命题与定理,解题的关键是明确题意,正确的命题说明理由,错误的命题说明理由或举出反例.二、填空题11.若x2=8,则x= ±2.【考点】平方根.【分析】利用平方根的性质即可求出x的值.【解答】解:∵x2=8,∴x=±=±2,故答案为±2.【点评】本题考查平方根的性质,利用平方根的性质可求解这类型的方程:(x+a)2=b.12.的平方根是±2 .【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13.如果有意义,那么x的值是±.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得:﹣(x2﹣2)2≥0,再解即可.【解答】解:由题意得:﹣(x2﹣2)2≥0,解得:x=±,故答案为:.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.a是4的一个平方根,且a<0,则a的值是﹣2 .【考点】平方根.【分析】4的平方根为±2,且a<0,所以a=﹣2.【解答】解:∵4的平方根为±2,a<0,∴a=﹣2,故答案为﹣2.【点评】本题考查平方根的定义,注意一个正数的平方根有两个,且互为相反数.15.当x= ﹣2 时,式子+有意义.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2≥0,﹣x﹣2≥0,解得,x=﹣2,故答案为:﹣2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.16.若一正数的平方根是2a﹣1与﹣a+2,则a= 1或﹣1 .【考点】平方根;解一元一次方程.【专题】计算题.【分析】根据一个正数的两个平方根互为相反数,分2a﹣1与﹣a+2是同一个平方根与两个平方根列式求解.【解答】解:①2a﹣1与﹣a+2是同一个平方根,则2a﹣1=﹣a+2,解得a=1,②2a﹣1与﹣a+2是两个平方根,则(2a﹣1)+(﹣a+2)=0,∴2a﹣1﹣a+2=0,解得a=﹣1.综上所述,a的值为1或﹣1.故答案为:1或﹣1.【点评】本题考查了平方根与解一元一次方程,注意平方根是同一个平方根的情况,容易忽视而导致出错.17.计算:+= 1 .【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质化简求出即可.【解答】解:+=π﹣3+4﹣π=1.故答案为:1.【点评】此题主要考查了二次根式的化简,正确化简二次根式是解题关键.18.如果=4,那么a= ±4 .【考点】二次根式的性质与化简.【分析】根据二次根式的性质得出a的值即可.【解答】解:∵=4,∴a=±4,故答案为±4.【点评】本题考查了二次根式的性质与化简,掌握a2=16,得出a=±4是解题的关键.19.﹣8的立方根与的算术平方根的和为 1 .【考点】立方根;算术平方根.【分析】﹣8的立方根为﹣2,的算术平方根为3,两数相加即可.【解答】解:由题意可知:﹣8的立方根为﹣2,的算术平方根为3,∴﹣2+3=1,故答案为1.【点评】本题考查立方根与算术平方根的性质,属于基础题型.20.当a2=64时,= ±2 .【考点】立方根;算术平方根.【分析】由于a2=64时,根据平方根的定义可以得到a=±8,再利用立方根的定义即可计算a的立方根.【解答】解:∵a2=64,∴a=±8.∴=±2.【点评】本题主要考查了立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.21.若|a|=,=2,且ab<0,则a+b= 4﹣.【考点】实数的运算.【分析】根据题意,因为ab<0,确定a、b的取值,再求得a+b的值.【解答】解:∵=2,∴b=4,∵ab<0,∴a<0,又∵|a|=,则a=﹣,∴a+b=﹣+4=4﹣.故答案为:4﹣.【点评】本题考查了实数的运算,属于基础题,解答本题的关键是熟练掌握绝对值的性质和二次根式的非负性.22.若a、b都是无理数,且a+b=2,则a,b的值可以是π;2﹣π(填上一组满足条件的值即可).【考点】无理数.【专题】开放型.【分析】由于初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…的数,而本题中a与b的关系为a+b=2,故确定a后,只要b=2﹣a即可.【解答】解:本题答案不唯一.∵a+b=2,∴b=2﹣a.例如a=π,则b=2﹣π.故答案为:π;2﹣π.【点评】本题主要考查了无理数的定义和性质,答案不唯一,解题关键是正确理解无理数的概念和性质.23.绝对值不大于的非负整数是0,1,2 .【考点】估算无理数的大小.【分析】先估算出的值,再根据绝对值的性质找出符合条件的所有整数即可.【解答】解:∵4<5<9,∴2<<3,∴符合条件的非负整数有:0,1,2.故答案为:0,1,2.【点评】本题考查的是估算无理数的大小及绝对值的性质,根据题意判断出的取值范围是解答此题的关键.24.请你写出一个比大,但比小的无理数+.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:写出一个比大,但比小的无理数+,故答案为:+.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.25.已知+|y﹣1|+(z+2)2=0,则(x+z)2008y= 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y、z的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣3=0,y﹣1=0,z+2=0,解得x=3,y=1,z=﹣2,所以,(3﹣2)2008×1=12008=1.故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.三、解答题(共40分)26.若5x+19的算术平方根是8,求3x﹣2的平方根.【考点】算术平方根;平方根.【分析】先依据算术平方根的定义得到5x+19=64,从而可术的x的值,然后可求得3x﹣2的值,最后依据平方根的定义求解即可.【解答】解:∵5x+19的算术平方根是8,∴5x+19=64.∴x=9.∴3x﹣2=3×9﹣2=25.∴3x﹣2的平方根是±5.【点评】本题主要考查的是算术平方根和平方根的定义,掌握算术平方根和平方根的定义是解题的关键.27.计算:(1)+;(2)++.【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用平方根及立方根定义计算即可得到结果.【解答】解:(1)原式=5﹣2=3;(2)原式=﹣3+5+2=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.解方程.(1)(x﹣1)2=16;(2)8(x+1)3﹣27=0.【考点】立方根;平方根.【分析】(1)两边直接开平方即可;(2)首先将方程变形为(x+1)3=,然后把方程两边同时开立方即可求解.【解答】解:(1)由原方程直接开平方,得x﹣1=±4,∴x=1±4,∴x1=5,x2=﹣3;(2)∵8(x+1)3﹣27=0,∴(x+1)3=,∴x+1=,∴x=.【点评】本题考查了平方根、立方根的性质与运用,是基础知识,需熟练掌握.29.将下列各数按从小到大的顺序重新排成一列.2,,﹣,0,﹣.【考点】实数大小比较.【分析】把2,,﹣,0,﹣分别在数轴上表示出来,然后根据数轴右边的数大于左边的数即可解决问题.【解答】解:如图,根据数轴的特点:数轴右边的数字比左边的大,所以以上数字的排列顺序如下:2>>0>﹣>﹣.【点评】此题主要考查了利用数轴比较实数的大小,解答本题时,采用的是数形结合的数学思想,采用这种方法解题,可以使知识变得更直观.30.著名的海伦公式S= 告诉我们一种求三角形面积的方法,其中p 表示三角形周长的一半,a 、b 、c 分别三角形的三边长,小明考试时,知道了三角形三边长分别是a=3cm ,b=4cm ,c=5cm ,能帮助小明求出该三角形的面积吗?【考点】二次根式的应用.【分析】先根据BC 、AC 、AB 的长求出P ,再代入到公式S=,即可求得该三角形的面积.【解答】解:∵a=3cm ,b=4cm ,c=5cm ,∴p===6,∴S===6(cm 2), ∴△ABC 的面积6cm 2.【点评】此题考查了二次根式的应用,熟练掌握三角形的面积和海伦公式是本题的关键.31.已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是2,求的平方根.【考点】实数的运算.【分析】根据相反数,倒数,以及绝对值的意义求出a+b,cd及m的值,代入计算即可求出平方根.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=±2时,原式=5,5的平方根为±.【点评】此题考查了实数的运算,平方根,绝对值,以及倒数,熟练掌握运算法则是解本题的关键.32.已知实数a,b满足条件+(ab﹣2)2=0,试求+++…+的值.【考点】分式的化简求值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据+(ab﹣2)2=0,可以求得a、b的值,从而可以求得+++…+的值,本题得以解决.【解答】解:∵+(ab﹣2)2=0,∴a﹣1=0,ab﹣1=0,解得,a=1,b=2,∴+++…+=…+=+…+==.【点评】本题考查分式的化简求值、偶次方、算术平方根,解题的关键是明确分式化简求值的方法.。
2019年华师大上册数学八年级《第13章全等三角形》单元测试卷(解析版)
2019年华师大上册数学八年级《第13章全等三角形》单元测试卷一.选择题(共15小题)1.如图,∠AOB的角平分线是()A.射线OB B.射线OE C.射线OD D.射线OC2.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.20°或50°B.20°或60°C.30°或50°D.30°或60°3.射线OC在∠AOB的内部,下列给出的条件中不能得出OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOC+∠BOC=∠AOBC.∠AOB=2∠AOC D.∠BOC=∠AOB4.下列说法中正确的是()A.若∠AOB=2∠AOC,则OC平分∠AOBB.延长∠AOB的平分线OCC.若射线OC、OD三等分∠AOB,则∠AOC=∠DOCD.若OC平分∠AOB,则∠AOC=∠BOC5.如图,Rt△ABC≌Rt△CED,点B、C、E在同一直线上,则结论:①AC=CD,②AC ⊥CD,③BE=AB+DE,④AB∥ED,其中成立的有()A.仅①B.仅①③C.仅①③④D.①②③④6.如图,使△ABC≌△ADC成立的条件是()A.AB=AD,∠B=∠D B.AB=AD,∠ACB=∠ACDC.BC=DC,∠BAC=∠DAC D.AB=AD,∠BAC=∠DAC7.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.60°D.75°8.如图,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,则∠BPD的度数为()A.110°B.125°C.130°D.155°9.用三角尺可以按照下面的方法画∠AOB的角平分线:在OA、OB上分别取点M、N,使OM=ON;再分别过点M、N画OA、OB的垂线,这两条垂线相交于点P,画射线OP(如图),则射线OP平分∠AOB,以上画角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.HL D.ASA10.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:①分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;②连接MN分别交AB、AC于点E、F;③连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.811.如图,在△ABC中,AB=AC,∠ABC=70°,以B为圆心,任意长为半径画弧交AB,BC于点E,F,再分别以点E,F为圆心、以大于EF长为半径画弧,两弧交于点P,作射线BP交AC于点D,则∠BDC为()度.A.65B.75C.80D.8512.如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以大于的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若∠B=34°,则∠BDC的度数是()A.68°B.112°C.124°D.146°13.下列四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01;③计算(+)=5;④如果点P(3﹣2n,1)到两坐标轴的距离相等,则n=1.其中是假命题的个数是()A.1个B.2个C.3个D.4个14.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁15.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°二.填空题(共8小题)16.如图,点A、O、B在一条直线上,∠AOC=130°,OD是∠BOC的平分线,则∠COD =度.17.如图,已知O是直线AB上一点,∠1=20°,OD平分∠BOC,则∠2的度数是度.18.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP =.19.如图,AB=AC,点D,E分别在AB,AC上,CD,BE交于点F,只添加一个条件使△ABE≌△ACD,添加的条件是:.20.在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于M,N,作直线MN,交BC于点D,连接AD.如果BC=5,CD=2,那么AD=.21.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD =AC,∠B=25°,则∠ACB的度数为.22.将命题“内错角相等”改写成“如果…,那么…”的形式为.23.用反证法证明“三角形中至少有一个角不小于60°时,假设“”,则与“”矛盾,所以原命题正确.三.解答题(共3小题)24.如图所示,BD平分∠ABC,BE分∠ABC成2:5的两部分,∠DBE=27°,求∠ABC 的度数.25.如图,△ADF≌△BCE,∠B=32°,∠F=28°,BC=5cm,CD=1cm 求:(1)∠1的度数(2)AC的长26.如图,在△ABC中,AB=AC,点D在AB边上,点D到点A的距离与点D到点C的距离相等.(1)利用尺规作图作出点D,不写作法但保留作图痕迹.(2)若△ABC的底边长5,周长为21,求△BCD的周长.2019年华师大上册数学八年级《第13章全等三角形》单元测试卷参考答案与试题解析一.选择题(共15小题)1.如图,∠AOB的角平分线是()A.射线OB B.射线OE C.射线OD D.射线OC【分析】由∠AOB=70°、∠AOE=35°,利用角平分线的定义即可找出∠AOB的角平分线是射线OE,此题得解.【解答】解:∵∠AOB=70°,∠AOE=35°,∴∠AOB=2∠AOE,∴∠AOB的角平分线是射线OE.故选:B.【点评】本题考查了角平分线的定义,牢记角平分线的定义是解题的关键.2.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.20°或50°B.20°或60°C.30°或50°D.30°或60°【分析】分为两种情况,当∠AOB在∠AOC内部时,当∠AOB在∠AOC外部时,分别求出∠AOM和∠AOD度数,即可求出答案.【解答】解:分为两种情况:如图1,当∠AOB在∠AOC内部时,∵∠AOB=20°,∠AOC=4∠AOB,∴∠AOC=80°,∵OD平分∠AOB,OM平分∠AOC,∴∠AOD=∠BOD=∠AOB=10°,∠AOM=∠COM=∠AOC=40°,∴∠DOM=∠AOM﹣∠AOD=40°﹣10°=30°;如图2,当∠AOB在∠AOC外部时,∠DOM═∠AOM+∠AOD=40°+10°=50°;故选:C.【点评】本题考查了角平分线定义的应用,用了分类讨论思想.3.射线OC在∠AOB的内部,下列给出的条件中不能得出OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOC+∠BOC=∠AOBC.∠AOB=2∠AOC D.∠BOC=∠AOB【分析】利用角平分的定义从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.可知B不一定正确.【解答】解:A、正确;B、不一定正确;C、正确;D、正确;故选:B.【点评】此题主要考查了从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.4.下列说法中正确的是()A.若∠AOB=2∠AOC,则OC平分∠AOBB.延长∠AOB的平分线OCC.若射线OC、OD三等分∠AOB,则∠AOC=∠DOCD.若OC平分∠AOB,则∠AOC=∠BOC【分析】画出反例图形,即可判断A、C;根据延长线的意义和射线的意义即可判断B;根据角平分线定义即可判断D.【解答】解:A、如图,符合条件,但是OC不是∠AOB平分线,故本选项错误;B、反向延长∠AOB的角平分线OC,故本选项错误;C、如图,∠AOC=2∠DOC,故本选项错误;D、∵OC平分∠AOB,∴∠AOC=∠BOC,故本选项正确;故选:D.【点评】本题考查了角平分线的定义,射线的应用,主要考查学生的理解能力和辨析能力.5.如图,Rt△ABC≌Rt△CED,点B、C、E在同一直线上,则结论:①AC=CD,②AC ⊥CD,③BE=AB+DE,④AB∥ED,其中成立的有()A.仅①B.仅①③C.仅①③④D.①②③④【分析】根据全等三角形的对应边相等、对应角相等对各个选项进行判断即可.【解答】解:∵Rt△ABC≌Rt△CED,∴AC=CD,①成立;∵Rt△ABC≌Rt△CED,∴∠1=∠D,又∠2+∠D=90°,∴∠2+∠1=90°,即∠ACD=90°,∴AC⊥DC,②成立;∵Rt△ABC≌Rt△CED,∴AB=CE,BC=ED,又BE=BC+EC,∴BE=ED+AB,③成立;∵∠B+∠E=180°,∴AB∥DE,④成立,故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.6.如图,使△ABC≌△ADC成立的条件是()A.AB=AD,∠B=∠D B.AB=AD,∠ACB=∠ACDC.BC=DC,∠BAC=∠DAC D.AB=AD,∠BAC=∠DAC【分析】本题重点考查三角形全等判定定理SAS,强调的对应角是已知两条对应边的夹角.【解答】解:∵AB=AD,∠BAC=∠DAC,又AC=AC,∴△ABC≌△ADC(SAS),∴D是可以使△ABC≌△ADC成立的,SSA不能判断全等.所以A、B、C都不能选.故选:D.【点评】本题考查了全等三角形的判定;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.7.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.60°D.75°【分析】本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°﹣∠1的值.【解答】解:∵∠B=∠D=90°在Rt△ABC和Rt△ADC中∴Rt△ABC≌Rt△ADC(HL)∴∠2=∠ACB=90°﹣∠1=50°.故选:B.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.8.如图,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,则∠BPD的度数为()A.110°B.125°C.130°D.155°【分析】由条件可证明△ACD≌△BCE,可求得∠ACB,再利用三角形内角和可求得∠APB=∠ACB,则可求得∠BPD.【解答】解:在△ACD和△BCE中∴△ACD≌△BCE(SSS),∴∠ACD=∠BCE,∠A=∠B,∴∠BCA+∠ACE=∠ACE+∠ECD,∴∠ACB=∠ECD=(∠BCD﹣∠ACE)=×(155°﹣55°)=50°,∵∠B+∠ACB=∠A+∠APB,∴∠ABP=∠ACB=50°,∴∠BPD=180°﹣50°=130°,故选:C.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.9.用三角尺可以按照下面的方法画∠AOB的角平分线:在OA、OB上分别取点M、N,使OM=ON;再分别过点M、N画OA、OB的垂线,这两条垂线相交于点P,画射线OP(如图),则射线OP平分∠AOB,以上画角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.HL D.ASA【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【解答】解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:C.【点评】本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定方法并读懂题目信息是解题的关键.10.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:①分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;②连接MN分别交AB、AC于点E、F;③连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.8【分析】根据已知得出MN是线段AD的垂直平分线,推出AE=DE,AF=DF,求出DE ∥AC,DF∥AE,得出四边形AEDF是菱形,根据菱形的性质得出AE=DE=DF=AF,根据平行线分线段成比例定理得出=,代入求出即可.【解答】解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,∵DE∥AC,∴=,∵BD=6,AE=4,CD=3,∴=,∴BE=8,故选:D.【点评】本题考查了平行线分线段成比例定理,菱形的性质和判定,线段垂直平分线性质,等腰三角形的性质的应用,能根据定理四边形AEDF是菱形是解此题的关键,注意:一组平行线截两条直线,所截得的对应线段成比例.11.如图,在△ABC中,AB=AC,∠ABC=70°,以B为圆心,任意长为半径画弧交AB,BC于点E,F,再分别以点E,F为圆心、以大于EF长为半径画弧,两弧交于点P,作射线BP交AC于点D,则∠BDC为()度.A.65B.75C.80D.85【分析】根据等腰三角形的性质求出∠C,根据角平分线的定义求出∠CBD,再根据三角形内角和定理即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C=70°,∵BD平分∠ABC,∴∠CBD=∠ABC=35°,∴∠BDC=180°﹣∠C﹣∠CBD=75°,故选:B.【点评】本题考查基本作图、角平分线的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键是灵活应用知识知识解决问题,属于中考常考题型.12.如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以大于的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若∠B=34°,则∠BDC的度数是()A.68°B.112°C.124°D.146°【分析】根据题意可知DE是AC的垂直平分线,由此即可一一判断.【解答】解:∵∠ACB=90°,∠B=34°,∴∠A=56°,∵DE是AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=56°,∴∠BCD=90°﹣56°=34°,∴∠BDC=180°﹣34°﹣34°=112°,故选:B.【点评】本题考查作图﹣基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形中位线定理等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.13.下列四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01;③计算(+)=5;④如果点P(3﹣2n,1)到两坐标轴的距离相等,则n=1.其中是假命题的个数是()A.1个B.2个C.3个D.4个【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【解答】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.1的算术平方根是0.01,错误;③计算(+)=5,错误;④如果点P(3﹣2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选:D.【点评】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.14.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁【分析】直接利用已知得出甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,进而得出答案.【解答】解:∵甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,∴甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,∵甲、乙都没有输球,∴甲一定与乙平,∵丙得分3分,1胜0平,乙得分5分,1胜2平,∴与乙打平的球队是甲与丁.故选:B.【点评】此题主要考查了推理与论证,正确分析得出每队胜负场次是解题关键.15.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°【分析】熟记反证法的步骤,从命题的反面出发假设出结论,直接得出答案即可.【解答】解:用反证法证明命题“在直角三角形中,至少有一个锐角不小于45°”时,应先假设直角三角形的每个锐角都小于45°.故选:A.【点评】此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.二.填空题(共8小题)16.如图,点A、O、B在一条直线上,∠AOC=130°,OD是∠BOC的平分线,则∠COD =25度.【分析】直接利用平角的定义得出∠BOC的度数,再利用角平分线的定义得出答案.【解答】解:∵点A、O、B在一条直线上,∠AOC=130°,∴∠COB=180°﹣130°=50°,∵OD是∠BOC的平分线,∴∠COD=∠BOC=25°.故答案为:25.【点评】此题主要考查了角平分线的定义,正确得出∠BOC的度数是解题关键.17.如图,已知O是直线AB上一点,∠1=20°,OD平分∠BOC,则∠2的度数是80度.【分析】首先根据邻补角的定义得到∠BOC=160°;然后由角平分线的定义求得∠2=∠BOC.【解答】解:如图,∵∠1=20°,∠1+∠BOC=180°,∴∠BOC=160°.又∵OD平分∠BOC,∴∠2=∠BOC=80°;故填:80.【点评】本题考查了角平分线的定义.注意,此题中隐含着已知条件:∠1+∠BOC=180°.18.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=6或12.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=6,可据此求出P 点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC=12,P、C重合.【解答】解:①当AP=CB时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=6;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QPA中,,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=12,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,AP=6或12.故答案为:6或12.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.19.如图,AB=AC,点D,E分别在AB,AC上,CD,BE交于点F,只添加一个条件使△ABE≌△ACD,添加的条件是:∠B=∠C.【分析】添加条件是∠B=∠C,根据全等三角形的判定定理ASA推出即可,此题是一道开放型的题目,答案不唯一.【解答】解:∠B=∠C,理由是:∵在△ABE和△ACD中∴△ABE≌△ACD(ASA),故答案为:∠B=∠C.【点评】本题考查了全等三角形的判定定理的应用,能理解全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.20.在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于M,N,作直线MN,交BC于点D,连接AD.如果BC=5,CD=2,那么AD=3.【分析】直接利用基本作图方法得出MN垂直平分AB,进而得出答案.【解答】解:由作图步骤可得:MN垂直平分AB,则AD=BD,∵BC=5,CD=2,∴BD=AD=BC﹣DC=5﹣2=3.故答案为:3.【点评】此题主要考查了基本作图,正确得出MN垂直平分AB是解题关键.21.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD =AC,∠B=25°,则∠ACB的度数为105°.【分析】利用线段垂直平分线的性质得出DC=BD,再利用三角形外角的性质以及三角形内角和定理得出即可.【解答】解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°﹣50°﹣25°=105°.故答案为:105°.【点评】此题主要考查了基本作图以及线段垂直平分线的性质,得出∠A=∠CDA=50°是解题关键.22.将命题“内错角相等”改写成“如果…,那么…”的形式为如果两个角是内错角,那么这两个角相等.【分析】根据命题的构成,题设是内错角,结论是这两个角相等写出即可.【解答】解:“内错角相等”改写为:如果两个角是内错角,那么这两个角相等.故答案为:如果两个角是内错角,那么这两个角相等.【点评】本题考查了命题与定理,根据命题的构成准确确定出题设与结论是解题的关键.23.用反证法证明“三角形中至少有一个角不小于60°时,假设“三角形的三个内角都小于60°”,则与“三角形的内角和是180°”矛盾,所以原命题正确.【分析】熟记反证法的步骤,直接填空即可.【解答】解:用反证法证明“三角形中至少有一个角不小于60°时,假设“三角形的三个内角都小于60°”,则与“三角形的内角和是180°”矛盾,所以原命题正确.【点评】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三.解答题(共3小题)24.如图所示,BD平分∠ABC,BE分∠ABC成2:5的两部分,∠DBE=27°,求∠ABC 的度数.【分析】此题的关键是要先设∠ABC的度数.然后再利用题中的关系求出,∠DBE的值,让它与27°列成等式.从而求出∠ABC的度数.【解答】解:设∠ABC=α,则∠ABD=,∠ABE=α∵∠DBE=∠ABD﹣∠ABE∴﹣α=27°得α=126°答:∠ABC=126°.【点评】此题的关键是设未知数,然后找出题中的等量关系解未知数.25.如图,△ADF≌△BCE,∠B=32°,∠F=28°,BC=5cm,CD=1cm 求:(1)∠1的度数(2)AC的长【分析】(1)根据全等三角形的对应角相等和三角形外角性质求得答案;(2)根据全等三角形的对应边相等求出AD,根据图形计算即可.【解答】解:(1)∵△ADF≌△BCE,∠F=28°,∴∠E=∠F=28°,∴∠1=∠B+∠E=32°+28°=60°;(2)∵△ADF≌△BCE,BC=5cm,∴AD=BC=5cm,又CD=1cm,∴AC=AD+CD=6cm.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.26.如图,在△ABC中,AB=AC,点D在AB边上,点D到点A的距离与点D到点C的距离相等.(1)利用尺规作图作出点D,不写作法但保留作图痕迹.(2)若△ABC的底边长5,周长为21,求△BCD的周长.【分析】(1)作线段AC的垂直平分线即可;(2)根据线段的垂直平分线的性质可知:AD=CD,求出AB、BC即可解决问题;【解答】解:(1)点D如图所示;(2)∵DE垂直平分线线段AC,∴AD=DC,∴△CDB的周长=BC+BD+CD=BC+BD+AD=BC+AB,∵AB+AC+BC=21,BC=5,∴AB=AC=8,∴△CDB的周长为13.【点评】本题考查基本作图、等腰三角形的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.。
华师大版八年级(上)期末数学试卷及答案
华师大版八年级(上)期末数学试卷及答案一、选择题1.(3分)计算的结果是()A.±3B.3C.3D.2.(3分)下列运算中,正确的是()A.3a2﹣a2=2B.(2a2)2=2a4C.a6÷a3=a2D.a3•a2=a53.(3分)已知一组数据﹣,π,﹣,1,2,则无理数出现的频率是()A.20%B.40%C.60%D.80%4.(3分)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6B.C.D.5.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD6.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交BC于点D,若CD=5,AB=18,则△ABD的面积是()A.15B.30C.45D.607.(3分)如图,在△ABC中,BA=BC,∠ABC=120°,AB的垂直平分线交AC于点M,交AB于点E,BC的垂直平分线交AC于点N,交BC于点F,连接BM,BN,若AC=24,则△BMN的周长是()A.36B.24C.18D.168.(3分)如图①,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线BD,FH剪开,拼成如图②所示的四边形KLMN,若中间空白部分四边形OPQR恰好是正方形,且四边形KLMN的面积为52,则正方形EFGH的面积是()A.24B.25C.26D.27二、填空题9.(3分)如果某数的一个平方根是﹣5,那么这个数是.10.(3分)若矩形的面积为a2+ab,长为a+b,则宽为.11.(3分)等腰三角形两边长分别是3和6,则该三角形的周长为.12.(3分)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=.13.(3分)如图,某县对辖内的50所中小学上半年工作情况进行了专项督导考核,成绩分别记为A、B、C、D四等,绘制了扇形统计图,则该县被考核的学校中取得D等成绩的有所.14.(3分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.三、解答题15.计算:4a2b•(﹣ab2)3÷(2ab)16.计算:(a﹣b)(a2+ab+b2)17.分解因式:2m3﹣8mn218.先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=,b=﹣1.19.如图,在4×3的正方形网格中,△ABC的顶点都在正方形网格的格点上请你在图①和图②中分别画出一个三角形,同时满足以下两个条件:(1)以点A为一个顶点,另外两个顶点也在正方形网格点上;(2)与△ABC全等,且不与△ABC重合.20.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成3(x﹣1)(x﹣9),另一位同学因看错了常数项而分解成3(x﹣2)(x﹣4).(1)求原来的二次三项式;(2)将(1)中的二次三项式分解因式.21.如图,《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,求折断处离地面的高度.22.如图,AB=AD.AC=AE,∠BAD=∠CAE.(1)求证:△ABC≌△ADE;(2)若AC=9,AD=12,BE=15,请你判断△ABE的形状并说明理由.23.为积极创建全国文明城市,我市对某路口的行人交通违章情况进行了20天的调查,将所得的数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第13天,这一路口的行人交通违章次数是;这20天中,行人交通违章7次的有天.(2)这20天中,行人交通违章6次的有天;请把图2中的频数直方图补充完整.(3)请你根据图2绘制一个扇形统计图,并求行人违章9次的天数在扇形统计图中所对的圆心角度数.24.在等腰三角形ABC中,(1)若∠A=110°,则∠B=度;(2)若∠A=40°,则∠B=度.通过上述解答,发现∠A的度数不同,得到∠B的度数的个数也可能不同.如果在等腰三角形ABC中,设∠A=α,求∠B的度数(用含α的式子表示).请你根据∠B的度数的个数探索α的取值范围.25.感知:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD.(1)求证:△ACB≌△BED;(2)△BCD的面积为(用含m的式子表示).拓展:如图②,在一般的Rt△ABC,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由.应用:如图③,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为;若BC=m,则△BCD的面积为(用含m的式子表示).参考答案与试题解析一、选择题1.【解答】解:==3,故选:B.2.【解答】解:A、3a2﹣a2=2a2,故此选项错误;B、(2a2)2=4a4,故此选项错误;C、a6÷a3=a3,故此选项错误;D、a3•a2=a5,正确.故选:D.3.【解答】解:在﹣,π,﹣,1,2中,π,2都是无理数,共2个,∴无理数出现的频率为=40%.故选:B4.【解答】解:∵∠ACB=90°,AC=8,AB=10,∴BC==6,△ABC的面积=×AB×CD=×AC×BC,即×10×CD=×8×6,解得,CD=,故选:C.5.【解答】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.6.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=5,∴△ABD的面积=×AB×DE=45,故选:C.7.【解答】解:∵直线ME为线段AB的垂直平分线,∴MA=MB(线段垂直平分线上的点到线段两端点的距离相等),又直线NF为线段BC的垂直平分线,∴NB=NC(线段垂直平分线上的点到线段两端点的距离相等),∴△BMN的周长=BM+MN+BN=AM+MN+NC=AC=24(等量代换),故选:B.8.【解答】解:如图,设PM=PL=NR=KR=a,正方形ORQP的边长为b.由题意:a2+b2+(a+b)(a﹣b)=52,∴a2=26,∴正方形EFGH的面积=a2=26,故选:C.二、填空题9.【解答】解:如果某数的一个平方根是﹣5,那么这个数是25,故答案为:2510.【解答】解:矩形的宽=(a2+ab)÷(a+b)=a,故答案为:a.11.【解答】解:由三角形的三边关系可知,由于等腰三角形两边长分别是3和6,所以其另一边只能是6,故其周长为6+6+3=15.故答案为15.12.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:213.【解答】解:50×(1﹣25%﹣65%﹣6%)=2(所);故答案为:2.14.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.三、解答题15.【解答】解:原式=4a2b•(﹣a3b6)÷(2ab)=﹣4a5b7÷(2ab)=﹣2a4b6.16.【解答】解:原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3.17.【解答】解:2m3﹣8mn2=2m(m2﹣4n2)=2m(m﹣2n)(m+2n).18.【解答】解:原式=a2﹣b2﹣a2+4ab﹣4b2=4ab﹣5b2,当a=,b=﹣1时,原式=﹣2﹣5=﹣7.19.【解答】解:如图所示,△ABD和△ABE即为所求.20.【解答】解:(1)3(x﹣1)(x﹣9)=3x2﹣30x+27,3(x﹣2)(x﹣4)=3x2﹣18x+24,根据题意得:原来的多项式为3x2﹣18x+27;(2)原式=3(x2﹣6x+9)=3(x﹣3)2.21.【解答】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+62=(10﹣x)2.解得:x=3.2答:折断处离地面的高度是3.2尺.22.【解答】(1)证明:∵∠BAD=∠CAE,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS).(2)解:结论△ABE是直角三角形.理由:∵AB=AD=12,AE=AC=9,BE=15,∴AB2+AE2=122+92=225,BE2=225,∴AB2+AE2=BE2,∴∠BAE=90°,∴△BAE是直角三角形.23.【解答】解:(1)由折线图知,第13天,这一路口的行人交通违章次数是8,这20天中,行人交通违章7次的有6天,故答案为:8,6;(2)这20天中,行人交通违章6次的有5天,补全直方图如图2所示:故答案为:5;(3)扇形统计图如图3所示,违章9次的天数在扇形统计图中所对的圆心角度数为:360°×15%=54°.24.【解答】解:(1)∵∠A=110°>90°,∴∠A为顶角,∴∠B=∠C=35°;故答案为:35;(2)若∠A为顶角,则∠B=(180°﹣∠A)=70°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×40°=100°;若∠A为底角,∠B为底角,则∠B=40°;故∠B=70或100或40;分两种情况:①当90°≤α<180°时,∠A只能为顶角,∴∠B的度数只有一个;②当0°<α<90°时,若∠A为顶角,则∠B=(180°﹣α)=90°﹣;若∠A为底角,∠B为顶角,则∠B=(180﹣2α)°;若∠A为底角,∠B为底角,则∠B=α.当90°﹣≠180°﹣2α且180°﹣2α≠α且90°﹣≠α,即α≠60°时,∠B有三个不同的度数.∴当0°<α<90°且α≠60°时,∠B有三个不同的度数.综上所述,当90°≤α<180°时,∠B的度数只有一个;当0°<α<90°且α≠60°时,∠B有三个不同的度数.25.【解答】感知:证明:(1)∵△ABC是等腰直角三角形,∴CA=CB=m,∠A=∠ABC=45°,由旋转的性质可知,BA=BD,∠ABD=90°,∴∠DBE=45°,在△ACB和△DEB中,,∴△ACB≌△BED(AAS)(2)∵△ACB≌△BED∴DE=BC=m∴S△BCD=BC×ED=m2,故答案为:m2,拓展:作DG⊥CB交CB的延长线于G,∵∠ABD=90°,∴∠ABC+∠DBG=90°,又∠ABC+∠A=90°,∴∠A=∠DBG,在△ACB和△BGD中,,∴△ACB≌△BGD(AAS),∴BC=DG=m∴S△BCD=BC×DG=m2,应用:作AN⊥BC于N,DM⊥BC交CB的延长线于M,∴∠ANB=∠M=90°,BN=BC=4.∴∠NAB+∠ABN=90°.∵∠ABD=90°,∴∠ABN+∠DBM=90°,∴∠NAB=∠MBD.∵线段BD是由线段AB旋转得到的,∴AB=BD.在△AFB和△BED中,,∴△ANB≌△BMD(AAS),∴BN=DM=BC=4.∴S△BCD=BC•DM=×8×4=16,若BC=m,则BN=DM=BC=m,∴S△BCD=BC•DM=×m×m=m2故答案为:16,m2.。
华师大版八年级(上)期末数学试卷(含解析)2
华师大版八年级(上)期末数学试卷及答案一、选择题(共8小题,每小题3分,共24分}1.81的算术平方根是()A.3B.﹣3C.﹣9D.92.计算x2•x3的结果正确的是()A.x5B.x6C.x8D.53.已知是正整数,则实数n的最小值是()A.3B.2C.1D.4.“早发现,早报告,早隔离,早治疗”是我国抗击“新冠肺炎”的宝贵经验,其中“早”字出现的频率是()A.B.C.D.5.用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设()A.∠B≥90°B.∠B>90°C.∠B<90°D.AB≠AC6.如图,∠1=∠2,∠3=∠4,则判定△ABD和△ACD全等的依据是()A.SSS B.ASA C.SAS D.HL7.(1﹣2x)(1+2x)的计算结果是()A.4x2+1B.1﹣4x2C.4x2D.﹣4x2﹣18.如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF,若EF =3,则FG为()A.4B.3C.5D.1.5二、填空题(共6小题,每小题3分,共18分)9.实数8的立方根是.10.分解因式:mn+4n=.11.(8a3b﹣4a2b2)÷2ab=.12.如图,在Rt△AOB中,∠BAO=90°,AB=1,点A恰好落在数轴上的数字﹣2上,以原点O为圆心,OB的长为半径画弧交数轴于点P,使点P落在点A的左侧,则点P所表示的数是.13.如图,在△ABC中,∠C=90°,∠B=22.5°,AC=2,分别以点A,B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,则BD的长为.14.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是.三、解答题(共10小题,共78分)15.(6分)计算:16.(6分)把4a3b+4a2b2+ab3分解因式.17.(6分)如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,请在如图的网格中画出两个以AB为边的△ABC,使△ABC是等腰直角三角形.(要求:点C在格点上)18.(7分)如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE=∠CAD.求证:DE=CB.19.(7分)先化简,再求值:(x﹣3)2+(x+1)(x﹣1),其中x=.20.(7分)某城市对市民开展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A.绿化造林;B.汽车限行;C.拆除燃煤小锅炉;D.使用清洁能源.调查过程随机抽取了部分市民进行调查,要求市民只允许选择其中的一项,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整.(3)求图2中D项目对应的扇形的圆心角的度数.(4)请你结合自己的实际情况对有效治理雾霾提几点建议(至少写一条).21.(8分)如图,一块铁皮(图中阴影部分),测得AB=3,BC=4,CD=12,AD=13,∠B=90°.求阴影部分的面积.22.(9分)某公司门前一块长为(6a+2b)米,宽为(4a+2b)米的长方形空地要铺地砖,如图所示,空白的甲、乙两正方形区域是建筑物,不需要铺地砖.两正方形区域的边长均为(a+b)米.(1)求铺设地砖的面积是多少平方米;(2)当a=2,b=3时,需要铺地砖的面积是多少?(3)在(2)的条件下,某种道路防滑地砖的规格是:正方形,边长为0.2米,每块1.5元,不考虑其他因素,如果要购买此种地砖,需要元钱.23.(10分)【教材呈现】数学课上,胡老师用无刻度的直尺和圆规按照华师版教材八年级上册87页完成角平分线的作法,方法如下:【试一试】如图1,∠AOB为已知角,试按下列步骤用直尺和圆规准确地作出∠AOB的平分线.第一步:在射线OA、OB上,分别截取OD、OE,使OD=OE;第二步:分别以点D和点E为圆心、适当长(大于线段DE长的一半)为半径作圆弧,在∠AOB内,两弧交于点C;第三步:作射线OC.射线OC就是所要求作的∠AOB的平分线.【问题1】胡老师用尺规作角平分线时,用到的三角形全等的判定方法是.【问题2】小萱同学发现只利用直角三角板也可以作∠AOB的角平分线,方法如下(如图2):步骤:①利用三角板上的刻度,在OA、OB上分别截取OM、ON,使OM=ON.②分别过点M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.(1)请写出小萱同学作法的完整证明过程.(2)当∠MON=60°时,量得MN=4cm,则△MON的面积是cm2.24.(12分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=5cm,点P从点A出发,以cm/s的速度沿AB向终点B运动过.点P作PQ⊥AC于Q,当点P不与点A、B重合时,以线段PQ为边向右作长方形PQMN,使PN=2PQ.设长方形PQMN与△ABC的重叠部分面积为S,点P的运动时间为t(s).(1)用含t的代数式表示线段BP的长度.(2)当点N落在BC边上时,求t的值.(3)用含t的代数式表示S.(4)当点C与长方形PQMN的顶点所连的直线平分△ABC的面积时,直接写出t的值.参考答案与试题解析一、选择题(共8小题,每小题3分,共24分}1.81的算术平方根是()A.3B.﹣3C.﹣9D.9【分析】根据算术平方根的定义求解可得.【解答】解:∵92=81,∴81的算术平方根是9,故选:D.2.计算x2•x3的结果正确的是()A.x5B.x6C.x8D.5【分析】同底数幂相乘,底数不变,指数相加,据此计算即可.【解答】解:x2•x3=x2+3=x5.故选:A.3.已知是正整数,则实数n的最小值是()A.3B.2C.1D.【分析】根据正整数的定义得出18n为1时,实数n的最小,进而得出答案.【解答】解:是正整数,则实数n的最小值为.故选:D.4.“早发现,早报告,早隔离,早治疗”是我国抗击“新冠肺炎”的宝贵经验,其中“早”字出现的频率是()A.B.C.D.【分析】利用频率的计算方法计算即可.【解答】解:“早”字出现的频率是:=,故选:D.5.用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设()A.∠B≥90°B.∠B>90°C.∠B<90°D.AB≠AC【分析】直接利用反证法的第一步分析得出答案.【解答】解:用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设∠B≥90°.故选:A.6.如图,∠1=∠2,∠3=∠4,则判定△ABD和△ACD全等的依据是()A.SSS B.ASA C.SAS D.HL【分析】根据全等三角形的判定定理ASA推出即可.【解答】解:∵在△ABD和△ACD中,,∴△ABD≌△ACD(ASA),故选:B.7.(1﹣2x)(1+2x)的计算结果是()A.4x2+1B.1﹣4x2C.4x2D.﹣4x2﹣1【分析】根据平方差公式求出即可.【解答】解:(1﹣2x)(1+2x)=12﹣(2x)2=1﹣4x2,故选:B.8.如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF,若EF =3,则FG为()A.4B.3C.5D.1.5【分析】由角平分线的性质可得∠GEB=∠BEF=34°,由同位角相等,两直线平行可得CD∥AB,即可求解.【解答】解:∵EG平分∠BEF,∴∠GEB=∠GEF,∵∠1=∠BEF,∴CD∥AB,∴∠EGF=∠GEB,∴∠GEF=∠EGF,∴△EFG是等腰三角形,∴FG=EF=3,故选:B.二、填空题(共6小题,每小题3分,共18分)9.实数8的立方根是2.【分析】根据立方根的定义解答.【解答】解:∵23=8,∴8的立方根是2.故答案为:2.10.分解因式:mn+4n=n(m+4).【分析】直接提取公因式n分解因式即可求解.【解答】解:mn+4n=n(m+4).故答案为:n(m+4).11.(8a3b﹣4a2b2)÷2ab=4a2﹣2ab.【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(8a3b﹣4a2b2)÷2ab=8a3b÷2ab﹣4a2b2÷2ab=4a2﹣2ab.故答案为:4a2﹣2ab.12.如图,在Rt△AOB中,∠BAO=90°,AB=1,点A恰好落在数轴上的数字﹣2上,以原点O为圆心,OB的长为半径画弧交数轴于点P,使点P落在点A的左侧,则点P所表示的数是﹣.【分析】依据勾股定理即可得到OB的长,进而得出OP的长,即可得到点P所表示的数.【解答】解:∵Rt△AOB中,∠BAO=90°,AB=1,AO=2,∴OB==,又∵OB=OP,∴OP=,又∵点P在原点的左边,∴点P表示的数为,故答案为:.13.如图,在△ABC中,∠C=90°,∠B=22.5°,AC=2,分别以点A,B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,则BD的长为2.【分析】连接AD,利用基本作法判断MN垂直平分AB,则DA=DB,所以∠DAB=∠B=22.5°,再判断△ACD 为等腰直角三角形,则AD=2,从而得到BD的长.【解答】解:由作法得MN垂直平分AB,连接AD,则DA=DB,∴∠DAB=∠B=22.5°,∴∠CDA=22.5°+22.5°=45°,∵∠C=90°,∴△ACD为等腰直角三角形,∴AD=AC=2,∴BD=2.故答案为2.14.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是80°.【分析】由等腰三角形的性质可得∠O=∠CDO,∠DCE=∠DEC,由外角性质可得∠O=25°,即可求解.【解答】解:∵OC=CD=DE,∴∠O=∠CDO,∠DCE=∠DEC,∵∠DCE=∠O+∠CDO=2∠O,∴∠DEC=2∠O,∴∠BDE=∠O+2∠DEC=3∠O=75°,∴∠O=25°,∴∠DCE=∠DEC=50°,∴∠CDE=80°,故答案为:80°.三、解答题(共10小题,共78分)15.(6分)计算:【分析】先进行二次根式的除法运算,然后把二次根式化为最简二次根式后合并即可.【解答】解:原式=+2﹣=+2﹣=2.16.(6分)把4a3b+4a2b2+ab3分解因式.【分析】首先提公因式ab,再利用完全平方进行二次分解即可.【解答】解:原式=ab(4a2+4ab+b2)=ab(2a+b)2.17.(6分)如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,请在如图的网格中画出两个以AB为边的△ABC,使△ABC是等腰直角三角形.(要求:点C在格点上)【分析】根据等腰直角三角形的定义以及数形结合的思想解决问题即可.【解答】解:如图,△ABC即为所求作.18.(7分)如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE=∠CAD.求证:DE=CB.【分析】先由角的和差性质证得∠DAE=∠CAB,再根据SAS定理证明△ADE≌△ACB,最后根据全等三角形的性质得出DE=CB.【解答】证明:∵∠BAE=∠CAD,∴∠BAE+∠BAD=∠CAD+∠BAD,即∠DAE=∠CAB,在△ADE和△ACB中,,∴△ADE≌△ACB(SAS),∴DE=CB.19.(7分)先化简,再求值:(x﹣3)2+(x+1)(x﹣1),其中x=.【分析】先根据完全平方公式和平方差公式算乘法,再合并同类项,再求出答案即可.【解答】解:(x﹣3)2+(x+1)(x﹣1)=x2﹣6x+9+x2﹣1=2x2﹣6x+8,当x=时,原式=2×()2﹣6×+8=12﹣6.20.(7分)某城市对市民开展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A.绿化造林;B.汽车限行;C.拆除燃煤小锅炉;D.使用清洁能源.调查过程随机抽取了部分市民进行调查,要求市民只允许选择其中的一项,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整.(3)求图2中D项目对应的扇形的圆心角的度数.(4)请你结合自己的实际情况对有效治理雾霾提几点建议(至少写一条).①建议绿色出行,尽量乘坐公共交通工具上班,减少开车的次数,②加强植树造林,增加绿化面积,提高绿化率,还绿水青山.【分析】(1)从两个统计图可得,“A组”的有20人,占调查人数的10%,可求出调查人数;(2)用总人数减去其它项目的人数求出“C组”的人数,即可补全条形统计图;(3)用360°乘以D项目所占的百分比即可得出答案;(4)从减少尾气排放、增加植树造林等方面提出意见和建议即可.【解答】解:(1)20÷10%=200(人),答:本次调查的人数为200人;(2)C项目的人数有:200﹣20﹣80﹣40=60(人),补全条形统计图如图所示:(3)360°×=72°,答:图2中D项目对应的扇形的圆心角的度数为72°;(4)①建议绿色出行,尽量乘坐公共交通工具上班,减少开车的次数,②加强植树造林,增加绿化面积,提高绿化率,还绿水青山.故答案为:①建议绿色出行,尽量乘坐公共交通工具上班,减少开车的次数,②加强植树造林,增加绿化面积,提高绿化率,还绿水青山.21.(8分)如图,一块铁皮(图中阴影部分),测得AB=3,BC=4,CD=12,AD=13,∠B=90°.求阴影部分的面积.【分析】先根据勾股定理求出AC的长,再由勾股定理的逆定理判断出△ACD是直角三角形,进而可得出结论.【解答】解:如图,连接AC.∵△ABC中,∠B=90°,AB=3,BC=4,∴AC==5.∵CD=12,AD=13,AC=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∴S阴影=S△ACD﹣S△ABC=×5×12﹣×3×4=30﹣6=24.22.(9分)某公司门前一块长为(6a+2b)米,宽为(4a+2b)米的长方形空地要铺地砖,如图所示,空白的甲、乙两正方形区域是建筑物,不需要铺地砖.两正方形区域的边长均为(a+b)米.(1)求铺设地砖的面积是多少平方米;(2)当a=2,b=3时,需要铺地砖的面积是多少?(3)在(2)的条件下,某种道路防滑地砖的规格是:正方形,边长为0.2米,每块1.5元,不考虑其他因素,如果要购买此种地砖,需要7575元钱.【分析】(1)长方形空地的面积减去建筑物A、B的面积即可;(2)把a=2,b=3时代入计算即可;(3)计算出需要的地砖的块数,再求出总金额.【解答】解:(1)铺设地砖的面积为:(6a+2b)(4a+2b)﹣2(a+b)2=24a2+20ab+4b2﹣2a2﹣4ab﹣2b2=22a2+16ab+2b2(平方米),答:铺设地砖的面积为22a2+16ab+2b2平方米;(2)当a=2,b=3时,原式=22×22+16×2×3+2×32=202(平方米),答:当a=2,b=3时,需要铺地砖的面积是202平方米;(3)202÷0.22×1.5=7575(元),故答案为:7575.23.(10分)【教材呈现】数学课上,胡老师用无刻度的直尺和圆规按照华师版教材八年级上册87页完成角平分线的作法,方法如下:【试一试】如图1,∠AOB为已知角,试按下列步骤用直尺和圆规准确地作出∠AOB的平分线.第一步:在射线OA、OB上,分别截取OD、OE,使OD=OE;第二步:分别以点D和点E为圆心、适当长(大于线段DE长的一半)为半径作圆弧,在∠AOB内,两弧交于点C;第三步:作射线OC.射线OC就是所要求作的∠AOB的平分线.【问题1】胡老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS.【问题2】小萱同学发现只利用直角三角板也可以作∠AOB的角平分线,方法如下(如图2):步骤:①利用三角板上的刻度,在OA、OB上分别截取OM、ON,使OM=ON.②分别过点M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.(1)请写出小萱同学作法的完整证明过程.(2)当∠MON=60°时,量得MN=4cm,则△MON的面积是4cm2.【分析】【问题1】根据三角形全等的SSS定理解答;【问题2】(1)证明Rt△OPN≌Rt△OPM,根据全等三角形的性质证明;(2)根据等边三角形的性质求出ON,根据等腰三角形的性质、勾股定理求出OH,根据三角形的面积公式计算,得到答案.【解答】解:【问题1】胡老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS,故答案为:SSS;【问题2】(1)在Rt△OPN和Rt△OPM中,,∴Rt△OPN≌Rt△OPM(HL),∴∠NOP=∠MOP,∴OP为∠AOB的平分线;(2)∵∠MON=60°,OM=ON,∴△MON为等边三角形,∴OM=ON=MN=4(cm),∵OM=ON,OP为∠AOB的平分线,∴NH=HM=MN=2(cm),由勾股定理得,OH===2(cm),∴△MON的面积=×MN×OH=×4×2=4(cm2),故答案为:4.24.(12分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=5cm,点P从点A出发,以cm/s的速度沿AB向终点B运动过.点P作PQ⊥AC于Q,当点P不与点A、B重合时,以线段PQ为边向右作长方形PQMN,使PN=2PQ.设长方形PQMN与△ABC的重叠部分面积为S,点P的运动时间为t(s).(1)用含t的代数式表示线段BP的长度.(2)当点N落在BC边上时,求t的值.(3)用含t的代数式表示S.(4)当点C与长方形PQMN的顶点所连的直线平分△ABC的面积时,直接写出t的值.【分析】(1)利用勾股定理求出AB,利用线段和差定义求出PB即可.(2)根据AQ+QM=AC,构建方程求出t即可.(3)分两种情形:当0<t≤时,当<t<5时,分别求解即可.(4)分两种情形:当CN平分△ABC是面积时,MN=CM=t,根据AQ+QM+MC=5,构建方程求解即可.当CP平分△ABC面积时,AP=PB,可得t=.【解答】解:(1)在Rt△ABC中,∠ACB=90°,AC=BC=5cm,∴AB==5(cm),∵AP=t(cm),∴PB=AB﹣AP=(5﹣t)(cm).(2)当点N落在BC边上时,AQ+QM=AB=5,∴t+2t=5,∴t=.(3)当0<t≤时,S=2t2.当<t<5时,S=t•(4﹣t)=﹣t2+4t.综上所述,S=.(4)当CN平分△ABC是面积时,MN=CM=t,∵AQ+QM+MC=5,∴t+2t+t=5,∴t=.当CP平分△ABC面积时,AP=PB,此时t=,综上所述,满足条件的t的值为或.。
2019-2020年华东师大版数学八年级上学期期末模拟达标测试及答案解析-精编试题
华师版八年级第一学期数学期末模拟试题(满分120,时间90分钟)一、填空题(每小题2分,共30分)1、计算:=∙432)(a a ;=-32)2(c b ;=-∙22)5(2ab a2、计算:=+-∙-)42(32x x x ;224) )(2(b a b a -=-3、若k x x 442++是一个多项式的完全平方,则=k4、不等式621<-x 的负整数解为5、当m 时,不等式mx ≥m 8解集为x ≤86、如图1,已知AC=AD ,若使△ABC ≌△ABD ,请您补充条件 (只需填写一个你认为适当的条件)7、在平行四边形ABCD 中,已知AB=8,周长等于24,则BC=8、菱形的一条对角线与一条边长相等,这个菱形相邻两个内角的度数分别A B为9、如图2,一张宽为6cm的矩形纸片,按图示加以折叠,使得一角顶点落在AB边上,则折痕DF= cm10、等腰梯形的上底与高相等,下底是上底的3倍,则底角(锐角)等于度11、同学们曾玩过万花筒,它是由三块等宽、等长的玻璃片围成的,如图3是万花筒的一个图案,图中所有三角形均是全等的等边三角形,其中的菱形AEFG可以看成是菱形ABCD以A为中心逆时针旋转度得到的。
12、某学生第一次数学检测得80分,第二次得86分,那么他第三次检测得分x的情况为时,才能使平均成绩不低于85分。
二、选择题(每小题3分,共30分)13、下列计算结果是8a 的是( )A 、42a a ∙B 、44a a +C 、24)(aD 、42a14、若3)3)(1(2-+=+-px x x x ,那么p 的值是( )A 、-2B 、-1C 、2D 、315、分解因式32b b a -结果正确的是( )A 、)(22b a b -B 、2)(b a b -C 、))((b a b ab -+D 、))((b a b a b -+16、若10=-b a ,5=ab ,则22b a +的值为A 、15B 、90C 、100D 、11017、若当0<a 时,3a a n ∙的值大于零,则n 的值只能是( )A 、0B 、奇数C 、偶数D 、正整数18、两次翻折(对称轴互相平行)相当于一次( )A 、翻折B 、平移C 、旋转D 、中心对称19、正方形具有而矩形不具有的性质是( )A 、对边相等B 、对角线相等C 、对角线互相平分D 、对角线互相垂直20、如图4所示的图案是我国几家银行标志,其中既是中心对称又是轴对称的有( )A 、1个B 、2个C 、3个D 、4个21、使两个直角三角形全等的条件是( )A 、一组锐角对应相等B 、两组锐角分别对应相等C 、一组直角边对应相等D 、两组直角边分别对应相等22、过矩形的四个顶点分别作对角线的平行线,围成的四边形是( )A 、一般四边形B 、矩形C 、菱形D 、正方形三、计算题(每小题5分,共25分)23、先化简,再求值。
第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)
第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如图,数轴上点N表示的数可能是( )A. B. C. D.2、估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间3、下列关于的叙述,错误的是()A.在数轴上可以找到表示的点B.面积为5的正方形边长是C. 介于2和3之间D. 表示5的平方根4、9的算术平方根是()A.3B.﹣3C.±3D.5、﹣8的立方根是()A. B.2 C.﹣2 D.6、下列命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数的符号一致;④如果一个数的立方根等于它本身,那么它一定是1或0.其中正确有()个.A.1B.2C.3D.47、整数部分是()A.1B.2C.3D.48、估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间9、下列各式正确的是()A.2a 2﹣a 2=2B. + =C.( )2=25 D. =110、一块正方形的瓷砖,面积为cm2,它的边长大约在()A.4cm~5cm之间B.5cm~6cm之间C.6cm~7cm之间D.7cm~8cm之间11、下列各式中计算正确的是()A. B. C. D.12、-27的立方根与9的平方根的和是()A.0B.6C.-6D.0或-613、下列计算正确的是()A. =±3B.|﹣3|=﹣3C. =3D.﹣3 2=914、下列等式正确的是( )A. B. C. D.15、下列运算中,正确的是()A. + =B.﹣a+2a=aC.(a 3)3=a 6D.=﹣3二、填空题(共10题,共计30分)16、的平方根是________17、比较大小________ .18、计算:________.19、试举一例,说明“两个无理数的和仍是无理数”是错误的:________.20、的平方根是±3,的立方根是2,则的值是________.21、实数a、b在数轴上的位置如图所示,则化简|a﹣b|+a的结果为________.22、比较大小:________ (用“”或“”填空).23、的倒数为________;的算术平方根为________;比较实数的大小:________ .24、1﹣的相反数是________;﹣64的立方根是________.25、的整数部分是________。
(完整)(华师大版)2018-2019学年八年级上期末模拟数学试卷(含答案),推荐文档
2018-2019 学年第一学期期末模拟试卷八年级数学一.单选题(共10 题;共30 分)1.下列命题中,真命题是()A.一组对边平行,另一组对边相等的四边形一定是等腰梯形B. 对角线互相垂直的四边形是菱形C. 顺次连结菱形各边中点所得的四边形是正方形D. 四个内角均相等的四边形是矩形2.已知:点P、Q 是△ABC 的边BC 上的两个点,且BP=PQ=QC=AP=AQ,∠BAC 的度数是()A. 100°B. 120°C. 130°D. 150°3.如图是琳琳6 个装好糖果的礼包盒,每盒上面的数字代表这盒礼包实际装有的糖果数量.她把其中的5 盒送给好朋友小芬和小红,自己留下1 盒.已知送的都是整盒,包装没拆过,送给小芬的糖果数量是小红的2 倍,则琳琳自己留下的这盒有糖果()A. 15 粒B. 18 粒C. 20 粒D. 31 粒4.已知9x2+kxy+4y2 是一个完全平方展开式,那么k 的值是()A. 12B. 24C. ±12D. ±245.下列各组数中能够作为直角三角形的三边长的是()A. 1,2,3B. 2,3,4C. 3,4,5D. 4,5,66.已知实数x,y 满足,则x﹣y 等于()A. 3B. ﹣3C. 1D. ﹣17.如图,在△ABC 中,AB、AC 的垂直平分线分别交BC 于点E、F,若∠BAC=110°,则∠EAF 为()A. 35°B. 40°C. 45°D. 50°8.如图1,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中能和△ABC 完全重合的是()A.丙和乙B. 甲和丙C. 只有甲D. 只有丙9.下列多项式①x²+xy-y²②-x²+2xy-y²③xy+x²+y²④1-x+ x 其中能用完全平方公式分解因式的是()A. ①②B. ①③C. ①④D. ②④10.下列条件中不能使两个直角三角形全等的是()A.两条直角边对应相等B. 两个锐角对应相等C. 一条直角边和斜边对应相等D. 一个锐角和斜边对应相等二.填空题(共8 题;共24 分)11.如图所示的一块地,已知AD=4 米,CD=3 米,∠ADC=90°,AB=13 米,BC=12 米,这块地的面积为m212.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .13.如图,△ABC 的高BD,CE 相交于点O.请你添加一个条件,使BD=CE.你所添加的条件是.(仅添加一对相等的线段或一对相等的角)14.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:15.如图,若▱ABCD 的周长为36cm,过点D 分别作AB,BC 边上的高DE,DF,且DE=4cm,DF=5cm,▱ABCD 的面积为cm2 .16.用反证法证明AB≠AC时,首先假设成立.17.在实数范围内因式分解:x3﹣2x2y+xy2= .18.(2015•娄底)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是(只需写一个,不添加辅助线)三.解答题(共6 题;共36 分)19.如图,已知△ABC 中,AB=BD=DC,∠ABC=105°,求∠A,∠C 度数.20.如图,点D 在AC 上,点E 在AB 上,且AB=AC,BD=BC,AD=DE=BE.求∠A 的度数.21.如图,在▱ABCD 中,M,N 在对角线AC 上,且AM=CN,求证:BM∥DN.22.如图,AB=AC,BD=DC,DF⊥AB,DE⊥AC,垂足分别是F,E.求证:DE=DF.23.如图,铁路上A、B 两点相距25km,C、D 为两村庄,DA⊥AB 于A,CB⊥AB 于B,已知DA=15km,CB=10km,现在要在铁路AB 上建一个土特产品收购站E,使得C、D 两村到E 站的距离相等,则E 站应建在距A 站多少千米处?24.如图,AB=BC,AB⊥BC 于B,FC⊥BC 于C,E 为BC 上一点,BE=FC,请探求AE 与BF 的关系,并说明理由.四.综合题(共10 分)25.如图,∠MON=30°,在距离O 点80 米的A 处有一所学校,当重型运输卡车P 沿道路ON 方向行驶时,距离卡车50 米范围内都会受到卡车噪声的影响.(1)学校A 是否受到卡车噪声的影响?为什么?(2)假如学校A 会受到噪声的影响,若卡车以每小时18km 的速度行驶,求卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间.2018-2019 学年八年级上期末模拟数学试卷参考答案一.单选题1.【答案】D2.【答案】B3.【答案】C4.【答案】C5.【答案】C6.【答案】A7.【答案】B8.【答案】B9.【答案】D10.【答案】B二.填空题11.【答案】2412.【答案】55°13.【答案】BE=CD 或∠EBC=∠DCB 或∠DBC=∠BCE 或AB=AC14.【答案】AC=DF15.【答案】4016.【答案】AB=AC17.【答案】x(x﹣y)218.【答案】∠ABD=∠CBD 或AD=CD.三.解答题19.【答案】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣ 4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.20.【答案】解:设∠A=x°,∵AD=DE=BE,∴∠ABD=∠BDE,∠A=∠AED,由三角形的外角性质得,∠AED=∠ABD+∠BDE=2∠ABD,∴∠ABD= x°,在△ABD 中,∠BDC=∠A+∠ABD=x°+ x°= x°,∵BD=BC,∴C=∠BDC,∵AB=AC,∴∠C=∠ABC,∴∠ABC=∠C=∠BDC= x°,在△ABC 中,由三角形内角和定理得,x+ x+ x=180,解得x=45,所以,∠A=45°.21.【答案】证明:连接BD、MD、BN,∵四边形ABCD 是平行四边形,∴OA=OC,OB=OD,∵AM=CN,∴OA﹣AM=OC﹣CN,即OM=ON,∴四边形BNDM 是平行四边形.∴BM∥DN.22.【答案】证明:∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠BFD=∠CED=90°,∵BD=DC,∴△BDF≌△CDE,∴DE=DF23.【答案】解:设AE=xkm,∵C、D 两村到E 站的距离相等,∴DE=CE,即DE2=CE2 ,由勾股定理,得152+x2=102+(25﹣x)2,x=10.故:E 点应建在距A 站10 千米处.24.【答案】解:AE⊥BF 且AE=BF.理由:∵AB⊥BC 于B,FC⊥BC 于C,∴∠ABE=∠BCF=90°.∵AB=BC,BE=FC,∴△ABE≌△BCF.∴AE=BF,∠A=∠FBC,∠AEB=∠F.∵∠A+∠AEB=90°,∴∠FBC+AEB=90°.∴AE⊥BF.∴AE⊥BF 且AE=BF.四.综合题25.【答案】(1)解:会.作AD⊥ON 于D,∵∠MON=30°,AO=80m,∴AD= OA=40m<50m,∴学校A 会受到卡车噪声的影响;(2)解:如图以A 为圆心50m 为半径画圆,交ON 于B、C 两点,∵AD⊥BC,∴BD=CD= BC,在Rt△ABD 中,BD= = =30m,∴BC=60m,∵重型运输卡车的速度为18 千米/时=300 米/分钟,∴重型运输卡车经过BC 的时间=60÷300=0.2 分钟=12 秒,答:卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间为12 秒.沁园春·雪北国风光,千里冰封,万里雪飘。
2021-2022学年华师大版八年级数学上册几何部分期末综合复习训练(附答案)
2021-2022学年华师大版八年级数学上册几何部分期末综合复习训练(附答案)1.如图,已知∠AOB=40°,点D在OA边上,点C、点E在OB边上,连接CD、DE.若OC=OD=DE,则∠CDE的度数为()A.20°B.30°C.40°D.50°2.如图,在△ABC中,AB=AC,点P是△ABC内一点,且∠PBC=∠PCA,若∠BPC=115°,则∠A的度数为()A.50°B.55°C.60°D.65°3.等腰三角形的两边长分别为8和14,则这个三角形的周长为()A.22B.30或22C.36D.30或364.如图,在△ABC中,AB=BC,△BDE的顶点D、E分别在AB、AC上,且∠DBE=100°,BD=BE.若∠C=30°,则∠AED的度数为()A.20°B.10°C.15°D.18°5.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为24cm和30cm的两部分,则BC的长为()A.14B.16或22C.22D.14或226.如图,已知在△ABC中,AB=AC,∠ACB和∠BAC的平分线交于点O,过点A作AD ⊥AO交CO的延长线于点D,若∠ACD=α,则∠BDC度数为()A.45°﹣αB.C.90°﹣2αD.7.如图,在第1个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E…按此做法继续下去,则第2021个三角形中以A2021为顶点的内角度数是()A.()2019•75°B.()2020•75°C.()2021•75°D.()2022•75°8.等腰三角形一边长9cm,另一边长4cm,它的第三边是()cm.A.4B.9C.4或9D.不能确定9.如图,在△ABC中,AC=BC,点D在AC边上,点E在CB的延长线上,DE与AB相交于点F,若∠C=50°,∠E=25°,则∠BFE的度数为()A.30°B.40°C.50°D.60°10.已知:如图,△ABC中,AB=AC,D是BC上一点,点E、F分别在AB、AC上,BD =CF,CD=BE,G为EF的中点.求证:DG⊥EF.11.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC,求证:(1)AM⊥DM;(2)M为BC的中点.12.如图:AE⊥AB,AF⊥AC,AE=AB,AF=AC,(1)图中EC、BF有怎样的数量和位置关系?试证明你的结论.(2)连接AM,求证:MA平分∠EMF.13.已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.14.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)示例:在图1中,通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系.答:AB与AP的数量关系和位置关系分别是、.(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.请你观察、测量,猜想并写出BQ与AP所满足的数量关系和位置关系.答:BQ与AP的数量关系和位置关系分别是、.(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.15.把两个全等的直角三角板的斜边重合,组成一个四边形ACBD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的条件下,若将M、N改在CA、BC的延长线上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)16.如图,在△ABC中,AC=BC,∠ACB=90°,点D为△ABC内一点,且BD=AD.(1)求证:CD⊥AB;(2)∠CAD=15°,E为AD延长线上的一点,且CE=CA.①求证:DE平分∠BDC;②若点M在DE上,且DC=DM,请判断ME、BD的数量关系,并给出证明;③若N为直线AE上一点,且△CEN为等腰三角形,直接写出∠CNE的度数.17.已知:如图,在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.若AE、CD为△ABC的角平分线.(1)求证:∠AFC=120°;(2)若AD=6,CE=4,求AC的长?18.【探究】如图①,在△ABC中,O是BC边中点,连接AO并延长,使DO=AO,连接CD.求证:AB∥CD.【应用】如图②,在四边形ABCD中,AB∥CD,O是BC的中点,连接AO并延长交DC的延长线于点E,若AE平分∠BAD,求证:AD=CD+AB.19.(1)观察理解:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A,B 在直线l同侧,BD⊥l,AE⊥l,垂足分别为D,E,由此可得:∠AEC=∠CDB=90°,所以∠CAE+∠ACE=90°,又因为∠ACB=90°,所以∠BCD+∠ACE=90°,所以∠CAE=∠BCD,又因为AC=BC,所以△AEC≌△CDB();(请填写全等判定的方法)(2)理解应用:如图2,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,利用(1)中的结论,请按照图中所标注的数据计算图中实线所围成的图形的面积S=;(3)类比探究:如图3,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积.(4)拓展提升:如图4,等边△EBC中,EC=BC=3cm,点O在BC上,且OC=2cm,动点P从点E沿射线EC以1cm/s速度运动,连接OP,将线段OP绕点O逆时针旋转120°得到线段OF.设点P运动的时间为t秒.①当t=秒时,OF∥ED;②当t=秒时,OF⊥BC;③当t=秒时,点F恰好落在射线EB上.20.(1)探究发现:如图1,△ABC为等边三角形,点D为AB边上的一点,∠DCE=30°,∠DCF=60°且CF=CD①求∠EAF的度数;②DE与EF相等吗?请说明理由;(2)类比探究:如图2,△ABC为等腰直角三角形,∠ACB=90°,点D为AB边上的一点,∠DCE=45°,CF=CD,CF⊥CD,请直接写出下列结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.21.如图,在△ABC与△ADE中,∠DAE=∠BAC=90°,AC=AE,BC=DE,过A作AF ⊥DE,垂足为F,过A作AH⊥BC,垂足为H,延长CB交DE于点G,连接GA.求证:GA平分∠DGC.22.已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG.若AG平分∠CAD,求证:AH=AC.23.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.24.若a、b是△ABC的两边且|a﹣3|+(b﹣4)2=0(1)试求a、b的值,并求第三边c的取值范围.(2)若△ABC是等腰三角形,试求此三角形的周长.(3)若另一等腰△DEF,其中一内角为x°,另一个内角为(2x﹣20)°试求此三角形各内角度数.25.在△ABC中,AB=AC,点D是线段BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,如果∠BAC=90°,则∠BCE=;(2)如图2,设∠BAC=α,∠BCE=β.当点D在线段BC上移动时,请写出α,β之间的数量关系,请说明理由.26.如图,在△ABC中,AB=AC,∠C=2∠A,BD是AC边上的高,求∠A和∠DBC的度数.27.在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N在边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时=;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.参考答案1.解:∵OC=OD,∴∠OCD=∠ODC,∵∠AOB=40°,∴∠ODC=(180°﹣∠AOB)÷2=(180°﹣40°)÷2=70°,∵OD=DE,∴∠OED=∠AOB=40°,∴∠ODE=180°﹣40°×2=100°,∴∠CDE=∠ODE﹣∠ODC=100°﹣70°=30°.故选:B.2.解:∵∠BPC=115°,∴∠PBC+∠PCB=65°,∵∠PBC=∠PCA,∴∠PCB+∠PCA=65°,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=∠ACB=65°,∴∠A=180°−∠ABC﹣∠ACB=180°﹣65°﹣65°=50°,故选:A.3.解:当腰长为8时,则三角形的三边长分别为8、8、14,满足三角形的三边关系,此时周长为30;当腰长为14时,则三角形的三边长分别为14、14、8,满足三角形的三边关系,此时周长为36;综上可知,三角形的周长为30或36.故选:D.4.解:∵AB=BC,∠C=30°,∴∠A=∠C=30°,又∵∠DBE=100°,BD=BE,∴∠BDE=∠BED=40°,∴∠AED=∠BDE﹣∠A=10°,故选:B.5.解:如图,∵AB=AC,BD是AC边上的中线,即AD=CD,∴|(AB+AD)﹣(BC+CD)|=|AB﹣BC|=30﹣24=6(cm),AB+BC+AC=2AB+BC=24+30=54(cm),若AB>BC,则AB﹣BC=6(cm),又∵2AB+BC=54(cm),联立方程组:,解得:AB=20cm,BC=14cm,20、20、14三边能够组成三角形;若AB<BC,则BC﹣AB=6(cm),又2AB+BC=54(cm),联立方程组:,解得:AB=16,BC=22,16、16、22三边能够组成三角形;∴BC=14或22.故选:D.6.解:∵AB=AC,∠ACD=α,OC平分∠ACB,∴∠ABC=∠ACB=2α,∵∠ACB和∠BAC的平分线交于点O,∴∠OBC=∠OBA=∠OCB=α,∴∠DOB=∠OBC+∠OCB=2α,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣4α,∴∠BOA=90°﹣2α,∵AD⊥AO,∴∠DAB=∠DOB=2α,∴O、A、D、B四点共圆,∴∠BDC=∠DOA=90°﹣2α.故选:C.7.解:∵∠B=30°,A1B=CB,∴∠BA1C=∠C,30°+∠BA1C+∠C=180°.∴2∠BA1C=150°.∴∠BA1C=×150°=75°.∵A1A2=A1D,∴∠DA2A1=∠A1DA2.∴∠BA1C=∠DA2A1+∠A2DA1=2∠DA2A1.∴∠DA2A1=∠BA1C=××150°.同理可得:∠EA3A2=∠DA2A1=×××150°.…以此类推,以A n为顶点的内角度数是∠A n=()n×150°=()n﹣1×75°.∴以A2021为顶点的内角度数是()2020×75°.故选:B.8.解:①当腰为4cm时,三边为4cm,4cm,9cm,∵4+4<9,∴不符合三角形的三边关系定理,此种情况舍去;②当腰为9cm时,三边为4cm,9cm,9cm,此时符合三角形的三边关系定理,所以三角形的第三边为9cm,故选:B.9.解:∵△ABC中,AC=BC,∠C=50°,∴∠ABC=(180°﹣50°)=65°,∵∠ABC是△BEF的外角,∴∠BFE=∠ABC﹣∠E=65°﹣25°=40°,故选:B.10.证明:∵AB=AC,∴∠B=∠C,在△BED和△CDF中,,∴△BDE≌△CFD(SAS),∴DE=DF,∵G是EF的中点,∴DG⊥EF.11.证明:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.12.(1)解:结论:EC=BF,EC⊥BF.理由:∵AE⊥AB,AF⊥AC,∴∠EAB=∠CAF=90°,∴∠EAB+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAF.在△EAC和△BAF中,,∴△EAC≌△BAF(SAS),∴EC=BF.∠AEC=∠ABF∵∠AEG+∠AGE=90°,∠AGE=∠BGM,∴∠ABF+∠BGM=90°,∴∠EMB=90°,∴EC⊥BF.∴EC=BF,EC⊥BF.(2)证明:作AP⊥CE于P,AQ⊥BF于Q.∵△EAC≌△BAF,∴AP=AQ(全等三角形对应边上的高相等).∵AP⊥CE于P,AQ⊥BF于Q,∴AM平分∠EMF.13.解:(1)①∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;14.解:(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立.证明:如图,∵∠EPF=45°,∴∠CPQ=45°.∵AC⊥BC,∴∠CQP=∠CPQ,CQ=CP.在Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP(SAS)∴BQ=AP;延长QB交AP于点N,∴∠PBN=∠CBQ.∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC.在Rt△BCQ中,∠BQC+∠CBQ=90°,∴∠APC+∠PBN=90°.∴∠PNB=90°.∴QB⊥AP.15.(1)AM+BN=MN,证明:延长CB到E,使BE=AM,∵∠A=∠CBD=90°,∴∠A=∠EBD=90°,在△DAM和△DBE中,∴△DAM≌△DBE,∴∠BDE=∠MDA,DM=DE,∵∠MDN=∠ADC=60°,∴∠ADM=∠NDC,∴∠BDE=∠NDC,∴∠MDN=∠NDE,在△MDN和△EDN中,∴△MDN≌△EDN,∴MN=NE,∵NE=BE+BN=AM+BN,∴AM+BN=MN.(2)AM+BN=MN,证明:延长CB到E,使BE=AM,连接DE,∵∠A=∠CBD=90°,∴∠A=∠DBE=90°,∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,∴∠MDN=∠CDA,∵∠MDN=∠BDC,∴∠MDA=∠CDN,∠CDM=∠NDB,在△DAM和△DBE中,∴△DAM≌△DBE,∴∠BDE=∠MDA=∠CDN,DM=DE,∵∠MDN+∠ACD=90°,∠ACD+∠ADC=90°,∴∠NDM=∠ADC=∠CDB,∴∠ADM=∠CDN=∠BDE,∵∠CDM=∠NDB∴∠MDN=∠NDE,在△MDN和△EDN中,∴△MDN≌△EDN,∴MN=NE,∵NE=BE+BN=AM+BN,∴AM+BN=MN.(3)BN﹣AM=MN,证明:在CB截取BE=AM,连接DE,∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,∴∠MDN=∠CDA,∵∠ADN=∠ADN,∴∠MDA=∠CDN,∵∠B=∠CAD=90°,∴∠B=∠DAM=90°,在△DAM和△DBE中,∴△DAM≌△DBE,∴∠BDE=∠ADM=∠CDN,DM=DE,∵∠ADC=∠BDC=∠MDN,∴∠MDN=∠EDN,在△MDN和△EDN中,∴△MDN≌△EDN,∴MN=NE,∵NE=BN﹣BE=BN﹣AM,∴BN﹣AM=MN.16.(1)证明:∵CB=CA,DB=DA,∴CD垂直平分线段AB,∴CD⊥AB.(2)①证明:∵AC=BC,∴∠CBA=∠CAB,又∵∠ACB=90°,∴∠CBA=∠CAB=45°,又∵∠CAD=∠CBD=15°,∴∠DBA=∠DAB=30°,∴∠BDE=30°+30°=60°,∵AC=BC,∠CAD=∠CBD=15°,BD=AD,在△ADC和△BDC中,,∴△ADC≌△BDC(SAS),∴∠ACD=∠BCD=45°,∴∠CDE=60°,∵∠CDE=∠BDE=60°,∴DE平分∠BDC;②解:结论:ME=BD,理由:连接MC,∵DC=DM,∠CDE=60°,∴△MCD为等边三角形,∴CM=CD,∵EC=CA,∠EMC=120°,∴∠ECM=∠BCD=45°在△BDC和△EMC中,,∴△BDC≌△EMC(SAS),∴ME=BD.③当EN=EC时,∠ENC=7.5°或82.5°;当EN=CN时,∠ENC=150°;当CE=CN 时,∠CNE=15°,所以∠CNE的度数为7.5°、15°、82.5°、150°.17.解:(1)∵AE、CD分别为△ABC的角平分线,∴∠F AC=∠BAC,∠FCA=∠BCA,∵∠B=60°∴∠BAC+∠BCA=120°,∴∠AFC=180﹣∠F AC﹣∠FCA=180°﹣×120°=120°.(2)在AC上截取AG=AD=6,连接FG.∵AE、CD分别为△ABC的角平分线∴∠F AC=∠F AD,∠FCA=∠FCE,∵∠AFC=120°,∴∠AFD=∠CFE=60°,在△ADF和△AGF中,∴△ADF≌△AGF(SAS)∴∠AFD=∠AFG=60°,∴∠GFC=∠CFE=60°,在△CGF和△CEF中,∴△CGF≌△CEF(ASA),∴CG=CE=4,∴AC=10.18.解:【探究】如图①,∵O是BC边中点,∴BO=CO.在△AOB与△DOC中,,∴△AOB≌△DOC(SAS).∴∠BAO=∠D.∴AB∥CD.【应用】如图②,∵O是BC边中点,∴BO=CO.∵AB∥CD,∴∠BAO=∠E.在△AOB与△EOC中,.∴△AOB≌△EOC(AAS).∴EC=AB.∵AE平分∠BAD,∴∠BAO=∠DAE.∴∠E=∠DAE.∴AD=DE.∵DE=DC+CE,∴AD=CD+AB.19.解:(1)在△AEC和△CDB中,∵,∴△AEC≌△CDB(AAS),故答案为:AAS;(2)∵AE=AB,∠EAB=90°,BC=CD,∠BCD=90°,由(1)得:△EF A≌△AGB,△BGC≌△CHD,∴AG=EF=6,AF=BG=3,CG=DH=4,CH=BG=3,∴S=S梯形EFHD﹣2S△AEF﹣2S△CHD=(4+6)×16﹣2×﹣2×=80﹣18﹣12=50,故答案为:50;(3)如图3,过B′作B′E⊥AC于E,由旋转得:AB=AB′,∵∠BAB′=90°,∴△AEB′≌△BCA,∴AC=B′E=4,∴S△AB′C=AC•B′E==8;(4)由题意得:EP=t,则PC=3﹣t,①如图4,∵OF∥ED,∴∠POF+∠OPC=180°,∵∠POF=120°,∴∠OPC=60°,∵△BEC是等边三角形,∴∠E=60°,∴∠E=∠OPC,∴OP∥AE,∴2=3﹣t,t=1,即当t=1秒时,OF∥ED;②如图5,∵OF⊥BC,∴∠FOC=90°,∵∠FOP=120°,∴∠COP=30°,∴OC=2PC,2=2(3﹣t),t=2,即当t=2秒时,OF⊥BC;③如图6,∵∠FOP=120°,∴∠FOB+∠COP=60°,∵∠BCE=60°,∴∠COP+∠OPC=60°,∴∠FOB=∠OPC,∵OF=OP,∠OBF=∠OCP=120°,∴△PCO≌△OBF,∴PC=OB=1=t﹣3,t=4,即当t=4秒时,点F恰好落在射线EB上.故答案为:①1;②2;③4.20.解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°,∵∠DCF=60°,∴∠ACF=∠BCD,在△ACF和△BCD中,,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF;理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE,在△DCE和△FCE中,,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°,∵∠DCF=90°,∴∠ACF=∠BCD,在△ACF和△BCD中,,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE,在△DCE和△FCE中,,∴△DCE≌△FCE(SAS),∴DE=EF,在Rt△AEF中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.21.证明:∵∠DAE=∠BAC=90°,∴在Rt△ABC与Rt△AED中,,∴Rt△ABC≌Rt△ADE(HL),∴S△ABC=S△AED,又∵AF⊥DE,AH⊥BC,即×DE×AF=×BC×AH,∴AF=AH,又∵AF⊥DE,AH⊥BC,∴GA平分∠DGB.22.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC.23.解:(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∴∠ADE=∠AED=75°,∴∠CDE=180°﹣35°﹣30°﹣75°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°﹣18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α,∴,(1)﹣(2)得2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=x°+α,∴,(2)﹣(1)得α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=x°﹣α,∴,(2)﹣(1)得2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.24.解:(1)∵|a﹣3|+(b﹣4)2=0,∴a=3 b=4,∵b﹣a<c<b+a,∴1<c<7;(2)当腰长为3时,此时三角形的三边为3、3、4,满足三角形三边关系,周长为10;当腰长为4时,此时三角形的三边长为4、4、3,满足三角形三边关系,周长为11;综上可知等腰三角形的周长为10或11;(3)当底角为x°、顶角为(2x﹣20)°时,则根据三角形内角和为180°可得x+x+2x﹣20=180,解得x=50,此时三个内角分别为50°、50°、80°;当顶角为x°、底角为(2x﹣20)°时,则根据三角形内角和为180°可得x+2x﹣20+2x﹣20=180,解得x=44,此时三个内角分别为44°、68°、68°;当底角为x°、(2x﹣20)°时,则等腰三角形性质可得x=2x﹣20,解得x=20,此时三个内角分别为20°、20°、140°;综上可知三角形三个内角为50度、50度、80度或44度、68度、68度或20度、20度、140度.25.解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°.26.解:∵AB=AC,∴∠ABC=∠C,∵∠A+∠ABC+∠C=180°,∴∠A+2∠A+2∠A=180°,解得∠A=36°,∴∠C=2×36°=72°,∵BD是AC边上的高,∴∠DBC=90°﹣∠C=90°﹣72°=18°.27.解:(1)如图1,BM、NC、MN之间的数量关系BM+NC=MN,此时,理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴=;(2)猜想:结论仍然成立,证明:在NC的延长线上截取CM1=BM,连接DM1,∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴=;(3)证明:在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,∴DM=DM1,可证∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N,∴NC﹣BM=MN.。
必刷卷 06-2020-2021学年八年级数学上学期期末仿真必刷模拟卷(华东师大版)(解析版)
2020-2021学年八年级上学期数学期末仿真必刷模拟卷【华东师大版】期末检测卷06姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知△ABC的三边a,b,c满足(a﹣4)2++|c﹣4|=0,那么△ABC是()A.不等边三角形B.等边三角形C.等腰三角形D.不能判断【解答】解:∵(a﹣4)2++|c﹣4|=0,∴a﹣4=0,b﹣4=0,c﹣4=0,∴a=b=c=4,∴△ABC的形状是等边三角形,故选:B.【知识点】非负数的性质:算术平方根、等腰三角形的判定、等边三角形的判定、非负数的性质:偶次方、非负数的性质:绝对值2.已知m=+,则()1/ 212 / 21A .4<m <5B .5<m <6C .6<m <7D .7<m <8【解答】解:m =+=4+,∵2<<3,∴6<4+<7,∴6<m <7, 故选:C .【知识点】估算无理数的大小3.某一餐桌的表面如图所示(单位:m ),设图中阴影部分面积S 1,餐桌面积为S 2,则=( )A .B .C .D .【解答】解:∵S 1=(a ﹣)(b ﹣b )+[(b •a )﹣(×)]=×+[ab ﹣]=ab ,S 2=ab ,∴==,故选:C .【知识点】整式的混合运算4.已知ab=﹣2,a﹣3b=5,则a3b﹣6a2b2+9ab3的值为()A.﹣10B.20C.﹣50D.40【解答】解:a3b﹣6a2b2+9ab3=ab(a2﹣6ab+9b2)=ab(a﹣3b)2,将ab=﹣2,a﹣3b=5代入得ab(a﹣3b)2=﹣2×52=﹣50.故a3b﹣6a2b2+9ab3的值为﹣50.故选:C.【知识点】提公因式法与公式法的综合运用5.已知:如图,∠MCN=42°,点P在∠MCN内部,P A⊥CM,PB⊥CN,垂足分别为A、B,P A=PB,则∠MCP的度数为()A.21°B.24°C.42°D.48°【解答】解:∵P A⊥CM,PB⊥CN,∴∠P AC=∠PBC=90°,3/ 21在Rt△P AC和Rt△PBC中,,∴Rt△P AC≌Rt△PBC(HL),∴∠PCM=∠PCN=∠MCN=21°;故选:A.【知识点】角平分线的性质、全等三角形的判定与性质6.在△ABC中,与∠A相邻的外角是130°,要使△ABC为等腰三角形,则∠B的度数是()A.50°B.65°C.50°或65°D.50°或65°或80°【解答】解:∠A=180°﹣130°=50°.当AB=AC时,∠B=∠C=(180°﹣50°)=65°;当BC=BA时,∠A=∠C=70°,则∠B=180°﹣50°﹣50°=80°;当CA=CB时,∠A=∠B=50°.∠B的度数为50°或65°或80°,故选:D.【知识点】等腰三角形的判定、三角形的外角性质7.在△ABC中,BC=a,AC=b,AB=c,根据下列条件不能判断△ABC是直角三角形的是()A.∠B=50°,∠C=40°B.∠A:∠B:∠C=1:2:2C.a=4,b=,c=5D.a :b :c =1:1:4/ 21【解答】解:A、∵∠B=50°,∠C=40°,∴∠A=180°﹣50°﹣40°=90°,∴△ABC是直角三角形;B、∵∠A:∠B:∠C=1:2:2∴∠A=36°,∠B=∠C=90°∴△ABC不是直角三角形;C、∵a=4,b=,c=5,∴a2+c2=b2,∴∠B=90°,∴△ABC是直角三角形.D、∵a:b:c=1:1:,∴可以假设a=b=k,c=k,∴a2+b2=c2,∴∠C=90°,∴△ABC是直角三角形,故选:B.【知识点】勾股定理的逆定理8.下列是勾股数的有()①3,4,5 ②5、12、13 ③9,40,41④13、14、15 ⑤⑥11、60、61A.6组B.5组C.4组D.3组5/ 216 / 21【解答】解:①32+42=52,是勾股数;②52+122=132,是勾股数; ③92+402=412,是勾股数; ④132+142≠152,不是勾股数; ⑤不是正整数,不是勾股数; ⑥32+42=52,是勾股数; 故是勾股数的有4组. 故选:C .【知识点】勾股数9.如图,AB ,BC 是⊙O 的两条弦,AO ⊥BC ,垂足为D ,若⊙O 的直径为5,BC =4,则AB 的长为( )A .2B .2C .4D .5【解答】解:连接OB ,∵AO ⊥BC ,AO 过O ,BC =4,∴BD=CD=2,∠BDO=90°,由勾股定理得:OD===,∴AD=OA+OD=+=4,在Rt△ADB中,由勾股定理得:AB===2,故选:A.【知识点】垂径定理、勾股定理10.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:估计出售2000件衬衣,其中次品大约是()A.50件B.100件C.150件D.200件【解答】解:2000×(1﹣)≈200件,故选:D.【知识点】频数(率)分布表、用样本估计总体二、填空题(本大题共6小题,每小题2分,共124分.不需写出解答过程,请把答案直接填写在横线上)11.﹣的立方根是﹣.【解答】解:∵(﹣)3=﹣,∴﹣的立方根是﹣.7/ 21故答案为:﹣.【知识点】立方根12.已知a﹣1=20172+20182,则=.【解答】解:∵a﹣1=20172+20182,∴a=20172+20182+1,∴=====4035.故答案为:4035.【知识点】算术平方根13.分解因式:﹣x2+4x﹣4=﹣﹣.【解答】解:﹣x2+4x﹣4=﹣(x2﹣4x+4)=﹣(x﹣2)2.故答案为:﹣(x﹣2)2.【知识点】因式分解-运用公式法14.如图,已知OP平分∠AOB,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.CP=,PD=6.如果点M是OP的中点,则DM的长是.8/ 219 / 21【解答】解:∵OP 平分∠AOB ,PD ⊥OA 于点D ,PE ⊥OB 于点E ,∴∠AOP =∠BOP ,PC =PD =6,∠PDO =∠PEO =90°, ∴CE ===,∵CP ∥OA , ∴∠OPC =∠AOP , ∴∠OPC =∠BOP , ∴CO =CP =,∴OE =CE +CO =+=8,∴OP ===10,在Rt △OPD 中,点M 是OP 的中点, ∴DM =OP =5; 故答案为:5.【知识点】角平分线的性质、直角三角形斜边上的中线、勾股定理的应用、等腰三角形的判定与性质15.直角三角形的两边长为3cm ,4cm ,则第三边边长为.10 / 21【解答】解:(1)若把两边都看作是直角边,那么据已知和勾股定理,设第三边长为xcm ,则:x 2=32+42=25, ∴x =5;(2)若把4cm 长的边看作斜边,设第三边长为xcm , 则:x 2+32=42, x 2=42﹣32=7, ∴x =.故答案为:5或.【知识点】勾股定理16.如图的折线统计图分别表示我市A 县和B 县在4月份的日平均气温的情况,记该月A 县和B 县日平均气温是12℃的天数分别为a 天和b 天,则a +b = .【解答】解:根据图表可得:a =7,b =5,则a +b =7+5=12. 故答案为:12.11 / 21【知识点】折线统计图三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CF 于点F . (1)求证:△ABC ≌△ADE ;(2)已知BF 的长为2,DE 的长为6,求CD 的长.【解答】(1)证明:∵∠BAD =∠CAE =90°∴∠BAC =90°﹣∠CAD ,∠DAE =90°∠CAD ,即∠BAC =∠DAE在△BAC 和△DAE 中,,∴△BAC ≌△DAE (SAS );(2)解:∵∠CAE =90°,AE =AC , ∴∠E =45°,由(1)可知:△ABC ≌△ADE ,∴∠BCA =∠E =45°,∠CBA =∠EDA ,CB =ED , 延长BF 到G ,使得FG =FB ,连接AG ,如图所示:12 / 21∵AF ⊥CF ,∴∠AFG =∠AFB =90°,在△AFB 和△AFG 中,,∴△AFB ≌△AFG (SAS ),∴AB =AG =AD ,∠ABF =∠G =∠CDA在△CGA 和△CDA 中,,∴△CGA ≌△CDA (AAS ), ∴CD =CG∴CD =CB +BF +FG =CB +2BF =DE +2BF =6+2×2=10.【知识点】等腰直角三角形、全等三角形的判定与性质18.在如图所示的正方形网格中,每个小正方形的边长都为1,△ABC 的顶点都在格点上(网格线的交点). (1)请在如图所示的网格平面内建立适当的平面直角坐标系,使点A 坐标为(﹣1,2),点B 的坐标为(﹣5,2);(画出直角坐标系)(2)点C 的坐标为( ﹣ , )(直接写出结果)(3)把△ABC 先向下平移6个单位后得到对应的△A 1B 1C 1,再将△A 1B 1C 1沿y 轴翻折至△A 2B 2C 2;13 / 21①请在坐标系中画出△A 2B 2C 2;②若点P (m ,n )是△ABC 边上任意一点,P 2是△A 2B 2C 2边上与P 对应的点,写出点P 2的坐标为( ﹣ , ﹣ );(直接写出结果)③试在y 轴上找一点Q ,使得点Q 到A 2,C 2两点的距离之和最小,此时,QA 2+QC 2的长度之和最小值为 .(在图中画出点Q 的位置,并直接写出最小值答案)【解答】解:(1)∵点A 坐标为(﹣1,2),点B 的坐标为(﹣5,2),如图所示:即为所画出的直角坐标系; (2)根据坐标系可知:14 / 21点C 的坐标为(﹣2,5), 故答案为:﹣2,5;(3)把△ABC 先向下平移6个单位后得到对应的△A 1B 1C 1, 再将△A 1B 1C 1沿y 轴翻折至△A 2B 2C 2; ①如图即为坐标系中画出的△A 2B 2C 2; ②点P (m ,n )是△ABC 边上任意一点, P 2是△A 2B 2C 2边上与P 对应的点, ∴点P 2的坐标为(﹣m ,n ﹣6), 故答案为:﹣m ,n ﹣6; ③根据对称性可知:在y 轴上找一点Q ,使得点Q 到A 2,C 2两点的距离之和最小, ∴连接A 2C 1交y 轴于点Q ,此时QA 2+QC 2的长度之和最小, 即为A 2C 1的长,A 2C 1=3,∴QA 2+QC 2的长度之和最小值为3.故答案为:3.【知识点】勾股定理、翻折变换(折叠问题)、作图-平移变换、轴对称-最短路线问题19.一辆卡车装满货物后,高4m 、宽2.4m ,这辆卡车能通过截面如图所示(上方是一个半圆)的隧道吗?15 / 21【解答】解:如图,由图形得半圆O 的半径为2m ,作弦EF ∥AD ,且EF =2.4m ,作OH ⊥EF 于H ,连接OF ,由OH ⊥EF ,得HF =1.2m , 在Rt △OHF 中,OH ===1.6m ,∵1.6+2=3.6<4,∴这辆卡车不能通过截面如图所示的隧道.【知识点】垂径定理、勾股定理的应用20.已知,在△ABC 中,AC =BC .分别过A ,B 点作互相平行的直线AM 和BN .过点C 的直线分别交直线AM ,BN 于点D ,E .(1)如图1.若CD =CE .求∠ABE 的大小;(2)如图2.∠ABC =∠DEB =60°.求证:AD +DC =BE .【解答】(1)解:如图1,延长AC 交BN 于点F ,∵AM∥BN,∴∠DAF=∠AFB,在△ADC和△FEC中,,∴△ADC≌△FEC(AAS),∴AC=FC,∵AC=BC,∴BC=AC=FC=AF,∴△ABF是直角三角形,∴∠ABE=90°;(2)证明:如图2,在EB上截取EH=EC,连CH,∵AC=BC,∠ABC=60°,∴△ABC为等边三角形,∵∠DEB=60°,∴△CHE是等边三角形,∴∠CHE=60°,∠HCE=60°,∴∠BHC=120°,∵AM∥BN,∴∠ADC+∠BEC=180°,∴∠ADC=120°,∴∠DAC+∠DCA=60°,又∵∠DCA+∠ACB+∠BCH+∠HCE=180°,∴∠DCA+∠BCH=60°,16/ 2117 / 21∴∠DAC =∠BCH ,在△DAC 与△HCB 中,,∴△DAC ≌△HCB (AAS ), ∴AD =CH ,DC =BH , 又∵CH =CE =HE , ∴BE =BH +HE =DC +AD , 即AD +DC =BE .【知识点】全等三角形的判定与性质21.甲、乙两个长方形的边长如图所示(m 为正整数),其面积分别为S 1,S 2.(1)填空:S 1﹣S 2=﹣(用含m 的代数式表示);(2)若一个正方形的周长等于甲、乙两个长方形的周长之和.①设该正方形的边长为x,求x的值(用含m的代数式表示);②设该正方形的面积为S3,试探究:S3与2(S1+S2)的差是否是常数?若是常数,求出这个常数,若不是常数,请说明理由,(3)若另一个正方形的边长为正整数n,并且满足条件1≤n<S1﹣S2的n有且只有4个,求m的值.【解答】解:(1)S1﹣S2=(m+7)(m+1)﹣(m+4)(m+2)=2m+1.故答案为2m+1.(2)①根据题意,得4x=2(m+7+m+1)+2(m+4+m+2)解得x=2m+7.答;x的值为2m+7.②∵S1+S2=2m2+14m+15,S3﹣2(S1+S2)=(2m+7)2﹣2(2m2+14m+15)=4m2+28m+49﹣4m2﹣28m﹣30=19.答:S3与2(S1+S2)的差是常数:19.(3)∵1≤n<2m﹣1,由题意,得5≤2m﹣1<6,解得3≤m<.∵m是整数,∴m=3.答:m的值为3.18/ 21【知识点】整式的加减、多项式乘多项式22.计算(1)﹣12+(﹣)﹣2×π0(2)1232﹣124×122(用简便方法计算)(3)(x+2y+3z)(x+2y﹣3z)(4)(4a3b﹣6a2b2+12b3)÷2ab【解答】解:(1)﹣12+(﹣)﹣2×π0=﹣1+4×1=﹣1+4=3;(2)1232﹣124×122=1232﹣(123+1)×(123﹣1)=1232﹣1232+1=1;(3)(x+2y+3z)(x+2y﹣3z)=[(x+2y)+3z][(x+2y)﹣3z]=(x+2y)2﹣9z2=x2+4xy+4y2﹣9z2;(4)(4a3b﹣6a 2b 2+12b3)÷2ab19/ 21=2a2﹣3ab+.【知识点】整式的混合运算、零指数幂、负整数指数幂、实数的运算23.计算:(1)4(x﹣1)2﹣(2x﹣5)(2x+5);(2)(﹣2)﹣2﹣(﹣1)2019﹣(π﹣2018)0;(3)(4a4b7﹣a6b7)÷(﹣ab2)3;(4)÷+•【解答】解:(1)4(x﹣1)2﹣(2x﹣5)(2x+5)=4(x2﹣2x+1)﹣(4x2﹣25)=4x2﹣8x+4﹣4x2+25=﹣8x+29(2)(﹣2)﹣2﹣(﹣1)2019﹣(π﹣2018)0;=+1﹣1=(3)(4a4b7﹣a6b7)÷(﹣ab2)3;=(4a4b7﹣a6b7)÷(﹣a3b6)=﹣4ab +a3b20/ 21(4)÷+•=×+•=+=【知识点】负整数指数幂、分式的混合运算、整式的混合运算、实数的运算、零指数幂21/ 21原创原创精品资源学科网独家享有版权,侵权必究!。
华师大版八年级数学上册幂的运算测试题
幂的运算测试题一.相信你的选择(每题3分,共12分)1.化简(-x)3·(-x)2的结果正确的是( )A.-x 6B.x 6C.x 5D.-x 52.下列运算中,正确的是( )A.x 2·x 3=x 6B.(a b)3=a 3b 3C.3a +2a =5a 2D.(x ³)²= x 53.))((22a ax x a x ++-的计算结果是( )A.3232a ax x -+B.33a x -C.3232a x a x -+D.322222a a ax x -++4.计算(32)2003×1.52002×(-1)2004的结果是( ) A.32 B.23 C.-32 D.-23 二.试试你的身手(每题4分,共28分) 1计算:(-3x ²y )(32xy ²)= 2计算:(-x ²y) 5 =3计算:32(2)(12)________.a a a -⋅-+=4卫星绕地球运动的是7.9×10³米/秒,则卫星绕地球运行2×10²秒走过的路程是 5若 36,272,m n ==则243m n +=6.用边长为 1cm 的小正方形搭如下的塔状图形,则第 n 次所搭图形的周长是____cm 。
(用含 n 的代数式表示)7.商店经营一种产品,定价为12元/件,每天能售出8件,而每降价x 元,则每天可多售(x +2)件,则降价x 元后,每天的销售总收入是三.挑战自我(6分)1 2。
求值:x²(x-1)-x(x²+x-1),其中x=试题答案:一选择1.A 2.B 3.C 4.C二.填空 1 332x y - 2 105x y - 3. 3458168a a a -+- 4. 61.4810⨯ 5.38 6. 4n7.(120+2x -x 2)(元)三.原式= 22x x -- 当12x =时,原式= -1初中数学试卷 灿若寒星 制作。
第六章华东师大版八年级科学上册检测
八上第六章同步测验一、单选题1.下列物质的分子模型可用“ ”表示的是()A. 氮分子B. 氯分子C. 氯化氢分子D. 甲烷分子2.原子和分子的根本区别是()A. 大小不同B. 在化学反应中能否再分C. 能否保持物质的物理性质D. 能否直接构成物质3.2019年8月《Science》杂志报道,科学家合成了一种环状碳分子C,这种分子具有广泛的应用前景。
1个环状碳分子C18中共含有18个()A. 原子B. 质子C. 中子D. 电子4.下列符号既可表示一个原子,又可表示一种元素,还能表示一种物质的是()A. H2B. 2NC. CuD. O5.19世纪初,道尔顿提出原子论,用一些圆圈再加上各种点、线和字母表示不同的原子,如图是道尔顿当时采用的原子符号,根据这些符号,水分子的模型是( )A. B. C. D.6.鈇是一种人工合成的放射性化学元素,其符号为Fl,原子序数为114,属于弱金属之一。
元素的相对原子质量为289,则鈇原子的核外电子数为()A. 114B. 289C. 175D. 4037.某学习小组的同学在关于原子和原子核的讨论中,有以下四种说法:①原子由位于中心的原子核和核外电子构成;②带负电荷的电子在原子核外空间里绕核运动;③原子的全部正电荷和全部质量都集中在原子核里;④原子核是由质子和中子构成的,质子的个数一定不等于中子的个数。
下列组合中,都正确的是()A. ①②B. ②④C. ①③D. ③④8.生活中常会见到“加碘盐”、“含氟牙膏”、“加铁酱油”,其中的“碘”、“氟”、“铁”指的是()A. 原子B. 离子C. 元素D. 分子9.如图是物质甲和乙反应生成丙的微观示意图。
下列说法正确的是()A. 该化学反应可以说明分子是化学变化中的最小微粒B. 甲和乙属于单质,丙属于化合物C. 丙物质由3种元素组成D. 1个丙分子由1个甲分子和2个乙分子构成10.下列元素分类正确的是()A. 金属元素:钙、镁、钡、铜、铁、汞B. 非金属元素:碳、氢、氧、氮、磷、金C. 稀有气体元素:氦、氖、氩、氪、氯、氡D. 人体必需的微量元素:铁、碘、氟、硒、钙、铅11.国际通用的元素符号是用1个或2个拉丁文字母表示的,其中第一个字母大写,第二个字母小写。
(完整word版)2019华师大南阳市三中八年级上期末数学测试题(1)
2019八年级上数学测试题一、选择题(每小题3分,共30分)1.下列几个数中,属于无理数的数是()A. 4B.3-8 C .0.101001 D. 22.下列运算正确的是()A.81=±9 B.(a2)3·(-a2)=a2 C.3-27=-3 D.(a-b)2=a2-b23.已知y(y-16)+a=(y-8)2,则a的值是()A.8 B.16 C.32 D.644.一个班有40名学生,在期末体育考核中,优秀的有18人,在扇形统计图中,代表体育考核成绩优秀的扇形的圆心角是()A.144°B.162°C.216°D.250°5.下列各图中a,b,c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )A.甲和乙B.乙和丙C.甲和丙 D.只有丙6.要反映我市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图7.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹。
步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H。
下列叙述正确的是()A. BH垂直平分线段ADB. AC平分∠BADC.S△ABC=BC.AHD.AB=AD8.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )A.11 B.5.5 C.7 D.3.59.已知△ABC的三边长分别为4,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.3条B.4条C.5条D.6条10.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④二、填空题(每小题3分,共15分)11.若43=x,79=y,则yx23-的值为_____________________ .12.为了比较5+1与10的大小,可以构造如图所示的图形进行推算,其中∠C=90°,BC=3,D在BC上且BD=AC=1.通过计算可得5+1____10.(选填“>”“<”或“=”)13.《九章算术》是我国古代最重要的数学著作之一,在“勾股“章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长.如果设AC=x,则可列方程为_________________________________________.14. 如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为.15. 如图,Rt△ABC纸片中,∠C=90∘,AC=6,BC=8,点D在边BC上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点 E. 若△DEB′为直角三角形,则BD的长是____________________三、解答题(75分)16. 计算:(1)(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,分解因式:m3﹣n3﹣3mn(m﹣n)(3)-3ma2+12ma-12m;(4)n2(m-2)+4(2-m).17.先化简,再求值:(2x+y)2+(x-y)(x+y)-5x(x-y),其中x=2+1,y=2-1.化简求值:,其中21,2=-=yx18.如图,在△ABC中,∠ACB=90°,AC=BC=AD。
专题114实数的运算与解方程-2021-2022学年八年级数学上(原卷版)【华师大版】
2021-2022学年八年级数学上册尖子生同步培优题典【华师大版】专题11.4实数的运算与解方程(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷试题共30题,解答30道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、解答题(本大题共30小题.解答时应写出文字说明、证明过程或演算步骤)1.(2020秋•松北区期末)计算:(1)√−643−|2−√5|−√(−3)2+2√5;(2)3√5−|√6−√5|. 2.(2020秋•道里区期末)计算:(1)√16−√−273+√49;(2)|√2−√3|+√(−5)2−√3.3.(2020秋•禅城区期末)计算:(√6−2√15)×√3−6√12.4.(2020秋•中原区校级月考)计算:√32−√−273−√(−23)2+|1−√2|.5.(2020秋•崇川区校级月考)已知a ,b 为实数,且√1+a −(b −1)√1−b =0,求a 2020﹣b 2021的值.6.(2020秋•龙岗区校级期中)计算下列各题:(1)(−32)2×√(−2)2+12×√−1253−(﹣5)3×√0.0083; (2)(√3+3√2−√6)(√3−3√2−√6).7.(2020春•越秀区校级月考)计算:(1)√36−√273+√(−2)2−√214;(2)|√3−2|−√4−(3−√3).8.(2020春•越秀区校级期中)(1)√643−|√3−3|+√36;(2)计算√2(√2−3)−|2√2−3|+√(−3)2.9.(2020秋•锦江区校级月考)计算(1)计算:√16+√−643−√(−3)2+|√3−1|;(2)解方程:18﹣2x 2=0;(3)解方程:(x +1)3+27=0.(4)计算:(3√12−2√13)÷2√3.10.(2020秋•姑苏区期中)求下列式子中x的值(1)5x2=10.(2)(x+4)2=8.11.(2020秋•常州期中)求下列各式中的x.(1)4x2﹣9=0;(2)(2x+1)2=81.12.(2020秋•和平区校级月考)解方程:16(x﹣1)2﹣9=0.13.(2020春•曹县期末)已知6(x+4)3+48=0,x+2y的算术平方根是6,求4y﹣3的平方根.14.(2020秋•灞桥区校级月考)解方程(1)4(3x+1)2=1;(2)(x+2)3+1=0.15.(2020秋•武侯区校级月考)解方程:(1)(x﹣1)3=﹣27.(2)3(x﹣2)2=12.16.(2020春•江夏区月考)求下列各式中的x.(1)3x2﹣15=0;(2)2(x﹣1)3=﹣54;17.(2020春•海淀区校级期末)已知正实数x的平方根是n和n+a.(1)当a=6时,求n;(2)若n2x2+(n+a)2x2=10,求x的值.18.(2020秋•招远市期末)计算:(1)﹣12+√−273−(﹣2)×√9(2)√3(√3+1)+|√3−2|19.(2020秋•内江期末)计算(1)−12020+√643−(−2)×√9;(2)−12020+√(−2)2−√273+|2−√3|.20.(2021春•渝中区校级月考)计算:(1)﹣5﹣[−15−(1﹣0.2×35)÷(﹣2)2];(2)√12+|2−√3|+√83−√22.21.(2020秋•江都区期末)计算:(1)√(−1)2+√(−2)33+√179; (2)|1−√3|+(﹣2)2−√3.22.(2021春•林州市月考)计算,解方程:(1)√(−1)2+√(−2)33+√179; (2)|1−√3|+(﹣2)2−√3;(3)16x 2﹣49=0;(4)2(x +1)3+16=0.23.(2021春•番禺区月考)求下列各式中x 的值:(1)49x 2=25;(2)(x ﹣2)2=9.24.(2018春•番禺区校级期中)求下列各式中的x .(1)(x +2)2=16;(2)(x +1)3=64.25.(2020秋•南京期末)求下列各式中的x .(1)3(x ﹣1)2﹣75=0;(2)(x +2)3=﹣125.26.(2015春•武昌区期中)解方程:(1)4(x ﹣1)2=25(2)(2x +1)3=﹣2727.(2020秋•鼓楼区期末)求下列各式中的x :(1)4x 2﹣81=0;(2)(x ﹣1)3+4=58.28.(2020秋•东台市期末)求下列各式中x 的值.(1)2x 2=72;(2)(x +1)3+3=﹣61.29.(2020秋•盐都区期末)求式中x的值:(1)x2﹣36=0;(2)(x﹣2)3+29=2.30.(2019秋•太仓市期末)求下列各式中x的值:(1)4x2﹣12=0(2)48﹣3(x﹣2)2=0。
华师大版八年级(上)期末数学试卷(含解析)
华师大版八年级上学期期末教学质量检测数学试题(试卷满分150:考试时间:120分钟)一、选择题:本题共10小题,每小题4分,共40分 1. 立方根是-3的数是( ).A .9B .-27C .-9D .27 2. 下列运算正确的是( ).A . (-a )2.(-a )3=a 6B . (a 2)3 a 6= ( ).C . a 10÷a 2=a 5D . a 2+a 3= a 5 3. 下列六个数:0、5、39、 、-31、6.0 中,无理数出现的频数是( ). A .3 B .4 C .5 D .64. 如图,已知△ABC ≌△DAE ,BC =2,DE =5,则CE 的长为( ). A .2 B .2.5 C .3 D .3.55. 若等腰△ABC 的周长为20,AB =8,则该等腰三角形的腰长为( ). A .8 B .6 C .4 D .8或66. 直线l 上有三个正方形A 、B 、C 放置如图所示,若正方形A 、C 的面积分别为1和12,则正方 形B 的面积为( ).A .11B .12C .13D . 145 7. 用反证法证明命题:“在△ABC 中,∠A 、∠B 对边分别 是a 、b ,若∠A >∠B ,则a >b ”时第一步应假设( ). A . a < b B . a = b C . a ≥ b D . a≤ b8. 已知实数a 、b 满足等式x=a 2+b 2+20,y =a(2b -a ),则x 、y 的大小关系是( ). A .x ≤ y B .x ≥ y C .x < y D .x > y 9. 如图,等腰直角△ABC 中,AC=BC ,BE 平分∠ABC ,AD ⊥BE 的延长线于点D ,若AD =2,则△ABE 的面积为( ). A .4 B .6 C .23 D .25 10.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm , 在容器内壁离容器底部4 cm 的点B 处有一滴蜂蜜,此时一只蚂 蚁正好在容器外壁,且离容器上沿4 cm 的点A 处,若蚂蚁吃到 蜂蜜需爬行的最短路径为15 cm ,则该圆柱底面周长为 ( ) cm . A .9 B .10 C .18 D .20 二、填空题:本题共6小题,每小题4分,共24分 11.因式分解:2a 2-4a =________. 12.计算(2x )3÷2x 的结果为________.13.计算(x -a )(x +3)的结果中不含x 的一次项,则a 的值是________.14.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k , 若k =2,则该等腰三角形的底角为________.15.某住宅小区有一块草坪如图所示,已知AB =6米,BC =8米,CD =24米,DA =26米,lCB A(第6题)DCBAE(第4题)DCBA (第9题)A(第10题)且AB ⊥BC ,则这块草坪的面积是________平方米.16.如图,AC 、BD 在AB 的同侧,AC =2,BD =8,AB =8,点M 为AB 的中点,若∠CMD =120°, 则CD 的最大值是________.三、解答题:本题共9小题,共86分17. (本小题满分8分)已知a 是2的相反数,计算|a 一2|的值.18. (本小题满分8分)先化简,再求值:2a ·3a -(2a +3)(2a -3),其中a =-2.19. (本小题满分8分)如图,已知AB=AC ,点D 、E 在BC 上,且∠ADE =∠AED ,求证:BD=CE .20. (本小题满分8分)如图,△ABC 中,AB=AC .按要求解答下面问题: (1)尺规作图:(保留作图痕迹,并把作图痕迹用黑色签字笔描黑)①作∠BAC 的平分线AD 交BC 于点D ;②作边AB 的垂直平分线EF ,EF 与AD 相交于点P ; ③连结PB 、PC .(2)根据(1)中作出的正确图形,写出三条线段PA 、PB 、PC 之间的数量关系.DBA (第15题)MDCBA(第16题)D CBAECBA21. (本小题满分8分)如图,已知长方形纸片ABCD 中,AB =10,AD =8,点E 在AD 边上,将△ABE 沿BE 折叠后,点A 正好落在CD 边上的点F 处. (1)求DF 的长; (2)求△BEF 的面积.22. (本小题满分10分)如果一个三角形的所有顶点都在网格的格点上,那么这个三角形叫做格点三角形,请在下列给定网格中按要求解答下面问题:(1)直接写出图1方格图(每个小方格边长均为1)中格点△ABC 的面积;(2)已知△A 1B 1C 1三边长分别为2、13、17,在图2方格图(每个小方格边长均为1)中画出格点△A 1B 1C 1;(3)已知△A 2B 2C 2三边长分别为2216n m +、229n m +、 224n m + (m >0,n >0,且m ≠n )在图3所示4n ×3m 网格中画出格点△A 2B 2C 2,并求其面积.23.( 本小题满分10分) 参加学校运动会,八年级1班第一天购买了水果,面包,饮料,药品等四 种食品,四种食品购买金额的统计图表如图1、图2所示,若将水果、面包、药品三种食品统 称为非饮料食品,并规定t =非饮料金额饮料金额.(1)①求t 的值;②求扇形统计图中钝角∠AOB 的度数(2)根据实际需要,该班第二天购买这四种食品时,增加购买饮料金额,同时减少购买面包金额假设增加购买饮料金额的25%等于减少购买面包的金额,且购买面包的金额不少于100元, 求t 的取值范围BA 3m 4nO水果面包药品饮料CBA24. (本小题满分13分)如图,△ABC和△ADE中,AB=AD,BC=DE,∠B=∠D,边AD与边BC交于点P(不与点B、C重合),点B、E在AD异侧,I为△APC的内心(三条角平线的交点) .(1)求证:∠BAD=∠CAE;(2)当∠BAC=90°时,①若AB=16,BC=20时,求线段PD的最大值;②若∠B=36°,∠AIC的取值范围为m°<∠AIC<n°,求m、n的值.IP D CB AECBA25. (本小题满分13分)如图,正方形ABCD 的边长为a ,射线AM 是∠A 外角的平分线,点E 在 边AB 上运动(不与点A 、B 重合),点F 在射线AM 上,且AF =√2BE ,CF 与AD 相交于点G , 连结EC 、EF 、EG . (1)求证:CE=EF ;(2)求△AEG 的周长(用含a 的代数式表示) (3)试探索:点E 在边AB 上运动至什么位置时, △EAF 的面积最大?参考答案一、选择1.B2.B3.A4.C5.D6.C7.D8.D9.A 10.C 二、填空11. 2a (a -2) 12.4x 2 13.3 14.45 15.144 16.14 三、解答 17.2+2 18.2a 2+9;17. 19.(略) 20.(略)21.(1)DF =4;(2)S △BEF =25MG F DCBAE。
华师大版八年级(上)期末数学试卷及答案1
华师大版八年级(上)期末数学试卷及答案一、选择题(每小题3分,共24分)1.(3分)4的算术平方根是()A.﹣2 B.±2 C.2 D.162.(3分)下列是无理数的是()A.B.C.D.3.(3分)下列运算正确的是()A.x2+x2=x4B.(a﹣1)2=a2﹣1 C.a2•a3=a5D.3x+2y=5xy4.(3分)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.255.(3分)如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b26.(3分)等腰三角形的一个角是50°,则它的底角是()A.50°B.50°或65°C.80°D.65°7.(3分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连接AC、B C.若∠ABC=54°,则∠1的大小为()A.36°B.54°C.72°D.73°8.(3分)已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24 B.30 C.40 D.48二、填空题(每小题3分,共18分)9.(3分)计算:3a•(﹣2a)2=.10.(3分)写出“全等三角形的面积相等”的逆命题.11.(3分)某校对八年级1600名男生的身高进行了测量,结果身高(单位:m)在1.58~1.65这一小组的频率为0.4,则该组的人数为人.12.(3分)若计算(x﹣2)(3x+m)的结果中不含关于字母x的一次项,则m的值为.13.(3分)如图,以Rt△ABC的三边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=12,则S3=.14.(3分)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为.三、解答题(本大题共12小题,共78分)15.(5分)计算:﹣.16.(5分)因式分解:ab2﹣2ab+a.17.(5分)在正方形网格图①、图②中各画一个等腰三角形,要求:每个等腰三角形的一个顶点为格点A,其余顶点为格点B、C、D、E、F、G、H中选取,并且所画的两个三角形不全等.18.(5分)先化简,再求值:(x+1)2﹣(x+2)(x﹣2),其中x=﹣.19.(5分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.20.(5分)如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米(即AC=5)处,已知木杆原长为25米.(1)求木杆断裂处离地面(即AB的长)多少米?(2)求△ABC的面积.21.(6分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA 的度数.22.(6分)如图,已知AB比AC长2cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长是14cm,求AB和AC的长.23.(8分)某市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:跳绳,B:跑操,C:舞蹈,D:健美操共四项活动,为了了解学生最喜欢哪一种活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人.(2)请将条形统计图补充完整.(3)求出扇形统计图中A项目对应的圆心角的度数.24.(8分)探究:如图①,在Rt△ABC中,∠ACB=90°,AC=BC,直线l经过点C,且点A、B在直线l的同侧,过点A、B分别作直线l的垂线,垂足分别为点D、E.求证:DE=AD+BE.应用:如图②,在Rt△ABC中,∠ACB=90°,AC=BC,直线l经过点C,且点A、B在直线l的异侧,过点A、B分别作直线l的垂线,垂足分别为点D、E.直接写出线段AD、BE、DE之间的相等关系.25.(10分)在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.26.(10分)如图,已知四边形ABCD中,∠B=60°,边AB=BC=8cm,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是每秒1cm,点Q运动的速度是每秒2cm,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t秒.解答下列问题:(1)AP=,BP=,BQ=.(用含t的代数式表示,t≤4)(2)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(3)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t,若不能,请说明理由.参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)4的算术平方根是()A.﹣2 B.±2 C.2 D.16【解答】解:∵22=4,∴4算术平方根为2,故选:C.2.(3分)下列是无理数的是()A.B.C.D.【解答】解:,,是有理数,是无理数,故选:B.3.(3分)下列运算正确的是()A.x2+x2=x4B.(a﹣1)2=a2﹣1 C.a2•a3=a5D.3x+2y=5xy【解答】解:A、错误,应为x2+x2=2x2;B、错误,应为(a﹣1)2=a2﹣2a+1;C、正确;D、错误,3x与2y不是同类项,不能合并.故选:C.4.(3分)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.25【解答】解:如图所示:AB==5.故选:A.5.(3分)如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【解答】解:由题意可得,正方形的边长为(a+b),故正方形的面积为(a+b)2,又∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故选:C.6.(3分)等腰三角形的一个角是50°,则它的底角是()A.50°B.50°或65° C.80°D.65°【解答】解:当底角为50°时,则底角为50°,当顶角为50°时,由三角形内角和定理可求得底角为:65°,所以底角为50°或65°,故选:B.7.(3分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连接AC、B C.若∠ABC=54°,则∠1的大小为()A.36°B.54°C.72°D.73°【解答】解:∵l1∥l2,∠ABC=54°,∴∠2=∠ABC=54°,∵以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,∴AC=AB,∴∠ACB=∠ABC=54°,∵∠1+∠ACB+∠2=180°,∴∠1=72°.故选:C.8.(3分)已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24 B.30 C.40 D.48【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面积=×6×8=24.故选:A.二、填空题(每小题3分,共18分)9.(3分)计算:3a•(﹣2a)2=12a3.【解答】解:3a•(﹣2a)2=3a×4a2=12a3.故答案为:12a3.10.(3分)写出“全等三角形的面积相等”的逆命题面积相等的三角形全等.【解答】解:“全等三角形的面积相等”的题设是:两个三角形全等,结论是:面积相等,因而逆命题是:面积相等的三角形全等.故答案是:面积相等的三角形全等.11.(3分)某校对八年级1600名男生的身高进行了测量,结果身高(单位:m)在1.58~1.65这一小组的频率为0.4,则该组的人数为640人.【解答】解:根据题意知该组的人数为1600×0.4=640(人),故答案为:640.12.(3分)若计算(x﹣2)(3x+m)的结果中不含关于字母x的一次项,则m的值为6.【解答】解:原式=3x2+(m﹣6)x﹣2m,由结果不含x的一次项,得到m﹣6=0,解得:m=6,故答案为:613.(3分)如图,以Rt△ABC的三边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=12,则S3=17.【解答】解:∵S1=5,∴BC2=5,∵S2=12,∴AC2=12,∴在Rt△ABC中,BC2+AC2=AB2=5+12=17,∴S3=AB2=17.故答案为:17.14.(3分)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.【解答】解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.三、解答题(本大题共12小题,共78分)15.(5分)计算:﹣.【解答】解:﹣=2﹣=1.16.(5分)因式分解:ab2﹣2ab+a.【解答】解:ab2﹣2ab+a=a(b2﹣2b+1)=a(b﹣1)2.17.(5分)在正方形网格图①、图②中各画一个等腰三角形,要求:每个等腰三角形的一个顶点为格点A,其余顶点为格点B、C、D、E、F、G、H中选取,并且所画的两个三角形不全等.【解答】解:如图△ACE,△ADE即可等腰三角形.18.(5分)先化简,再求值:(x+1)2﹣(x+2)(x﹣2),其中x=﹣.【解答】解:当x=时,原式=x2+2x+1﹣x2+4=2x+5=﹣1+5=419.(5分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【解答】证明:∵BE=FC,∴BE+EF=FC+EF,即BF=EC,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS),∴∠A=∠D.20.(5分)如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米(即AC=5)处,已知木杆原长为25米.(1)求木杆断裂处离地面(即AB的长)多少米?(2)求△ABC的面积.【解答】解:(1)设木杆断裂处离地面x米,由题意得x2+52=(25﹣x)2,解得x=12.答:木杆断裂处离地面12米;(2)△ABC的面积=AC•AB=30平方米.21.(6分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA 的度数.【解答】解:∵AB∥CD,∴∠ACD+∠CAB=180°,又∵∠ACD=110°,∴∠CAB=70°,由作法知,AM是∠CAB的平分线,∴∠MAB=∠CAB=35°,又∵AB∥CD,∴∠CMA=∠BAM=35°.22.(6分)如图,已知AB比AC长2cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长是14cm,求AB和AC的长.【解答】解:BC的垂直平分线交AB于点D,∴DB=DC,∵△ACD的周长是14,∴AD+AC+CD=14,即AC+AB=14,则,解得,AB=8cm,AC=6cm.23.(8分)某市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:跳绳,B:跑操,C:舞蹈,D:健美操共四项活动,为了了解学生最喜欢哪一种活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有500人.(2)请将条形统计图补充完整.(3)求出扇形统计图中A项目对应的圆心角的度数.【解答】解:(1)这次被调查的学生共有140÷28%=500人,故答案为:500;(2)A项目的人数为500﹣(75+140+245)=40(人),补全条形图如下:(3)扇形统计图中A项目对应的圆心角的度数为360°×=28.8°.24.(8分)探究:如图①,在Rt△ABC中,∠ACB=90°,AC=BC,直线l经过点C,且点A、B在直线l的同侧,过点A、B分别作直线l的垂线,垂足分别为点D、E.求证:DE=AD+BE.应用:如图②,在Rt△ABC中,∠ACB=90°,AC=BC,直线l经过点C,且点A、B在直线l的异侧,过点A、B分别作直线l的垂线,垂足分别为点D、E.直接写出线段AD、BE、DE之间的相等关系.【解答】证明:①∵AD⊥DE,BE⊥DE,∠ACB=90°,∴∠ADC=∠ACB=∠BEC=90°,∴∠DAC+∠DCA=90°,∠DCA+∠ECB=180°﹣90°=90°,∴∠DAC=∠ECB,在△ADC和△CEB中,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD,即DE=AD+BE.②AD=BE﹣DE,理由如下:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠ACD=∠CBE=90°﹣∠EC B.在△ACD与△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE,AD=CE,又∵CE=CD﹣DE,∴AD=BE﹣DE.25.(10分)在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.【解答】解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,∵AD⊥DB,∴∠ADB=90°,∴∠EAD+∠ABD=90°,∠ADE+∠BDE=∠ADB=90°,∴∠ABD=∠BDE,∴DE=BE,∵AB=5,∴DE=BE=AE=AB=2.5.26.(10分)如图,已知四边形ABCD中,∠B=60°,边AB=BC=8cm,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是每秒1cm,点Q运动的速度是每秒2cm,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t秒.解答下列问题:(1)AP=t,BP=8﹣t,BQ=2t.(用含t的代数式表示,t≤4)(2)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(3)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t,若不能,请说明理由.【解答】解:(1)由题意得,AP=t,BP=8﹣t,BQ=2t,故答案为:t;8﹣t;2t;(2)PQ⊥AB,理由如下:连接AC,∵∠B=60°,AB=BC,∴△ABC为等边三角形,∵点Q到达点C时,BQ=BC=8cm,AP=4,∴P为AB的中点,∴PQ⊥AB;(3)△BPQ能称为等边三角形,∵∠B=60°,∴当BP=BQ时,△BPQ能称为等边三角形,此时,8﹣t=2t,解得,t=.。
2019-2020年华东师大版数学八年级上学期期末模拟综合试题及答案解析-精编试题
八年级数学(上)期末模拟测试题(本卷满分110分,限时100分钟)第Ⅰ卷一、选择题(每小题2分,共20分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在答题卷相应的题号的方格内。
1 )A.4B.4-C.4±D.162.下列可用平方差公式计算的是( )A.(a + b)(a + b)B.(a -b)(b -a)C.(a -b)(-b + a)D.(a -b)(-a -b)3.求121的平方根的正确表达式是( ) A.11121=; B. 11121±=; C. 11121=±; D. 11121±=±4.下列计算正确的是A.235x y xy +=B.2245x y xy xy -=-C.236236x x x=D.43334(2)2x y xy x ÷-=-5.如图,在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是( )A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格6.一个直角三角形,两直角边长分别为3和4,下列说法正确的是( ) A .斜边长为25 B .三角形的周长为25 C .斜边长为5 D .三角形面积为207.如图,在等腰直角△ABC 中, B =90°,将△ABC时针方向旋转60°后得到△AB ′C ′则∠BAC ′等于( A. 60° B. 105° C. 120° D. 135°8.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( ) A.1∶2∶3∶4 B.1∶2∶2∶1 C.1∶1∶2∶2D.2∶1∶2∶19.如图,EF 过平行四边形对角线的交点O ,且分别交AD 、BC 于E 、F ,若平行四边形的面积为12,则△AOE 与△BOF 的面积之和等于( )A.2 B.3 C.4 D.无法确定10.如图所示,把一个正方形纸片三次对折后沿虚线剪开,则剩余图形展开后得到的图形是( )二、填空题(每小题3分,共24分) 11.实数711, π, 32-, 4 ,0, 3, 0.1010010001…… 中,无理数有________个。
2019年华东师大版八年级上册期末学业水平数学模拟试卷有答案
八年级数学上学期期末模拟试卷考试时间:120分钟满分:150分姓名:__________ 班级:__________考号:__________1、参赛者工作单位:四川省巴中市南江县正直中学;2、本份试卷试题适用于《华东师大版》八年级(上)数学期末学业水平测试;3、填写答题卡的内容用2B铅笔填写;4、考试结束收取答题卡.第Ⅰ卷客观题第Ⅰ卷的注释一、单选题(共10题;共30分))A. -8B. 8C. -4D. 42. ( 3分) 将数49开平方,其结果是()A. ±7B. -7C. 7D.3. ( 3分) 下列各数的相反数中,最大的数是()A. -1B. 0C. 1D.4. ( 3分) 下列运算正确的是()A. B. C. D.5 ( 3分如图,数轴上点N表示的数可能是( )A. B. C. D.6. ( 3分) 在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式().A. (a+b)2=a2+2ab+b2B. (a-b)2=a2-2ab+b2C. a2-b2=(a+b)(a-b)D. (a+b)(a-2b)=a2-ab-2b27. ( 3分) 有一个三角形两边长为4和5,要使三角形为直角三角形,则第三边长为()A. 3B.C. 和3D. 不确定8. ( 3分) 在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A. 1B. 2C. 3D. 49. ( 3分) 某校初一新生自甲、乙、丙三所不同小学,其人数比为2:3:5,如图所示的扇形图表示上述分布情况.已知自甲小学的为180人,则下列说法不正确的是()A. 扇形甲的圆心角是72°B. 学生的总人数是900人C. 丙校的人数比乙校的人数多180人D. 甲校的人数比丙校的人数少180人10. ( 3分) 如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A. 3B. 4C. 5D. 6第Ⅱ卷主观题第Ⅱ卷的注释二、填空题(共10题;共30分).12. ( 3分) 已知a m=4,a n=3,则a2m+n=________.13. ( 3分) 若m=4n+3,则m2﹣8mn+16n2的值是________.14. ( 3分) 化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.15. ( 3分) 命题“同位角相等”的逆命题是________16. ( 3分) 如图为6 个边长相等的正方形的组合图形,则∠1+∠2+∠3=________°17. ( 3分) 如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是________18. ( 3分) 如图,在△ABC中,D,E分别是AB,AC的中点,延长DE至F,使EF = DE,若AB = 10,BC = 8,则四边形BCFD的周长为________19. ( 3分) 如图,E为正方形ABCD中CD边上一点,∠DAE=30°,P为AE的中点,过点P作直线分别与AD、BC相交于点M、N.若MN=AE,则∠AMN等于________20. ( 3分) 如图,已知AB∥CF,E为DF的中点,若AB=11 cm,CF=5 cm,则BD=________cm.三、计算题(共6题;共46分)2018+|1﹣|﹣22. ( 5分) 计算:(a+b)2﹣a(a+2b+1)23. ( 7分) 计算下列各式:(1)1-=________;(2)=________;(3)=________;(4)你能根据所学知识找到计算上面的算式的简便方法吗?请你利用你找到的简便方法计算下式:24. ( 15分) 因式分解:(1)32﹣6y+;(2)﹣4m3+16m2﹣28m;(3)18(a﹣b)2﹣12(b﹣a)3.25. ( 6分) 已知的不含项与项,的是多少?2. ( 8分) 设,,,…,.若,求S(用含n的代数式表示,其中n为正整数).四、解答题(共2题;共22分)”研究员随机抽取了一定数量的高校大一学生进行了问卷调查,并将调查得到的数据用下面的扇形图和如表表示(图、表都没制作完成).(1)这次共有多少名学生参与了问卷调查?(2)求a、b的值.28. ( 12分) 如图,点O是△ABC边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(Ⅰ)求证:OE=OF;(Ⅱ)若CE=8,CF=6,求OC的长;五、作图题(共1题;共8分)A,D都在格点上,作三角形ABC,使其满足下列条件.(点B,C不与点D重合)(1)在图甲中,作格点等腰△ABC,使AD为△ABC的高线.(2)在图乙中,作格点钝角△ABC,使AD为△ABC的角平分线六、综合题(共1题;共14分)BC,射线CM⊥BC,且BC=4,AB=1,点P是线段BC(不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.(1)如图1,若BP=3,求△ABP的周长;(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并说明理由;(3)若△PDC是等腰三角形,作点B关于AP的对称点B′,连结B′D,则B′D=________.(请直接写出答案)答案解析部分一、单选题1.【答案】C【考点】立方根【解析】【解答】∵-4的立方等于-64,∴-64的立方根等于-4.故选C.【分析】如果一个数的立方等于a,那么是a的立方根,根据此定义求解即可.此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.【答案】A【考点】平方根【解析】【分析】根据平方根的定义进行解答.【解答】∵(±7)2=49,∴±=±7.故选A.【点评】本题考查的是平方根的定义,解答此题的关键是熟知一个正数的平方根有两个,这两个数互为相反数.3.【答案】D【考点】实数大小比较【解析】【分析】根据以下法则即可求解.负数小于正数;两个负数,绝对值大的反而小;底数是正数的同次根式,底数越大,根式的值越大.【解答】从题意,A中-1的相反数为1;B中0没有正负之分;C中1的相反数为-1;D中的相反数为,四个数中D选项中的最大.故选D.4.【答案】D【考点】幂的乘方与积的乘方,同底数幂的除法,单项式乘单项式,去括号法则及应用,合并同类项法则及应用【解析】【分析】选项A中,所以A错误;选项B中,所以B错误,选项C中,所以C错误,选项D中,因选D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一学期期末模拟试卷
八年级数学
一.单选题(共10题;共30分)
1.下列命题中,真命题是()
A. 一组对边平行,另一组对边相等的四边形一定是等腰梯形
B. 对角线互相垂直的四边形是菱形
C. 顺次连结菱形各边中点所得的四边形是正方形
D. 四个内角均相等的四边形是矩形
2.已知:点P、Q是△ABC的边BC上的两个点,且BP=PQ=QC=AP=AQ,∠BAC的度数是()
A. 100°
B. 120°
C. 130°
D. 150°
3.如图是琳琳6个装好糖果的礼包盒,每盒上面的数字代表这盒礼包实际装有的糖果数量.她把其中的5盒送给好朋友小芬和小红,自己留下1盒.已知送的都是整盒,包装没拆过,送给小芬的糖果数量是小红的2倍,则琳琳自己留下的这盒有糖果()
A. 15粒
B. 18粒
C. 20粒
D. 31粒
4.已知9x2+kxy+4y2是一个完全平方展开式,那么k的值是()
A. 12
B. 24
C. ±12
D. ±24
5.下列各组数中能够作为直角三角形的三边长的是()
A. 1,2,3
B. 2,3,4
C. 3,4,5
D. 4,5,6
6.已知实数x,y满足,则x﹣y等于()
A. 3
B. ﹣3
C. 1
D. ﹣1
7.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=110°,则∠EAF为()
A. 35°
B. 40°
C. 45°
D. 50°
8.如图1,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中能和△ABC完全重合的是()
A. 丙和乙
B. 甲和丙
C. 只有甲
D. 只有丙
9.下列多项式① x²+xy-y² ② -x²+2xy-y² ③ xy+x²+y² ④1-x+ x其中能用完全平方公式分解因式的是()
A. ①②
B. ①③
C. ①④
D. ②④
10.下列条件中不能使两个直角三角形全等的是()
A. 两条直角边对应相等
B. 两个锐角对应相等
C. 一条直角边和斜边对应相等
D. 一个锐角和斜边对应相等
二.填空题(共8题;共24分)
11.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为________m2
12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=________.
13.如图,△ABC的高BD,CE相交于点O.请你添加一个条件,使BD=CE.你所添加的条件是________.(仅添加一对相等的线段或一对相等的角)
14.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是: ________
15.如图,若▱ABCD的周长为36cm,过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,▱ABCD的面积为________ cm2.
16.用反证法证明AB≠AC时,首先假设________成立.
17.在实数范围内因式分解:x3﹣2x2y+xy2=________.
18.(2015•娄底)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是________ (只需写一个,不添加辅助线)
三.解答题(共6题;共36分)
19.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.
20.如图,点D在AC上,点E在AB上,且AB=AC,BD=BC,AD=DE=BE.求∠A的度数.
21.如图,在▱ABCD中,M,N在对角线AC上,且AM=CN,求证:BM∥DN.
22.如图,AB=AC,BD=DC,DF⊥AB,DE⊥AC,垂足分别是F,E.求证:DE=DF.
23.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?
24.如图,AB=BC,AB⊥BC于B,FC⊥BC于C,E为BC上一点,BE=FC,请探求AE与BF的关系,并说明理由.
四.综合题(共10分)
25.如图,∠MON=30°,在距离O点80米的A处有一所学校,当重型运输卡车P沿道路ON方向行驶时,距离卡车50米范围内都会受到卡车噪声的影响.
(1)学校A是否受到卡车噪声的影响?为什么?
(2)假如学校A会受到噪声的影响,若卡车以每小时18km的速度行驶,求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.
2019-2020学年八年级上期末模拟数学试卷
参考答案
一.单选题
1.【答案】D
2.【答案】B
3.【答案】C
4.【答案】C
5.【答案】C
6.【答案】A
7.【答案】B
8.【答案】B
9.【答案】D
10.【答案】B
二.填空题
11.【答案】24
12.【答案】55°
13.【答案】BE=CD或∠EBC=∠DCB或∠DBC=∠BCE或AB=AC
14.【答案】AC=DF
15.【答案】40
16.【答案】AB=AC
17.【答案】x(x﹣y)2
18.【答案】∠ABD=∠CBD或AD=CD.
三.解答题
19.【答案】解:∵AB=BD,
∴∠BDA=∠A,
∵BD=DC,
∴∠C=∠CBD,
设∠C=∠CBD=x,
则∠BDA=∠A=2x,
∴∠ABD=180°﹣4x,
∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,
解得:x=25°,所以2x=50°,
即∠A=50°,∠C=25°.
20.【答案】解:设∠A=x°,
∵AD=DE=BE,
∴∠ABD=∠BDE,∠A=∠AED,
由三角形的外角性质得,∠AED=∠ABD+∠BDE=2∠ABD,
∴∠ABD= x°,
在△ABD中,∠BDC=∠A+∠ABD=x°+ x°= x°,∵BD=BC,
∴C=∠BDC,
∵AB=AC,
∴∠C=∠ABC,
∴∠ABC=∠C=∠BDC= x°,
在△ABC中,由三角形内角和定理得,
x+ x+ x=180,
解得x=45,
所以,∠A=45°.
21.【答案】证明:连接BD、MD、BN,
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AM=CN,
∴OA﹣AM=OC﹣CN,
即OM=ON,
∴四边形BNDM是平行四边形.
∴BM∥DN.
22.【答案】证明:∵AB=AC,
∴∠B=∠C,
∵DE⊥AB,DF⊥AC,
∴∠BFD=∠CED=90°,
∵BD=DC,
∴△BDF≌△CDE,
∴DE=DF
23.【答案】解:设AE=xkm,
∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,
由勾股定理,得152+x2=102+(25﹣x)2,x=10.
故:E点应建在距A站10千米处.
24.【答案】解:AE⊥BF且AE=BF.
理由:∵AB⊥BC于B,FC⊥BC于C,
∴∠ABE=∠BCF=90°.
∵AB=BC,BE=FC,
∴△ABE≌△BCF.
∴AE=BF,∠A=∠FBC,∠AEB=∠F.
∵∠A+∠AEB=90°,
∴∠FBC+AEB=90°.
∴AE⊥BF.
∴AE⊥BF且AE=BF.
四.综合题
25.【答案】(1)解:会.作AD⊥ON于D,
∵∠MON=30°,AO=80m,
∴AD= OA=40m<50m,
∴学校A会受到卡车噪声的影响;
(2)解:如图以A为圆心50m为半径画圆,交ON于B、C两点,∵AD⊥BC,
∴BD=CD= BC,
在Rt△ABD中,BD= = =30m,
∴BC=60m,
∵重型运输卡车的速度为18千米/时=300米/分钟,
∴重型运输卡车经过BC的时间=60÷300=0.2分钟=12秒,
答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为12秒.。