1生物信息学概论
第一课生物信息学概论
25
生物信息学当前的主要研究任务
生物信息学研究都有其特定的、不断创新 的方法学。以系统优化、软件并行化和数 据处理技术为主体的海量生物学数据处理 体系的建立将基于新的思路和设想。
26
生物信息学的特点
它是一门基于数据积累,尤其是原始数据 积累的科学。数据的获取是生物信息学发 展的保障和本源。生物信息学研究首先也 是基于实验数据的生产、管理和分析。因 此,生物信息领域的首要特点是生物学基 本数据收集的规模化,数据处理的程序化, 数据分析的专门化。
23
生物信息学当前的主要研究任务
蛋白质组学:
(1)蛋白质组图像数据处理,蛋白及其修饰鉴定
(2)构建蛋白质数据库,相关软件的开发和应用; (3)蛋白质结构、功能预测; (4)蛋白质连锁图。
24
生物信息学当前的主要研究任务
代谢组学:新陈代谢是由错综复杂的生化 代谢途径所构成的动态网络组成。要揭示 代谢的本质是一个长期的目标。但是,我 们可以从现有数据出发建立主要或特定代 谢途径的模型,如影响人类健康的常见代 谢疾病等。
ACGT
生物信息学基本概念
早在1956年,在美国田纳西州盖特林堡召开的首次 “生物学中的信息理论研讨会”上,便产生了生物信 息 学的概念。1987年,林华安博士正式把这一学科命名 为“生物信息学”(Bioinformatics)。被尊称为 “生物 信息学之父”。 生物信息学(Bioinformatics): (1)生物信息学包含了生物信息的获取、处理、储存、 分析和解释等在内一门交叉学科, (2)它综合运用数学、计算机科学和生物学的各种工 具进行研究, (3)目的在于阐明大量生物学数据所包含的生物学意
8. 生物信息分析的技术和方法研究
生物信息学概述(共59张PPT)精选全文完整版
蛋白质 结构
蛋白质 功能
最基本的 生物信息
2024/11/11
生命体系千姿百 态的变化
维持生命活 动的机器
9
第一部遗传密码已被破译,但对密码的转录过程还不清楚,对大多
数DNA非编码区域的功能还知之甚少
对于第二部密码,目前则只能用统计学的方法进行分析。破译“第
二遗传密码”:即折叠密码(folding code),从蛋白质的一级结构
Rickettsia prowazekii
Helicobacter pylori
Buchnerasp. APS
Escherichia coli大南芥
Thermotoga maritima
Thermoplasma acidophilum
mouse
Caenorhabitis elegans
以基因组计划的实施为标志的基因组时代(1990年至2001年)是生
物信息学成为一个较完整的新兴学科并得到高速发展的时期。这一 时期生物信息学确立了自身的研究领域和学科特征,成为生命科学 的热点学科和重要前沿领域之一。
这一阶段的主要成就包括大分子序列以及表达序列标签 ( expressed sequence tag,EST)数据库的高速发展、BLAST( basic local alignment search tool)和FASTA(fast alignment)等工具软件的研制和相应新算法的提出、基因的寻 找与识别、电子克隆(in silico cloning)技术等,大大提高
细胞质(线粒体、叶绿体) 基因组DNA
人类基因组:3.2×109 bp 18
人类自然科学史上的 3 大计划
曼哈顿原子 弹计划
阿波罗登月 计划
人类基因组计划
生物信息学(1):概论
对 数 据 进 行 分 析 、 较 、 模 和 预 测 等 , 动 了生 物 信 息 学 比 建 推
生 物 信 息 学 产 生 的背 景 的迅 速 发 展 。
H P 已完 成 . 入 后 基 因组 计 划 , 者 说 “ 基 因组 时 G 进 或 后 被称为生命科学“ 月计划 ” 人类基因组计划 ( m n 登 的 Hu a
高 质 量 的 含有 3 0亿 碱 基 的 人类 基 因组 全 序 列 。
HG P由 美 国 能 源 部 ( O ) 国 立 卫 生 研 究 院 ( I 提 D E 和 N H)
出并 提 供 资 助 , 于 20 年 2月 1 提 前 完 成 并 公 布 了准 01 21 3
不 同, 白质组是一个 动态的概念 : 不同组织 和不 同发 育 蛋 ①
研 究 的 主 要 任务 . 这 更 离 不 开生 物信 息 学 的发 展 。 而
H P的 主 要 任 务 是 :人 类 基 因 组 以及 一 些 模 式 生 物 体 G ( 菌 、 母 、 虫 、 蝇 等 ) 因 组 的 作 图 、 序 和 基 因 识 细 酵 线 果 基 测 别 。 该计 划 一 经 提 出 , 快 扩 展 成 为世 界 范 围 的 研 究 计 划 , 很 并 以惊 人 的速 度 前 进 。 经 过 美 、 、 、 、 和 中 国科 学 家 英 1 法 德 3 的 共 同努 力 , 至 20 0 0年 6月 2 .完 成 了 工 作 草 图 ; 61 3 至 20 0 1年 2 1 完 成 并 公 布 了准 确 、 晰 完 整 的 人 类 基 因 月 21 3 清 组 图 谱 . 是 人 类 科 学 史 上 又 一 个 里 程碑 式 的 事 件 , 预 示 这 它 着 完 成人 类 基 因组 计 划 已经 指 1可 待 。令 人 意 想 不 到 的是 . 3
生物信息学概论
3、蛋白质结构
目前用于确定蛋白质三维结构的方法:除了通过诸如X射线晶体 结构分析、多维核磁共振(NMR)波谱分析和电子显微镜二维 晶体三维重构(电子晶体学,EC)等物理方法 另一种广泛使用的方法就是通过计算机辅助预测的方法。一般 认为蛋白质的折叠类型只有数百到数千种,远远小于蛋白质所 具有的自由度数目,而且蛋白质的折叠类型与其氨基酸序列具 有相关性,这样就有可能直接从蛋白质的氨基酸序列通过计算 机辅助方法预测出蛋白质的三维结构
医学
生物学、 分子生物学
生物信息学
数学、 统计学
计算机学、 计算机网络
10
生物信息学主要功能
➢ 分析和处理实验数据和公共数据,加快研究进 度,缩短科研时间
➢ 提示、指导、替代实验操作,利用对实验数据 的分析所得的结论设计下一阶段的实验
➢ 实验数据的自动化管理 ➢ 寻找、预测新基因及其结构、功能 ➢ 蛋白质高级结构及功能预测(三维建模,目前
研究的焦点和难点)
11
1. 分析和处理实验数据和公共数据,加快研究进度, 缩短科研时间
➢ 核酸:序列同源性比较,分子进化树构建,结构信息分 析,包括基元(Motif)、酶切点、重复片断、碱基组成和 分布、开放阅读框(ORF),蛋白编码区(CDS)及外 显子预测、RNA二级结构预测、DNA片段的拼接
33
蛋白质分析技术
氨基酸自动测序:测定蛋白质 N-端氨基酸序列 质谱法测序:测定氨基酸序列 X-射线衍射:测定蛋白质的 3-D结构 细菌或酵母双杂交实验:测定蛋白质间的相互作用 双相电泳:蛋白质组学研究
34
(3) DNA分子和蛋白质分子都含有进化信息
➢通过比较相似的蛋白质序列,如肌红蛋白和 血红蛋白,可以发现由于基因复制而产生的 分子进化证据。
第01讲生物信息学概述
20世纪90年代
人类基因组计划开始 (Human Genome Project, HGP)
人类基因组计划带来了
生物信息学
人类基因组计划
(HGP,Human Genome Project) 目标:整体上破解人类遗传信息的奥秘
由美国NIH和能源部提出和带头,美、英、德、 法、日、中共同参与的国际合作项目。 完成人全部24(22+X+Y)条染色体中3.2×109个碱基 对的序列测定,主要任务包括做图(遗传图谱、 物理图谱以及转录图谱的绘制)、测序和基因识 别,其根本任务是解读和破译生物体的生老病死 以及与疾病相关的遗传信息。
(二)基因组时代的生物信息学
以基因组计划的实施为标志的基因组时代(1990年至2001 年)是生物信息学成为一个较完整的新兴学科并得到高速 发展的时期。这一时期生物信息学确立了自身的研究领域 和学科特征,成为生命科学的热点学科和重要前沿领域之 一。
这一阶段的主要成就包括大分子序列以及表达序列标签 (expressed sequence tag,EST)数据库的高速发展、 BLAST(basic local alignment search tool)和FASTA (fast alignment)等工具软件的研制和相应新算法的提 出、基因的寻找与识别、电子克隆(in silico cloning) 技术等,大大提高了管理和利用海量数据的能力。
定义二:生物信息学特指数据库类的工作,包括持 久稳固的在一个稳定的地方提供对数据的支持 (1994)
定义三:采用信息科学技术,对各种生物信息(包 括核酸、蛋白质等)的收集、加工、储存、分析、 解释的一门学科。
收集、加工、储存:计算机科学家 分析、解释:生物学家
三、生物信息学发展简史
生物信息学概论 陈新 生命科学学院 2001年10月
生物信息学概论 陈新 生命科学学院2001年10月(一)、概述 (3)(二)、生物信息学发展 (3)1.生物信息学的诞生和发展 (3)2.生物信息学的国内外现状 (4)(三)、生物信息学的主要研究内容 (14)一、基因组相关信息的收集、储存、管理与提供 (14)二、新基因的发现、鉴定 (14)****BLAST简介 (14)三、非编码区信息结构分析 (21)四、生物进化的研究 (21)五、完整基因组的比较研究 (21)六、基因组信息分析方法研究 (22)七、大规模基因功能表达谱的分析 (22)八、蛋白质分子空间结构预测、模拟和分子设计 (22)1.蛋白质分子模型的建立与显示 (23)2.蛋白质结构预测 (23)3、蛋白质分子模拟软件 (25)九、药物设计 (25)1、蛋白质改性和分子设计 (25)2、基于生物大分子结构的药物设计 (26)3、药物设计中理论方法 (28)(四)、展望 (29)(一)、概述生物信息学是在数学、计算机科学和生命科学的基础上形成的一门新型交叉学科,是指为理解各种数据的生物学意义,运用数学、计算机科学与生物学手段进行生物信息的收集、加工、储存、传播、分析与解析的科学。
近年来随着快速序列测定、基因重组、基因芯片,多维核磁共振等技术的应用,生物学实验数据呈爆炸趋势增长,同时计算机和国际互联网络的发展使对大规模数据的贮存、处理和传输成为可能。
作为一门新的学科领域,它是将基因组DNA序列信息分析作为源头,在获得了蛋白质编码区的信息之后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。
它由相互依赖、相互渗透的两个研究领域组成,即构筑现代生物学所必需的信息基础研究,以及旨在解析基本生物学问题的基于计算机技术的基础生物学研究。
因此,在基因组研究时代,基因组信息学、蛋白质的结构模拟以及药物设计必将有机的结合在一起,它们是生物信息学的三个重要组成部分。
生物信息学更多的具备研究领域的特征,而非一套完整的科学概念和原理,因而具有独特的开放性和应用途径的多样性等特征。
生物信息学概论
生物信息学概论
生物信息学是一门生物学、计算机科学和统计学交叉的新兴学科,利
用计算机科学、统计学和生物学等领域的技术手段,研究生物学中的信息
问题。
生物信息学的发展得益于计算机技术的迅速发展和基因组学的大规
模进展,是推动生命科学发展和实现个性化医学的关键技术之一。
生物信息学的研究内容主要包括基因组学、转录组学、蛋白质组学、
代谢组学、系统生物学和生物信息学软件等方面。
其中,基因组学是生物
信息学的核心内容,研究的是基因组的结构、功能和进化等问题。
转录组
学是研究基因的转录和表达的分子生物学学科,蛋白质组学是研究所有蛋
白质的表达和功能,代谢组学研究的是生物体内代谢产物的组成和代谢活动。
系统生物学则是研究生物体系统级的调控规律和功能。
生物信息学也是个充满挑战和机遇的领域。
生物物种之间的差异和基
因组的复杂性,给生物信息学的研究和应用带来了很大的挑战。
目前生物
信息学面临着数据管理、数据标准化、数据挖掘和信息整合等方面的挑战。
同时,在生物信息学应用中,还有重要的伦理和法律问题等等。
总之,生物信息学不仅是一个新兴专业,也是生命科学与计算机科学、统计学等交叉领域的典型代表,它将成为解决许多生命科学研究的重要工具,对医学、农业等领域的发展也将产生深远影响。
1、生物信息学概论
课程内容
概论 DNA、RNA和蛋白质序列信息资源 序列比对与数据库检索 分子系统发生分析 基因组学与基因预测 蛋白质结构分析与预测 基因芯片和数据分析 Perl语言在生物信息学中的应用
学科目标
培养具有学科交叉知识的复合型人才
为生物学工作者提供生物信息学工具的使用方法 为信息科学、计算机科学、数学领域工作者提供新的研究对象 为生物学工作者增加新的研究问题的思维方式与方法
生物学发展面临的机遇和挑战
(4) 简单的低层次系统->复杂生物系统
半乳糖代谢通路研究
整合转录组和蛋白质组实验 数据后获得的精细功能图谱
生物学发展面临的机遇和挑战
(5) 科学研究的方式发生变化
1) 定性描述—→ 定量研究; 2) 从分析走向综合; 3) 实验研究和理论研究结合。
生物学发展面临的机遇和挑战
计算机硬件的发展
CPU:体系架构、主频、摩尔定律、多线程、多核心… 内存:容量、运行频率、多通道… 显卡:运行频率、位宽、架构、功率… 内置存储(硬盘):介质、容量、接口… 外置存储:软盘、光盘、优盘、蓝光光盘
计算机网络
国际互联网 域名系统(gov, edu, org, com…) TCP/IP协议 HTTP、FTP和BitTorrent Telnet和SSH Pop3、IMAP和SMTP
生物信息学是融合了生物学、计算机科学以及信息技术的一个交叉学科, 其最终目的是发现新的生物学观点以及从生物学中得到普适性原理。
Why is bioinformatics important?
生物学的发展,使人们形成一个基本的共识: 生命运动形态中的信息与支撑信息运动的物质 (即生物大分子)的生化过程与物理作用对理 解生命的本质是极其重要的,这里可能集中了 生命的基本奥秘。
生物信息学知识点总结分章
生物信息学知识点总结分章第一章:生物信息学概述生物信息学是一门综合性学科,结合计算机科学、数学、统计学和生物学的知识,主要研究生物系统的结构、功能和演化等方面的问题。
生物信息学的发展可以追溯到20世纪70年代,随着基因组学、蛋白质组学和生物技术的发展,生物信息学逐渐成为生物学研究的重要工具。
生物信息学的主要研究内容包括基因组学、蛋白质组学、代谢组学、系统生物学等。
生物信息学方法主要包括序列分析、结构分析、功能预测和系统分析等。
第二章:生物数据库生物数据库是生物信息学研究的重要基础,主要用于存储、管理和共享生物学数据。
生物数据库包括基因组数据库、蛋白质数据库、代谢数据库、生物通路数据库等。
常用的生物数据库有GenBank、EMBL、DDBJ等基因组数据库,Swiss-Prot、TrEMBL、PDB等蛋白质数据库,KEGG、MetaCyc等代谢数据库,Reactome、KeggPathway等生物通路数据库等。
生物数据库的建设和维护需要大量的人力和物力,目前国际上已建立了众多生物数据库,为生物信息学研究提供了丰富的数据资源。
第三章:序列分析序列分析是生物信息学研究的重要内容,主要应用于DNA、RNA、蛋白质序列的比对、搜索和分析。
常用的序列分析工具包括BLAST、FASTA、ClustalW等,这些工具可以帮助研究人员快速比对和分析生物序列数据,从而挖掘出序列的相似性、保守性和功能等信息。
序列分析在基因组学、蛋白质组学和系统生物学等领域发挥着重要作用,是生物信息学研究的基础工具之一。
第四章:结构分析结构分析是生物信息学研究的另一个重要内容,主要应用于蛋白质、核酸等生物分子的三维结构预测、模拟和分析。
常用的结构分析工具包括Swiss-Model、Modeller、Phyre2等,这些工具可以帮助研究人员预测蛋白质或核酸的三维结构,分析结构的稳定性、功能和相互作用等特性。
结构分析在蛋白质结构与功能研究、蛋白质药物设计等方面发挥着重要作用,为生物信息学研究提供了重要的技术支持。
生物信息学概论
获取人和各种生物的完整基因组
基因组研究的首要目标是获得人的整套遗传密码。
随着科学技术的飞速发展,科学家于1985年提出了 旨在阐明人类46条染色体上30亿个脱氧核苷酸的排 列顺序,这就是规模空前的人类基因组计划(HGP), 已于1990年启动,至今已取得巨大成就,使人类第 一次在分子水平上全面认识自我。
充分研究
100-300患 者研究(II期)
探索研究
临床数据 分析
注册
大量候选
药物的合 健康志愿者研 成
究I期
候选药物测试30010,000患者 (III期)
制剂开 发
发现
项目组 与计划
化合物 合成
筛选
候选 化合
物
动物 安全 性研
究 早期 案例 性研
究
生物信息学的发展与应用研究
发展有效的软件、数据库以及若干数据库工具,诸如电子网络等 远程通讯工具;
结构功能预测
通过蛋白质序列特征来直接预测其结构或功能,而 不依靠于其它已知蛋白信息。
蛋白质折叠
蛋白质折叠问题是分子生物学研究的中心问题。它 所要解决的是蛋白质一级结构中的氨基酸序列最终 怎样折叠成三维空间结构。
研究蛋白质折叠的过程,可以说是破译“第二遗传 密码”-折叠密码(folding code)的过程。
Computation
Informatics
Bioinformatics
Biology
一、生物信息学定义
1995年,在美国人类基因组计划第一个五年总 结报告中,给出了一个较为完整的生物信息学 定义:生物信息学(Bioinformatics)是一门 交叉科学,它包含了生物信息的获取、加工、 存储、分配、分析、解释等在内的所有方面, 它综合运用数学、计算机科学和生物学的各种 工具,来阐明和理解大量数据所包含的生物学 意义。
《生物信息学概述》课件
04
生物信息学的挑战与未来发展
数据整合与标准化
数据整合
在生物信息学中,数据整合是一个重要的挑战。由于不同实验室、研究机构的数据格式、标准和质量 各不相同,如何将这些数据有效地整合在一起成为一个亟待解决的问题。
标准化
为了提高数据的可比性和可重复性,生物信息学需要制定统一的标准和规范,以确保数据的准确性和 可靠性。
03
生物信息学在医学研究中的应用
疾病诊断
基因检测
利用生物信息学技术对基因序列进行分析,检测与疾病相关的基因 变异,有助于早期发现遗传性疾病和个性化诊断。
疾病分型
通过对生物样本的基因组、转录组和蛋白质组等数据进行比较分析 ,有助于对疾病进行精确分型,为制定个性化治疗方案提供依据。
预测疾病风险
基于生物信息学的大数据分析,可以预测个体患某种疾病的风险,为 预防性干预提供科学依据。
05
实例分析
基因组学研究实例
总结词
基因组学研究实例展示了生物信息学在基因组序列分析中的应用。
详细描述
基因组学研究实例中,生物信息学发挥了重要作用。通过对基因组序列进行分析,可以 发现与人类健康、疾病相关的基因变异和功能。生物信息学方法包括基因组测序、基因
表达分析、基因变异检测等,这些方法为个性化医疗和精准医学提供了有力支持。
02
生物信息学的主要技术
基因组学
基因组测序
通过对生物体基因组的测序,分析基因序列、基因突变和基 因功能。
基因表达分析
研究基因在不同条件下的表达水平,揭示基因与生物表型之 间的关系。
蛋白质组学
蛋白质分离与鉴定
分离和鉴定生物体内的蛋白质,了解蛋白质的组成和功能。
蛋白质相互作用研究
生物信息学概论(1)
生物信息学概论引言生物信息学是一个跨学科领域,综合了生物学、计算机科学和统计学的原理和方法。
它通过处理和分析大量的生物数据来解决生物学问题。
生物信息学在基因组学、蛋白质组学、代谢组学等领域都起着重要作用。
本文将介绍生物信息学的基本概念、技术和应用。
生物信息学的基本概念生物信息学的核心概念是将生物学数据与计算机科学和统计学方法相结合。
生物学数据可以包括基因序列、蛋白质结构、代谢通路等。
计算机科学和统计学方法则用于处理和分析这些数据。
生物信息学的目标是从生物学数据中提取有用的信息,从而加深对生物系统的理解。
生物信息学的基本任务包括生物数据的收集、存储、管理和分析。
生物数据的收集可以通过实验室技术如DNA测序、质谱分析等获得。
收集到的数据需要进行格式转换和标准化,以便于存储和分析。
存储和管理生物数据需要高效的数据库和文档管理系统。
生物数据的分析可以使用各种统计学和机器学习算法来识别生物学特征和解释生物学现象。
生物信息学的技术和工具生物信息学使用了许多技术和工具来处理和分析生物学数据。
以下是一些常见的生物信息学技术和工具:1. 基因组学分析基因组学分析是生物信息学的重要领域之一。
它主要研究基因组的结构和功能。
常用的基因组学分析技术包括基因组序列比对、基因预测、基因表达分析等。
常用的基因组学工具包括BLAST、GeneMark、TopHat等。
2. 蛋白质组学分析蛋白质组学分析研究蛋白质的结构和功能。
它可以通过质谱分析等技术来识别和鉴定蛋白质。
常用的蛋白质组学工具包括MASCOT、Proteome Discoverer等。
3. 代谢组学分析代谢组学研究生物体内代谢产物的数量和种类。
它可以通过质谱分析和核磁共振等技术来分析代谢产物。
常用的代谢组学工具包括MetaboAnalyst、XCMS等。
4. 网络分析网络分析研究生物系统中的相互作用关系。
这些关系可以通过基因调控网络、蛋白质相互作用网络等来表示。
常用的网络分析工具包括Cytoscape、STRING等。
生物信息学讲义
生物信息学讲义第一章:生物信息学概述什么是生物信息学:又称计算生物学(computational biology),是生物学与信息学、计算机科学相互交叉形成的新兴学科,它应用数学、计算机科学的方法研究生物学问题,它所研究的主要对象是生物学的数据。
生物信息学是为了适应人类基因组计划(Human Genome Project,HGP)的需要产生的,最主要的应用是对人类基因组计划所得到的大量生物学数据进行存储、检索和分析。
目前生物信息学已被广泛的应用于医学、人类学、结构生物学和蛋白质组学(Proteomics)等研究领域。
生物信息学的研究内容:广义地说,生物信息学从事对基因组研究相关生物信息的获取、加工、储存、分配、分析和解释。
这一定义包括了两层含义,一是对海量数据的收集、整理与服务,也就是管好这些数据;另一个是从中发现新的规律,也就是用好这些数据。
具体地说,生物信息学是把基因组DNA序列信息分析作为源头,找到基因组序列中代表蛋白质和RNA基因的编码区;同时,阐明基因组中大量存在的非编码区的信息实质,破译隐藏在DNA序列中的遗传语言规律;在此基础上,归纳、整理与基因组遗传信息释放及其调控相关的转录谱和蛋白质谱的数据,从而认识代谢、发育、分化、进化的规律。
生物信息学还利用基因组中编码区的信息进行蛋白质空间结构的模拟和蛋白质功能的预测,并将此类信息与生物体和生命过程的生理生化信息相结合,阐明其分子机理,最终进行蛋白质、核酸的分子设计、药物设计和个体化的医疗保健设计。
基因组信息学、蛋白质的结构计算与模拟以及药物设计,这三者紧密地围绕着遗传信息传递的中心法则,因而必然有机地连接在一起。
1、基因组序列数据的拼接和组装基因组研究的首要目标是获得人的整套遗传密码。
人的遗传密码有32亿个碱基,而目前DNA测序多采用鸟枪法(shotgun),每个反应只能读取几百到上千个碱基。
在进行测序前,首先应用物理方法将人的基因组打碎,得到基因组片段进行测序,然后再把这些片段重新拼接起来。
生物信息学的概述
生物信息学的概述生物信息学是生物学、信息学和数学结合的学科,即应用数学、信息学、统计学和计算机等学科研究生物学问题的学科,作为一门新兴的交叉学科,以基因组DNA 序列信息分析为出发点,以大数据为基础,进行基因组学、转录组、蛋白质组学、代谢组学等多层面的研究。
狭义层面上的基因组学,是应用信息科学的理论、方法和技术,管理、分析和利用生物信息数据。
广义层面上,利用信息科学的方法和技术,研究生物体系和生物学过程的中信息的存储、内涵和传递等,研究和分析生物体细胞、组织、器官等部分中蕴藏的生物信息。
生物信息学伴随着基因组学的研究而发展,也就是说生物信息学可以完成对基因组学数据的获取、加工、存储、分配、分析和解释等。
近几年来,高通量测序技术的发展,直接推动着生物学数据的增长,充分利用这些数据解释生物学领域的复杂生命系统的奥妙成为近几年的研究热点。
目前,针对基因组、转录组、表观基因组、代谢组等不同层面的分子水平数据,各研究单位开发了集成的、专门的数据库及数据分析软件,为数据的储存、处理、分析提供了资源和工具。
1.对海量数据的收集、整理与服务,即管理好这些数据,即各个生物数据库的建立与管理,以及对生物信息相关书库的应用。
2.利用数理统计方法、数值计算等方法从中发现规律,研究生物信息学问题。
1)把DNA序列信息作为分析源头,找到基因组序列中代表蛋白质和核糖核酸(RNA)基因的编码区。
2)阐明基因组中存在的非编码区的信息实质,破译隐藏在DNA序列中的遗传语言规律3)归纳、整理与基因组遗传信息释放及其调控相关的转录谱和蛋白质谱的数据,解析代谢、发育、分化和进化的规律。
3.基于已有数据资料的处理分析结果,提出具有重要生物学问题,开发新型工具和算法,引领生物信息学领域研究方向。
生物信息学的研究内容:对于基因序列、蛋白质序列和转录组序列等分析问题,都是从数学方面描述成字母的排序问题,但描述的问题和研究的问题不同。
如蛋白质序列问题是发现蛋白质分子上的功能性模体和使用这些motion来给新的基因序列进行有效的分类。
生物信息学概论-1资料文档
国际著名的生物信息中心
NCBI EBI HGMP ExPASy CMBI ANGIS NIG BIC
National Center for Biotechnology Information (US) European Bioinformatics Institute (EU) Human Genome Mapping Project Resource Centre (UK ) Expert of Protein Analysis System (Switzerland ) Centre of Molecular and Biomolecule (The Netherlands) National Genome Information Service (Australia) National Institute of Genetics (Japan) National Bioinformatics Centre (Singapore)
2001年2月16日《Science》封面
1999.7 第5届国际公共领域人类基因组测序会议,加快测序速度 2000 Celera公司宣布完成果蝇基因组测序
国际公共领域宣布完成第一个植物基因组——拟南芥全基 因组的测序工作
2000.6.26 公共领域和Celera公司同时宣布完成人类基因组工作草图 2001.2.15 《Nature》刊文发表国际公共领域结果 2001.2.16 《Science》刊文发表Celera公司及其合作者结果
相当于2800多本每本1000页每页1000字的“天书”
DNA序列数据增长趋势
各种分子生物学数据库及其增长情况
生物数据爆炸性增长:
生物信息学概论
常见研究领域
Alignment (序列比对)
Protein Structure Prediction (蛋白质结构预测)
Computer-Aided Gene Recognitions (计算机辅助基因识别)
DNA Language (DNA语言)
Molecular Evolution & Compared Genomics
基因多态性分析
基因进化
mRNA结构预测
基因芯片设计
基因芯片数据分析
疾病相关基因分析
例:高度自动化的实验数据的获得、加工和整理
各种自动化分子生物学仪器应用上,如DNA测序仪,PCR仪等
实验过程高度自动化,产生的海量数据,专门的实验室数据管理系统自动完成包括实验进程和实验数据的纪录,常规数据分析,数据质量检测和问题的自动查找,常规的数据说明和数据输入数据库。
4、基因表达数据的分析与处理
基因表达数据分析是目前生物信息学研究的热
点和重点
目前对基因表达数据的处理主要是进行聚类分
析,将表达模式相似的基因聚为一类,在此基
础上寻找相关基因,分析基因的功能
所用方法主要有:
相关分析方法
模式识别技术中的层次式聚类方法
人工智能中的自组织映射神经网络
主元分析方法
基因表达分析和调控网络研究
二级结构的预测可以归结为模式识别问题
主要方法有:
立体化学方法
图论方法
统计方法
最邻近决策方法
基于规则的专家系统方法
分子动力学方法
人工神经网络方法
预测准确率超过70%的第一个软件是基于神经网络的PHD系统
蛋白质三级结构预测
同源模型化方法
生物信息学概论-更多文档分类
存在不同的层次
分子,细胞,组织器官和机体等等
生命现象的层次
分子和原子的相互作用 生物小分子——糖、脂肪、核苷酸、氨基酸、金 属离子、水 生物大分子——蛋白质与核酸复制、转录、剪接、 翻译、运输 细胞及信号传导 个体、器官、组织 免疫网络、神经网络、代谢网络 生物多样性、种群动力学 系统生物学、生物复杂性、生态系统
1997年:大肠杆菌基因组(5Mb)全部测序完成;毛 细管测序仪上市。
1998年5月, Craig Venter宣布成立Celera公司,并 宣称将采用“全基因组鸟枪法”完成人类基因组的 全部测序。(人类基因组测序在“公” “私”之间 展开了激烈竞争)。同年,线虫基因组测序完成。
1999年:中国获准参加HGP,承担测定人类基因组 1%测序任务;英国、日本和美国共同完成了第一条 人染色体(第22条染色体)的全部测序工作。
这是人类基因组研究的一个重要里程碑。
我们拥有的基因数量与鱼类和植物相当,也 不比一些蠕虫或苍蝇多多少。但我们的基因 组更为复杂。
一些生物的基因数量
Fugu rubripes (pufferfish): 20,000 to 25,000 Arabidopsis thaliana (thale cress): 26,000 Caenorhabditis elegans (worm): 19,000 Drosophila melanogaster (fly): 13,000
“工作框架图”覆盖人类基因组的97%,至少92%的 序列精确无误。 预计包含3万到4万个编码蛋白质的基因(2001)。 国际公共组估计为 31,000个,而Celera 估计为 38,500个。至2004年,重新校定为20,000---25,000 个。 均远小于预期。(Many predicted genes were unique to each group. There are many transcripts of unknown function.)
生物信息学概述
生物信息学概述生物信息学是一门综合性的学科,结合了生物学、计算机科学和统计学等多个领域的知识,旨在通过对生物学数据的收集、存储、分析和解释,揭示生物学中的重要规律和信息。
本文将从生物信息学的定义、发展历程、研究内容和应用领域等方面进行概述。
一、定义生物信息学是一门利用计算机和统计学方法研究生物学问题的学科,它通过对生物学数据的处理和分析,揭示生物学中的规律和信息。
生物信息学的研究对象包括基因组、转录组、蛋白质组等生物大分子的序列和结构信息,以及生物学中的遗传变异、蛋白质相互作用等生物过程。
二、发展历程生物信息学的起源可以追溯到20世纪40年代末的蛋白质序列研究。
随着计算机技术的发展和生物学研究数据的快速增长,生物信息学逐渐成为一门独立的学科。
在20世纪末和21世纪初,随着基因组测序技术的突破和生物学研究的快速发展,生物信息学迎来了爆发式的发展,成为现代生物学研究中不可或缺的一部分。
三、研究内容生物信息学的研究内容主要包括以下几个方面:1.序列分析:通过对DNA、RNA和蛋白质序列的比对、注释和分析,揭示其功能和结构信息。
序列比对技术包括全局比对和局部比对,可以用于基因家族的鉴定和进化关系的推断。
2.结构预测:通过计算方法预测蛋白质的二级、三级甚至四级结构,揭示蛋白质的功能和相互作用机制。
结构预测方法包括同源建模、蛋白质折叠模拟等。
3.基因组学:通过对基因组的测序和注释,研究基因组的组成、结构和功能,包括基因的定位、基因的功能注释和基因组的进化等。
4.转录组学:通过对转录组的测序和分析,研究基因在特定生理状态下的表达模式和调控机制。
转录组学可以揭示基因的调控网络和细胞功能的变化。
5.蛋白质组学:通过对蛋白质组的测序和分析,研究蛋白质的组成、结构和功能,包括蛋白质相互作用、蛋白质修饰和蛋白质功能的预测等。
四、应用领域生物信息学在生物学研究和应用中有着广泛的应用。
主要包括以下几个方面:1.基因组学研究:生物信息学在基因组测序和注释中发挥重要作用,为研究基因组的组成、结构和功能提供了重要的工具和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目标:整体上破解人类遗传信息的奥秘
2021/3/10
21
DNA、基因、基因组
生命活动三要素:物质、能量、信息
DNA: 遗传物质(遗传信息的载体) 双螺旋结构
A, C, G, T四种基本字符的复杂文本
基因(Gene):具有遗传效应的DNA分子片段
2021/3/10
22
基因组(Genome):包含细胞或生物体全套的遗传信息的全部
遗传物质。原核生物(细菌、病毒等) 真核生物(真菌、植物、动物等)
人类基因组:
3.2×109 bp
2021/3/10
23
2021/3/10
尽管比之于人类登月,HGP的投入资金 要少得多,但HGP对人类生活的影响要 更为深远。因为随着这个计划的完成, DNA分子中编码的遗传信息将对人类存 在的化学基础作出最终的回答。这将不 仅帮助我们理解我们是如何作为健康的 人发挥正常功能的,而且也将在化学水 平上解释遗传因子在各种疾病,如癌症、 早老痴呆症、精神分裂症等一些严重危 害人类健康的疾病中的作用。毕竟对人 类自身更深入的了解是人类活动中最重 要的一个部分。
8
What is bioinformatics? from /wiki/Bioinformatics
• Bioinformatics and computational biology involve the use of techniques including applied mathematics, informatics, statistics, computer science, artificial intelligence, chemistry, and biochemistry to solve biological problems usually on the molecular level. Research in computational biology often overlaps with systems biology. Major research efforts in the field include sequence alignment, gene finding, genome assembly, protein structure alignment, protein structure prediction, prediction of gene expression and proteinprotein interactions, and the modeling of evolution.
2021/3/10
33
生物分子数据的收集与管理
基因组 数据库
EMBL GenBank DDBJ
蛋白质 序列 数据库
SWISS-PROT PIR
蛋白质
PDB
结构
2021/3/10
数据库
34
数据库搜索及序列比较
• 搜索同源序列在一定程度上就是通过序列比较寻找相 似序列
• 序列比较的一个基本操作就是比对(Alignment),即 将两个序列的各个字符(代表核苷酸或者氨基酸残基) 按照对应等同或者置换关系进行对比排列,其结果是 两个序列共有的排列顺序,这是序列相似程度的一种 定性描述
生物信息学的历史
从人类基因组计划(HGP)说起
2021/3/10
19
曼哈顿原子弹计划
阿波罗登月计划
人类基因组计划
2021/3/10
20
为什么提出HGP?
60年代初,美国总统Kennedy提出两个科学计划:
登月计划 攻克肿瘤计划 人类遗传信息的复杂性
人类基因组计划
(HGP,Human Genome Project)
• 狭义 应用信息科学的理论、方法和技术,管理、 分析和利用生物分子数据。
2021/3/10
10
计算生物学/生物信息学: 三种科学文化的融合
生物学家 (生物学问题)
数学物理学家 计算机科学家 (基础理论问题)
工程师 (技术应用)
2021/3/10
11
A marriage of …
Information technology
——Watson ,1990,《Science》
24
HGP的历史回顾
1984.12 犹他州阿尔塔组织会议,初步研讨测定人类整个基
因组DNA序列的意义
1985 Dulbecco在《Science》撰文 “肿瘤研究的转折点:人
类基因组的测序”
美国能源部(DOE)提出“人类基因组计划”草案
1987 美国能源部和国家卫生研究院(NIH)联合为“人类
大肠杆菌及其全基因组
2021/3/10
水稻基因组计划
27
1999.7 第5届国际公共领域人类基因组测序会议,加快测序速度 2000 Celera公司宣布完成果蝇基因组测序
国际公共领域宣布完成第一个植物基因组——拟南芥全基 因组的测序工作
Drosophila melanogaster 果蝇
2021/3/10
2021/3/10
3
生物信息学概论
2021/3/10
4
内容
生物信息学概况 – 生物信息学简介
生物信息学、生物学基础 历史、内容、任务、技术和方法
– 发展趋势及研究热点
2021/3/10
5
生物信息学简介
三大自然科学之谜
• 宇宙的起源 • 生命的诞生 • 思维的奥秘
2021/3/10
7
2021/3/10
6.9
13 GBF
21, reg of 9
6
14 Stanford (Davis)
8
23
15 Keio
2,6,8,22,21
30
16 U. Wash (Hood LAB) 14,15
2671
Total
2021/3/10
2671Mb
6/1-8/31/99
Projected Kr Proj Accum.
基因表达数据的分析与处理
• 基因表达数据分析是目前生物信息学研究的热 点和重点
• 目前对基因表达数据的处理主要是进行聚类分 析,将表达模式相似的基因聚为一类,在此基 础上寻找相关基因,分析基因的功能
• 所用方法主要有:相关分析方法、模式识别技 术中的层次式聚类方法、人工智能中的自组织 映射神经网络、主元分析方法 等
生物信息学
Bioinformatics
2021/3/10
1
理论课讲授内容
第一讲 生物信息学概论 第二讲 医学信息学基础及信息学基本技术 第三讲 生物信息中心、核酸和蛋白质序列
资源 第四讲 生物信息重要数据库
2021/3/10
2
第五讲 序列比对 第六讲 生物医学文献及PCR 第七讲 序列特征分析 第八讲 生物信息学与基因芯片
– 生物信息学是在生命科学的研究中,以计算机为工具 对生物信息进行储存、检索和分析的科学。
– 生物信息学是当今生命科学和自然科学的重大前沿领 域之一,同时也将是21世纪自然科学的核心领域之一, 其研究重点主要体现在基因组学(Genomics)和蛋白组学 (Proteomics) 。
2021/3/10
基因组计划”下拨启动经费约550万美元
1989 美国成立“国家人类基因组研究中心Watson担任
第一任主任
1990.10 经美国国会批准,人类基因组计划正式启动
2021/3/10
25
1995 第一个自由生物体流感嗜血菌(H. inf)的全 基因组测序完成
1996 完成人类基因组计划的遗传作图
启动模式生物基因组计划
Actual K Genbank Kr 4/1-11/30/99 Mr. 4/99-3/00
1300
941
4200
>12
837
296
2900
8
865
559
2300
7.9
687
461
2100
6.4
462
261
660
3.1
136
195
520
2.1
180
32
180
1.5
100
118
300
1.4
12.5
12.5
900
4 JGI
5,16,19
250
5 Baylor
1,2,3,X
230
6 Riken
21,18,11q
160
7 IMB
8,21,X
50
8 Genoscope
Most of 14
85
9 U. Wash (Olson)
10 Beijing
3p
30
11 GTC (Smith)10Biblioteka 5012 MPIMG
17,21,X
Biology
2021/3/10
12
生命信息系统
生物所处的时空系统 物质系统,信息传递与控制,能量
2021/3/10
13
相关学科图示
2021/3/10
14
广义概念图示
2021/3/10
15
狭义概念图示
2021/3/10
16
总结:生物信息学
– 生物信息学(Bioinformatics) 是一门新兴的交叉学科, 是生命科学领域中的新兴学科,面对人类基因组计划 等各种项目所产生的庞大的分子生物学信息,生物信 息学的重要性将越来越突出,它将会为生命科学的研 究带来革命性的变革。
2021/3/10
9
生物信息学
• 说文解字:生物 + 信息 + 学 (bioinformatics)
biology + information + theory