2013年福建厦门中考数学试卷及答案(word解析版)

合集下载

2013-2014年福建省厦门市初三上学期期末数学试卷含答案解析

2013-2014年福建省厦门市初三上学期期末数学试卷含答案解析

2013-2014学年福建省厦门市初三上学期期末数学试卷一、选择题(本大题有7小题,每小题3分,共21分.每小题有四个选项,其中有且只有一个选项正确)1.(3分)下列计算正确的是()A.B.C.D.2.(3分)方程x2+2x=0的根是()A.0B.﹣2C.0或﹣2D.0或23.(3分)下列事件中,属于随机事件的是()A.掷一枚质地均匀的正方体骰子,向上的一面点数小于7B.某射击运动员射击一次,命中靶心C.在只装了红球的袋子中摸到白球D.在三张分别标又数字2,4,6的卡片中摸两张,数字和是偶数4.(3分)已知⊙O的半径是3,OP=3,那么点P和⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定5.(3分)下列图形中,属于中心对称图形的是()A.等边三角形B.直角三角形C.矩形D.等腰梯形6.(3分)反比例函数的图象在第二、四象限,那么实数m的取值范围是()A.m>0B.m<0C.m>2D.m<27.(3分)如图,在⊙O中,弦AC和BD相交于点E,==,若∠BEC=110°,则∠BDC=()A.35°B.45°C.55°D.70°二、填空题(本大题有10小题,每小题4分,共40分)8.(4分)计算:|﹣3|=.9.(4分)一个圆形转盘平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,飞镖落在红色区域的概率是.10.(4分)已知点A(﹣1,﹣2)与点B(m,2)关于原点对称,则m的值是.11.(4分)已知△ABC的三边长分别是6,8,10,则△ABC外接圆的直径是.12.(4分)九年级有一个诗歌朗诵小组,其中男生5人,女生12人,先从中随机抽取一名同学参加表演,抽到男生的概率是.13.(4分)若直线y=(k﹣2)x+2k﹣1与y轴交于点(0,1),则k的值等于.14.(4分)如图,A、B、C是⊙O上的三个点,若∠AOC=110°,则∠ABC=.15.(4分)电流通过导线时会产生热量,设电流是I(安培),导线电阻为R(欧姆),t秒产生的热量为Q(焦),根据物理公式Q=I2Rt,如果导线的电阻为5欧姆,2秒时间导线产生60焦热量,则电流I的值是安培.16.(4分)如图,以正方形ABCD的顶点D为圆心画圆,分别交AD、CD两边于点E、F,若∠ABE=15°,BE=2,则扇形DEF的面积是.17.(4分)求代数式的值是.三、解答题(共89分)18.(7分)计算:.19.(7分)在平面直角坐标系中,已知点A(2,1),B(2,0),C(1,﹣1),请在图上画出△ABC,并画出与△ABC关于原点O对称的图形.20.(7分)如图,AB是⊙O的直径,直线AC,BD是⊙O的切线,A,B是切点.求证:AC∥BD.21.(7分)第一盒乒乓球中有2个白球1个黄球,第二盒子乒乓球中有1个白球1个黄球,分别从每个盒中随机地取出1个球,求这两个球中欧一个是白球一个是黄球的概率.22.(7分)解方程:x2+3x﹣2=0.23.(7分)如图,在⊙O中,=,∠A=30°,求∠B的度数.24.(6分)判断关于x的方程x2+px+(p﹣2)=0的根的情况.25.(6分)已知O是平面直角坐标系的原点,点A(1,n),B(﹣1,﹣n)(n >0),AB的长是,若点C在x轴上,且OC=AC,求点C的坐标.26.(6分)如图,利用一面长度为7米的墙,用20米长的篱笆能否围出一个面积为48平方米的矩形菜园?若能,求出该菜园与墙平行一边的长度;若不能,说明理由.27.(6分)如图,平行四边形ABCD中,O为AB上的一点,连接OD、OC,以O 为圆心,OB为半径画圆,分别交OD,OC于点P、Q.若OB=4,OD=6,∠ADO=∠A,=2π,判断直线DC与⊙O的位置关系,并说明理由.28.(6分)已知点A(m1,n1),B(m2,n2)(m1<m2)在直线y=kx+b上,若m1+m2=3b,n1+n2=kb+4,b>2,试比较n1和n2的大小,并说明理由.29.(6分)如图,⊙O是△ABC的外接圆,D是的中点,DE∥BC交AC的延长线于点E,若AE=10,∠ACB=60°,求BC的长.30.(11分)已知关于x的方程x2+ax+b=0(b≠0)与x2+cx+d=0都有实数根,若这两个方程有且只有一个公共根,且ab=cd,则称它们互为“同根轮换方程”.如x2﹣x﹣6=0与x2﹣2x﹣3=0互为“同根轮换方程”.(1)若关于x的方程x2+4x+m=0与x2﹣6x+n=0互为“同根轮换方程”,求m的值;(2)若p是关于x的方程x2+ax+b=0(b≠0)的实数根,q是关于x的方程的实数根,当p、q分别取何值时,方程x2+ax+b=0(b≠0)与互为“同根轮换方程”,请说明理由.2013-2014学年福建省厦门市初三上学期期末数学试卷参考答案与试题解析一、选择题(本大题有7小题,每小题3分,共21分.每小题有四个选项,其中有且只有一个选项正确)1.(3分)下列计算正确的是()A.B.C.D.【解答】解:A、原式===3,故本选项正确;B、原式===3,故本选项错误;C、原式=2,故本选项错误;D、原式=2,故本选项错误.故选:A.2.(3分)方程x2+2x=0的根是()A.0B.﹣2C.0或﹣2D.0或2【解答】解:方程分解得:x(x+2)=0,可得x=0或x+2=0,解得:x=0或x=﹣2.故选:C.3.(3分)下列事件中,属于随机事件的是()A.掷一枚质地均匀的正方体骰子,向上的一面点数小于7B.某射击运动员射击一次,命中靶心C.在只装了红球的袋子中摸到白球D.在三张分别标又数字2,4,6的卡片中摸两张,数字和是偶数【解答】解:A、掷一枚质地均匀的正方体骰子,向上的一面点数小于7,是必然事件,故选项错误;B、某射击运动员射击一次,命中靶心,是随机事件,故选项正确;C、在只装了红球的袋子中摸到白球,是不可能事件,故选项错误;D、在三张分别标又数字2,4,6的卡片中摸两张,数字和是偶数,是必然事件,故选项错误.故选:B.4.(3分)已知⊙O的半径是3,OP=3,那么点P和⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定【解答】解:∵⊙O的半径是3,OP=3,∴3=3,即点P和⊙O的位置关系是点P在⊙O上,故选:B.5.(3分)下列图形中,属于中心对称图形的是()A.等边三角形B.直角三角形C.矩形D.等腰梯形【解答】解:A、是轴对称图形,不是中心对称图形,故选项错误;B、不是中心对称图形,故选项错误;C、是中心对称图形,故选项正确;D、是轴对称图形,不是中心对称图形,故选项错误.故选:C.6.(3分)反比例函数的图象在第二、四象限,那么实数m的取值范围是()A.m>0B.m<0C.m>2D.m<2【解答】解:由题意得,反比例函数y=的图象在二、四象限内,则m﹣2<0,解得m<2.故选:D.7.(3分)如图,在⊙O中,弦AC和BD相交于点E,==,若∠BEC=110°,则∠BDC=()A.35°B.45°C.55°D.70°【解答】解:∵==,∴∠BDC=∠ACB=∠DBC,∵∠BEC=110°,∴∠ACB=∠DBC=35°.∴∠BDC=35°.故选:A.二、填空题(本大题有10小题,每小题4分,共40分)8.(4分)计算:|﹣3|=3.【解答】解:|﹣3|=3.故答案为:3.9.(4分)一个圆形转盘平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,飞镖落在红色区域的概率是.【解答】解:∵圆形转盘平均分成红、黄、蓝、白4个扇形区域,其中红色区域占1份,∴飞镖落在红色区域的概率是指针落在红色区域的概率是;故答案为:.10.(4分)已知点A(﹣1,﹣2)与点B(m,2)关于原点对称,则m的值是1.【解答】解:∵点A(﹣1,﹣2)与点B(m,2)关于原点对称,∴m=1.故答案为:1.11.(4分)已知△ABC的三边长分别是6,8,10,则△ABC外接圆的直径是10.【解答】解:∵AC=6,BC=8,AB=10,∴AC2+BC2=AB2,∴∠C=90°,∴△ABC的外接圆的半径是×10=5,即外接圆的直径是10,故答案为:10.12.(4分)九年级有一个诗歌朗诵小组,其中男生5人,女生12人,先从中随机抽取一名同学参加表演,抽到男生的概率是.【解答】解;∵男生5人,女生12人,∴共有17人,∴从中随机抽取一名同学参加表演,抽到男生的概率是,故答案为;.13.(4分)若直线y=(k﹣2)x+2k﹣1与y轴交于点(0,1),则k的值等于1.【解答】解:依题意,得2k﹣1=1,解得,k=1.故填:1.14.(4分)如图,A、B、C是⊙O上的三个点,若∠AOC=110°,则∠ABC=125°.【解答】解:如图,在优弧AC上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=55°,∴∠ABC=180°﹣∠ADC=125°.故答案为:125°.15.(4分)电流通过导线时会产生热量,设电流是I(安培),导线电阻为R(欧姆),t秒产生的热量为Q(焦),根据物理公式Q=I2Rt,如果导线的电阻为5欧姆,2秒时间导线产生60焦热量,则电流I的值是安培.【解答】解:∵导线的电阻为5欧姆,2秒时间导线产生60焦热量,∴60=5×2I2,解得:I=或I=﹣(舍去)故答案为:16.(4分)如图,以正方形ABCD的顶点D为圆心画圆,分别交AD、CD两边于点E、F,若∠ABE=15°,BE=2,则扇形DEF的面积是.【解答】解:如图,连接EF.∵四边形ABCD是正方形,∠ABE=15°,BE=2,∴根据正方形的对称性得到∠ABE=∠CBF=15°,BE=BF,AE=CF,∴∠EBF=60°,∴△BEF是等边三角形,∴EF=BE=2.在等腰直角△DEF中,EF=ED=2,则ED=,==.∴S扇形DEF故答案是:.17.(4分)求代数式的值是1.【解答】解:原式=﹣+c+1===1,故答案为:1.三、解答题(共89分)18.(7分)计算:.【解答】解:×+﹣=2+3﹣=4.19.(7分)在平面直角坐标系中,已知点A(2,1),B(2,0),C(1,﹣1),请在图上画出△ABC,并画出与△ABC关于原点O对称的图形.【解答】解:△ABC如图所示;△ABC关于原点O对称的图形△A′B′C′如图所示.20.(7分)如图,AB是⊙O的直径,直线AC,BD是⊙O的切线,A,B是切点.求证:AC∥BD.【解答】证明:∵直线AC,BD是⊙O的切线,又∵AB是⊙O的直径,∴OA⊥AC.OB⊥BD.∴AC∥BD.21.(7分)第一盒乒乓球中有2个白球1个黄球,第二盒子乒乓球中有1个白球1个黄球,分别从每个盒中随机地取出1个球,求这两个球中欧一个是白球一个是黄球的概率.【解答】解:列表如下:白白黄白(白,白)(白,白)(黄,白)黄(白,黄)(白,黄)(黄,黄)所有等可能的情况有6种,其中一个白球一个黄球的有3种,则P(一个白球一个黄球)==.22.(7分)解方程:x2+3x﹣2=0.【解答】解:∵a=1,b=3,c=﹣2,∴△=b2﹣4ac=32﹣4×1×(﹣2)=17,∴x=,∴x1=,x2=.23.(7分)如图,在⊙O中,=,∠A=30°,求∠B的度数.【解答】解:∵=,∴∠B=∠C,∵∠A=30°,而∠A+∠B+∠C=180°,∴∠B=75°.24.(6分)判断关于x的方程x2+px+(p﹣2)=0的根的情况.【解答】解:△=p2﹣4×1×(p﹣2)=p2﹣4p+8,=(p﹣2)2+4,∵(p﹣2)2≥0,∴(p﹣2)2+4>0,即△>0.∴方程x2+px+(p﹣2)=0有两个不相等的实数,25.(6分)已知O是平面直角坐标系的原点,点A(1,n),B(﹣1,﹣n)(n >0),AB的长是,若点C在x轴上,且OC=AC,求点C的坐标.【解答】解:过点A作AD⊥x轴于点D,∵A(1,n),B(﹣1,﹣n),∴点A与点B关于原点O对称.∴点A、B、O三点共线.∴AO=BO=.在Rt△AOD中,n2+1=5,∴n=±2.∵n>0,∴n=2.若点C在x轴正半轴,设点C(a,0),则CD=a﹣1.在Rt△ACD中,AC2=AD2+CD2=4+(a﹣1)2.又∵OC=AC∴a2=4+(a﹣1)2.∴a=.若点C在x轴负半轴,∵AC>CD>CO,不合题意.∴点C(,0).26.(6分)如图,利用一面长度为7米的墙,用20米长的篱笆能否围出一个面积为48平方米的矩形菜园?若能,求出该菜园与墙平行一边的长度;若不能,说明理由.【解答】答:不能.设该菜园与墙平行的一边的长为x米,则该菜园与墙垂直的一边的长为(20﹣x)米,若(20﹣x)x=48.即x2﹣20x+96=0.解得x1=12,x2=8.∵墙长为7米,12>7且8>7,∴用20米长的篱笆不能围出一个面积为48平方米的矩形菜园.27.(6分)如图,平行四边形ABCD中,O为AB上的一点,连接OD、OC,以O 为圆心,OB为半径画圆,分别交OD,OC于点P、Q.若OB=4,OD=6,∠ADO=∠A,=2π,判断直线DC与⊙O的位置关系,并说明理由.【解答】解:如图,在⊙O中,半径OB=4,设∠POQ为n°,则有2π=.n=90°.∴∠POQ=90°.∵∠ADO=∠A,∴AO=DO=6.∴AB=10.∵四边形ABCD是平行四边形,∴DC=AB=10.∴在直角△COD中,CO==8.过点O作OE⊥CD于点E,则OD×OC=OE×CD.∴OE=4.8.∵4.8>4,∴直线DC与⊙O相离.28.(6分)已知点A(m1,n1),B(m2,n2)(m1<m2)在直线y=kx+b上,若m1+m2=3b,n1+n2=kb+4,b>2,试比较n1和n2的大小,并说明理由.【解答】解:∵A(m1,n1),B(m2,n2)在直线y=kx+b上,∴n1=k m1+b,n2=km2+b.∴n1+n2=k(m1+m2)+2b.∴kb+4=3kb+2b.∴k+1=.∵b>2,∴0<<1.∴0<k+1<1.∴﹣1<k<0.∵m1<m2,∴n2<n1.29.(6分)如图,⊙O是△ABC的外接圆,D是的中点,DE∥BC交AC的延长线于点E,若AE=10,∠ACB=60°,求BC的长.【解答】解:∵D是的中点,∴DA=DB.∵∠ACB=60°,∠ACB与∠ADB是同弧所对的圆周角,∴∠ADB=60°,∴△ADB是等边三角形.∴∠DAB=∠DBA=60°.∴∠DCB=∠DAB=60°.∵DE∥BC,∴∠E=∠ACB=60°.∴∠DCB=∠E.∵∠ECD=∠DBA=60°,∴△ECD是等边三角形.∴ED=CD.∵=,∴∠EAD=∠DBC.在△EAD和△CBD中,,∴△EAD≌△CBD(AAS).∴BC=EA=10.30.(11分)已知关于x的方程x2+ax+b=0(b≠0)与x2+cx+d=0都有实数根,若这两个方程有且只有一个公共根,且ab=cd,则称它们互为“同根轮换方程”.如x2﹣x﹣6=0与x2﹣2x﹣3=0互为“同根轮换方程”.(1)若关于x的方程x2+4x+m=0与x2﹣6x+n=0互为“同根轮换方程”,求m的值;(2)若p是关于x的方程x2+ax+b=0(b≠0)的实数根,q是关于x的方程的实数根,当p、q分别取何值时,方程x2+ax+b=0(b≠0)与互为“同根轮换方程”,请说明理由.【解答】解:(1)∵方程x2+4x+m=0与x2﹣6x+n=0互为“同根轮换方程”,∴4m=﹣6n.设t是公共根,则有t2+4t+m=0,t2﹣6t+n=0.解得,t=.∵4m=﹣6n.∴t=﹣.∴(﹣)2+4(﹣)+m=0.∴m=﹣12.(2)∵x2﹣x﹣6=0与x2﹣2x﹣3=0互为“同根轮换方程”,它们的公共根是3.而3=(﹣3)×(﹣1)=﹣3×(﹣1).又∵x2+x﹣6=0与x2+2x﹣3=0互为“同根轮换方程”.它们的公共根是﹣3.而﹣3=﹣3×1.∴当p=q=﹣3a 时,有9a 2﹣3a 2+b=0.解得,b=﹣6a 2.∴x 2+ax ﹣6a 2=0,x 2+2ax ﹣3a 2=0.解得,p=﹣3a ,x 1=2a ;q=﹣3a ,x 2=a .∵b ≠0,∴﹣6a 2≠0,∴a ≠0.∴2a ≠a .即x 1≠x 2.又∵2a ×b=ab ,∴方程x 2+ax +b=0(b ≠0)与x 2+2ax +b=0互为“同根轮换方程”.附加:初中数学几何模型【模型一】“一线三等角”模型:图形特征: 60°60°60° 45°45°45°运用举例: 1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标; x yB C AO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .l s 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D作∠ADE =45°,DE 交AC 于E .(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

2013厦门中考数学试题(解析版)

2013厦门中考数学试题(解析版)

20.(6分)(2013•厦门)有一个质地均匀的正12面体,12个面上分别写有1~12这12个整数(每个面只有一个整数且互不相同).投掷这个正12面体一次,记事件A为“向上一面的数字是2或3的整数倍”,记事件B为“向上一面的数字是3的整数倍”,请你判断等式P(A)=+P(B)是否成立,并说明理由.,,∵+≠,+P=21.(6分)(2013•厦门)如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点E.若AE=4,CE=8,DE=3,梯形ABCD的高是,面积是54.求证:AC⊥BD.(×22.(6分)(2013•厦门)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,求时间x的取值范围.∴x+20x+20=523.(6分)(2013•厦门)如图所示,在正方形ABCD中,点G是边BC上任意一点,DE⊥AG,垂足为E,延长DE交AB于点F.在线段AG上取点H,使得AG=DE+HG,连接BH.求证:∠ABH=∠CDE.,中,24.(6分)(2013•厦门)已知点O是平面直角坐标系的原点,直线y=﹣x+m+n与双曲线交于两个不同的点A(m,n)(m≥2)和B(p,q).直线y=﹣x+m+n与y轴交于点C,求△OBC 的面积S的取值范围.(mn+n上,n=+(≤,),∴.25.(6分)(2013•厦门)如图所示,已知四边形OABC是菱形,∠O=60°,点M是边OA的中点,以点O为圆心,r为半径作⊙O分别交OA,OC于点D,E,连接BM.若BM=,的长是.求证:直线BC与⊙O相切.(r=OA=aAB=a BG=aa BM=,,即((.∵=r=OF=r=26.(11分)(2013•厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.﹣b∵是偶系二次方程,×﹣﹣,b bb。

【2013中考真题】福建厦门中考数学试卷及答案(有答案)

【2013中考真题】福建厦门中考数学试卷及答案(有答案)

2013年厦门市初中毕业及高中阶段各类学校招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,26小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分. 3.可直接用2B 铅笔画图.一、选择题(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项正确) 1.(2013福建厦门,1,3分).下列计算正确的是( )A .-1+2=1.B .-1-1=0.C .(-1)2=-1.D .-12=1. 【答案】A(2013福建厦门,2,3分).已知∠A =60°,则∠A 的补角是 A .160°. B .120°. C .60°. D .30°. 【答案】B(2013福建厦门,3,3分).图1是下列一个立体图形的三视图,则这个立体图形是 A .圆锥. B .球. C .圆柱. D .正方体.俯视图左视图主视图图1【答案】C(2013福建厦门,4,3分).掷一个质地均匀的正方体骰子,当骰子停止后,朝上 一面的点数为5的概率是A .1.B .15.C .16. D .0.【答案】 C .(2013福建厦门,5,3分).如图2,在⊙O 中,︵AB =︵AC ,∠A =30°,则∠B = A .150°. B .75°. C .60°. D .15°.图2【答案】B(2013福建厦门,6,3分).方程2x -1=3x的解是 A .3. B .2. C .1. D .0. 【答案】A(2013福建厦门,7,3分).在平面直角坐标系中,将线段OA 向左平移2个单位,平移后,点O ,A 的对应点分别为点O 1,A 1.若点O (0,0),A (1,4),则点O 1,A 1的坐标分别是 A .(0,0),(1,4). B .(0,0),(3,4). C .(-2,0),(1,4). D .(-2,0),(-1,4).【答案】 D .二、填空题(本大题有10小题,每小题4分,共40分) (2013福建厦门,8,4分).-6的相反数是 . 【答案】6(2013福建厦门,9,4分).计算:m 2·m 3= . 【答案】m 5(2013福建厦门,10,4分).式子x -3在实数范围内有意义,则实数x 的取值范围 是 . 【答案】x ≥3(2013福建厦门,11,4分).如图3,在△ABC 中,DE ∥BC ,AD =1,AB =3, DE =2,则BC = .图3ED CB【答案】6(2013福建厦门,12,4分).在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数是 米. 【答案】1.65.(2013福建厦门,13,4分).x 2-4x +4= ( )2. 【答案】x —2(2013福建厦门,14,4分).已知反比例函数y =m -1x的图象的一支位于第一象限,则常数m 的取值范围是 . 【答案】m >1(2013福建厦门,15,4分).如图4,□ABCD 的对角线AC ,BD 相交于点O ,点E , F 分别是线段AO ,BO 的中点.若AC +BD =24厘米, △OAB 的周长是18厘米,则EF = 厘米.图4FE ODCA【答案】3(2013福建厦门,16,4分).某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒, 步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于 米. 【答案】1.3 .(2013福建厦门,17,4分).如图5,在平面直角坐标系中,点O 是原点,点B (0,3), 点A 在第一象限且AB ⊥BO ,点E 是线段AO 的中点,点M 在线段AB 上.若点B 和点E 关于直线OM 对称,且则点M 的坐标是 ( , ) .【答案】(1,3)三、解答题(本大题有9小题,共89分)(2013福建厦门,18(1),7分).(1)计算:5a+2b+(3a—2b);解:(1)解:5a+2b+(3a—2b)=5a+2b+3a—2b=8a.(2013福建厦门,18(2),7分).在平面直角坐标系中,已知点A(-4,1),B(-2,0),C(-3, -1),请在图6上画出△ABC,并画出与△ABC关于原点O对称的图形;【解答过程】解:正确画出△ABC正确画出△DEF(2013福建厦门,18(3),7分).如图7,已知∠ACD=70°,∠ACB=60°,∠ABC=50°. 求证:AB∥CD.D CBA图7证明∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°.∵∠ABC=50°,∴∠BCD+∠ABC=180°.∴AB∥CD.(2013福建厦门,19(1),7分).(1;解:20×0.15+5×0.20+10×0.1820+5+10≈0.17(公顷/人).∴这个市郊县的人均耕地面积约为0.17公顷.(2013福建厦门,19(2),7分).先化简下式,再求值:2x2+y2 x+y -x2+2y2x+y,其中x=2+1,y=22—2;解:(2)解:2x2+y2x+y—2y2+x2x+y=x2—y2x+y=x-y. 当x=2+1,y=22—2时,原式=2+1-(22—2)=3—2.(2013福建厦门,19(3),7分).如图8,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.图8证明∵BC=BE,∴∠E=∠BCE.∵四边形ABCD是圆内接四边形,∴∠A+∠DCB=180°.∵∠BCE+∠DCB=180°,∴∠A=∠BCE.∴∠A =∠E . ∴ AD =DE .∴△ADE 是等腰三角形.(2013福建厦门,20,6分).有一个质地均匀的正12面体,12个面上分别写有1~12这12个整数(每个面上只有一个整数且每个面上的整数互不相同).投掷这个正12面体一次,记事件A 为 “向上一面的数字是2或3的整数倍”,记事件B 为 “向上一面的数字是3的整数倍”,请你判断等式“P(A)=12+P(B)”是否成立,并说明理由.解: 不成立∵ P(A)=812=23,又∵P(B) =412=13,而12+13=56≠23.∴ 等式不成立.(2013福建厦门,21,6分).如图9,在梯形ABCD 中,AD ∥BC , 对角线AC ,BD 相交于点E ,若AE =4,CE =8,DE =3,梯形ABCD 的高是365,面积是54.求证:AC ⊥BD .图9E DC BA证明∵AD ∥BC ,∴∠ADE =∠EBC ,∠DAE =∠ECB . ∴△EDA ∽△EBC .∴ AD BC =AE EC =12.即:BC =2AD .∴54=12×365( AD +2AD )∴AD =5. 在△EDA 中,∵DE =3,AE =4,∴DE 2+AE 2=AD 2. ∴∠AED =90°. ∴ AC ⊥BD .(2013福建厦门,22,6分).一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图10所示.当容器内的水量大于5升时,求时间x 的取值范围.解1: 当0≤x ≤3时,y =5x .当y >5时,5x >5, 解得 x >1.∴1<x ≤3. 当3<x ≤12时, 设 y =kx +b .则⎩⎨⎧15=3k +b ,0=12k +b .解得⎩⎪⎨⎪⎧k =-53,b =20.∴ y =-53x +20.当y >5时,-53x +20>5,解得 x <9.∴ 3<x <9. ∴容器内的水量大于5升时,1<x <9 .解2: 当0≤x ≤3时,y =5x . 当y =5时,有5=5x ,解得 x =1. ∵ y 随x 的增大而增大,∴当y >5时,有x >1. ∴ 1<x ≤3. 当3<x ≤12时, 设 y =kx +b .则⎩⎨⎧15=3k +b ,0=12k +b .解得⎩⎪⎨⎪⎧k =-53,b =20.∴ y =-53x +20.当y =5时,5=-53x +20.解得x =9.∵ y 随x 的增大而减小, ∴当y >5时,有x <9. ∴3<x <9. ∴容器内的水量大于5升时,1<x <9 .(2013福建厦门,23,6分).如图11,在正方形ABCD 中,点G 是边BC 上的任意一点,DE ⊥AG ,垂足为E ,延长DE 交AB 于点F .在线段AG 上取点H ,使得AG =DE +HG ,连接BH .求证:∠ABH =∠CDE .H G FE DC B图11A证明∵四边形ABCD 是正方形,∴∠F AD =90°. ∵DE ⊥AG ,∴∠AED =90°.∴∠F AG +∠EAD =∠ADF +∠EAD ∴∠F AG =∠ADF .∵AG =DE +HG ,AG =AH +HG ∴DE =AH又AD =AB ,∴ △ADE ≌△ABH ∴∠AHB =∠AED =90°. ∵∠ADC =90°,∴∠BAH +∠ABH =∠ADF +∠CDE∴∠ABH =∠CDE.(2013福建厦门,24,6分).已知点O 是坐标系的原点,直线y =-x +m +n 与双曲线y =1x交于两个不同的点A (m ,n )(m ≥2)和B (p ,q ),直线y =-x +m +n 与y 轴交于点C ,求△OBC 的面积S 的取值范围.解:∵ 直线y =-x +m +n 与y 轴交于点C , ∴ C (0,m +n ).∵点B (p ,q )在直线y =-x +m +n 上, ∴q =-p +m +n .又∵点A 、B 在双曲线y =1x上,∴1p =-p +m +1m. 即p -m =p -mpm,∵点A 、B 是不同的点.∴ p -m ≠0.∴ pm =1. ∵ nm =1,∵1>0,∴在每一个象限内,反比例函数y =1x的函数值y 随自变量x 的增大而减小.∴当m ≥2时,0<n ≤12.∵S =12( p +q ) p=12p 2+12pq =12n 2+12又∵12>0,对称轴n =0,∴当0<n ≤12时,S 随自变量n 的增大而增大.12<S ≤58.(2013福建厦门,25,6分).如图12,已知四边形OABC 是菱形,∠O =60°,点M 是OA 的中点.以点O 为圆心,r 为半径作⊙O 分别交OA ,OC 于点D ,E ,连接BM .若BM =7, ︵DE 的长是3π3.求证:直线BC 与⊙O 相切.图12证明∵︵DE 的长是3π3,∴2πr 360·60=3π3. ∴ r =3.延长BC ,作ON ⊥BC ,垂足为N . ∵ 四边形OABC 是菱形 ∴ BC ∥AO , ∴ ON ⊥OA .∵∠AOC =60°, ∴∠NOC =30°.设NC =x ,则OC =2x ,ON =3x . 连接CM , ∵点M 是OA 的中点,OA =OC ,∴ OM =x . ∴四边形MONC 是平行四边形. ∵ ON ⊥BC ,∴四边形MONC 是矩形. ∴CM ⊥BC . ∴ CM =ON =3x . 在Rt △BCM 中,(3x )2+(2x )2=(7)2, 解得x =1.∴ 直线BC 与⊙O 相切.(2013福建厦门,26,11分).若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且x 1+x 2 =2k (k 是整数),则称方程x 2+bx +c =0为“偶系二次方程”.如方程x 2-6x -27=0,x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0, x 2+4x +4=0都是“偶系二次方程”.(1)判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+bx +c =0是“偶系二次方程”,并说明理由.(1)解: 不是 解方程x 2+x -12=0得,x 1=-4,x 2=3. x 1+x 2=4+3=2×3.5.∵3.5不是整数,∴方程x 2+x -12=0不是“偶系二次方程”.(2)解法1:存在∵方程x 2-6x -27=0,x 2+6x -27=0是“偶系二次方程”,∴ 假设 c =mb 2+n .当 b =-6,c =-27时,有 -27=36m +n .∴n =0,m =- 34.即有c =- 34b 2.又∵x 2+3x -274=0也是“偶系二次方程”,当b =3时,c =- 34×32=-274.∴可设c =- 34b 2.对任意一个整数b ,当c =- 34b 2时,∵△=b 2-4c =4b 2.∴ x =-b ±2b2.∴ x 1=-32b ,x 2=12b .∴ x 1+x 2=32b +12b =2b .∵b 是整数,∴对任意一个整数b ,当c =- 34b 2时,关于x 的方程x 2+bx +c =0是“偶系二次方程”.∵方程x 2-6x -27=0,的两个根是x 1=3,x 2=-9,而3=12×6,-9=32×6,又“偶系二次方程”x 2+6x -27=0,x 2+3x -274=0的两根的绝对值x 1、x 2与b 也有同样的规律.假设方程x 2+bx +c =0两根的绝对值x 1、x 2与b 满足 x 1=12b ,x 2=32b (x 1<x 2).可得c =- 34b 2.对任意一个整数b ,当c =- 34b 2时,△=b 2-4c=4b 2.∴x =-b ±2b2 .∴ x 1=-32b ,x 2=12b .∴ x 1+x 2=32b +12b =2b .∵b 是整数,∴对任意一个整数b ,当c =- 34b 2时,关于x 的方程x 2+bx +c =0是“偶系二次方程”.解法3: 存在∵x 2-6x -27=0可化为(x -3)2=62,同理“偶系二次方程”x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0可化为(x -1)2=32,(x +32)2=32,(x +3)2=62. 由x 2+bx +c =0 得(x +b2)2=b 24-c .假设 b 24-c =m 2(m 是整数). 即c =b 24-m 2,取m =b .得c =-34b 2.对任意一个整数b ,当c =-34b 2时,△=b 2-4c=4b 2.∴x =-b ±2b2 .∴ x 1=-32b ,x 2=12b .∴ x 1+x 2=32b +12b =2b .∵b 是整数,∴对任意一个整数b ,当c =- 34b 2时,关于x 的方程x 2+bx +c =0是“偶系二次方程”.当c =- 154b 2时,△=b 2-4c=16b 2.∴x =-b ±4b 2 .∴ x 1=-52b ,x 2=32b .∴ x 1+x 2=52b +32b =4b =22b .∵b 是整数,∴2b 也是整数.∴ 当c =- 154b 2(b 是整数)时,关于x 的方程x 2+bx +c =0是“偶系二次方程”.。

2013年厦门市中考数学试卷

2013年厦门市中考数学试卷

2013年福建省厦门市中考数学一、选择题(共7小题;共35分)1. 下列计算正确的是 ( )A. B. C. D.2. ,则的补角是 ( )A. B. C. D.3. 如图是下列一个立体图形的三视图,则这个立体图形是 ( )A. 圆锥B. 球C. 圆柱D. 正方体4. 掷一个质地均匀的正方体骰子,当骰子停止后,朝上一面的点数为的概率是 ( )A. B. C. D.5. 如图所示,在中,,,则 ( )A. B. C. D.6. 方程的解是 ( )A. B. C. D.7. 在平面直角坐标系中,将线段向左平移个单位,平移后,点,的对应点分别为点,.若点,,则点,的坐标分别是 ( )A. ,B. ,C. ,D. ,二、填空题(共10小题;共50分)8. 的相反数是.9. 计算:.10. 若在实数范围内有意义,则的取值范围是.11. 如图,在中,,,,,则 = .12. 在一次中学生田径运动会上,参加男子跳高的名运动员成绩如下表则这些运动员成绩的中位数是米.13. ()14. 已知反比例函数的图象的一支位于第一象限,则常数的取值范围是.15. 如图平行四边形的对角线,相交于点,点,分别是线段,的中点,若厘米,的周长是厘米,则厘米.16. 某采石场爆破时,点燃导火线的甲工人要在爆破前转移到米以外的安全区域.甲工人在转移过程中,前米只能步行,之后骑自行车.已知导火线燃烧的速度为米秒,步行的速度为米秒,骑车的速度为米秒.为了确保甲工人的安全,则导火线的长要大于米.17. 如图,在平面直角坐标系中,点是原点,点,点在第一象限且,点是线段的中点,点在线段上.若点和点关于直线对称,则点的坐标是(,).三、解答题(共9小题;共117分)18. (1)计算:;(2)在平面直角坐标系中,已知点,,.请在图1上画出,并画出与关于原点对称的图形;(3)如图2所示,已知,,.求证:.19. (1)甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:(2)先化简,再求值:,其中,;(3)如图,已知,,,是上的四点,延长,相交于点,若.求证:是等腰三角形.20. 有一个质地均匀的正面体,个面上分别写有这个整数(每个面只有一个整数且互不相同).投掷这个正面体一次,记事件为“向上一面的数字是或的整数倍”,记事件为“向上一面的数字是的整数倍”,请你判断等式是否成立,并说明理由.21. 如图,在梯形中,,对角线,相交于点.若,,,梯形的高是,面积是.求证:.22. 一个有进水管与出水管的容器,从某时刻开始的分内只进水不出水,在随后的分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量(单位:升)与时间(单位:分)之间的关系如图所示.当容器内的水量大于升时,求时间的取值范围.23. 如图所示,在正方形中,点是边上任意一点,,垂足为,延长交于点.在线段上取点,使得,连接.求证:.24. 已知点是平面直角坐标系的原点,直线与双曲线交于两个不同的点和.直线与轴交于点,求的面积的取值范围.25. 如图所示,已知四边形是菱形,,点是边的中点,以点为圆心,为半径作分别交,于点,,连接.若,的长是.求证:直线与相切.26. 若,是关于的方程的两个实数根,且(是整数),则称方程为“偶系二次方程”.如方程,,,,,都是“偶系二次方程”.(1)判断方程是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数,是否存在实数,使得关于的方程是“偶系二次方程”,并说明理由.答案第一部分1. A2. B3. C 【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.4. C5. B【解析】在中,,,是等腰三角形,;又,(三角形内角和定理).6. A 【解析】去分母得解得经检验是分式方程的解.7. D 【解析】线段向左平移个单位,点,,点,的坐标分别是,.第二部分8.9.10.11.12.13.14.15.【解析】提示:由题意知,,.16.17. ,【解析】有题意可知,为的中点,.,,, .点 和点 关于直线 对称, 平分 , , , . 第三部分18. (1)(2) 如图所示: 与 关于原点 对称;(3) , , , , .19. (1) 甲市郊县所有人口的人均耕地面积是(公顷).(2)原式当 , 时, 原式(3) 因为 , , , 四点共圆, 所以 , 因为 , 所以 , 所以 , 所以 ,即是等腰三角形. 20. 不成立,理由:投掷这个正面体一次,记事件为“向上一面的数字是或的整数倍”,符合要求的数有,,,,,,,一共个,则,事件为“向上一面的数字是的整数倍”,符合要求的数有,,,一共有个,则,,.21. ,,,,,,,梯形,,过作交延长线于,则四边形是平行四边形,,,在中,,,,,,.22. ①时,设,则,解得,;②时,设,函数图象经过点,,解得.当时,由得,,由得,,当容器内的水量大于升时,时间的取值范围是.23.在正方形中,,,,,又,,在和中,,,,,,,,在和中,,,,,,.24. 如图,直线与轴交于点,点坐标为,点坐标为,则为等腰直角三角形,点与点关于直线对称,则点坐标为,,点在双曲线上,,即..,,,.25. 如图,过点作于,过点作于,则四边形为矩形,.设菱形的边长为,则.菱形中,,,,,.在中,,,,,,即,解得,.的长为,,,即圆心到直线的距离等于圆的半径,直线与相切.26. (1)不是,解方程得,..不是整数,不是“偶系二次方程.(2)存在.理由如下:和是偶系二次方程,假设,当,时,.是偶系二次方程,时,,.是偶系二次方程,当时,.可设.对于任意一个整数,时,,,,.,是整数,对于任何一个整数,时,关于的方程是“偶系二次方程”.。

2013年中考数学真题试题(解析版)

2013年中考数学真题试题(解析版)

2013年中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.=9 =﹣2(2.(3分)(2013•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称3.(3分)(2013•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.34.(3分)(2013•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()5.(3分)(2013•济南)图中三视图所对应的直观图是()6.(3分)(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是(),9.(3分)(2013•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过n次抛掷所出现的点数之和大于n=.10.(3分)(2013•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()=,=×(OB×OA=,=11.(3分)(2013•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()12.(3分)(2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(2013•济南)cos30°的值是.cos30°==.故答案为:14.(4分)(2013•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.15.(4分)(2013•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.=)﹣)的平均数为[﹣﹣16.(4分)(2013•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2 .先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到然后变形+得=xy=+==17.(4分)(2013•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F 分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).∴CE=CF=﹣a==2+=2+三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(2013•济南)先化简,再求值:÷,其中a=﹣1.﹣••﹣19.(8分)(2013•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5正正11192(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?1913220.(8分)(2013•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.AD=121.(10分)(2013•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?y=y=(2≤x≤3)22.(10分)(2013•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表1和与每列的各数之和均为非负整数,求整数a的值表2.列≤a23.(10分)(2013•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD 和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.∴BD=100BD=100=100米.24.(12分)(2013•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.=3.=,,y=,t+1t+1+2 =PM•CM+PN•OM﹣(),﹣的最大值为。

【精校】2013年福建省厦门市初中毕业及高中阶段各类学校招生考试数学(无答案)

【精校】2013年福建省厦门市初中毕业及高中阶段各类学校招生考试数学(无答案)

2013年厦门市初中毕业及高中阶段各类学校招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号 注意事项:1.全卷三大题,26小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分. 3.可直接用2B 铅笔画图.一、选择题(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项正确)1.下列计算正确的是A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=1 2.已知∠A=60°,则∠A 的补角是A .160° B.120° C.60° D.30° 3.图1是下列一个立体图形的三视图,则这个立体图形是 A .圆锥B .球C .圆柱D .正方体4.掷一个质地均匀的正方体骰子,当骰子停止后,朝上一面的点数为5的概率是 A .1 B . C . D .05.如图2,在圆O 中,弧AB=弧AC ,∠A=30°,则∠B= A .150° B.75° C.60° D.15° 6.方程的解是 A .3 B .2 C .1 D .07.在平面直角坐标系中,将线段OA 向左平移2个单位,平移后,点O 、A 的对应点分别为点O 1、A 1,若O (0,0),A (1,4),则点O 1、A 1的坐标分别是A .(0,0),(1,4)B .(0,0),(3,4)C .(-2,0),(1,4)D .(-2,0)(-1,4) 二、填空题(本大题有10小题,每小题4分,共40分) 8.-6的相反数是xx 312=-9.计算:m 2·m 3=10.式子在实数范围内有意义,则实数x 的取值范围是 11.如图3,在△ABC 中,DE∥BC,AD=1,AB=3,DE=2,则BC=12.在一次中学田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩/米 1.50 1.60 1.65 1.70 1.75 1.8 人数233241则这些运动员成绩的中位数是 米. 13.x 2-4x+4=( )2 14.已知反比例函数的图像的一支位于第一象限,则常数m 的取值范围是15.如图4,平行四边形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段 AO ,BO 的中点,若AC+BD=24厘米,△OAB 的周长是18厘米,则EF= 厘米.16.某采石场爆破时,点燃导火线的甲工人摇在爆破前转移到400米以外的安全区,甲工人在转移过程中,前40米只能步行,之后骑自行车,已知导火线燃烧的速度为0.01米/秒,步行的速度为1米/秒,骑车的速度为4米/秒,为了确保加工人的安全,则导火线的长要大于 米. 17.如图5,在平面直角坐标系中,点O 是原点,点B (0,),点A 在 第一象限且AB ⊥BO ,点E 是线段AO 的中点,点M 在线段AB 上, 若点B 和点E 关于直线OM 对称,则点M 的坐标是( , ) 三、解答题(本大题有9小题,共89分) 18.(本题满分21分) (1)计算:5a+2b+(3a-2b)(2)在平面直角坐标系中,已知点A (-4,1),B (-2,0),C (-3,-1),请在图6上画出△ABC ,并画出与△ABC 关于原点O 对称的图形:(3)如图7,已知∠ACD=70°,∠ACB=60°,∠ABC=50°,求证:AB ∥CD .3-x xm y 1-=319.(本题满分21分)(1)甲市共有三个郊县,各郊县的人数及人均耕地面积如下表所示:郊县人数/万人均耕地面积/公顷A 20 0.15B 5 0.20C 10 0.18求甲市郊县所有人口的人均耕地面积(精确到0.01公顷)(2)先化简下式,再求值:,期中,(3)如图8,已知A、B、C、D是圆O上的四点,延长DC,AB相交于点E,若BC=BE,求证:△ADE是等腰三角形20.(本题满分6分)有一个质地均匀的正12面体,12个面上分别写有1-12这12个整数(每个面只有一个整数且互不相同),投掷这个正12面体一次,记事件A为“向上一面的数字是2或3的整数倍”,记事件B为“向上一面的数字是3的整数倍”,请你判断等式P(A)=P(B)+是否成立,并说明理由.21.(本题满分6分)如图9,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点E,若AE=4,CE=8,yxyxyxyx++-++22222212+=x222-=yDE=3,梯形ABCD的高是,面积是54,求证:AC⊥BD.22.(本题满分6分)一个有进水管与出水管的容器,从某时刻开始的3分钟内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图10所示,当容器内的水量大于5升时,求时间x的取值范围.23.(本题满分6分)如图11,在正方形ABCD中,点G是边BC上的任意一点,DE⊥AG,垂足为E,延长DE交AB于点F,在线段AG上取点H,使得AG=DE+HG,连接BH.求证:∠ABH=∠CDE.24.(本题满分6分)已知点O是平面直角坐标系的原点,直线y=-x+m+n与双曲线交于两个不同点A(m,n)(m≥2)和B(p,q),直线y=-x+m+n与y轴交于点C,求△OBC的面试S的取值范围.536xy125.(本题满分6分)如图12,已知四边形OABC 是菱形∠O=60°,点M 是边OA 的中点,以点O 为圆心,r 为半径作圆O 分别交OA ,OC 于点D ,E ,连接BM ,若BM=,弧DE 的长是, 求证:直线BC 与圆O 相切.26.(本题满分11分)若x 1,x 2是关于x 的方程x 2+bx+c=0的两个实数根,且(k 是整数),则称方程x 2+bx+c=0为“偶系二次方程”,如方程x 2-6x-27=0,x 2-2x-8=0,,x 2+6x-27=0,x 2+4x+4=0,都是“偶系二次方程”,(1)判断方程x 2+x-12=0是否是“偶系二次方程”,并说明理由.(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+bx+c=0是“偶系二次方程”,并说明理由.733πk x x 221=+42732-+x x考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

2013年福建福州中考数学试卷及答案(word解析版)

2013年福建福州中考数学试卷及答案(word解析版)

二〇一三年福州市初中毕业会考、高级中等学校招生考试数 学 试 卷(全卷共4页,三大题,共22小题;满分150分;考试时间120分钟)一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1(2013福建福州,1,4分) 2的倒数是( )A12B 2C -12D -2【答案】A2(2013福建福州,2,4分)如图,OA ⊥OB ,若∠1=40°,则∠2的度数是( )A 20°B 40°C 50°D 60°【答案】C3(2013福建福州,3,4分)2012年12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空7 000 000用科学记数法表示为( )A 7×105B 7×106C 70×106D 7×107【答案】 B4(2013福建福州,4,4分)下列立体图形中,俯视图是正方形的是( )ABCD【答案】D5(2013福建福州,5,4分)下列一元二次方程有两个相等实数根的是( )A x 2+3=0B x 2+2x =0C (x +1) 2=0D (x +3)(x -1)=0【答案】C6(2013福建福州,6,4分)不等式1+x <0的解集在数轴上表示正确的是( )0 1 2 3-2 -1 0 1-1 0 1 2-2 -1 0 112 OB ACA B C D【答案】A7(2013福建福州,7,4分)下列运算正确的是( )A a ·a 2=a 3B (a 2)3=a 5C 22()a a b b=D a 3÷a 3=a【答案】A8(2013福建福州,8,4分)如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A 、点D 在BC 异侧,连接AD ,量一量线段AD 的长,约为( )A 25 cmB 30 cmC 35 cmD 40 cm【答案】A9(2013福建福州,9,4分)袋中有红球4个,白球若干个,它们只有颜色上的区别从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )A 3个B 不足3个C 4个D 5个或5个以上【答案】D10(2013福建福州,10,4分)A 、B 两点在一次函数图象上的位置如图所示,两点的坐标分别为A (x +a ,y +b ),B (x ,y ),下列结论正确的是( )A a >0B a <0C b =0D ab <0【答案】B二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11(2013福建福州,11,4分)计算:21a a-=_________ 【答案】1a; 12(2013福建福州,12,4分)矩形的外角和等于_______度【答案】360;13(2013福建福州,13,4分)某校女子排球队队员的年龄分布如下表:A BOyx AB C年龄 13 14 15 人数474则该校女子排球队队员的平均年龄是_______岁 【答案】14;14(2013福建福州,14,4分)已知实数a 、b 满足:a +b =2,a -b =5,则(a +b )3·(a -b )3的值是___________【答案】1000;15(2013福建福州,15,4分)如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点成为格点已知每个正六边形的边长为1,△ABC 的顶点都在格点上,则△ABC 的面积是____________CA B【答案】23;三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16(每小题7分,共14分)(1)(2013福建福州,16(1),7分)计算:0(1)412-+--; 【答案】 解:0(1)412-+-- =1+4-23=5-23(2)(2013福建福州,16(2),7分)化简:2(3)(4)a a a ++- 【答案】解:2(3)(4)a a a ++- =a 2+6a +9+4a -a 2 =10a +917(每小题8分,共16分)(1)(2013福建福州,17(1),8分)如图,AB 平分∠CAD ,AC =AD 求证:BC =BD【答案】证明一:∵AB 平分∠CAD ,∴∠BAC =∠BAD , 在△ABC 和△ABD 中 ,,,AB AB BAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ABD ∴BC =BD 证明二:连接CD∵AC =AD ,AB 平分∠CAD , ∴AB 垂直平分CD ,∴BC =BD (2)列方程解应用题(2013福建福州,17(2),8分)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本则还缺25本这个班有多少学生? 【答案】解法一:设这个班有x 名学生,根据题意,得: 3x +20=4x -25 解得:x =45答:这个班共有45名学生解法二:设这个班有x 名学生,图书一共有y 本 320425y x y x =+⎧⎨=-⎩ ,解得45,155.x y =⎧⎨=⎩答:这个班共有45名学生18(10分)(2013福建福州,18,10分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查已知抽取的样本中,男生、女生人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm ) 男生身高情况直方图 女生身高情况扇形统计图组别 身高 A x <155 B 155≤x <160 C 160≤x <165 D165≤x <170CDBAEx ≥170根据图表提供的信息,回答下列问题:(1)样本中,男生身高的众数在_______组,中位数在_______组; (2)样本中,女生身高在E 组的人数有_______人;(3)已知该校共有男生400人、女生380人,请估计身高在160≤x <170之间的学生约有多少人?【答案】(1)众数在B 组;中位数在C 组 (2)样本女生人数=样本男生人数=40; E 组女生百分比=5%E 组女生人数=40×5%=2(人) (3)男生:400×1840=180(人) 女生:380×40%=152(人)19(2013福建福州,19,12分)如图,在平面直角坐标系xOy 中,点A 的坐标为(-2,0),等边三角形AOC 经过平移或轴对称或旋转都可以得到△OBD (1)△AOC 沿x 轴向右平移得到△OBD ,则平移的距离是_______个单位长度; △AOC 与△BOD 关于直线对称,则对称轴是_______;△AOC 绕原点O 顺时针旋转得到△DOB ,则旋转角可以是_______度;(2)连接AD ,交OC 于点E ,求∠AEO 的度数【答案】(1)平移的距离是2个单位;对称轴是y 轴;旋转角等于120° (2)∵△ACO 、△BOD 是等边三角形,∴∠CAO =60°,OA =OD , ∵∠AOD =120°,OA =OD ,∴∠DAO =30°,∴AE 平分∠CAO ,∴AD 垂直平分CO ,∴∠AEO =90°20(12分)如图,在△ABC 中,以AB 为直径的⊙O 交AC 于点M ,弦MN ∥BC 交AB 于点E ,且ME =1,AM =2,AE =3 (1)求证:BC 是⊙O 的切线; (2)求BN 的长AO xyCDB第20题图CNM OABE【答案】(1)证明:∵ME =1,AM =2,AE =3,∴AE 2+ME 2=AM 2,∴∠AEM =90°,∵MN ∥BC ,∴∠B =∠AEM =90°, ∵AB 为⊙O 的直径,∴BC 是⊙O 的切线 (2)连接OM ,BM ,∵∠AEM =90°,AB 为⊙O 的直径,∴BN =BM ,∠AMB =90°,∵∠AEM =90°,ME =1,AM =2,∴∠CAB =30°, ∴∠BOM =60°,∵∠CAB =30°,AM =2,∴AB =433∴BM =60231803π⨯⨯=239π ∴BN 的长为239π21(12分)如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45°,P 是BC 上一点,△P AD 的面积为12,设AB =x ,AD =y(1)求y 与x 的函数关系式;(2)若∠APD =45°,当y =1时,求PB ·PC 的值; (3)若∠APD =90°,求y 的最小值备用图第21题图DD BC CBA EA【答案】(1)如图2,过点A 作AH ⊥BC ,垂足为H 在Rt △ABH 中,∠B =45°,AB =x ,所以AH =22x由S △APD=12AD AH⋅,可得112222y x=⋅整理,得2yx=(2)当y=1时,2x=如图3,如图4,由于∠APC=∠B+∠1,∠APC=∠APD+∠2,当∠APD=∠B=∠C=45°时,∠1=∠2所以△ABP∽△PCD因此AB PC BP CD=所以PC·PD=AB·CD=2图2 图3 图4 (3)如图5,当∠APD=90°时,点P在以AD为直径的圆上如图6,当AD最小时,圆与BC相切于点P此时△APD是等腰直角三角形所以AD=2AH,即222y x =⨯由(1)知,2yx=于是可以解得此时2y=图5 图622(14分)我们知道,经过原点的抛物线解析式可以是y=ax2+bx(a≠0)(1)对于这样的抛物线;当顶点坐标为(1,0)时,a=;当顶点坐标为(m,m),m≠0时,a与m之间的关系式是;(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx(k≠0)上,请用含k的代数式表示b;(3)现有一组过原点的抛物线,顶点A1,A2,…,A n在直线y=x,横坐标依次为1,2,…,n(n为正整数,且n 为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B nC nD n若这组抛物线中有一条经过点D n,求所有满足条件的正方形边长【答案】(1)当顶点坐标为(1,1)时,a =-1;当顶点坐标为(m ,m ),m ≠0时,a 与m 之间的关系式是1a m=- (2)设抛物线的顶点的坐标为(m ,km ), 那么222()2y a x m km ax amx am km =-+=-++对照y =ax 2+bx ,可得20,2.am km b am ⎧+=⎨=-⎩由此得到b =2k (3)正方形的顶点D 1,D 2,…,D n 的坐标分别为(2,1)、(4,2)、(6,3)、(8,4)、(10,5)、(12,6)、(14,7)、(16,8)、(18,9)、(20,10)、(22,11)、(24,12),这些点在直线12y x =上 由(1)知,当抛物线的顶点(m ,m )在直线y =x 上时,1a m=-根据抛物线的对称性,抛物线与x 轴的交点为原点O 和(2m ,0) 所以顶点为(m ,m )的抛物线的解析式为1(2)y x x m m=-- 联立12y x =和1(2)y x x m m =--,可得点D 的坐标为33(,)24m m 当m 分别取正整数4、8、12时,对应的点D 为D 3(6,3)、D 6(12,6)、D 9(18,9),它们所对应的正方形的边长分别为3、6、9(如图1所示)图1。

2013-2016中考数学题及答案

2013-2016中考数学题及答案

1(2015年中考题)解不等式组⎩⎨⎧2x >2,x +2≤6+3x .2.(2016 年厦门市中考)3.(2013年中考题)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图10所示. 当容器内的水量大于5升时,求时间x 的取值范围.4.(2016 年厦门市中考,7 分)图 8 是药品研究所测得的某种新药在成人用药后,血液中药物浓度y (微克/毫升)随用药后的时间 x (小时)变化的图象(图象由线段 OA 与部分双曲线 AB 组成) 并测得当 y =a 时,该药物才具有疗效,若成人用药后 4 小时,药物开始产生疗效,且用药后 9 小时药物仍然具有疗效,则成人用药后,血液中的药物浓度至少需要多长时间达到最大?5.(2015年中考题)如图10,在平面直角坐标系中,点A (2,n ),B (m ,n )(m >2),D (p ,q )(q <n ),点B ,D 在直线y =12x +1上.四边形ABCD 的对角线AC ,BD 相交于点E ,且AB ∥CD , CD =4,BE =DE ,△AEB 的面积是2.求证:四边形ABCD 是矩形.(2016 年厦门市中考) )已知点 P (m , n )在抛物线 y = ax 2- x - a 上,当 m ≥ -1时,总有 n ≤ 1成立,则 a 的取值范围是7.(2015年中考题)已知实数a ,b 满足a -b =1,a 2-ab +2>0,当1≤x ≤2时,函数y =ax (a ≠0)的最大值与最小值之差是1,求a 的值.8.(2015年中考题)已知实数a ,b 满足a -b =1,a 2-ab +2>0,当1≤x ≤2时,函数y =ax (a ≠0)的最大值与最小值之差是1,求a 的值.9.(2013年中考题)已知点O 是坐标系的原点,直线y =-x +m +n 与双曲线y =1x 交于两个不同的点A (m ,n )(m ≥2)和B (p ,q ),直线y =-x +m +n 与y 轴交于点C ,求△OBC 的面积S 的取值范围.10.(2015年中考题)已知点A (-2,n )在抛物线y =x 2+bx +c 上.(1)若b =1,c =3,求n 的值;(2)若此抛物线经过点B (4,n ),且二次函数y =x 2+bx +c 的最小值是-4,请画出点P (x -1,x 2+bx +c )的纵坐标随横坐标变化的图象,并说明理由.1(2015年中考题)解不等式组⎩⎨⎧2x >2,x +2≤6+3x .解:解不等式2x >2,得x >1. ……………………………3分 解不等式x +2≤6+3x ,得x ≥-2. ……………………………6分不等式组⎩⎨⎧2x >2,x +2≤6+3x的解集是x >1. ……………………………7分2.(2016 年厦门市中考)3(2013年中考题)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的 9分内既进水又出水,每分的进水量和出水量都是 常数.容器内的水量y (单位:升)与时间 x (单位:分)之间的关系如图10所示.当容器内的水量大于5升时,求时间x 的取值范围.解: 当0≤x ≤3时,y =5x . ……………………………1分 当y >5时,5x >5, ……………………………2分 解得 x >1.∴1<x ≤3. ……………………………3分 当3<x ≤12时, 设 y =kx +b .则⎩⎪⎨⎪⎧15=3k +b ,0=12k +b .解得⎩⎨⎧k =-53,b =20.∴ y =-53x +20. ……………………………4分 当y >5时,-53x +20>5, ……………………………5分解得 x <9.∴ 3<x <9. ……………………………6分∴容器内的水量大于5升时,1<x <9 .4.2016 年厦门市中考 24,7 分)图 8 是药品研究所测得的某种新药在成人用药后,血液中药物浓度y (微克/毫升)随用药后的时间 x (小时)变化的图象(图象由线段 OA 与部分双曲线 AB 组成) 并测得当 y a 时,该药物才具有疗效,若成人用药后 4 小时,药物开始产生疗效,且用药后 9 小时药物仍然具有疗效,则成人用药后,血液中的药物浓度至少需要多长时间达到最大?5(2015年中考题)如图10,在平面直角坐标系中,点A (2,n ),B (m ,n )(m >2),D (p ,q )(q <n ),点B ,D 在直线y =12x +1上.四边形ABCD 的对角线AC ,BD 相交于点E ,且AB ∥CD , CD =4,BE =DE ,△AEB 的面积是2. 求证:四边形ABCD 是矩形.解1:∵ AB ∥CD ,∴∠EAB =∠ECD ,∠EBA =∠EDC . ∵ BE =DE ,∴ △AEB ≌△CED . ……………………………1分 ∴ AB =CD =4. ∵AB ∥CD ,∴四边形ABCD 是平行四边形. ……………………………2分 A (2,n ),B (m ,n )(m >2),∴ AB ∥x 轴,且CD ∥x 轴.∵ m >2,∴m =6. ……………………………3分 ∴n =12×6+1=4.∴ B (6,4). ∵△AEB 的面积是2,∴△AEB 的高是1. ……………………………4分 ∴平行四边形ABCD 的高是2. ∵ q <n , ∴q =2.∴p =2, ……………………………5分 即D (2,2). ∵点A (2,n ),∴DA ∥y 轴. ……………………………6分 ∴AD ⊥CD ,即∠ADC =90°.∴四边形ABCD 是矩形. ……………………………7分(2016 年厦门市中考) )已知点 P (m , n )在抛物线 y = ax 2- x - a 上,当 m ≥ -1时,总有n ≤ 1成立,则 a 的取值范围是7.(2015年中考题)已知实数a ,b 满足a -b =1,a 2-ab +2>0,当1≤x ≤2时,函数y =ax (a ≠0)的最大值与最小值之差是1,求a 的值.解1:由a -b =1,a 2-ab +2>0得,a >-2. ……………………………2分 ∵a ≠0,(1)当-2<a <0时, ……………………………3分 在1≤x ≤2范围内y 随x 的增大而增大, ∴ a2-a =1.∴ a =-2 ……………………………4分 不合题意,舍去.(2)当a >0时, ……………………………5分 在1≤x ≤2范围内y 随x 的增大而减小,∴ a -a2=1.∴ a =2. ……………………………6分 综上所述a =2. ……………………………7分 8(2014年中考题)已知),(11y x A ),(22y x B ,是反比例函数xky =图像上的两点,且221-=-x x ,321=⋅x x ,3421-=-y y 。

数学:中考2013年各地数学试题解析(山西、厦门)

数学:中考2013年各地数学试题解析(山西、厦门)

2013年山西省中考试题数学(解析)(满分120分考试时间120分钟)第I 卷选择题(共24分)一、选择题(本大题共12小题,每小题2分,共24分。

在每个小题给出的四个选项中,只有一项符合要求,请选出并在答题卡上将该项涂黑)1.(2013山西,1,2分)计算2×(-3)的结果是()A .6B .-6C .-1D .5【答案】B【解析】异号相乘,得负,所以选B 。

2.(2013山西,2,2分)不等式组的解集在数轴上表示为()【答案】C【解析】解(1)得:2x ≥,解(2)得:x <3,所以解集为23x ≤<,选C 。

3.(2013山西,3,2分)如图是一个长方体包装盒,则它的平面展开图是()【答案】A【解析】长方体的四个侧面中,有两个对对面的小长方形,另两个是相对面的大长方形,B 、C 中两个小的与两个大的相邻,错,D 中底面不符合,只有A 符合。

4.(2013山西,4,2分)某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S 2甲=36,S 2乙=30,则两组成绩的稳定性:()A .甲组比乙组的成绩稳定B .乙组比甲组的成绩稳定C .甲、乙两组的成绩一样稳定D .无法确定【答案】B【解析】方差小的比较稳定,故选B 。

5.(2013山西,5,2分)下列计算错误的是()A .x 3+x 3=2x 3B .a 6÷a 3=a 2C .D .【答案】B【解析】a 6÷a 3=633a a -=,故B 错,A 、C 、D 的计算都正确。

6.(2013山西,6,2分)解分式方程时,去分母后变形为()A.2+(x+2)=3(x-1)B.2-x+2=3(x-1)C.2-(x+2)=3(1-x)D.2-(x+2)=3(x-1)【答案】D【解析】原方程化为:,去分母时,两边同乘以x-1,得:2-(x+2)=3(x-1),选D。

7.(2013山西,7,2分)下表是我省11个地市5月份某日最高气温(℃)的统计结果:太原大同朔州忻州阳泉晋中吕梁长治晋城临汾运城2727282827292828303031该日最高气温的众数和中位数分别是()A.27℃,28℃B.28℃,28℃C.27℃,27℃D.28℃,29℃【答案】B【解析】28出现4次,最多,所以众数为28,由小到大排列为:27,27,27,28,28,28,28,29,30,30,31,所以,中位数为28,选B。

2013年厦门市中考数学试卷及答案(Word解析版)

2013年厦门市中考数学试卷及答案(Word解析版)

福建省厦门市2013年中考数学试卷一、选择题(本大题共7小题,每小题3分,共21分。

每小题都有四个选项,其中有且只有一个选项正确)1.(3分)(2013•厦门)下列计算正确的是()A.﹣1+2=1 B.﹣1﹣1=0 C.(﹣1)2=﹣1 D.﹣12=1考点:有理数的乘方;有理数的加法;有理数的减法.分析:根据有理数的加减法运算法则,有理数的乘方对各选项分析判断后利用排除法求解.解答:解:A、﹣1+2=1,故本选项正确;B、﹣1﹣1=﹣2,故本选项错误;C、(﹣1)2=1,故本选项错误;D、﹣12=﹣1,故本选项错误.故选A.点评:本题考查了有理数的乘方,有理数的加减运算,要特别注意﹣12和(﹣1)2的区别.2.(3分)(2013•厦门)∠A=60°,则∠A的补角是()A.160°B.120°C.60°D.30°考点:余角和补角.分析:根据互为补角的两个角的和等于180°列式进行计算即可得解.解答:解:∵∠A=60°,∴∠A的补角=180°﹣60°=120°.故选B.点评:本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解题的关键.3.(3分)(2013•厦门)如图是下列一个立体图形的三视图,则这个立体图形是()A.圆锥B.球C.圆柱D.正方体考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.故选C.点评:本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.4.(3分)(2013•厦门)掷一个质地均匀的正方体骰子,当骰子停止后,朝上一面的点数为5的概率是()A.1B.C.D.0考点:概率公式.分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.解答:解:∵任意抛掷一个均匀的正方体骰子,朝上的点数总共会出现6种情况,且每一种情况出现的可能性相等,而朝上一面的点数为5的只有一种,∴朝上一面的点数为5的概率是.故选C.点评:本题考查概率公式,用到的知识点为:概率=所求情况数与总情况数之比.5.(3分)(2013•厦门)如图所示,在⊙O中,,∠A=30°,则∠B=()A.150°B.75°C.60°D.15°考点:圆心角、弧、弦的关系.分析:先根据等弧所对的弦相等求得AB=AC,从而判定△ABC是等腰三角形;然后根据等腰三角形的两个底角相等得出∠B=∠C;最后由三角形的内角和定理求角B的度数即可.解答:解:∵在⊙O中,,∴AB=AC,∴△ABC是等腰三角形,∴∠B=∠C;又∠A=30°,∴∠B==75°(三角形内角和定理).故选B.点评:本题综合考查了圆心角、弧、弦的关系,以及等腰三角形的性质.解题的关键是根据等弧对等弦推知△ABC是等腰三角形.6.(3分)(2013•厦门)方程的解是()A.3B.2C.1D.0考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x=3x﹣3,解得:x=3,经检验x=3是分式方程的解.故选A点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(3分)(2013•厦门)在平面直角坐标系中,将线段OA向左平移2个单位,平移后,点O、A的对应点分别为点O1、A1.若点O(0,0),A(1,4),则点O1、A1的坐标分别是()A.(0,0),(1,4)B.(0,0),(3,4)C.(﹣2,0),(1,4)D.(﹣2,0),(﹣1,4)考点:坐标与图形变化-平移.分析:根据向左平移,横坐标减,纵坐标不变求出点O1、A1的坐标即可得解.解答:解:∵线段OA向左平移2个单位,点O(0,0),A(1,4),∴点O1、A1的坐标分别是(﹣2,0),(﹣1,4).故选D.点评:本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.二、填空题(本大题共10小题,每小题4分,共40分)8.(4分)(2013•厦门)﹣6的相反数是6.考点:相反数.分析:求一个数的相反数,即在这个数的前面加负号.解答:解:根据相反数的概念,得﹣6的相反数是﹣(﹣6)=6.点评:此题考查了相反数的定义,互为相反数的两个数分别在原点两旁且到原点的距离相等.9.(4分)(2013•厦门)计算:m2•m3=m5.考点:同底数幂的乘法.分析:根据同底数幂相乘,底数不变指数相加进行计算即可得解.解答:解:m2•m3=m2+3=m5.故答案为:m5.点评:本题考查了同底数幂相乘,底数不变指数相加的性质,熟记性质是解题的关键.10.(4分)(2013•厦门)若在实数范围内有意义,则x的取值范围是x≥3.考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式进行计算即可求解.解答:解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.点评:本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.11.(4分)(2013•厦门)如图,在△ABC中,DE∥BC,AD=1,AB=3,DE=2,则BC=6.考点:相似三角形的判定与性质.分析:根据DE∥BC,可判断△ADE∽△ABC,利用对应边成比例的知识可求出BC.解答:解:∵DE∥BC,∴△ADE∽△ABC,∴=,即=解得:BC=6.故答案为:6.点评:本题考查了相似三角形的判定与性质,解答本题的关键是掌握:相似三角形的对应边成比例.12.(4分)(2013•厦门)在一次中学生田径运动会上,参加男子跳高的15名运动员成绩如下表成绩(米) 1.50 1.60 1.65 1.70 1.75 1.80人数(个) 2 3 3 2 4 1则这些运动员成绩的中位数是 1.65米.考点:中位数.专题:计算题.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.解答:解:按从小到大的顺序排列后,最中间的数是1.65,所以中位数是1.65(米).故答案为1.65.点评:考查中位数的意义,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.13.(4分)(2013•厦门)x2﹣4x+4=(x﹣2)2.考点:因式分解-运用公式法.分析:利用完全平方公式分解因式即可.解答:解:x2﹣4x+4=(x﹣2)2.故答案为:x﹣2.点评:本题考查了公式法分解因式,熟记完全平方公式结构是解题的关键.14.(4分)(2013•厦门)已知反比例函数的图象的一支位于第一象限,则常数m的取值范围是m>1.考点:反比例函数的性质.分析:根据反比例函数的图象关于原点对称可得到图象的另一分支所在的象限及m的取值范围.解答:解:∵反比例函数的图象关于原点对称,图象一支位于第一象限,∴图象的另一分支位于第三象限;∴m﹣1>0,∴m>1;故答案为:m>1.点评:本题考查的是反比例函数的图象和反比例函数的性质,即①反比例函数y=(k≠0)的图象是双曲线;②当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.15.(4分)(2013•厦门)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=3厘米.考点:三角形中位线定理;平行四边形的性质.分析:根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF是△OAB的中位线即可得出EF的长度.解答:解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故答案为:3.点评:本题考查了三角形的中位线定理,解答本题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质.16.(4分)(2013•厦门)某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于 1.3米.考点:一元一次不等式的应用分析:计算出工人转移需要的最短时间,然后即可确定导火线的最短长度.解答:解:设导火线的长度为x,工人转移需要的时间为:+=130秒,由题意得,x≥130×0.01m/s=1.3m.故答案为:1.3.点评:本题考查了一元一次不等式的应用,解答本题关键是确定工人转移需要的时间.17.(4分)(2013•厦门)如图,在平面直角坐标系中,点O是原点,点B(0,),点A在第一象限且AB⊥BO,点E是线段AO的中点,点M在线段AB上.若点B和点E关于直线OM对称,则点M的坐标是(1,).考点:轴对称的性质;坐标与图形性质;解直角三角形分析:根据点B的坐标求出OB的长,再连接ME,根据轴对称的性质可得OB=OE,再求出AO的长度,然后利用勾股定理列式求出AB的长,利用∠A的余弦值列式求出AM的长度,再求出BM的长,然后写出点M的坐标即可.解答:解:∵点B(0,),∴OB=,连接ME,∵点B和点E关于直线OM对称,∴OB=OE=,∵点E是线段AO的中点,∴AO=2OE=2,根据勾股定理,AB===3,tan∠A==,即=,解得AM=2,∴BM=AB﹣AM=3﹣2=1,∴点M的坐标是(1,).故答案为:(1,).点评:本题考查了轴对称的性质,坐标与图形性质,解直角三角形,熟练掌握轴对称的性质并作出辅助线构造出直角三角形是解题的关键.三、解答题(本大题共9小题,共89分)18.(21分)(2013•厦门)(1)计算:5a+2b+(3a﹣2b);(2)在平面直角坐标系中,已知点A(﹣4,1),B(﹣2,0),C(﹣3,﹣1).请在图1上画出△ABC,并画出与△ABC关于原点O对称的图形;(3)如图2所示,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.求证:AB∥CD.考点:作图-旋转变换;整式的加减;平行线的判定分析:(1)根据整式的加减法则直接去括号合并同类项即可得出;(2)根据点的坐标得出△ABC,再利用关于原点对称点坐标性质得出与△ABC关于原点O 对称的图形即可;(3)利用三角形内角和定理得出∠A=70°,再利用平行线的判定得出AB∥CD.解答:(1)解:5a+2b+(3a﹣2b)=5a+3a+2b﹣2b=8a.(2)解:如图所示:△A′B′C′与△ABC关于原点O对称;(3)证明:∵∠ACB=60°,∠ABC=50°,∴∠A=180°﹣60°﹣50°=70°,∵∠ACD=70°,∴AB∥CD.点评:此题主要考查了整式的加减以及平行线的判定和关于原点对称点的图形画法等知识,根据已知得出对应点位置是解题关键.19.(21分)(2013•厦门)(1)甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:郊县人数/万人均耕地面积/公顷A 20 0.15B 5 0.20C 10 0.18求甲市郊县所有人口的人均耕地面积(精确到0.01公顷);(2)先化简下式,再求值:,其中,;(3)如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,若BC=BE.求证:△ADE 是等腰三角形.考点:圆周角定理;分式的化简求值;等腰三角形的判定;加权平均数.分析:(1)求出总面积和总人口,再相除即可;(2)先算加法,再化成最简分式,再代入求出即可;(3)求出∠A=∠BCE=∠E,即可得出AD=DE.解答:解:(1)甲市郊县所有人口的人均耕地面积是≈0.17(公顷);(2)原式===x﹣y,当x=+1,y=2﹣2时,原式=+1﹣(2﹣2)=3﹣;(3)∵A、D、C、B四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE是等腰三角形.点评:本题考查了分式求值,四点共圆,等腰三角形的性质和判定,求平均数等知识点的应用,主要考查学生的推理和计算能力.20.(6分)(2013•厦门)有一个质地均匀的正12面体,12个面上分别写有1~12这12个整数(每个面只有一个整数且互不相同).投掷这个正12面体一次,记事件A为“向上一面的数字是2或3的整数倍”,记事件B为“向上一面的数字是3的整数倍”,请你判断等式P(A)=+P(B)是否成立,并说明理由.考点:概率公式.分析:让向上一面的数字是2的倍数或3的倍数的情况数除以总情况数即为事件A所求的概率,进而得出事件B的概率,进而得出答案.解答:解:不成立;理由:∵投掷这个正12面体一次,记事件A为“向上一面的数字是2或3的整数倍”,∴符合要求的数有:2,3,4,6,8,9,10,12一共有8个,则P(A)=,∵事件B为“向上一面的数字是3的整数倍”,∴符合要求的数有:3,6,9,12一共有4个,则P(B)=,∵+=≠,∴P(A)≠+P(B).点评:此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.21.(6分)(2013•厦门)如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点E.若AE=4,CE=8,DE=3,梯形ABCD的高是,面积是54.求证:AC⊥BD.考点:相似三角形的判定与性质;勾股定理的逆定理;梯形.专题:证明题.分析:由AD∥BC,可证明△EAD∽△ECB,利用相似三角形的性质即可求出BE的长,过D作DF∥AC交BC延长线于F,则四边形ACFD是平行四边形,所以CF=AD,再根据勾股定理的逆定理证明BD⊥DF即可证明AC⊥BD.解答:证明:∵AD∥BC,∴△EAD∽△ECB,∴AE:CE=DE:BE,∵AE=4,CE=8,DE=3,∴BE=6,S梯形=(AD+BC)×=54,∴AD+BC=15,过D作DF∥AC交BC延长线于F,则四边形ACFD是平行四边形,∴CF=AD,∴BF=AD+BC=15,在△BDF中,BD2+DF2=92+122=225,BF2=225,∴BD2+DF2=BF2,∴BD⊥DF,∵AC∥DF,∴AC⊥BD.点评:本题考查了相似三角形的判定和性质、平行四边形的判定和性质、梯形的面积公式以及勾股定理的逆定理的运用,题目的综合性很强,难度中等.22.(6分)(2013•厦门)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,求时间x的取值范围.考点:一次函数的应用分析:分别求出0≤x<3和3≤x≤12时的函数解析式,再求出y=5时的x的值,然后根据函数图象写出x的取值范围即可.解答:解:①0≤x<3时,设y=mx,则3m=15,解得m=5,所以,y=5x,②3≤x≤12时,设y=kx+b,∵函数图象经过点(3,15),(12,0),∴,解得,所以,y=﹣x+20,当y=5时,由5x=5得,x=1,由﹣x+20=5得,x=9,所以,当容器内的水量大于5升时,时间x的取值范围是1<x<9.点评:本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,以及已知函数值求自变量的方法.23.(6分)(2013•厦门)如图所示,在正方形ABCD中,点G是边BC上任意一点,DE⊥AG,垂足为E,延长DE交AB于点F.在线段AG上取点H,使得AG=DE+HG,连接BH.求证:∠ABH=∠CDE.考点:正方形的性质;全等三角形的判定与性质.专题:证明题.分析:根据正方形的性质可得AB=AD,∠ABG=∠DAF=90°,再根据同角的余角相等求出∠1=∠2,然后利用“角边角”证明△ABG和△DAF全等,根据全等三角形对应边相等可AF=BG,AG=DF,全等三角形对应角相等可得∠AFD=∠BGA,然后求出EF=HG,再利用“边角边”证明△AEF和△BHG全等,根据全等三角形对应角相等可得∠1=∠3,从而得到∠2=∠3,最后根据等角的余角相等证明即可.解答:证明:在正方形ABCD中,AB=AD,∠ABG=∠DAF=90°,∵DE⊥AG,∴∠2+∠EAD=90°,又∵∠1+∠EAD=90°,∴∠1=∠2,在△ABG和△DAF中,,∴△ABG≌△DAF(ASA),∴AF=BG,AG=DF,∠AFD=∠BGA,∵AG=DE+HG,AG=DE+EF,∴EF=HG,在△AEF和△BHG中,,∴△AEF≌△BHG(SAS),∴∠1=∠3,∴∠2=∠3,∵∠2+∠CDE=∠ADC=90°,∠3+∠ABH=∠ABC=90°,∴∠ABH=∠CDE.点评:本题考查了正方形的性质,全等三角形的判定与性质,等角或同角的余角相等的性质,本题难点在于两次证明三角形全等,用阿拉伯数字加弧线表示角可以更形象直观.24.(6分)(2013•厦门)已知点O是平面直角坐标系的原点,直线y=﹣x+m+n与双曲线交于两个不同的点A(m,n)(m≥2)和B(p,q).直线y=﹣x+m+n与y轴交于点C,求△OBC的面积S的取值范围.考点:反比例函数与一次函数的交点问题.分析:先确定直线y=﹣x+m+n与坐标轴的交点坐标,即C点坐标为(0,m+n),D点坐标为(m+n,0),则△OCD为等腰直角三角形,根据反比例函数的对称性得到点A与点B关于直线y=x对称,则B点坐标为(n,m),根据三角形面积公式得到S△OBC=(m+n)•n,然后mn=1,m≥2确定S的范围.解答:解:如图,C点坐标为(0,m+n),D点坐标为(m+n,0),则△OCD为等腰直角三角形,∴点A与点B关于直线y=x对称,则B点坐标为(n,m),∴S=S△OBC=(m+n)•n=mn+n2,∵点A(m,n)在双曲线上,∴mn=1,即n=∴S=+()2∵m≥2,∴0<≤,∴0<()2≤,∴<S≤.点评:本题考查了反比例函数图象与一次函数的交点问题:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.也考查了一次函数的性质.25.(6分)(2013•厦门)如图所示,已知四边形OABC是菱形,∠O=60°,点M是边OA的中点,以点O为圆心,r为半径作⊙O分别交OA,OC于点D,E,连接BM.若BM=,的长是.求证:直线BC与⊙O相切.考点:切线的判定;菱形的性质;弧长的计算.专题:证明题.分析:过点O作OF⊥BC于F,过点B作BG⊥OA于G,则四边形BGOF为矩形,OF=BG.设菱形OABC的边长为2a,先在Rt△BMG中,利用勾股定理得出BG2+GM2=BM2,即(a)2+(2a)2=()2,求得a=1,得到OF=,再根据弧长公式求出r=,则圆心O到直线BC的距离等于圆的半径r,从而判定直线BC与⊙O相切.解答:证明:如图,过点O作OF⊥BC于F,过点B作BG⊥OA于G,则四边形BGOF为矩形,OF=BG.设菱形OABC的边长为2a,则AM=OA=a.∵菱形OABC中,AB∥OC,∴∠BAG=∠COA=60°,∠ABG=90°﹣60°=30°,∴AG=AB=a,BG=AG=a.在Rt△BMG中,∵∠BGM=90°,BG=a,GM=a+a=2a,BM=,∴BG2+GM2=BM2,即(a)2+(2a)2=()2,解得a=1,∴OF=BG=.∵的长==,∴r=,∴OF=r=,即圆心O到直线BC的距离等于圆的半径r,∴直线BC与⊙O相切.点评:本题考查了菱形的性质,勾股定理,弧长的计算公式,切线的判定,综合性较强,难度适中,利用菱形的性质及勾股定理求出a的值是解题的关键.26.(11分)(2013•厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k 是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.考点:根与系数的关系;解一元二次方程-因式分解法;根的判别式.专题:阅读型;新定义.分析:(1)求出原方程的根,再代入|x1|+|x2|看结果是否为2的整数倍就可以得出结论;(2)由条件x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程建模,设c=mb2+n,就可以表示出c,然后根据公式法就可以求出其根,再代入|x1|+|x2|就可以得出结论.解答:解:(1)不是,解方程x2+x﹣12=0得,x1=3,x2=﹣4.|x1|+|x2|=3+4=7=2×3.5.∵3.5不是整数,∴x2+x﹣12=0不是“偶系二次方程;(2)存在.理由如下:∵x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程,∴假设c=mb2+n,当b=﹣6,c=﹣27时,﹣27=36m+n.∵x2=0是偶系二次方程,∴n=0时,m=﹣,∴c=﹣b2.∵是偶系二次方程,当b=3时,c=﹣×32.∴可设c=﹣b2.对于任意一个整数b,c=﹣b2时,△=b2﹣4c,=4b2.x=,∴x1=b,x2=b.∴|x1|+|x2|=2b,∵b是整数,∴对于任何一个整数b,c=﹣b2时,关于x的方程x2+bx+c=0是“偶系二次方程”.点评:本题考查了一元二次方程的解法的运用,根的判别式的运用根与系数的关系的运用及数学建模思想的运用,解答本体时根据条件特征建立模型是关键.。

2013中考数学试题及答案(word完整版)(1)

2013中考数学试题及答案(word完整版)(1)

二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。

4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。

5. 保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。

2013年数学中考试卷及答案

2013年数学中考试卷及答案

2013年数学中考试卷及答案2013年中考数学试卷包括三个部分:①阅读理解,②解答题,③计算题和填空题。

各部分题量如下:①阅读理解1道;②解答题1道;③计算题1道;④计算题2道。

其中填空1道、解答题1道。

这道试卷主要考查了学生的知识迁移能力,即学生在解决实际问题的过程中发现问题、解决问题能力,同时也考察了学生语言表达能力。

答题时间为45分钟。

①阅读理解2个大题、②解答题2个小题,③计算题1个小题。

要求学生能较熟练地运用所学知识解决问题,能从自己或他人熟悉的情境中发现新问题并提出不同观点、结论,以及能进行简单地推理、判断、证明。

一、试题主要考查了数形结合和空间想象能力。

这是对学生数形结合、空间想象能力的有力考查。

例如第2、3题有一个明显的特征,就是考查了关于物体的面积的计算;第8、9、10题考查了坐标系知识;第9、10、11题和第20题考查了椭圆的面积计算;第22题考查了圆锥曲线与圆锥坐标系之间的联系;第23题考查了三角形的面积计算两种方法中的一种;第24题解答了一道关于四线段的平行四边形的图形,用三角形的基本性质求直线(圆)与直角三角形(直角)的值;第25题在解答一道关于圆锥曲线的问题中,以圆上一个坐标为圆心,画出一个圆并作线段证明了这个圆的面积;第26题考查了一个关于抛物线的图形求点坐标的问题;第26题考查了一道利用图象(点)表示三角形内角的面积;第27题以圆为背景考查了一枚圆心和圆对称方程组)的求解过程、求圆面积的方法;这就涉及了圆锥曲线的画法和圆几何图形、圆与平行四边形等数学知识和概念的考查。

同时通过这些题目也让学生充分感受到学习数学的乐趣和快乐。

这体现了中考数学命题在知识考查中体现了回归教材这一特点。

特别是在一些重要章节与重点内容中体现了数形结合、空间想象等考查特点。

例如第1、2、3、5题分别考查了点的坐标及面积。

第3、5、6题考查了圆的面积计算和坐标系中相关公式的掌握或应用等。

二、考查了学生的运算能力,也包括空间想象能力。

福建省厦门市集美区2013年中考数学一模试卷(解析版) 新人教版

福建省厦门市集美区2013年中考数学一模试卷(解析版) 新人教版

2013年福建省厦门市集美区中考数学一模试卷一、选择题(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项正确)1.(3分)(2011•大连)﹣的相反数是()C.D.2A.﹣2 B.﹣考点:相反数.专题:应用题.分析:根据相反数的意义解答即可.解答:解:由相反数的意义得:﹣的相反数是.故选C.点评:本题主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(3分)(2013•集美区一模)某班有25名男生和18名女生,用抽签方式确定一名学生代表,则()A.女生选作代表机会大B.男生选作代表机会大C.男生和女生选作代表的机会一样大D.男女生选作代表的机会大小不确定考点:概率公式.分析:根据题意,只要求出男生和女生当选的可能性,再进行比较即可解答.解答:解:∵某班有25名男生和18名女生,∴用抽签方式确定一名学生代表,男生当选的可能性为=,女生当选的可能性为=,∴男生当选的可能性大于女生当选的可能性.故选B.点评:此题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.3.(3分)(2013•徐州模拟)使二次根式有意义的x的取值范围是()A.x≠2B.x>2 C.x≤2D.x≥2考点:二次根式有意义的条件.专题:计算题.分析:利用当二次根式有意义时,被开方式为非负数,得到有关x的一元一次不等式,解之即可得到本题答案.解答:解:∵二次根式有意义,∴x﹣2≥0,解得:x≥2,故选D.点评:本题考查了二次根式有意义的条件,此类考题相对比较简单,但从近几年的中考看,几乎是一个必考点.4.(3分)(2013•集美区一模)两个相似三角形的面积比为1:4,那么它们的对应边的比为()A.1:16 B.16:1 C.1:2 D.2:1考点:相似三角形的性质.分析:直接根据相似三角形的性质进行解答即可.解答:解:∵两个相似三角形的面积比为1:4,∴它们的对应边的比==1:2.故选C.点评:本题考查的是相似三角形的性质,即相似三角形对应边的比等于相似比,面积的比等于相似比的平方.5.(3分)(2013•集美区一模)下列事件是不可能事件的是()A.从装有3个红球、5个黄球、10个绿球的袋中任意摸出一个球是黑色B.掷一枚骰子,停止后朝上的点数是6C.射击时,靶中十环D.小英任意买了一张电影票,座位号是奇数考点:随机事件.分析:不可能事件就是一定不会发生的事件,据此即可解答.解答:解:A、正确;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是随机事件,故选项错误.故选A.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(3分)(2013•集美区一模)已知:如图,⊙O是等边△ABC的外接圆,则∠AOB的度数为()A.60°B.100°C.120°D.130°考点:圆周角定理;等边三角形的性质.分析:由⊙O是等边△ABC的外接圆,可求得∠C=60°,又由圆周角定理,即可求得∠AOB的度数.解答:解:∵⊙O是等边△ABC的外接圆,∴∠C=60°,∴∠AOB=2∠C=120°.故选C.点评:此题考查了圆周角定理以及等边三角形的性质.此题难度不大,注意掌握数形结合思想的应用.7.(3分)(2013•集美区一模)已知反比例函数,下列结论错误的是()A.图象经过点(1,1)B.当x<0时,y随着x的增大而增大C.当x>1时,0<y<1 D.图象在第一、三象限考点:反比例函数的性质.分析:将x=1代入反比例解析式中求出对应的函数值为1,得到反比例函数图象过(1,1),选项A正确;由反比例函数中的系数k大于0,得到反比例函数图象位于第一、三象限,且在每一个象限,y随x 的增大而减小,得到选项B错误,选项D正确;由反比例函数图象可得:当x大于1时,y小于1且大于0,得到选项C正确,即可得到不正确的选项为B.解答:解:A、将x=1代入反比例解析式得:y==1,∴反比例函数图象过(1,1),本选项结论正确,不符合题意;B、反比例函数y=在第一或第三象限y随x的增大而减小,本选项结论错误,符合题意;C、由反比例函数图象可得:当x>1时,0<y<1,本选项结论正确,不符合题意;D、由反比例函数的系数k=1>0,得到反比例函数图象位于第一、三象限,本选项结论正确,不符合题意.故选B.点评:此题考查了反比例函数的图象与性质,反比例函数y=(k≠0),当k>0时,图象在第一、三象限,且在每一个象限y随x的增大而减小;当k<0时,函数图象在第二、四象限,且在每一个象限y随x的增大而增大,熟练掌握反比例函数的性质是解本题的关键.同时注意本题是选择结论错误的选项.二、填空题(本大题有10小题,每小题4分,共40分)8.(4分)(2013•湘潭)|﹣3|= 3 .考点:绝对值.分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|﹣3|=3.故答案为:3.点评:此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.9.(4分)(2011•贵港)因式分解:x2﹣x= x(x﹣1).考点:因式分解-提公因式法.分析:提取公因式x即可.解答:解:x2﹣x=x(x﹣1).点评:本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.10.(4分)(2013•集美区一模)上海世博会主题馆安装有目前世界上最大的太阳能板,其面积达31 000平方米,用科学记数法表示为 3.1×104平方米.考点:科学记数法—表示较大的数.分析:根据科学记数法的定义,写成a×10n的形式.a×10n中,a的整数部分只能取一位整数,1≤|a|<10,且n的数值比原数的位数少1,31000的数位是5,则n的值为4.解答:解:31000=3.1×104.故答案为3.1×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(4分)(2013•集美区一模)如图,△ABC和△ADE都是等腰直角三角形,点D是AC上的点,如果△ABC 绕点A逆时针旋转后与△ADE重合,那么旋转角是45°度.考点:旋转的性质.分析:根据等腰直角三角形的性质得到∠EAD=∠CAB=45°,然后根据旋转的性质得AE与AC重合,AD与AB 重合,则∠DAB等于旋转角.解答:解:∵△ABC和△ADE都是等腰直角三角形,∴∠EAD=∠CAB=45°,∵△ABC绕点A逆时针旋转后与△ADE重合,∴AE与AC重合,AD与AB重合,∴∠DAB等于旋转角,∴旋转角为45°.故答案为45°.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等腰直角三角形的性质.12.(4分)(2013•集美区一模)一组数据1,4,2,5,3,6,7的中位数是 4 .考点:中位数.分析:先将数据按照从小到大的顺序排列,然后根据中位数的定义求解.解答:解:将数据按照从小到大的顺序排列为1,2,3,4,5,6,7,最中间的数为4,所以这组数据的中位数为4.故答案为4.点评:本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(4分)(2013•集美区一模)写出图中圆锥的主视图名称等腰三角形.考点:简单几何体的三视图.分析:找到从正面看所得到的图形即可.解答:解:根据所给的图形,看到的主视图是等腰三角形.故答案为:等腰三角形.点评:本题考查了三视图的知识,用到的知识点是主视图是从物体的正面看得到的视图.14.(4分)(2013•集美区一模)已知关于x的方程x2﹣x+c=0的一个根是﹣1,则c= ﹣2 .考点:一元二次方程的解.专题:计算题.分析:将x=﹣1代入方程即可求出c的值.解答:解:将x=﹣1代入方程得:1+1+c=0,解得:c=﹣2.故答案为:﹣2.点评:此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.(4分)(2013•集美区一模)在Rt△ABC中,∠C=90°,当∠B=50 度时,命题“如果tanB≥1,那么≤sinA≤.”不成立.考点:特殊角的三角函数值;命题与定理;锐角三角函数的增减性.分析:由sin45°=,sin60°=,结合题意即可写出一个答案,只要满足不小于45°.解答:解:当∠B=50°时,∠A=40°,此时命题“如果tanB≥1,那么≤sinA≤”不成立.故答案可为:50.点评:本题考查了特殊角的三角函数值,解答本题的关键是熟练记忆一些特殊角的三角函数值.16.(4分)(2013•集美区一模)在直角坐标系中,直线y=2x﹣3的图象向上平移2个单位后与x轴交于点P(m,n),则m+n= .考点:一次函数图象与几何变换.分析:根据向上平移纵坐标加求出平移后的直线解析式,然后令y=0求出与x轴的交点,即点P,再求解即可.解答:解:∵直线y=2x﹣3的图象向上平移2个单位,∴平移后的直线为y=2x﹣3+2=2x﹣1,即y=2x﹣1,令y=0,则2x﹣1=0,解得x=,所以,直线与x轴的交点为(,0),∵直线与x轴交于点P(m,n),∴m=,n=0,∴m+n=.故答案为:.点评:本题考查了一次函数图象与几何变换,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.(4分)(2013•集美区一模)如图,菱形ABCD的边长为4,∠B=120°,M为DC的中点,点N在AC上.(1)若DC=NC,则∠NDC=75 度;(2)若N是AC上动点,则DN+MN的最小值为.考点:轴对称-最短路线问题;菱形的性质.分析:(1)根据菱形的性质以及等腰三角形的性质得出∠CND=∠CDN,进而得出答案;(2)首先根据菱形的性质得出△BCD是等边三角形以及连接BM后与AC的交点即为N点,进而利用锐角三角函数关系得出BM的长即可得出答案.解答:解:(1)∵菱形ABCD的边长为4,∠B=120°,∴∠BCD=60°,∠ACB=∠ACD,∴∠ACB=∠ACD=30°,∵DC=NC,∴∠CND=∠CDN,∴=75°;(2)∵菱形ABCD的边长为4,∠B=120°,∴∠BCD=60°,BC=CD,∴△BCD是等边三角形,∵D点关于AC的对称点为B点,连接BM交AC于点N,M为DC的中点,∴BM⊥CD,DM=CM=2,∴DN+MN=BM=BCsin60°=4×=2.故答案为:75;2.点评:此题主要考查了菱形的性质以及等边三角形的判定与性质和锐角三角函数的应用等知识,熟练利用菱形性质是解题关键.三、解答题(本大题共9小题,共89分)18.(18分)(2013•集美区一模)(1)计算:(2)如图1,画出△ABC关于BC对称的图形;(3)如图2,在△ABC中,∠C=90°,sinA=,AB=6,求BC的长.考点:作图-轴对称变换;实数的运算;零指数幂;解直角三角形.专题:作图题.分析:(1)根据算术平方根的定义,绝对值的性质,任何非0数的0次幂等于1进行计算即可得解;(2)找出点A关于BC的对称点,然后顺次连接即可;(3)根据锐角的正弦等于对边比斜边计算即可得解.解答:解:(1)﹣|﹣2|+()0=3﹣2+1=2;(2)如图1,△A′BC即为△ABC关于BC对称的图形;(3)解:∵在Rt△ABC中,∠ACB=90°,∴sinA=,∵AB=6,sinA=,∴=∴BC=4.点评:本题考查了利用轴对称变换作图,实数的运算,零指数幂的性质,找出对称点A′的位置是解题的关键.19.(7分)(2013•集美区一模)先化简,再求值:,其中.考点:分式的化简求值.分析:首先计算括号里面的分式的加法,再分解分式的分子分母,进行分式的乘法运算,进而化简分式,然后再代入求值即可.解答:解:原式=÷,=,=,把代入,得:原式==.点评:此题主要考查了分式的化简求值,关键是正确掌握分式的加减乘除的计算方法.20.(8分)(2013•集美区一模)下表是一名同学在罚球线上投篮的实验结果,根据表中数据,回答问题:投篮次数(n)50 100 150 200 250 300 500投中次数(m)28 60 78 104 124 153 252(1)估计这名同学投篮一次,投中的概率约是多少(精确到0.1)?(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少?考点:利用频率估计概率.分析:(1)对于不同批次的定点投篮命中率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法;(2)投中的次数=投篮次数×投中的概率,依此列式计算即可求解.解答:解:(1)估计这名球员投篮一次,投中的概率约是0.5;(2)622×0.5=311(次).故估计这名同学投篮622次,投中的次数约是311次.点评:考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)(2013•集美区一模)如图,在△ABC中,D、E分别是边AB、AC的中点,F为CA延长线上一点,∠F=∠C.(1)若BC=8,求FD的长;(2)若AB=AC,求证:△ADE∽△DFE.考点:相似三角形的判定;三角形中位线定理.分析:(1)利用三角形中位线的性质得出DE∥BC,进而得出∠AED=∠F,即可得出FD=DE,即可得出答案;(2)利用等腰三角形的性质和平行线的性质得出∠B=∠C=∠AED=∠ADE,即可得出∠ADE=∠F,即可得出△ADE∽△DFE.解答:解:(1)∵D、E分别是边AB、AC的中点,∴,DE∥BC.∴∠AED=∠C.∵∠F=∠C,∴∠AED=∠F,∴FD==4;(2)∵AB=AC,DE∥BC.∴∠B=∠C=∠AED=∠ADE,∵∠AED=∠F,∴∠ADE=∠F,又∵∠AED=∠AED,∴△ADE∽△DFE.点评:此题主要考查了相似三角形的判定与性质以及等腰三角形的性质和平行线的性质等知识,熟练利用相关性质是解题关键.22.(9分)(2013•集美区一模)某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过30%.(1)根据物价局规定,此商品每件售价最高可定为多少元?(2)若每件商品售价定为x元,则可卖出(170﹣5x)件,商店预期要盈利280元,那么每件商品的售价应定为多少元?考点:一元二次方程的应用.专题:应用题.分析:(1)原价加上原价的30%即为最高售价;(2)根据:每件盈利×销售件数=总盈利额;其中,每件盈利=每件售价﹣每件进价.建立等量关系.解答:解:(1)16(1+30%)=20.8,答:此商品每件售价最高可定为20.8元.(2)(x﹣16)(170﹣5x)=280,整理,得:x2﹣50x+600=0,解得:x1=20,x2=30,因为售价最高不得高于20.8元,所以x2=30不合题意应舍去.答:每件商品的售价应定为20元.点评:本题考查了一元二次方程的应用,解一元二次方程的应用题,需要检验结果是否符合题意.23.(9分)(2013•集美区一模)如图,四边形ABCD是边长为4的正方形,⊙C交BC于点E,交DC于点F.(1)若点E是线段CB的中点,求扇形ECF的面积;(结果保留π)(2)若EF=4,试问直线BD与⊙C是否相切?并说明理由.考点:切线的判定;勾股定理;正方形的性质;扇形面积的计算.分析:(1)求出∠ACB的度数,求出EC,代入扇形的面积公式求出即可;(2)连接AC交BD于O,求出CO、CF的值,得出CO=CF,根据CO⊥BD,结合切线的判定推出即可.解答:解:(1)∵四边形ABCD是边长为4的正方形,∴∠ACB=90°,∵点E是线段CB的中点,BC=4,∴EC=2,∴,∴S扇形ECF=π.(2)答:是相切,理由是:连结AC交BD于点O,∵四边形ABCD是边长为4的正方形,∴∠C=90°,CO=,∵CA⊥BD于O点,在Rt△FCE中,FC=CE,EF=4,∴F C2+CE2=EF2=16,∴FC=,∴FC=CO,又∵CO⊥BD,∴直线BD与⊙C相切.点评:本题考查了切线判定,正方形性质,等腰三角形的性质的应用,主要考查学生综合运用性质进行推理和计算的能力.24.(9分)(2013•集美区一模)新定义:如果一个点的横、纵坐标均为整数,那么我们称这个点是“格点”.双曲线(x>0)与直线y2=ax+b交于A(1,5)和B(5,t).(1)判断点B是否为“格点”,并求直线AB的解析式;(2)P(m,n)是图中双曲线与直线围成的阴影部分内部(不包括边界)的“格点”,试求点P的坐标.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)点B是“格点”,理由为:将A坐标代入反比例解析式求出k的值,确定出反比例解析式,将B坐标代入反比例解析式求出t的值,即可做出判断;将A与B的坐标代入一次函数解析式求出a 与b的值,即可确定出直线AB的解析式;(2)根据P(m,n)是图中双曲线与直线围成的阴影部分内部(不包括边界)的“格点”,由图象得到1<m<5,y1<y2,且m、n都是整数,得到m可能为2,3,4,依次检验即可求出P的坐标.解答:解:(1)点B是“格点”,理由为:把A(1,5)代入y1=得:k=5,∴y1=,将B(5,t)代入反比例解析式得:t=1,∵5是整数,1也是整数,∴点B是“格点”;把A(1,5)和B(5,1)分别代入y2=ax+b得:,解得:,∴直线AB的解析式为:y2=﹣x+6;(2)∵P(m,n)是阴影部分内部(不包括边界)的“格点”,∴1<m<5,y1<y2,且m、n都是整数,∴m的值可能为2、3或4,当m=2时,y1=,y2=4,那么n=3,得P(2,3);当m=3时,y1=,y2=3,那么n=2,得P(3,2);当m=4时,y1=,y2=2,那么此时n不存在,舍去,∴P(2,3)或P(3,2).点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.25.(10分)(2013•集美区一模)如图,在▱ABCD中,点E在AD上,将△ABE沿BE折叠后得到△GBE,且点G在▱ABCD内部,将BG延长交DC于点F,EF平分∠DEG.(1)求证:GF=DF;(2)若BC=DC=4DF,四边形BEFC的周长为,求BC的长.考点:平行四边形的性质;全等三角形的判定与性质;勾股定理;勾股定理的逆定理.分析:(1)根据折叠的性质可知∠A=∠BGE,由平行四边形的性质可知∠A+∠D=180°,再利用已知条件证明△EGF≌△EDF,由全等三角形的性质可得:GF=DF;(2)若BC=DC,可证明四边形ABCD是菱形,设DF=x,再进一步证明四边形ABCD是正方形,由于在Rt△ABE中,,在Rt△DEF中,,四边形BEFC的周长=BE+EF+FC+CB==,求出x的值即可.解答:(1)证明:∵△ABE沿BE折叠后得到△GBE,∴∠A=∠BGE,∵四边形ABCD是平行四边形,∴∠A+∠D=180°,又∵∠BGE+∠EGF=180°∴∠D=∠EGF,∵EF平分∠DEG,∴∠DEF=∠GEF,又∵EF=EF,在△EGF和△EDF中,,∴△EGF≌△EDF,∴GF=DF;(2)解:在□ABCD中,BC=DC,设DF=x,∴四边形ABCD是菱形,∴AB=BC=DC=AD=4DF=4x.∵△ABE≌△BGE,△EGF≌△EDF,∴BG=AB=4x,GF=DF=x,BF=5x,AE=EG=ED=2x,又∵FC=DC﹣DF=3x,∴BC2+CF2=BF2,∴△BCF为直角三角形,∠C=90°,∴菱形ABCD是正方形,在Rt△ABE中,,在Rt△DEF中,,∴四边形BEFC的周长=BE+EF+FC+CB==,∴x=2,BC=4.点评:本题考查了全等三角形的判定和性质、折叠的性质、菱形的判定和性质以及正方形的判定和性质、勾股定理的运用以及其逆定理的运用,题目的综合性很强,难度中等.26.(11分)(2013•集美区一模)已知抛物线(b≠0)与x轴正半轴交于A(c,0),与y轴交于B点,直线AB的解析式为y2=mx+n.(1)求m﹣n+b的值;(2)若抛物线顶点P关于y轴的对称点恰好在直线AB上,M是线段BA上的点,过点M作MN∥y轴交抛物线于点N.试问:当点M从点B运动到点A时,线段MN的长度如何变化?考点:二次函数综合题.分析:(1)把点A的坐标代入抛物线解析式得到b=c﹣1;把点A、B的坐标分别代入直线AB的解析式求得m=﹣1,n=c,将其代入所求的代数式并求值即可;(2)由(1)中的抛物线解析式可以求得顶点P(,),则易求顶点P关于y轴对称的点P′(,).由一次函数y2=﹣x+c图象上点的坐标特征可以求得c=3.易求得,y2=﹣x+3.则MN=,所以由二次函数图象的性质进行解答即可.解答:解:(1)把A(c,0)代入抛物线得:﹣c2+bc+c=0,如图,∵A(c,0)在x轴正半轴,∴c>0,∴b=c﹣1,∵抛物线与y轴交于B点.∴B(0,c)把A(c,0)、B(0,c)分别代入y2=mx+n得:,解得:∴m﹣n+b=﹣1﹣c+c﹣1=﹣2;(2)∴,y2=﹣x+c∴顶点P(,)∴顶点P关于y轴对称的点P′(,)把P′代入y2=﹣x+c得:解得:c1=3,c2=1(舍去)∴当c=3时,b=c﹣1=2;当c=1时,b=0;∵b≠0∴c=3,b=2,∴,y2=﹣x+3∵M是线段AB上的点,∴y2≤y1,0≤x≤3.∵MN∥y轴∴MN=∴MN=∵a=﹣1<0,开口向下,对称轴为∴当时,MN长度随着x增大而增大;当时,MN长度随着x增大而减小.点评:本题综合考查了一次函数、二次函数图象上点的坐标特征,待定系数法求一次函数、二次函数的解析式以及二次函数图象的性质.综合性强,要求学生掌握数形结合的数学思想方法.(2)中弄清线段MN长度的函数意义是解题的关键.附:高考各科的答题技巧一、掌握好基础知识掌握基础知识没有捷径,俗话说“巧妇难为无米之炊”,没有基础知识,再多的答题技巧也没有用,有了基础知识,才能在上面“玩一些复杂的花样”,让自己分数提高一个层次,其实很简单,上课认真听讲,放学再温习一两遍足矣。

2013年福建厦门中考数学试卷及答案(word解析版)

2013年福建厦门中考数学试卷及答案(word解析版)

2013年厦门市初中毕业及高中阶段各类学校招生考试数学(试卷满分:150分考试时间:120分钟)准考证号姓名座位号注意事项:1全卷三大题,26小题,试卷共4页,另有答题卡2答案一律写在答题卡上,否则不能得分3可直接用2B铅笔画图一、选择题(本大题有7小题,每小题3分,共21分每小题都有四个选项,其中有且只有一个选项正确)1(2013福建厦门,1,3分)下列计算正确的是()A-1+2=1B-1-1=0C(-1)2=-1D-12=1【答案】A(2013福建厦门,2,3分)已知∠A=60°,则∠A的补角是A160°B120°C60°D30°【答案】B(2013福建厦门,3,3分)图1是下列一个立体图形的三视图,则这个立体图形是A圆锥B球C圆柱D正方体俯视图左视图主视图图1【答案】C(2013福建厦门,4,3分)掷一个质地均匀的正方体骰子,当骰子停止后,朝上一面的点数为5的概率是A 1B 15C 16D 0 【答案】 C(2013福建厦门,5,3分)如图2,在⊙O 中,︵AB =︵AC ,∠A =30°,则∠B =A 150°B 75°C 60°D 15°CO 图2BA【答案】B(2013福建厦门,6,3分)方程2x -1=3x的解是 A 3 B 2 C 1 D 0 【答案】A(2013福建厦门,7,3分)在平面直角坐标系中,将线段OA 向左平移2个单位,平移后,点O ,A 的对应点分别为点O 1,A 1若点O (0,0),A (1,4),则点O 1,A 1的坐标分别是 A (0,0),(1,4) B (0,0),(3,4) C (-2,0),(1,4) D (-2,0),(-1,4)【答案】 D二、填空题(本大题有10小题,每小题4分,共40分) (2013福建厦门,8,4分)-6的相反数是 【答案】6(2013福建厦门,9,4分)计算:m 2·m 3= 【答案】m 5(2013福建厦门,10,4分)式子x -3在实数范围内有意义,则实数x 的取值范围是 【答案】x ≥3(2013福建厦门,11,4分)如图3,在△ABC 中,DE ∥BC ,AD =1,AB =3,DE =2,则BC =图3ED CBA【答案】6(2013福建厦门,12,4分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/米 150 160 165 170 175 180 人数233241则这些运动员成绩的中位数是 米【答案】165(2013福建厦门,13,4分)x 2-4x +4= ( )2 【答案】x —2(2013福建厦门,14,4分)已知反比例函数y =m -1x 的图象的一支位于第一象限,则常数m 的取值范围是 【答案】m >1(2013福建厦门,15,4分)如图4,□ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点若AC +BD =24厘米, △OAB 的周长是18厘米,则EF = 厘米图4FE ODCBA【答案】3(2013福建厦门,16,4分)某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域甲工人在转移过程中,前40米只能步行,之后骑自行车已知导火线燃烧的速度为001米/秒, 步行的速度为1米/秒,骑车的速度为4米/秒为了确保甲工人的安全,则导火线的长要大于 米 【答案】13(2013福建厦门,17,4分)如图5,在平面直角坐标系中,点O 是原点,点B (0,3),点A 在第一象限且AB ⊥BO ,点E 是线段AO 的中点,点M 在线段AB 上若点B 和点E 关于直线OM 对称,且则点M 的坐标是 ( , )【答案】(1,3)三、解答题(本大题有9小题,共89分)(2013福建厦门,18(1),7分)(1)计算:5a+2b+(3a—2b);解:(1)解:5a+2b+(3a—2b)=5a+2b+3a—2b=8a(2013福建厦门,18(2),7分)在平面直角坐标系中,已知点A(-4,1),B(-2,0),C(-3, -1),请在图6上画出△ABC,并画出与△ABC关于原点O对称的图形;【解答过程】解:正确画出△ABC正确画出△DEF(2013福建厦门,18(3),7分)如图7,已知∠ACD=70°,∠ACB=60°,∠ABC=50°求证:AB∥CDD CBA图7证明∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°∵∠ABC=50°,∴∠BCD+∠ABC=180°∴AB∥CD(2013福建厦门,19(1),7分)(1)甲市共有三个郊县,各郊县的人数及人均耕地面积如下表所示:郊县人数/万人均耕地面积/公顷A 20 015B 5 020C 10 018求甲市郊县所有人口的人均耕地面积(精确到001公顷);解:20×0.15+5×0.20+10×0.1820+5+10≈017(公顷/人)∴这个市郊县的人均耕地面积约为017公顷(2013福建厦门,19(2),7分)先化简下式,再求值:2x2+y2 x+y -x2+2y2x+y,其中x=2+1,y=22—2;解:(2)解:2x2+y2x+y—2y2+x2x+y=x 2—y 2x +y =x -y当 x =2+1, y =22—2时,原式= 2+1-(22—2)=3—2(2013福建厦门,19(3),7分)如图8,已知A ,B ,C ,D 是⊙O 上的四点,延长DC ,AB 相交于点E 若BC =BE 求证:△ADE 是等腰三角形EDO图8CBA证明∵BC =BE ,∴∠E =∠BCE∵ 四边形ABCD 是圆内接四边形,∴∠A +∠DCB =180°∵∠BCE +∠DCB =180°,∴∠A =∠BCE ∴∠A =∠E∴ AD =DE∴△ADE 是等腰三角形(2013福建厦门,20,6分)有一个质地均匀的正12面体,12个面上分别写有1~12这12个整数(每个面上只有一个整数且每个面上的整数互不相同)投掷这个正12面体一次,记事件A 为 “向上一面的数字是2或3的整数倍”,记事件B 为 “向上一面的数字是3的整数倍”,请你判断等式“P(A)=12+P(B)”是否成立,并说明理由解: 不成立∵ P(A)=812=23,又∵P(B) =412=13,而12+13=56≠23∴ 等式不成立(2013福建厦门,21,6分)如图9,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点E ,若AE =4,CE =8,DE =3,梯形ABCD 的高是365,面积是54求证:AC ⊥BD图9E DC BA证明∵AD ∥BC ,∴∠ADE =∠EBC ,∠DAE =∠ECB∴△EDA ∽△EBC ∴AD BC =AE EC =12即:BC =2AD ∴54=12×365( AD +2AD )∴AD =5 在△EDA 中,∵DE =3,AE =4,∴DE 2+AE 2=AD 2 ∴∠AED =90° ∴ AC ⊥BD(2013福建厦门,22,6分)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图10所示当容器内的水量大于5升时,求时间x 的取值范围解1: 当0≤x ≤3时,y =5x当y >5时,5x >5, 解得 x >1∴1<x ≤3当3<x ≤12时,设 y =kx +b则⎩⎨⎧15=3k +b ,0=12k +b .解得⎩⎪⎨⎪⎧k =-53,b =20.∴ y =-53x +20当y >5时,-53x +20>5,解得 x <9∴ 3<x <9 ∴容器内的水量大于5升时,1<x <9解2: 当0≤x ≤3时,y =5x当y =5时,有5=5x ,解得 x =1∵ y 随x 的增大而增大,∴当y >5时,有x >1 ∴ 1<x ≤3当3<x ≤12时, 设 y =kx +b则⎩⎨⎧15=3k +b ,0=12k +b .解得⎩⎪⎨⎪⎧k =-53,b =20.∴ y =-53x +20当y =5时,5=-53x +20解得x =9∵ y 随x 的增大而减小, ∴当y >5时,有x <9 ∴3<x <9∴容器内的水量大于5升时,1<x <9(2013福建厦门,23,6分)如图11,在正方形ABCD 中,点G 是边BC 上的任意一点,DE ⊥AG ,垂足为E ,延长DE 交AB 于点F 在线段AG 上取点H ,使得AG =DE +HG ,连接BH 求证:∠ABH =∠CDEH G FE DC B图11A证明∵四边形ABCD 是正方形,∴∠F AD =90° ∵DE ⊥AG ,∴∠AED =90°∴∠F AG +∠EAD =∠ADF +∠EAD ∴∠F AG =∠ADF∵AG =DE +HG ,AG =AH +HG∴DE =AH又AD =AB ,∴ △ADE ≌△ABH∴∠AHB =∠AED =90°∵∠ADC =90°,∴∠BAH +∠ABH =∠ADF +∠CDE∴∠ABH =∠CDE(2013福建厦门,24,6分)已知点O 是坐标系的原点,直线y =-x +m +n 与双曲线y =1x交于两个不同的点A (m ,n )(m ≥2)和B (p ,q ),直线y =-x +m +n 与y 轴交于点C ,求△OBC 的面积S 的取值范围解:∵ 直线y =-x +m +n 与y 轴交于点C ,∴ C (0,m +n )∵点B (p ,q )在直线y =-x +m +n 上, ∴q =-p +m +n又∵点A 、B 在双曲线y =1x上,∴1p =-p +m +1m 即p -m =p -m pm,∵点A 、B 是不同的点∴ p -m ≠0∴ pm =1 ∵ nm =1,∴ p =n ,q =m ∵1>0,∴在每一个象限内,反比例函数y =1x 的函数值y 随自变量x 的增大而减小∴当m ≥2时,0<n ≤12∵S =12( p +q ) p=12p 2+12pq=12n 2+12又∵12>0,对称轴n =0,∴当0<n ≤12时,S 随自变量n 的增大而增大12<S ≤58(2013福建厦门,25,6分)如图12,已知四边形OABC 是菱形,∠O =60°,点M 是OA 的中点以点O 为圆心,r 为半径作⊙O 分别交OA ,OC 于点D ,E ,连接BM 若BM =7, ︵DE 的长是3π3求证:直线BC 与⊙O 相切 图12OA BC D EM证明∵︵DE 的长是3π3,∴2πr 360·60=3π3 ∴ r =3延长BC ,作ON ⊥BC ,垂足为N∵ 四边形OABC 是菱形 ∴ BC ∥AO , ∴ ON ⊥OA∵∠AOC =60°, ∴∠NOC =30°设NC =x ,则OC =2x ,ON =3x连接CM , ∵点M 是OA 的中点,OA =OC ,∴ OM =x ∴四边形MONC 是平行四边形 ∵ ON ⊥BC ,∴四边形MONC 是矩形∴CM ⊥BC ∴ CM =ON =3x在Rt △BCM 中, (3x )2+(2x )2=(7)2, 解得x =1∴ON =CM =3 ∴ 直线BC 与⊙O 相切ABMC D E NO(2013福建厦门,26,11分)若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且x 1+x 2=2k (k 是整数),则称方程x 2+bx +c =0为“偶系二次方程”如方程x 2-6x -27=0, x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0, x 2+4x +4=0都是“偶系二次方程”(1)判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+bx +c =0是“偶系二次方程”,并说明理由(1)解: 不是解方程x 2+x -12=0得,x 1=-4,x 2=3x 1+x 2=4+3=2×3.5∵35不是整数,∴方程x 2+x -12=0不是“偶系二次方程”(2)解法1:存在∵方程x 2-6x -27=0,x 2+6x -27=0是“偶系二次方程”,∴ 假设 c =mb 2+n 当 b =-6,c =-27时,有 -27=36m +n∴n =0,m =- 34即有c =- 34b 2又∵x 2+3x -274=0也是“偶系二次方程”,当b =3时,c =- 34×32=-274∴可设c =- 34b 2对任意一个整数b ,当c =- 34b 2时,∵△=b 2-4c =4b 2 ∴ x =-b ±2b2∴ x 1=-32b ,x 2=12b∴ x 1+x 2=32b +12b =2b∵b 是整数,∴对任意一个整数b ,当c =- 34b 2时,关于x 的方程x 2+bx +c =0是“偶系二次方程”解法2:存在∵方程x 2-6x -27=0,的两个根是x 1=3,x 2=-9,而3=12×6,-9=32×6,又“偶系二次方程”x 2+6x -27=0,x 2+3x -274=0的两根的绝对值x 1、x 2与b 也有同样的规律假设方程x 2+bx +c =0两根的绝对值x 1、x 2与b 满足 x 1=12b ,x 2=32b (x 1<x 2)可得c =- 34b 2对任意一个整数b ,当c =- 34b 2时,△=b 2-4c =4b 2∴x =-b ±2b2∴ x 1=-32b ,x 2=12b∴ x 1+x 2=32b +12b =2b∵b 是整数,∴对任意一个整数b ,当c =- 34b 2时,关于x 的方程x 2+bx +c =0是“偶系二次方程”解法3: 存在∵x 2-6x -27=0可化为(x -3)2=62,同理“偶系二次方程”x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0可化为(x -1)2=32,(x +32)2=32,(x +3)2=62由x 2+bx +c =0得(x +b 2)2=b 24-c假设 b 24-c =m 2(m 是整数)即c =b 24-m 2,取m =b得c =-34b 2对任意一个整数b ,当c =-34b 2时,△=b 2-4c=4b 2 ∴x =-b ±2b2∴ x 1=-32b ,x 2=12b∴ x 1+x 2=32b +12b =2b∵b 是整数,∴对任意一个整数b ,当c =- 34b 2时,关于x 的方程x 2+bx +c =0是“偶系二次方程”解法4: 存在当c =- 154b 2时,△=b 2-4c=16b 2 ∴x =-b ±4b2∴ x 1=-52b ,x 2=32b∴ x 1+x 2=52b +32b =4b =22b∵b 是整数,∴2b 也是整数∴ 当c =- 154b 2(b 是整数)时,关于x 的方程x 2+bx +c =0是“偶系二次方程”。

中考数学-2013年福建福州中考数学试卷及答案(word解析版)

中考数学-2013年福建福州中考数学试卷及答案(word解析版)

二〇一三年福州市初中毕业会考、高级中等学校招生考试数学试卷(全卷共4页,三大题,共22小题;满分150分;考试时间120分钟)一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(2013福建福州,1,4分)2的倒数是().A .12B .2C .-12D .-2【答案】A2.(2013福建福州,2,4分)如图,OA ⊥OB ,若∠1=40°,则∠2的度数是().A .20°B .40°C .50°D .60°【答案】C3.(2013福建福州,3,4分)2012年12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空.7 000 000用科学记数法表示为().A .7×105B .7×106C .70×106D .7×107【答案】 B.4.(2013福建福州,4,4分)下列立体图形中,俯视图是正方形的是().AB C D【答案】D .5.(2013福建福州,5,4分)下列一元二次方程有两个相等实数根的是().A .x 2+3=0B .x 2+2x =0C .(x +1) 2=0D .(x +3)(x -1)=0【答案】C.6.(2013福建福州,6,4分)不等式1+x <0的解集在数轴上表示正确的是().ABCD【答案】A.7.(2013福建福州,7,4分)下列运算正确的是().A .a ·a 2=a 3B .(a 2)3=a 5C .22()aabbD .a 3÷a 3=a【答案】A .8.(2013福建福州,8,4分)如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A 、点D 在BC 异侧,连接AD ,量一量线段AD 的长,约为().A .2.5 cmB .3.0 cmC .3.5 cmD .4.0 cm0 1 23-2 -1 01-11 2 -2 -11 12 OBAC【答案】A.9.(2013福建福州,9,4分)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是().A .3个B .不足3个C .4个D .5个或5个以上【答案】D.10.(2013福建福州,10,4分)A 、B 两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x +a ,y +b),B(x ,y),下列结论正确的是().A .a >0B .a <0C .b =0D .ab <0【答案】B.二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置)11.(2013福建福州,11,4分)计算:21aa=_________.【答案】1a;12.(2013福建福州,12,4分)矩形的外角和等于_______度.【答案】360;13.(2013福建福州,13,4分)某校女子排球队队员的年龄分布如下表:年龄13 14 15 人数474则该校女子排球队队员的平均年龄是_______岁.【答案】14;14.(2013福建福州,14,4分)已知实数a 、b 满足:a +b =2,a -b =5,则(a +b)3·(a -b)3的值是___________.【答案】1000;15.(2013福建福州,15,4分)如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点成为格点.已知每个正六边形的边长为1,△ABC 的顶点都在格点上,则△ABC 的面积是____________.CA B【答案】23;三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑)ABOyxABC16.(每小题7分,共14分)(1)(2013福建福州,16(1),7分)计算:0(1)412;【答案】解:0(1)412=1+4-23=5-23.(2)(2013福建福州,16(2),7分)化简:2(3)(4)a a a .【答案】解:2(3)(4)a a a =a 2+6a +9+4a -a 2=10a +9.17.(每小题8分,共16分)(1)(2013福建福州,17(1),8分)如图,AB 平分∠CAD ,AC =AD .求证:BC =BD .【答案】证明一:∵AB 平分∠CAD ,∴∠BAC =∠BAD ,在△ABC 和△ABD 中,,,AB AB BACBAD ACAD ∴△ABC ≌△ABD .∴BC =BD .证明二:连接CD∵AC =AD ,AB 平分∠CAD ,∴AB 垂直平分CD ,∴BC =BD .(2)列方程解应用题(2013福建福州,17(2),8分)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本则还缺25本.这个班有多少学生?【答案】解法一:设这个班有x 名学生,根据题意,得:3x +20=4x -25 解得:x =45答:这个班共有45名学生.解法二:设这个班有x 名学生,图书一共有y 本.320425y x yx,解得45,155.x y答:这个班共有45名学生.18.(10分)(2013福建福州,18,10分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本CDBA中,男生、女生人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm )男生身高情况直方图女生身高情况扇形统计图组别身高A x <155 B 155≤x <160 C 160≤x <165 D 165≤x <170 Ex ≥170根据图表提供的信息,回答下列问题:(1)样本中,男生身高的众数在_______组,中位数在_______组;(2)样本中,女生身高在E 组的人数有_______人;(3)已知该校共有男生400人、女生380人,请估计身高在160≤x <170之间的学生约有多少人?【答案】(1)众数在B 组;中位数在C 组.(2)样本女生人数=样本男生人数=40;E 组女生百分比=5%E 组女生人数=40×5%=2(人)(3)男生:400×1840=180(人).女生:380×40%=152(人).19.(2013福建福州,19,12分)如图,在平面直角坐标系xOy 中,点A 的坐标为(-2,0),等边三角形AOC 经过平移或轴对称或旋转都可以得到△OBD .(1)△AOC 沿x 轴向右平移得到△OBD ,则平移的距离是_______个单位长度;△AOC 与△BOD 关于直线对称,则对称轴是_______;△AOC 绕原点O 顺时针旋转得到△DOB ,则旋转角可以是_______度;(2)连接AD ,交OC 于点E ,求∠AEO 的度数.【答案】(1)平移的距离是2个单位;对称轴是y 轴;旋转角等于120°.(2)∵△ACO 、△BOD 是等边三角形,∴∠CAO =60°,OA =OD ,∵∠AOD =120°,OA =OD ,∴∠DAO =30°,∴AE 平分∠CAO ,∴AD 垂直平分CO ,∴∠AEO =90°.20.(12分)如图,在△ABC 中,以AB 为直径的⊙O 交AC 于点M ,弦MN ∥BC 交AB 于点E ,且ME =1,AM =2,AE =3.(1)求证:BC 是⊙O 的切线;(2)求BN的长.AO xyCDB第20题图CNM O ABE【答案】(1)证明:∵ME =1,AM =2,AE =3,∴AE 2+ME 2=AM 2,∴∠AEM =90°,∵MN ∥BC ,∴∠B =∠AEM =90°,∵AB 为⊙O 的直径,∴BC 是⊙O 的切线.(2)连接OM ,BM ,∵∠AEM =90°,AB 为⊙O 的直径,∴BN =BM,∠AMB =90°,∵∠AEM =90°,ME =1,AM =2,∴∠CAB =30°,∴∠BOM =60°,∵∠CAB =30°,AM =2,∴AB =433.∴BM=60231803=239.∴BN 的长为239.21.(12分)如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45°,P 是BC 上一点,△P AD 的面积为12,设AB =x ,AD =y .(1)求y 与x 的函数关系式;(2)若∠APD =45°,当y =1时,求PB ·PC 的值;(3)若∠APD =90°,求y 的最小值.备用图第21题图DD BC CBA EA 【答案】(1)如图2,过点A 作AH ⊥BC ,垂足为H .在Rt △ABH 中,∠B =45°,AB =x ,所以AH =22x .由S △APD =12AD AH ,可得112222y x .整理,得2y x.(2)当y =1时,2x .如图3,如图4,由于∠APC =∠B +∠1,∠APC =∠APD +∠2,当∠APD =∠B =∠C =45°时,∠1=∠2.所以△ABP∽△PCD.因此AB PCBP CD.所以PC·PD=AB·CD=2.图2 图3 图4 (3)如图5,当∠APD=90°时,点P在以AD为直径的圆上.如图6,当AD最小时,圆与BC相切于点P.此时△APD是等腰直角三角形.所以AD=2AH,即222y x.由(1)知,2yx.于是可以解得此时2y.图5 图622.(14分)我们知道,经过原点的抛物线解析式可以是y=ax2+bx(a≠0)(1)对于这样的抛物线;当顶点坐标为(1,0)时,a=;当顶点坐标为(m,m),m≠0时,a与m之间的关系式是;(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx(k≠0)上,请用含k的代数式表示b;(3)现有一组过原点的抛物线,顶点A1,A2,…,A n在直线y=x,横坐标依次为1,2,…,n(n为正整数,且n 为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n C n D n.若这组抛物线中有一条经过点Dn,求所有满足条件的正方形边长.【答案】(1)当顶点坐标为(1,1)时,a=-1;当顶点坐标为(m,m),m≠0时,a与m之间的关系式是1am.(2)设抛物线的顶点的坐标为(m,km),那么222()2y a x m km ax amx am km.对照y=ax2+bx,可得20,2.am kmb am由此得到b=2k.(3)正方形的顶点D1,D2,…,D n的坐标分别为(2,1)、(4,2)、(6,3)、(8,4)、(10,5)、(12,6)、(14,7)、(16,8)、(18,9)、(20,10)、(22,11)、(24,12),这些点在直线12y x上.由(1)知,当抛物线的顶点(m ,m )在直线y =x 上时,1am.根据抛物线的对称性,抛物线与x 轴的交点为原点O 和(2m ,0).所以顶点为(m ,m)的抛物线的解析式为1(2)yx x m m.联立12yx和1(2)yx x m m,可得点D 的坐标为33(,)24m m .当m 分别取正整数4、8、12时,对应的点D 为D 3(6,3)、D 6(12,6)、D 9(18,9),它们所对应的正方形的边长分别为3、6、9(如图1所示).图1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年厦门市初中毕业及高中阶段各类学校招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号 注意事项:1.全卷三大题,26小题,试卷共4页,另有答题卡.2.答案一律写在答题卡上,否则不能得分.3.可直接用2B 铅笔画图.一、选择题(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项正确)1.(2013福建厦门,1,3分).下列计算正确的是( )A .-1+2=1.B .-1-1=0.C .(-1)2=-1.D .-12=1.【答案】A(2013福建厦门,2,3分).已知∠A =60°,则∠A 的补角是A .160°.B .120°.C .60°.D .30°.【答案】B(2013福建厦门,3,3分).图1是下列一个立体图形的三视图,则这个立体图形是A .圆锥.B .球.C .圆柱.D .正方体.俯视图左视图主视图图1【答案】C(2013福建厦门,4,3分).掷一个质地均匀的正方体骰子,当骰子停止后,朝上 一面的点数为5的概率是A .1.B .15.C .16. D .0.【答案】C.(2013福建厦门,5,3分).如图2,在⊙O中,︵AB=︵AC,∠A=30°,则∠B=A.150°.B.75°.C.60°.D.15°.图2【答案】B(2013福建厦门,6,3分).方程2x -1=3x的解是A.3.B.2.C.1.D.0.【答案】A(2013福建厦门,7,3分).在平面直角坐标系中,将线段OA向左平移2个单位,平移后,点O,A的对应点分别为点O1,A1.若点O(0,0),A(1,4),则点O1,A1的坐标分别是A.(0,0),(1,4).B.(0,0),(3,4).C.(-2,0),(1,4).D.(-2,0),(-1,4).【答案】D.二、填空题(本大题有10小题,每小题4分,共40分)(2013福建厦门,8,4分).-6的相反数是 .【答案】6(2013福建厦门,9,4分).计算:m 2·m 3= .【答案】m 5(2013福建厦门,10,4分).式子x -3在实数范围内有意义,则实数x 的取值范围是 .【答案】x ≥3(2013福建厦门,11,4分).如图3,在△ABC 中,DE ∥BC ,AD =1,AB =3,DE =2,则BC = .图3E DCBA【答案】6(2013福建厦门,12,4分).在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩/米1.50 1.60 1.65 1.70 1.75 1.80 人数 2 3 3 2 4 1则这些运动员成绩的中位数是 米.【答案】1.65.(2013福建厦门,13,4分).x 2-4x +4= ( )2.【答案】x —2(2013福建厦门,14,4分).已知反比例函数y =m -1x的图象的一支位于第一象限, 则常数m 的取值范围是 .【答案】m >1(2013福建厦门,15,4分).如图4,□ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC +BD =24厘米,△OAB 的周长是18厘米,则EF = 厘米.图4FEO DC B A【答案】3(2013福建厦门,16,4分).某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒, 步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于 米.【答案】1.3 .(2013福建厦门,17,4分).如图5,在平面直角坐标系中,点O 是原点,点B (0,3),点A 在第一象限且AB ⊥BO ,点E 是线段AO 的中点,点M在线段AB 上.若点B 和点E 关于直线OM 对称,且则点M的坐标是 ( , ) .【答案】(1,3)三、解答题(本大题有9小题,共89分)(2013福建厦门,18(1),7分).(1)计算:5a+2b+(3a—2b);解:(1)解:5a+2b+(3a—2b)=5a+2b+3a—2b=8a.(2013福建厦门,18(2),7分).在平面直角坐标系中,已知点A(-4,1),B(-2,0),C(-3, -1),请在图6上画出△ABC,并画出与△ABC关于原点O对称的图形;【解答过程】解:正确画出△ABC正确画出△DEF(2013福建厦门,18(3),7分).如图7,已知∠ACD=70°,∠ACB=60°,∠ABC=50°. 求证:AB∥CD.D CBA图7证明∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°.∵∠ABC=50°,∴∠BCD+∠ABC=180°.∴AB∥CD.(2013福建厦门,19(1),7分).(1)甲市共有三个郊县,各郊县的人数及人均耕地面积如下表所示:求甲市郊县所有人口的人均耕地面积(精确到0.01公顷);解:20×0.15+5×0.20+10×0.1820+5+10≈0.17(公顷/人).∴这个市郊县的人均耕地面积约为0.17公顷.(2013福建厦门,19(2),7分).先化简下式,再求值:2x2+y2 x+y -x2+2y2x+y,其中x=2+1,y=22—2;解:(2)解:2x2+y2x+y—2y2+x2x+y=x2—y2x+y=x -y .当 x =2+1, y =22—2时,原式= 2+1-(22—2)=3—2.(2013福建厦门,19(3),7分).如图8,已知A ,B ,C ,D 是⊙O 上的四点,延长DC ,AB 相交于点E .若BC =BE .求证:△ADE 是等腰三角形.图8证明∵BC =BE ,∴∠E =∠BCE .∵ 四边形ABCD 是圆内接四边形,∴∠A +∠DCB =180°.∵∠BCE +∠DCB =180°,∴∠A =∠BCE .∴∠A =∠E .∴ AD =DE .∴△ADE 是等腰三角形.(2013福建厦门,20,6分).有一个质地均匀的正12面体,12个面上分别写有1~12这12个整数(每个面上只有一个整数且每个面上的整数互不相同).投掷这个正12面体一次,记事件A 为 “向上一面的数字是2或3的整数倍”,记事件B 为 “向上一面的数字是3的整数倍”,请你判断等式“P(A)=12+P(B)”是否成立,并说明理由.解: 不成立∵ P(A)=812=23, 又∵P(B) =412=13, 而12+13=56≠23.∴ 等式不成立.(2013福建厦门,21,6分).如图9,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点E ,若AE =4,CE =8,DE =3,梯形ABCD 的高是365,面积是54.求证:AC ⊥BD . 图9ED C B A证明∵AD ∥BC ,∴∠ADE =∠EBC ,∠DAE =∠ECB .∴△EDA ∽△EBC .∴ AD BC =AE EC =12. 即:BC =2AD .∴54=12×365( AD +2AD ) ∴AD =5.在△EDA 中,∵DE =3,AE =4,∴DE 2+AE 2=AD 2.∴∠AED =90°.∴ AC ⊥BD .(2013福建厦门,22,6分).一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图10所示.当容器内的水量大于5升时,求时间x 的取值范围.解1: 当0≤x ≤3时,y =5x .当y >5时,5x >5,解得 x >1.∴1<x ≤3.当3<x ≤12时,设 y =kx +b .则⎩⎨⎧15=3k +b ,0=12k +b .解得⎩⎪⎨⎪⎧k =-53,b =20.∴ y =-53x +20. 当y >5时,-53x +20>5, 解得 x <9.∴ 3<x <9.∴容器内的水量大于5升时,1<x <9 .解2: 当0≤x ≤3时,y =5x .当y =5时,有5=5x ,解得 x =1.∵ y 随x 的增大而增大,∴当y >5时,有x >1.∴ 1<x ≤3.当3<x ≤12时,设 y =kx +b .则⎩⎨⎧15=3k +b ,0=12k +b .解得⎩⎪⎨⎪⎧k =-53,b =20.∴ y =-53x +20. 当y =5时,5=-53x +20. 解得x =9.∵ y 随x 的增大而减小,∴当y >5时,有x <9.∴3<x <9.∴容器内的水量大于5升时,1<x <9 .(2013福建厦门,23,6分).如图11,在正方形ABCD 中,点G 是边BC 上的任意一点,DE ⊥AG ,垂足为E ,延长DE 交AB 于点F .在线段AG 上取点H ,使得AG =DE +HG ,连接BH .求证:∠ABH =∠CDE .HGFEDC B 图11A证明∵四边形ABCD 是正方形,∴∠F AD =90°.∵DE ⊥AG ,∴∠AED =90°.∴∠F AG +∠EAD =∠ADF +∠EAD∴∠F AG =∠ADF .∵AG =DE +HG ,AG =AH +HG∴DE =AH又AD =AB ,∴ △ADE ≌△ABH∴∠AHB =∠AED =90°.∵∠ADC =90°,∴∠BAH +∠ABH =∠ADF +∠CDE∴∠ABH =∠CDE.(2013福建厦门,24,6分).已知点O 是坐标系的原点,直线y =-x +m +n 与双曲线y =1x交于两个不同的点A (m ,n )(m ≥2)和B (p ,q ),直线y =-x +m +n 与y 轴交于点C ,求△OBC 的面积S 的取值范围.解:∵ 直线y =-x +m +n 与y 轴交于点C ,∴ C (0,m +n ).∵点B (p ,q )在直线y =-x +m +n 上,∴q =-p +m +n .又∵点A 、B 在双曲线y =1x上, ∴1p =-p +m +1m. 即p -m =p -m pm, ∵点A 、B 是不同的点.∴ p -m ≠0.∴ pm =1.∵ nm =1,∴ p =n ,q =m .∵1>0,∴在每一个象限内,反比例函数y =1x的函数值y 随自变量x 的增大而减小. ∴当m ≥2时,0<n ≤12. ∵S =12( p +q ) p =12p 2+12pq =12n 2+12又∵12>0,对称轴n =0,∴当0<n ≤12时,S 随自变量n 的增大而增大. 12<S ≤58.(2013福建厦门,25,6分).如图12,已知四边形OABC 是菱形,∠O =60°,点M 是OA的中点.以点O 为圆心,r 为半径作⊙O 分别交OA ,OC 于点D ,E ,连接BM .若BM =7, ︵DE 的长是3π3.求证:直线BC 与⊙O 相切. 图12证明∵︵DE 的长是3π3,∴2πr 360·60=3π3. ∴ r =3. 延长BC ,作ON ⊥BC ,垂足为N .∵ 四边形OABC 是菱形∴ BC ∥AO ,∴ ON ⊥OA .∵∠AOC =60°,∴∠NOC =30°.设NC =x ,则OC =2x ,ON =3x .连接CM , ∵点M 是OA 的中点,OA =OC ,∴ OM =x .∴四边形MONC 是平行四边形.∵ ON ⊥BC ,∴四边形MONC 是矩形.∴CM ⊥BC . ∴ CM =ON =3x . 在Rt △BCM 中,(3x )2+(2x )2=(7)2,解得x =1.∴ON =CM =3.∴ 直线BC 与⊙O 相切.(2013福建厦门,26,11分).若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且x 1+x 2=2k (k 是整数),则称方程x 2+bx +c =0为“偶系二次方程”.如方程x 2-6x -27=0,x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0, x 2+4x +4=0都是“偶系二次方程”. (1)判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+bx +c =0是“偶系二次方程”,并说明理由.(1)解: 不是解方程x 2+x -12=0得,x 1=-4,x 2=3. x 1+x 2=4+3=2×3.5.∵3.5不是整数,∴方程x 2+x -12=0不是“偶系二次方程”.(2)解法1:存在∵方程x 2-6x -27=0,x 2+6x -27=0是“偶系二次方程”,∴ 假设 c =mb 2+n .当 b =-6,c =-27时,有 -27=36m +n .∴n =0,m =- 34. 即有c =- 34b 2. 又∵x 2+3x -274=0也是“偶系二次方程”, 当b =3时,c =- 34×32=-274.∴可设c =- 34b 2. 对任意一个整数b ,当c =- 34b 2时, ∵△=b 2-4c=4b 2.∴ x =-b ±2b 2. ∴ x 1=-32b ,x 2=12b . ∴ x 1+x 2=32b +12b =2b . ∵b 是整数,∴对任意一个整数b ,当c =- 34b 2时,关于x 的方程 x 2+bx +c =0是“偶系二次方程”.解法2:存在∵方程x 2-6x -27=0,的两个根是x 1=3,x 2=-9,而3=12×6,-9=32×6, 又“偶系二次方程”x 2+6x -27=0,x 2+3x -274=0的两根的绝对值x 1、 x 2与b 也有同样的规律.假设方程x 2+bx +c =0两根的绝对值x 1、x 2与b 满足x 1=12b ,x 2=32b (x 1<x 2). 可得c =- 34b 2. 对任意一个整数b ,当c =- 34b 2时, △=b 2-4c=4b 2.∴x =-b ±2b 2. ∴ x 1=-32b ,x 2=12b . ∴ x 1+x 2=32b +12b =2b .∵b 是整数,∴对任意一个整数b ,当c =- 34b 2时,关于x 的方程 x 2+bx +c =0是“偶系二次方程”.解法3: 存在∵x 2-6x -27=0可化为(x -3)2=62,同理“偶系二次方程”x 2-2x -8=0,x 2+3x -274=0, x 2+6x -27=0可化为(x -1)2=32,(x +32)2=32,(x +3)2=62. 由x 2+bx +c =0 得(x +b 2)2=b 24-c . 假设 b 24-c =m 2(m 是整数). 即c =b 24-m 2,取m =b . 得c =-34b 2. 对任意一个整数b ,当c =-34b 2时, △=b 2-4c=4b 2.∴x =-b ±2b 2. ∴ x 1=-32b ,x 2=12b . ∴ x 1+x 2=32b +12b =2b . ∵b 是整数,∴对任意一个整数b ,当c =- 34b 2时,关于x 的方程 x 2+bx +c =0是“偶系二次方程”.解法4: 存在当c =- 154b 2时, △=b 2-4c=16b 2.∴x =-b ±4b 2. ∴ x 1=-52b ,x 2=32b .∴x1+x2=52b+32b=4b=22b.∵b是整数,∴2b也是整数.∴当c=-154b2(b是整数)时,关于x的方程x2+bx+c=0是“偶系二次方程”.。

相关文档
最新文档