高二数学抽样方法
高中数学必修2《统计》知识点讲义(最新整理)
第二章统计一、三种抽样方法1、统计的的基本思想是:用样本的某个量去估计总体的某个量总体:在统计中,所有考察对象的全体。
个体:总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做这个总体的一个样本。
样本容量:样本中个体的数目。
2、抽样方法:要求:总体中每个个体被抽取的机会相等(1)简单随机抽样:抽签法和随机数表法简单随机抽样的特点是:不放回、等可能.抽签法步骤(1)先将总体中的所有个体(共有N个)编号(号码可从1到N)(2)把号码写在形状、大小相同的号签上,号签可用小球、卡片、纸条等制作(3)将这些号签放在同一个箱子里,进行均匀搅拌(4)抽签时,每次从中抽出一个号签,连续抽取n次(5)抽出样本随机数表法步骤(1)将总体中的个体编号(编号时位数要统一);(2)选定开始的数字;(3)按照一定的规则读取号码;(4)取出样本(2)系统抽样系统抽样特点:容量大、等距、等可能.步骤:1.编号,随机剔除多余个体,重新编号2.分组 (段数等于样本容量),确定间隔长度 k=N/n3.抽取第一个个体编号为i4.依预定的规则抽取余下的个体编号为i+k, i+2k, …(3)分层抽样分层抽样特点:总体差异明显、按所占比例抽取、等可能.步骤:1.将总体按一定标准分层;2.计算各层的个体数与总体的个体数的比;3.按比例确定各层应抽取的样本数目4.在每一层进行抽样 (可用简单随机抽样或系统抽样)例如:5. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法。
其基本步骤是:①画出两个变量的散点图;②求回归直线方程;③并用回归直线方程进行预报。
高中数学知识点:抽样方法
高中数学知识点:抽样方法一、简单随机抽样设一个总体的个体数为N,假如通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个体被抽到的概率相等,就称如此的抽样为简单随机抽样。
一样地假如用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本那么每个个体被抽到的概率等于n/N.常用的简单随机抽样方法有:抽签法、随机数法。
1.抽签法一样地,抽签法确实是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌平均后,每次从中抽取一个号签,连续抽取n 次,就得到一个容量为n的样本。
2.随机数法随机抽样中,另一个经常被采纳的方法是随机数法,即利用随机数表、随机数骰子或运算机产生的随机数进行抽样。
二、活用随机抽样系统抽样的最差不多特点是“等距性”,每组内所抽取的号码需要依据第一组抽取的号码和组距是唯独确定,每组抽取样本的号码依次构成一个以第一组抽取的号码m为首项,组距d为公差的等差数列{an},第k组抽取样本的号码,ak=m+(k-1)d,如本题中依照第一组的样本号码和组距,可得第k组抽取号码应该为9+30*(k-1)三、系统抽样要练说,先练胆。
说话胆小是幼儿语言进展的障碍。
许多幼儿当众说话时显得可怕:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
总之,说话时外部表现不自然。
我抓住练胆那个关键,面向全体,偏向差生。
一是和幼儿建立和谐的语言交流关系。
每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,排除幼儿恐惧心理,让他能主动的、自由自在地和我交谈。
二是注重培养幼儿敢于当众说话的适应。
或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的爱好,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地关心和鼓舞他把话说完、说好,增强其说话的勇气和把话说好的信心。
三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清晰,声音响亮,学会用眼神。
收集数据时可采用的抽样方法包括
收集数据时可采用的抽样方法包括
1. 简单随机抽样:从总体中随机选择一定数量的个体作为样本,确保每一个个体都有相同的机会被选中。
2. 系统抽样:按照一定的系统规则,在总体中选取个体作为样本。
例如,在总体中每隔十个个体选择一个作为样本。
3. 分层抽样:将总体分为若干个层次,然后从每个层次中随机抽取一定数量的个体作为样本。
确保每个层次在样本中都有代表性。
4. 整群抽样:将总体分为若干个群体(或者区域),然后从其中随机选择一部分群体作为样本。
在选中的群体中,选择全部个体或者从中进行再抽样。
5. 方便抽样:根据研究者的方便选择样本。
这种方法容易产生偏差,因为样本不是随机选择的,可能无法代表总体。
6. 判断抽样:根据研究者的判断选择样本。
这种方法也容易产生偏差,因为选择样本的标准可能存在主观偏见。
7. 游览抽样:在某些特定地点或时间段,选择在该地点或时间段内出现的个体作为样本。
这种方法可能导致样本的局限性,不具有代表性。
注意:上述内容是根据问题描述进行回答,没有包含标题相同的文字。
高中数学统计抽样方法精选题目(附答案)
高中数学统计抽样方法精选题目(附答案)一、抽样方法1.简单随机抽样(1)特征:①一个一个不放回的抽取;②每个个体被抽到可能性相等.(2)常用方法:①抽签法;②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.1.(1)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15(2)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.[解析](1)从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n组抽到的号码为a n=9+30(n-1)=30n-21,由451≤30n-21≤750,得23615≤n≤25710,所以n=16,17,…,25,共有25-16+1=10人.(2)小学中抽取30×150150+75+25=18所学校;从中学中抽取30×75150+75+25=9所学校.[答案](1)C(2)189注:1.系统抽样的特点(1)适用于元素个数很多且均衡的总体. (2)各个个体被抽到的机会均等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样. (4)如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn . 2.与分层抽样有关问题的常见类型及解题策略(1)确定抽样比.可依据各层总数与样本数之比,确定抽样比.(2)求某一层的样本数或总体个数.可依据题意求出抽样比,再由某层总体个数(或样本数)确定该层的样本(或总体)数.(3)求各层的样本数.可依据题意,求出各层的抽样比,再求出各层样本数. 2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法解析:选C 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法. 3.某学校高一、高二、高三3个年级共有430名学生,其中高一年级学生160名,高二年级学生180名,为了解学生身体状况,现采用分层抽样方法进行调查,在抽取的样本中高二学生有32人,则该样本中高三学生人数为________.解析:高三年级学生人数为430-160-180=90,设高三年级抽取x 人,由分层抽样可得32180=x90,解得x =16. 答案:164.某单位有职工960人,其中青年职工420人,中年职工300人,老年职工240人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为________.解析:因为分层抽样的抽样比应相等,所以420960=14样本容量,样本容量=960×14420=32.答案:32二、用样本的频率分布估计总体的频率分布1.频率分布直方图2.茎叶图5.(1)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.(2)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].①求图中a的值;②根据频率分布直方图,估计这100名学生语文成绩的平均分;③若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 [为50×0.18=9.答案:9(2)解:①由频率分布直方图可知(0.04+0.03+0.02+2a)×10=1.所以a=0.005.②该100名学生的语文成绩的平均分约为x=0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.③由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:分数段[50,60)[60,70)[70,80)[80,90)x 5403020x∶y 1∶12∶13∶44∶5y 5204025100-(5+20+40+25)=10.注:与频率分布直方图有关问题的常见类型及解题策略(1)已知频率分布直方图中的部分数据,求其他数据,可根据频率分布直方图中的数据求出样本与整体的关系,利用频率和等于1就可求出其他数据.(2)已知频率分布直方图,求某种范围内的数据,可利用图形及某范围结合求解.6.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()A.0.2 B.0.4C.0.5 D.0.6解析:选B由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4,故选B.7.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示.根据此图,估计该校2 000名高中男生中体重大于70.5公斤的人数为()A .300B .360C .420D .450解析:选B 样本中体重大于70.5公斤的频率为: (0.04+0.034+0.016)×2=0.090×2=0.18.故可估计该校2 000名高中男生中体重大于70.5公斤的人数为:2 000×0.18=360(人). 8.某商场在庆元宵节促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.解析:总销售额为2.50.1=25(万元),故11时至12时的销售额为0.4×25=10(万元).答案:10三、用样本的数字特征估计总体的数字特征有关数据的数字特征9.(1)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53(2)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差(3)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)[解析] (1)从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56,故选择A.(2)由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.故选C.(3)假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4,则⎩⎨⎧x 1+x 2+x 3+x44=2,x 2+x32=2,∴⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4, 又s = 14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2] =12(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2=122[(x 1-2)2+(x 2-2)2]=1, ∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.[答案] (1)A (2)C (3)1,1,3,3 注:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.10.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:选B 法一:∵x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,∴x 甲<x 乙,又s 2甲=9+1+0+4+45=185,s 2乙=4+1+0+1+45=2,∴s 甲>s 乙.故可判断结论①④正确.法二:甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.11.甲和乙两个城市去年上半年每月的平均气温(单位:℃)用茎叶图记录如图所示,根据茎叶图可知,两城市中平均温度较高的城市是__________,气温波动较大的城市是__________.解析:根据题中所给的茎叶图可知,甲城市上半年的平均温度为9+13+17×2+18+226=16,乙城市上半年的平均温度为12+14+17+20+24+276=19,故两城市中平均温度较高的是乙城市,观察茎叶图可知,甲城市的温度更加集中在峰值附近,故乙城市的温度波动较大.答案:乙 乙12.甲、乙两台机床同时加工直径为100 mm 的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103; 乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差;(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求. 解:(1)x 甲=99+100+98+100+100+1036=100(mm),x 乙=99+100+102+99+100+1006=100(mm),s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73(mm 2), s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1(mm 2).(2)因为s 2甲>s 2乙,说明甲机床加工零件波动比较大,因此乙机床加工零件更符合要求.四、线性回归1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关:①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b x .13.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)[解] (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80.所以a ^=y -b ^x =80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1 000 =-20(x -8.25)2+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润. 注:(1)线性回归分析就是研究两组变量间线性相关关系的一种方法,通过对统计数据的分析,可以预测可能的结果,这就是线性回归方程的基本应用,因此利用最小二乘法求线性回归方程是关键,必须熟练掌握线性回归方程中两个重要估计量的计算.(2)回归直线方程恒过点(x ,y ).14.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?解:(1)将6组数据按月份顺序编号为1,2,3,4,5,6,从中任取两组数据,基本事件构成的集合为Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}共15个基本事件,设抽到相邻两个月的事件为A ,则A ={(1,2),(2,3),(3,4),(4,5),(5,6)}共5个基本事件,∴P (A )=515=13.(2)由表中数据求得x =11,y =24,∑i =14x i y i =1 092,∑i =14x 2i =498.代入公式可得b ^=187.再由a ^=y -b ^x ,求得a ^=-307,所以y 关于x 的线性回归方程为 y ^=187x -307.(3)当x =10时,y ^=1507,⎪⎪⎪⎪1507-22=47<2; 同样,当x =6时,y ^=787,⎪⎪⎪⎪787-12=67<2. 所以该小组所得线性回归方程是理想的.。
三种抽样方法(全)
8
【例题解析】 例1、某校高中三年级的295名学生已经编 号为1,2,……,295,为了了解学生的学习情 况,要按1:5的比例抽取一个样本,用系统抽 样的方法进行抽取,并写出过程。 解:样本容量为295÷5=59.
确定分段间隔k=5,将编号分段 1~5,6~10,…,291~295; 采用简单随机抽样的方法,从第一组5名 学生中抽出一名学生,如确定编号为3的学生, 依次取出的学生编号为3,8,13,…,288,293 , 这样就得到一个样本容量为59的样本.
24
※(2004年福建省高考卷)一个总体中有 100个个体,随机编号为0,1,2,…,99,依编号顺序 平均分成10个小组,组号分别为1,2,3,…,10.现 用系统抽样方法抽取一个容量为10的样本,规 定如果在第1组随机抽取的号码为m,那么在第k 组抽取的号码个位数字与m+k的个位数字相同. 若m=6,则在第7组中抽取的号码是______. 解析:依编号顺序平均分成的10个小组分 别为0~9, 10~19, 20~29, 30~39, 40~49,50~59,60~69,70~79,80~89,90~99.因第 7组抽取的号码个位数字应是3,所以抽取的号码 是63.这个样本的号码依次是 6,18,29,30,41,52,63,74,85,96这10个号. 25
二、分层抽样的步骤: (1)按某种特征将总体分成互不相交的层 (2)按比例k=n/N确定每层抽取个体的个数 (n/N)*Ni个。 (3)各层分别按简单随机抽样的方法抽取。 (4)综合每层抽样,组成样本。 练习:分层抽样又称类型抽样,即将相似的个 体归入一类(层),然后每层抽取若干个体构 成样本,所以分层抽样为保证每个个体等可能 入样,必须进行 (c ) A、每层等可能抽样 B、每层不等可能抽样 16 C、所有层按同一抽样比等可能抽样
高二数学必修3 简单随机抽样 ppt
抽签法的步骤: 抽签法的步骤 1、把总体中的N个个体编号; 、把总体中的 个个体编号 个个体编号; 2、 把号码写在号签上,将号签放在一个容器中 、 把号码写在号签上, 搅拌均匀; 搅拌均匀; 3、每次从中抽取一个号签,连续抽取n次,就得到 、每次从中抽取一个号签,连续抽取 次 一个容量为n的样本 的样本。 一个容量为 的样本。
问题 2006年春节联欢晚会结束后,中央电视台想在较短时间内 年春节联欢晚会结束后, 年春节联欢晚会结束后 得到节目的收视率,请问如何调查得出合理的结果呢? 得到节目的收视率,请问如何调查得出合理的结果呢? 一个水库养了某种鱼10万条 ,如何调查它们的体重情况 一个水库养了某种鱼10万条 10 从中捕捞了20条 称得它们的体重(单位: )如下: 从中捕捞了 条,称得它们的体重(单位:kg)如下: 2.3 2.1 2.2 2.1 2.2 2.6 2.5 2.4 2.3 2.4 2.4 2.3 2.2 2.5 2.4 2.6 2.3 2.5 2.2 2.3
思考2、 思考 、你设计的方法,个体抽取的机会均等吗?
抽样方法:当总体个数较多时,可将总体均匀地分成n个 抽样方法: 部分,然后按照预先给定的规则,从每一部分 中抽取一个个体,得到所需的样本,—— 称 系统抽样. 为系统抽样 系统抽样 讨论1、怎样均分? 讨论 、 讨论2、 讨论 、怎样定规则? 讨论3、 讨论 、第一个个体怎样选取?
问题1: 问题
疾病的预防与个人的身体素质有关,为此学校 决定在高二(3)班77位同学中抽取20个同学进行抗 病原情况调查,假如你是一位学校防疫中心的领导, 你将如何抽取样本?
的特征:(1)逐个抽取; (2)每个个体机会均等; (3)样本个体间没有联系。
为了扩大调查面,使调查结果更符合学校实际, 问题2: 问题 : 学校要求将调查面扩大到全校学生,学校现有 学生3387名,要求从中抽取114人进行抗病原调 查,你将如何抽取样本? 你不觉得太累了吗? —— 与疾病的预防不利! 思考1、 思考 、能否设计一个方案,使得抽取方法简化?
高中数学抽样技巧图解教案
高中数学抽样技巧图解教案
一、教学目标
1. 了解什么是抽样技巧以及其重要性;
2. 掌握常见的抽样技巧,包括简单随机抽样、分层抽样、系统抽样等;
3. 能够应用抽样技巧解决实际问题。
二、教学内容
1. 什么是抽样技巧;
2. 常见的抽样技巧;
3. 抽样技巧的应用。
三、教学过程
第一步:导入
老师与学生交流抽样的定义,并简单介绍抽样技巧的重要性。
第二步:讲解常见的抽样技巧
1. 简单随机抽样:将总体按照某种规则编号,然后通过随机数表或随机数生成器随机选取
样本;
2. 分层抽样:将总体按照某种特征分成若干层,然后在每一层中进行简单随机抽样,最后
将各层的样本组合成总体样本;
3. 系统抽样:按照一定的规则从总体中选取样本,例如每隔一定的间隔选取一个样本。
第三步:示例演练
老师通过实际例题演示如何应用抽样技巧解决实际问题,让学生逐步掌握抽样技巧的应用。
第四步:练习与总结
让学生进行练习题,巩固所学知识。
同时让学生总结抽样技巧的要点,加深理解。
四、作业
布置作业:要求学生练习抽样技巧的应用题,并写一篇小结。
五、教学反思
通过学生的作业表现以及课堂互动情况,总结教学中存在的不足之处,并进行改进。
六、教学反馈
及时对学生的提出问题进行解答和指导,帮助学生进一步理解抽样技巧的应用。
高中数学知识点:抽样方法
高中数学知识点:抽样方法
一、简单随机抽样
设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
一般地如果用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本那么每个个体被抽到的概率等于n/N.常用的简单随机抽样方法有:抽签法、随机数法。
1.抽签法
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
2.随机数法
随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
二、活用随机抽样
系统抽样的最基本特征是“等距性”,每组内所抽取的号码需要依据第一组抽取的号码和组距是唯一确定,每组抽取样本的号码依次构成一个以第一组抽取的号码m为首项,组距d为公差的等差数列{an},第k组抽取样本的号码,
ak=m+(k-1)d,如本题中根据第一组的样本号码和组距,可
得第k组抽取号码应该为9+30*(k-1)
三、系统抽样
当总体中的个体数较多时,采用简单随机抽样显得较为费事,这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。
四、分层抽样。
数学简单的抽样方法
数学简单的抽样方法引言在统计学中,抽样是重要的研究方法之一。
通过从总体中选取一部分个体进行调查或实验,可以通过对抽样数据的分析得出总体的特征和规律。
数学提供了一些简单的抽样方法,以确保抽样过程的随机性和可靠性。
本文将介绍几种常见的数学简单抽样方法。
简单随机抽样简单随机抽样是最基本的抽样方法之一,它要求每个个体有相同的机会被选中。
具体的抽样过程如下:1. 将总体中的每个个体用不同的编码或编号表示;2. 通过随机数表或随机数发生器产生一系列随机数;3. 根据随机数选择相应的编码或编号对应的个体;4. 重复上述过程,直到得到所需的样本数量。
简单随机抽样方法确保了每个个体被选中的概率相等,避免了主观性的干扰,使得抽样结果能够较好地代表总体的特征。
系统抽样系统抽样是指在总体中,按照一定的规律从个体中选取样本。
具体的抽样过程如下:1. 通过计算得到总体的容量N;2. 确定需要抽取的样本量n;3. 计算抽样间距k,k = N / n;4. 随机选取一个起始样本点,然后从起始点开始,每隔k个个体选取一个样本。
系统抽样通过采用规律性的抽样方法,相对于简单随机抽样,更加简便快捷。
但需要注意的是,如果总体存在一定的周期性或规律性,可能会导致抽样结果的偏差。
分层抽样分层抽样是将总体划分为若干个不重叠的层,然后在每个层内进行抽样。
具体的抽样过程如下:1. 根据总体的特征将总体划分成多个相互独立的层;2. 在每个层内进行简单随机抽样或系统抽样;3. 从每个层内选取的样本按照一定比例组成最终的样本集合。
分层抽样方法能够更好地保留总体的特征,提高抽样的准确性和可靠性。
通过对不同层次的个体进行抽样,能够更全面地了解总体的特征和规律。
整群抽样整群抽样是将总体划分为若干个不同的群组,然后从某些群组中选择全部个体作为样本。
具体的抽样过程如下:1. 根据总体的特征将总体划分为多个互不重叠的群组;2. 通过一定的抽样方法从某些群组中选择全部个体作为样本;3. 将所选群组中的个体组成最终的样本集合。
高中数学教案抽样方法
高中数学教案抽样方法
年级:高中
学科:数学
目标:学生能够理解和应用不同的抽样方法进行统计调查,能够根据具体情况选择合适的抽样方法。
教学重点:简单随机抽样、系统抽样、分层抽样、整群抽样
教学难点:理解和区分各种抽样方法,能够应用到实际问题中
教学准备:教材、教具、实验工具、教学PPT
教学过程:
1.导入:通过一个小调查开始,了解同学们对抽样方法的了解程度,引入本节课的主题。
2.简单随机抽样:
-介绍简单随机抽样的定义和步骤
-通过实例演示简单随机抽样的过程和计算方法
-让学生自行完成一个简单随机抽样的实验
3.系统抽样:
-介绍系统抽样的定义和原理
-通过实例演示系统抽样的过程和计算方法
-让学生自行完成一个系统抽样的实验
4.分层抽样:
-介绍分层抽样的定义和目的
-通过实例演示分层抽样的过程和计算方法
-让学生自行完成一个分层抽样的实验
5.整群抽样:
-介绍整群抽样的定义和适用情况
-通过实例演示整群抽样的过程和计算方法
-让学生自行完成一个整群抽样的实验
6.实际应用:
-讨论各种抽样方法的优缺点及适用范围
-让学生通过实际案例分析,选择合适的抽样方法进行统计调查
7.总结:总结各种抽样方法的特点和应用场景,强调实际问题中的抽样方法选择的重要性。
作业布置:布置练习题,要求学生熟练掌握各种抽样方法的步骤和原理。
教学反馈:通过课堂讨论和练习题的批改,及时纠正学生的错误,加强对抽样方法的理解
和应用能力。
高二数学抽样方法
我坐在理发店建群。从她群里转发素材,挑选了一款纸巾给老板看,理发店老板很爽快,快速下单,一会,朋友说,呀,你已经开张了!这么快,你挣了半碗牛肉面钱了。一碗牛肉面六元,一包纸 巾利润三元,我那时不懂,看不来我挣了多少钱!只知道开张了!所以,到如今,我很感激我的第一位爽快的客人,热情善良的孙先生。随后,闺蜜又团了纸巾,生命中,关键时刻,总有几个人会为你 鼓劲加油,不离不弃,这都是人生值得骄傲和感动的事情!往后几天,朋友,家人、同事,陆续来团东西,给予我大力支持,让我更有信心!
朋友自去年五月份内养后就开始做嗨团,她开始做的时候,我看她团里东西这么便宜,又联想到实体店老板说的网上东西哪里有好的!常言说:便宜没好货,好货不便宜。我是不大网购的。但是想 帮助朋友,就去团东西,第一次团了竹筒粽子,价格超便宜,回来特别好吃,从此一发不可收拾,经常在她群里团、团、团!也邀请了身边亲朋好友进去一起团,心里,就接受
人教版高二数学必修三统计知识点:分层抽样
人教版高二数学必修三统计知识点:分层抽样(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!人教版高二数学必修三统计知识点:分层抽样本店铺高二频道为正在拼搏的你整理了《人教版高二数学必修三统计知识点:分层抽样》希望你喜欢!(1)分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
高二数学抽样方法
①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121, 180,195,200,265; ③11,38,65,92,119,146, 173,200,227,254; ④30,57,84,111,138, 165, 192,219,246,270.
关于上述样本的下列结论中,正确的是 ( D )
A.②③都不能为系统抽样 B.②④都不能为分层抽样 C.①④都可能为系统抽样 D.①③都可能为分层抽样
.
.
.
.
.
.
.
.
.
.
;车吉祥 https:// 车吉祥
简单随机抽样,也叫纯随机抽样.就是从
总体中不加任何分组、划类、排队等,完 全随机地抽取调查单位。特点是:每个样 本单位被抽中的可能性相同(概率相等), 样本的每个单位完全独立,彼此间无一定 的关联性和排斥性。简单随机抽样是其它 各种抽样形式的基础。通常只是在总体单 位之间差异程度较小和数目较少时,才采 用签法;⑵随机数表法
4、某初级中学有学生270人,其中一年 级108人,二、三年级各81人,利用抽样 方法抽取10人参加某项调查,考虑选简单 随机抽样、分层抽样和系统抽样三方案,
使用简单随机抽样和分层抽样时,将学生
一、二、三年级依次统一编号为 1,2,270; 使用系统抽样时,将学生统一随机编号为1, 2,…,270,并将整个编号依次分为10段。 如果抽得号码有下列四种情况:
人教版高二数学必修二知识点:系统抽样
精心整理
人教版高二数学必修二知识点:系统抽样
(1)系统抽样(等距抽样或机械抽样):
把总体的单位进行排序,再计算出抽样距离,然后按照这一固定 的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。 K(抽样距离)=N(总体规模)/n(样本规模)
前提条件:总体中个体的排列对于研究的变量来说,应是随机的, 即不存在某种与研究变量相关的则分布。可以在调查允许的条件下, 从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说 明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重 合。
人教版高二数学下册分层抽样知识点
人教版高二数学下册分层抽样知识点分层抽样先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
分层标准(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。
(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。
(3)以那些有明显分层区分的变量作为分层变量。
分层的比例问题(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。
(2) 不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。
如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。
练习题:1、为了了解所加工的一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度() A总体B个体C总体的一个样本D 样本容量2、为了分析高三年级的8个班400名学生第一次高考模拟考试的数学成绩,决定在8个班中每班随机抽取12份试卷进行分析,这个问题中样本容量是()A8B400C96D96名学生的成绩3、一总体由差异明显的三部分数据组成,分别有m个、n个、p个,现要从中抽取a个数据作为样本考虑总体的情况,各部分数据应分别抽取____________、___________、_______________.4、某地有2000人参加自学考试,为了解他们的成绩,从中抽取一个样本,若每个考生被抽到的概率都是0.04,则这个样本的容量是_________以上就是我们给同学们整理的分层抽样知识点啦!想要了解更多精彩的内容,大家可点击原创专栏来看~~。
《高二数学抽样方法》课件
抽样误差是不可避免的,但可以 通过增大样本容量、改进抽样方 法等方式减小抽样误差。
应用实例的启示
抽样方法在不同领域具有广泛应 用,为我们提供了解世界、发现 规律的重要手段。
3
系统抽样
4
按照一定的系统规则从总体中选取样本, 如每隔k个个体选取一个样本。
简单随机抽样
从总体中随机地选取个体,确保每个个 体被选中的概率相等。
整群抽样
将总体划分为互不相交的群体,从每个 群体中抽取全部个体作为样本。
抽样误差
抽样误差是由于样本选择的随机性而引起的估计值与总体参数之间的差异。 可通过增加样本容量、提高抽样方式等方法减小抽样误差。
《高二数学抽样方法》 PPT课件
高二数学抽样方法PPT课件是为了帮助学生更好地理解数学抽样方法而设计的。 本课件内容详实,涵盖了抽样的定义、分类、方法、误差以及应用实例等方 面的知识。
什么是抽样?
抽样是从总体中选取部分个体进行观察和研究的方法。通过抽样,我们可以 从大量的数据中获取有代表性的样本,从而进行有效的分析和推断。
应用实例
市场调研
通过抽样方法了解消费者需求 和市场趋势,为企业决策提供 依据。
社会调查
利用抽样方法收集和分析社会 问题的数据,为社会决策提供 支持。
医学研究
通过抽样方法研究人群的健康 状况和疾病发生规律,为医学 实践提供参考。
总结
抽样方法的优缺点比较
抽样误差及其减小方法
不同抽样方法各有优势和局限性, 选择适合的抽样方法是确保研究 结果可靠的关键。
抽样分类
简单随ห้องสมุดไป่ตู้抽样
随机选择个体,每个个体被选中的概率相等。
整群抽样
将总体划分为若干互不相交的群体,从每个群体 中抽取样本。
【高二学习指导】高二数学期末必背知识点:随机抽样
【高二学习指导】高二数学期末必背知识点:随机抽样
1.简单随机抽样
(1)抽取方式:不放回抽取;
(2)每个个体被抽到的概率相等;
(3)常用方法:抽签法和随机数法.
[探究] 1.简单随机抽样有什么特点?
提示:(1)被抽取样本的总体个数N是有限的;(2)样本是从总体中逐个抽取的;(3)是一种不放回抽样;(4)是等可能的抽取.
2.系统抽样的步骤
假设要从容量为N的总体中抽取容量为n的样本.
(1)先将总体的N个个体编号;
(2)确定分段间隔k,对编号进行分段.当(n是样本容量)是整数时,取k=;
(3)在第1段用简单随机抽样确定第一个个体编号l(l
(4)按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号l+k,再加k得到第3个个体编号l+2k,依次进行下去,直到获取整个样本.
[探究] 2.系统抽样有什么特点?
提示:适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样.
3.分层抽样
(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.
(2)分层抽样的应用范围:
当总体是由差异明显的几个部分组成时,往往选用分层抽样.
[探究] 3.分层抽样有什么特点?
提示:适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的
高二
数学期末必背知识点,希望大家喜欢。
感谢您的阅读,祝您生活愉快。
高中数学抽样方法-课文知识点解析
然后请抽取的几个同学如实填写问卷,统计出数据,填入下表.力,这也符合素质教育的要求.抽样方法-课文知识点解析1.常用抽样方法:简单随机抽样、分层抽样和系统抽样.2.简单随机抽样一般地,从总体中抽取一定量的样本,在抽取过程中要保证每个个体被抽到的概率相同,这样的抽样方法叫简单随机抽样.通常采用抽签法和产生随机数字的方法(利用工具产生随机数).(1)抽签法抽签法的实施步骤:a.给调查对象群体(共有N个)中的每个对象编号(号码可以从1到N).b.准备“抽签”工具(签可以是纸条、卡片或小球),实施“抽签”.先把号码写在形状、大小相同的签上,然后把签放在同一个箱子里,进行均匀搅拌,每次从中抽出一个签,连续抽n次,就得到一个容量为n的样本.c.对样本中的每一个体进行测量或调查,得到数据,通过分析数据得出结论.例如:请用抽签法设计一个调查方案,调查你所在学校学生喜欢体育活动的情况.(以总体数量为N)抽取n个样本为例.第一步,给全体同学编号,号码从1到N;第二步,准备N个大小、形状相同的签,把号码(1~N)写在签全析提示我们知道要做到绝对地随机抽取样本非常困难,因此在抽样过程中尽可能避免人为因素的影响,而抽签法和产生随机数字法恰好具备此特点.抽签法最大的优点是简便易行,但此种方法不宜适用于总体数量较大的对象,一般适用于个体数量较少的对象.要点提炼上,每次抽取一个签,连续抽n次,就得到一个容量为n的样本;一个调查方案的设计一定要科学、合理,要易于操作,易得出数据便第三步,对样本中的每一个体进行调查.可设计一个问卷,如下.你对体育活动的喜欢程度A.喜欢B.一般C.不喜欢说明:只准选择一个答案.查结论,写出调查报告.(2)产生随机数把总体中的N个个体依次编上0,1,2,…,N-1的号码,然后利用工具(转盘或摸球、随机数表、科学计算器或计算机)产生0,1,…,N-1中的随机数,产生的随机数是几,就选几号个体,直到抽到预先规定的样本数.利用转盘或摸球产生随机数,这种方法大家都比较熟悉,并且简便易行,尤其当总体容量不大时.这种方法的缺点是当总体容量很大时,制作转盘和进行摸球就比较困难了.利用随机数表产生随机数,是其中最重要、最常用的一种方法.下面举例说明如何利用随机数表来抽取样本.为了检验某种产品的质量,决定从40件产品中抽取10件进行检于统计;问卷的设计更要具有科学性,选项要全面、合理.通过调查方案的设计和实施,有利于提高同学们的思维、逻辑、组织和实践能全析提示利用抽签法抽取样本时,编号应从1开始;而利用随机数抽取样本时,编号应从0开始.利用随机数表产生随机数是最常用的产生随机数的方法,要掌握此种方法的步骤.查.在利用随机数表抽取这个样本时,可按下面步骤进行.表3-178166572080263140702436997280198 32049243493582003623486969387481 29763413284142412424198593132322 83039822588824101158272964432943 5556852661668231243884554618444526357900337091601620388277574950 32114919730649167677873399746732 27486198716441487086288885191620 74770111163024042979799196835125 5379707626942927439955198106850192644607202139207766381732561640 58587766317005002593054553707814 28896628675782311589006200473815 51318186370945216665532553832702 9055719621723207111413844359448879005870260288135509432400304750 36939212055773697162956813129438 03803338013845604230649638060347 02464469971983161285035723892390 7266008168972851466606204596340093124779573789184550399455739229 61116098096573526847303499773770 23104476914806792662206205229234 98268857867566425471882043082105 6703824860646962005381886494450911109486653339541944151616823404 9651 1456 5613 0357 4244 3341 96053567 8350 5728 4338 0824 7899 1307 5814 8688 6982 51267736 3383 6215 344185782277 64907644 7085 8361 5662 4141 9877 37478570 215081404355 5321 2548 0208 7543 9169 0408 4353 6122 8913 9930 4169 6032 2127 0162 6176 4969 8185 9312 8748 8575 8090 9872 1968 0263 0081 2662 6831 31062959 9011 1448 4346 7019 8148 1557 8400第一步,先将40件产品编号,可以编为全析提示用随机数表产生随机数分三步,一00,01,02,…,38,39;第二步,在随机数表中任选一个数开始,由于总体的编号是两位数,我们可以一次选取其中的两列,组成一个两位数.我们从附表的第17列和第18列的第2行开始选数;第三步,从选定的数36开始,得到第一个两位数,将它取出;继续向下读,由上至下分别是24,11,24,16,76,70,29,43,77,25,15,66,11,55,71,42,12,46,45,68,26,54,00,…其中24,11重复出现,76,70,43,77,66,55,71,42,46,45,68,54超过39,不能选取,这样选取的10个样本的编号分别为36,24,11,16,29,25,15,12,26,00.课本例1,严格地按照用随机数表产生随机数的步骤进行的.在选数的过程中,是从表3-1中第6列和第7列这两列的第4行开始,由上至下的顺序进行选数的.事实上,定位置和选数的顺序是任意的.下面我们用另外一种顺序选取10个样本.第一步,将总体中的每个个体进行编号:00,01,02, (79)第二步,由于总体是一个两位数的编号,每次要从随机数表中选取两列组成两位数.从随机数表中任意一个位置,比如从表3-1中第1列和第2列这两列的第三行开始选数,由左至右分别是29,76,34,13,28,41,42,41,24,24,19,85,93,13,23,…其中13,41,24重复出现,83,93超过79,不能选取,这样选取的10个样本的编号分别为29,76,34,13,28,41,42,24,19,23.3.分层抽样将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中随机抽取一定的样本,这种抽样方法通常叫做分层抽样,有时也称为类型抽样.例如教材中的问题2,如若用简单随机抽样,则抽到的15个样本很可能不能按照它们的家数之比抽取,这样得到的数据就不能是编号;二是定位置;三选数.定住位置后,读数的方向可以向右,也可以向左、向上、向下等.取数过程中,要把不符合要求的数(超过最大编码)和与前面重复的数去掉.利用随机数表选取样本的一般步骤:①编号;②定位;③选数.选数过程中,重复的数字只取一个,超过最大编号的数不能取.思维拓展定位置是任意的,选数的顺序是任意的,没有任何约束,所以选取的样本的编号可以是多种多样的,并不唯一.全析提示当已知总体由差异明显的几部分组成时,为了使样本充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占比例进行抽样.由于分层抽样充分地利用了我们所掌握的信息,使样本具有较好地代表性,而在各层中进行抽样时,大真实地反映情况,误差很大;为了避免这种情况,我们按照大型、多数情况下采用简单随机抽样,有中型、小型的比例,从100家大型商店中抽出1个代表,从500时也会用到其他方法,这样需根据家中型商店中抽出5个代表,从900家小型商店中抽出9个代表.问题的需要来决定.再例如,一个单位有职工500人,其中不到35岁的有125人,35岁~49岁的有280人,50岁以上的有95人.为了了解这个单位职工身体状况有关的某项指标,要从中抽取一个容量为100的样本.由于职工年龄与这项指标有关,决定采用分层抽样的方法进行抽取.因为样本容量与总体个数的比为100∶500=1∶5,所以在各年龄段抽取的个体数依次是本例符合分层抽样的特点和适用范围.125280955,5,5,即25,56,19.在各年龄段分别抽取时,可采用简单随机抽样,将各年龄段抽取的个体合在一起,就是所要抽取的样本.课本例2,显然不同类型的农田之间的产量有较大差异,也就是说,总体由差异明显的几部分组成,故采用分层抽样的方法,对不同类型的农田按其总数的比例来抽取.假设本例中共有农田500亩,山地、丘陵、平原和洼地各占农田总数的10%、20%、40%和30%,欲抽取50亩进行产量调查,则应抽取5亩山地、10亩丘陵、20亩平原和15亩洼地.课本例3,由于不同层次管理人员的收入差异很大,故采取分层抽样的方法.不同层抽取样本的数目等于抽取样本总数与不同层次管理人员所占总体比例的积,所以应抽取:高层管理人员:100×5%=5(人),中层管理人员:100×15%=15(人),一般员工:100×80%=80(人).4.系统抽样系统抽样是将总体的个体进行编号,按照简单随机抽样抽取第一个样本,然后按照相同的间隔(称为抽抽样距)抽取其他样本,这种抽样方法有时也叫等距抽样或机械抽样.例如,为了了解参加某种知识竞赛的1000名学生的成绩,打算从中抽一个容量为50的样本.假定这1000名学生的编号是1,2,…,1000,由于50∶1000=1∶20,我们将总体分成50个部分,其中每一部分包括20个个体,例如第一部分的编号是1,2,3,…,20,然后在第一部分随机抽取一个号码,比如它是18号,那么可以从第18号起,每隔20个抽取一个号码,这样得到了一个容量为50的样本,它们的号码分别是:18,38,58,…,978,998.由于总体中的个体数1000正好能被样本容量整除,可以用它们的比值作为抽样距.如果不能整除,比如总体中的个数为1003,样本容量仍为50,这时可先用简单随机抽样先从总体中剔除3个个体,使剩下的个体数1000能被50整除,然后再按系统抽样法往下进行.在抽样时,如果总体的排列存在明显的周期性或者事先是排好序的,那么利用系统抽样进行抽样时将会产生明显的偏差,因为这要点提炼采用分层抽样时,不同层次所选取的样本数=抽取样本总数×该层所占总体的比例.全析提示当总体容量和样本容量都很大时,采用简单随机抽样或分层抽样,都是非常麻烦的,系统抽样正好能解决这个问题.要点提炼用系统抽样抽取一定容量的样本时,首先要分清总体中的个数是否能被样本容量整除,否则就会出现抽样距不等的情况,就不合乎系统抽样的原则.全析提示在利用系统抽样进行抽样时,要注意总体的排列有没有明显的周期性,这时抽样距的选取要恰当,要打乱周期性;如果总体事先排好序,要先打乱顺序,再抽样,以达到抽取的样本具有广泛的代表性.系统抽样的步骤:①确定分段情况和抽样距;②编号;③确定第一个样本编号;④等距抽样.在确定第一个样本编号时,一定要采用简单随机抽样,并且一定要在样抽取的样本不具有代表性.如课本P20思考交流中的两个问题,第一段内抽取,否则无法保证等距第一个问题中,抽取的样本不具备代表性,身体偏高;第二个问题中,采取这样的抽样方法,只对周一的交通流量进行了统计,无法代表一个月的状况,只要改变抽样距,如抽样距改为6,就可以了.课本例4,由于总体个体数太大,又无明显的层次差异,所以不能采用简单随机抽样和分层抽样,采用系统抽样是比较合适的.抽样.对于系统抽样,经常遇见的两种情况要加以区分,以避免不必要的麻烦.三种抽样方法的比较 课本给出了系统抽样的一般步骤,要严格地按步骤进行抽样. 第一步,确定分段情况,所抽取样本数就是需要分的段数,应为 50;确定抽样距,抽样距=总体个体数/抽取样本数 =10000/50=200;第二步,按顺序进行编号;第三步,采用简单随机抽样从第一个时间段抽取第一个样本; 第四步,等距抽样,顺序抽取相应编号的样本.课本例 5,本例与例 4 的不同之处在于,总体个体数不能被样本 总数整除,这时可把商作为抽样距,余数得通过简单随机抽样从 总体中剔除,对剩余进行编号,其余完全同例 4. 5.三种抽样方法的比较上面介绍了简单随机抽样、分层抽样和系统抽样.下面通过列表 将它们作一个简单的比较.熟悉三种抽样方法各自的特点和适 用范围,以便针对不同的实际问题, 采取不同的抽样方法.。
高二数学抽样方法人教版
高二数学抽样方法人教版【同步教育信息】一. 本周教学内容抽样方法1. 简单随机抽样(1)概念一般地,设一个总体的所有个体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
(2)简单随机抽样的特征① 它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概率进行分析。
② 这样的抽样是从总体中逐个进行抽取,便于操作。
③ 它是不放回抽样,具有实用性,而且在整个抽样过程中所抽取的样本中没有被重复抽取的个体,便于分析和计算。
④ 它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率相等,一般地,如果用简单随机抽样从个体数为N 的总体中抽取一个容量为n 的样本,那么每个个体被抽到的概率相等都等于Nn ,以下加以证明: 从总体中第一次抽取个体时,其中任意一个个体设为a 被抽取的概率为NP 11= 从总体中第二次抽取个体时,恰好抽到个体a 的概率为N A A P NN12112==-,… 依次类推,以总体中第n 次抽到个体a 的概率为N A A P n Nn N n 111==-- 由互斥事件加法公式有个体a 在整个抽样过程中被抽到的概率为Nn P P P P n =+++= 21 (3)常用的简单随机抽样方法① 抽签法将总体中所有个体编号,并把号码写在形状、大小相同的号签上,然后将这些号签放在同一个盒子里,每次从中抽出一个号签,连续抽取n 次,就得到一个容量为n 的样本,这种方法适用于总体个数不多时。
② 随机取数法事先制好,表中共随机出现0、1、2、…、9十个数字,且表中每个位置数字是等概率出现的。
2. 分层抽样(1)概念将总体分成几部分,然后按各部分所占的比进行抽样,这种抽样叫分层抽样,其中所分成的各部分叫层。
(2)分层抽样的特征① 分层抽样适用于总体由差异明显的n 部分组成的情形。
解决高中数学中的抽样问题的技巧与方法
解决高中数学中的抽样问题的技巧与方法抽样是统计学中常用的一种数据收集方法,它通过从总体中选取一部分样本来推断总体的特征。
在高中数学中,抽样问题是一个重要的考察点,掌握解决抽样问题的技巧与方法,对于理解统计学的基本概念和应用具有重要意义。
本文将介绍一些解决高中数学中抽样问题的技巧与方法。
一、随机抽样一种常用的抽样方法是随机抽样。
随机抽样是指从总体中以随机的方式选取样本,以确保样本能够代表整体。
在解决高中数学中的抽样问题时,可以采用以下步骤进行随机抽样:1. 确定总体:首先确定要研究的总体,比如某个班级的学生。
2. 确定样本容量:根据总体的大小和研究的需要,确定所需的样本容量。
3. 编号:将总体中的每个个体按照一定的顺序进行编号,比如按照学号进行编号。
4. 使用随机数表或随机数发生器:使用随机数表或随机数发生器生成若干个随机数,个数与样本容量相同。
5. 抽样:按照生成的随机数,在总体中选取对应编号的个体作为样本。
二、系统抽样另一种常用的抽样方法是系统抽样。
系统抽样是指按照一定规则从总体中选取样本,以确保样本能够代表整体。
在解决高中数学中的抽样问题时,可以采用以下步骤进行系统抽样:1. 确定总体:同样需要确定要研究的总体。
2. 确定样本容量:根据总体的大小和研究的需要,确定所需的样本容量。
3. 编号:将总体中的每个个体按照一定的顺序进行编号。
4. 计算抽样间隔:通过总体大小除以样本容量,得到抽样间隔。
5. 随机选择一个起始个体:使用随机数表或随机数发生器生成一个随机数,作为起始个体的编号。
6. 抽样:从起始个体开始,按照抽样间隔选择样本。
例如,如果抽样间隔为3,则每次选择编号差为3的个体。
三、整群抽样在解决高中数学中的抽样问题时,有时候我们需要考察不同群体之间的差异,这时就可以采用整群抽样。
整群抽样是指将总体划分为若干个群体,然后随机选择若干个群体,再从每个被选中的群体中抽取样本。
整群抽样的步骤如下:1. 划分群体:将总体划分为若干个群体,确保每个群体内的个体具有相似的特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上中专时,学校在郊区。饭堂里基本都是水煮菜,单调而无味。学校周围除了有牛肉面,没有其它小吃,而我最不喜欢吃面。于是每个周三下午,两节课后,我便和上铺的好友,迫不及待地奔向校 门口的公交车站,目的地当然是老街。
学校离老街来回需要2小时的车程,4点出发,7点赶回来上晚自习,所有每次赶赴,都是匆匆忙忙的。一人一份小盘宽粉,一碗赤豆小元宵,再烫几串菜,不到五元钱,两人却吃得又饱又满足。 吃完,还不忘给宿舍的同伴带零食,一毛五分钱一个的没炸糕,麻团,七毛钱一碗的酿皮,一毛钱一份的炸土豆片……
再往里走,货架上放着各种蔬菜。蔬菜种类繁多,有些是当地产的,有些是从外面运输而来,都是新鲜的模样。卖菜的商贩,一般嗓门都比较大,乐都辣子,不辣不要钱条老街它的历史,只是记忆里,一直都停留着初见它时,这样熙熙攘攘,破旧却又繁华的样子。而我对老街,印象最深的,是它的美食。
一个小时的车程,麻辣烫是不能带了,要不然,对铺的女生喊麻辣烫喊了好几天了。东西购齐,俩人又急匆匆地往学校赶。正好遇上下班高峰期,俩人个子都小,被夹在大人中间,刹车时没地方抓, 快倒下时,索性抓身旁人的衣角。当对方低头看向我们时,我俩会同时露出无辜的表情,叔叔(阿姨),我们够不着扶手。大多时候,身旁的大人会给我们俩个小不点让出点位置,慢慢靠近扶手。