激光原理课件chapter8

合集下载

激光原理及应用PPT课件

激光原理及应用PPT课件

激光治疗
通过激光照射病变组织,达到治 疗目的,如激光治疗近视、祛斑
等。
激光手术
利用激光进行微创手术,具有出 血少、恢复快、精度高等优点, 如激光心脏手术、激光眼科手术
等。
激光诊断
利用激光光谱技术对人体组织进 行检测和分析,为疾病诊断提供
依据。
军事国防领域应用
激光雷达
利用激光雷达进行目标探测、识别和跟踪,具有高分辨率、抗干 扰能力强等特点。
微型化与集成化
发展微型激光器,实现与其他光电器件的集成,推动光电子集成技 术的发展。
新型激光技术
研究新型激光技术,如光纤激光器、化学激光器等,拓展激光器的 应用领域。
高功率、高效率、高稳定性挑战
高功率激光器
提高激光器的输出功率,满足高能激光武器、激光聚变等领域的 需求。
高效率激光器
优化激光器的能量转换效率,降低能耗,提高激光器的实用性。
02
03
工作原理
通过激励固体增益介质 (如晶体、玻璃等)中的 粒子,实现粒子数反转并 产生激光。
特点
结构紧凑、效率高、光束 质量好。
应用领域
工业加工、医疗、科研等。
气体激光器
工作原理
利用气体放电激励气体分子或原子, 使其产生能级跃迁并辐射出激光。
特点
应用领域
激光切割、焊接、打孔等工业应用。
输出功率大、光束质量好、效率高。
激光原理及应用PPT课 件
contents
目录
• 激光原理基本概念 • 激光技术发展历程及现状 • 激光器类型及其特点分析 • 激光在各领域应用案例分析 • 激光安全问题及防护措施探讨 • 未来发展趋势预测与挑战分析
激光原理基本概念

激光原理概述课件

激光原理概述课件
听力损伤
高强度激光产生的噪声可能对听力造 成损害。
激光安全标准与等级
国际标准
激光产品的安全等级按照
IEC 60825系列标准进行
划分,分为Class
1、
Class 2、Class 3等不同等
级。
国内标准
我国参照国际标准制定了 相应的激光产品安全标准 ,如GB 7247系列标准。
行业标准
不同行业根据自身特点制 定相应的激光安全标准, 如医疗行业、工业加工行 业等。
手段。
激光技术应用
医疗领域
激光在医疗领域的应用包括手术、美 容、眼科治疗等,具有创伤小、恢复 快的优点。
科研领域
激光在光谱分析、量子通信、光学陷 阱等领域发挥着重要作用,推动了科 学研究的进步。
工业领域
激光在加工、焊接、打标等领域的应 用提高了生产效率和产品质量。
军事领域
激光在武器制导、通信加密、防御系 统等方面具有重要的应用价值。
放大
当有大量原子处于激发态时,它们释放出的光子会相互作用并产生更多的光子, 形成光的放大效应。
激光器的基本组成
01
02
03
激活介质
激光器中的工作物质,通 常是气体、液体或固体, 它能实现光的受激辐射放 大。
泵浦源
为激活介质提供能量,使 其中的原子或分子被激发 到高能级。
谐振腔
由反射镜构成,用于选频 、共振和放大,使特定波 长的光在两个反射镜之间 来回反射并不断放大。
激光原理概述课件
BIG DATA EMPOWERS TO CREATE A NEW
ERA
• 激光原理简介 • 激光产生原理 • 激光特性与技术 • 激光安全与防护 • 未来激光技术展望

激光原理与技术PPT精品文档

激光原理与技术PPT精品文档

ONE KEEP VIEW 激光原理与技术PPT精品文档目录CATALOGUE•激光基本原理•激光器类型及工作原理•激光技术应用领域•激光技术发展趋势与挑战•激光安全与防护知识普及•总结与展望PART01激光基本原理激光产生条件粒子数反转高能级粒子数大于低能级粒子数,是产生激光的必要条件。

增益大于损耗增益介质中的受激辐射放大作用要大于各种损耗,才能实现光放大。

光学谐振腔提供正反馈,使受激辐射光在腔内多次反射、放大,形成稳定振荡。

激光发射过程泵浦过程通过外部能量输入(如光、电、化学等),使增益介质中的粒子从低能级跃迁到高能级,实现粒子数反转。

受激辐射过程处于高能级的粒子在外部光子的作用下,跃迁到低能级并发出与入射光子完全相同的光子,实现光放大。

光学谐振腔内的振荡过程受激辐射产生的光子在腔内多次反射、放大,形成稳定的光场分布和振荡模式。

功率激光的功率决定了其能量大小和输出能力,高功率激光具有更强的穿透力和加工能力。

稳定性激光的稳定性决定了其长期运行的可靠性和稳定性,对于高精度、高稳定性的应用尤为重要。

光束质量激光的光束质量决定了其聚焦能力和传输效率,优质的光束质量可以提高激光加工的精度和效率。

波长激光的波长决定了其颜色和应用领域,不同波长的激光具有不同的特性和用途。

激光特性参数PART02激光器类型及工作原理工作原理通过激励源(泵浦源)将能量传递给工作物质,使其产生粒子数反转分布,然后在谐振腔内通过受激辐射产生激光。

特点具有体积小、重量轻、效率高、寿命长等优点,广泛应用于科研、工业、医疗等领域。

构成由工作物质、泵浦源和谐振腔三部分组成。

构成主要由放电管、反射镜和电源三部分组成。

工作原理在放电管中充入一定种类和压强的气体,通过高压放电激励气体分子或原子,使其产生受激辐射并放大,形成激光输出。

特点具有光束质量好、输出功率大、效率高、结构简单等优点,常用于高精度测量、光谱分析等领域。

构成主要由染料溶液、泵浦源和光学谐振腔三部分组成。

激光器的工作原理ppt课件

激光器的工作原理ppt课件
定条件可以合并成一个,即: R1=R2=R>L/2
.
2.平凹稳定腔: 由一个凹面反射镜和一个平面反射镜组成的谐振腔称为平
凹腔。其稳定条件为:R>L
R
L
证明:∵ R1>L ,
g1
1
L
;
R1
R2
∞, g2= 1
∴ 0 < 1 1 gR L 1< 1 < 故有 0 < g 1g 2 1
.
3.凹凸稳定腔:
第二部分 激光产生的 基本原理
2.激光器的基本结构
n w 21 A 21
w 2 1 n1 STE光子集中在几个模式
轴向模
非轴向模
技术思想的重大突破 - F-P 光谐振腔 • 开放式光谐振腔使特定(轴向)模式的增加, 其它(非轴向)模式数
逸出腔外,使轴向模有很高的光子简并度。
• 工作物质, 光学谐振腔, 激励能源是一般激光器的三个基本部分。
图(2-2) 共轴球面腔的稳定图
3.利用稳定条件可将球面腔分类如下:
(1) 稳定腔 (0<g1 g2 <1)
➢双凹稳定腔,由两个凹面镜组成,对应图中 ➢l、2、3和4区.
➢平凹稳定腔,由一个平面镜和一个凹面镜组成,
➢对应图中AC、AD段
图(2-2) 共轴球面腔的稳定图
➢凹凸稳定腔,由一个凹面镜和一个凸面镜组成,对应图中5区和6区。
条件有两种情况.
R1
R2
其一为: R1<L, R2>L
L
此时 g11R L10 g21R L20
所以 g1 g2<0
.
其二为: R1+R2<L
可以证明: g1 g2>1 (证明略)
2.平凹非稳腔 稳定条件: R1<L , R2= ∞

激光原理与技术PPT课件

激光原理与技术PPT课件

激光手术
阐述激光手术在眼科、神 经外科等领域的应用及优 势,如精度高、创伤小等 。
05
CATALOGUE
激光测量与检测技术
激光干涉测量技术
1 2
干涉测量原理
利用激光的相干性,通过干涉条纹的变化来测量 长度、角度等物理量。
干涉测量系统组成
包括激光器、分束器、反射镜、探测器等部分。
3
干涉测量技术应用
时间特性
激光束的时间特性包括脉冲宽度、重复频率和稳定性等。其中,脉冲宽度决定 了激光的峰值功率和能量,重复频率则影响了激光的平均功率。稳定性则是确 保激光束在长时间内保持一致性的关键因素。
激光束的调制与偏转技术
调制技术
通过对激光束进行幅度、频率或相位等调制,可以实现信息 的加载和传输。常见的调制方式包括振幅调制、频率调制和 相位调制等。这些调制技术使得激光束能够携带更多的信息 ,并在通信、传感等领域得到广泛应用。
对皮肤的危害
长时间或高强度激光照射皮肤, 可能导致皮肤烧伤、色素沉着、 皮肤癌等严重后果。
激光安全标准与防护措施
激光安全标准
国际电工委员会(IEC)和美国激光产品安全标准(ANSI)等制定了激光产品的 安全标准,包括激光等级分类、安全警示标识、使用说明等。
防护措施
使用激光产品时,应佩戴合适的防护眼镜或面罩,避免直接照射眼睛或皮肤;同 时,应在激光工作区域内设置明显的安全警示标识,提醒他人注意安全。
偏转技术
激光束的偏转技术主要是通过改变激光束的传播方向来实现 。常见的偏转方式包括机械偏转、电光偏转和声光偏转等。 这些偏转技术使得激光束能够灵活地指向目标,并在激光雷 达、光学扫描等领域发挥重要作用。
激光束的聚焦与整形技术

激光原理与技术PPT(很全面)

激光原理与技术PPT(很全面)

04
激光与物质相互作用
激光与物质相互作用的基本过程
激光束在物质中的传播
包括反射、折射、吸收和散射等现象。
激光与物质相互作用的机理
包括光热作用、光电效应、光化学效应等。
激光与物质相互作用的特点
如高能量密度、高亮度、高方向性等。
激光加工原理及应用
1 2
激光加工的基本原理
通过高能激光束对材料进行加热、熔化、汽化或 达到其他物理或化学变化,以实现加工目的。
应用领域
适用于气体、液体和固体等多种介质的流速测量,如风速测量、 血流速度测量等。
激光光谱分析技术
光谱原理
不同物质具有不同的光谱特征,通过测量物质的光谱信息可以分析 其成分和性质。
分析方法
包括激光拉曼光谱分析、激光荧光光谱分析等,可用于物质的定性、 定量分析。
应用领域
广泛应用于化学、生物、医学、环境等领域,如药物分析、环境监测 等。
液体激光器
染料激光器
使用有机染料作为增益介质,通过 泵浦光激发染料分子产生激光,具 有宽调谐范围和短脉冲输出能力。
液体激光核聚变
利用高功率激光束照射含有氘、氚 等聚变燃料的靶丸,实现核聚变反 应,是惯性约束聚变研究的重要手 段。
半导体激光器
边发射半导体激光器
电流注入半导体PN结,电子与空穴复 合释放能量形成激光输出,具有体积 小、效率高、寿命长等优点。
特性
方向性好,亮度高,单色 性好,相干性好。
应用领域
激光加工、激光测距、激 光雷达、激光通信、激光 治疗等。
02
激光器类型及技术
固体激光器
晶体激光器
使用掺杂稀土元素的晶体 作为增益介质,如Nd:YAG 激光器。

激光原理与技术ppt课件2024新版

激光原理与技术ppt课件2024新版

激光束的传输与变换
激光束的传输特性
探讨激光束在自由空间和光学系统中 的传输特性,包括光束的发散、聚焦 和像差等。
激光束的质量控制
阐述激光束质量评价的标准和方法, 以及提高激光束质量的措施和技术。
激光束的变换方法
介绍常见的激光束变换方法,如透镜 变换、反射镜变换和光纤传输等,并 分析它们的应用场景和优缺点。
激光原理与技术 ppt课件
目录
• 激光原理概述 • 激光技术基础 • 固体激光器 • 气体激光器 • 液体激光器与光纤激光器 • 激光技术的应用与发展趋势
01
激光原理概述
激光的产生与发展
01
1917年,爱因斯坦提出 “受激辐射”理论
02
03
1954年,美国物理学家 汤斯和肖洛提出激光原 理
1960年,梅曼制成世界 上第一台红宝石激光器
03
固体激光器
固体激光器的结构与工作原理
固体激光器的组成
工作物质、泵浦源、光学谐振腔
工作原理
通过泵浦源提供能量,使工作物 质中的粒子实现粒子数反转,然 后在光学谐振腔的作用下产生激
光振荡,输出激光。
光学谐振腔的作用
提供正反馈,使受激辐射光不断 放大,同时控制激光输出的方向
和质量。
固体激光器的性能特点
液体激光器与光纤激光器的性能特点及应用
液体激光器
主要应用于可调谐激光光谱学、生物 医学成像等领域。
光纤激光器
广泛应用于工业加工、通信、医疗等 领域,如激光切割、焊接、打标等。
06
激光技术的应用与发 展趋势
激光加工技术的应用与发展
激光切割
高精度、高效率的切割方法,广泛应用于金 属、非金属材料的加工。

激光原理及应用课件—陈鹤鸣第8章 典型激光器

激光原理及应用课件—陈鹤鸣第8章 典型激光器
激光工作方式:多数以四能级方式工作 激光输出特性: 单色性、方向性优于其它激光器;
频率稳定,易获得连续的激光输出。
激光器装置:激光管(放电管),电极,光谐振腔 光谐振腔:内腔式,外腔式
2022/11/19
激光原理及应用 陈鹤鸣 赵新彦
19
8.2.2 He-Ne激光器 1.基本结构
2022/11/19
侧面激励: 采用大功率半导体激光器列阵作泵浦光源,
激光输出功率大
2022/11/19
激光原理及应用 陈鹤鸣 赵新彦
10
8.1.2 红宝石激光器
1. 发光机理 (1)激光工作物质
基质: Al2O3 晶体 掺杂: Cr2O3
(质量比约为0.05 %)
(2)激光的产生
激光波 长:
694.3nm
4 A2 泵浦
输出功率大,体积小,效率高,适合实现调Q、锁模等技术
8.1.1 固体激光器的基本结构和抽运方式
1. 闪光灯泵浦
脉冲激光器:脉冲氙灯 连续激光器:氪灯,碘钨灯
2022/11/19
激光原理及应用 陈鹤鸣 赵新彦
9
2. 半导体激光二极管泵浦 端面激励: 装置简单,泵浦光束与谐振腔模匹配良好,
阈值功率低,斜效率高
染料分子的能级图
2022/11/19
激光原理及应用 陈鹤鸣 赵新彦
32
§8.4 新型激光器
2022/11/19
激光原理及应用 陈鹤鸣 赵新彦
33
8.4.1 准分子激光器
准分子: Excimer 一种在激发态能够暂时结合成不稳定分子,而 在基态又迅速离解成原子的缔合物,因而也称 “受激准分子”。
准分子的能级结构
脉冲输出能量达百焦耳量级,脉冲峰值功率达

激光原理与技术完整ppt课件

激光原理与技术完整ppt课件

1.1.1所示)。每一模式在三个坐标铀方向与相邻模的间隔为
Δkx=л/Δx,Δky=л/Δy,Δkz=л/Δy 因此,每个模式在波矢空间占有一个体积元
(1.1.6)
ΔkxΔkyΔkz =л3 /(ΔxΔyΔz)=л3 /V
(1.1. 7)
精选课件PPT
10
在k空间内,波矢绝对值处于|k|~|k|+d|k|区间的体积为(1/8)4л|k|2 d|k|,
可见,一个光波模在相空间也占有一个相格.因此,一个光波模等效于一个光子态。
一个光波模或一个光子态在坐标空间都占有由式(1.1.11)表示的空间体积。
精选课件PPT
12
三、光子的相干性
为了把光子态和光子的相干性两个概念联系起来,下面对光源的相干性进行讨论。
在一般情况下,光的相干性理解为:在不同的空间点上、在不同的时刻的光波场的某
4.4 典型激光器的速率方程
3.5 空心介质波导光谐振腔的反馈耦合损耗 4.5 均匀加宽工作物质的增益系数
4.6 非均匀加宽工作物质的增益系数
4.7 综合均匀加宽工作物质的增益系数
精选课件PPT
3
第五章 激光振荡特性
5.1 激光器的振荡阈值 5.2 激光器的振荡模式 5.3 输出功率和能量 5.4 弛豫振荡 5.5 单模激光器的线宽极限 5.6 激光器的频率牵引
ε=hv
(1.1.1)
式中 h=6.626×10-34J.s,称为普朗克常数。
(2)光子具有运动质量m,并可表示为
(1.1.2)
光子的静止质量为零。
精选课件PPT
7
(3)光子的动量P与单色平面光波的波矢k对应
(1
式中
n。为光子运动方向(平面光波传播方向)上的单位矢量。 4.光于具有两种可能的独立偏振状态,对应于光波场的两个独立偏振方向。 5.光于具有自旋,并且自旋量子数为整数。因此大量光于的集合, 服从玻色—爱因斯坦统计规律。处于同一状态的光子数目是没有限制的, 这是光子与其它服从费米统计分布的 粒子(电子、质子、中子等)的重要区别。 上述基本关系式(1.1.1)相(1.1.3)后来为康普顿(Arthur Compton)散射实验所证实 (1923年),并在现代量子电动力学中得到理论解释。量子电动力学从理论上把光的电磁 (波动)理论和光子(微粒)理论在电磁场的量子化描述的基础上统一起来,从而在理论上 阐明了光的波粒二象性。在这种描述中,

《激光原理》PPT课件

《激光原理》PPT课件

对未来学习建议
深入学习激光原理相关知识
包括激光器设计、激光光束质量控 制、非线性光学等,为从事激光相 关领域工作打下坚实基础。
关注前沿动态
及时了解激光领域的最新研究进展 和前沿动态,把握发展趋势。
拓展跨学科知识
学习光学、电子学、材料学等相关 学科知识,拓宽视野,为深入研究 激光技术提供多维度支持。
实践与应用
通过实验操作、项目实践等方式, 将所学知识应用于实际问题的解决 中,提升实践能力和创新能力。
THANKS
感谢观看
液体染料激光器技术特点
具有宽调谐范围、高转换效率、短脉冲输出等优点。同时 ,液体染料激光器也存在染料稳定性差、需要定期更换等 缺点。
液体染料激光器应用领域
广泛应用于光谱学、生物医学、光化学等领域。例如,可 用于荧光光谱分析、激光医疗、光动力疗法等。
半导体材料发光机制及器件结构
半导体材料发光机制
半导体材料中的电子在导带和价带之间跃迁时,会释放出能量并以光子的形式发出。通过 控制半导体材料的能带结构和载流子浓度,可以实现不同波长的激光输出。
量子点激光器优势
宽频带可调谐、低阈值电流、高稳定性等
其他新型激光器简介
表面等离激元激光 器
利用表面等离激元效应实现光放大和激光
微腔激光器
利用微纳加工技术实现高品质因子微腔,实现低阈值激光
生物激光器
利用生物组织或细胞中的荧光物质实现激光输出,具有生 物相容性和可降解性等优点。
06
激光调制、检测与应用 技术
典型案例分析:激光雷达测距系统
工作原理
激光雷达测距系统通过发射激光 束并接收目标反射回来的光信号 ,根据光信号的时间差或相位差 计算出目标距离。

激光原理ppt课件

激光原理ppt课件
注:文本框可根据需求改变颜色、移动位置;文字可编辑
3 纯化学型 这种运转方式要比上述的原子态激励型更为先进
和实用。其特点是不需要外界各种能源,完全靠体 系本身的化学反应自由能来得到所需要的自由原子。 例如用NO+F2燃烧解离来得到氟原子。然后,氟原子 与氢分子反应,获得激发态的粒子数反转而产生激光。
注:文本框可根据需求改变颜色、移动位置;文字可编辑
其泵浦源为化学反应所释放的能量。这类 激光器大部分以分子跃迁方式工作,典型波 长范围为近红外到中红外谱区。最主要的有 氟化氢和氟化氘两种装置。前者可以在2.6~ 3.3微米之间输出15条以上的谱线;后者则约 有25条谱线处于3.5~4.2微米之间。这两种 器件目前均可实现数兆瓦的输出。
注:文本框可根据需求改变颜色、移动位置;文字可编辑
3 电子跃迁化学激光器
利用化学反应释放的能量将激射介质泵到电子激发态, 并达到粒子数反转,然后受激发射产生激光。电子激发态 能量受到化学键能的限制,只有3~4电子伏。如果电子激 发态能量超过4电子伏,就必须借助于低能阶电子激发态 粒子与其他激发态粒子间的多次碰撞传能才可能达到高能 阶电子激发态,电子跃迁化学激光器的典型例子是氧- 碘 传能激光器。
化学激光器
注:文本框可根据需求改变颜色、移动位置;文字可编辑
1 原理
目录
2 工作方式
3 运转类型
4 器件分类
5 应用
注:文本框可根据需求改变颜色、移动位置;文字可编辑
1 原理
化学激光器是另一类特殊的 气体激光器,即是一类利用化 学反应释放的能量来实现工作 粒子数布居反转(简称粒子数 反转)的激光器。化学反应产 生的原子或分子往往处于激发 态,在特殊情况下,可能会有 足够数量的原子或分子被激发 到某个特定的能级,形成粒子 数反转,以致出现受激发射而 引起光放大作用。。

激光原理与技术课件课件

激光原理与技术课件课件

激光原理与技术课件一、引言激光作为一种独特的人造光,自20世纪60年代问世以来,已经在众多领域取得了举世瞩目的成果。

激光原理与技术已经成为现代科学技术的重要组成部分,并在光学、通信、医疗、工业加工等领域发挥着重要作用。

本课件旨在阐述激光的基本原理、特性以及应用技术,使读者对激光有更深入的了解。

二、激光的基本原理1.光的粒子性与波动性光既具有粒子性,也具有波动性。

在量子力学中,光被视为由一系列光子组成的粒子流,光子的能量与频率成正比。

而在波动光学中,光被视为一种电磁波,具有频率、波长、振幅等波动特性。

2.光的受激辐射受激辐射是指处于激发态的原子或分子在受到外来光子作用后,返回基态并释放出一个与外来光子具有相同频率、相位、传播方向和偏振状态的光子。

这个过程是激光产生的核心原理。

3.光的放大与谐振在激光器中,通过光学增益介质实现光的放大。

当光在增益介质中往返传播时,不断与激发态原子或分子发生受激辐射,使光子数不断增加。

同时,通过谐振腔的选择性反馈,使特定频率的光得到进一步放大,最终形成激光。

三、激光的特性1.单色性激光具有极高的单色性,即频率单一。

这是由于激光器中的谐振腔对光的频率具有高度选择性,只有满足特定频率的光才能在谐振腔内稳定传播。

2.相干性激光具有高度的相干性,即光波的相位关系保持稳定。

相干光在传播过程中能形成稳定的干涉图样,广泛应用于光学检测、全息成像等领域。

3.方向性激光具有极高的方向性,即光束的发散角很小。

这是由于激光器中的谐振腔对光的传播方向具有高度选择性,只有沿特定方向传播的光才能在谐振腔内稳定传播。

4.高亮度激光具有高亮度,即单位面积上的光功率较高。

这是由于激光的单色性、相干性和方向性使其在空间上高度集中,从而具有较高的亮度。

四、激光的应用技术1.光通信激光在光通信领域具有广泛应用,如光纤通信、自由空间光通信等。

激光的高单色性、相干性和方向性使其在传输过程中具有较低的信号衰减和干扰,从而实现高速、长距离的数据传输。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N R p
(8.4.2)
We should let t p , for t p , N(t) does not undergo any further appreciable increase and the pump power would be wasted through spontaneous decay. According to Eq.(8.4.2), to achieve a sufficiently large inversion, a large is required. 6
(5) When this photon number decreases to a sufficiently low value (roughly when f<f0), the pumping process again becomes dominant over the stimulated-emission process. The population inversion can now begin growing again and the whole series of events considered in features (1)-(5) repeats itself. The photon number f(t) is then seen to display a regular sequence of peaks (or laser spikes) of decreasing amplitude; consecutive peaks are approximately equally spaced in time. The output power therefore shows a similar time behavior. This aspect of regular oscillation for the output power is usually referred to as a damped relaxation oscillation.
1
Principles and Technologies of lasers
Chapter 8 Transient Laser Behavior
Va is the volume of the mode in the active medium, N(t) is the population inversion at time t, f(t) is the photon number.
for t 0
where tp is the pump pulse duration. For a four-level laser, from Eq.(7.2.16a), population inversion
N (t ) N 1 exp( t / )
(8.4.1)
where is the upper laser level lifetime. Let dN/dt=0 in Eq.(7.2.16a), we can have
3
ห้องสมุดไป่ตู้
Principles and Technologies of lasers
Chapter 8 Transient Laser Behavior
(4) After this photon peak, the population inversion is driven below Nc by the continuing high rate of stimulated emission. Thus the laser goes below threshold, and the photon number decreases.
Step-function pump rate
0, for / t 0 R p (t ) R p , for / t 0
(7.2.1) are nonlinear since they involve products of fN. Consequently, one must often resort numerical computation.
10
8
N(t)Va N0Va=6.66x10
15
6
[NVaf

4
f(t)
2
f0=5.8x10
0 0 2
14
4
6
8
10
12
14
16
18
t (sec)
2
Principles and Technologies of lasers
Chapter 8 Transient Laser Behavior
Since this operation involves switching the cavity Q-factor from a low to a high value, the technique is usually called Q-switching.
This technique allows one to generate laser pulses with a duration comparable to the photon decay time (i.e., from a few nanoseconds to a few tens of nanoseconds) and high-peak power (in the megawatt range).
4
Principles and Technologies of lasers
Chapter 8 Transient Laser Behavior
8.4. Q-SWITCHING Suppose now that a shutter is introduced into the laser cavity. If the shutter is closed, laser action is prevented, so the value of the population inversion may far exceed the threshold population holding when the shutter is absent. If the shutter is now opened suddenly, the laser will exhibit a gain that greatly exceeds losses; stored energy may then be released in the form of a short and intense light pulse.
For a three-level system, the initial conditions are N(0)=-Nt, f(0)=fi (fi is some integer, e.g. 1) For a four-level system, the difference is N(0)=0. It means the time origin in the figure is shifted to time t=2s. There are five steps (1)-(5).
Principles and Technologies of lasers
Chapter 8 Transient Laser Behavior
8.1. INTRODUCTION The transient cases are divided into two categories: (1) relaxation oscillations, g-switching, gain-switching, and cavity-dumping (single-mode laser is involved) (2) mode-locking (many mode laser is involved), where the pump rate and/or cavity losses are time-dependent. 8.2. RELAXATION OSCILLATIONS
Principles and Technologies of lasers
Chapter 8 Transient Laser Behavior
Thus, Q-switching can be used effectively with electric-dipole-forbidden laser transitions, where t falls in ms (for most solid-state lasers and CO2 gas lasers). But semiconductor, dye and He-Ne, Ar are electric-dipole-allowed, t falls in ns, they are not be suitable for Q-switching. Fast switching------g is instantaneous Slow switching------g decays in a relatively long time
(1) After time t = 2 s, the population inversion keeps growing due to the pumping process while the photon number remains at its initial low value, as determined by quantum field fluctuations, until the inversion crosses the threshold value (N0Va = 6.66 x 10^15 in the figure). From this time on, roughly for t> 3.5 s, the population exceeds the threshold value, so the number of cavity photons can begin to grow. From either Eq. (7.2.16b) (four-level laser) or Eq. (7.2.24b) (quasi-three-level laser), we find in fact that df/dt > 0 when N> Nc, where Nc is the critical or threshold inversion. (2) After threshold is exceeded, the photon number requires some time to grow from its initial value (fi= 1) to a value, e.g., equal to the steady-state value (f0= 5.8 x 10^14 in the figure); meanwhile the population continues growing due to the pumping process. (3) When the photon number becomes large enough (roughly when f>f0), the stimulated emission process becomes dominant over the pumping process. The population then begins to decrease and, at the time corresponding to the maximum of f(t), N(t) is seen to have decreased to Nc. This can be readily shown from either Eq. (7.2.16b) or Eq. (7.2.24b), since, when df/dt = 0, one has N = Nc.
相关文档
最新文档