立体几何高考题汇总
高三精选立体几何大题30题(含详细解答)
A BC第1题图ABCD第1题图立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高沿CD 把△ABC折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A,B的位置,使二面角A-CD-B是直二面角?证明你的结论.(2)试在平面ABC上确定一个P,使DP与平面ABC内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值.2.如图,已知正四棱柱ABCD—A1B1C1D1的底面边长为3,侧棱长为4,连结A1B过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E。
(Ⅰ)求证:D1B⊥平面AEC;(Ⅱ)求三棱锥B—AEC的体积;(Ⅲ)求二面角B—AE—C的大小的正弦值.3.如图,正三棱柱ABC—A1B1C1的底面边长为1,点M在BC上,△AMC1是以M为直角顶点的等腰直角三角形.(I)求证:点M为BC的中点;(Ⅱ)求点B到平面AMC1的距离;(Ⅲ)求二面角M—AC1—B 的正切值. 4.如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1,F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求多面体ABCDE的体积;(Ⅲ)求二面角C-BE-D 的正切值.5.已知:ABCD是矩形,设PA=a,PA⊥平面ABCD.M、N分别是AB、PC的中点.(Ⅰ)求证:MN⊥AB;(Ⅱ)若PD=AB,且平面MND⊥平面PCD,求二面角P—CD—A的大小;(Ⅲ)在(Ⅱ)的条件下,求三棱锥D—AMN的体积.6.在正方体ABCD—A1B1C1D1中,P、M、N分别为棱DD1、AB、BC的中点。
(I)求二面角B1—MN—B的正切值;(II)证明:PB⊥平面MNB1;(III)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P、B两点间的距离。
(word完整版)高三数学立体几何经典例题
厦门一中立体几何专题一、选择题(10 X 5' =50 ')1•如图,设0是正三棱锥 P-ABC 底面三角形 ABC 的中心, 过0的动平面与P-ABC 的三条侧棱或其延长线的交点分别记 为 Q 、R 、S ,则-11 1( )PQ PR PSA. 有最大值而无最小值B. 有最小值而无最大值C. 既有最大值又有最小值,且最大值与最小值不等D. 是一个与平面QRS 位置无关的常量2•在正n 棱锥中,相邻两侧面所成的二面角的取值范围是 (A., B., C. 0,D.nn2n的面积的取值范围是()若B €a ,C €3 ,则厶ABC 的周长的最小值是( )B.2 .75.如图,正四面体 A-BCD 中,E 在棱AB 上,F 在棱CD 上,使得詈 Cy =入(0<入<+m ),记f (入)=a x+ 3入,其中a 入表示EF 与AC 所成的角,3入表示EF 与BD 所成的角,贝U( )A. f (入)在(0,+ g )单调增加B. f (入)在(0,+ g )单调减少C. f (入)在(0,1)单调增加,在(1,+ g )单调减少D. f (入)在(0,+ g )为常数合是 ()A. 一条直线B. —个平面C.两条平行直线D.两个平面7.正四棱锥底面积为 Q ,侧面积为S ,则它的体积为 ()A. 1 Q (S2Q 2)B. 1 Q (S2Q 2)6 •3 'C. 1 -Q(S2Q 2)23•正三棱锥P-ABC 的底面边长为 2a,点E 、F 、G 、H 分别是 PA 、PB 、BC 、AC 的中点,则四边形 EFGHA.(0,+ g )B.C.D. ^a 2, 24.已知二面角a -a-3为60°,点A 在此二面角内,且点A 到平面a 、3的距离分别是AE=4, AF=2,6.直线a //平面3,直线a 到平面3的距离为 1,则到直线a 的距离与平面3的距离都等于7的点的集第5题图D.f QS第1题图8. 已知球O的半径为R, A、B是球面上任意两点,则弦长|AB|的取值范围为()B.(0,2R]C. ( 0,2R )D. : R,2R ]9•已知平面aQ 平面B =l,m 是平面a 内的一条直线,则在平面B 内A. .—定存在直线与直线 m 平行,也一定存在直线与直线B. —定存在直线与直线 m 平行,但不一定存在直线与直线C. 不一定存在直线与直线 m 平行,但一定存在直线与直 线m 垂直D. 不一定存在直线与直线 m 平行,也不一定存在直线与 直线m 垂直10. 如图为一个简单多面体的表面展开图(沿图中虚线折11. ______________________________________________________________________ 边长为a 的等边三角形内任一点到三边距离之和为定值,这个定值为 __________________________ ;推广到空间,棱长为a 的正四面体内任一点到各面距离之和为 ______________12. 在厶ABC 中,AB=9, AC=15,/ BAC=120°,其所在平面外一点 P 到A 、B 、C 三个顶点的距离都是14,贝U P 点到直线 BC 的距离为 _____________ . 13. 已知将给定的两个全等的正三棱锥的底面粘在一起, 恰得到一个所有二面角都相等的六面体, 并且该六面体的最短棱的长为 2,则最远的两顶点间的距离是 _______________ .14. ___________________________________________________________________ 有120个等球密布在正四面体 A-BCD 内,问此正四面体的底部放有 ___________________________ 个球. 三、解答题(4X 10' +14' =54')15. 定直线11丄平面a ,垂足为M ,动直线12在平面a 内过定点 N ,但不过定点 M.MN=a 为定值,在11、12上分别有动线段 AB=b,CD = c.b 、c 为定值.问在什么情况下四面体 ABCD 的体积最大?最大值是多少?AC 的中点,求:(1) PM 与FQ 所成的角; (2) P 点到平面 EFB 的距离; (3 )异面直线PM 与FQ 的距离.16.如图所示,已知四边形 ABCD 、EADM 和MDCF 都是边长为 a 的正方形,点 P 、Q 分别是ED 和A. : 0,2 R ] m 垂直A.6B.7C.8D.9、填空题 (4X 4 ' =16')叠即可还原),则这个多面体的顶点数为 (第16题图连结人丘‘将厶DAE 沿AE 折起到△ D 1AE 的位置,使得/(1)试用基向量 AB , AE , AD 1表示向量OD 117.如图,在梯形 ABCD 中,AB // CD ,/ ADC = 90° ,3AD=DC=3,AB=2,E 是 CD 上一点,满足 DE = 1 ,D 1AB = 60° ,设AC 与BE 的交点为O.(2) 求异面直线OD i与AE所成的角.(3) 判断平面D i AE与平面ABCE是否垂直,并说明理由第17题图18. 如图,在斜棱柱ABC —A i B i C i中,底面为正三角形,侧棱长等于底面边长,且侧棱与底面所成的角为60°顶点B i在底面ABC上的射影O恰好是AB的中点.(i)求证:B i C± C i A;(2 )求二面角C i-AB-C的大小.第i8题图i9.如图所示,在三棱锥P-ABC中,PA=PB=PC , BC=2a,AC=a,AB=、3 a,点P到平面ABC的距离为 | a.(i )求二面角P-AC-B的大小;(2)求点B到平面FAC的距离.第i9题图立体几何练习参考答案一、选择题 1.D 设正三棱锥P-ABC 中,各棱之间的夹角为a,棱与底面夹角为B ,h 为点S 到平面PQR 的距离,1 11则 V S -PQR = 3S ^PQR • h= — ( — PQ • PR • sin a ) • PS • sin B ,另一方面,记 O 到各平面的距离为 d,则有33 211 1 dV S -PQR =V O -PQR +V O -PRS +V O -PQS =S ^PQR °d+ S ^PRS ,d+S^PQS -d=3333a + d • - -PQ -PS-sin a •故有 PQ -PR -PS-sin B =d(PQ -PR+PR -PS+PQ -PS),即旦—-PQ -PR -sin a +— •丄 PS ・PR ・sin2321 1 _ sinPR PS d3 2 PQ 常量.2.B 设正n 棱锥的高为h,相邻两侧面所成二面角为B .当h f 0时,正n 棱锥的极限为正n 边形,这时 相邻两侧面所成二面角为平面角,即二面角Qfn.当h fg 时,正n 棱锥的极限为正n 棱柱,这时相邻两侧面所成二面角为正n 边形的内角,nEFGH 为矩形,当 P f 底面△ ABC 的中心O 时,矩形EFGH f 矩形E i F i GH.3a=_Aa 23 34. C 如图,I a 丄AE,a 丄AF,「. a 丄平面 AEF.设a 交平面 AEF 于点G ,则/ EGF 是二面角a -a-3的平面角,/ EGF=60° ,/ EAF=120。
高中空间立体几何经典例题精选全文完整版
可编辑修改精选全文完整版立体几何一、选择题1.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D2 2.(20XX 年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C 【答案】A3 3.(20XX 年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 4.(20XX 年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B .2C .2-12D .2+12【答案】C5.(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面是边长为3.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )A.512πB .3πC.4πD.6π【答案】B6.(20XX年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为()A.5603B.5803C.200D.240【答案】C7.(20XX年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为,m n,那么m n+=()A.8 B.9 C.10 D.11【答案】A二、填空题8.(20XX年高考北京卷(理))如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为__________.1D1BPD1CCEBA1A【答案】2559.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2410.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-11.(20XX 年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π12.(20XX 年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______AB C1A D EF1B 1C【答案】3π三、解答题13.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1 B 1A 1D C AB14.(20XX 年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,113tan 6233BC CC BC C =⋅∠==从而2333ABC S BC ∆==因此该三棱柱的体积为1336183ABC V S AA ∆=⋅==15.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))B 1 A 1C 1ACB如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点 ∵E.F 分别是SA.SB 的中点 ∴EF ∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF ∥平面ABC 同理:FG ∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC ∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SAB AF ⊥SB∴AF ⊥平面SBC 又∵BC ⊆平面SBC ∴AF ⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC ⊥平面SAB 又∵SA ⊆平面SAB ∴BC ⊥SA16.(20XX 年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.C 11A【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=而1AD C ∆中,11AC DC AD ==故132AD C S ∆= AB CSGFE所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.17.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD=由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角. 结合图1可知,H 为AC 中点,故2OH =,从而2A H '== 所以cos OH A HO A H '∠=='所以二面角ACD B '--向量法:以O 点为原点,建立空间直角坐标系O -.CO BDEA CDOBE'A图1图2C DO BE'AH则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,1,n =- 由(Ⅰ)知,(OA '=为平面CDB 的一个法向量,所以3cos ,3n OA n OA n OA'⋅'===',即二面角A CD B '--的平面角的余弦值为5.18.(20XX年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD = CD = 1, AA1 = AB = 2, E为棱AA1的中点.(Ⅰ) 证明B1C1⊥CE;(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为2, 求线段AM的长.6【答案】19.(20XX年高考陕西卷(理))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,12AB AA==(Ⅰ) 证明: A1C⊥平面BB1D1D;(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.1A【答案】解:(Ⅰ) BDOAABCDBDABCDOA⊥∴⊂⊥11,,面且面;又因为,在正方形AB CD 中,BDCAACACAACABDAACOABDAC⊥⊂⊥=⋂⊥11111,,故面且面所以;且.在正方形AB CD中,AO = 1 . .111=∆OAOAART中,在OECAOCEAEDB1111111⊥为正方形,所以,则四边形的中点为设.,所以由以上三点得且,面面又OOBDDDBBODDBBBD=⋂⊂⊂111111E.E,DDBBCA111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O为原点,以OC为X轴正方向,以OB为Y轴正方向.则)1,0,1()1,1,1(),10(),1(,0,1,0111-=⇒CABACB,,,,)(.由(Ⅰ)知, 平面BB1D1D的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OCOBCAn设平面OCB1的法向量为,则0,0,2122=⋅=⋅OCnOBnn).1-,1,0(法向量2=n为解得其中一个21221||||||,cos|cos212111=⋅=⋅=><=nnnnnnθ.所以,平面OCB1与平面BB1D1D的夹角θ为3π1A。
2024高考数学专题分类之立体几何解析版
1立体几何经典真题1【2023年新课标全国乙卷第19题】如图,在三棱雉P-ABC中,AB⊥BC,AB=2,BC=22,PB=PC=6,BP,AP,BC的中点分别为D,E,O,AD=5DO,点F在AC上,BF⊥AO.(1)证明:EF⎳平面ADO;(2)证明:平面ADO⊥平面BEF;(3)求二面角D-AO-C的正弦值.AB CDEFOP【答案】1 见解析;2 见解析;3 见解析.【解析】1 【解法一】∵A,F,C三点共线,故设BF=λBA+1-λBC,又OA=BA-BO=BA-12BC,BF⊥OA,BA⊥BC,∴BF∙OA=λBA+1-λBC∙BA-12BC=λBA2-121-λBC2=λ∙22-121-λ∙222=8λ-4=0,解得λ=12,∴BF=12BA+12BC,故F为AC的中点,∵D,E,O分别为BP,BC,AP的中点,∴DO∥BC∥EF,∵EF⊄平面ADO,DO⊂平面ADO,∴EF∥平面ADO;【解法二】∵AB⊥BC,故以B为原点,BA,BC所在的直线分别为x,y轴建立平面直角坐标系,如图所示,则B0,0,A2,0,C0,22,D0,2,∵点F在AC上,直线AC方程为x2+y22=1,∴设F a,22-a,∵AD⊥BF,∴k AD∙k BF,即2-00-2∙22-aa=-1,解得a=1,∴F12,即F为AC的中点,∵D,E,O分别为BP,BC,AP的中点,∴DO∥BC∥EF,xyAB CFD2∵EF ⊄平面ADO ,DO ⊂平面ADO ,∴EF ∥平面ADO ;2 ∵OA =BO 2+BA 2=6,OD =12PC =62,AD =5DO =302,∴AD 2=OD 2+OA 2,∴OA ⊥OD ,∵OD ∥EF ,∴OA ⊥EF ,又∵OA ⊥BF ,BF ∩EF =F ,∴OA ⊥平面BEF ,∵OA ⊂平面ADO ,∴平面ADO ⊥平面BEF ;3【解法一】过点O 作OH ∥BF ,交AC 于点H ,设AD ∩BE =G ,如图所示,∵AO ⊥BF ,∴OH ⊥OA ,且FH =13AH ,由2 知,OA ⊥OD ,∴∠DOH 为二面角D -AO -C 的平面角,∵D ,E 分别为BP ,AP 的中点,∴G 为△P AB 的重心,∴DH =32GF ,在△P AB 中,AB 2+AP 2=2AD 2+2BP 22,解得AP =14,BA 2+BP 2=2BE 2+2AP 2 2,解得BE =62,∵EF =12PC =62,∴BF 2=EB 2+EF 2,即EB ⊥EF ,∵EG =13BE =66,∴GF =EG 2+EF 2=153,∴DH =152,∵OH =12BF =14AC =32,在△ODH 中,∠DOH cos =OD 2+OH 2-DH 22OD ∙OH=22,∴二面角D -AO -C 的正弦值为22;【解法二】设BF ∩AO =M ,AD ∩BE =G ,连接GM ,GF ,由1 及2 ,∠GMF 为二面角D -AO -C 的平面角,∠GMB 为其补角,∵D ,E 分别为BP ,AP 的中点,∴G 为△P AB 的重心,又O ,F 分别为BC ,AC 的中点,∴M 为△ABC 的重心,∴∠GMB =∠EFB ,在△P AB 中,AB 2+AP 2=2AD 2+2BP 22,解得AP =14,BA 2+BP 2=2BE 2+2AP 2 2,解得BE =62,∵EF =12PC =62,∴BF 2=EB 2+EF 2,即EB ⊥EF ,∴∠EFB tan =BEEF=1,即∠EFB =45°,ABCDE FO PGMABCD EFOPGH3∴∠GMF =180°-45°,即二面角D -AO -C 的正弦值为22;【解法三】以向量BA ,BC ,BP为空间向量的一组基底,设平面ABC 的法向量为m =x 1BA +y 1BC +z 1BP ,平面OAD 的法向量为n=x 2BA +y 2BC+z 2BP ,则m ∙BA =0,m ∙BC =0, ⇒x 1=-y 1,z 1=-2y 1,取y 1=-1,则m=BA -BC +BP ,n ∙AD =0,n ∙AO =0, ⇒y 2=0,z 2=x 2,取x 2=1,则n=BA +BP ,∵m =23,n =6,m ∙n=6,∴m ,n cos =m ∙n m n =22,∴二面角D -AO -C 的正弦值为22;【解法四】由2 知OD ⊥OA ,BF ⊥OA ,CP ∥OD∴CP ,BF或其补角为二面角D -AO -C 的平面角,∵CP =BP -BC ,BF =12BA +BC ,CP=6,BF =3,又CP ∙BF =BP -BC ∙12BA +BC=6,∴CP ,BF cos =CP ∙BFCP BF=22,∴二面角D -AO -C 的正弦值为22;【解法五】依题意,以B 为原点,BA ,BC ,BA ×BC的方向为方向建立空间直角坐标系,由2 知AO ⊥平面BEF ,∴平面ABC ⊥平面BEF ,又BE =62,EF =62,BF =12AC =3,∴BE 2+FE 2=BF 2,∴BE ⊥FE ,且点E 在平面ABC 内射影为BF 中点,∵B 0,0,0 ,A 2,0,0 ,C 0,22,0 ,F 1,2,0 ,O 0,2,0 ,∴E 12,22,32,P -1,2,3 ,D -12,22,32 ,设平面AOD 法向量为m=x ,y ,z ,∵OD =-12,-22,32 ,OA =2,-2,0 ,∴m ∙OD=0,m ∙OA =0, ⇒m=x ,2x ,3x ,取x =1,∴m=1,2,3 ,又n=0,0,1 为平面ABC 的一个法向量,∴m ,n cos =m ∙n m n=22,∴二面角D -AO -C 的正弦值为22.ABCDEFOPxyz42【2023年新课标全国甲卷第18题】如图,在三棱柱ABC -A 1B 1C 1中,AA 1=2,A 1C ⊥底面ABC ,∠ACB =90°,A 1到平面BCC 1B 1的距离为1.1 求证:AC =A 1C ;2 若直线AA 1与BB 1的距离为2,求AB 1与平面BCC 1B 1所成角的正弦值.ABCA 1B 1C 1【答案】1 见解析;21313.【解析】1 【解法一】∵A 1C ⊥底面ABC ,AC ,BC ⊂平面ABC ,∴A 1C ⊥AC ,A 1C ⊥BC ,∵∠ACB =90°,∴BC ⊥CA ,∵AC ∩A 1C =C ,∴BC ⊥平面ACC 1A 1,∵BC ⊂平面BCC 1A 1,∴平面ACC 1A 1⊥平面BCC 1B 1,又∵A 1C 1//AC ,∴A 1C ⊥A 1C 1,在▱ACC 1A 1中,取CC 1的中点H ,连接A 1H ,由直角三角形性质,A 1H =12CC 1=12AA 1=1,∵A 1到平面BCC 1B 1的距离为1,平面ACC 1A 1⊥平面BCC 1B 1,且平面ACC 1A 1∩平面BCC 1B 1=CC 1,∴A 1到平面BCC 1B 1的距离即为A 1H ,即A 1H ⊥平面BCC 1B 1,且A 1H ⊥CC 1,∴△A 1CC 1是以CC 1为斜边的等腰直角三角形,故A 1C =A 1C 1,∴AC =A 1C ;【解法二】∵A 1C ⊥底面ABC ,且∠ACB =90°,CA ,CB ⊂平面ABC ,∴A 1C ⊥CA ,A 1C ⊥CB ,CA ⊥CB ,∴以C 为原点,CA ,CB ,CA 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示,设A a ,0,0 ,B 0,b ,0 ,C 0,0,0 ,A 10,0,c ,C 1-a ,0,c 设平面BCC 1B 1的法向量为n =x ,y ,z ,∵CB =0,b ,0 ,CC 1=-a ,0,c ,∴n ∙CB=0,n ∙CC 1 =0, 即y =0,-ax +cz =0,取n =c ,0,a ,ABCA 1B 1C 1H5∵A 1到平面BCC 1B 1的距离为1,∴CA 1 ∙n n =0,0,c ∙c ,0,a c 2+a 2=acc 2+a 2=1,又∵c 2+a 2=4,∴a =c =2,∴AC =A 1C ;2 【解法一】取AA 1的中点M ,连接CM ,BM ,由1 解法一,CM ⊥平面BCC 1B 1,∴BB 1⊂平面BCC 1B 1,BB 1//AA 1,∴CM ⊥BB 1,CM ⊥AA 1,又∵BC ⊥平面ACC 1A 1,BM 在平面ACC 1A 1内的射影为CM ,由三垂线定理,BM ⊥AA 1,∴BB 1//AA 1,∴BM ⊥BB 1,∴线段BM 为直线AA 1与BB 1的公垂线段,∴BM =2,由1 可得CB =3,∵BM =2,AM =1,∴∠BAM cos =15,∠AA 1B 1cos =-15,∴AB 12=AA 12+A 1B 12-2AA 1∙A 1B 1∠AA 1B 1cos =22+52-2×2×5×-15=13,∴AB 1=13,设直线AB 1与平面BCC 1B 1所成角为θ,则θsin =CMAB 1=113=1313,∴直线AB 1与平面BCC 1B 1所成角的正弦值为1313.【解法二】由1 知AA 1 =-2,0,2 ,AB=-2,b ,0 ,∴B 到直线AA 1的距离为AB 2-AA 1 ∙ABAA 12=2+b 2 -222+222=2,解得b =3,设直线AB 1与平面BCC 1B 1所成角为θ,∵AB 1 =AA 1 +A 1B 1 =AA 1 +AB=-2,0,2 +-2,3,0 =-22,3,2 ,由1 知n =2,0,2 为平面BCC 1B 1的一个法向量,∴θsin =n ,AB 1 cos =n ∙AB 1n AB 1 =222+22-22 2+32+22=1313,直线AB 1与平面BCC 1B 1所成角的正弦值为1313.ABCA 1B 1C 1MN ABCA 1B 1C 1xyzABCA 1B 1C 1xyz。
历年高考真题专题04立体几何
专题04 立体几何【2020年】1.(2020·新课标Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. 51-B. 51-C. 51+D. 51+ 【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-, 由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得15b a +=(负值舍去).2.(2020·新课标Ⅰ)已知A 、B 、C 为球O 球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,由正弦定理可得2sin 6023AB r =︒=,123OO AB ∴==,根据圆截面性质1OO ⊥平面ABC , 222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=,∴球O 的表面积2464S R ππ==.3.(2020·新课标Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A. EB. FC. GD. H【解析】根据三视图,画出多面体立体图形,图中标出了根据三视图M点所在位置,可知在侧视图中所对应的点为E。
4.(2020·新课标Ⅲ)下图为某几何体的三视图,则该几何体的表面积是()2233【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S===⨯⨯=△△△根据勾股定理可得:22AB AD DB===∴ADB△是边长为2根据三角形面积公式可得:2113sin 60(22)23222ADB S AB AD =⋅⋅︒=⋅=△ ∴该几何体的表面积是:2362332=⨯++.5.(2020·北京卷)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ). A . 63+ B. 623+C. 123+D. 1223+ 【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形, 则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭. 6.(2020·山东卷)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A. 20°B. 40°C. 50°D. 90°【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.7.(2020·天津卷)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( ) A. 12π B. 24π C. 36π D. 144π【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即()()()22223232332R ++==,所以,这个球的表面积为2244336S R πππ==⨯=.8.(2020·浙江卷)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A. 73B. 143C. 3D. 6【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 9.(2020·山东卷)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E 3=,111D E B C ⊥, 又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥,因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥, 因为球的半径为5,13D E =,所以2211||||||532EP D P D E =-=-=, 所以侧面11B C CB 与球面的交线上的点到E 的距离为2,因为||||2EF EG ==,所以侧面11B C CB 与球面的交线是扇形EFG 的弧FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得2222FG ππ=⨯=. 10.(2020·浙江卷)已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为_______.【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 11.(2020·江苏卷)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【解析】正六棱柱体积为23622=123⨯;圆柱体积为21()222ππ⋅=;所求几何体体积为1232π 12.(2020·新课标Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.2【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于223122AM =-=,故1222222S =⨯⨯=△ABC ,设内切圆半径为r ,则: ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯ ()1332222r =⨯++⨯=,解得:22r ,其体积:34233V r ππ==. 【2019年】1.【2019·全国Ⅰ卷】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .68πB .64πC .62πD .6π 【解析】,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,2APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,22226R =++=,即364466,π62338R V R =∴=π=⨯=π,故选D .2.【2019·全国Ⅱ卷】设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .3.【2019·全国Ⅲ卷】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线;B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线;D .BM ≠EN ,且直线BM ,EN 是异面直线【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===,,35,,722MF BF BM ==∴=,BM EN ∴≠,故选B .4.【2019·浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324 【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 故选B.5.【2019·浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则( ) A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β 【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BD PB PB PB PBαβ===<=,即αβ>; 在Rt △PED 中,tan tan PD PD ED BD γβ=>=,即γβ>,综上所述,答案为B.6.【2019·全国Ⅲ卷】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形,∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=. 又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.7.【2019·北京卷】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=.8.【2019·北京卷】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ; ②m ∥α; ③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.9.【2019·天津卷】已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【解析】由题意,四棱锥的底面是边长为2的正方形,侧棱长均为5,借助勾股定理,可知四棱锥的高为512-=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 10.【2019·江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 ▲ .【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD , 所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【2018年】1.【2018·全国Ⅰ卷】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .2【答案】B2.【2018·全国Ⅰ卷】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33 B .23 C .324D .3【解析】根据相互平行的直线与平面所成的角是相等的,所以在正方体1111ABCD A B C D -中, 平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理,平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等的,要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间,且过棱的中点的正六边形,且边长为22,所以其面积为232336424S ⎛⎫=⨯⨯= ⎪ ⎪⎝⎭,故选A. 3.【2018·全国Ⅲ卷】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】本题主要考查空间几何体的三视图.由题意知,俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A .4.【2018·浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是俯视图正视图2211A .2B .4C .6D .8【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上、下底分别为1,2,梯形的高为2,因此几何体的体积为()112226,2⨯+⨯⨯=故选C. 5.【2018·全国Ⅲ卷】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为 A .123B .183C .243D .543【解析】如图所示,设点M 为三角形ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,2393ABC S AB ==△,6AB ∴=,点M 为三角形ABC 的重心,2233BM BE ∴==,Rt OBM ∴△中,有222OM OB BM =-=,426DM OD OM ∴=+=+=,()max 19361833D ABC V -∴=⨯⨯=,故选B.6.【2018·全国Ⅱ卷】在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15B .5C .5 D .2 【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1=5DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得222111115cos 2545DB B P DP DB P DB PB +-∠===⋅.故选C.方法二:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系, 则()()((110,0,0,1,0,0,3,3D A B D ,所以()(111,0,3,3AD DB =-=, 因为1111115cos ,25AD DB AD DB AD DB ⋅===⨯, 所以异面直线1AD 与1DB 所成角的余弦值为55,故选C. 7.【2018·浙江卷】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1【解析】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,SE ,SM ,OM ,OE ,则SO 垂直于底面ABCD ,OM 垂直于AB , 因此123,,,SEN SEO SMO ∠=∠=∠=θθθ 从而123tan ,tan ,tan ,SN SN SO SOEN OM EO OM====θθθ 因为SN SO EO OM ≥≥,,所以132tan tan tan ,≥≥θθθ即132≥≥θθθ,故选D.8.【2018·江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】439.【2018·全国II 卷】已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515__________.【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB 所成角的正弦值为158,因为SAB △的面积为515,l 所以22115515,802l l ⨯=∴=,因为SA 与圆锥底面所成角为45°,所以底面半径为π2cos ,42r l ==因此圆锥的侧面积为22ππ402π.2rl l == 【2017年】1.【2017·全国Ⅱ卷】已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A 3B 15C 10D 3【答案】C【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为21111,2,21221cos603,5BC D BC BD C D AB ∠==+-⨯⨯⨯︒===,易得22211C D BD BC =+,因此111210cos 55BC BC D C D ∠===,故选C . 2.【2017·全国Ⅰ卷】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B . 3.【2017·北京卷】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A .2B .3C .2D .2【解析】几何体是四棱锥P ABCD -,如图.最长的棱长为补成的正方体的体对角线,即该四棱锥的最长棱的长度为22222223l =++=,选B . 4.【2017·全国Ⅱ卷】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .5.【2017·全国Ⅲ卷】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4 C .π2D .π4【解析】绘制圆柱的轴截面如图所示:由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭, 由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,故选B. 6.【2017·浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .12π+ B .32π+ C .312π+ D .332π+ 【解析】根据所给三视图可还原几何体为半个圆锥和半个棱锥拼接而成的组合体,所以,几何体的体积为21113(21)13222V π⨯π=⨯⨯+⨯⨯=+,故选A .7.【2017·浙江卷】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为αβγ,,,则A . γαβ<<B .αγβ<<C .αβγ<<D .βγα<<【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而三棱锥的高相等,因此αγβ<<,所以选B .8.【2017·全国I 卷】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为 .【解析】如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则133OG x =⨯3x =.∴35FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积2113355333ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()4535n x x x =-,x >0,则()345320n x x x '=-, 令()0n x '=,即43403x -=,得43x =,易知()n x 在43x =处取得最大值. ∴max 154854415V =⨯⨯-=.9.【2017·山东卷】由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为.【解析】由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆的半径为1,所以2π1π21121242V⨯=⨯⨯+⨯⨯=+.10.【2017·天津卷】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为___________.【解析】设正方体的边长为a,则26183a a=⇒=,其外接球直径为233R a==,故这个球的体积34π3V R==4279ππ382⨯=.11.【2017·江苏卷】如图,在圆柱12O O内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱12O O的体积为1V,球O的体积为2V,则12VV的值是.【解析】设球半径为r,则213223423V r rV rπ⨯==π.故答案为32.12.【2017·全国Ⅲ卷】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,2AB AD ==,当直线AB 与a 成60°角时,60ABD ∠=,故2BD =,又在Rt BDE △中,2,2BE DE =∴=,过点B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知2BF DE ==,ABF ∴△为等边三角形,60ABF ∴∠=,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.【2016年】1. 【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【解析】该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 2.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.3.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1 【解析】分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A. 4.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+(B )54185+(C )90 (D )81【解析】由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+,故选B .5.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )1233+π (C )1236+π (D )216+π 【解析】由三视图可知,2的半球,体积为31142223V =⨯π⨯=),下面是底面积为1,高为1的四棱锥,体积2111133V =⨯⨯=,故选C. 6.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n【解析】由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C . 7.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .正视图331【解析】由三棱锥的正视图知,三棱锥的高为1,底面边长为232,2,所以,该三棱锥的体积为113322132V =⨯⨯⨯=.8.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯=9.【2016高考新课标2理数】 ,αβ是两个平面,,m n 是两条直线,有下列四个命题:(1)如果,,//m n m n αβ⊥⊥,那么αβ⊥.(2)如果,//m n αα⊥,那么m n ⊥.(3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有 . (填写所有正确命题的编号)【解析】对于①,,,//m n m n αβ⊥⊥,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面β相交于直线c ,则//n c ,因为,,m m c m n α⊥∴⊥∴⊥,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,正确的有②③④.10.【2016高考浙江理数】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【解析】ABC △中,因为2,120AB BC ABC ==∠=,所以30BAD BCA ∠=∠=.由余弦定理可得2222cos AC AB BC AB BC B =+-⋅2222222cos12012=+-⨯⨯=,所以AC =设AD x =,则0x <<DC x =.在ABD ∆中,由余弦定理可得2222cos BD AD AB AD AB A =+-⋅22222cos30x x =+-⋅24x =-+.故BD =在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得222cos 2PD PB BD BPD PD PB +-∠===⋅,所以30BPD ∠=. 由此可得,将△ABD 沿BD 翻折后可与△PBD 重合,无论点D 在任何位置,只要点D 的位置确定,当平面PBD ⊥平面BDC 时,四面体PBCD 的体积最大(欲求最大值可不考虑不垂直的情况).EDC B A P过P 作直线BD 的垂线,垂足为O .设PO d =,则11sin 22PBD S BD d PD PB BPD =⨯=⋅∠△,12sin 302d x =⋅,解得d = 而△BCD的面积111sin )2sin 30(2)222S CD BC BCD x x=⋅∠=⋅=.当平面PBD ⊥平面BDC 时:四面体PBCD 的体积111)332BCD V S d x=⨯=⨯△=.观察上式,易得)2x x x x +≤,当且仅当x x -,即x 时取等号,同时我们可以发现当x x PBCD 的体积最大,为1.211.【2016高考新课标1卷】平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α平面ABCD =m ,α平面AB B 1A 1=n ,则m 、n 所成角的正弦值为 (A)2(B )2(C)3 (D)13【解析】设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为α∥平面11CB D ,所以','m m n n ∥∥,则,m n 所成的角等于','m n 所成的角.过1D 作11D E B C ∥,交AD 的延长线于点E,连接CE ,则CE 为'm .连接1A B ,过B 1作111B F A B ∥,交1AA 的延长线于点1F ,则11B F 为'n .连接BD ,则111,BD CE B F A B ∥∥,则','m n 所成的角即为1,A B BD 所成的角,为60︒,故,m n 所成角的正弦值为32,选A.12.【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π 【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 13.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3.【解析】由三视图知四棱锥高为3,底面平行四边形的一边长为2,其对应的高为1,因此所求四棱锥的体积1(21)323V =⨯⨯⨯=.故答案为2.。
立体几何高考题
1、一个正方体的棱长为2cm,其体对角线的长度为?
A. 2cm
B. 2√2cm
C. 4cm
D. 2√3cm
(答案)B
2、一个圆锥的底面半径为3cm,高为4cm,其母线长为?
A. 3cm
B. 4cm
C. 5cm
D. 6cm
(答案)C
3、一个球的内接正方体的棱长为6cm,则该球的半径为?
A. 3cm
B. 3√2cm
C. 3√3cm
D. 6cm
(答案)C
4、一个直三棱柱的底面为等腰直角三角形,且直角边长为2cm,高为3cm,其体积为?
A. 3cm³
B. 6cm³
C. 9cm³
D. 12cm³
(答案)B
5、一个圆柱的底面半径为2cm,高为5cm,其侧面积为?
A. 10π cm²
B. 20π cm²
C. 40π cm²
D. 50π cm²
(答案)B
6、一个正四棱锥的底面边长为4cm,高为3cm,其体积为?
A. 8cm³
B. 12cm³
C. 16cm³
D. 24cm³
(答案)C
7、一个圆锥的侧面展开图是一个半圆,且该半圆的半径为5cm,则该圆锥的高为?
A. √15cm
B. √20cm
C. √25cm
D. 5cm
(答案)C
8、一个正方体的内切球半径为2cm,则该正方体的体积为?
A. 8cm³
B. 32cm³
C. 64cm³
D. 128cm³
(答案)C。
高考必刷小题 立体几何
11.如图所示,在正方体ABCD-A1B1C1D1中,E是平面ADD1A1的中心,M, N,F分别是B1C1,CC1,AB的中点,则下列说法正确的是 A.MN=12EF
√B.MN≠12EF √C.MN与EF异面
D.MN与EF平行
1 A.4
dm2
C.
3 4
dm2
√B.
2 4
dm2
D.34 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
根据题意,在平面VAC内,过点P作EF∥AC分别交VA,VC于点F,E, 在平面VBC内,过点E作EQ∥VB交BC于点Q, 在平面VAB内,过点F作FD∥VB交AB于点D,连接DQ,如图所示, 因为EF∥AC, 所以△VEF∽△VCA,设其相似比为k, 则VVAF=VVCE=AECF=k,0<k<1, 因为 VA=VB=VC=1,且两两垂直,所以 AC= 2,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
因为EF⊂平面VAC, 所以FD⊥EF, 所以四边形 FEQD 是矩形,即 S 矩形 FEQD=
FD·EF=(1-k)· 2k=- 2k-122+ 42,
所以当
k=12时,S
矩形 FEQD
有最大值
2 4.
故该截面面积的最大值是
对于A,如图(1),α∩β=l,m⊥l,n∥l,则满足m∥α,n∥β,m⊥n, 平面α与β不一定垂直,故A错误; 对于B,如图(2),α∩β=l,n∥l,m⊥α,则满足n∥β,m⊥n,平面 α与β不一定垂直,故B错误;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
历年高考立体几何经典题型以及解析
1.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体ABCD ﹣A 1B 1C 1D 1被平面α截得的截面面积为( )A. 36B. 26C. 5D. 5342.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,90B F ∠=∠=︒,60A ∠=︒,45D ∠=︒,BC DE =.现将两块三角板拼接在一起,取BC 中点O 与AC 中点M ,则下列直线与平面OFM 所成的角不为定值的是( )A. ACB. AFC. BFD. CF3. (多选题)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,PA AB =,截面BDE 与直线PC 平行,与PA 交于点E ,则下列判断正确的是( )A. E 为PA 的中点B. BD ⊥平面PACC. PB 与CD 所成的角为3πD. 三棱锥C BDE -与四棱锥P ﹣ABCD 的体积之比等于1:4.4.在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,M 是棱11A D 的中点,过C 1,B ,M 作正方体的截面,则这个截面的面积为( )35 35 C. 92 D. 985. 已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点M 为棱DD 1的中点,则平面ACM 截该正方体的内切球所得截面面积为( ) A.3π B. 23π C. π D. 43π 6.(多选题)在三棱锥P -ABC 中,(0,1,0)A ,(3,1,0)B ,(0,3,0)C ,(0,1,2)P ,则( )A. (3,0,2)PB =-B. (3,0,0)AB =-C. PB AC ⊥D. 13PB =7.在四面体ABCD 中,E 是棱BC 的中点,且AE xAD yDB zDC =++,则( )A. 1x y z ++=B. 12xyz =C. x y z =+D. 222x y z =+8.三棱锥P -ABC 中,P A ⊥平面ABC ,2,3,23,3BAC AP AB π∠===Q 是BC 边上的一个动点,且直线PQ 与面ABC 所成角的最大值为,3π则该三棱锥外接球的表面积为( ) A. 45πB. 63πC. 57πD. 84π 9.已知三棱锥P ﹣ABC 的四个顶点均在同一个球面上,底面△ABC 满足6BA BC ==,2ABC π∠=,若该三棱锥体积的最大值为3.则其外接球的体积为________.10. 如图,五边形ABSCD 中,四边形ABCD 为长方形,SBC ∆为边长为2的正三角形,将SBC ∆沿BC 折起,使得点S 在平面ABCD 上的射影恰好在AD 上.(Ⅰ)当2AB =,证明:平面SAB ⊥平面SCD ;(Ⅱ)若1AB =,求平面SCD 与平面SBC 所成二面角的余弦值的绝对值.11.如图PAD △中,90PDA ︒∠=,2DP DA ==,B 、C 分别是PA 、PD 的中点,将PBC 沿BC 折起连结PA 、PD ,得到多面体PABCD .(1)证明:在多面体PABCD 中,BC PD ⊥;(2)在多面体PABCD 中,当6PA =时,求二面角B PA D --的余弦值.12.直四棱柱ABCD ﹣A 1B 1C 1D 1被平面1A ECD 所截得到如图所示的五面体,CD CE ⊥,CD AD ⊥.(1)求证:BC ∥平面1A AD ;(2)若113BC CD BE AD ====,求二面角1B A E C --的余弦值. 13.如图,在四棱锥S ﹣ABCD 中,SD ⊥平面ABCD ,底面ABCD 是边长为2的正方形,DE SC ⊥,E 为垂足,M 为AB 的中点.(1)当点F 在线段BC 上移动时,判断DEF 是否为直角三角形,并说明理由 (2)若4SD =,求二面角D EM C --的正弦值如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长. 15.在四棱锥P ﹣ABCD 中,底面ABCD 为正方形,PB PD =.(1)证明:BD ⊥平面PAC ;(2)若PA 与底面ABCD 所成的角为30°,PA PC ⊥,求二面角B PC D --的余弦值. 16.如图,在四棱锥M ﹣ABCD 中,AB AD ⊥,2AB AM AD ===,22MB MD ==.(1)证明:AM ⊥平面ABCD ;(2)若//CD AB ,2CD AB =,E 为线段BM 上一点,且2BE EM =,求直线EC 与平面BDM 所成角的正弦值.如图,在四棱锥E -ABCD 中,AE ⊥DE ,CD ⊥平面ADE ,AB ⊥平面ADE ,CD =DA =6,AB =2,DE =3.(I )求棱锥C -ADE 的体积;(II )求证:平面ACE ⊥平面CDE ;(III )在线段DE 上是否存在一点F ,使AF ∥平面BCE ?若存在,求出EF ED的值;若不存在,说明理由.18.如图,在四边形ABCD 中,//AB CD ,且::3:2:2AB BC CD =,60ABC ∠=︒,点E 是线段AB 上靠近点A 的一个三等分点,以DE 为折痕将ADE 折起,使点A 到达点A 1的位置,且12A C BC ==.(1)证明:平面1A DE ⊥平面BCD ;(2)求平面1A BE 与平面1A CD 所成锐二面角的余弦值.19.如图,在四棱柱ABCD ﹣A 1B 1C 1D 1中,平面11A ADD ⊥平面ABCD ,底面ABCD 是菱形,60ABC ∠=︒,11A A A D AC ==,E 为DD 1的中点.(1)证明:1//BD 平面ACE ;(2)求直线1A D 与平面ACE 所成角的正弦值.20.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,其中//AD BC ,AB AD ⊥,122AB AD BC ===,4PA =,E 为棱BC 上的点,且14BE BC =.(1)求证:DE ⊥平面PAC ;(2)求二面角A PC D --的余弦值;(3)设Q 为棱CP 上的点(不与C ,P 重合),且直线QE 与平面PAC 所成角的正弦值5CQ CP 的值. 21.如图,在四棱锥P -ABCD 中,AP ⊥平面PCD ,//AD BC ,AB BC ⊥,12AP AB BC AD ===,E 为AD 的中点,AC 与BE 相交于点O .(1)证明:PO ⊥平面ABCD .(2)求直线BC 与平面PBD 所成角的正弦值.22.如图,在四棱锥P —ABCD 中, 90ABC BCD ︒∠=∠=,60,BAD ADP ︒∠=是等腰等直角三形,且2,22,7AP DP AB CD BP =====.(1)求证: AD ⊥BP ;(2)求直线BC 与平面ADP 所成角的正弦值.试卷答案1.B【分析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC ,所以1//AQ EC ,同理1//AE QC ,所以四边形1AEC Q 是平行四边形.即正方体被平面截的截面.因为12B P PC =,所以112C B CE =,即1EC EB == 所以115,23AE EC AC ===由余弦定理得:22211111cos 25AE EC AC AEC AE EC +-∠==⨯ 所以126sin AEC ∠= 所以S 四边形1AEQC 1112sin 262AE EC AEC =⨯⨯⨯∠=故选:B 【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.2.B【分析】通过证明BC ⊥平面OMF ,可以找到,,BF CF AC 与平面OFM 所成的角,计算可知都为定值,由此可得答案.【详解】因为,O M 为中点,所以//OM AB ,所以OM BC ⊥,又OF BC ⊥,且OM OF O ⋂=,所以BC ⊥平面OMF ,所以,BF CF 与平面OFM 所成的角分别为BFO ∠和CFO ∠,它们相等,等于45°, 根据直线与平面所成角的定义知,AC 与平面OFM 所成的角为60CMO A ∠=∠= 故只有AF 与平面OFM 所成的角不为定值.故选:B【点睛】本题考查了直线与平面垂直的判定定理,考查了直线与平面所成角,属于基础题. 3.ABD【分析】采用排除法,根据线面平行的性质定理以及线面垂直的判定定理,结合线线角的求法,锥体体积公式的计算,可得结果.【详解】对于A ,连接AC 交BD 于点M ,连接EM ,如图所示,PC //面BDE ,PC ⊂面APC ,且面APC 面=BDE EM ,PC ∴//EM , 又四边形ABCD 是正方形,∴M 为AC 的中点,∴E 为PA 的中点,故A 正确.对于B ,PA ⊥面ABCD ,BD ⊂面ABCD ,∴PA BD ⊥,又AC BD ⊥,AC PA A ⋂=,,AC PA ⊂面PAC∴BD ⊥面PAC ,故B 正确.对于C ,//AB CD ,∴PBA ∠为PB 与CD 所成的角,PA ⊥面ABCD ,AB 面ABCD ,∴PA AB ⊥,在Rt PAB 中,PA AB =,4PBA=π∴∠,故C 错误.对于D ,由等体积法可得1.3C BDE E BCD BCD V V S EA --==⋅,13-=⋅⋅P ABCD ABCD V S PA 又1,22BCDABCD S S PA EA ==,∴14--=P ABC C BD DE V V ,故D 正确. 故选:ABD.【点睛】本题考查立体几何的综合应用,熟练线线、线面、面面之间的位置关系,审清题意,考验分析能力,属中档题. 4.C 【详解】 【分析】设1AA 的中点为N ,则1MNBC ,连接11,,MN NB BC MC , ,则梯形1MNBC 就是过1C ,B ,M 正方体的截面,其面积为()13292+22=222⨯⨯,故选C.5.A 【分析】根据球的特点可知截面是一个圆,根据等体积法计算出球心到平面ACM 的距离,由此求解出截面圆的半径,从而截面面积可求. 【详解】如图所示:设内切球球心为O ,O 到平面ACM 的距离为d ,截面圆的半径为r , 因为内切球的半径等于正方体棱长的一半,所以球的半径为1, 又因为O AMC M AOC V V --=,所以1233AMCAOCd S S ⨯⨯=⨯,又因为()()221122526,221222AMCAOCSS=⨯⨯-==⨯⨯=, 所以12633d ⨯=,所以63d =, 所以截面圆的半径22313r d =-=,所以截面圆的面积为233S ππ=⋅=⎝⎭. 故选:A.【点睛】本题考查正方体的内切球的特点以及球的截面面积的计算,难度一般.任何一个平面去截球,得到的截面一定是圆面,截面圆的半径可通过球的半径以及球心到截面的距离去计算. 6. ACD 【分析】根据空间向量的坐标运算可判断A 、B ,计算PB AC ⋅的值可判断C ,利用向量的模长公式可判断选项D ,即可得正确答案.【详解】对于选项A :()()3,1,00,1,2(3,0,2)PB =-=-,故选项A 正确; 对于选项B :()()3,1,00,1,0(3,0,0)AB =-=,故选项B 不正确;对于选项C :()()0,3,00,1,0(0,2,0)AC =-=,则3002200PB AC ⋅=⨯+⨯-⨯=,所以PB AC ⊥,故选项C 正确; 对于选项D :因为()223213PB =+-=D 正确,故选:ACD7.C 【分析】根据向量的加法法则和数乘的定义判断. 【详解】因为1()2AE AD DE AD DB DC =+=++, 所以1x =,12y z ==,则x y z =+. 故选:C . 8.C 【分析】根据题意画出图形,结合图形找出△ABC 的外接圆圆心与三棱锥P ﹣ABC 外接球的球心, 求出外接球的半径,再计算它的表面积.【详解】三棱锥P ﹣ABC 中,PA ⊥平面ABC ,直线PQ 与平面ABC 所成角为θ,如图所示;则sinθ=PA PQ =3PQ ,且sinθ的最大值是2,∴(PQ )min AQ A 到BC∴AQ ⊥BC ,∵Rt △ABQ 中可得6ABC π∠=,即可得BC=6;取△ABC 的外接圆圆心为O′,作OO′∥PA ,∴6120sin =2r ,解得∴取H 为PA 的中点,∴,PH=32,由勾股定理得, ∴三棱锥P ﹣ABC 的外接球的表面积是S=4πR 2=4×2π⨯=57π. 故答案为C9.323π 【分析】画出示意图,利用体积最大时P 所处的位置,计算出球的半径从而算出球的体积. 【详解】如图所示:设球心为O ,ABC 所在圆面的圆心为1O ,则1OO ⊥平面ABC ;因为6BA BC ==2ABC π∠=,所以ABC 是等腰直角三角形,所以1O 是AC 中点;所以当三棱锥体积最大时,P 为射线1O O 与球的交点,所以113p ABC ABCV PO S -=⋅⋅;因为16632ABCS==,设球的半径为R ,所以2221113PO PO OO R R AO R R =+=-=+-,所以(213333R R ⋅-⋅=,解得:2R =,所以球的体积为:343233R ππ=. 【点睛】本题考查三棱锥的外接球的相关计算,难度较难.处理球的有关问题时要充分考虑到球本身的性质,例如:球心与小圆面圆心的连线垂直于小圆面. 10.(Ⅰ)证明见解析;(Ⅱ)13.【详解】 【分析】 试题分析:(Ⅰ)作SO AD ⊥,垂足为O ,依题意得SO ⊥平面ABCD ,则,SO AB AB AD ⊥⊥,AB ⊥平面SAD ,AB SD ⊥,结合勾股定理可得SA SD ⊥,则SD ⊥平面SAB ,平面SAB ⊥平面SCD .(Ⅱ)由几何关系,以,,OA OE OS 为,,x y z 轴建立空间直角坐标系,由题意可得平面SCD 的法向量()2,0,1m =-,平面SBC 的法向量()0,2,1n =.计算可得平面SCD 与平面SBC 所成二面角的余弦值的绝对值为13. 试题解析:(Ⅰ)作SO AD ⊥,垂足为O ,依题意得SO ⊥平面ABCD ,,SO AB SO CD ∴⊥⊥, 又AB AD ⊥,AB ∴⊥平面SAD ,,AB SA AB SD ⊥⊥利用勾股定理得22422SA SB AB =-=-2SD =在SAD ∆中,2,2,AD SA SD SA SD ===∴⊥SD ∴⊥平面SAB ,又SD ⊂平面SCD ,所以平面SAB ⊥平面SCD (Ⅱ)连结,BO CO ,SB SC =,Rt SOB Rt SOC ∴∆≅∆,BO CO =,又四边形ABCD 为长方形,,Rt AOB Rt DOC OA OD ∴∆≅∆∴=.取BC 中点为E ,得OE ∥AB ,连结,3SE SE ∴= 其中1OE =,1OA OD ==,2312OS -由以上证明可知,,OS OE AD 互相垂直,不妨以,,OA OE OS 为,,x y z 轴建立空间直角坐标系.1,2OE OS =∴=,()()()0,1,0,1,1,2,2,0,0DC SC BC ∴==--=-,设()111,,m x y z =是平面SCD 的法向量,则有00m DC m SC ⎧⋅=⎨⋅=⎩即1111020y x y z =⎧⎪⎨-+-=⎪⎩,令11z =得()2,0,1m =-设()222,,n x y z =是平面SBC 的法向量,则有00n BC n SC ⎧⋅=⎨⋅=⎩即22222020x x y z -=⎧⎪⎨-+-=⎪⎩ 令11z =得()0,2,1n =. 则11,333m n cosm n m n⋅===⋅ 所以平面SCD 与平面SBC 所成二面角的余弦值的绝对值为13. 11.(1)见解析;(2)0.【分析】(1)根据线面垂直的判定定理,先得到BC ⊥平面PCD ,进而可得 BC PD ⊥; (2)根据题意,先得到,,CB CD CP 两两垂直,以C 为坐标原点,分别以,,CB CD CP 为,,x y z 轴建立空间直角坐标系,求出两平面,PAB PAD 的法向量,根据向量夹角计算公式,即可求出结果.【详解】(1)证明:PAD △中,因为,B C 分别是,PA PD 的中点,90,PDA ∠=所以//BC AD ,90BCP BCD ∠=∠=,所以多面体PABCD 中, BC PC ⊥,BC CD ⊥, 又PCCD C =,BC ∴⊥平面PCD ;因为PD ⊂平面PCD ,.BC PD ∴⊥(2)依题意可得, 1PC CD ==,直角ADC 中,得5AC =,又6,PA =所以222PA PC AC =+,PC CA ∴⊥, 由(1)知, BC PC ⊥,PC ∴⊥平面.ABCD以C 为坐标原点,分别以,,CB CD CP 为,,x y z 轴,建立如图的坐标系.则(1,0,0),(2,1,0),(0,1,0),(0,0,1)B A D P , 得(2,1,1),(1,0,1),(0,1,1).PA PB PD =-=-=-设平面,PAB PAD 的一个法向量分别是(,,),(,,)m x y z n p q r ==,则20,0.m PA x y z m PB x z ⎧⋅=+-=⎨⋅=-=⎩可取(1,1,1)m =-.20,0.n PA p q r n PD q r ⎧⋅=+-=⎨⋅=-=⎩可取(0,1,1)n =. 01cos ,03m n m n m n⋅-<>===⋅⋅. 所以二面角B PA D --的余弦值为0.【点睛】本题主要考查证明线线垂直,以及求二面角的余弦值问题,熟记线面垂直的判定定理及性质,灵活运用向量的方法求解二面角即可,属于常考题型. 12.(1)见解析(2 【分析】(1)利用面面平行的性质定理,可证得线面平行;(2)以D 为坐标原点,DA 为x 轴,DC 为y 轴,过D 垂直于ABCD 的直线为z 轴,如图建系,求出平面1A EC 的一个法向量(1,0,1)u =-,平面1A EB 的一个法向量(1,2,0)v =,求出向量夹角的余弦值,即可得到答案;【详解】(1)在直四棱柱1111ABCD A B C D -中,BE ⊥平面ABCD , ∵CD ⊂平面ABCD ,∴BE CD ⊥∵CD CE ⊥,BE CE E ⋂=,∴CD ⊥平面BCE 同理可证CD ⊥平面1A AD , ∴平面//BCE 平面1A AD ,∵BC ⊂平面BCE ,∴//BC 平面1A AD(2)∵平面//BCE 平面1A AD ,平面1A ECD ⋂平面BCE CE =,平面1A ECD ⋂平面11A AD A D =,∴1A D ∥EC ,∴1A D 和CE 与平面ABCD 所成角相等,即1A B DA EC ∠=∠; ∵BC BE =,∴45ECB ︒∠=,∴13AA AD ==,以D 为坐标原点,DA 为x 轴,DC 为y 轴,过D 垂直于ABCD 的直线为z 轴,如图建系,(0,1,0)C ,(1,1,0)B ,(1,1,1)E ,1(3,0,3)A ,∴(1,0,1)CE =,1(2,1,2)EA =-,(0,0,1)BE =, 设()111,,u x y z =为平面1A EC 的一个法向量,则10u CE u EA ⎧⋅=⎪⎨⋅=⎪⎩,即111110220x z x y z +=⎧⎨-+=⎩, 令11x =,则(1,0,1)u =-设()222,,v x y z =为平面1A EB 的一个法向量,则10v BE v EA ⎧⋅=⎪⎨⋅=⎪⎩,即22220220z x y z =⎧⎨-+=⎩, 令21x =,则(1,2,0)v =, 则110cos ,||||1025u v u v u v ⋅<>===⨯, 由图知,二面角1B A E C --为锐角,则二面角1B A E C --10. 【点睛】本题考查利用面面平行证明线面平行、向量法求二面角的余弦值,考查转化与化归思想,考查空间想象能力、运算求解能力. 13.(1)证明见解析;(2)57042. 【分析】(1)先证明BC ⊥平面SCD ,可得BC DE ⊥,结合DE SC ⊥,即可证得DE ⊥平面SBC ,进而可得DE EF ⊥,即可得出DEF 是直角三角形;(2)以D 为原点,分别以,,DA DC DS 所在的直线为,,x y z 轴建立空间直角坐标系,根据//SE SC ,设()0,2,4SE tSC t t ==-,利用0DE SC ⋅=求出t 的值,再计算平面DEM 的法向量,平面EMC 的法向量,利用向量夹角公式求夹角余弦值,再计算正弦值即可. 【详解】(1)因为SD ⊥平面ABCD ,BC ⊂平面ABCD ,所以SD BC ⊥, 因为四边形ABCD 是边长为2的正方形,所以CD BC ⊥, 因为SDCD D =,所以BC ⊥平面SCD ,因为DE ⊂平面SCD ,所以BC DE ⊥, 又因为DE SC ⊥,BCSC C =,所以DE ⊥平面SBC ,因为EF ⊂平面SBC ,所以DE EF ⊥,可得90DEF ∠=, 所以DEF 是直角三角形.(2)如图以D 为原点,分别以,,DA DC DS 所在的直线为,,x y z 轴建立空间直角坐标系,则()0,0,0D ,()2,0,0A ,()2,2,0B ,()0,0,4S ,()0,2,0C ,()2,1,0M ,()0,2,4SC =-,因为//SE SC ,设()0,2,4SE tSC t t ==-,所以()()()0,0,40,2,40,2,44DE DS SE t t t t =+=+-=- 因为DE SC ⊥,所以()224440DE SC t t ⋅=⨯--=,解得:45t =, 所以840,,55DE ⎛⎫= ⎪⎝⎭,()84342,1,00,,2,,5555EM DM DE ⎛⎫⎛⎫=-=-=-- ⎪⎪⎝⎭⎝⎭, ()2,1,0MC =-,设平面DEM 的一个法向量为()1111,,x n y z =,由1111118405520n DE y z n DM x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩ 令12y =可得14z =-,11x =-, 所以()11,2,4n =--,设平面EMC 的一个法向量为()2222,,n x y z =, 由222212234205520n EM x y z n MC x y ⎧⋅=--=⎪⎨⎪⋅=-+=⎩令21x =,可得22y =,21z =, 所以()21,2,1n =设二面角D EM C --的平面角为θ,则1212cos 1n n n n θ⋅===+, 因为0θπ≤≤,所以sin θ===, 故二面角D EM C --【点睛】方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果. 14.(Ⅰ)见证明;(Ⅱ)49(Ⅲ)87【分析】首先利用几何体的特征建立空间直角坐标系(Ⅰ)利用直线BF 的方向向量和平面ADE 的法向量的关系即可证明线面平行; (Ⅱ)分别求得直线CE 的方向向量和平面BDE 的法向量,然后求解线面角的正弦值即可; (Ⅲ)首先确定两个半平面的法向量,然后利用二面角的余弦值计算公式得到关于CF 长度的方程,解方程可得CF 的长度.【详解】依题意,可以建立以A 为原点,分别以,,AB AD AE 的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得()()()()()0,0,0,1,0,0,1,2,0,0,1,0,0,0,2A B C D E .设()0CF h h =>,则()1,2,F h .(Ⅰ)依题意,()1,0,0AB =是平面ADE 的法向量,又()0,2,BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(Ⅱ)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--,设(),,n x y z =为平面BDE 的法向量,则00n BD n BE ⎧⋅=⎨⋅=⎩,即020x y x z -+=⎧⎨-+=⎩,不妨令z =1,可得()2,2,1n =, 因此有4cos ,9||||CE n CE n CE n ⋅〈〉==-. 所以,直线CE 与平面BDE 所成角的正弦值为49. (Ⅲ)设(),,m x y z =为平面BDF 的法向量,则00m BD m BF ⎧⋅=⎨⋅=⎩,即020x y y hz -+=⎧⎨+=⎩. 不妨令y =1,可得21,1,m h ⎛⎫=- ⎪⎝⎭.由题意,有2241cos ,3432m nhm n m n h -⋅===⨯+,解得87h =. 经检验,符合题意。所以,线段CF 的长为87. 【点睛】本题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力. 15.(1)见解析,(2)17-【分析】(1)连接BD 交AC 于O ,连接PO ,则有AC BD ⊥,O 为BD 的中点,再由PB PD =可得BD PO ⊥,由线面垂直的判定定理可证得结论;(2)由(1)可知,平面PAC ⊥平面ABCD ,两平面的交线为AC ,所以过P 作PE 垂直AC 于E ,则PE ⊥平面ABCD ,从而可知平面30PAC ∠=︒,若设PC =2,由可把其它边求出来,然后以A 为坐标原点,AB 为x 轴,AD 为y 轴,过A 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,利用空间向量求解二面角B PC D --的余弦值.【详解】(1)证明:连接BD 交AC 于O ,连接PO ,因为四边形ABCD 为正方形,所以AC BD ⊥,O 为BD 的中点,因为PB PD =,所以BD PO ⊥,因为AC PO O =,所以BD ⊥平面PAC ;(2)解:因为BD ⊥平面PAC ,BD 在平面ABCD 内,所以平面PAC ⊥平面ABCD ,过P 作PE 垂直AC 于E ,则PE ⊥平面ABCD ,所以PAC ∠为PA 与底面ABCD 所成的角,即30PAC ∠=︒,设PC =2,因为PA PC ⊥,所以23,3,3,4,22PA PE AE AC AD =====, 如图,以A 为坐标原点,AB 为x 轴,AD 为y 轴,过A 作平面ABCD 的垂线为z 轴,建立空间直角坐标系, 则3232(0,0,0),(22,0,0),(22,22,0),(0,22,0),(,,3)22A B C D P , 22(0,22,0),(,,3)(22,0,0)22BC CP DC ==--=,, 设平面PBC 法向量为(,,)n x y z =,则220223022n BC y n CP x y z ⎧⋅==⎪⎨⋅=--+=⎪⎩,令1z =,则(6,0,1)n =, 设平面PDC 的法向量为(,,)m a b c =,则220223022n DC a n CP a b c ⎧⋅==⎪⎨⋅=--+=⎪⎩,令1c =,则(0,6,1)m =, 所以11cos ,777m nm n m n ⋅===⨯, 由图可知二面角B PC D --的平面角为钝角,所以二面角B PC D --的余弦值为17-【点睛】此题考查线面垂直的证明,考查二面欠余弦值的求法,考查空间中线线、线面、面面间的位置关系等知识,考查运算能力,属于中档题.16.(1)证明见解析(2159【分析】(1)利用线段长度得到AM 与,AB AD 间的垂直关系,再根据线面垂直的判定定理完成证明;(2)以AD 、AM 、AB 为x 轴、y 轴、z 轴建立空间直角坐标系,利用直线的方向向量与平面的法向量夹角的余弦值的绝对值等于线面角的正弦值,计算出结果.【详解】(1)∵2AB AM AD ===,22MB MD ==,∴222AM AD MD +=,222AM AB MB +=∴AM AD ⊥,AM AB ⊥ ∵AB AD A ⋂=,AD ⊂平面ABCD ,∴AM ⊥平面ABCD (2)由(1)知AB AD ⊥,AM AD ⊥,AM AB ⊥又A 为坐标原点,分别以AD 、AM 、AB 为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,0,0A ,()0,2,0M ,()2,0,0D ,()0,0,2B ,()2,0,1C ,()2,0,2BD =-,()2,2,0DM =-,∵2BE EB =,∴420,,33E ⎛⎫ ⎪⎝⎭,412,,33CE ⎛⎫=-- ⎪⎝⎭ 设(),,n x y z =是平面BDM 的一个法向量则00n BD n DM ⎧⋅=⎨⋅=⎩,即220220x z x y -=⎡⎢-+=⎣,取1x =得()1,1,1n = ∴41215933cos ,53||||5333CE CE CE n n n -+-⋅〈〉===⋅⨯∴直线EC 与平面BDM 所成的正弦值为15953 【点睛】本题考查线面垂直的证明以及用向量法求解线面角的正弦,难度一般.用向量方法求解线面角的正弦值时,注意直线方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值. 17. (Ⅰ)93;(Ⅱ)证明见解析;(Ⅲ)存在,13.【分析】(I )在Rt ADE △中,22AE AD DE =-,可得12ADE S AE DE =⋅,由于CD ⊥平面ADE ,可得13C ADE ADE V CD S -=⋅;(II )由CD ⊥平面ADE ,可得CD AE ⊥,进而得到AE ⊥平面CDE ,即可证明平面ACE ⊥平面CDE ;(III )在线段DE 上存在一点F ,使AF 平面BCE ,13EF ED =.设F 为线段DE 上的一点,且13EF ED =,过F 作FM CD 交CE 于点M ,由线面垂直的性质可得:CDAB .可得四边形ABMF 是平行四边形,于是AF BM ,即可证明AF 平面BCE【详解】(I )在Rt △ADE 中,2233AE AD DE =-=,因为CD ⊥平面ADE , 所以棱锥C-ADE 的体积为1193332C ADE ADE AE DE V S CD CD -∆⋅=⋅=⋅⋅=. (II )因为CD ⊥平面ADE ,AE ⊂平面ADE ,所以CD AE ⊥.又因为AE DE ⊥,CD DE D ⋂=,所以AE ⊥平面CDE ,又因为AE ⊂平面ACE ,所以平面ACE ⊥平面CDE.(III )在线段DE 上存在一点F ,且13EF ED =,使AF 平面BCE .解:设F 为线段DE 上一点,且13EF ED =,过点F 作//FM CD 交CE 于M ,则13FM CD =. 因为CD ⊥平面ADE ,AB ⊥平面ADE ,所以//CD AB ,又因为3CD AB = 所以MF AB =,//FM AB ,所以四边形ABMF 是平行四边形,则//AF BM . 又因为AF ⊄平面BCE ,BM ⊂平面BCE ,所以//AF 平面BCE .18.(1)证明见解析;(2)65.【分析】(1)连接1OA ,OC ,结合勾股定理和等边三角形的性质,证得1OA OC ⊥和OC DE ⊥,利用线面垂直的判定定理,得到OC ⊥平面1A DE ,再由面面垂直的判定定理,即可证得平面1A DE ⊥平面BCD.(2)以OC 的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz ,分别求得平面1A BE 和平面1A CD 的一个法向量,结合向量的夹角公式,即可求解.【详解】(1)由题意,四边形BCDE 为菱形,连接CE ,取DE 的中点O ,连接1OA ,OC ,如图所示,在ADE 中,60AED ABC ∠=∠=︒,且2DE =,1AE =,可得,AD =则222DE AE AD =+,则90EAD ∠=︒,即AD AE ⊥,即11A D A E ⊥.因为O 是DE 的中点,所以1112OA DE ==, 因为60CDE ABC ∠=∠=︒,所以CDE ∆为等边三角形,所以OC DE ⊥,且OC =所以22211A C OA OC =+,所以190A OC ∠=︒,即1OA OC ⊥.又因为OC DE ⊥,且1OA DE O ⋂=,所以OC ⊥平面1A DE ,又因为OC ⊂平面BCD ,所以平面1A DE ⊥平面BCD.(2)以OC 的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz ,则(0,1,0)D ,(0,1,0)E -,(3,0,0)C ,(3,2,0)B -,1130,,22A ⎛⎫- ⎪ ⎪⎝⎭, 设平面1A BE 的法向量为(,,)m x y z =,则13013022m BE x y m EA y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令1z =,可得(1,3,1)m =--, 设平面1A CD 的法向量为(),,n x y z '''=,则13033022n CD x y n DA y z ⎧⋅=-+=⎪⎨⋅'''=-+=⎪⎩',令1x '=,得(1,3,3)n =. 因为13365cos ,65||||513m n m n m n ⋅--+〈〉===-⨯. 所以平面1A BE 与平面1A CD 所成锐二面角的余弦值为6565.19.(1)证明见解析;(2387.【分析】(1)连接BD 交AC 于O ,连接OE ,可证1//OE BD ,从而得线面平行;(2)取AD 中点M ,连接1MA ,MC ,由已知证明1A M ⊥平面ABCD ,MC AD ⊥,以1,,MC MD MA 为,,x y z 轴建立空间直角坐标系,设2AD =,得出各点坐标,求出平面AEC 的法向量n ,由法向量n 与1A D 的夹角的余弦值的绝对值等于直线1A D 与平面AEC 所成有的正弦可得.【详解】(1)连接BD 交AC 于O ,连接OE ,∵ABCD 是菱形,∴O 是BD 中点,又E 是1DD 中点,∴1//OE BD ,1BD ⊄平面AEC ,OE ⊂平面AEC ,∴1//BD 平面ACE ;(2)取AD 中点M ,连接1MA ,MC ,∵11AA A D =,∴1A M AD ⊥,又平面11A ADD ⊥平面ABCD ,平面11A ADD 平面ABCD AD =,∴1A M ⊥平面ABCD ,又菱形ABCD 中,60ABC ∠=︒,所以ABC 和ACD △都是等边三角形,所以MC AD ⊥,如图,以1,,MC MD MA 为,,x y z 轴建立空间直角坐标系,设2AD =, 则3MC =,222211213A M A A AM =-=-=∴(0,1,0)A -,(0,1,0)D ,3,0,0)C ,13)A ,13)D ,33(0,,22E , ∴1(0,1,3)A D =-,(3,1,0)AC =,53(0,,22AE =, 设(,,)n x y z =是平面ACE 的一个法向量,则 305302n AC x y n AE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,则3y =5z =,(1,3,5)n =-, 设直线1A D 与平面ACE 所成角为θ, 则111353387sin cos ,29292n A Dn A D n A D θ⋅--=<>===⨯.【点睛】本题考查证明线面平行,考查用空间向量法求线面角.求空间角的常用方法是空间向量法,在题中有垂直的情况下,常常取过同一点且两两垂直的三条直线为坐标轴建立空间直角坐标系,用空间向量法求空间角,考查了学生的运算求解能力.20.(1)证明见解析;(225;(3)23CQ CP =.【分析】(1)建立适当的空间直角坐标系,确定各点坐标,得到0DE AC ⋅=,0DE AP ⋅=,根据线面垂直的判定定理,即可证明.(2)由(1)可知,平面PAC 的法向量(2,1,0)m =-,确定平面PCD 的法向量(2,2,1)n =-,根据cos ,||||m n m n m n ⋅〈〉=⋅,求解即可. (3)设(01)CQ CPλλ=<<,确定(22,44,4)Q λλλ=--,(2,43,4)QE λλλ=--,根据直线QE 与平面PAC 5,求解λ,即可. 【详解】(1)因为PA ⊥平面ABCD ,AB平面ABCD ,AD ⊂平面ABCD所以PA AB ⊥,PA AD ⊥因为AB AD ⊥ 则以A 为坐标原点,建立如图所示的空间直角坐标系.由已知可得(0,0,0)A ,()2,0,0B ,(2,4,0)C ,(0,2,0)D ,(0,0,4)P ,(2,1,0)E . 所以(2,1,0)DE =-,(2,4,0)AC =,(0,0,4)AP =.因为221400DE AC ⋅=⨯-⨯+=,0DE AP ⋅=.所以DE AC ⊥,DE AP ⊥又AP AC A ⋂=,AP ⊂平面PAC ,AC ⊂平面PAC .所以DE ⊥平面PAC .(2)设平面PAC 的法向量m ,由(1)可知,(2,1,0)m DE ==-设平面PCD 的法向量(,,)n x y z =因为(0,2,4)PD =-,(2,4,4)PC =-.所以00n PD n PC ⎧⋅=⎨⋅=⎩,即2402440y z x y z -=⎧⎨+-=⎩ 不妨设1z =,得(2,2,1)n =-. 2222225cos ,||||2(1)(2)21m n m n m n ⋅⨯〈〉===⋅+-⨯-++ 所以二面角A PC D --25. (3)设(01)CQ CPλλ=<<,即(2,4,4)CQ CP λλλλ==--. 所以(22,44,4)Q λλλ=--,即(2,43,4)QE λλλ=--.因为直线QE 与平面PAC 5所以2||cos ,5||||2QE m QE m QE m ⋅〈〉===⋅+∣3=解得23λ=即23CQ CP =. 【点睛】本题考查空间向量在立体几何中的应用,考查综合分析求解与论证能力,属于较难题. 21.(1)证明见解析(2)11【分析】(1)通过证明BE ⊥平面APC ,得到BE PO ⊥,再证PO AC ⊥即可证得PO ⊥平面ABCD . (2)建立空间直角坐标系,求出平面的法向量、直线的方向向量,利用空间向量法求出线面角的正弦值.【详解】(1)证明:AP ⊥平面PCD ,CD ⊂平面PCD ,AP CD ∴⊥, //,AD BC 12BC AD =,E 为AD 的中点,则//BC DE 且BC DE =. ∴四边形BCDE 为平行四边形,//BE CD ∴,AP BE ∴⊥.又,AB BC ⊥12AB BC AD ==,且E 为AD 的中点,∴四边形ABCE 为正方形,BE AC ∴⊥,又,AP AC A =BE ∴⊥平面APC ,PO ⊂平面APC ,则BE PO ⊥.AP ⊥平面,PCD PC ⊂平面PCD ,AP PC ∴⊥,又AC ==,PAC ∴∆为等腰直角三角形,O 为斜边AC 上的中点,PO AC ∴⊥且,ACBE O =PO ∴⊥平面ABCD . (2)解:以O 为坐标原点,建立空间直角坐标系O -xyz ,如图所示不妨设1OB =,则(1,0,0),B (0,1,0),C (0,0,1),P (2,1,0)D -,则(1,1,0),BC =-(1,0,1),PB =-(2,1,1)PD =--.设平面PBD 的法向量为(,,)n x y z =,则00n PB n PD ⎧⋅=⎨⋅=⎩,,即0,20,x z x y z -=⎧⎨-+-=⎩即,3,x z y z =⎧⎨=⎩ 令1z =,得(1,3,1)n =.设BC 与平面PBD 所成角为θ, 则()2222211310122sin cos ,13111BC n θ-⨯+⨯+⨯=<>==++-+【点睛】本题考查线面垂直,线面角的计算,属于中档题. 22.(1)证明见解析;(2)14.【分析】(1)取AD 中点E ,连接PE 、BE 、BD ,由平面几何的知识可得AD PE ⊥、AD BE ⊥,由线面垂直的判定可得AD ⊥平面PBE ,再由线面垂直的性质即可得证; (2)由题意建立空间直角坐标系,求出所需点的坐标后,再求出33,22BC ⎛⎫=-- ⎪ ⎪⎝⎭、平面ADP 的一个法向量为n ,由sin cos ,n BC α=即可得解.【详解】(1)证明:取AD 中点E ,连接PE 、BE 、BD ,如图:ADP △是等腰直角三角形,且2AP DP ==,∴AD PE ⊥且2AD =,2AB =且60BAD ∠=,∴ABD △是等边三角形,∴AD BE ⊥,又BE PE E ⋂=,∴AD ⊥平面PBE , BP ⊂平面PBE ,∴AD BP ⊥;(2)AE ⊥平面PBE ,以E 为坐标原点,分别以AE ,BE 为x 轴、y 轴,过点E 与平面ABCD 垂直的方向为z 轴建立空间直角坐标系E-xyz 如图所示:则()()()()0,0,0,1,0,0,3,0,1,0,0E A B D -,()213,0AB DC =-=,∴33(,22C -, 1PE =,3EB =7BP =∴2223cos 22PE EB BP PEB PE EB +-∠==-⋅,∴150PEB ∠=,∴310,,22P ⎛⎫- ⎪ ⎪⎝⎭, 则33,22BC ⎛⎫=-- ⎪ ⎪⎝⎭,()2,0,0AD =-,311,22AP ⎛⎫=-- ⎪⎝⎭, 设平面ADP 的一个法向量为(,,)n x y z =,则20102n AD x n AP x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩,取y =(0,3,3)n =, 设直线BC 与平面ADP 所成角为α, 则1sin cos ,43n BCn BC n BC α⋅====⋅. 【点睛】本题考查了线面垂直的判定与性质、利用空间向量求线面角的应用,考查了空间思维能力与运算求解能力,属于中档题.。
高考立体几何经典30题__详细解释
高考立体几何经典30题1(2010浙江理数)(6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是(A )若l m ⊥,m α⊂,则l α⊥ (B )若l α⊥,l m //,则m α⊥ (C )若l α//,m α⊂,则l m // (D )若l α//,m α//,则l m //2(2010全国卷2理数)(11)与正方体1111ABCD A BC D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个(C )有且只有3个 (D )有无数个 2【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.3(2010全国卷2理数)(9)已知正四棱锥S ABCD -中,23SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B )3 (C )2 (D )34(2010陕西文数) 8.若某空间几何体的三视图如图所示,则该几何体的体积是 [B](A )2 (B )1(C )23(D )135(2010辽宁文数)(11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,2BC =,则球O 的表面积等于(A )4π (B )3π (C )2π (D )π6(2010辽宁理数)(12) (12)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是(A)(0,62+) (B)(1,22) (C) (62-,62+) (D) (0,22) 最大值,可知AD=3,SD=21a -,则有21a -<2+3,即22843(62)a <+=+,即有a<62+(2)构成三棱锥的两条对角线长为a ,其他各边长为2,如图所示,此时a>0; 综上分析可知a ∈(0,62+)7(2010全国卷2文数)(11)与正方体ABCD —A 1B 1C 1D 1的三条棱AB 、CC 1、A 1D 1所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个(C )有且只有3个 (D )有无数个 8(2010全国卷2文数)(8)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为(A )34 (B) 54(C)74(D) 349(2010江西理数)10.过正方体1111ABCD A BC D -的顶点A 作直线L ,使L 与棱AB ,AD ,1AA 所成的角都相等,这样的直线L 可以作A.1条B.2条C.3条D.4条10(2010安徽文数)(9)一个几何体的三视图如图,该几何体的表面积是(A )372 (B )360 (C )292 (D )28011(2010山东文数)(4)在空间,下列命题正确的是 A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行12(2010北京文数)(8)如图,正方体1111ABCD-A B C D 的棱长2,动点E 、F 在棱11A B 上。
高考数学立体几何题型全归纳
高考数学立体几何题型全归纳一、空间几何体的结构特征1. 一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如下(单位cm),则该三棱柱的表面积为()正视图:是一个矩形,长为2,高为√(3);侧视图:是一个矩形,长为2,高为1;俯视图:是一个正三角形,边长为2。
解析:底面正三角形的边长a = 2,底面积S_{底}=(√(3))/(4)a^2=(√(3))/(4)×2^2=√(3)。
侧棱长h = 1,三个侧面的面积S_{侧}=3×2×1 = 6。
所以表面积S=2S_{底}+S_{侧}=2√(3)+6。
2. 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()正视图:是一个梯形,上底为1,下底为2,高为2;侧视图:是一个矩形,长为2,宽为1;俯视图:是一个矩形,长为2,宽为1。
解析:该几何体是一个四棱台。
上底面积S_{1}=1×1 = 1,下底面积S_{2}=2×2=4,高h = 2。
根据四棱台体积公式V=(1)/(3)h(S_{1}+S_{2}+√(S_{1)S_{2}})=(1)/(3)×2×(1 + 4+√(1×4))=(14)/(3)二、空间几何体的表面积与体积3. 已知球的直径SC = 4,A,B是该球球面上的两点,AB=√(3),∠ ASC=∠BSC = 30^∘,则棱锥S - ABC的体积为()解析:设球心为O,因为SC是球的直径,∠ ASC=∠ BSC = 30^∘所以SA=SB = 2√(3),AO = BO=√(3)又AB=√(3),所以 AOB是等边三角形,S_{ AOB}=(√(3))/(4)×(√(3))^2=(3√(3))/(4)V_{S - ABC}=V_{S - AOB}+V_{C - AOB}=(1)/(3)× S_{ AOB}×(SO + CO)=(1)/(3)×(3√(3))/(4)×2=√(3)4. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()正视图:是一个正方形,右上角缺了一个等腰直角三角形;侧视图:是一个正方形,右上角缺了一个等腰直角三角形;俯视图:是一个正方形,右上角缺了一个小正方形。
高三立体几何习题(含问题详解)
C BAC1B1A1高三立体几何习题一、填空题1.已知AB是球O的一条直径,点1O是AB上一点,若14OO=,平面α过点1O且垂直AB,截得圆1O,当圆1O的面积为9π时,则球O的表面积是.【答案】100p2.把一个大金属球表面涂漆,共需油漆2.4公斤.若把这个大金属球熔化制成64个大小都相同的小金属球,不计损耗,将这些小金属球表面都涂漆,需要用漆公斤.【答案】9.63.已知球的表面积为64π2cm,用一个平面截球,使截面圆的半径为2cm,则截面与球心的距离是cm【答案】234.一个圆锥与一个球体积相等且圆锥的底面半径是球半径的2倍,若圆锥的高为1,则球的表面积为.【答案】4p5.一个底面置于水平面上的圆锥,若主视图是边长为2的正三角形,则圆锥的侧面积为.【答案】4p6.如图所示:在直三棱柱111ABC A B C-中,AB BC⊥,1AB BC BB==,则平面11A B C与平面ABC所成的二面角的大小为.【答案】4π二、选择题1.如图,已知圆锥的底面半径为10r=,点Q为半圆弧AB的中点,点P为母线SA的中点.若PQ与SO所成角为4π,则此圆锥的全面积与体积分别为()A.100051006,3ππB.10005100(16),3ππ+C.100031003,3ππD.10003100(13),3ππ+【答案】B2.如图,取一个底面半径和高都为R的圆柱,从圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥,把所得的几何体与一个半径为R的半球放在同一水平面α上.用一平行于平面α的平面去截这两个几何体,截面分别为圆面和圆环面(图中阴影部分).设截面面积分别为S圆和S圆环,那么()A.S圆>S圆环 B.S圆<S圆环 C.S圆=S圆环 D.不确定PSAQOB3.如图所示,PAB ∆所在平面α和四边形ABCD 所在的平面β互相垂直,且AD α⊥,BC α⊥,4AD =,8BC =,6AB =,若tan 2tan 1ADP BCP ∠-∠=,则动点P 在平面α内的轨迹是( ) A.线段 B.椭圆的一部分 C.抛物线 D.双曲线的一部分 【答案】D4.在空间中,下列命题正确的是( )A .若两直线,a b 与直线l 所成的角相等,那么//a bB .空间不同的三点A 、B 、C 确定一个平面C. 如果直线//l 平面α且//l 平面β,那么//αβ D .若直线a 与平面M 没有公共点,则直线//a 平面M【答案】D5.如图,已知直线l ⊥平面α,垂足为O ,在ABC △中,2,2,22BC AC AB ===,点P 是边AC 上的动点.该三角形在空间按以下条件作自由移动:(1)A l ∈,(2)C α∈.则OP PB +的最大值为( )(A) 2. (B) 22. (C) 15+. (D) 10.【答案】C6.平面α上存在不同的三点到平面β的距离相等且不为零,则平面α与平面β的位置关系为( ))(A 平行 )(B 相交 )(C 平行或重合 )(D 平行或相交【答案】D7.a b c 、、表示直线,α表示平面,下列命题正确的是( )A .若//,//αa b a ,则//αbB . 若,α⊥⊥a b b ,则α⊥aC .若,⊥⊥a c b c ,则//a bD .若,αα⊥⊥a b ,则//a b 【答案】D8.下列命题中,正确的个数是【 】① 直线上有两个点到平面的距离相等,则这条直线和这个平面平行; ② a 、b 为异面直线,则过a 且与b 平行的平面有且仅有一个; ③ 直四棱柱是直平行六面体;④ 两相邻侧面所成角相等的棱锥是正棱锥.A 、0B 、1C 、2D 、3 【答案】B9.在四棱锥ABCD V -中,1B ,1D 分别为侧棱VB ,VD 的中点,则四面体11CD AB 的体积与四棱锥 ABCD V -的体积之比为( )A .6:1B .5:1C .4:1D .3:1βαP B A DC A Bl C αNPO【答案】C三、解答题1.(本题满分14分)本题共有2小题,第(1)小题满分6分,第(2)小题满分8分. 如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动. (1)证明:11D E A D ⊥;(2)AE 等于何值时,二面角1D EC D --的大小为4π.【答案】解:(1)在如图所示的空间直角坐标系中,11(1,0,1),(0,0,0),(0,0,1)A D D 设(1,,0)([0,2])E y y ∈ 则11(1,,1),(1,0,1)D E y DA =-=…所以110D E DA ⋅=……所以11D E A D ⊥……(2)方法一:设(,,)n u v w =为平面1D CE 的一个法向量由1100n CD n D E ⎧⋅=⎪⎨⋅=⎪⎩,得200v w u yv w -+=⎧⎨+-=⎩,所以(2)2u y v w v =-⎧⎨=⎩…因为二面角1D EC D --的大小为4π,所以2222(0,0,1)(,,)22cos ||42(2)5u v w u v wy π⋅===++-+ 又[0,2]y ∈,所以23y =-,即当23AE =-时二面角1D EC D --的大小为4π2.(本题满分14分)本题共有2小题,第(1)小题满分6分,第(2)小题满分8分. 如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动. (1)当E 为AB 的中点时,求四面体1E ACD -的体积; (2)证明:11D E A D ⊥.【答案】解:(1)1122ACE S AE BC ∆=⋅=… 因为1D D ACE ⊥平面,所以1111136E ACD D ACE ACE V V S D D --∆==⋅=… (2)正方形11ADD A 中,11A D AD ⊥……因为11AB ADD A ⊥平面,所以1AB A D ⊥…所以11A D AD E ⊥平面…所以11D E A D ⊥……D 1C 1A 1A E DB 1B C Ox yzD 1C 1A 1AEDB 1B C3.三棱柱111C B A ABC -中,它的体积是315,底面ABC ∆中,090=∠BAC ,3,4==AC AB ,1B 在底面的射影是D ,且D 为BC 的中点.(1)求侧棱1BB 与底面ABC 所成角的大小;(7分)(2)求异面直线D B 1与1CA 所成角的大小.(6分)【答案】解:(1)依题意,⊥D B 1面ABC ,BD B 1∠就是侧棱1BB 与底面ABC 所成的角θ 2分111111431532ABC A B C ABC V S B D B D -∆=⋅=⨯⨯⨯=4分1532B D =5分计算25=BD ,θθtan 25tan 1==BD D B , tan 3,3πθθ=∴= 7分 (2)取11C B 的中点E ,连E A EC 1,,则1ECA ∠(或其补角)为所求的异面直线的角的大小 9分 ⊥D B 1面ABC ,D B 1‖CE ,面ABC ‖面111C B A ⊥∴CE 面111C B A ,E A CE 1⊥∴ 11分33325tan 251===∠EC AE CE A 12分 所求异面直线D B 1与1CA 所成的角6π13分4.在如图所示的几何体中,四边形CDPQ 为矩形,四边形ABCD 为直角梯形,且90BAD ADC ∠=∠=,平面CDPQ ⊥平面ABCD ,112AB AD CD ===,2PD =.(1)若M 为PA 的中点,求证:AC //平面DMQ ;(2)求平面PAD 与平面PBC 所成的锐二面角的大小.【答案】解:(1)如图,设CP 与M 的交点为N ,连接MN .易知点N 是CP 的中点,又M 为PA 的中点,故//AC MN .…4分于是,由MN ∉平面DMQ ,得//AC 平面DMQ .……………6分 (2)如图,以点D 为原点,分别以DA DB DC 、、为x 轴,y 轴,z 轴,建立空间直角坐标系,则(0,0,0),(1,0,0),(1,1,0),(0,2,0),(0,0,2)D A B C P .易知1(0,1,0)n =为平面PAD 的一个法向量,设2(,,)n x y z =为平面PBC 的一个法向量.则220220n BC x y n PC y z ⎧=-+=⎪⎨=-=⎪⎩2x yz y =⎧⎪⇒⎨=⎪⎩,令1y =,得2(1,1,2)n =.…………………10分 设平面PAD 与平面PBC 所成的锐二面角为θ,则12121cos 2n n n n θ==,…………………12分 1A ABCQP D M(第20题图)D 1C 1B 1BCDA 1A故平面PAD 与平面PBC 所成的锐二面角的大小为3π.………………………………………14分5.(本题满分14分) 本题共2个小题,第1小题6分,第2小题8分. 在如图所示的直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为2的 菱形,且60,BAD ∠=︒1 4.AA =(1)求直四棱柱1111ABCD A B C D -的体积; (2)求异面直线11AD BA 与所成角的大小.【答案】解:(1)因菱形ABCD 的面积为2sin 6023,AB ⋅︒= ……2分故直四棱柱1111ABCD A B C D -的体积为:12348 3.ABCD S AA ⋅=⨯=底面……6分(2)连接111BC A C 、,易知11//BC AD ,故11A BC ∠等于异面直线11AD BA 与所成角. ……8分由已知,可得111125,23,A B BC AC === ……10分则在11A BC ∆中,由余弦定理,得 222111111117cos .210A B BC AC A BC A B BC +-∠==⋅ ……12分 故异面直线11AD BA 与所成角的大小为7cos .10arc……14分6.(本题满分12分)本题共2小题,第1小题满分6分,第2小题满分6分.在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,过11,,A C B 三点的平面截去长方体的一个角后,得到如下所示的几何体111ABCD AC D -.(1)若11A C 的中点为1O ,求求异面直线1BO 与11A D 所成角的大小(用反三角函数值表示);(2)求点D 到平面11A BC 的距离d .【答案】解:(1)按如图所示建立空间直角坐标系.由题知,可得点D(0,0,0)、(2,2,0)B 、1(0,0,3)D 、1(2,0,3)A 、1(0,2,3)C . 由1O 是11A C 中点,可得1(1,1,3)O . 于是,111(1,1,3),(2,0,0)BO A D =--=-. 设异面直线1BO 与11A D 所成的角为θ,则111111211cos 11||||211BO A D BO A D θ⋅===.因此,异面直线1BO 与11A D 所成的角为11arccos 11. (2)设(,,)nx y z =是平面ABD 的法向量. ∴110,0.n BA n BC ⎧⋅=⎪⎨⋅=⎪⎩ 又11(0,2,3),(2,0,3)BA BC =-=-,∴230,230.y z x z -+=⎧⎨-+=⎩ 取2z =, ABCD1A 1C 1D可得3,3,2.x y z =⎧⎪=⎨⎪=⎩即平面11BA C 的一个法向量是(3,3,2)n =. ∴||n DB d n ⋅=62211=.7.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,过1A 、1C 、B 三点的平面截去长方体的 一个角后,得到如下所示的几何体111ABCD AC D -.(1)求几何体111ABCD AC D -的体积,并画出该几何体的左视图(AB 平行主视图投影所在的平面); (2)求异面直线1BC 与11A D 所成角的大小(结果用反三角函数值表示).【答案】解: 2AB BC ==,13AA =,11111=2232231032ABCD A D C V V V -∴=-⨯⨯-⨯⨯⨯⨯=长方体三棱锥.左视图如右图所示. (2)依据题意,有11,A D AD AD BC ,即11A D BC . ∴1C BC ∠就是异面直线1BC 与11A D 所成的角. 又1C C BC ⊥,∴113tan 2C C C BC BC ∠==.∴异面直线1BC 与11A D 所成的角是3tan 2arc . 8. (本题满分12分)本题共有2个小题,第1小题满分4分,第2小题满分8分.如图,在直三棱柱111C B A ABC -中,已知21===AB BC AA ,AB ⊥BC . (1)求四棱锥111A BCC B -错误!未指定书签。
2024届新高考数学大题精选30题--立体几何含答案
大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。
立体几何高考题全
立体几何高考题1.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A.172B. 52C.3D.22.已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122πB .12πC .82πD .10π3.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A.433 B. 332 C. 423 D. 23 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90π B.63π C.42π D.36π5.某三棱锥的三视图如图所示,则该三棱锥的体积为(A )60 (B )30 (C )20 (D )10 6.在正方体ABCD -A 1B 1C 1D 1中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥7.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π48.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是9.平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1, α∩平面ABCD =m ,α∩平面ABB 1 A 1=n ,则m ,n 所成角的正弦值为 (A (B )2(C (D )1310.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是328π,则它的表面积是(A )17π (B )18π (C )20π (D )28π11.体积为8的正方体的顶点都在同一球面上,则该球的表面积为 (A )12π (B )323π (C )8π (D )4π 12.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积是( )A.814π B. 16π C. 9π D. 274π13.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A.16 B. 6 C. 13D. 314.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( ).2..2.1A B C D ππ15.设m 、n 是两条不同的直线,α、β是两个不同的平面,则( ) A.若n m ⊥,α//n ,则α⊥m B.若β//m ,αβ⊥,则α⊥mC.若β⊥m ,β⊥n ,α⊥n ,则α⊥mD.若n m ⊥,β⊥n ,αβ⊥,则α⊥m 16.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥17.(10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为A . C .132D .18.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为19.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。
专题05 立体几何专项高考真题总汇(带答案与解析)
专题05立体几何(选择题、填空题)1.【2021·浙江高考真题】某几何体的三视图如图所示,则该几何体的体积是()A .32B .3C.2D.【答案】A【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【解析】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,,下底为12=,故1111131222ABCD A B C D V -=⨯+⨯⨯=,故选:A.2.【2021·北京高考真题】某四面体的三视图如图所示,该四面体的表面积为()A .332+B .4C .33D .2【答案】A【分析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【解析】根据三视图可得如图所示的几何体-正三棱锥O ABC -,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为213333112242+⨯⨯⨯+⨯=,故选:A.3.【2021·浙江高考真题】如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCD D .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B 【答案】A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【解析】连1AD ,在正方体1111ABCD A B C D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD 则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项B 错误,选项A 正确.故选:A.【点睛】关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.4.【2021·全国高考真题(理)】已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为()A .212B .312C .24D .34【答案】A【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【解析】,1AC BC AC BC ⊥== ,ABC ∴ 为等腰直角三角形,AB ∴=,则ABC 外接圆的半径为22,又球的半径为1,设O 到平面ABC 的距离为d ,则2d ==,所以1112211332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=.故选:A.【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.5.【2021·全国高考真题(理)】在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π6【答案】D【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可.【解析】如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1P B B ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=.故选:D6.【2021·全国高考真题】已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A .2B.C .4D.【答案】B【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【解析】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=解得l =.故选:B.7.【2021·北京高考真题】定义:24小时内降水在平地上积水厚度(mm )来判断降雨程度.其中小雨(10mm <),中雨(10mm 25mm -),大雨(25mm 50mm -),暴雨(50mm 100mm -),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A .小雨B .中雨C .大雨D .暴雨【答案】B【分析】计算出圆锥体积,除以圆面的面积即可得降雨量,即可得解.【解析】由题意,一个半径为()200100mm 2=的圆面内的降雨充满一个底面半径为()20015050mm 2300⨯=,高为()150mm 的圆锥,所以积水厚度()22150150312.5mm 100d ππ⨯⨯==⨯,属于中雨.故选:B.8.【2021·全国高考真题】在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【答案】BD【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【解析】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB B C λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,13,0,12A ⎛⎫ ⎪ ⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫⎪⎝⎭,则13,0,12A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭ ,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误;对于D ,当12μ=时,112BP BC BB λ=+ ,取1BB ,1CC 中点为,M N .BP BM MN λ=+ ,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,02A ⎛⎫ ⎪ ⎪⎝⎭,所以01,22AP y ⎛⎫= ⎪ ⎪⎝⎭,11,,122A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确.故选:BD .【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.9.【2021·全国高考真题(理)】以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).【答案】③④(答案不唯一)【分析】由题意结合所给的图形确定一组三视图的组合即可.【解析】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A B C D -中,12,1AB BC BB ===,,E F 分别为棱11,BC BC 的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF -.故答案为:③④.【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.10.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .514-B .512-C .514D .512+【答案】C【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-由题意得212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得14b a +=(负值舍去).故选C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.11.【2020年高考全国Ⅱ卷理数】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H【答案】A【解析】根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选A.【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.12.【2020年高考全国II 卷理数】已知△ABC 是面积为934O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为A 3B .32C .1D .32【答案】C【解析】设球O 的半径为R ,则2416R π=π,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △是面积为934的等边三角形,21393224a ∴⨯=,解得:3a =,22229933434a r a ∴=-=⨯-,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.13.【2020年高考全国Ⅲ卷理数】如图为某几何体的三视图,则该几何体的表面积是A .2B .4+42C .3D .4+23【答案】C 【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:22AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.14.【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r π=π=∴, ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A.【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.15.【2020年高考天津】若棱长为为A .12πB .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C .【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.16.【2020年高考北京】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为A .6+B .6+C .12+D .12+【答案】D 【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭故选:D .【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.17.【2020年高考浙江】某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B .143C .3D .6【答案】A 【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+=⎪ ⎪⎝⎭⎝⎭.故选:A【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.18.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.19.【2020年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°【答案】B 【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.故选:B.【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.20.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D 【答案】D【解析】解法一:,PA PB PC ABC == △为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥ 平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,2R ==364466,π2338R V R =∴=π=⨯=,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=又90CEF ∠=︒,12CE AE PA x ∴===,AEC △中,由余弦定理可得()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC = ,D \为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,221221222x x x ∴+=∴==,,,PA PB PC ∴===,又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==,62R ∴=,34466338V R ∴=π=π⨯=,故选D.【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.21.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.22.【2019年高考全国Ⅲ卷理数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,,5,,22MF BF BM ==∴=BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.23.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158B.162C.182D.324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2646336162 22++⎛⎫⨯+⨯⨯=⎪⎝⎭.故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.24.【2019年高考浙江卷】设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱VA 上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β【答案】B【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BD PB PB PB PB αβ===<=,即αβ>;在Rt △PED 中,tan tan PD PD ED BD γβ=>=,即γβ>,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.25.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.26.【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】23【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于223122AM =-=,故1222222S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯=解得:22r =,其体积:34233V r =π=π.故答案为:23π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.27.【2020年高考浙江】已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==.故答案为:1【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.28.【2020年高考江苏】如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是▲cm.【答案】2π【解析】正六棱柱体积为2624⨯⨯⨯,圆柱体积为21()222ππ⋅=,所求几何体体积为2π.故答案为:2π-【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.29.【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为球心,为半径的球面与侧面BCC 1B 1的交线长为________.【答案】22π.【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E =111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥,因为1111BB B C B = ,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,,1D E =,所以||EP ===,所以侧面11B C CB 与球面的交线上的点到E ,因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧 FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得 22FGπ==.故答案为:22π.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.30.【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形,∵四棱锥O −EFGH 的高为3cm ,∴3112312cm 3O EFGH V -=⨯⨯=.又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.31.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=.【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.32.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.33.【2019年高考天津卷理数】2的正方形,5若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】π4【解析】由题意,的正方形,借助勾股定理,2=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭.【名师点睛】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.34.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是▲.【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.35.【2019年高考全国Ⅱ卷理数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 的延长线交于点G ,延长BC 交正方体的棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,22,21)122BG GE CH x GH x x x ∴===∴=⨯+=+=,1x ∴=1.。
(完整word版)高中立体几何大量习题及答案
立体几何一、选择题1. 给出下列四个命题①垂直于同一直线的两条直线互相平行;②垂直于同一平面的两个 平面互相平行;③若直线4与同一平面所成的角相等,则4互相平行;④若直线 /|仏是异面直线,则与都相交的两条直线是异面直线。
其中假命题的个数是()A. 1B. 2 C ・ 3 D. 42. 将正方形ABCD 沿对角线〃£)折成一个120。
的二面角,点C 到达点G ,这时异面直 线AD 与BCi 所成角的余弦值是()A. —B. -C.逅D.- 2 2 4 43. —个长方体一顶点的三个面的面积分别是血、巧、后,这个长方体对角线的长为()6. 正方体A ,B ,C ,D ,—ABCD 的棱长为a, EF 在AB 上滑动,且|EF|=b (b<a=9 Q 点在DC 上滑动,则四面体N —EFQ 的体积()A ・与E 、尸位置有关 B.与Q 位置有关C.与E 、F 、0位置都有关D.与E 、F 、0位買均无关,是定值 7. 三个两两垂直的平面,它们的三条交线交于一点O,点P 到三个平面的距离比为1 :2 : 3, PO=2V14 ,则P 到这三个平面的距离分别是()4. A. 2^3 B. 3^2 C. 6 如图,在正三角形ABC 中,D 、E 、尸分别为各边的中点,G 、H 、I 、丿分别为AF 、AD. BE 、DE 的中点.将△ ABC 沿QE 、EF 、Q 尸折成三棱锥以后,与〃所成角的度数为(A. 90° B ・ 60° C. 45。
5.两相同的正四棱锥组成如图所示的几何体,可放棱 长为1的正方体内,使正四棱锥的底面ABCD 与正 方体的某一个平面平行,且各顶点均在正方体的面 上,则这样的几何体体积的可能值有()A ・I 个B. 2个C. 3个 D0°D.A. 1, 2, 3 B・ 2, 4, 6 C・ 1, 4, 6 D・ 3, 6, 98. 如图,在四而体ABCD 中,截rfij AEF 经过四面 体的内切球(与四个面都相切的球)球心O,且 与BC, DC 分别截于E 、F,如果截面将四面体 分成体积相等的两部分,设四棱锥A —BEFD 与 三棱锥A-EFC 的表面积分别是Si ,52,则必有 ()A. S\<S2B. Si>S2C. S I =52D. 5I ,S2的大小关系不能确定 9. 条件甲:四棱锥的所有侧面都是全等三角形,条件乙:这个四棱锥是正四棱锥,则条 件甲是条件乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10. 已知棱锥的顶点为P, P 在底面上的射影为O, PO=a,现用平行于底面的平面去截 这个棱锥,截面交PO 于点M,并使截得的两部分侧面积相等,设OM=b ,则a 与b 的关系是() B ・ h= ( V2 +1) aD.后土色 2 —♦ f11. 已知向量d=(2, 4, x ), 〃=(2, y, 2),若f |=6, “ 丄〃,则 x+y 的值是()12. 一个长方体共一顶点的三个面的面积分别是迈,JI 亦,这个长方体它的八个顶点都在同一个球面上,这个球的表面积是()A.1271B. 1871C.3671D. 6兀 13. 己知某个几何体的三视图如下,图中标出的尺寸(单位:cm ),则这个几何体的体积是()已知圆锥的全面积是底面积的3倍,那么该圆锥的侧tfri 展开图扇形的圆心角为( A.12O 0 B.15O 0 C.180° D.24O 0A ・ b= ( 5/2 —l)a A. 4000 14. A8000 正视图 俯视图20. 15.在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰好与棱锥的四个而都接触,经 过棱锥的一条侧棱和高作截面,正确的截面图形是()“(-1,0,2),且几+》与必―》互相垂直,贝IJR 值是() 厂3 “7 C. — D.— 5516. 正四棱柱 ABCD-AiBiCiDi 中,AB=3, BBi=4.长为 1 的线段PQ 在棱AAi 上移动,长为3的线段MN 在棱 CCi±移动,点R 在棱BBi 上移动,则四棱锥R- PQMN 的体积是()A. 6B. 10 C ・12 D ・不确定17. 已知三棱锥0—ABC 中,OA 、OB 、OC 两两互相垂直,若x+y=4,则已知三棱锥O —ABC 体积的最大值是()1 2 >/3 B. — C. — D. 3 3 3 A.l18. 如图,在正四面体A-BCD 中,E 、F 、G 分别是三角形ADC 、ABD 、BCD 的中心, 则AEFG 在该正四面体各个面上的射影所有可能的序号是()A.①③B.②®® c.③④D.②④ A/ \ /◎、L ________ \ ① MB — — —②19. 如來底而直径和高相等的圆柱的侧面积是s •那么圆柱的体积等于A.-VSB.-J-C.-VSD.- 2 2V K 44 vn 已知直线AB. CD 是异面直线,AC 丄AB, AC 丄CD, BD 丄CD, 则异面直线AB 与CD 所成角的大小为()A. 30°B. 45° 且 AB=2, CD=1,C. 60°D. 75°已知向量”m°),B.- 5 A. 1 OC=1, OA=x, OB=y,22. 在四棱锥的四个侧面中,直角三角形最参可有()A.4个B.2个C.3个D.1个23. 三棱锥A-BCD 中,AC 丄BD, E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则四边形EFGH 是()A.菱形B.矩形C.梯形D.正方形24. 在正四面体P —ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不 成立的是()25. 一棱锥被平行于底面的平面所截,若截面1何积与底面面积的比为1: 3,则此截面把一条侧棱分成的两线段之比为()A.1: 3B.1: 2C.1:羽D.1:羽一 1 26. 正四面体P —ABC 中,M 为棱AB 的中点,则PA 与CM 所成角的余弦值为()A 並B 並C 返D 迴 A. 2 B. § C. 4 D. 327. —个三棱锥S —ABC 的三条侧棱SA 、SB 、SC 两两互相垂直,且长度分别为1, & ,3 已知该三棱锥的四个顶点都在一个球而上,则这个球的表面积为()A.16nB.32 兀C.36 兀D.64 兀28. 在棱长为。
专题06 立体几何专项高考真题总汇(带答案与解析)
专题06立体几何(解答题)1.【2021·全国高考真题】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)详见解析(2)6【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果;(2)先作出二面角平面角,再求得高,最后根据体积公式得结果.【解析】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD ,因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F,作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD,AO ⊥CD所以EF ⊥BD,EF ⊥CD,BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FM EF F =I ,所以BC ⊥平面EFM ,即BC ⊥ME 则EMF ∠为二面角E-BC-D 的平面角,4EMF π∠=因为BO OD =,OCD 为正三角形,所以BCD 为直角三角形因为2DE EA =,1112(1)2233FM BF ∴==+=从而EF=FM=213AO ∴=AO ⊥Q 平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法.2.【2021·浙江高考真题】如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,15ABC AB BC PA ∠=︒===M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.【答案】(1)证明见解析;(2)156.【分析】(1)要证AB PM ⊥,可证DC PM ⊥,由题意可得,PD DC ⊥,易证DM DC ⊥,从而DC ⊥平面PDM ,即有DC PM ⊥,从而得证;(2)取AD 中点E ,根据题意可知,,,ME DM PM 两两垂直,所以以点M 为坐标原点,建立空间直角坐标系,再分别求出向量AN和平面PDM 的一个法向量,即可根据线面角的向量公式求出.【解析】(1)在DCM △中,1DC =,2CM =,60DCM ∠= ,由余弦定理可得DM =,所以222DM DC CM +=,∴DM DC ⊥.由题意DC PD ⊥且PD DMD ⋂=,DC ∴⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥,又//AB DC ,所以AB PM ⊥.(2)由PM MD ⊥,AB PM ⊥,而AB 与DM 相交,所以PM ⊥平面ABCD,因为AM =,所以PM =,取AD 中点E ,连接ME ,则,,ME DM PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则(2,0),(0,0,A P D,(0,0,0),1,0)M C -又N 为PC中点,所以31335,,,2222N AN ⎛⎛-=- ⎝⎝ .由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量(0,1,0)n =从而直线AN 与平面PDM所成角的正弦值为5||2sin 6||AN n AN n θ⋅===‖.【点睛】本题第一问主要考查线面垂直的相互转化,要证明AB PM ⊥,可以考虑DC PM ⊥,题中与DC 有垂直关系的直线较多,易证DC ⊥平面PDM ,从而使问题得以解决;第二问思路直接,由第一问的垂直关系可以建立空间直角坐标系,根据线面角的向量公式即可计算得出.3.【2021·全国高考真题(理)】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)见解析;(2)112B D =【分析】通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直和求出二面角的平面角的余弦值最大,进而可以确定出答案.【解析】因为三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥底面ABC ,所以1BB AB ⊥因为11//A B AB ,11BF A B ⊥,所以BF AB ⊥,又1BB BF B ⋂=,所以AB ⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2B A C B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).(1)因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-= ,所以BF DE ⊥.(2)设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅===⋅ .当12a =时,2224a a -+取最小值为272,此时cos θ63=.所以()min3sin 3θ==,此时112B D =.【点睛】本题考查空间向量的相关计算,能够根据题意设出(),0,2D a (02a ≤≤),在第二问中通过余弦值最大,找到正弦值最小是关键一步.4.【2021·全国高考真题(理)】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.【答案】(12;(2)7014【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长;(2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.【解析】(1)PD ⊥ 平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a ,则()2,1,1PB a =- ,(),1,0AM a =-,PB AM ⊥ ,则2210PB AM a ⋅=-+= ,解得22a =,故2BC a ==;(2)设平面PAM 的法向量为()111,,m x y z = ,则2,1,02AM ⎛⎫=- ⎪ ⎪⎝⎭,()AP = ,由111102m AM x y mAP z ⎧⋅=-+=⎪⎨⎪⋅=+=⎩,取1x =,可得)2m = ,设平面PBM 的法向量为()222,,n x y z = ,2,0,02BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =- ,由2222202n BM x nBP y z ⎧⋅=-=⎪⎨⎪⋅=-+=⎩ ,取21y =,可得()0,1,1n =r,314cos ,14m n m n m n⋅<>==⋅,所以,70sin ,14m n <>==,因此,二面角A PM B --的正弦值为14.【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标;(2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.5.【2021·北京高考真题】已知正方体1111ABCD A B C D -,点E 为11A D 中点,直线11B C 交平面CDE 于点F .(1)证明:点F 为11B C 的中点;(2)若点M 为棱11A B 上一点,且二面角M CF E --的余弦值为53,求111A M A B 的值.【答案】(1)证明见解析;(2)11112A M AB =.【分析】(1)首先将平面CDE 进行扩展,然后结合所得的平面与直线11BC 的交点即可证得题中的结论;(2)建立空间直角坐标系,利用空间直角坐标系求得相应平面的法向量,然后解方程即可求得实数λ的值.【解析】(1)如图所示,取11B C 的中点'F ,连结,','DE EF F C ,由于1111ABCD A B C D -为正方体,,'E F 为中点,故'EF CD ,从而,',,E F C D 四点共面,即平面CDE 即平面'CDEF ,据此可得:直线11B C 交平面CDE 于点'F ,当直线与平面相交时只有唯一的交点,故点F 与点'F 重合,即点F 为11B C 中点.(2)以点D 为坐标原点,1,,DA DC DD 方向分别为x 轴,y 轴,z 轴正方形,建立空间直角坐标系D xyz -,不妨设正方体的棱长为2,设()11101A MA B λλ=≤≤,则:()()()()2,2,2,0,2,0,1,2,2,1,0,2M C F E λ,从而:()()()2,22,2,1,0,2,0,2,0MC CF FE λ=---==-,设平面MCF 的法向量为:()111,,m x y z =,则:()111112222020m MC x y z m CF x z λ⎧⋅=-+--=⎪⎨⋅=+=⎪⎩,令11z =-可得:12,,11m λ⎛⎫=- ⎪-⎝⎭,设平面CFE 的法向量为:()222,,n x y z =,则:2222020n FE y n CF x z ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令11z =-可得:()2,0,1n =-,从而:5,m n m n ⋅===则:,5cos 3m n m n m n ⋅===⨯ ,整理可得:()2114λ-=,故12λ=(32λ=舍去).【点睛】本题考查了立体几何中的线面关系和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.6.【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.【解析】(1)设DO a =,由题设可得63,,63PO a AO a AB a ===,22PA PB PC a ===.因此222PA PB AB +=,从而PA PB ⊥.又222PA PC AC +=,故PA PC ⊥.所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得312(0,1,0),(0,1,0),(,,0),(0,0,222E A C P --.所以312(,,0),(0,1,222EC EP =--=- .设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m,即021022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取3(3=-m .由(1)知2(0,1,2AP = 是平面PCB 的一个法向量,记AP = n ,则25cos ,|||5⋅==n m n m n m |.所以二面角B PC E --的余弦值为255.【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.7.【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN .所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM 3连接NP ,则四边形AONP 为平行四边形,故23231(,0)333PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .设(,0,0)Q a ,则22123234()(4())33NQ a B a a =----,故21123223210(,,4()|3333B E a a B E =-----=.又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,210||B E B E B E B E ⋅-===⋅ n n |n |所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010.8.【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c = ,11(0,,)3C F b c = ,得1EA C F = .因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内.(2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =-- ,1(0,1,2)A E =- ,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n .设2n 为平面1A EF 的法向量,则22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为121212cos ,||||⋅〈〉==⋅n n n n n n ,所以二面角1A EF A --的正弦值为427.9.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.【解析】因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥.又/EF ⊂平面11AB C ,1AB ⊂平面11AB C ,所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C = 所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.10.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得2CD CO =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥.由45ACB ∠=︒,1222BC CD ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥.(Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角.设CD =.由2,DO OC BO BC ====BD OH ==所以sin OH OCH OC ∠==,因此,直线DF 与平面DBC 所成角的正弦值为33.方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-.设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|3sin |cos ,|3|||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题.11.【2020年高考天津】如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.【解析】依题意,以C 为原点,分别以1,,CA CB CC的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M = ,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA = 是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =- .设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n .因此有|||6cos ,6|A CA C CA ⋅〈〉==n n n ,于是30sin ,6CA 〈〉= n .所以,二面角1B B E D --的正弦值为306.(Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是3cos ,3||||AB AB AB ⋅==-n n n .所以,直线AB 与平面1DB E 所成角的正弦值为33.12.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A−MA 1−N 的正弦值.【答案】(1)见解析;(2)105.【解析】(1)连结B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1= DC ,可得B 1C = A 1D ,故ME =ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥DA .以D 为坐标原点,DA的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),3,2)M ,(1,0,2)N ,1(0,0,4)A A =- ,1(3,2)A M =--,1(1,0,2)A N =-- ,(0,3,0)MN =-.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以32040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取(3,1,0)=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n 所以3020q p r ⎧-=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是2315cos ,||525⋅〈〉==⨯‖m n m n m n ,所以二面角1A MA N --的正弦值为105.【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.13.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.【答案】(1)证明见解析;(2)32.【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB = ,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩所以可取m =(1,1,0).于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为2.【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.14.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B−CG−A 的大小.【答案】(1)见解析;(2)30 .【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE .又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH以H 为坐标原点,HC的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz,则A (–1,1,0),C (1,0,0),G (2,0),CG =(1,0AC=(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,20.x x y ⎧+=⎪⎨-=⎪⎩所以可取n =(3,6,).又平面BCGE 的法向量可取为m =(0,1,0),所以3cos ,||||2⋅〈〉==n m n m n m .因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.15.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且13 PFPC=.(1)求证:CD⊥平面PAD;(2)求二面角F–AE–P的余弦值;(3)设点G在PB上,且23PGPB=.判断直线AG是否在平面AEF内,说明理由.【答案】(1)见解析;(2)33;(3)见解析.【解析】(1)因为PA⊥平面ABCD,所以PA⊥CD.又因为AD⊥CD,所以CD⊥平面PAD.(2)过A作AD的垂线交BC于点M.因为PA⊥平面ABCD,所以PA⊥AM,PA⊥AD.如图建立空间直角坐标系A−xyz,则A(0,0,0),B(2,-1,0),C(2,2,0),D(0,2,0),P(0,0,2).因为E为PD的中点,所以E(0,1,1).所以(0,1,1),(2,2,2),(0,0,2)AE PC AP==-=.所以1222224,,,,,3333333PF PC AF AP PF⎛⎫⎛⎫==-=+=⎪ ⎪⎝⎭⎝⎭.设平面AEF的法向量为n=(x,y,z),则0,0,AEAF⎧⋅=⎪⎨⋅=⎪⎩nn即0,2240.333y zx y z+=⎧⎪⎨++=⎪⎩令z=1,则1,1y x=-=-.于是=(1,1,1)--n.又因为平面PAD的法向量为p=(1,0,0),所以3cos ,||3⋅〈〉==-‖n p n p n p .由题知,二面角F −AE −P为锐角,所以其余弦值为3.(3)直线AG 在平面AEF 内.因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--,所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭.由(2)知,平面AEF 的法向量=(1,1,1)--n .所以4220333AG ⋅=-++= n .所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.16.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;(3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)见解析;(2)49;(3)87.【解析】依题意,可以建立以A 为原点,分别以AB AD AE,,的方向为x 轴,y 轴,z轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>>,则()1,2,F h .(1)依题意,(1,0,0)AB = 是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-n n n .所以,直线CE 与平面BDE 所成角的正弦值为49.(3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m .由题意,有224||1cos ,||||3432h h -⋅〈〉==+m n m n m n ,解得87h =.经检验,符合题意.所以,线段CF的长为8 7.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.17.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC−A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC .又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C ,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.18.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A A C AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35.【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E 3EG 3由于O 为A 1G 的中点,故11522A G EO OG ===,所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35.方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,),B,1,0),1B,33,,22F ,C (0,2,0).因此,33(,,22EF =,(BC = .由0EF BC ⋅=得EF BC ⊥.(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(10)=(02BC A C -,,,.设平面A 1BC 的法向量为n ()x y z =,,,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n,得0y y ⎧+=⎪⎨=⎪⎩,取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35.【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.。
立体几何大题(解析版)
立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | |n |(n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.【答案】(1)393(2)34【分析】(1)在△ABC 中,用余弦定理可得到AC =23,在△ABE 中,用余弦定理可得BE =233,即可求得DE =DB 2+BE 2=393;(2)以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立空间直角坐标系,求出平面CDE 与平面BDE 的法向量,即可求解【详解】(1)因为在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,在△ABC 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC=22+22-AC 22×2×2=-12,解得AC =23,则AE =13AC =233,在△ABE 中,由余弦定理得cos ∠BAE =AB 2+AE 2-BE 22AB ⋅AE =22+233 2-BE 22×2×233=32,解得BE =233,又AC =BB =23,所以BD =12BB =3,因为BB ⊥平面ABC ,BE ⊂平面ABC ,所以BB ⊥BE ,在直角三角形DBE 中,DE =DB 2+BE 2=(3)2+233 2=393;(2)因为AE =BE =233,所以∠ABE =∠BAE =30°,则∠CBE =∠ABC -∠ABE =120°-30°=90°,则BE ,BC ,BB 两两互相垂直,以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立如下图所示的空间直角坐标系:则点C 0,2,0 ,D 0,0,3 ,E 233,0,0 ,则CD =0,-2,3 ,CE =233,-2,0 ,设平面CDE 的法向量为n =x ,y ,z ,由n ⋅CD =x ,y ,z ⋅0,-2,3 =-2y +3z =0n ⋅CE =x ,y ,z ⋅233,-2,0 =233x -2y =0 ,得z =233y x =3y,令y =3,得平面CDE 的一个法向量为n =3,3,2 ;平面BDE 的一个法向量为m =0,1,0 .设平面CDE 与平面BDE 夹角的大小为θ,则cos θ=m ⋅n m n =0,1,0 ⋅3,3,2 1×4=34,故平面CDE 与平面BDE 夹角的余弦值为34.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.【答案】(1)证明见解析(2)63【分析】(1)由线面垂直的性质定理和判定定理即可证明;(2)法一:由分析可知,∠EBH 就是直线BE 与平面ABC 所成的线面角,设∠AFD =α,当α<90°时,O 与D 重合,可得A ,E 两点重合,不符合题意,当α>90°时,求出EH ,BE ,即可得出答案;法二:建立空间直角坐标系,求出直线BE 的方向向量与平面ABC 的法向量,由线面角的向量公式代入即可得出答案.【详解】(1)设F 为BC 中点,连接AF ,EF ,则由△ABC 为正三角形,得AF ⊥BC ;DE ⊥平面BCD ,且△BCD 为等腰直角三角形,计算可得:BE =CE =2,∴EF ⊥BC .EF ∩AF =F ,EF ,AF ⊂面AEF ,于是BC ⊥面AEF ,AE ⊂面AEF ,从而BC ⊥AE .(2)法一:由(1)可知,过点E 作EH ⊥AF ,垂足为H ,则∠EBH 就是直线BE 与平面ABC 所成的线面角.当AE ⎳平面BCD 时,可得A 到平面BCD 的距离为 2.设∠AFD =α,所以AF ⋅sin α=2,可得sin α=63,当α<90°时,cos α=33,不妨设A 在底面BCD 射影为O ,则FO =1,此时O 与D 重合,可得A ,E 两点重合,不符合题意,舍去;当α>90°时,FO =1,此时O 在DF 的延长线上,作EH ⊥AF ,由于AODE 为矩形,可得AE =DO =2,AE ∥OD ,可得sin ∠EAH =63,可得EH =263.于是sin ∠EBH =EH BE=63.法二:建立如图坐标系,可得F 0,0,0 ,B 1,0,0 ,C -1,0,0 ,D 0,1,0 ,E 0,1,2 ,A 0,a ,b由AF =3,解得a 2+b 2=3,又∵AE ⎳平面BCD ,令n =0,0,1 ,可得AB ⋅n =0,解得b =2,a =±1.当a =1时A ,E 重合,所以a =-1,此时A 0,-1,2 .不妨设平面ABC 的法向量为m =x ,y ,z ,则CB ⋅m =0CA ⋅m =0代入得x -y +2z =02x =0 ,令z =1,则y =2,所以m =0,2,1 .由于BE =-1,1,2 ,不妨设所成角为θ,则sin θ=∣cos BE ,m |=63.3(22·23·张家口·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,∠CBB 1=60°,AB =BC =2,AC =AB 1=2.(1)证明:平面ACB 1⊥平面BB 1C 1C ;(2)求平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值.【答案】(1)证明见解析;(2)57.【分析】(1)利用面面垂直的判定定理进行证明;(2)利用垂直关系建立空间直角坐标系,用向量法进行求解.【详解】(1)如图,连接BC 1,交B 1C 于O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为BC 1的中点.又AC =AB 1=2,故AO ⊥B 1C .又AB =BC =2,且∠CBB 1=60°,所以CO =1,BO =3,所以AO =AC 2-CO 2=1.又AB =2,所以AB 2=BO 2+AO 2,所以AO ⊥BO .因为BO ,CB 1⊂平面BB 1C 1C ,BO ∩CB 1=O ,所以AO ⊥平面BB 1C 1C .又AO ⊂平面ACB 1,所以平面ACB 1⊥平面BB 1C 1C .(2)由(1)知,OA ,OB ,OB 1两两互相垂直,因此以O 为坐标原点,OB ,OB 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A (0,0,1),B (3,0,0),C (0,-1,0),C 1(-3,0,0).故CC 1 =(-3,1,0),CA =(0,1,1),CB =(3,1,0).设n =(x 1,y 1,z 1)为平面ACC 1A 1的一个法向量,则有n ⋅CC 1 =0n ⋅CA =0 ,即-3x 1+y 1=0y 1+z 1=0 ,令x 1=1,则n =(1,3,-3).设m =(x 2,y 2,z 2)为平面ABC 的一个法向量,则有m ⋅CA =0m ⋅CB =0,即y 2+z 2=03x 2+y 2=0 ,令x 2=1,则m =(1,-3,3).因为平面A 1B 1C 1∥平面ABC ,所以m =(1,-3,3)也是平面A 1B 1C 1的一个法向量.所以cos <n ,m > =n ⋅m n m=1-3-3 7×7=57.所以平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值57. 4(22·23·湛江·二模)如图1,在五边形ABCDE 中,四边形ABCE 为正方形,CD ⊥DE ,CD =DE ,如图2,将△ABE 沿BE 折起,使得A 至A 1处,且A 1B ⊥A 1D .(1)证明:DE ⊥平面A 1BE ;(2)求二面角C -A 1E -D 的余弦值.【答案】(1)证明见解析(2)63【分析】(1)由已知易得DE ⊥BE ,即可证明线面垂直;(2)建立空间直角坐标系,用坐标公式法求解即可.【详解】(1)由题意得∠BEC =∠CED =π4,∠BED =π2,DE ⊥BE ,因为AB ⊥AE ,则A 1B ⊥A 1E ,又A 1B ⊥A 1D ,A 1E ∩A 1D =A 1,A 1E ,A 1D ⊂面A 1ED ,所以A 1B ⊥面A 1ED ,又DE ⊂面A 1ED ,则DE ⊥A 1B ,又DE ⊥BE ,A 1B ∩BE =B ,A 1B ⊂平面A 1BE ,BE ⊂平面A 1BE ,所以DE ⊥平面A 1BE .(2)取BE 的中点O ,可知BE =2CD ,OE =CD ,由DE ⊥BE ,且CD ⊥DE 可得OE ⎳CD ,所以四边形OCDE 是平行四边形,所以CO ∥DE ,则CO ⊥平面A 1BE ,设BE =2,以点O 为坐标原点,OB ,OC ,OA 1所在直线为坐标轴建立空间直角坐标系,如图,则A 1(0,0,1),E (-1,0,0),B (1,0,0),C (0,1,0),D (-1,1,0),EA 1 =(1,0,1),EC =(1,1,0),ED =(0,1,0),设平面A 1EC 的一个法向量为n 1 =(x 1,y 1,z 1),则n 1 ⋅EA 1 =0n 1 ⋅EC =0 ,即x 1+z 1=0x 1+y 1=0 ,取x 1=1,则n 1 =(1,-1,-1),设平面A 1ED 的一个法向量为n 2 =(x 2,y 2,z 2),则n 2 ⋅E 1A =0n 2 ⋅ED =0 ,即x 2+z 2=0y 2=0 ,取x 2=1,则n 2 =(1,0,-1),所以cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2=63,由图可知,二面角C -A 1E -D 为锐角,所以面角C -A 1E -D 的余弦值为63.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.【答案】(1)CF =1(2)8517【分析】(1)记AC 中点为M ,连接DM 、BM ,依题意可得DM ⊥AC ,根据面面垂直的性质得到DM ⊥平面ABC ,如图建立空间直角坐标系,求出平面CDE 的法向量,设F a ,0,0 ,a ∈2,-2 ,依题意可得BF ⋅n =0求出a 的值,即可得解;(2)依题意点F 与点M 重合,利用空间向量法计算可得.【详解】(1)记AC 中点为M ,连接DM 、BM ,△ACD 为正三角形,AC =4,则DM ⊥AC ,且DM =2 3.因为平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC ,DM ⊂平面ACD ,所以DM ⊥平面ABC ,又△ABC 为正三角形,所以BM ⊥AC ,所以BM =23,如图建立空间直角坐标系,则B 0,23,0 ,C -2,0,0 ,D 0,0,23 ,E 0,23,3 ,所以CD =2,0,23 ,CE =2,23,3 ,设平面CDE 的法向量为n =x ,y ,z ,则n ⋅CD =2x +23z =0n ⋅CE =2x +23y +3z =0,令x =3,则z =-3,y =-32,则n =3,-32,-3 ,设F a ,0,0 ,a ∈-2,2 ,则BF =a ,-23,0 ,因为BF ⎳平面CDE ,所以BF ⋅n =3a +-23 ×-32+0×-3 =0,解得a =-1,所以F 为CM 的中点,此时CF =1.(2)若F 是AC 的中点,则点F 与点M 重合,则平面FDE 的一个法向量可以为m =1,0,0 ,设二面角F -DE -C 为θ,显然二面角为锐角,则cos θ=m ⋅n m ⋅n=332+-32 2+-3 2=651,所以sin θ=1-cos 2θ=1-651 2=8517,所以二面角F -DE -C 的正弦值为8517.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.【答案】(1)22(2)3010【分析】(1)作出辅助线,找到符合要求的PQ ,并利用垂径定理得到最小值;(2)在第一问基础上,得到当PQ 取得最小值时,SA ⊥PQ ,并建立空间直角坐标系,利用空间向量求解线面角.【详解】(1)过点M 作MH ⎳SB 交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB ⎳平面PMQ ,由平面几何知识易知,PQ =2r 2-d 2,当弦心距d 最大时,d =OH ,弦长最短,即PQ 取得最小值,因为AM =2MS ,AS =3,所以AH =2HB ,因为AC ⊥BC ,AC =BC =322,由勾股定理得AB =322⋅2=3,故AH =2,HB =1,连接OQ ,则OQ =32,由勾股定理得HQ =OQ 2-OH 2=94-14=2,所以PQ =2HQ =22;(2)连接OS ,则OS ⊥平面ACB ,因为PQ ⊂平面ACB ,故OS ⊥PQ ,而SA ⊥PQ ,OS ∩SA =S ,所以PQ ⊥平面AOS ,即有PQ ⊥AB .以O 为坐标原点,过点O 且平行PQ 的直线为x 轴,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则P -2,12,0 ,Q 2,12,0 ,B 0,32,0 ,C 32,0,0 ,M 0,-12,3 ,设平面BCM 的法向量为m =x ,y ,z ,则m ⋅CB =x ,y ,z ⋅-32,32,0 =-32x +32y =0m ⋅MB =x ,y ,z ⋅0,2,-3 =2y -3z =0,令x =1,则y =1,z =233,故m =1,1,233,设直线PQ 与平面BCM 所成角的大小为θ,则sin θ=cos PQ ,m =PQ ⋅m PQ ⋅m =22,0,0 ⋅1,1,233 22×1+1+43=3010.故直线PQ与平面BCM所成角的正弦值为30 10.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.【答案】(1)证明见解析(2)1510【分析】(1)由等腰三角形的性质可得AM⊥PD,由面面垂直的性质可得CD⊥平面PAD,则CD⊥AM,所以由线面垂直的判定可得AM⊥平面PCD,从而可得结论;(2)以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,利用空间向量求解即可.【详解】(1)证明:因为PA=AD,点M是PD的中点,所以AM⊥PD.因为PA⊥平面ABCD,PA⊂平面PAD,所以平面PAD⊥平面ABCD,因为四边形ABCD为矩形,所以CD⊥AD,因为平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,所以CD⊥AM,因为PD∩CD=D,PD,CD⊂平面PCD,所以AM⊥平面PCD,因为PC⊂平面PCD,所以AM⊥PC.(2)解:由题意可得AB,AD,AP两两垂直,设AB=1,如图,以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),因为点M是PD的中点,所以M0,22,22,所以AM =0,22,22 ,AC =1,2,0 ,设平面ACM 的法向量为n =x ,y ,z ,则AM ⋅n =22y +22z =0AC ⋅n =x +2y =0,令y =-1可得x =2,z =1,所以平面ACM 的一个法向量n =2,-1,1 .PC =1,2,-2 ,设N x N ,y N ,z N ,PN =λPC =λ,2λ,-2λ (0<λ<1),即x N ,y N ,z N -2 =λ,2λ,-2λ ,所以N λ,2λ,2-2λ .又O 12,22,0 ,ON =OA =32,所以λ-12 2+2λ-22 2+(2-2λ)2=34,化简得5λ2-7λ+2=0,解得λ=25或λ=1(舍去).所以AN =25,225,325,设直线AN 与平面ACM 所成的角为θ,则sin θ=n ⋅AN n ⋅AN=3252+1+1×425+825+1825=1510,所以直线AN 与平面ACM 所成角的正弦值为1510.8(22·23下·温州·二模)已知三棱锥D -ABC 中,△BCD 是边长为3的正三角形,AB =AC =AD ,AD 与平面BCD 所成角的余弦值为33.(1)求证:AD ⊥BC ;(2)求二面角D -AC -B 的平面角的正弦值.【答案】(1)证明见解析(2)223【分析】(1)取BC 的中点E ,连接AE ,DE ,证明BC ⊥平面ADE ,即可得证;(2)取正三角形BCD 的中心O ,连接OA ,从而可得OA ⊥平面BCD ,则∠ODA 即为AD 与平面BCD 所成角的平面角,进而可得AB =AC =AD =3,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,解△BDH 即可得解.【详解】(1)取BC 的中点E ,连接AE ,DE ,因为AB =AC ,所以AE ⊥BC ,因为△BCD 是边长为3的正三角形,所以DE ⊥BC ,又AE ∩DE =E ,AE ,DE ⊂平面ADE ,所以BC ⊥平面ADE ,因为AD ⊂平面ADE ,所以AD ⊥BC ;(2)取正三角形BCD 的中心O ,连接OA ,则点O 在DE 上,且OD =23DE ,由AB =AC =AD ,△BCD 是正三角形,得三棱锥A -BCD 为正三棱锥,则OA ⊥平面BCD ,故∠ODA 即为AD 与平面BCD 所成角的平面角,又AD 与平面BCD 所成角的余弦值为33,所以OD AD =3×32×23AD=33,即AB =AC =AD =3,即三棱锥A -BCD 是正四面体,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,在△BDH 中,BH =DH =332,BD =3,则cos ∠BHD =BH 2+DH 2-BD 22⋅BH ⋅DH =274+274-92×332×332=13,所以sin ∠BHD =1-cos 2∠BHD =223,所以二面角D -AC -B 的平面角的正弦值223.9(22·23下·浙江·二模)如图,四面体ABCD ,AD ⊥CD ,AD =CD ,AC =2,AB =3,∠CAB =60°,E 为AB 上的点,且AC ⊥DE ,DE 与平面ABC 所成角为30°,(1)求三棱锥D -BCE 的体积;(2)求二面角B -CD -E 的余弦值.【答案】(1)答案见解析;(2)答案见解析.【分析】(1)取AC 中点F ,可证明AC ⊥平面DEF ,得平面ABC ⊥平面DEF ,DE 在平面ABC 内的射影就是直线EF ,∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,由正弦定理求得∠FDE ,有两个解,在∠FDE =60°时可证DF ⊥平面ABC ,在∠FDE =120°时,取FE 中点H 证明DH ⊥平面ABC ,然后由棱锥体积公式计算体积;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.【详解】(1)取AC 中点F ,连接FE ,FD ,因为AD =CD ,所以DF ⊥AC ,又AC ⊥DE ,DE ∩DF =D ,DE ,DF ⊂平面DEF ,所以AC ⊥平面DEF ,而FE ⊂平面DEF ,所以AC ⊥FE ,由已知AF =1,∠BAC =60°,所以EF =3,AE =2,BE =1,由AC ⊥平面DEF ,AC ⊂平面ABC 得平面ABC ⊥平面DEF ,因此DE 在平面ABC 内的射影就是直线EF ,所以∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,AD =CD ,AC =2,因此DF =12AC =1,在△DEF 中,由正弦定理EF sin ∠FDE =DF sin ∠DEF 得1sin30°=3sin ∠FDE ,sin ∠FDE =32,∠FDE 为△DEF 内角,所以∠FDE =60°或120°,S △ABC =12AB ×AC ×sin ∠BAC =12×3×2×sin60°=333,S △CBE =BE BAS △ABC =3-23×332=32,若∠FDE =60°,则∠DFE =90°,即DF ⊥FE ,AC ∩FE =F ,AC ,FE ⊂平面ABC ,所以DF ⊥平面ABC ,V D -BCE =13S △BCE ⋅DF =13×32×1=36;若∠FDE =120°,则∠DFE =30°,DF =DE =1,取EF 中点H ,连接DH ,则DH ⊥EF ,因为平面ABC ⊥平面DEF ,平面ABC ∩平面DEF =EF ,而DH ⊂平面DEF ,所以DH ⊥平面ABC ,DH =DF sin ∠DFE =1×sin30°=12,所以V D -BCE =13S △BCE ⋅DF =13×32×12=312;(2)若∠FDE =60°,以FA ,FE ,FD 为x ,y ,z 轴建立如图所示的空间直角坐标系F -xyz ,则D (0,0,1),C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =(1,0,1),CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-33,即m =(33,-1,-33),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+955×7=19385385,所以二面角B -CD -E 的余弦值是19385385;若∠FDE =120°,以FA 为x 轴,FE 为y 轴,过F 且平行于HD 的直线为z 轴建立如图所示的空间直角坐标系F -xyz ,FH =12FE =32,则D 0,32,12 ,C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =1,32,12 ,CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+32y 1+12z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-53,即m =(33,-1,-53),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+32y 2+12z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+15103×7=25721721,所以二面角B -CD -E 的余弦值是25721721.10(22·23下·襄阳·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为矩形,∠BAC =90°,AB =AC =2,AA 1=4,A 1在底面ABC 的射影为BC 的中点N ,M 为B 1C 1的中点.(1)求证:平面A 1MNA ⊥平面A 1BC ;(2)求平面A 1B 1BA 与平面BB 1C 1C 夹角的余弦值.【答案】(1)证明见解析(2)23015【分析】(1)利用线面垂直和面面垂直的判定定理证明;(2)利用空间向量的坐标运算求面面夹角的余弦值.【详解】(1)如图,∵A 1N ⊥面ABC ,连AN ,则AN ⊥A 1N ,又AB =AC =2,∴AN ⊥BC ,又AN ∩BC =N ,A 1N ⊂面A 1BC ,BC ⊂面A 1BC ,于是AN ⊥面A 1BC ,又AN ⊂面A 1MN ,,所以面A 1BC ⊥面A 1MNA .(2)由(1)可得,以NA ,NB ,NA 1 为x ,y ,z 轴,建系如图,∠BAC =90°,AB =AC =2,BC =22则A (2,0,0),B (0,2,0),C (0,-2,0),因为AA 1=4,AN =2,所以A 1N =14,则A 1(0,0,14),因为NB 1 =NB +BB 1 =NB +AA 1 =0,2,0 +-2,0,14 =-2,2,14 ,所以B 1-2,2,14 ,设平面A 1BB 1的一个法向量为m =(x ,y ,z ),因为A 1B =(0,2,-14),B 1B =(2,0,-14),所以A 1B ⋅m =2y -14z =0B 1B ⋅m =2x -14z =0 ,令y =7,则x =7,z =1,所以m =(7,7,1),设平面BCC 1B 1的一个法向量为n =(a ,b ,c ),因为BC =(0,-22,0),BB 1 =(-2,0,14),所以BC ⋅n =-22b =0BB 1 ⋅n =-2a +14c =0,令a =7,则b =0,c =1,所以n =(7,0,1),设平面A 1BB 1与平面BCC 1B 1夹角为θ,则cos θ=cos <m ,n >=m ⋅n m n=7+0+17+7+1×7+0+1=23015,所以平面A 1BB 1与平面BCC 1B 1夹角的余弦值为23015.11(22·23·唐山·二模)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 是等边三角形,侧面ACC 1A 1⊥底面ABC ,且AA 1=AC ,∠AA 1C 1=120°,M 是CC 1的中点.(1)证明:A 1C ⊥BM .(2)求二面角A 1-BC -M 的正弦值.【答案】(1)证明见解析(2)45【分析】(1)根据菱形的性质、结合面面垂直的性质,线面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,运用空间向量夹角公式进行求解即sk .【详解】(1)取AC 的中点O ,连接OM ,OB ,AC 1.在三棱柱ABC -A 1B 1C 1中,由AA 1=AC ,得四边形ACC 1A 1为菱形,所以A 1C ⊥AC 1,易知OM ∥AC 1,则A 1C ⊥OM .由△ABC 是等边三角形,知OB ⊥AC ,又平面ACC 1A 1⊥平面ABC ,平面ACC 1A 1∩平面ABC =AC ,OB ⊂平面ABC ,知OB ⊥平面ACC 1A 1,则OB ⊥A 1C ,又OB ∩OM =O ,OB ,OM ⊂平面OBM ,得A 1C ⊥平面OBM ,又BM ⊂平面OBM ,故A 1C ⊥BM ..(2)连接OA 1,因为侧面ACC 1A 1为菱形,∠AA 1C 1=120°,则∠A 1AC =60°,则△A 1AC 为等边三角形,所以A 1O ⊥AC ,又由(1)易知OA 1,OB ,AC 两两垂直,故以O 为坐标原点,分别以OB ,OC ,OA 1 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系.不妨设AB =2,则O 0,0,0 ,B 3,0,0 ,C 0,1,0 ,A 10,0,3 ,C 10,2,3 ,BA 1 =-3,0,3 ,BC =-3,1,0 ,CC 1 =0,1,3 ,设平面A 1BC 的法向量为n =x ,y ,z ,则n ⋅BC =-3x +y =0n ⋅BA 1 =-3x +3z =0 ,令x =1,得n =1,3,1 ,设平面BCC 1的法向量为m =a ,b ,c ,则m ⋅BC =-3a +b =0m ⋅CC 1 =b +3c =0,令a =1,得m =1,3,-1 ,所以cos n ,m =n ⋅m n ⋅m=35⋅5=35,即二面角A 1-BC -M 的正弦值为45.12(22·23下·盐城·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G 为弧CD 的中点,且C ,E ,D ,G 四点共面.(1)证明:平面BDF ⊥平面BCG ;(2)若平面BDF 与平面ABG 所成二面角的余弦值为155,且线段AB 长度为2,求点G 到直线DF 的距离.【答案】(1)证明见解析(2)62【分析】(1)过G 作GH ⎳CB ,交底面弧于H ,连接HB ,有HBCG 为平行四边形,根据题设可得FB ⊥HB ,即FB ⊥CG ,再由线面垂直的性质可得CB ⊥FB ,最后根据线面、面面垂直的判定即可证结论.(2)构建如下图示空间直角坐标系A -xyz ,令半圆柱半径为r ,高为h ,确定相关点坐标,进而求平面BDF 、平面ABG 的法向量,利用空间向量夹角的坐标表示及已知条件可得h =2r ,即可求出点G 到直线DF 的距离.【详解】(1)过G 作GH ⎳CB ,交底面弧于H ,连接HB ,易知:HBCG 为平行四边形,所以HB ⎳CG ,又G 为弧CD 的中点,则H 是弧AB 的中点,所以∠HBA =45°,而由题设知:∠ABF =45°,则∠HBF =∠HBA +∠ABF =90°,所以FB ⊥HB ,即FB ⊥CG ,由CB ⊥底面ABF ,FB ⊂平面ABF ,则CB ⊥FB ,又CB ∩CG =C ,CB ,CG ⊂平面BCG ,所以FB ⊥平面BCG ,又FB ⊂平面BDF ,所以平面BDF ⊥平面BCG .(2)由题意,构建如下图示空间直角坐标系A -xyz ,令半圆柱半径为r ,高为h ,则B 0,2r ,0 ,F 2r ,0,0 ,D 0,0,h ,G -r ,r ,h ,所以FD =-2r ,0,h ,BD =0,-2r ,h ,AB =0,2r ,0 ,AG =-r ,r ,h ,若m =x ,y ,z 是面BDF 的一个法向量,则m ⋅FD =-2rx +hz =0m ⋅BD =-2ry +hz =0 ,令z =2r ,则m =h ,h ,2r ,若n =a ,b ,c 是面ABG 的一个法向量,则n ⋅AB =2rb =0n ⋅AG =-ra +rb +hc =0 ,令c =r ,则n =h ,0,r ,所以cos m ,n =m ⋅n m n=h 2+2r 22h 2+4r 2×h 2+r 2=155,整理可得h 2-4r 2 h 2+2r 2 =0,则h =2r ,又AB =2,由题设可知,此时点G -1,1,2 ,D 0,0,2 ,F 2,0,0 ,则DF =2,0,-2 ,DG =-1,1,0 ,所以点G 到直线DF 的距离d =DG 2-DG ⋅DF 2DF2=62.13(22·23下·江苏·三模)如图,圆锥DO 中,AE 为底面圆O 的直径,AE =AD ,△ABC 为底面圆O 的内接正三角形,圆锥的高DO =18,点P 为线段DO 上一个动点.(1)当PO =36时,证明:PA ⊥平面PBC ;(2)当P 点在什么位置时,直线PE 和平面PBC 所成角的正弦值最大.【答案】(1)证明见解析;(2)P 点在距离O 点36处【分析】(1)利用勾股定理证明出AP ⊥BP 和AP ⊥CP ,再用线面垂直的判定定理证明出PA ⊥平面PBC ;(2)建立空间直角坐标系,利用向量法求解.【详解】(1)因为AE =AD ,AD =DE ,所以△ADE 是正三角形,则∠DAO =π3,又DO ⊥底面圆O ,AE ⊂底面圆O ,所以DO ⊥AE ,在Rt △AOD 中,DO =18,所以AO =DO 3=63,因为△ABC 是正三角形,所以AB =AO ×32×2=63×3=18,AP =AO 2+PO 2=92,BP =AP ,所以AP 2+BP 2=AB 2,AP ⊥BP ,同理可证AP ⊥CP ,又BP ∩PC =P ,BP ,PC ⊂平面PBC ,所以PA ⊥平面PBC .(2)如图,建立以O 为原点的空间直角坐标系O -xyz .设PO =x ,(0≤x ≤18),所以P 0,0,x ,E -33,9,0 ,B 33,9,0 ,C -63,0,0 ,所以EP =33,-9,x ,PB =33,9,-x ,PC =-63,0,-x ,设平面PBC 的法向量为n =a ,b ,c ,则n ⋅PB =33a +9b -cx =0n ⋅PC =-63a -cx =0,令a =x ,则b =-3x ,c =-63,故n =x ,-3x ,-63 ,设直线PE 和平面PBC 所成的角为θ,则sin θ=cos EP ,n =33x +93x -63x 108+x 2⋅x 2+3x 2+108=63x 108+x 2⋅4x 2+108=634x 2+1082x 2+540≤6324x 2⋅1082x 2+540=13,当且仅当4x 2=1082x 2,即PO =x =36时,直线PE 和平面PBC 所成角的正弦值最大,故P 点在距离O 点36处.14(22·23下·镇江·三模)如图,四边形ABCD 是边长为2的菱形,∠ABC =60°,四边形PACQ 为矩形,PA =1,从下列三个条件中任选一个作为已知条件,并解答问题(如果选择多个条件分别解答,按第一个解答计分).①BP ,DP 与平面ABCD 所成角相等;②三棱锥P -ABD 体积为33;③cos ∠BPA =55(1)平面PACQ ⊥平面ABCD ;(2)求二面角B -PQ -D 的大小;(3)求点C 到平面BPQ 的距离.【答案】(1)证明见解析(2)2π3(3)32【分析】(1)若选①,则作PA ⊥面ABCD ,证明A 和A 重合从而得到PA ⊥面ABCD ,从而得到面面垂直;若选②,计算得到P 到面ABD 的距离h =1=PA ,得到PA ⊥面ABCD ,从而得到面面垂直;若选③,通过余弦定理计算得到PA ⊥AB ,再通过PA ⊥面ABCD ,从而得到面面垂直;(2)通过建立空间直角坐标系,求出两个平面的法向量,结合二面角计算公式计算即可;(3)通过点面距离的计算公式直接计算即可.【详解】(1)选①,连接BD ,作PA ⊥面ABCD ,垂足为A .∵BP ,DP 与平面ABCD 所成角相等,∴A B =A D ,∴A 在BD 的中垂线AC 上,∵在平面PACQ 内,PA ⊥AC ,PA ⊥AC ,∴A 和A 重合,∴PA ⊥面ABCD ,又PA ⊂面PACQ ,∴面PACQ ⊥面ABCD若选②,设P 到面ABD 的距离为h ,∵V P -ABD =13S △ABD ⋅h =13×3⋅h =33,得h =1=PA ,∴PA 即为P 到面ABD 的距离,即PA ⊥面ABCD ,又PA ⊂面PACQ ,∴面PACQ ⊥面ABCD .若选③,由余弦定理得,cos ∠BPA =PB 2+PA 2-AB 22PB ⋅PA =55,∴BP =5,∴BP 2=AP 2+AB 2∴PA ⊥AB ,又PA ⊥AC ,AC ∩AB =A ,AC ,AB ⊂面ABCD∴PA ⊥面ABCD ,又PA ⊂面PACQ∴面PACQ ⊥面ABCD(2)因为PA ⊥面ABCD ,OB ,OC ⊂面ABCD ,所以PA ⊥OB ,PA ⊥OC ,取PQ 中点G ,则OG ⎳PA ,所以OG ⊥OB ,OG ⊥OC ,又因为OB ⊥OC ,所以建立如下图所示空间直角坐标系,∵B 3,0,0 ,P 0,-1,1 ,D -3,0,0 ,Q 0,1,1 ,∴BQ =-3,1,1 ,DQ =3,1,1 ,DP =3,-1,1 ,设平面BPQ 的一个法向量为m =x ,y ,z ,则m⋅BP =0m ⋅BQ =0 ,即-3x -y +z =0-3x +y +z =0 ,令x =3,则y =0,z =3,∴m =3,0,3 ,设平面DPQ 的一个法向量为n =x 1,y1,z 1 ,则n ⋅DP=0n ⋅DQ =0 ,即3x 1-y 1+z 1=3x 1+y 1+z 1=0,令x1=3,则y 1=0,z 1=-3,∴n =3,0,-3 ,∴cos m ,n =m ⋅n m ⋅ n =-623×23=-12,∵m ,n ∈0,π ,∴m ,n =2π3,由图可知二面角B -PQ -D 是钝角,所以二面角B -PQ -D 的大小为2π3.(3)∵C 0,1,0 ,Q 0,1,1 ,∴CQ =0,0,1 ,∵平面BPQ 的一个法向量为m =3,0,3 ,∴点C 到平面BPQ 的距离d =CQ ⋅m m=323=32.15(22·23下·江苏·一模)在三棱柱ABC -A 1B 1C 1中,平面A 1B 1BA ⊥平面ABC ,侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB 1⊥AC ,AB =AC =2,E 是AC 的中点.(1)求证:A 1B ⊥平面AB 1C ;(2)点P 在线段A 1E 上(异于点A 1,E ),AP 与平面A 1BE 所成角为π4,求EP EA 1的值.【答案】(1)证明见解析(2)EP EA 1=25【分析】(1)作B 1O ⊥AB 交AB 于O 点,由面面垂直的性质可得B 1O ⊥平面ABC ,可得B 1O ⊥AC ,再由线面垂直的判定定理得AC ⊥平面A 1B 1BA ,从而得到AC ⊥A 1B ,再由线面垂直的判定定理可得答案;(2)以A 为原点,AB 、AC 、AO 1所在的直线分别为x 、y 、z 轴,建立空间直角坐标系,设EP =λEA 1 ,可得AP =-λ,1-λ,3λ ,求出平面A 1BE 的一个法向量,由线面角的向量求法可得答案.【详解】(1)因为侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB =AC =2,所以△ABB 1、△AA 1B 1为边长为2的等边三角形,作B 1O ⊥AB 交AB 于O 点,则O 点为AB 的中点,因为平面A 1B 1BA ⊥平面ABC ,平面A 1B 1BA ∩平面ABC =AB ,B 1O ⊂平面A 1B 1BA ,所以B 1O ⊥平面ABC ,AC ⊂平面ABC ,可得B 1O ⊥AC ,又AB 1⊥AC ,B 1O ∩AB 1=B 1,B 1O 、AB 1⊂平面A 1B 1BA ,可得AC ⊥平面A 1B 1BA ,因为A 1B ⊂平面A 1B 1BA ,所以AC ⊥A 1B ,因为侧面A 1B 1BA 为菱形,所以B 1A ⊥A 1B ,AB 1∩AC =A ,AB 1、AC ⊂平面AB 1C ,所以A 1B ⊥平面AB 1C ;(2)由(1)知,AC ⊥平面A 1B 1BA ,∠BAC =π2,取做A 1B 1的中点O 1,连接AO 1,则B1O ⎳AO 1,所以AO 1⊥平面ABC ,以A 为原点,AB 、AC 、AO 1所在的直线分别为x 、y 、z 轴,建立空间直角坐标系,则A 0,0,0 ,A 1-1,0,3 ,B 2,0,0 ,E 0,1,0 ,A 1B =3,0,-3 ,EA 1 =-1,-1,3 ,设EP =λEA 1 ,可得P -λ,1-λ,3λ ,所以AP =-λ,1-λ,3λ ,设平面A 1BE 的一个法向量为n=x ,y ,z ,则A 1B ⋅n=0EA 1 ⋅n =0,即3x -3z =0-x -y +3z =0 ,令z =3,可得n =1,2,3 ,可得sin π4=cos n ,AP =n ⋅AP n AP=-λ+2-2λ+3λ 1+4+3λ2+1-λ 2+3λ2,解得λ=0舍去,或λ=25,所以EP EA 1=25.16(22·23下·河北·三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.【答案】(1)N 是CD 的中点(2)12,1,0 ,-1310,1,185 【分析】(1)根据面面平行的性质证明MN ⎳PC ,即可得解;(2)先根据球的体积求出PQ ,然后根据空间中两点间的距离公式即可得解.【详解】(1)因为平面OMN ⎳平面PBC ,平面OMN ∩平面PCD =MN ,平面PBC ∩平面PCD =PC ,所以MN ⎳PC ,因为M 是PD 的中点,所以N 是CD 的中点;(2)由题意4π×PQ 22=214π,解得PQ =212,设MQ =λMN,λ∈R ,由题意,P 0,0,2 ,M 0,1,1 ,N 12,1,0 ,则PM =0,1,-1 ,MN =12,0,-1 ,则PQ =PM +MQ =0,1,-1 +λ12,0,-1 =λ2,1,-λ-1 ,则λ24+1+-λ-1 2=212,解得λ=1或λ=-135,当λ=1时,MQ =MN ,则Q 12,1,0 ,当λ=-135时,MQ =-135MN =-1310,0,135,设Q x ,y ,z ,则MQ =x ,y -1,z -1 =-1310,0,135,所以x =-1310y -1=0z -1=135 ,解得x =-1310y =1z =185 ,则Q -1310,1,185 ,综上所述点Q 的坐标为12,1,0,-1310,1,185 .17(22·23·汕头·三模)如图,圆台O 1O 2的轴截面为等腰梯形A 1ACC 1,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点.(1)在平面BCC 1内,过C 1作一条直线与平面A 1AB 平行,并说明理由;(2)若四棱锥B -A 1ACC 1的体积为23,设平面A 1AB ∩平面C 1CB =l ,Q ∈l ,求CQ 的最小值.【答案】(1)作图见解析,理由见解析(2)7【分析】(1)根据线面平行的判定和中位线定理即可求解;(2)根据几何关系或空间向量方法即可求解.【详解】(1)取BC 中点P ,作直线C 1P 即为所求,取AB 中点H ,连接A 2H ,PH ,则有PH ∥AC ,PH =12AC ,如图,在等腰梯形A 1ACC 1中,A 1C 1=12AC ,有HP ∥A 1C 1,HP =A 1C 1,则四边形A 1C 1PH 为平行四边形,即有C 1P ∥A 1H ,又A 1H ⊂平面A 1AB ,C 1P⊄平面A 1AB ,所以C 1P ∥平面A 1AB .(2)法一:延长AA 1,CC 1交于点O ,故O ∈AA 1⊂平面ABA 1,O ∈CC 1⊂平面CC 1B故平面A 1AB ∩平面C 1CB =BO ,BO 即l ,在△OBC 中,OC ,OB 均为圆锥母线.过点B 作BO ⊥AC 于O .在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高h =AA 21-AC -A 1C 122=3,∴等腰梯形A 1ACC 1的面积为S =122+4 3=33,所以四棱锥B -A 1ACC 1的体积V =13S ×BO =13×33×BO =23,解得BO =2,故点O 与O 2重合,BC =22由AC =2AA 1=2A 1C 1,得OC =2CC 1,且∠C 1CA =60°,故OC =AC =4=OB .△OBC 中,O 到BC 距离h 1=OB 2-BC 22=14.则△OBC 面积=12OB ⋅CQ min =12BC ⋅h 1,得:CQ 的最小值为:CQ min =22⋅144=7.法二:同法一求出B 的位置.以O 2为原点,OB ,OC ,O 2O 1方向为x ,y ,z 轴正向建立空间直角坐标系,C 0,2,0 ,B 2,0,0 ,AA 1 =0,1,3 ,AB =2,2,0 ,CC 1 =0,-1,3 ,BC=-2,2,0设面A 1AB 的法向量为a=x 1,y 1,z 1a ⋅AA 1=y 1+3z 1=0a ⋅AB=2x 1+2y 1=0,取z 1=1,有a=3,-3,1 ;同理可得面C 1CB 的法向量为β=3,3,1 ,由l =面C 1CB ∩面A 1AB ,可知B ∈l ,设l 的方向向量为l=x ,y ,z ,故l ⋅a =3x -3y +z =0,l ⋅β=3x +3y +z =0取l=1,0,3 ,下面分2个方法求|CQ |min求|CQ |min 方法1:BQ =l=t ,0,3t ,,∵B 2,0,0 ,∴Q t -2,0,3t∴CQ =(t -2)2+22+(3t )2=4t 2-4t +8,当t =12时,CQ 取最小值为7.求CQ min 方法2:BC 在l 上的投影向量的模为BC ⋅l l =-2×1+2×0+0×32=1故CQ 的最小值即C 到l 的距离为BC 2-12=7.法三:在三角形△BCO 中,BO =CO =4,BC =22,cos ∠CBO =42+(22)2-422×4×22=122⋅sin ∠CBO =1-1222=722,所以CQ ≥CB sin ∠CBO =722×22=7.18(19·20下·临沂·二模)如图①,在Rt △ABC 中,B 为直角,AB =BC =6,EF ∥BC ,AE =2,沿EF 将△AEF 折起,使∠AEB =π3,得到如图②的几何体,点D 在线段AC 上.(1)求证:平面AEF ⊥平面ABC ;(2)若AE ⎳平面BDF ,求直线AF 与平面BDF 所成角的正弦值.【答案】(1)证明见解析;(2)64.【分析】(1)由余弦定理计算证明EA ⊥AB ,再利用线面垂直的判定、性质,面面垂直的判定推理作答.(2)以A 为原点,建立空间直角坐标系,利用空间向量求线面角的正弦作答.【详解】(1)在△ABE 中,AE =2,BE =4,∠AEB =π3,由余弦定理得:AB 2=AE 2+BE 2-2AE ⋅BE cos ∠AEB =4+16-2×2×4×12=12,则AB =23,有EB 2=EA 2+AB 2,于是∠EAB =π2,即有EA ⊥AB ,又EF ⊥EB ,EF ⊥EA ,EA ∩EB =E ,EA ,EB ⊂平面ABE ,因此EF ⊥平面ABE ,而AB ⊂平面ABE ,则EF ⊥AB ,又因为EA ∩EF =E ,EA ,EF ⊂平面AEF ,从而AB ⊥平面AEF ,而AB ⊂平面ABC ,所以平面AEF ⊥平面ABC .(2)以A 为原点,以AB ,AE 分别为x ,y 轴,过点A 垂直于平面ABE 的直线为z 轴,建立空间直角坐标系,如图,由(1)知,EF ⊥平面ABE ,而EF ⎳BC ,则有BC ⊥平面ABE ,则A (0,0,0),B (23,0,0),E (0,2,0),F (0,2,2),C (23,0,6),AF =(0,2,2),FB =(23,-2,-2),AC=(23,0,6),连接EC 与FB 交于点G ,连接DG ,因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =DG ,则AE ⎳GD ,有GC GE =DCDA,在四边形BCFE 中,由EF ⎳BC ,得GC GE =BC EF =3,即DC DA=3,AD =14AC =32,0,32 ,FD =AD -AF =32,-2,-12,设平面BDF 的法向量为n =(x ,y ,z ),则n ⋅FD =32x -2y -12z =0n ⋅FB =23x -2y -2z =0,令x =1,得n =(1,0,3),设直线AF 与平面BDF 所成角为θ,于是sin θ=|cos ‹n ,AF ›|=|n ⋅AF ||n ||AF |=2322×2=64,所以直线AF 与平面BDF 所成角的正弦值为64.19(22·23下·广州·三模)如图,四棱锥P -ABCD 的底面为正方形,AB =AP =2,PA ⊥平面ABCD ,E ,F 分别是线段PB ,PD 的中点,G 是线段PC 上的一点.(1)求证:平面EFG ⊥平面PAC ;(2)若直线AG 与平面AEF 所成角的正弦值为13,且G 点不是线段PC 的中点,求三棱锥E -ABG 体积.【答案】(1)证明见解析(2)19【分析】(1)由线面垂直判定可证得BD ⊥平面PAC ,由中位线性质知EF ⎳BD ,从而得到EF ⊥平面PAC ,由面面垂直判定可得结论;(2)以A 为坐标原点可建立空间直角坐标系,设PG =λPC ,λ∈0,12 ∪12,1 ,由线面角的向量求法可构造方程求得λ,结合垂直关系可得G 平面PAB 的距离为16BC =13,利用棱锥体积公式可求得结果.【详解】(1)连接BD ,∵E ,F 分别是线段PB ,PD 的中点,∴EF ⎳BD ,∵底面四边形ABCD 为正方形,∴BD ⊥AC ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA ⊥BD ,又PA ∩AC =A ,PA ,AC ⊂平面PAC ,∴BD ⊥平面PAC ,∵EF ⎳BD ,∴EF ⊥平面PAC ,又EF ⊂平面EFG ,∴平面EFG ⊥平面PAC .(2)以A 为坐标原点,分别以AB ,AD ,AP 所在直线为x ,y ,z 轴建立空间直角坐标系,则A 0,0,0 ,E 1,0,1 ,F 0,1,1 ,P 0,0,2 ,C 2,2,0 ,设PG =λPC ,λ∈0,12 ∪12,1 ,则AG =AP +PG =0,0,2 +2λ,2λ,-2λ =2λ,2λ,2-2λ ,AE =1,0,1 ,AF =0,1,1 ,设平面AEF 的一个法向量为n=x ,y ,z ,则n ⋅AE=x +z =0n ⋅AF=y +z =0,令z =-1,解得:x =1,y =1,∴n =1,1,-1 ;设直线AG 与平面AEF 所成角为θ,sin θ=cos n ,AG =n ⋅AGn ⋅AG=6λ-2 3⋅4λ2+4λ2+2-2λ 2=13,解得:λ=16或λ=12(舍),∴PG =16PC ,∵PA ⊥平面ABCD ,BC ⊂平面ABCD ,∴PA ⊥BC ;∵BC ⊥AB ,PA ∩AB =A ,PA ,AB ⊂平面PAB ,∴BC ⊥平面PAB ,∴G 到平面PAB 的距离为16BC =13,∴V E -ABG =V G -ABE =13S △ABE ⋅16BC =13×12×12×2×2×13=19.20(22·23下·长沙·一模)斜三棱柱ABC -A 1B 1C 1的各棱长都为2,∠A 1AB =60°,点A 1在下底面ABC 的投影为AB 的中点O .(1)在棱BB 1(含端点)上是否存在一点D 使A 1D ⊥AC 1若存在,求出BD 的长;若不存在,请说明理由;(2)求点A 1到平面BCC 1B 1的距离.【答案】(1)存在,BD =25(2)2155【分析】(1)连接OC ,以O 点为原点,如图建立空间直角坐标系,设BD =tBB 1 ,t ∈0,1 ,根据AC 1 ⋅A 1D=0,求出t 即可;(2)利用向量法求解即可.【详解】(1)连接OC ,因为AC =BC ,O 为AB 的中点,所以OC ⊥AB ,由题意知A 1O ⊥平面ABC ,又AA 1=2,∠A 1AO =60°,所以A 1O =3,以O 点为原点,如图建立空间直角坐标系,则A 10,0,3 ,A 1,0,0 ,B -1,0,0 ,C 0,3,0 ,由AB =A 1B 1得B 1-2,0,3 ,同理得C 1-1,3,3 ,设BD =tBB 1,t ∈0,1 ,得D -1-t ,0,3t ,又AC 1 =-2,3,3 ,A 1D =-1-t ,0,3t -3 ,由AC 1 ⋅A 1D=0,得-2-1-t +33t -3 =0,得t =15,又BB 1=2,∴BD =25,∴存在点D 且BD =25满足条件;(2)设平面BCC 1B 1的法向量为n=x ,y ,z ,BC =1,3,0 ,CC 1 =-1,0,3 ,则有n ⋅BC=x +3y =0n ⋅CC 1=-x +3z =0,可取n =3,-1,1 ,又BA 1=1,0,3 ,∴点A 1到平面BCC 1B 1的距离为d =BA 1 cos BA 1 ,n =BA 1 ×3+0+3BA 1×5=2155,∴所求距离为2155.21(22·23下·长沙·三模)如图,三棱台ABC -A 1B 1C 1,AB ⊥BC ,AC ⊥BB 1,平面ABB 1A 1⊥平面ABC ,AB =6,BC =4,BB 1=2,AC 1与A 1C 相交于点D ,AE =2EB,且DE ∥平面BCC 1B 1.(1)求三棱锥C -A 1B 1C 1的体积;(2)平面A 1B 1C 与平面ABC 所成角为α,CC 1与平面A 1B 1C 所成角为β,求证:α+β=π4.【答案】(1)2(2)证明见解析【分析】(1)通过证明线线和线面垂直,并结合已知条件即可得出三棱锥C -A 1B 1C 1的体积;(2)建立空间直角坐标系,表达出各点的坐标,求出所成角为α与β的正余弦值,即可证明结论.【详解】(1)由题意,∵平面ABB 1A 1⊥平面ABC ,且平面ABB 1A 1∩平面ABC =AB ,AB ⊥BC ,BC ⊂平面ABC ∴BC ⊥平面ABB 1A 1,∵BB 1⊂平面ABB 1A 1,∴BC ⊥BB 1,又AC ⊥BB 1,BC ∩AC =C ,BC ,AC ⊂平面ABC ∴BB 1⊥平面ABC ,连接C 1B ,∵DE ⎳平面BCC 1B 1,DE ⊂平面ABC 1,平面ABC 1∩平面BCC 1B 1=C 1B ,∴DE ∥C 1B ,∵AE =2EB ,∴AD =2DC 1 ,∴A 1C 1=12AC .∴三棱锥C -A 1B 1C 1底面A 1B 1C 1的面积S 1=12×2×3=3,高h =BB 1=2,。
高考数学立体几何选择题
高考数学立体几何选择题1. 题目:一个正方体的对角线长为6,求正方体的边长。
选项:A. 2 B. 3 C. 4 D. 52. 题目:一个圆柱的底面半径为3,高为4,求圆柱的侧面积。
选项:A. 12π B. 24π C. 36π D. 48π3. 题目:一个圆锥的底面半径为4,高为5,求圆锥的侧面积。
选项:A. 2π B. 4π C. 6π D. 8π4. 题目:一个长方体的长、宽、高分别为4、3、2,求长方体的对角线长度。
选项:A. 5 B. 6 C. 7 D. 85. 题目:一个球的直径为10,求球的表面积。
选项:A. 314 B. 628 C. 1256 D. 25126. 题目:一个正四面体的棱长为3,求正四面体的外接球半径。
选项:A. 1 B. 2 C. 3 D. 47. 题目:一个圆台的上下底面半径分别为3和2,高为4,求圆台的侧面积。
选项:A. 2π B. 4π C. 6π D. 8π8. 题目:一个正方体的对角线长为8,求正方体的体积。
选项:A. 64 B. 125 C. 216 D. 3439. 题目:一个圆柱的底面半径为5,高为6,求圆柱的体积。
选项:A. 9π B. 18π C. 27π D. 36π10. 题目:一个圆锥的底面半径为4,高为5,求圆锥的体积。
选项:A. π B. 2π C. 4π D. 8π11. 题目:一个长方体的长、宽、高分别为3、2、1,求长方体的体积。
选项:A. 6 B. 12 C. 18 D. 2412. 题目:一个球的直径为12,求球的体积。
选项:A. 4π B. 16π C. 64π D. 125π13. 题目:一个正四面体的棱长为4,求正四面体的体积。
选项:A. 2 B. 4 C. 8 D. 1614. 题目:一个圆台的上下底面半径分别为5和3,高为4,求圆台的体积。
选项:A. π B. 2π C. 4π D. 8π15. 题目:一个正方体的对角线长为10,求正方体的表面积。
高考数学立体几何选择题
高考数学立体几何选择题1. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体D. 立方体2. 下列哪个图形是正方体?A. 圆柱体B. 圆锥体C. 球体D. 正方体3. 下列哪个图形是圆柱体?A. 圆锥体B. 球体C. 圆柱体D. 立方体4. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 立方体5. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体6. 下列哪个图形是长方体?A. 圆柱体B. 圆锥体C. 球体D. 长方体7. 下列哪个图形是正四面体?A. 圆柱体B. 圆锥体C. 球体D. 正四面体8. 下列哪个图形是正方体?A. 圆柱体B. 圆锥体C. 球体D. 正方体9. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体10. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体11. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体12. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体13. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体14. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体15. 下列哪个图形是长方体?A. 圆柱体C. 球体D. 长方体16. 下列哪个图形是正四面体?A. 圆柱体B. 圆锥体C. 球体D. 正四面体17. 下列哪个图形是正方体?A. 圆柱体B. 圆锥体C. 球体D. 正方体18. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体19. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体20. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体D. 球体21. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体22. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体23. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体24. 下列哪个图形是长方体?A. 圆柱体B. 圆锥体C. 球体D. 长方体25. 下列哪个图形是正四面体?A. 圆柱体B. 圆锥体C. 球体D. 正四面体26. 下列哪个图形是正方体?A. 圆柱体C. 球体D. 正方体27. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体28. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体29. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体D. 球体30. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体31. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体32. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体33. 下列哪个图形是长方体?A. 圆柱体B. 圆锥体C. 球体D. 长方体34. 下列哪个图形是正四面体?A. 圆柱体B. 圆锥体C. 球体D. 正四面体35. 下列哪个图形是正方体?A. 圆柱体B. 圆锥体C. 球体D. 正方体36. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体37. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体38. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体D. 球体39. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体40. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体41. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体42. 下列哪个图形是长方体?A. 圆柱体B. 圆锥体C. 球体D. 长方体43. 下列哪个图形是正四面体?A. 圆柱体B. 圆锥体C. 球体D. 正四面体44. 下列哪个图形是正方体?A. 圆柱体B. 圆锥体C. 球体D. 正方体45. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体46. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体47. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体D. 球体48. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体49. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体50. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文科数学立体几何高考题汇总
1.(2016北京文11)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.
2.(2016北京文18)(本小题14分)
如图,在四棱锥P-ABCD中,PC⊥平面ABCD,,
AB DC DC AC
∥
⊥
(I)求证:DC PAC
⊥平面;
(II)求证:PAB PAC
平面平面;
⊥
(III)设点E为AB的中点,在棱PB上是否存在点F,使得PA CEF
⊥平面?
说明理由.
3.(2016天津文17) (本小题满分13分)
如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF||AB,
AB=2,BC=EF=1,DE=3,∠BAD=60º,G为BC的中点. (Ⅰ)求证:FG||平面BED;
(Ⅱ)求证:平面BED⊥平面AED;
(Ⅲ)求直线EF 与平面BED 所成角的正弦值.
【答案】(Ⅰ)详见解析(Ⅱ)详见解析(Ⅲ)
65 【解析】
试题分析:(Ⅰ)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行寻找与论证,往往结合平几知识,如本题构造一个平行四边形:取BD 的中点为O ,可证四边形OGFE 是平行四边形,从而得出OE FG //(Ⅱ)面面垂直的证明,一般转化为证线面垂直,而线面垂直的证明,往往需多次利用线面垂直判定与性质定理,而线线垂直的证明有时需要利用平几条件,如本题可由余弦定理解出090=∠ADB ,即AD BD ⊥(Ⅲ)求线面角,关键作出射影,即面的垂线,可利用面面垂直的性质定理得到线面垂直,即面的垂线:过点A 作DE AH ⊥于点H ,则⊥AH 平面BED ,从而直线AB 与平面BED 所成角即为ABH ∠.再结合三角形可求得正弦值
试题解析:(Ⅰ)证明:取BD 的中点为O ,连接OG OE ,,在B C D ∆中,因为G 是BC 的中点,所以DC OG //且121==DC OG ,又因为DC AB AB EF //,//,所以OG EF //且OG EF =。