八年级上一次函数综合题
八年级数学上册《第五章 一次函数》练习题-附答案(浙教版)
八年级数学上册《第五章一次函数》练习题-附答案(浙教版)一、选择题1.下列函数中,正比例函数是( )A.y=﹣8xB.y=1x C.y=8x2 D.y=8x﹣42.已知y关于x成正比例,且当x=2时,y=-6,则当x=1时,y的值为( )A.3B.-3C.12D.-123.下列函数中,“y是x的一次函数”的是( )A.y=2x﹣1B.y=12x2 C.y=1 D.y=1﹣x4.若y=x+2–b是正比例函数,则b的值是( )A.0B.–2C.2D.–0.55.下列函数中,是一次函数的有( )①y=12x;②y=3x+1;③y=4x;④y=kx-2.A.1个B.2个C.3个D.4个6.若函数y=(2-m)x|m|-1是关于x的正比例函数,则常数m的值等于( )A.±2B.﹣2C.± 3D.﹣ 37.函数y=(m﹣n+1)x|n﹣1|+n﹣2是正比例函数,则m,n应满足的条件是( ).A.m≠﹣1,且n=0B.m≠1,且n=0C.m≠﹣1,且n=2D.m≠1,且n=28.在y=(k+1)x+k2-1中,若y是x的正比例函数,则k值为( )A.1B.-1C.±1D.无法确定二、填空题9.若函数y=﹣2x m+2是正比例函数,则m的值是.10.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,•该函数的解析式为_______11.若函数y=(n﹣3)x+n2﹣9是正比例函数,则n的值为12.当m=___________时,函数y=(m+3)x2m+1+4x﹣5(x≠0)是一次函数.13.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k________时,它是正比例函数.14.如果函数y=(k﹣2)x|k﹣1|+3是一次函数,则k=_______.三、解答题15.已知y与2x+1成正比例函数,当x=2时,y=10.(1)求y与x的函数关系式;(2)若A(3,m)在此直线上,求m的值.16.已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.(1)求y与x的函数解析式,并说明此函数是什么函数;(2)当x=3时,求y的值.17.已知y与x+2 成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)判断点(-7,-10)是否是函数图象上的点.18.已知y﹣1与x成正比例,且x=﹣2时,y=4(1)求出y与x之间的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a的值;(3)如果自变量x的取值范围是0≤x≤5,求y的取值范围.参考答案1.A2.B3.D4.C5.B6.B7.D8.A9.答案为:﹣1.10.答案为:2;y =2x.11.答案为:﹣312.答案为:﹣3,0,﹣12. 13.答案为:≠1,=-1.14.答案为:0.15.解:(1)y=4x+2;(2)m=14.16.解:(1)设y 1=k 1x ,y 2=k 2(x -2),则y =k 1x +k 2(x -2),依题意,得⎩⎨⎧k 1-k 2=0,-3k 1-5k 2=4,解得⎩⎪⎨⎪⎧k 1=-12,k 2=-12. ∴y =-12x -12(x -2),即y =-x +1. ∴y 是x 的一次函数.(2)把x =3代入y =-x +1,得y =-2. ∴当x =3时,y 的值为-2.17.解:(1)设y =k(x +2).∵x =4,y =12,∴6k =12.解得k =2.∴y=2(x+2)=2x+4.(2)当y=36时,2x+4=36,解得x=16.(3)当x=-7时,y=2×(-7)+4=-10 ∴点(-7,-10)是函数图象上的点. 18.解:(1)∵y﹣1与x成正比例∴设y﹣1=kx将x=﹣2,y=4代入,得∴4﹣1=﹣2k解得k=﹣3 2;∴y与x之间的函数关系式为:y=﹣32x+1;(2)由(1)知,y与x之间的函数关系式为:y=﹣32x+1;∴﹣2=﹣32a+1,解得,a=2;(3)∵0≤x≤5∴0≥﹣32x≥﹣152∴1≥﹣32x+1≥﹣132,即﹣132≤y≤1.。
浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案
浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每题3分,共30分)1.下列函数中是正比例函数的是()2+1D.y=0.6x−5 A.y=−7x B.y=−7x C.y=2x2.已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为()A.B.C.D.3.水滴进玻璃容器(滴水速度相同)实验中,水的高度随滴水时间变化的情况(下左图),下面符合条件的示意图是()A.B.C.D.4.如图,小刚骑电动车到单位上班,最初以某一速度匀速行进,途中由于遇到火车挡道,停下等待放行,耽误了几分钟,为了按时到单位,小刚加快了速度,仍保持匀速行进,结果准时到单位.小刚行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,你认为正确的是()A.B.C.D.5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)之间有如下关系(其中x≤12)x kg⁄012345y/cm1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为10cmC.所挂物体质量x每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为14.5cm6.如图,直线l1:y=x+3与l2:y=kx+b相交于点P(1,m),则方程组{y=x+3y=kx+b的解是()A.{x=4y=1B.{x=1y=4C.{x=1y=3D.{x=3y=17.一次函数y=(m-2)x+2-m和y=x+m在同一平面直角坐标系中的图象可能是()A.B.C.D.8.如图,在平面直角坐标系中,一次函数y=x+4的图象与x轴交于点A,与y轴交于点B,点P在线段AB上,PC⊥x轴于点C,则△PCO周长的最小值为()A.2√2B.4+2√2C.4D.4+4√29.若A(x1,y1),B(x2,y2)是一次函数y=ax+2x−2图象上的不同的两点,记m=(x1−x2)(y1−y2),则当m>0时,a的取值范围是()A.a<0B.a>0C.a<−2D.a>−210.如图,已知点P(6,2),点M,N分别是直线l1:y=x和直线l2:y=12x上的动点,连接PM,MN.则PM+MN的最小值为()A.2B.2√5C.√6D.2√3二、填空题填空题(每题4分,共24分)11.函数y=√x−3中,自变量x的取值范围是.12.若函数y=x m−1+m是关于x的一次函数,则常数m的值是.13.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解集为.14.已知一次函数y=kx+b,当−2≤x≤3时−1≤y≤9,则k=.15.已知A(a,b),B(c,d)是一次函数y=kx−3x+2图象上不同的两个点,若(c−a)(d−b)<0,则k的取值范围是.16.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3),有下列结论:①图象经过点(1,−3);②关于x的方程kx+b=0的解为x=2;③关于x的方程kx+b=3的解为x=0;④当x>2时y<0.其是正确的是.三、综合题(17-21每题6分,22、23每题8分,共46分)17.如图,在平面直角坐标系xOy中,直线y=−2x+4与直线y=kx相交于点E(m,2).(1)求m,k的值;(2)直接写出不等式−2x+4≥kx的解集.18.如图,一次函数y=12x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.若△PQB的面积为3,求点M的坐标.19.如图,直线AB与x轴,y轴分别交于点A和点B,点A的坐标为(−1,0),且2OA=OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移3个单位长度,得到△A1O1B1,求线段OB1的长;(3)在(2)中△AOB扫过的面积是.20.如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(m,4),与x轴交于点B.(1)求直线l2的解析式y=kx+b;(2)直接写出不等式0<kx+b<x+3的解集;(3)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.21.北京园博园是一个集园林艺术、文化景观、生态休闲、科普教育于一体的大型公益性城市公园.小田和小旭在北京园博园游玩,两人同时从永定塔出发,沿相同的路线游览到达国际展园,路线如图所示.记录得到以下信息:a.小田和小旭从永定塔出发行走的路程y1和y2(单位:km)与游览时间x(单位:min)的对应关系如下图:b.在小田和小旭的这条游览路线上,依次有4个景点,从永定塔到这4个景点的路程如下表:景点济南园忆江南北京园锦绣谷路程(km)12 2.53根据以上信息,回答下列问题:(1)在这条游览路线上,永定塔到国际展园的路程为km;(2)小田和小旭在游览过程中,除永定塔与国际展园外,在相遇(填写景点名称),此时距出发经过了min;(3)下面有三个推断:①小旭从锦绣谷到国际展园游览的过程中,平均速度是245km/min;②小旭比小田晚到达国际展园30min;③60min时,小田比小旭多走了23km.所有合理推断的序号是.22.已知直线l1:y1=x−3m+15;l2:y2=−2x+3m−9.(1)当m=3时,求直线l1与l2的交点坐标;(2)若直线l1与l2的交点在第一象限,求m的取值范围;(3)若等腰三角形的两边为(2)中的整数解,求该三角形的面积.23.如图,已知直线y=kx+b经过A(6,0),B(0,3)两点.(1)求直线y=kx+b的解析式;(2)若 C 是线段OA 上一点,将线段CB 绕点 C 顺时针旋转90∘得到CD ,此时点D 恰好落在直线AB 上①求点C 和点D 的坐标;②若点P 在y 轴上,Q 在直线AB 上,是否存在以C,D,P,Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点Q 的坐标,否则说明理由.参考答案1-5.【答案】ADDDD6-10.【答案】BBBDB11.【答案】x≥312.【答案】213.【答案】x≤114.【答案】2或−215.【答案】k<316.【答案】②③④17.【答案】(1)解:将点E(m,2)代入y=−2x+4可得:2=−2m+4解得:m=1∴E(1,2)∵E(1,2)过直线y=kx∴k×1=2,即k=2∴直线OE的解析式为:y=2x即:k=2,m=1;(2)解:结合函数图象可知:不等式−2x+4≥2x的解集为:x≤1.18.【答案】(1)解:对于y=12x+3当y=0时0=12x+3,解得x=−6,∴A(−6,0)当x=0时y=3,∴B(0,3)∵点C与点A关于y轴对称∴点C(6,0)设直线BC 的解析式为y =kx +b(k ≠0)∴{6k +b =0b =3,解得:{k =−12b =3∴直线BC 的解析式为y =−12x +3;(2)解:设M(m,0),则点P(m,12m +3),Q(m,−12m +3)如图,过点B 作BD ⊥PQ 于点D则PQ =|−12m +3−(12m +3)|=|m|,BD =|m|∵△PQB 的面积为3∴12PQ ⋅BD =12m 2=3解得:m =±√6∴点M 的坐标为(√6,0)或(−√6,0).19.【答案】(1)解:∵点A 的坐标为(−1,0)∴OA =1 ∵2OA =OB ∴OB =2OA =2 ∴B(0,2)设直线AB 解析式为 y =kx +b将 A(−1,0) 和 B(0,2) 代入 y =kx +b 中{0=−k +b 2=b解得 {k =2b =2∴y =2x +2 ;故直线AB 解析式为 y =2x +2(2)解:∵将△AOB 向右平移3个单位长度,得到△A 1O 1B 1∴B 1(3,2)∴OB 1=√(3−0)2+(2−0)2=√13 (3)720.【答案】(1)解:把C(m,4)代入直线l 1:y =x +3得到4=m +3,解得m =1∴点C(1,4)设直线l 2的解析式为y =kx +b 把A 和C 的坐标代入 ∴{k +b =43k +b =0 解得{k =−2b =6∴直线l 2的解析式为y =−2x +6; (2)1<x <3;(3)解:当y =0时x +3=0,解得x =−3 ∴点B 的坐标为(−3,0)AB =3−(−3)=6设M(a,a +3),由MN ∥y 轴,得N(a,−2a +6)MN =|a +3−(−2a +6)|=AB =6解得a =3或a =−1 ∴M(3,6)或(−1,2).21.【答案】(1)4(2)忆江南(3)②③22.【答案】(1)解:将m =3代入直线l 1:y 1=x −3m +15,l 2:y 2=−2x +3m −9得y 1=x −9+15=x +6,y 2=−2x +9−9=−2x联立得{y =x +6y =−2x 解得{x =−2y =4∴直线l 1与l 2的交点坐标为(−2,4);(2)解:联立直线l 1与l 2得方程组{y =x −3m +15y =−2x +3m −9 解得{x =2m −8y =−m +7∴直线l 1与l 2的交点为(2m −8,−m +7)∵交点在第一象限∴{2m −8>0−m +7>0解得4<m <7即m 的取值范围为4<m <7 (3)解:∵4<m <7 ∴等腰三角形的两边为5,6①如图,当AB =AC =6,BC =5时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =52∴AD =√AB 2−BD 2=√62−(52)2=√1192∴S △ABC =12×5×√1192=5√1194;②如图,当AB =AC =5,BC =6时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =3 ∴AD =√AB 2−BD 2=√52−32=4∴S △ABC =12×6×4=12. 综上所述,该三角形的面积为5√1194或4.23.【答案】(1)解:将A(6,0),B(0,3)代入y =kx +b 得: {6k +b =0b =3解得{k =−12b =3∴直线AB 得表达式为y =−12x +3.(2)解:①过点D 作DE ⊥x 于点E∵∠BOC=∠BCD=∠CED=90°∴∠OCB+∠DCE=90°,∠DCE+∠CDE=90°∴∠BCO=∠CDE又BC=CD∴△BOC≅CED(ASA)∴OC=DE,BO=CE=3.设OC=DE=m,则点D得坐标为(m+3,m)∵点D在直线AB上∴m=−12(m+3)+3∴m=1∴点C得坐标为(1,0),点D得坐标为(4,1).②存在点Q得坐标为(3,32),(−3,92)或(5,12).理由如下:设点Q的坐标为(n,-12n+3).分两种情况考虑,如图2所示:当CD为边时∵点C的坐标为(1,0),点D的坐标为(4,1),点P的横坐标为0∴0-n=4-1或n-0=4-1∴n=-3或n=3∴点Q 的坐标为(3,32),点Q '的坐标为(-3,92); 当CD 为对角线时∵点C 的坐标为(1,0),点D 的坐标为(4,1),点P 的横坐标为0∴n+0=1+4∴n=5∴点Q″的坐标为(5,12). 综上所述:存在以C 、D 、P 、Q 为顶点的四边形是平行四边形,点Q 的坐标为(3,32),(-3,92)或(5,12)。
北师大版八年级数学上册 第四章 《一次函数》 综合提升练习题(含答案)
北师大版八年级数学上册第四章《一次函数》综合提升练习题1.一辆快递车从长春出发,走高速公路,途经伊通,前往靖宇镇送快递,到达后卸货和休息共用1h,然后开车按原速原路返回长春.这辆快递车在长春到伊通、伊通到靖宇的路段上分别保持匀速前进,这辆快递车距离长春的路程y(km)与它行驶的时间x(h)之间的函数图象如图所示.(1)快递车从伊通到长春的速度是km/h,往返长春和靖宇两地一共用时h.(2)当这辆快递车在靖宇到伊通的路段上行驶时,求y与x之间的函数关系式,并写出自变量x的取值范围.(3)如果这辆快递车两次经过同一个服务区的时间间隔为4h,直接写出这个服务区距离伊通的路程.2.如图,已知直线l1:y=2x+4与坐标轴y轴交于点A,与x轴交于点B,以OA为边在y 轴右侧作正方形OACD.将直线l1向下平移5个单位得到直线l2.(1)求直线l2的解析式,以及A、B两点的坐标;(2)已知点M在第一象限,且是直线l2上的点,点P是边CD上的一动点,设M(m,2m﹣1),若△APM是等腰直角三角形,求点M的坐标;(3)点Q是边OD上一动点,连接AQ,过B作AQ的垂线,垂足为N,求线段DN的最小值.3.如图,两个一次函数y=kx+b与y=mx+n的图象分别为直线l1和l2,l1与l2交于点A(1,p),l1与x轴交于点B(﹣2,0),l2与x轴交于点C(4,0)(1)填空:不等式组0<mx+n<kx+b的解集为;(2)若点D和点E分别是y轴和直线l2上的动点,当p=时,是否存在以点A、B、D、E为顶点的四边形是平行四边形?若存在,请求出点E的坐标;若不存在,请说明理由.4.小明和小强在同一直线跑道AB上进行往返跑,小明从起点A出发,小强在小明前方C 处与小明同时出发,当小明到达终点B处时,休息了100秒才又以原速返回A地,而小强到达终点B处后马上以原来速度的3.2倍往回跑,最后两人同时到达A地,两人距B 地的路程记为y(米),小强跑步的时间记为x(秒),y和x的关系如图所示.(1)A,C两地相距米;(2)小强原来的速度为米/秒;(3)小明和小强第一次相遇时他们距A地米;(4)小明到B地后再经过秒与小强相距100米?5.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动,试解决下列问题:(1)求直线AC的表达式;(2)求△OAC的面积;(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.6.周未,小丽骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小丽离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小丽离家时间x(h)的函数图象.(1)小丽骑车的速度为km/h,H点坐标为;(2)求小丽游玩一段时间后前往乙地的过程中y与x的函数关系;(3)小丽从家出发多少小时后被妈妈追上?此时距家的路程多远.7.如图,A(0,2),M(4,3),N(5,6),动点P从点A出发,沿y轴以每秒1个单位速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时、点M关于l的对称点落在坐标轴上.8.如图1,在平画直角坐标系中,直线交x轴于点E,交y轴于点A,将直线y=﹣2x﹣7沿x轴向右平移2个单位长度交x轴于D,交y轴于B,交直线AE于C.(1)直接写出直线BD的解析式为,S=;△ABC(2)在直线AE上存在点F,使BA是△BCF的中线,求点F的坐标;(3)如图2,在x轴正半轴上存在点P,使∠PBO=2∠P AO,求点P的坐标.9.如图1,已知直线l1:y=kx+4交x轴于A(4,0),交y轴于B.(1)直接写出k的值为;(2)如图2,C为x轴负半轴上一点,过C点的直线l2:经过AB的中点P,点Q(t,0)为x轴上一动点,过Q作QM⊥x轴分别交直线l1、l2于M、N,且MN=2MQ,求t的值;(3)如图3,已知点M(﹣1,0),点N(5m,3m+2)为直线AB右侧一点,且满足∠OBM=∠ABN,求点N坐标.10.如图所示,平面直角坐标系中,直线y=kx+b与x轴交于点A,与y轴交于点B,且AB=2,AO:BO=2:;(1)求直线AB解析式;(2)点C为射线AB上一点,点D为AC中点,连接DO,设点C的横坐标为t,△BDO 的面积为S,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当点C在第一象限时,连接CO,过D作DE⊥CO于E,在DE 的延长线上取点F,连接OF、AF,且OF=OD,当∠DF A=30°时,求S的值.11.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车在零点同时出发,相遇后快车继续行驶,中午12点到达丙地,两车之间的距离为y(km),图中的折线表示两车之间的距离y(km)与时间x(时)之间的关系.根据图象进行以下探究:(直接填空)(1)甲、乙两地之间的距离为m;(2)两车之间的最大距离是km,是在时?(3)从一开始两车相距900km到两车再次相距900km,共用了小时?(4)请写出0时至4时,y与x的关系式.12.某校为学生装一台直饮水器,课间学生到直饮水器打水.他们先同时打开全部的水笼头放水,后来又关闭了部分水笼头.假设前后两人接水间隔时间忽略不计,且不发生泼洒,直饮水器的余水量y(升)与接水时间x(分)的函数图象如图,请结合图象回答下列问题:(1)求当x>5时,y与x之间的函数关系式;(2)假定每人水杯接水0.7升,要使40名学生接水完毕,课间10分钟是否够用?请计算回答.13.甲、乙两家采摘园的圣女果品质相同,售价也相同,节日期间,两家均推出优惠方案,甲:游客进园需购买60元门票,采摘的打六折;乙:游客进园不需购买门票,采摘超过一定数量后,超过部分打折,设某游客打算采摘60x千克,在甲、乙采摘园所需总费用为y1、y2元,y1、y2与x之间的函数关系的图象如图所示.(1)分别求出y1、y2与x之间的函数关系式;(2)求出图中点A、B的坐标;(3)若该游客打算采摘10kg圣女果,根据函数图象,直接写出该游客选择哪个采摘园更合算.14.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她骑车速度最快是在什么时候?车速多少?(3)玲玲自离家到返回的平均速度是多少?15.小亮家距离学校8千米,一天早晨小亮骑车上学,途中恰好遇到交警叔叔在十字路口带领小朋友过马路,小亮停下车协助交警叔叔,几分钟后为了不迟到,他加快了骑车到校的速度到校后,小亮根据这段经历画出了过程图象如图该图象描绘了小亮骑行的路程y (千米)与他所用的时间x(分钟)之间的关系请根据图象,解答下列问题(1)小亮骑车行驶了多少千米时,协助交警叔叔?协助交警叔叔用了几分钟?(2)小亮从家出发到学校共用了多少时间?(3)如果没有协助交警叔叔,仍保持出发时的速度行驶,那么他比实际情况早到或晚到学校多少分钟?参考答案1.解:(1)快递车从伊通到长春的速度是:66÷0.6=110km/h;往返长春和靖宇两地一共用时间为:2.6×2+1=6.2小时;故答案为:110;6.2;(2)当这辆快递车在靖宇到伊通的路段上行驶时,设y与x之间的函数关系式为y=kx+b,由点A(3.6,246),B(5.6,66)得,解得,∴y=﹣90x+570(3.6≤x≤5.6);(3)(246﹣66)÷(2.6﹣0.6)×(4﹣1135(km).2.解:(1)由题意可得y=2x﹣1,∴A(0,4),B(﹣2,0);(2)①当M在正方形内部时,过点M作EF∥OD,AM=MP,∠AEM=∠PFM=90°,∠EAM=∠PMF,易证Rt△AEM≌Rt△MFP(AAS),∴AE=MF,∵M(m,2m﹣1),∴AE=4﹣(2m﹣1)=5﹣2m,MF=4﹣m,∴5﹣2m=4﹣m,∴m=1,∴M(1,1);②当M在正方形外部时,作GH∥AC,AM=MP,∠MGA=∠MHP=90°,∠GMA=∠HPM,易证Rt△AGM≌Rt△MPH(AAS),∴AG=MH,∵M(m,2m﹣1),∴AG=2m﹣1﹣4=2m﹣5,MH=4﹣m,∴2m﹣5=4﹣m,∴m=3,∴M(3,5);(3)取AB的中点为K,则K(﹣1,2),在Rt△ABN中,KN=AB∵D(4,0),∴KD在△KND中,∵KN+ND>KD,∴ND>KD﹣KN,若N在直线KD上,则ND=KD﹣KN,综上,ND≥KD﹣KN=﹣,∴ND的最小值为﹣.3.解:(1)由图象可知满足0<mx+n<kx+b的部分为A点与C点之间的部分,∴1<x<4;(2)∵p=,∴A(1,),将点A与B代入y=kx+b,得,∴,∴y=x+1,将点A与点C代入y=mx+n,得,∴,∴y=﹣x+2,①如图1:当四边形ABDE为平行四边形时,∵E在直线l2上,此时,BD∥AC,∴BD所在直线解析式为y=﹣x﹣1,∴D(0,﹣1),∵DE∥AB,∴DE所在直线解析式为y=x﹣,∵﹣x+2=x﹣,可得x=,∴E(,);②如图2:当四边形EBDA是平行四边形时,则有BD∥AC,∴BD所在直线解析式为y=﹣x﹣1,∴D(0,﹣1),∴AD的直线解析为y=x+1,∵AD∥BE,∴BE所在直线解析为y=x+5,∵﹣x+2=x+5,解得x=﹣1,∴E(﹣1,);③如图3:当四边形EBAD为平行四边形时,设D(0,a),E(m,﹣m+2),此时AE的中点M的横坐标为,BD中点M的横坐标为﹣1,∴﹣1=,∴m=﹣3,∴E(﹣3,);综上所述:满足条件的E点为(,),(﹣1,),(﹣3,).4.解:(1)由图可得,A,C两地相距800﹣500=300(米),故答案为:300;(2)小强原来的速度为a米/秒,,解得,a=1.5,故答案为:1.5;(3)设小明的速度为b米/秒,(300﹣100)b=800,解得,b=4米/秒,小明和小强第一次相遇时的所用的时间为m秒,4m=(800﹣500)+1.5m,解得m=120,小明和小强第一次相遇时他们距A地为:4×120=480(米),故答案为:480;(4)设小明到B地后再经过b秒,与小强相距100米,500﹣100=1.5b,解得,b=,故答案为:.5.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;=×6×4=12;(2)S△OAC(3)设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7).综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).6.解:(1)由函数图可以得出,小丽家距离甲地的路程为10km,花费时间为0.5h,故小丽骑车的速度为:10÷0.5=20(km/h),由题意可得出,点H的纵坐标为20,横坐标为:,故点H的坐标为(,20);故答案为:20;(,20);(2)设直线AB的解析式为:y1=k1x+b1,将点A(0,30),B(0.5,20)代入得:y1=﹣20x+30,∵AB∥CD,∴设直线CD的解析式为:y2=﹣20x+b2,将点C(1,20)代入得:b2=40,故y2=﹣20x+40;(3)设直线EF的解析式为:y3=k3x+b3,将点E(,30),H(,20)代入得:k3=﹣60,b3=110,∴y3=﹣60x+110,解方程组,解得,∴点D坐标为(1.75,5),30﹣5=25(km),所以小丽出发1.75小时后被妈妈追上,此时距家25km;7.解:(1)当t=3时,点P的坐标为(0,5),则直线l的表达式为:y=﹣x+5;(2)当直线l过点M时,将点M的坐标代入直线l的表达式:y=﹣x+b得:3=﹣4+b,解得:b=7,t=5;当直线l过点N时,同理可得:t=9,故t的取值范围为:5<t<9;(3)直线l随P沿y轴向上移动时,点M关于直线l的对称轴不可能落在y轴上,只能落在x轴上,如图,当点M关于l的对称点E′落在坐标轴上时,直线M′M交l于点H,设直线l交x轴于点G,则M′M⊥l,∠HM′G=45°=∠M′GH=∠HGM,即MG⊥x轴,故M′G=MG=3,则点G(3,0),则t=2.8.解:(1)直线y=﹣2x﹣7沿x轴向右平移2个单位长度后,所得直线方程为y=﹣2(x ﹣2)﹣7=﹣2x﹣3.则直线BD的解析式为y=﹣2x﹣3.解方程组,得,∴C(﹣4,5).在中,令x=0,得y=8,∴A(0,8).在y=﹣2x﹣3中,令x=0,得y=﹣3,∴B(0,﹣3).∴AB=11,∴S=×11×4=22.△ABC故答案是:y=﹣2x﹣3,22.(2)如图1,作CG⊥y轴于G,FH⊥y轴于H,∴CG=4,∠CGA=∠FHA=90°,∵BA为△BCF的中线,∴CA=F A,∵∠CAG=∠F AH,∴△CAG≌△F AH(AAS),∴FH=CG=4,在中,当x=4时,y=11,∴F(4,11).(3)由(1)知A(0,8),B(0,﹣3),∴OA=8,OB=3.如图2,在y轴正半轴上取一点Q,使OQ=OB=3,∵∠POB=90°,∴PQ=PB,∴∠PBO=∠PQO=∠P AO+∠APQ,∵∠PBO=2∠P AO,∴∠P AO=∠APQ,∴PQ=AQ=5,∴OP=4,∴P(4,0).9.解:(1)把A(4,0)代入y=kx+4,得0=4k+4.解得k=﹣1.故答案是:﹣1;(2)∵在直线y=﹣x+4中,令x=0,得y=4,∴B(0,4),∵A(4,0),∴线段AB的中点P的坐标为(2,2),代入,得n=1,∴直线l2为,∵QM⊥x轴分别交直线l1、l2于M、N,Q(t,0),∴M(t,﹣t+4),,∴,MQ=|﹣t+4|=|t﹣4|,∵MN=2MQ,∴,分情况讨论:①当t≥4时,,解得:t=10.②当2≤t<4时,,解得:.③当t<2时,,解得:t=10>2,舍去.综上所述:或t=10.(3)在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(﹣1,0),∴OP=OM=1,∴BP=BM,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为,将N(5m,3m+2)代入,得3m+2=﹣×5m+4解得,∴.10.解:(1)∵AO:BO=2:,∴设AO=2a,BO=a,∵AO2+BO2=AB2,∴4a2+3a2=28∴a=2,∴AO=4,BO=2,∴点A(﹣4,0),点B(0,2)设直线AB解析式为:y=kx+b,解得∴直线AB解析式为:y=x+2,(2)当﹣4<t<4时,S=×2×(﹣)=2﹣t,当t>4时,S=×2×()=t﹣2(3)作AH⊥DE于H,OG⊥AB于G,如图,∵OD=OF,OE⊥DF,∴DE=FE,∵D点为AC的中点,AH⊥HE,CE⊥HE,∴AD=CD,AH∥CE,在△AHD和△CED中,∴△AHD≌△CED(AAS),∴DH=DE,∴HF=3DH,在Rt△AFH中,∵∠HF A=30°,∴FH=AH,∴3HD=AH,∴AH=DH,在△ADH中,tan∠DAH==,∴∠DAH=30°,∴∠DCE=30°,∵OG•AB=OA•OB,∴OG==,在Rt△COG中,OC=2OG=,设C(t,t+2),∴t2+(t+2)2=()2,整理得49t2+168t﹣432=0,解得t1=﹣(舍去),t2=,把t=代入S=﹣t+2得S=×+2=.11.解:(1)图象过(0,900),表示时间为0时,即未出发,两车相距900km,即900000m,就是甲乙两地的距离.故答案为:900000,(2)点D(12,1200),表示12时,两车的距离达到1200千米,故答案为:1200,12,(3)点A(0,900),C(8,900),因此从一开始两车相距900km到两车再次相距900km,共用8﹣0=8小时,故答案为:8,(4)设关系式为y=kx+b,把(0,900),(4,0)代入得,,解得,k=﹣225,b=900,∴y=﹣225x+900,答:y与x的关系式为y=﹣225x+900 (0≤x≤4).12.解:(1)设x>5时,y与x之间的函数关系式为y=kx+b,由题意得,解得,所以x>5时,y与x之间的函数关系式为y=﹣1.5x+16.5;(2)够用.理由如下:接水总量为0.7×40=28(升),饮水机内余水量为30﹣28=2(升),当y=2时,有2=﹣1.5x+16.5,解得:x=.所以要使40名学生接水完毕,课间10分钟够用.13.解:(1)由图得单价为300÷10=30(元),据题意,得y1=30×0.6x+60=18x+60当0≤x<10时,y2=30x,当x≥10时由题意可设y2=kx+b,将(10,300)和(20,450)分别代入y2=kx+b中,得,解得,故y2与x之间的函数关系式为y2=;(2)联立y2=18x+60,y2=30x,得,解得:,故A(5,150).联立y1=18x+60,y2=15x+150x,得解得,故B(30,600).(3)由(2)结合图象得,当5<x<30时,甲采摘园所需总费用较少.14.解:观察图象可知:(1)玲玲到达离家最远的地方是在12时,此时离家30千米;(2)玲玲郊游过程中,各时间段的速度分别为:9~10时,速度为10÷(10﹣9)=10千米/时;10~10.5时,速度约为(17.5﹣10)÷(10.5﹣10)=15千米/小时;10.5~11时,速度为0;11~12时,速度为(30﹣17.5)÷(12﹣11)=12.5千米/小时;12~13时,速度为0;13~15时,在返回的途中,速度为:30÷(15﹣13)=15千米/小时;可见骑行最快有两段时间:10~10.5时;13~15时.两段时间的速度都是15千米/小时.速度为:30÷(15﹣13)=15千米/小时;(3)玲玲自离家到返回的平均速度是:(30+30)÷(15﹣9)=10千米/小时.15.解:(1)由图可知,小亮骑车行驶了3千米时,协助交警叔叔,协助交警叔叔用,5分钟;(2)由图可知,小亮从家出发到学校共用了27分钟;(3),27﹣24=3.∴小亮比实际情况早到学校3分钟.。
(压轴题)初中数学八年级数学上册第四单元《一次函数》测试卷(包含答案解析)(3)
一、选择题1.一次函数y =2x +1的图像,可由函数y =2x 的图像( )A .向左平移1个单位长度而得到B .向右平移1个单位长度而得到C .向上平移1个单位长度而得到D .向下平移1个单位长度而得到 2.如果一条直线l 经过不同的三点(,)A a b ,(,)B b a ,(,)C a b b a --,那么直线l 经过( )A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限 3.在平面直角坐标系中,一次函数1y x =-的图象是( ) A . B . C . D . 4.如图,已知直线3:3l y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ,…,按此作法继续下去,则点2020A 的坐标为( )A .()0,2020B .()0,4040C .()20200,2D .()20200,4 5.已知正比例函数y=kx ,且y 随x 的增大而减少,则直线y=2x+k 的图象是( ) A . B . C . D . 6.张师傅驾车从甲地到乙地、两地距500千米,汽车出发前油箱有25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶.已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图,以下四种说法:①加油前油箱中剩余油量y(升)与行驶时间t (小时)的外函数关系是825y t =-+;②途中加油21升;③汽车加油后还可行驶4小时;④汽车到达乙地时油箱中还余油6升.其中正确的个数是( )A .1个B .2个C .3个D .4个7.点(),P x y 在第一象限,且6x y +=,点A 的坐标为()4,0,设OPA ∆的面积为S ,则下列图像中,能反映S 与x 之间的函数关系式的是( )A .B .C .D .8.一次函数y kx b =+的图象如图所示,则下列说法:①0kb >;②若点(2,)A m -与(3,)B n 都在直线y kx b =+上,则m n >;③当0x >时,y b >.其中正确的说法是( )A .①②B .①③C .②③D .①②③ 9.一次函数y=3x ﹣6的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 10.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .11.一蓄水池中有水350m ,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1 2 3 4 … 水池中水量/3m 48 46 44 42 … A .蓄水池每分钟放水32mB .放水18分钟后,水池中水量为314mC .蓄水池一共可以放水25分钟D .放水12分钟后,水池中水量为324m12.已知A 、B 两地相距810千米,甲车从A 地匀速前往B 地,到达B 地后停止.甲车出发1小时后,乙车从B 地沿同一公路匀速前往A 地,到达A 地后停止.设甲乙两车之间的距离为y(千米),甲车出发的时间为x (小时),y 与x 的关系如图所示,对于以下说法:①乙车的速度为90千米/时;②点F 的坐标为(9,540);③图中a 的值是13.5;④当甲乙两车相遇时,两车相遇地距A 地的距离为360千米.其中正确的结论是( )A .①②③B .①②④C .②③④D .①③④二、填空题13.若一次函数(1)2=-+-y m x m 的图象经过第二、三、四象限,则m 的取值范围是_______.14.在平面直角坐标系xOy 中,直线y =﹣34x +3分别与x 轴、y 轴交于点A 、B ,将△AOB 沿过点A 的直线折叠,使点B 落在x 轴的负半轴上,记作点C ,折痕与y 轴交于点D ,则直线AD 的解析式为_____.15.已知在平面直角坐标系xOy 中,点A 的坐标为(﹣1,2),点B 的坐标为(1,1),点C (t ,0)是x 轴上的一个动点,设三角形ABC 的面积为S .(1)当S =2时,点C 的坐标为_____;(2)若S 的最小值为2,最大值为3,请直接写出点C 的横坐标t 的取值范围_____. 16.若函数()224y m x m =-+-是关于x 的正比例函数,则常数m 的值是__________. 17.已知函数2(1)3k y k x =-+是一次函数,则k =_________.18.若式子23x x +-有意义,则x 的取值范围为______. 19.甲、乙两车分别从,A B 两地同时相向匀速行驶,当乙车到达A 地后,继续保持原速向远离B 地的方向行驶,而甲车到达B 地后立即掉头,并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地,设两车行驶的时间为()x h ,两车之间的距离为()y km ,y 与x 之间的函数关系如图所示,则,A C 两地相距________千米.20.一次函数()1y k x =-的图象经过第一、三象限,则k 的取值范围为_______.三、解答题21.在平面直角坐标系xOy 中,一次函数y =﹣x +6的图象分别交y 轴和x 轴于点A ,B ,交一次函数y =2x 的图象于点C .(1)求点C 的坐标;(2)求△OBC 的面积.22.一辆汽车的油箱中现有汽油60升,汽车行驶时正常的耗油量为0.1升/千米.油箱中的油量y (升)随行驶里程x (千米)的变化而变化.(假定该汽车不加油,能工作至油量为零)(1)求y 关于x 的函数表达式(2)利用图象说明,当行驶里程超过400千米后油箱内的汽油量23.在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第一象限,斜靠在两条坐标轴上,且点A (0,3),点C (1,0),BE ⊥x 轴于点E ,一次函数y x b =+经过点B ,交y 轴于点D .(1)求证△AOC ≌△CEB ;(2)求B 点坐标;(3)求ABD S ∆24.某地区的电力资源缺乏,未能得到较好的开发.该地区一家供电公司为了居民能节约用电,采用分段计费的方法来计算电费.月用电量x (度)与相应电费y (元)之间的函数图象如图所示.(1)月用电量为50度时,应交电费多少元?(2)当100x ≥时,求y 与x 之间的函数关系式;(3)月用电量为150度时,应交电费多少元?25.甲、乙两个探测气球分别从海拔5m 和15m 处同时出发,匀速上升60min .如图是甲、乙两个探测气球所在位置的海拔y (单位:m )与气球上升时间x (单位:min )的函数图象,已知甲气球的函数解析式为y=x+5(x≥0)(1)求乙气球在上升过程中y 关于x 的函数解析式;(2)当这两个气球的海拔高度相差15m 时,求上升的时间.26.剧院举行新年专场音乐会,成人票每张20元,学生票每张5元,剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款.某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x (人),付款总金额为y (元),分别表示这两种方案; (2)请计算并确定出最节省费用的购票方案.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据一次函数图象平移规律,直接判断即可.【详解】解:∵一次函数图象向上平移m (m>0)个单位,常数项增加m ,∴函数y =2x 的图像向上平移1个单位可以得到y =2x +1的图像,故选:C .【点睛】本题考查了一次函数图象平移的规律,解题关键是掌握一次函数图象平移的规律:上加下减常数项,左加右减自变量.2.A解析:A【分析】一条直线l 经过不同的三点,先设直线l 表达式为:y kx m =+,,把三点代入表达式,用a,b 表示k 、m ,再判断即可.【详解】设直线l 表达式为:y kx m =+,将(,)A a b ,(,)B b a ,(,)C a b b a --代入表达式中,得如下式子:(1)(2)()(3)b ka m a kb mb a k a b m =+⎧⎪=+⎨⎪-=-+⎩, 由(1)-(2)得:()b a ka m kb m k a b -=+--=-,得1k =-,()b a k a b -=-与(3)相减,得0m =,直线l 为:y x =-.故选:A .【点睛】本题考查直线经过象限问题,涉及待定系数法求解析式,解方程组等知识,关键是掌握点在直线上,点的坐标满足解析式,会解方程组.3.A解析:A【分析】先确定一次函数解析式中k 与b 的符号,然后再利用一次函数图象及性质即可解答.【详解】解:一次函数y=1-x其中k=-1,b=1其图象为:.故选:A .【点睛】本题考查了一次函数的图象,掌握一次函数的图象与性质是解答本题的关键. 4.D解析:D【分析】根据所给直线解析式可得l 与x 轴的夹角,进而根据所给条件依次得到点A 1,A 2的坐标,通过相应规律得到A 2020坐标即可.【详解】解:∵直线l 的解析式为y =, ∴直线l 与x 轴的夹角为30.∵AB x 轴,∴30ABO ∠=︒.∵1OA =,∴2OB =.∴1A B ⊥直线l ,130BAO ∠=︒, ∴124A O OB ==,∴()10,4A .同理可得()20,16A ,…∴2020A 的纵坐标为20204,∴()202020200,4A .故选D .【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A 、A 1、A 2、A 3…的点的坐标是解决本题的关键. 5.D解析:D【详解】∵正比例函数y kx =,且y 随x 的增大而减少,0k .∴< 在直线2y x k =+中,200k ><,,∴函数图象经过一、三、四象限.故选D .6.C解析:C【分析】根据题意首先利用待定系数法求出函数解析式,进而利用图象求出耗油量以及行驶时间进行分析判断即可.【详解】解:①由题意得,图象过(0,25)(2,9),设加油前油箱中剩余油量y (升)与行驶时间t (小时)的函数关系是:y=kt+b ,∴2529bk b⎧⎨⎩+==,解得825kb⎧⎨⎩-==,∴加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=-8t+25,故①正确;②途中加油30-9=21(升),故②正确;③∵汽车耗油量为:(25-9)÷2=8升/小时,∴30÷8=3.75,∴汽车加油后还可行驶3.75小时,故③错误;④∵从甲地到乙地,两地相距500千米,加油前、后汽车都以100千米/小时的速度匀速行驶,∴需要:500÷100=5(小时)到达,∴汽车到达乙地时油箱中还余油30-8×(5-2)=6(升),故④正确;综上①②④正确.故选:C.【点睛】本题主要考查一函数应用以及待定系数法求一次函数解析式等知识,根据已知图象获取正确信息是解题的关键.7.B解析:B【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【详解】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6-x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=12×4×(6-x)=-2x+12(0<x<6),∴B符合.故选:B.【点睛】本题考查的是一次函数的图象,在解答此题时要注意x,y的取值范围.8.B解析:B【分析】由图象经过第一,二,三象限,可得k>0,b>0,可判断A①,根据增减性,可判断②,由图象可直接判断③【详解】解:∵图象过第一,第二,第三象限,∴k>0,b>0,∴0kb >,①正确, y 随x 增大而增大,∵-2<3∴m <n ,②错误,又∵一次函数y kx b =+的图象与y 轴交于点(0,b ), 当0x >时,图像在第一象限,都在点(0,b )的上方,又是增函数,∴这部分图像的纵坐标y>b ,③正确,故①③正确故选:B .【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象的性质,解题关键是灵活运用一次函数图象的性质.9.B解析:B【分析】分析:根据一次函数y=kx+b (k≠0,b 为常数)的性质可知,k>0时,y 随x 的增大而增大;b <0时,直线与y 轴相交于负半轴,据此即可判断一次函数所过象限.详解:∵一次函数y=3x−6中,3>0,−6<0,∴一次函数图象过一、三、四象限,故函数图象不过第二象限,故选B.点睛:此题考查一次函数的性质,直线y=kx+b (k≠0,b 为常数)图象时一条经过(-b k ,0)和(0,b )的直线.k 的正负决定直线的倾斜方向,k>0时,y 随x 的增大而增大,k<0时,y 随x 的增大而减小;b 的正负决定直线与y 轴交点的位置:b <0时,直线与y 轴相交于负半轴,b>0时,直线与y 轴相交于正半轴,b=0时,直线过原点.由此即可判断直线经过的象限,【详解】请在此输入详解!10.B解析:B【分析】根据一次函数的图像即可求解判断.【详解】由A,C 图像可得函数y=mx+n 过一,二,三象限,故m >0,n >0,故y=nx+m 也过一,二,三象限,故A,C 错误;由B,D 图像可得函数y=mx+n 过一三四象限,故m >0,n <0,故y=nx+m 过一,二,四象限,故B 正确,D 错误;故选B.此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II 卷(非选择题)请点击修改第II 卷的文字说明11.D解析:D【分析】根据题意可得蓄水量为502y t =-,从而进行判断即可; 【详解】设蓄水量为y 立方米,时间为t 分,则可得502y t =-, 蓄水池每分钟放水32m ,故A 不符合题意;放水18分钟后,水池中水量为35021814y m =-⨯=,故B 不符合题意; 蓄水池一共可以放水25分钟,故C 不符合题意;放水12分钟后,水池中水量为35021226y m =-⨯=,故D 符合题意;故答案选D .【点睛】本题主要考查了函数的表示方法,准确分析判断是解题的关键.12.D解析:D【分析】通过对运动过程及函数图象的分析可得:CD 段为甲车提前出发的1小时,即可求解甲车速度;DE 段为甲乙相向而行,在E 点时两车相遇,5小时的时间内共行驶750千米即可求出乙车速度,逐一判断即可求解.【详解】解:由图象可知CD 段为甲车提前出发的1小时,可得甲车速度为81075060km/h -=, DE 段为甲乙相向而行,在E 点时两车相遇,5小时的时间内共行驶750千米, ∴乙车的速度为7506090km/h 5-=,故①正确; 此时两车距A 地的距离为606360⨯=,故④正确; ∴甲车到达B 地时对应时间为810=13.5h 60, 乙车到达A 地时对应时间为81011090+=, ∴图中a 的值是13.5,故③正确;点F 的坐标为(10,600),故②错误;综上,正确的结论有①③④,故选:D .本题考查一次函数的应用,根据图象与题干分析出每一段的状态是解题的关键.二、填空题13.【分析】由一次函数经过第二三四象限可得:m -1<0m -2<0将两个不等式联立解不等式组即可【详解】由题意得:解得:m<1故答案为:m<1【点睛】本题主要考查不等式组的求解以及一次函数图像与系数的关系解析:1m <【分析】由一次函数经过第二、三、四象限可得:m -1<0,m -2<0,将两个不等式联立,解不等式组即可.【详解】由题意得:1020m m -<⎧⎨-<⎩, 解得:m <1.故答案为:m <1.【点睛】本题主要考查不等式组的求解以及一次函数图像与系数的关系,掌握不等式组的解法,熟记一次函数图像与系数的关系是解题关键.14.y =﹣【分析】分别将x=0y=0代入直线y=-x+3中求出与之对应的yx 值由此即可得出点BA 的坐标根据折叠的性质结合勾股定理可求出AC 的长度进而可得出点C 的坐标设OD=m 则CD=BD=3-m 在Rt △解析:y =﹣1433x +【分析】分别将x=0、y=0代入直线y=-34x+3中求出与之对应的y 、x 值,由此即可得出点B 、A 的坐标,根据折叠的性质结合勾股定理可求出AC 的长度,进而可得出点C 的坐标,设OD=m ,则CD=BD=3-m ,在Rt △COD 中利用勾股定理可求出m 的值,进而可得出点D 的坐标,则可求出答案.【详解】解:如图,当x =0时,y =﹣34x +3=3, ∴点B 的坐标为(0,3), 当y =0时,有﹣34x +3=0, 解得:x =4,∴点A 的坐标为(4,0).由折叠性质可知,△ABD ≌△ACD ,∴AC =AB ,BD =CD .在Rt △AOB 中,AB 22OA OB +5,∴AC =5,∴OC =AC ﹣OA =5﹣4=1,∴点C 的坐标为(﹣1,0).设OD =m ,则CD =BD =3﹣m ,在Rt △COD 中,OC 2+OD 2=CD 2,即12+m 2=(3﹣m )2,解得:m =43, ∴OD =43, ∴点D 的坐标为(0,43). 设直线AD 的解析式为y =kx +b (k ≠0), 将A (4,0)、D (0,43)代入y =kx +b , 4043k b b +=⎧⎪⎨=⎪⎩, 解得:1343k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AD 的解析式为y =1433x -+. 故答案为:y =1433x -+. 【点睛】 本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及翻折变换,解题的关键是熟练掌握折叠的性质.15.或或【分析】(1)利用待定系数法求得直线AB 的解析式然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值即可解决问题【详解】解:(1)设直线AB 的解析式为y =kx+b ∵点A解析:()7,0或()1,0- 79t ≤≤或31t -≤≤-【分析】(1)利用待定系数法求得直线AB 的解析式,然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值,即可解决问题.【详解】解:(1)设直线AB 的解析式为y =kx+b ,∵点A 的坐标为(﹣1,2),点B 的坐标为(1,1),∴-21k b k b +=⎧⎨+=⎩ , 解得1232k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为1322y x =-+, 令y =0,则x =3,∴直线AB 与x 轴的交点为(3,0),∵点C (t ,0)是x 轴上的一个动点,∴S △ABC =12|t ﹣3|×2﹣12|t ﹣3|×1=2, ∴|t ﹣3|=4,解得t =7或﹣1,∴C (7,0)或(﹣1,0),故答案为(7,0)或(﹣1,0);(2)若S 的最小值为2,最大值为3,解S =12|t ﹣3|×2﹣12|t ﹣3|×1=3,得t =9或﹣3,∵当S =2时,得t =7或﹣1,∴若S 的最小值为2,最大值为3,点C 的横坐标t 的取值范围为7≤t≤9或﹣3≤t≤﹣1; 故答案为:7≤t≤9或﹣3≤t≤﹣1.【点睛】本题考查了三角形的面积,一次函数的应用等知识,解题的关键是学会用方程的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.16.【分析】根据正比例函数的定义列出式子计算求出参数m 的值【详解】解:∵函数y=(m-2)x+4-m2是关于x 的正比例函数∴4-m2=0且m-2≠0解得m=-2或m=2(不符合题意舍去)故答案为:m=-解析:2m =-【分析】根据正比例函数的定义列出式子计算求出参数m 的值.【详解】解:∵函数y=(m-2)x+4-m 2是关于x 的正比例函数,∴4-m 2=0且m-2≠0,解得,m=-2或m=2(不符合题意,舍去).故答案为:m=-2.【点睛】本题考查的是正比例函数的定义,一般地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.17.-1【分析】根据一次函数的定义即可求出k 的值【详解】解:∵是一次函数∴解得:;故答案为:【点睛】本题考查了一次函数的定义解题的关键是熟练掌握一次函数的定义进行解题解析:-1【分析】根据一次函数的定义,即可求出k 的值.【详解】解:∵2(1)3k y k x =-+是一次函数, ∴2110k k ⎧=⎨-≠⎩, 解得:1k =-;故答案为:1-.【点睛】本题考查了一次函数的定义,解题的关键是熟练掌握一次函数的定义进行解题. 18.x >-2且x≠3【分析】根据二次根式有意义的条件可得x+2≥0根据分式有意义的条件可得x -3≠0再解即可【详解】由题意得:x+2≥0且x -3≠0解得:x >-2且x≠3故答案为:x>-2且x≠3【点睛解析:x>-2,且x≠3.【分析】根据二次根式有意义的条件可得x+2≥0,根据分式有意义的条件可得x-3≠0,再解即可.【详解】由题意得:x+2≥0,且x-3≠0,解得:x>-2,且x≠3故答案为:x>-2,且x≠3.【点睛】本题考查了二次根式的性质和分式的意义,掌握二次根式及分式有意义的条件是解题的关键.19.300【分析】当x=0时y=300故此可得到AB两地的距离为3003小时后两车相遇从而可求得两车的速度之和然后依据5小时后两车的距离最大可知甲车到达B地用5小时从而可乙车的速度设甲乙两车出发后经过t解析:300【分析】当x=0时,y=300,故此可得到AB两地的距离为300,3小时后两车相遇,从而可求得两车的速度之和,然后依据5小时后两车的距离最大,可知甲车到达B地用5小时,从而可乙车的速度,设甲、乙两车出发后经过t小时同时到达C地,根据甲乙两车的路程相差300千米,列方程可求得t的值,最后根据乙的路程得到B、C之间的距离,则可得出A、C之间的距离.【详解】解:由图象可得:当x=0时,y=300,∴AB=300千米.∴甲车的速度=300÷5=60千米/小时,又∵300÷3=100千米/小时,∴乙车的速度=100-60=40千米/小时,设甲、乙两车出发后经过t小时同时到达C地,依题意可得60t-40t=300,解得t=15,∴B,C两地的距离=40×15=600千米,∴A,C两地的距离=600-300=300千米.故答案为:300.【点睛】本题以行程问题为背景,主要考查了一次函数的应用,解决问题的关键是根据函数图象理解题意,求得两车的速度,并根据两车行驶路程的数量关系列出方程.20.【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答【详解】解:由正比例函数y=(k-1)x的图象经过第一三象限可得:k-1>0则k>1故答案是:k >1【点睛】本题考查了一次函数图象与系数的解析:1k >【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答.【详解】解:由正比例函数y=(k-1)x 的图象经过第一、三象限,可得:k-1>0,则k >1.故答案是:k >1.【点睛】本题考查了一次函数图象与系数的关系,掌握正比例函数y=kx 的图象经过第一、三象限,则k >0;正比例函数y=kx 的图象经过第二、四象限,则k <0.三、解答题21.(1)()2,4;(2)12【分析】(1)根据题意,将两个一次函数联立方程组,求出x 、y 的值,即可得到点C 的坐标; (2)根据一次函数可以得到点B 的坐标,再根据点C 的坐标,即可求得OBC ∆的面积.【详解】解:(1)由题意可得,26y x y x =⎧⎨=-+⎩, 解得24x y =⎧⎨=⎩, 一次函数6y x =-+的图象交一次函数2y x =的图象于点C ,∴点C 的坐标为(2,4);(2)一次函数6y x =-+的图象分别交y 轴和x 轴于点A ,B ,∴当0y =时,6x =,∴点B 的坐标为(6,0),6OB ∴=,点(2,4)C ,OBC ∴∆的面积是:64122⨯=, 即OBC ∆的面积是12.【点睛】本题考查的是一次函数的图像和性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)16010=-+y x(2)小于20升【分析】(1)根据题意,可以写出y与x的函数关系式,并写出x的取值范围;(2)根据(1)中的函数解析式和画函数图象的方法,可以画出相应的函数图象,结合图象进行解答即可.【详解】解:(1)由题意可得,y=60-0.1x,当y=0时,0=60-0.1x,得x=600,即y与x的函数关系式为y=60-0.1x(0≤x≤600);(2)y=60-0.1x,列表:x0600y600所以,当行驶里程超过400千米后油箱内的汽油量小于20升.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.(1)见解析;(2)B(4,1);(3)12【分析】(1)根据等腰直角三角形的性质,可得AC=BC,∠ACB=90°,根据余角的性质,可得∠OAC=∠BCE,根据AAS,可得答案;(2)根据全等三角形的性质,可得B点坐标;(3)先求得b的值,再根据三角形的面积公式,可得答案.【详解】(1)(1)证明:∵BE⊥CE∴∠BEC=90°∵△ABC是等腰直角三角形∴AC=BC,∠ACB=90°∴∠AOC=∠BEC=90°∵∠OAC + ∠ACO = 90°,∠ACO +∠BCE =90°,∴∠OAC =∠BCE .在Rt △AOC 和Rt △CEB 中,∠AOC =∠CEB∠OAC =∠BCEAC =BC∴△AOC ≌△CEB (AAS ).(2)∵△AOC ≌△CEB∴CE =AO =3,EB =OC =1∴B 点坐标(4,1)(3)将B 点坐标代入y =x +b 中可求b =-3∴D (0,-3)∴AD =6∴S △ABD =12AD•B x =12×6×4=12 【点睛】本题考查了一次函数综合题,利用余角的性质得出∠OAC=∠BCE 以及利用待定系数法求出b 值是解答本题的关键.24.(1)30元;(2) 1.480y x =-;(3)130元【分析】(1)求出0100x <≤时一次函数的解析式,即可求解;(2)当100x ≥时, y 与x 之间的函数关系式为y kx b =+,把点()()100,60,200,200代入求解即可;(3)把150x =代入解析式即可得到答案;【详解】 解:()10100x <≤时,35y x =月用电量为50度时,应交电费30元; ()2当100x ≥时,设y 与x 之间的函数关系式为y kx b =+,点()()100,60,200,200在函数y kx b =+的图象上,10060200200k b k b +=⎧∴⎨+=⎩解得 1.480k b =⎧⎨=-⎩, 即当100x ≥时,y 与x 之间的函数关系式为 1.480y x =-;()3当150x =时, 1.415080130y =⨯-=,即月用电量为150时,应交电费130元.【点睛】本题主要考查了一次函数的图象应用,准确分析计算是解题的关键.25.(1)y =12x+15(x≥0);(2)50min . 【分析】(1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x 大于20时,两个气球的海拔高度可能相差15m ,从而列方程求解【详解】解:(1)设乙气球的函数解析式为:y =k x+b ,分别将(0,15),(20,25)代入, 152520b k b =⎧⎨=+⎩, 解得:1215k b ⎧=⎪⎨⎪=⎩,∴乙气球的函数解析式为:y =12x+15(x≥0); (2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m ,且此时甲气球海拔更高,甲气球的函数解析式为:y =x+5∴x+5﹣(12x+15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min .【点睛】本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象. 26.(1)y 1=5x +60;y 2=4.5x +72;(2)当购买24张票时,两种优惠方案付款一样多;4≤x <24时,优惠方案1付款较少;x >24时,优惠方案2付款较少【分析】(1)首先根据优惠方案①:付款总金额=购买成人票金额+除去4人后的学生票金额; 优惠方案②:付款总金额=(购买成人票金额+购买学生票金额)×打折率,列出y 关于x 的函数关系式,(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数.再就三种情况讨论.【详解】(1)按优惠方案1可得:y 1=20×4+(x -4)×5=5x +60,按优惠方案2可得:y 2=(5x +20×4)×90%=4.5x +72,(2)y1-y2=0.5x-12(x≥4),①当y1-y2=0时,得0.5x-12=0,解得x=24,∴当购买24张票时,两种优惠方案付款一样多;②当y1-y2<0时,得0.5x-12<0,解得x<24,∴4≤x<24时,y1<y2,优惠方案1付款较少.③当y1-y2>0时,得0.5x-12>0,解得x>24,∴当x>24时,y1>y2,优惠方案2付款较少.【点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.。
八年级(初二)数学(一次函数)试卷试题附答案解析
一、单选题(共10题;共分)1.下列各曲线中,不表示y是x的函数的是()A. B. C. D.2.函数的图象一定经过点()A. (3,5)B. (-2,3)C. (2,7)D. (4,10)3.y=kx+(k-3)的图象不可能是()A. B. C. D.4.已知一次函数y=kx+b的图象如图,则k、b的符号是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<05.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A. 1<x<2B. x>2C. x>0D. 0<x<16.一次函数y=mx+n与正比例函数y=mnx(m、n常数,且m≠0),在同一坐标系中的大致图象是()A. B. C. D.7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y与浆洗一遍的时间x之间关系的图象大致为()A. B.C. D.8.若k<0,在直角坐标系中,函数y=﹣kx+k的图象大致是()A. B. C. D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.x上,若A1(1,10.如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y= √330),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A. 22n√3B. 22n−1√3C. 22n−2√3D. 22n−3√3二、填空题(共10题;共分)11.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是________ .12.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.13.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第 ________象限.14.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为 ________.15.如图,在坐标系中,一次函数y=−2x+1与一次函数y=x+k的图像交于点A(−2,5),则关于x的不等式x+k>−2x+1的解集是________.16.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,以每秒1个单位长的速度向右移动,且经过点P的直线l:y=−x+b也随之移动,设移动时间为t秒.若l与线段BM有公共点,则t的取值范围为________.17.如图,过A点的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是________.18.如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(4√3,0),作点A关于直线y=kx(k>0)的对称点P,△POB为等腰三角形,则点P的坐标为________19.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要 ________s能把小水杯注满.20.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为 ________三、解答题(共2题;共22分)21.已知:一次函数的图象与直线y=﹣2x+1平行,且过点(3,2),求此一次函数的解析式.22.我县为了倡导居民节约用水,生活用水按阶梯式水价计费,如图是居民每户每月的水费y(元)与所用的水量x(吨)之间的函数图象,请根据图象所提供的信息,解答下列问题:(1)当用水量不超过10吨时,每吨水收费多少元?(2)当用水量超过10吨且不超过30吨时,求y与x之间的函数关系式;(3)某户居民三、四月份水费共82元,四月份用水比三月份多4吨,求这户居民三月份用水多少吨。
(必考题)初中数学八年级数学上册第四单元《一次函数》测试(答案解析)(3)
一、选择题1.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t (分钟),所走路程为s (米),s 与t 之间的函数关系如图所示,则下列说法中,错误的是( )A .小明中途休息用了20分钟B .小明在上述过程中所走路程为7200米C .小明休息前爬山的速度为每分钟60米D .小明休息前后爬山的平均速度相等2.如图,一次函数y=kx+b 图象与x 轴的交点坐标是(2,0),则下列说法:①y 随x 的增大而减小;②b >0;③关于x 的方程kx+b=0的解为x=2.其中说法正确的是( )A .①和②B .①和③C .②和③D .①②③都正确 3.将直线y=-2x 向上平移后得到直线AB ,直线AB 经过点(1,4),则直线AB 的函数表达式为( )A .y=2x+2B .y=2x-6C .y=-2x+3D .y=-2x+6 4.如图1,在矩形ABCD 中,AB <BC ,点E 为对角线AC 上的一个动点,连接BE ,DE ,过E 作EF ⊥BC 于F .设AE =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )A .线段BEB .线段EFC .线段CED .线段DE 5.已知正方形轨道ABCD 的边长为2,m 小明站在正方形轨道AD 边的中点M 处,操控一辆无人驾驶小汽车,小汽车沿着折线A B C D ---以每秒1m 的速度向点D (终点)移动,如果将小汽车到小明的距离设为,S 将小汽车运动的时间设为,t 那么()S m 与()t s 之间关系的图象大致是( )A .B .C .D . 6.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D . 7.函数1y x =-x 的取值范围是( ) A .1x >B .1≥xC .1x ≥-D .1x ≠ 8.下列函数中y 随x 的增大而增大,且图象与x 轴交点在y 轴左侧的是( ) A .21y x =- B .21y x =+ C .21y x =-+ D .21y x =-- 9.点(),P x y 在第一象限,且6x y +=,点A 的坐标为()4,0,设OPA ∆的面积为S ,则下列图像中,能反映S 与x 之间的函数关系式的是( )A.B.C.D.10.雪橇手从斜坡顶部滑了下来,下图中可以大致刻画出雪橇手下滑过程中速度—时间变化情况的是()A.B.C.D.11.如图所示,小刚家,菜地,稻田在同一条直线上.小刚从家去菜地浇水,又去稻田除草,然后回家.如图反映了这个过程中,小刚离家的距离y与时间x之间的对应关系.如果菜地和稻田的距离为akm,小刚在稻田除草比在菜地浇水多用了bmin,则a,b的值分别为()A.1,8 B.0.5,12 C.1,12 D.0.5,812.已知点A(1,1y)和点B(a,2y)在y=-2x+b的图象上且1y>2y,则a的值可能是()A.2 B.0 C.-1 D.-2二、填空题13.小亮从家骑车上学,先经过一段平路到达A地后,再上坡到达B地,最后下坡到达学校,所行驶路程s(千米)与时间t(分钟)的关系如图所示.如果返回时,上坡、下坡、平路的速度仍然保持不变,那么他从学校回到家需要的时间是_______分钟.14.如图,一个函数的图象由射线BA ,线段BC ,射线CD 组成,其中点(1,2)A -,()1,3B ,(2,1)C ,()6,5D .当y 随x 的增大而增大时,则x 的取值范围是_______.15.按如图所示的程序计算,当输入3x =时,则输出的结果为______.16.如图,在平面直角坐标系中,Rt ABC 的三个顶点分别是A(-3,2),B(0,4),C(0.2),在x 轴上有一点P ,使得PA+PB 的值最小,则点P 的坐标为______________17.已知在平面直角坐标系xOy 中,点A 的坐标为(﹣1,2),点B 的坐标为(1,1),点C (t ,0)是x 轴上的一个动点,设三角形ABC 的面积为S .(1)当S =2时,点C 的坐标为_____;(2)若S 的最小值为2,最大值为3,请直接写出点C 的横坐标t 的取值范围_____. 18.正比例函数y =kx 的图象经过点(2,3),则k =______.19.2x +有意义,则x 的取值范围为______.20.一次函数()1y k x =-的图象经过第一、三象限,则k 的取值范围为_______.三、解答题21.如图,,A B 两个长方体水箱放置在同一水平桌面上,开始时水箱A 中没有水,水箱B 盛满水,现以36/dm min 的流量从水箱B 中抽水注入水箱A 中,直至水箱A 注满水为止.设注水()t min ,水箱A 的水位高度为()yA dm ,水箱B 中的水位高度为()yB dm .根据图中数据解答下列问题(抽水水管的体积忽略不计)(1)注水t 分钟时,A 水箱中水的体积为 3dm(2)分别求出yA yB 、与t 之间的函数表达式;(3)当注水2分钟时,求出此时两水箱中水位的高度差.(4)当水箱A 与水箱B 中的水的体积相等时,求出此时两水箱中水位的高度差. 22.已知12y y y =+,其中1y 与3x -成正比例,2y 与21x +成正比例,且当0x =时,4y =-,当1x =-时,6y =-.(1)求y 与x 的函数关系式;(2)判断点()1,4A -是否在此函数图像上,并说明理由.23.如图,平面直角坐标系中,A (0,a ),B (b ,0),OC =OA ,且a ,b 满足|a ﹣8|+6b +=0(1)求直线AB 的表达式;(2)现有一动点P 从点B 出发,以1米/秒的速度沿x 轴正方向运动到点C 停止,设P 的运动时间为t ,连接AP ,过点C 作AP 的垂线交射线AP 于点M ,交y 轴于点N ,请用含t 的式子表示线段ON 的长度;(3)在(2)的条件下,连接BM ,当S △ABM :S △ACM =3:7时,求此时P 点的坐标.24.已知一次函数y =kx +b 的图像经过点(1,﹣4),且与正比例函数y =0.5x 的图像交于点(4,a).(1)求a、k、b的值;(2)画出函数y=kx+b与y=0.5x的图像;(3)求两函数图像与y轴围成的三角形的面积.25.疫情过后,地摊经济迅速兴起.小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.(1)求降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?26.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,货车与甲地的距离是________千米;(2)在轿车行进过程中,轿车行驶多少时间两车相遇?(3)在轿车行进过程中,轿车行驶多少时间,两车相距15千米?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据函数图象可知,小明40分钟爬山2400米,40~60分钟休息,60~100分钟爬山(4800-2400)米,爬山的总路程为4800米,根据路程、速度、时间之间的关系进行解答即可.【详解】A 、小明中途休息的时间是:60-40=20分钟,故本选项正确;B 、小明在上述过程中所走路程为4800米,故本选项错误;C 、小明休息前爬山的速度为240040=60(米/分钟),故本选项正确; D 、因为小明休息后爬山的速度是4800240010060--=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确;故选B .【点睛】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键. 2.D解析:D【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【详解】解:由图象可知:图象过一、二、四象限,则0k <,0b >,当0k <时,y 随x 的增大而减小,故①,②正确,由图象得:与x 轴的交点为(2,0),则当2x =时0y =,故③正确,综上所述①②③都正确,故选:D .【点睛】本题主要考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.3.D解析:D【分析】设直线AB 的解析式为y=kx+b ,根据平移时k 的值不变可得k=-2,把(1,4)代入即可求出b的值,即可得答案.【详解】设直线AB的解析式为y=kx+b,∵将直线y=-2x向上平移后得到直线AB,∴k=-2,∵直线AB经过点(1,4),∴-2+b=4,解得:b=6,∴直线AB的解析式为:y=-2x+6,故选:D.【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k值不变.4.D解析:D【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.【详解】A、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故选项A错误;B、由图1可知,若线段EF是y,则y随x的增大越来越小,故选项B错误;C、由图1可知,若线段CE是y,则y随x的增大越来越小,故选项C错误;D、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故选项D正确;故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.5.D解析:D【分析】求出小汽车在AB、BC上运动时,MQ的表达式即可求解.【详解】解:设小汽车所在的点为点Q,①当点Q在AB上运动时,AQ=t,则MQ2=MA2+AQ2=1+t2,即MQ2为开口向上的抛物线,则MQ为曲线,②当点Q在BC上运动时,同理可得:MQ2=22+(1-t+2)2=4+(3-t)2,MQ为曲线;故选:D.【点睛】本题考查了动点图象问题,解题的关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.6.B解析:B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=12⨯2(12-x)=12-x(8<x≤12),由以上各段函数解析式可知,选项B正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.7.B解析:B【分析】根据二次根式的意义,被开方数是非负数.【详解】解:根据题意得x-1≥0,解得x≥1.故选:B.【点睛】本题考查函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.8.B解析:B【分析】根据一次函数的性质和各个选项中的函数解析式,可以判断哪个选项中的函数y随x的增大而增大,且图象与x轴交点在y轴左侧,本题得以解决.【详解】解:函数y=2x-1,y随x的增大而增大,与x轴的交点是(0.5,0),在y轴右侧,故选项A不符题意;函数y=2x+1,y随x的增大而增大,与x轴的交点是(-0.5,0),在y轴左侧,故选项B 符题意;函数y=-2x+1,y随x的增大而减小,与x轴的交点是(0.5,0),在y轴右侧,故选项C 不符题意;函数y=-2x-1,y随x的增大而减小,与x轴的交点是(-0.5,0),在y轴左侧,故选项D 不符题意;故选:B.【点睛】本题考查了一次函数的性质,解题的关键是明确题意,利用一次函数的性质解答.9.B解析:B【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【详解】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6-x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=1×4×(6-x)=-2x+12(0<x<6),2∴B符合.故选:B.【点睛】本题考查的是一次函数的图象,在解答此题时要注意x,y的取值范围.10.A解析:A【分析】从下滑过程中速度与时间变化情况来看,速度随时间的增大而增大,不会保持不变,更不会减少,从而可得出结果.【详解】解:雪撬手从斜坡顶部滑下来,速度越来越快即速度随时间的增大而增大.符合条件的只有A .故选:A .【点睛】本题考查函数图象的判断,根据速度随时间的增大而增大确定函数图象是解题的关键. 11.D解析:D【分析】首先弄清横、纵坐标所表示的意义,然后根据各个特殊点来分段分析整个函数图象.【详解】解:此函数大致可分以下几个阶段:(1)0﹣12分种,小刚从家走到菜地;(2)12﹣27分钟,小刚在菜地浇水;(3)27﹣33分钟,小刚从菜地走到稻田地;(4)33﹣56分钟,小刚在稻田地除草;(5)56﹣74分钟,小刚从稻田地回到家;综合上面的分析得:由(3)的过程知,a =1.5-1=0.5(千米);由(2)(4)的过程知b =(56-33)-(27-12)=8(分钟).故选:D .【点睛】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论. 12.A解析:A【分析】函数解析式y=-2x+b 知k <0,可得y 随x 的增大而减小,求出a 的取值范围即可求解.【详解】解:由y=-2x+b 知k <0,∴y 随x 的增大而减小,∵1y >2y ,∴a>1∴a 的值可能是2故选:A .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键.二、填空题13.5【分析】根据图象可知:小明从家骑车上学平路路程是1千米用3分钟;上坡的路程是1千米用6分钟则上坡速度是千米/分钟;下坡路长是2千米用3分钟因而速度是千米/分钟由此即可求出答案【详解】解:根据图象可 解析:5【分析】根据图象可知:小明从家骑车上学,平路路程是1千米,用3分钟;上坡的路程是1千米,用6分钟,则上坡速度是16千米/分钟;下坡路长是2千米,用3分钟,因而速度是23千米/分钟,由此即可求出答案. 【详解】解:根据图象可知:小明从家骑车上学,上坡的路程是1千米,用6分钟, 则上坡速度是16千米/分钟; 下坡路长是2千米,用3分钟, 则速度是23千米/分钟, 他从学校回到家需要的时间为:2÷16+1÷23+3=16.5(分钟). 故答案为:16.5.【点睛】 此题考查了函数的图象,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小. 14.或【分析】根据函数图象和题目中的条件可以写出各段中函数图象的变化情况从而可以解答本题【详解】由函数图象可得当时y 随x 的增大而增大当时y 随x 的增大而减小当时y 随x 的增大而增大∴当随的增大而增大时则的取 解析:1x ≤或2x ≥【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【详解】由函数图象可得,当1x ≤时,y 随x 的增大而增大,当12x <<时,y 随x 的增大而减小,当2x ≥时,y 随x 的增大而增大,∴当y 随x 的增大而增大时,则x 的取值范围是:1x ≤或2x ≥.故答案为:1x ≤或2x ≥.【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答. 15.1【分析】根据x 的值选择函数关系式然后进行计算即可得解【详解】解:当x=3时y=-x+4=-3+4=1故答案为:1【点睛】本题考查了函数值的求解关键在于准确选择函数关系式解析:1【分析】根据x的值选择函数关系式然后进行计算即可得解.【详解】解:当x=3时,y=-x+4=-3+4=1,故答案为:1.【点睛】本题考查了函数值的求解,关键在于准确选择函数关系式.16.(-20)【分析】作点B关于x轴的对称点D连接AD则AD与x轴交点即为点P位置利用待定系数法求出AD解析式再求出点P坐标即可【详解】解:作点B 关于x轴的对称点D则点D坐标为(0-4)连接AD则AD与解析:(-2,0)【分析】作点B关于x轴的对称点D,连接AD,则AD与x轴交点即为点P位置,利用待定系数法求出AD解析式,再求出点P坐标即可.【详解】解:作点B关于x轴的对称点D,则点D坐标为(0,-4),连接AD,则AD与x轴交点即为点P位置.设直线AD解析式为y=kx+b(k≠0),∵点A、D的坐标分别为(-3,2),(0,-4),∴324k bb-+=⎧⎨=-⎩解得24 kb=-⎧⎨=-⎩∴直线AD解析式为y=-2x-4,把y=0代入y=-2x-4,解得x=-2,∴点P的坐标为(-2,0).【点睛】本题考查了将军饮马问题,根据题意作出点B 关于x 轴对称点D ,确定点P 位置是解题关键.17.或或【分析】(1)利用待定系数法求得直线AB 的解析式然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值即可解决问题【详解】解:(1)设直线AB 的解析式为y =kx+b ∵点A解析:()7,0或()1,0- 79t ≤≤或31t -≤≤-【分析】(1)利用待定系数法求得直线AB 的解析式,然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值,即可解决问题.【详解】解:(1)设直线AB 的解析式为y =kx+b ,∵点A 的坐标为(﹣1,2),点B 的坐标为(1,1),∴-21k b k b +=⎧⎨+=⎩ , 解得1232k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为1322y x =-+, 令y =0,则x =3,∴直线AB 与x 轴的交点为(3,0),∵点C (t ,0)是x 轴上的一个动点,∴S △ABC =12|t ﹣3|×2﹣12|t ﹣3|×1=2, ∴|t ﹣3|=4,解得t =7或﹣1,∴C(7,0)或(﹣1,0),故答案为(7,0)或(﹣1,0);(2)若S的最小值为2,最大值为3,解S=12|t﹣3|×2﹣12|t﹣3|×1=3,得t=9或﹣3,∵当S=2时,得t=7或﹣1,∴若S的最小值为2,最大值为3,点C的横坐标t的取值范围为7≤t≤9或﹣3≤t≤﹣1;故答案为:7≤t≤9或﹣3≤t≤﹣1.【点睛】本题考查了三角形的面积,一次函数的应用等知识,解题的关键是学会用方程的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.18.【分析】将点(23)代入解析式即可求出答案【详解】将点(23)代入y=kx中得2k=3解得k=故答案为:【点睛】此题考查了正比例函数求值已知点的坐标即可将点的坐标代入解析式求出参数解析:3 2【分析】将点(2,3)代入解析式即可求出答案.【详解】将点(2,3)代入y=kx中,得2k=3,解得k=32,故答案为:3 2 .【点睛】此题考查了正比例函数求值,已知点的坐标即可将点的坐标代入解析式求出参数.19.x>-2且x≠3【分析】根据二次根式有意义的条件可得x+2≥0根据分式有意义的条件可得x-3≠0再解即可【详解】由题意得:x+2≥0且x-3≠0解得:x>-2且x≠3故答案为:x>-2且x≠3【点睛解析:x>-2,且x≠3.【分析】根据二次根式有意义的条件可得x+2≥0,根据分式有意义的条件可得x-3≠0,再解即可.【详解】由题意得:x+2≥0,且x-3≠0,解得:x>-2,且x≠3故答案为:x>-2,且x≠3.【点睛】本题考查了二次根式的性质和分式的意义,掌握二次根式及分式有意义的条件是解题的关键.20.【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答【详解】解:由正比例函数y=(k-1)x 的图象经过第一三象限可得:k-1>0则k >1故答案是:k >1【点睛】本题考查了一次函数图象与系数的解析:1k >【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答.【详解】解:由正比例函数y=(k-1)x 的图象经过第一、三象限,可得:k-1>0,则k >1.故答案是:k >1.【点睛】本题考查了一次函数图象与系数的关系,掌握正比例函数y=kx 的图象经过第一、三象限,则k >0;正比例函数y=kx 的图象经过第二、四象限,则k <0.三、解答题21.(1)6t ;(2)365yB t =-+;yA t =;(3)2.8dm ;(4)2dm ; 【分析】(1)根据题目中B→A 的速度求解即可;(2)根据A 的体积求出yA ,再根据长方体体积计算即可;(3)分别求出yA ,yB ,计算即可;(4)根据题意求出yB ,求出t ,即可得解;【详解】(1)∵注水t 分钟,水从B→A 以36/dm min , ∴()36A V t dm =; 故答案为6t ; (2)∵326A V yA t =⨯⨯=, ∴yA t =,又∵()5266yB t ⨯⨯-=,()1066yB t -=,365yB t =-+;(3)当2t =时,()2yA t dm ==,()33626 4.855yB t dm =-+=-⨯+=, ∴高度差()4.82 2.8dm =-=; (4)∵A 、B 水体积相等,∴B 箱中水抽走一半, ∴1525262yB ⨯⨯=⨯⨯⨯, ∴()3yB dm =,当3yB =时,3635t -+=, 5t =,当5t =时,()5yA t dm ==,∴高度差()532dm =-=.【点睛】 本题主要考查了一次函数的实际应用,准确计算是解题的关键.22.(1)24y x x =-+-;(2)在,理由见解析.【分析】(1)根据正比例函数的定义,设()113y k x =-;()2221k x y =+,代入当0x =和1x =-时的值,即可求出和1k 和2k ,即可得到函数解析式;(2)将1x =代入函数解析式中,得出y 的值,如果等于-4,则A 点在函数图像上,如果不等于-4则不在函数图像上.【详解】(1)由题意得:设()113y k x =-;()2221k x y =+ ∴()()12213y x k x k =-++, 由当0x =时,4y =-,当1x =-时,6y =-,得,()()()()12124030161311k k k k ⎧-=-++⎪⎨-=--++⎪⎩,解得1211k k =⎧⎨=-⎩ ∴y 与x 的函数关系式为24y x x =-+-;(2)当1x =时,21144y =-+-=-∴A 点在函数图像上.【点睛】本考查了正比例函数的定义,待定系数法求函数解析式,关键是掌握待定系数法. 23.(1)483y x =+;(2)6-t 或t ﹣6;(3)P (﹣1.8,0)【分析】(1)根据非负数的性质可得a 和b 的值,确定点A 和B 的坐标,利用待定系数法即可得出结论;(2)分两种情况:判断出△AOP ≌△CON ,即可得出结论;(3)先判断出BH :CM =3:7,进而判断出S △ABP :S △ACP =3:7,得出BP :CP =3:7,即可得出结论.【详解】解:(1)∵860a b -++=,∴80a -=,60b +=,∴a =8,b =6,∴A (0,8),B (﹣6,0),设直线AB 的表达式为:y kx m =+,则860m k m =⎧⎨-+=⎩,解得:438k m ⎧=⎪⎨⎪=⎩, ∴直线AB 的表达式为:483y x =+; (2)由(1)知,A (0,8),B (﹣6,0),∴OB =6,OA =8,∵OC =OA ,∴OC =8,∴C (8,0),①当点P 在x 轴负半轴时,即0≤t≤6时,如图1,由运动知,BP =t ,∴OP =6﹣t ,∵CM ⊥AP ,∴∠CMA =90°=∠AOP =∠AOC ,∵∠ANM =∠CNO ,∴∠OAP =∠OCN ,∵OA =OC ,∴△AOP ≌△CON (ASA ),∴ON =OP =6﹣t ;②当点P 在x 轴正半轴时,即6<t≤14,如图2,由运动知,BP =t ,∴OP =t ﹣6,同①的方法得,△AOP ≌△CON (ASA ),∴ON =OP =t ﹣6;(3)如图3,过点B 作BH ⊥AP 于H ,则S △ABM =12AM•BH ,S △ACM =12AM•CM , ∵S △ABM :S △ACM =3:7, ∴12AM•BH :12AM•CM =3:7, ∴37BH CM , ∵S △ABP =12AP•BH ,S △ACP =12A P•CM , ∴S △ABP :S △ACP =3:7,∵S △ABP =12BP•OA ,S △ACP =12CP•OA , ∴BP :CP =3:7,∴BP :BC =3:10,∵B (﹣6,0),C (8,0),∴BC =14,∴BP =4.2,∴OP =6﹣4.2=1.8,∴P (﹣1.8,0).【点睛】本题考查一次函数与三角形的综合动态问题,准确求取解析式,并根据题意适当分类讨论是解题关键.24.(1)a =2,k =2,b =-6;(2)答案见解析;(3)12.【分析】(1)直接把(4,a )代入y=0.5x 可求出a ,从而得到a 的值;把两点坐标代入y=kx+b 得到关于k 、b 的方程组,然后解方程组即可;(2)利用描点、连线,即可画出函数的图像;(3)先确定一次函数与y 轴的交点坐标,然后根据三角形面积公式求解.【详解】解:(1)把(4,a )代入y=0.5x 得a=2;把(1,-4)、(4,2)代入y=kx+b 得442k b k b +=-⎧⎨+=⎩, 解得:26k b =⎧⎨=-⎩; (2)函数图像如图所示:(3)一次函数解析式为y=2x-6,当x=0时,y=6-,,则一次函数与y 轴的交点坐标为(0,-6),所以这两个函数图象与y 轴所围成的三角形面积=164122⨯⨯=. 【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.25.(1) 2.560(40)y x x =+>;(2)180千克【分析】(1)根据函数图象中的数据,可以得到降价后销售额y (元)与销售量x (千克)之间的函数表达式;(2)根据(1)中的函数关系式和题意,可以列出相应的方程,从而可以得到当销售量为多少千克时,小李销售此种水果的利润为150元.【详解】解:(1)设降价后销售额y (元)与销售量x (千克)之间的函数表达式是y kx b =+, AB 段过点(40,160),(80,260),∴4016080260k b k b +=⎧⎨+=⎩, 解得, 2.560k b =⎧⎨=⎩, 即降价后销售额y (元)与销售量x (千克)之间的函数表达式是 2.560(40)y x x =+>; (2)设当销售量为a 千克时,小李销售此种水果的利润为150元,2.5602150a a +-=,解得,180a =,答:当销售量为180千克时,小李销售此种水果的利润为150元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 26.(1)270;(2)y =110x ﹣195;(3)2.4小时;(3)轿车行驶2.1小时或2.7小时,两车相距15千米.【分析】(1)根据函数图象中的数据,可以得到货车的速度和轿车到达乙地的时间,然后即可计算出轿车到达乙地时,货车与甲地的距离;(2)根据函数图象中的数据,可以得到线段CD 对应的函数表达式,OA 和CD 交点横坐标即为所求;(3)根据题意和函数图象中的数据,可以计算出在轿车行进过程,轿车行驶多少时间,两车相距15千米.【详解】解:(1)(1)由图象可得,货车的速度为300÷5=60(千米/小时),则轿车到达乙地时,货车与甲地的距离是60×4.5=270(千米),故答案为:270;(2)设线段CD对应的函数表达式是y=kx+b.∵点C(2.5,80),点D(4.5,300),∴2.580 4.5300k bk b+=⎧⎨+=⎩,解得110195 kb=⎧⎨=-⎩,即线段CD对应的函数表达式是y=110x﹣195,由图象可得:线段OA对应的函数解析式为y=60x,则60x=110x﹣195,解得:x=3.9,3.9﹣1.5=2.4答:轿车行驶2.4小时两车相遇;(3)当x=2.5时,两车之间的距离为:60×2.5﹣80=70.∵70>15,∴在轿车行进过程,两车相距15千米时间是在2.5~4.5之间,由图象可得:线段OA对应的函数解析式为y=60x,则|60x﹣(110x﹣195)|=15,解得:x1=3.6,x2=4.2.∵轿车比货车晚出发1.5小时,3.6﹣1.5=2.1(小时),4.2﹣1.5=2.7(小时),∴在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.答:在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.。
北师大版八年级上册数学第四章 一次函数含答案(综合知识)
北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、函数y=中,自变量x的取值范围是()A.x≠2B.x≥2C.x≤2D.全体实数2、成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a千米,休息了一段时间,又原路返回b千米(b<a),再前进c千米,则他离起点的距离s与时间t的关系的示意图是()A. B.C. D.3、下列各式中,自变量x的取值范围是x≥2的是( )A.y=x-2B.y=C.y=·D.y=x 2-44、下列函数的图象不经过第一象限,且y随x的增大而减小的是( )A. B. C. D.5、同一坐标系中有四条直线::,:,:,:,其中与轴交于点的直线是()A.直线B.直线C.直线D.直线6、某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s (米)与行进时间t(分)的关系的示意图,你认为正确的是()A. B. C.D.7、如图,反映了某公司的销售收入(单位:元)与销售量(单位:吨)的关系,反映了该公司的销售成本(单位:元)与销售量(单位:吨)的关系,当该公司盈利(收入大于成本)时,销售量应为()A.大于4吨B.等于5吨C.小于5吨D.大于5吨8、已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是图中的()A. B. C.D.9、若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3B.0<k≤3C.0≤k<3D.0<k<310、下列各图中,是函数图象的是().A. B. C. D.11、对于0≤x≤100,用[x]表示不超过x的最大整数,则[x]+[ x]的不同取值的个数为( )A.267B.266C.234D.23312、一次函数y=-2x+5的图象性质错误的是().A.y随x的增大而减小B.直线经过第一、二、四象限C.直线从左到右是下降的D.直线与x轴交点坐标是(0,5)13、如图,已知点A 的坐标为(-1,0 ),点B在直线y=x上运动,当线段AB 最短时,点B的坐标为()A.(0,0)B.(, - )C.(-,-)D.(-,-)14、若正比例函数的图象经过(﹣3,2),则这个图象一定经过点()A.(2,﹣3)B.C.(﹣1,1)D.(2,﹣2)15、某商店销售一种商品,售出部分商品后进行了降价促销,销售金额y (元)与销售量(x)的函数关系如图所示,则降价后每件商品的销售价格为()A.5元B.10元C.12.5元D.15元二、填空题(共10题,共计30分)16、若函数y=(2m+6)x+(1﹣m)是正比例函数,则m的值是________.17、如图所示的是春季某地一天气温随时间变化的图象,根据图象判断,在这天中,最高温度与最低温度的差是________ ℃.18、一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1, y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x=h时,两车相遇;③当x=时,两车相距60km;④图2中C点坐标为(3,180);⑤当x=h或h时,两车相距200km.其中正确的有________(请写出所有正确判断的序号)19、如图,A(4,3),B(2,1),在x轴上取两点P、Q,使PA+PB值最小,|QA-QB|值最大,则PQ=________.20、表示变量之间关系的常用方法有________ ,________ ,________ .21、某函数满足当自变量x=-1时,函数的值y=2,且函数y的值始终随自变量x的增大而减小,写出一个满足条件的函数表达式________.22、若一次函数y=(m﹣3)x+1中,y值随x值的增大而减小,则m的取值需满足________.23、已知正比例函数的图像经过点M( )、、,如果,那么________ .(填“>”、“=”、“<”)24、写出一个正比例函数,使其图象经过第二、四象限:________.25、已知二次函数y=ax2(a≠0的常数),则y与x2成________ 比例.三、解答题(共5题,共计25分)26、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.27、中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准时间/分 1 2 3 4 5 …电话费/元 0.36 0.72 1.08 1.44 1.8 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的表达式是什么?(3)如果打电话超出25分钟,需付多少电话费?(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?28、如图,已知一次函数的图象与轴,轴分别交于A,B两点,点在该函数的图象上,连接OC.求点A,B的坐标和的面积.29、小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M 点坐标为(2,0).(1)A点所表示的实际意义是;=;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?30、如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S 关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).(1)求m的值。
八年级数学上册第四章一次函数单元综合测试含解析北师大版
《第4章一次函数》一、选择题1.下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个2.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=﹣2x+24(0<x<12) B.y=﹣x+12(0<x<24)C.y=2x﹣24(0<x<12)D.y=x﹣12(0<x<24)3.一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大,则m=()A.﹣1 B.3 C.1 D.﹣1或34.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6) B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6)D.(2,3),(﹣4,6)5.对于函数y=﹣x+3,下列说法错误的是()A.图象经过点(2,2)B.y随着x的增大而减小C.图象与y轴的交点是(6,0)D.图象与坐标轴围成的三角形面积是96.关于x的一次函数y=kx+k2+1的图象可能正确的是() A.B. C.D.7.P1(x1,y1),P2(x2,y2)是一次函数y=﹣2x+5图象上的两点,且x1<x2,则y1与y2的大小关系是()A.y1<y2 B.y1=y2C.y1>y2 D.y1>y2>08.已知一次函数y=x+m和y=﹣x+n的图象都经过点A(﹣2,0),且与y轴分别交于B,C两点,那么△ABC的面积是()A.2 B.3 C.4 D.69.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.810.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,点B2013的坐标为()A.(42012×,42012) B.(24026×,24026)C.(24026×,24024)D.(44024×,44024)二、填空题11.将直线y=2x向上平移1个单位长度后得到的直线是.12.函数y=中,自变量x的取值范围是.13.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是.14.直线y=3x﹣m﹣4经过点A(m,0),则关于x的方程3x﹣m﹣4=0的解是.15.已知某一次函数的图象经过点A(0,2),B(1,3),C(a,1)三点,则a的值是.16.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是天.17.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是.18.如果直线l与直线y=﹣2x+1平行,与直线y=﹣x+2的交点纵坐标为1,那么直线l的函数解析式为.三、解答题(共66分)19.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k、b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a 的值.20.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0。
八年级数学一次函数32道典型题(含答案和解析)
八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。
沪科版数学八年级上册 第十二章 一次函数 单元测试(含答案)
第 十二 章 一次函数(时间:120分钟满分:150分)题 号一二三四五六七八总 分得 分一、选择题(本大题共10 小题,每小题4分,满分40 分)1.函数 y =x−3x中,自变量x 的取值范围是 ( )A. x≠0B. x≥3C. x≥3且x≠0D. x>3且x≠02.若正比例函数的图象经过点(-1,2),则这个图象必经过点 ( )A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)3.函数 y =k (x−k )(k <0)的图象不经过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函数y =−x +3,,当x=a 时,y=5;当x=b 时,y=-5;当x=c 时,y =3,则a ,b ,c 的大小关系是( )A.a >b >cB. a>c>bC. b>a>cD. b>c>a5.直线 y =2x 向下平移2 个单位得到的直线是 ( ) A.y =2x (x +2) B.y =2(x−2) C.y =2x−2 D.y =2x +26.如图,在下列平面直角坐标系中,一次函数 y =12kx−2k 的图象只可能是( )7.如图,下列方程组的解可以用两直线 l₁,l₂的交点坐标表示的是 ( )A.{x−y =1,2x−y =1 B.{x−y =−1,2x−y =1 C.{x−y =3,2x−y =1 D.{x−y =−3,2x−y =−18.如图,函数 y 1=|x|,y 2=13x +43.当 y₁>y₂时,x 的取值范围是 ( )A. x< -1B.−1<x <2C.x <−1或x>2D.x >29.小高从家门口骑车去单位上班,先走平路到达点 A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 ( )A.12 分钟B.15分钟C.25分钟D.27 分钟10.如图,在平面直角坐标系中,在边长为1 的正方形ABCD 的边上有一动点 P 沿A→B→C→D→A 运动一周,则点 P 的纵坐标y 与点 P 走过的路程s 之间的函数关系用图象表示大致是 ( )二、填空题(本大题共4 小题,每小题5分,满分20分)11.已知一次函数 y =(4m +1)x−(m +1),,当m 满足 时,直线在y 轴上的截距小于0.12.一次函数 y =2x−6的函数值为0,则 x =.13.甲、乙两人以相同路线前往距离单位10 千米的培训中心参加学习.图中 l 甲,l 乙分别表示甲、乙两人前往目的地所走的路程s(千米)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/时;③乙的平均速度为1507千米/时;④乙出发6分钟后追上甲.其中正确的有 .(填所有正确的序号)14.已知一次函数 y =ax +b (a ,b 是常数),x 与y 的部分对应值如下表:x -2-10123y642-2-4那么方程ax+b=0的解是 ;不等式。
第四章一次函数综合题动点问题练习(1)2021-2022学年 北师大版数学八年级上册
北师大版数学八年级上册第四章一次函数综合题动点问题练习11.如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(-8,0),点A的坐标为(-6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围;(3)点P是该直线上的一个动点,且在第二象限内运动,探究:当点P运动到什么?并说明理由.位置时,△OPA的面积为2782.如图,已知点A(6,0)、点B(0,2).(1)求直线AB所对应的函数表达式;(2)若C为直线AB上一动点,当△OBC的面积为3时,试求点C的坐标.3.如图,在平面直角坐标系xOy中,直线l1:y=x+3分别交x轴、y轴于点A、B,直线l2:y=-3x与直线l1交于点C,点P为y轴上一动点.(1)求点C的坐标;(2)当PA+PC的值最小时,求此时P点的坐标,并求PA+PC的最小值;(3)在平面直角坐标系中是否存在点M,使以点A、O、C、M为顶点的四边形是平行四边形,若存在,求出点M的坐标;若不存在,请说出理由.4.如图1,已知平行四边形ABCD,AB//x轴,AB=12,点A的坐标为(2,-8),点D的坐标为(-6,8),点B在第四象限,点P是平行四边形ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x-1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标(直接写出答案).5.直线y=kx-4与x轴、y轴分别交于B,C两点,且OCOB =43.(1)求点B的坐标和k的值.(2)若点A是在第一象限内直线y=kx-4上的一个动点,当它运动到什么位置时,△AOB的面积是12?(3)若点A是直线y=kx-4上的一个动点,设A(x,y),△AOB的面积为s,求s关于x 的函数表达式,并写出x的取值范围.6.已知,直线y=2x-2与x轴交于点A,与y轴交于点B.(1)如图①,点A的坐标为______,点B的坐标为______;(2)如图②,点C是直线AB上不同于点B的点,且CA=AB.①求点C的坐标;②过动点P(m,0)且垂直于x轴的直线与直线AB交于点E,若点E不在线段BC上,则m的取值范围是______;(3)若∠ABN=45°,求直线BN的解析式.7.如图,直线l分别交坐标轴于点A(3,0)、B(0,6).点P(m,n)是直线l上的动点,但不与点A重合,连接OP,设△OAP的面积为S.(1)求直线l所对应的函数表达式;(2)求S与m的函数关系式,并写出自变量m的取值范围;(3)是否存在这样的点P,使S=3?若存在,请求出点P的坐标;若不存在,请说明理由.8.如图,直线y=2x+6交x轴于A,交y轴于B.(1)直接写出A(______,______),B(______,______);x上一点,若以A,B,(2)如图1,点E为直线y=x+2上一点,点F为直线y=12E,F为顶点的四边形是平行四边形,求点E,F的坐标.(3)如图2,点C(m,n)为线段AB上一动点,D(-7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.9.在直角坐标系xOy中,已知点A(3,0),直线l:y=−x+4,在第一象限有一动点P(x,y)在直线l上,直线l与x轴、y轴分别交于点B、C,设ΔOPA的面积为S.(1)分别求出B、C的坐标;(2)求S关于x的函数解析式,并写出x的取值范围;10.已知,直线AB分别交x、y轴于A(4,0)、B两点,C(-4,a)为直线y=-x与AB的公共点.(1)求点B的坐标。
苏科版八年级数学上册第六章《一次函数》综合提优测试(含答案)
A.y=3八上数学第六章综合提优测试(时间:90分钟满分:100分)一、选择题(每题2分,共26分)1.在圆的周长C=2R中,常量与变量分别是().A.2是常量,C、、R是变量 B.2是常量,C、R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量2.如果每盒圆珠笔有12枝,售价18元,那么购买圆珠笔的总金额y(元)与购买圆珠笔的数量x(枝)之间的关系是().2x B.y=x C.y=12x D.y=18x233.图中的折线ABCDE描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶的时间t(h)之间的函数关系,根据图中提供的信息.给出下列说法:①汽车共行驶了120km;②汽车在行驶途中停留了0.5h;③汽车在整个行驶过程中的平均速度为803km/h;④汽车自出发后3~4.5h之间行驶的速度在逐渐减少.其中正确的说法有()A.1个B.2个C.3个D.4个4.下列函数:①y=x;②y=2x+11;③y=x2+x+1;④y=1x中.是关于x的一次函数的有().A.4个B.3个C.2个D.1个5.函数y=(m2)x n-1+n是关于x的一次函数,m,n应满足的条件是().A.m≠2且n=0B.m=2且n=2C.m≠2且n=2D.m=2且n=06.若点(3,m)在函数y=13x+2的图象上.则m的值为().A.0B.1C.2D.37.下列图象中,表示一次函数y=mx+n与正比例函数y=mx(m,n是常数且mn≠0)图象的是().A.x y20,8.在平面直角坐标系中,已知点A(4,0),B(2,0),若点C在一次函数y=12x+2的图象上,且△ABC为直角三角形.则满足条件的点C有().A.1个B.2个C.3个D.4个9.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象.如图所示,则所解的二元一次方程组是().2x y10,B.3x2y103x2y10C.2x y10,3x2y50D.x y20,2x y1010.弹簧的长度y(cm)与断挂物体的质量x(kg)为一次函数的关系,如图所示.由图象可知,不挂物体时.弹簧的长度为().A.7cm B.8cmC.9cm D.10cm11.某游客为了爬上3km高的山顶看日出,先用了1h爬了2km,休息0.5h后,再用1h爬上山顶,游客爬山所用的时间t(h)与山高h(km)间的函数关系用图象表示是().12.以下四条直线中,与直线y=2x+3相交于第三象限的是直线().A.y=2x1B.y=x+3C.y=x+2D.y=x413.一次函数y=kx+b,当3≤x≤1时.对应的y值为l≤y≤9,则kb的值为().A.14 B.6C.1和21D.6和142二、填空题(每题 3 分,共 27 分)14.已知函数:①y=0.3x 7;②y= 2x+5;(9y=4 3x ; ④y= x ;⑤y=3x ;⑥y= (1 x).其中,y 值随 x 值增大而增大的函数是________.(写出序号) 15.点( 5,y 1)和点( 2,y 2)都在直线 y= 2x 上,则 y 1 与 y 2 的大小关系是________. 16.已知 m 是整数,且一次函数 y=(m +4)x+m +2 的图象不经过第二象限,则 m =_______.17.在一次函数 y= 1 1x+ 的图象上,和 x 轴的距离等于 1 的点的坐标是__________.2 22 7 2 1 18 .两直线 l :y= x 与 l : y = x 的交点坐标可以看作是二元一次方程组1 5 5 3 3_________的解.19.若直线 y= x+a 和直线 y=x+b 的交点坐标为(m ,8).则 a+b=_________. 20.一次函数 y=kx+b 的图象经过点(0,4),且与两坐标轴所围成的三角形的面积为 8,则 k=________,b=__________21.如图,OA 、BA 分别表示甲、乙两名学生运动的一次函数图象,图中 s(m )和 t(s)分别表示运动路程和时间,根据图象,判断快者的速度 比慢者的速度每秒快____________.22.已知一次函数 y=(n 4)x+(4 2m )和 y=(n+1)x+m 3,(1)若它们的图象与 y 轴的交点分别是点 P 和点 Q .若点 P 与点 Q 关 于 x 轴对称,m 的值为__________;(2)若这两个一次函数的图象交于点(1,2),则,m ,n 的值为_________. 三、解答题(第 23~26 题每题 9 分,第 27 题 11 分,共 47 分) 23.已知函数 y=(1 2m )x+m +1 ,求当 m 为何值时. (1)y 随 x 的增大而增大?(2)图象经过第一、二、四象限? (3)图象经过第一、三象限?(4)图象与 y 轴的交点在 x 轴的上方?24.已知一次函数y=kx+b的图象经过点(1,5),且与正比例函数y=点(2,a).求:(1)a的值;(2)k,b的值;(3)这两个函数图象与x轴所围成的三角形面积.12x的图象相交于25.如图,点A的坐标为(4,0).点P是直线y=12x+3在第一象限内的点,过P作PM x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OP A的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OP A的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=12x+3上求一点Q,使△QOA是以OA为底的等腰三角形.26.我国是世界上严重缺水的国家之一.为了增强居民节水意识.某市自来水公司对居民用水采用以户为单位分段汁费办法收费.即一月用水10t以内(包括10t)的用户.每吨收水费a元,一月用水超过10t的用户,10t水仍按每吨a元收费,超过10t的部分,按每吨b元(b>a)收费.设一户居民月用水x(t),应缴水费y(元).y与x之间的函数关系如图所示.(1)求a的值,某户居民上月用水8t.应收水费多少元?(2)求b的值,并写出当x>10时.y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4t.两家共收消费46元.求他们上月分别用水多少吨?27.夏天容易发生腹泻等肠道疾病。
初中数学八年级上册一次函数压轴题套真题
初中数学八年级上册一次函数压轴题一、综合题1. 如图,直线L:与x轴、y轴分别交于A、B两点,在y 轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动。
(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标。
2. 在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0),点P是直线AB上的一个动点,记点P关于y轴对称的点为P′.(1)当b=3时(如图1),①求直线AB的函数表达式.(2)②在x轴上找一点Q(点O除外),使△APQ与△AOB全等,直接写出点Q的所有坐标________(3)若点P在第一象限(如图2),设点P的横坐标为a,作PC⊥x轴于点C,连结AP′,CP′.当△ACP′是以点P′为直角顶点的等腰直角三角形时,求出a,b的值.(4)当线段OP′恰好被直线AB垂直平分时(如图3),直接写出b=________.3. 直线y=﹣x+3和x轴、y轴的交点分别为B、C,点A的坐标是(﹣,0),另一条直线经过点A、C.(1)求线段AC所对应的函数表达式;(2)动点M从B出发沿BC运动,速度为1秒一个单位长度.当点M运动到C 点时停止运动.设M运动t秒时,△ABM的面积为S.①求S与t的函数关系式;②当t为何值时,S= S△ABC,(注:S△ABC表示△ABC的面积),求出对应的t值;③当t=4的时候,在坐标轴上是否存在点P,使得△BMP是以BM为直角边的直角三角形?若存在,请直接写出P点坐标,若不存在,请说明理由.4. 如图,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,与直线l2:y=﹣x交于点P.直线l3:y=﹣x+4与x轴交于点C,与y轴交于点D,与直线l1交于点Q,与直线l2交于点R.(1)点A的坐标是________,点B的坐标是________,点P的坐标是________;(2)将△POB沿y轴折叠后,点P的对应点为P′,试判断点P′是否在直线l3上,并说明理由;(3)求△PQR的面积.5. 如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OABC的面积相等时,求点P的坐标.。
(必考题)初中数学八年级数学上册第四单元《一次函数》测试卷(含答案解析)(4)
一、选择题1.A ,B 两地相距12千米,甲骑自行车从A 地出发前往B 地,同时乙步行从B 地出发前往A 地,如图的折线OPQ 和线段EF 分别表示甲乙两人与A 地的距离y 甲、y 乙与他们所行时间x(h)之间的函数关系,且OP 与EF 交于点M ,下列说法:①y 乙=-2x+12;②线段OP 对应的y 甲与x 的函数关系式为y 甲=18x ;③两人相遇地点与A 地的距离是9km ;④经过38小时或58小时时,甲乙两个相距3km .其中正确的个数是( )A .1个B .2个C .3个D .4个2.已知一次函数()20y kx k =-≠的函数值y 随x 的增大而减小,则函数()20y kx k =-≠ 的图象大致是( )A .B .C .D .3.已知正比例函数()0y kx k =≠的函数值随的增大而增大,则一次函数1y x k =+的图象大致是( )A .B .C .D .4.下列各图分别近似地刻画了现实生活中两变量之间的变化关系,其中,能大致刻画张老师从住家小区单元的2楼坐电梯到5楼(中途不停)中高度与时间关系的变化图是( )A .B .C .D .5.如图,直线l:33y x,过点A(0,1)作y 轴的垂线交直线l 于点B,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…按此作法继续下去,则点A 2015的坐标为( )A .(0,20154)B .(0, 20144)C .(0, 20153)D .(0, 20143)6.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论: ①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时; ③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,54t=或154其中正确的结论有()A.1个B.2个C.3个D.4个7.弹簧大家了解吗?弹簧挂上物体后会伸长。
沪科版八年级上册数学第12章一次函数单元测试卷(Word版-含答案)
沪科版八年级上册数学第12章一次函数单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.如图,把两根木条AB 和AC 的一端A 用螺栓固定在一起,木条AB 自由转动至AB ′位置.在转动过程中,下面的量是常量的为( )A .∠BAC 的度数B .AB 的长度C .BC 的长度D .∠ABC 的面积2.若关于x 的方程﹣2x +b =0的解为x =2,则直线y =﹣2x +b 一定经过点( )A .(2,0)B .(0,3)C .(4,0)D .(2,5)3.如图,直线3y x =-+与y mx n =+交点的横坐标为1,则关于x 、y 的二元一次方程组3x y mx y n +=⎧⎨-+=⎩的解为( )A .13x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .11x y =⎧⎨=⎩4.根据如图所示的程序计算函数y 的值,若输入x 的值是8,则输出y 的值是3-,若输入x 的值是8-,则输出y 的值是( )A .10B .14C .18D .225.已知函数y =(m ﹣3)28m x -+4是关于x 的一次函数,则m 的值是( )A .m =±3B .m ≠3C .m =3D .m =﹣36.下列函数关系式中,自变量x 的取值范围错误的是( )A .y =2x 2中,x 为全体实数B .yx ≠﹣1C .y x =0D .yx >﹣77.如图,直线2y x =与y kx b =+相交于点(),2P m ,则关于x 的方程2kx b +=的解是()A .12x = B .1x = C .2x = D .4x =8.对于一次函数y =﹣x ﹣2的相关性质,下列描述错误的是( )A .函数图像经过第二、三、四象限B .函数图像与x 轴的交点坐标为(﹣1,0)C .y 随x 的增大而减小D .函数图像与坐标轴围成的三角形面积为29.在平面直角坐标系中,A 点坐标为(4,2),在x 轴上有一动点M ,直线y =x 上有一动点N ,则∠AMN 的周长的最小值( )AB .C .10D .4010.如图,直线11y k x b =+和直线22y k x b =+相交于点2,23M ⎛⎫- ⎪⎝⎭,则关于x ,y 的方程组1122y k x b y k x b =+⎧⎨=+⎩,的解为( )A .2,32x y ⎧=⎪⎨⎪=-⎩B .2,23x y =-⎧⎪⎨=⎪⎩C .2,32x y ⎧=⎪⎨⎪=⎩D .2,23x y =-⎧⎪⎨=-⎪⎩11.函数y中,自变量x 的取值范围是( ) A .x >﹣2 B .x ≥﹣2 C .x >﹣2且x ≠1 D .x ≥﹣2且x ≠112.在平面直角坐标系中,点()5,1A --关于原点对称的点的坐标为(),A a b ',关于x 轴对称的点的坐标为(),B c d ,则一次函数()()y a c x b d =--+的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(本大题共8小题,每小题3分,共24分)13.如图,平面直角坐标系xoy 中,直线y 1=k 1x +b 1的图像与直线y 2=k 2x +b 2的图像相交于点(-1,-3),当y 1<y 2时,实数x 的取值范围为__________.14.如图,直线AB 是一次函数1y kx k =+-的图象,若关于x 的方程10kx k +-=的解是23x =-,则直线AB 的函数关系式为_________.15.如图,直线5y x =+与直线0.515y x =+交于点()20,25A ,则方程50.515x x +=+的解为______.16.如图,直线3y kx =-与x 轴、y 轴分别交于点B 与点A ,13OB OA =,点C 是直线AB 上的一点,且位于第二象限,当∠OBC 的面积为3时,点C 的坐标为______.17.若平面直角坐标系中,设点(2,)P a 在正比例函数y x =的图像上,则点,35()a Q a -位于第______象限.18.若方程组()23312y kx y k x =-⎧⎨=-+⎩无解,则2y kx =-图象不经过第________象限. 19.一次函数10y kx =+的图象与两坐标轴围成的三角形的面积等于5,则该直线的表达式为________. 20.如图,在平面直角坐标系中,已知(3,6),(2,2)A B -,在x 轴上取两点C ,D (点C 在点D 左侧),且始终保持1CD =,线段CD 在x 轴上平移,当AD BC +的值最小时,点C 的坐标为________.三、解答题(本大题共5小题,每小题8分,共40分)21.为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x 元,去甲商店购买实付y 甲元,去乙商店购买实付y 乙元,其函数图象如图所示.(1)分别求y,y乙关于x的函数关系式;甲(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.22.已知如图,在平面直角坐标系中,点A(3,7)在正比例函数图像上.(1)求正比例函数的解析式.(2)点B(1,0)和点C都在x轴上,当∠ABC的面积是17.5时,求点C的坐标.23.如图,直线1y=kx+b与坐标轴交于A(0,2),B(m,0)两点,与直线2y=-4x+12交于点P(2,n),直线2y=-4x+12交x轴于点C,交y轴于点D.(1)求m ,n 值;(2)直接写出方程组412y kx b y x =+⎧⎨=-+⎩的解为 ; (3)求△PBC 的面积.24.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A ,B 两种型号的空气净化器,两种净化器的销售相关信息如表:(1)每台A 型空气净化器的销售利润是 元;每台B 型空气净化器的销售利润是 元;(2)该商场计划一次购进两种型号的空气净化器共80台,其中B 型空气净化器的进货量不少于A 型空气净化器的2倍,为使该商场销售完这80台空气净化器后的总利润最大,那么应该购进A型空气净化器台;B型空气净化器台.(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时.某长方体室内活动场地的总面积为300m2,室内墙高3m.该场地负责人计划购买7台空气净化器,每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,他至少要购买A型空气净化器多少台?25.如图,在平面直角坐标系xOy中,直线y=2x﹣6交x轴于点C,交y轴于点D,点A,B的坐标分别为(1,0),(0,2),直线AB与直线CD相交于点P.(1)直线AB的表达式为;S△=;(2)点P的坐标为,连接OP,则APO(3)若直线CD上存在一点E,使得∠BPE的面积是∠APO的面积的4倍,求点E的坐标.参考答案:1.B2.A3.C4.C5.D6.B7.B8.B9.B10.A11.D12.B13.x <-114.32y x =+15.20x16.()3,6-17.一18.二19.1010y x =-+或1010y x =+20.(-1,0)21.(1)y 甲=0.85x ;y 乙与x 的函数关系式为y 乙=()03000.790(300)x x x x ⎧≤≤⎨+⎩> (2)(600,510)(3)当x <600时,选择甲商店更合算;当x =600时,两家商店所需费用相同;当x >600时,选择乙商店更合算.22.(1)73y x =;(2)(6,0)或(4,0)-. 23.(1)2m =-,4n =;(2)24x y =⎧⎨=⎩; (3)1024.(1)200,150(2)26,54(3)4台25.(1)y=﹣2x+2(2)(2,﹣2),1(3)E(3,0)或(1,﹣4)。
八年级数学《一次函数》单元综合测试卷
10
20
30
40
50 t /万
1 1 千米/分 B.2 千米/分 C.1 千米/分 D. 千米/分 2 3
二、仔细填一填(每题 4 分,共 40 分) 11.已知函数 y=4-2x 的图象经过(1,a),则 a 的值是_____________. 1 是正比例函数,则 m=_____________. 13.在一次函数 y=2x-2 的图像上,与 x 轴的距离等于 1 的点的坐标是 14.当 x=________时,函数 y=2x-4 与 y=3x-3 有相同的函数值. 15.写出一次函数 y=-2x+3 的图象上的一个点的坐标是:____________. 16.如果一次函数 y=kx+b 的图象如图所示,那么 k______0,b______0. 17.把直线 y=-2x 沿 y 轴向上平移 2 个单位长度,所得直线的函数关系式为___________. 18.一长方形的长比宽多 2 厘米,则这长方形的面积 S(厘米 2)与长 x(厘米)的函数关系式是 19.一次函数 y=-2x+4 的图象与 x 轴、y 轴所围成的三角形面积是________. 20. 正方形 A1B1C1O,A2B2C2C1,A3B3C3C2 按如图所示的方式放置.点 A1,A2,A3 和点 C1,C2,C3 分别在直线 x 轴上,已知点 B1(1,1),B2(3,2), 则 B3 的坐标是_______. 三、灵活地运用 21. (本题 6 分)已知一次函数 y=kx+b 的图像如图所示,求其函数关系式。 22. (本题 10 分)一次函数 y=kx+4 的图象经过点(-3,-2). (1)求这个函数表达式; (2)画出该函数的图象. (3)判断(-5,3)是否在此函数的图象上;
北师大版八年级数学上册第五章二元一次方程组与一次函数综合练习题(有答案)
二元一次方程组与一次函数综合复习一.选择题1.如图,射线OC的端点O在直线AB上,∠AOC的度数比∠BOC的2倍多10度.设∠AOC和∠BOC的度数分别为x,y,则下列正确的方程组为()A.B.C.D.2.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②甲行走的速度是乙的1.5倍;③b=960;④a=34.以上结论正确的有()A.①④B.①②③C.①③④D.①②④3.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A、B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④B.①②④C.①②D.②③④二.填空题4.方程组解的情况是,则一次函数y=2﹣2x与y=5﹣2x图象之间的位置关系是.5.如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC 分成面积相等的两部分.那么b=.6.如图,平面直角坐标系中,已知点P(2,2),C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线OP交于点A,且BD=4AD,直线CD与直线OP交于点Q,则点Q的坐标为.7.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为.8.如图,在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B,将△AOB沿过点A 的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为,点D的坐标为.三.解答题9.已知方程组,求:(1)当m为何值时,x,y的符号相反,绝对值相等;(2)当m为何值时,x比y大1.10.阅读下列解方程组的方法,然后回答问题.解方程组解:由①﹣②得2x+2y=2,即x+y=1,③③×16得16x+16y=16,④②﹣④得x=﹣1,从而可得y=2所以原方程组的解是.请你仿上面的解法解方程组.11.阅读材料:善于思考的小军在解方程组时,采用了一种“整体代入”的解法:解:由①得x﹣y=1③将③代入②得:4×1﹣y=5,即y=﹣1把y=﹣1代入③得x=0,∴方程组的解为请你模仿小军的“整体代入”法解方程组,解方程.12.如图所示,矩形OABC中,OA=4,OC=2,D是OA的中点,连接AC、DB,交于点E,以O为原点,OA所在的直线为x轴,建立坐标系.(1)分别求出直线AC和BD的解析式;(2)求E点的坐标;(3)求△DEA的面积.13.如图,直线l与x轴、y轴分别交于点A(3,0)、点B(0,2),以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,点P(1,a)为坐标系中的一个动点.(1)请直接写出直线l的表达式;(2)求出△ABC的面积;(3)当△ABC与△ABP面积相等时,求实数a的值.14.一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共有多少个子女?15.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元,问:(1)甲、乙两组单独工作一天,商店各付多少元?(2)设工作总量为单位1,单独请哪组,商店所付费用较少?(3)若装修完后,商店每天可盈利200元,你认为请哪个装修组施工能使商店的利益最大化?说说你的理由.16.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下列问题:(1)货车离甲地距离y(千米)与时间x(小时)之间的函数式为;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当轿车与货车相距20千米时,求x的值.17.甲、乙两车分别从A、B两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V甲、V乙.(2)求m的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.18.张庄甲、乙两家草莓采摘园的草莓销售价格相同,“春节期间”,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,某游客的草莓采摘量为x(千克),在甲园所需总费用为y甲(元),在乙园所需总费用为y乙(元),y甲、y乙与x之间的函数关系如图所示,折线OAB表示y乙与x之间的函数关系.(1)甲采摘园的门票是元,两个采摘园优惠前的草莓单价是每千克元;(2)当x>10时,求y乙与x的函数表达式;(3)游客在“春节期间”采摘多少千克草莓时,甲、乙两家采摘园的总费用相同.19.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y (米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?20.温度与我们的生活息息相关,如图是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(℉).设摄氏温度为x(℃)华氏温度为y(℉),则y是x的一次函数,通过观察我们发现,温度计上的摄氏温度为0℃时,华氏温度为32℉;摄氏温度为﹣20℃时,华氏温度为﹣4℉请根据以上信息,解答下列问题(1)仔细观察图中数据,试求出y与x的函数关系式;(2)当摄氏温度为﹣5℃时,华氏温度为多少?(3)当华氏温度为59℉时,摄氏温度为多少?21.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米.(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y (米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?22.某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.23.如图,直线y=﹣x+1与x轴,y轴分别交于B,A两点,动点P在线段AB上移动,以P为顶点作∠OPQ=45°交x轴于点Q.(1)求点A和点B的坐标;(2)比较∠AOP与∠BPQ的大小,说明理由.(3)是否存在点P,使得△OPQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.24.甲、乙商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,顾客到哪家商场购物花费少?25.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC.(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.26.一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,两车行驶x小时后,记客车离甲地的距离为y1千米,轿车离甲地的距离为y2千米,y1、y2关于x的函数图象如图.(1)根据图象,直接写出y1、y2关于x的函数关系式;(2)当两车相遇时,求此时客车行驶的时间;(3)两车相距200千米时,求客车行驶的时间.27.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.28.如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C 在y轴的正半轴上,OA=10OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处(1)求CE和OD的长;(2)求直线DE的表达式;(3)直线y=kx+b与DE平行,当它与矩形OABC有公共点时,直接写出b的取值范围.29.如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A 点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.30.如图,直线y=kx+6与x、y轴分别交于E、F.点E坐标为(﹣8,0),点A的坐标为(﹣6,0),P(x,y)是直线y=kx+6上的一个动点.(1)求k的值;(2)若点P是第二象限内的直线上的一个动点,当点P运动过程中,试写出三角形OP A的面积S与x 的函数关系式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置时,三角形OP A的面积为,并说明理由.31.如图,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限内作等边△ABC.(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,),请用含a的式子表示四边形ABPO的面积,并求出当△ABP 的面积与△ABC的面积相等时a的值.32.如图:在平面直角坐标系xOy中,已知正比例函数y=与一次函数y=﹣x+7的图象交于点A.(1)求点A的坐标;(2)在y轴上确定点M,使得△AOM是等腰三角形,请直接写出点M的坐标;(3)如图、设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=和y =﹣x+7的图象于点B、C,连接OC,若BC=OA,求△ABC的面积及点B、点C的坐标;(4)在(3)的条件下,设直线y=﹣x+7交x轴于点D,在直线BC上确定点E,使得△ADE的周长最小,请直接写出点E的坐标.33.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.34.某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,根据图象信息解答下列问题:(1)求张强返回时的速度;(2)妈妈比按原速返回提前多少分钟到家?(3)请直接写出张强与妈妈何时相距1000米?参考答案一.选择题1.解:根据∠AOC的度数比∠BOC的2倍多10°,得方程x=2y+10;根据∠AOC和∠BOC组成了平角,得方程x+y=180.列方程组为.故选:B.2.解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②错误;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故结论正确的有①④.故选:A.3.解:由图象可知A、B两城市之间的距离为300km,小带行驶的时间为5小时,而小路是在甲出发1小时后出发的,且用时3小时,即比早小带到1小时,∴①②都正确;设小带车离开A城的距离y与t的关系式为y小带=kt,把(5,300)代入可求得k=60,∴y小带=60t,设小路车离开A城的距离y与t的关系式为y小路=mt+n,把(1,0)和(4,300)代入可得,解得:,∴y小路=100t﹣100,令y小带=y小路,可得:60t=100t﹣100,解得:t=2.5,即小带、小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5小时,即小路车出发1.5小时后追上小带车,∴③不正确;令|y小带﹣y小路|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y小带=50,此时小路还没出发,当t=时,小路到达B城,y小带=250;综上可知当t的值为或或或时,两车相距50千米,∴④不正确;故选:C.二.填空题4.解:方程组解的情况是无解,则一次函数y=2﹣2x与y=5﹣2x图象之间的位置关系是平行.故答案为无解,平行.5.解:∵将矩形OABC分成面积相等的两部分,∴直线经过矩形的中心,∵B点坐标为B(12,5),∴矩形中心的坐标为(6,),∴×6+b=,解得b=1.故答案为:1.6.解:过点P作PE⊥OC于E,EP的延长线交AB于F.∵AB⊥OB,∴∠OBF=∠EOB=∠FEO=90°,∴四边形EOBF是矩形,∵P(2,2),∴OE=PE=BF=2,∵∠CPD=90°,∴∠CPE+∠DPF=90°,∠ECP+∠CPE=90°,∴∠ECP=∠DPF,在△CPE和△PDF中,,∴△CPE≌△PDF(AAS),∴DF=PE=2,∴BD=BF+DF=4,∵BD=4AD,∴AD=1,AB=OB=5,∴CE=PF=3,∴D(5,4),C(0,5),设直线CD的解析式为y=kx+b则有,解得,∴直线CD的解析式为y=﹣x+5,由解得,∴点Q的坐标为(,).故答案为(,).7.解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5.∴CC′=5﹣1=4.∴S▱BCC′B′=4×4=16.即线段BC扫过的面积为16.故答案为16.8.解:由折叠的性质得:△ADB≌△ADC,∴AB=AC,BD=CD,对于直线y=﹣x+3,令x=0,得到y=3;令y=0,得到x=4,∴OA=4,OB=3,在Rt△AOB中,根据勾股定理得:AB=5,∴OC=AC﹣OA=AB﹣OA=5﹣4=1,即C(﹣1,0);在Rt△COD中,设CD=BD=x,则OD=3﹣x,根据勾股定理得:x2=(3﹣x)2+1,解得:x=,∴OD=,即D(0,).故答案为:(﹣1,0);(0,)三.解答题9.解:方程组整理解得:x=﹣2,y=0.5m+3.5,(1)当x,y的符号相反,绝对值相等,可得0.5m+3.5=2,解得:m=﹣3;(2)当x比y大1,可得:0.5m+3.5=﹣3解得:m=﹣1310.解:①﹣②得:3x+3y=3,即x+y=1③,③×2013得:2013x+2013y=2013④,②﹣④得:x=﹣1,把x=﹣1代入③得:y=2,则方程组的解为.11.解:将①代入②得:1+2y=9,即y=4,将y=4代入①得:x=7,∴原方程组的解为:.12.解:(1)设直线AC的解析式为:y=kx+b,由题意可得:A(4,0),C(0,2),∴,解得:,∴直线AC的解析式为:y=﹣x+2,设直线BD的解析式为:y=mx+n,由题意可得:B(4,2),D(2,0),∴,解得:.∴直线BD的解析式为:y=x﹣2;(2)由题意得:,解得:,∴E点的坐标为(,);(3)△DEA的面积=×2×=.13.解:(1)设直线AB所在的表达式为:y=kx+b,则,解得:,故直线l的表达式为:;(2)在Rt△ABC中,由勾股定理得:AB2=OA2+OB2=32+22=13∵△ABC为等腰直角三角形,∴S△ABC=AB2=;(3)连接BP,PO,P A,则:①若点P在第一象限时,如图1:∵S△ABO=3,S△APO=a,S△BOP=1,∴S△ABP=S△BOP+S△APO﹣S△ABO=,即,解得;②若点P在第四象限时,如图2:∵S△ABO=3,S△APO=﹣a,S△BOP=1,∴S△ABP=S△AOB+S△APO﹣S△BOP=,即,解得a=﹣3;故:当△ABC与△ABP面积相等时,实数a的值为或﹣3.14.解:设夫妇现在的年龄和为x,子女年龄和为y,共有n个子女,由夫妇现在年龄的和是其子女年龄和的6倍可知:x=6y,由他们两年前年龄和是子女两年前年龄和的10倍可知:x﹣2×2=10×(y﹣2n),由6年后他们的年龄和是子女6年后年龄和的3倍可知:x+2×6=3×(y+6n),列出方程组,将x=6y代入方程组中解得:n=3.答:这对夫妇共有3个子女.15.解:(1)设甲组单独工作一天商店应付x元,乙组单独工作一天商店应付y元,由题意可得:,解得:,答:甲组单独工作一天商店应付300元,乙组单独工作一天商店应付140元,(2)设甲组每天工作效率为m,乙组每天工作效率为n,由题意可得:,解得:,∴甲组单独完成装修需(天),乙组单独完成装修需(天),∴单独请甲组需付300×12=3600(元),单独请乙组需付140×24=3360(元),∵3600>3360,答:单独请乙组费用较少,(3)由第(2)已求得:甲组单独做12天完成,商店需付款12×300=3600(元),乙组单独做24天完成,商店需付款24×140=3360(元),但甲组比乙组早12天完工,商店12天的利润为200×12=2400(元),即开支为3600﹣2400=1200元<3360元,答:选择甲装修组施工能使商店的利益最大化.16.解:(1)设货车离甲地距离y(干米)与时间x(小时)之间的函数式为y=k1x,根据题意得5k1=300,解得k1=60,∴y=60x,即货车离甲地距离y(干米)与时间x(小时)之间的函数式为y=60x;故答案为:y=60x;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);解方程组,解得,∴当x=3.9时,轿车与货车相遇;(3)80÷60=,即点B的坐标(,0),∴轿车开始的速度为:(千米/时),当x=2.5时,y货=150,两车相距=150﹣80=70>20,由题意或60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,解得x=3.5或4.3小时.答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.17.解:(1)由图可得,,解得,,答:甲的速度是60km/h乙的速度是80km/h;(2)m=(1.5﹣1)×(60+80)=0.5×140=70,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=,若甲车没有故障停车,则可以提前:1.5﹣=(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇.18.解:(1)由图象可得,甲采摘园的门票是60元,两个采摘园优惠前的草莓单价是:300÷10=30(元/千克),故答案为:60,30;(2)当x>10时,设y乙与x的函数表达式是y乙=kx+b,,得,即当x>10时,y乙与x的函数表达式是y乙=12x+180;(3)由题意可得,y甲=60+30×0.6x=18x+60,当0<x<10时,令18x+60=30x,得x=5,当x>10时,令12x+180=18x+60,得x=20,答:采摘5千克或20千克草莓时,甲、乙两家采摘园的总费用相同.19.:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x ≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.20.解:(1)设y关于x的函数关系式为y=kx+b,由温度计的示数得x=0,y=32;x=20时,y=68.所以,解得:.故y关于x的函数关系式为y=x+32;(2)当x=﹣5时,y=×(﹣5)+32=23.即当摄氏温度为﹣5℃时,华氏温度为23℉;(3)令y=59,则有x+32=59,解得:x=15.故当华氏温度为59℉时,摄氏温度为15℃.21.解:(1)(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30.(2)当0≤x≤2时,y=15x;当x>2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=.(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x ≤20).当10x+100﹣(30x﹣30)=50时,解得:x=4;当30x﹣30﹣(10x+100)=50时,解得:x=9;当300﹣(10x+100)=50时,解得:x=15.答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.22.解:(1)由题意可得:y=120x+140(100﹣x)=﹣20x+14000;(2)据题意得,100﹣x≤3x,解得x≥25,∵y=﹣20x+14000,﹣20<0,∴y随x的增大而减小,∵x为正整数,∴当x=25时,y取最大值,则100﹣x=75,即商店购进25台A型电脑和75台B型电脑的销售利润最大;(3)据题意得,y=120x+140(100﹣x),即y=﹣20x+14000 (25≤x≤60)当y=13600时,解得x=20,不符合要求y随x的增大而减小,∴当x=25时,y取最大值,即商店购进25台A型电脑和75台B型电脑的销售利润最大,此时y=13500元.当x=60时,y取得最小值,此时y=12800元故这100台电脑销售总利润的范围为12800≤y≤1350023.解:(1)∵直线y=﹣x+1与x轴,y轴分别交于A,B两点,令x=0,则y=0+1=1,∴A(0,1),令y=0,则0=﹣x+1,解得:x=1.∴B(1,0).(2)∠AOP=∠BPQ.理由如下:过P点作PE⊥OA交OA于点E,∵A(0,1),B(1,0).∴OA=OB=1,∴∠OAB=∠OBA=45°,∵PE⊥OA,∴∠APE=45°,∵∠OPQ=45°,∴∠OPE+∠BPQ=90°,∵∠AOP+∠OPE=90°,∴∠AOP=∠BPQ.(3)△OPQ可以是等腰三角形.理由如下:如图,过P点PE⊥OA交OA于点E,(ⅰ)若OP=OQ,则∠OPQ=∠OQP=∠OPQ,∴∠POQ=90°,∴点P与点A重合,∴点P坐标为(0,1),(ⅱ)若QP=QO,则∠OPQ=∠QOP=45°,所以PQ⊥QO,可设P(x,x)代入y=﹣x+1得x=,∴点P坐标为(,),(ⅲ)若PO=PQ∵∠OPQ+∠1=∠2+∠3,而∠OPQ=∠3=45°,∴∠1=∠2,又∵∠3=∠4=45°,∴△AOP≌△BPQ(AAS),PB=OA=1,∴AP=﹣1由勾股定理求得PE=AE=1﹣,∴EO=,∴点P坐标为(1﹣,),∴点P坐标为(0,1),(,)或(1﹣,)时,△OPQ是等腰三角形.24.解:设在甲商场购买x元的花费为W甲元,在乙商场购买的花费为W乙元,由题意,得W甲=100+(x﹣100)×0.9=0.9x+10(x≥100)W乙=50+0.95(x﹣50)=0.95x+2.5(x≥50).当W甲>W乙时,0.9x+10>0.95x+2.5,x<150W甲=W乙时,0.9x+10=0.95x+2.5,x=150W甲<W乙时,0.9x+10<0.95x+2.5,x>150.综上所述:当x<150时,在乙商场购买优惠些,当x=150时,在甲、乙两商场购买一样优惠,当x>150时,在甲商场购买优惠些.25.解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).26.解:(1)设y1=kx,则将(10,600)代入得出:600=10k,解得:k=60,∴y1=60x(0≤x≤10),设y2=ax+b,则将(0,600),(6,0)代入得出:解得:∴y2=﹣100x+600 (0≤x≤6);(2)当两车相遇时,y1=y2,即60x=﹣100x+600解得:;∴当两车相遇时,求此时客车行驶了小时;(3)若相遇前两车相距200千米,则y2﹣y1=200,∴﹣100x+600﹣60x=200,解得:,若相遇后相距200千米,则y1﹣y2=200,即60x+100x﹣600=200,解得:x=5∴两车相距200千米时,客车行驶的时间为小时或5小时.27.解;(1)∵点P(m,3)为直线l1上一点,∴3=﹣m+2,解得m=﹣1,∴点P的坐标为(﹣1,3),把点P的坐标代入y2=x+b得,3=×(﹣1)+b,解得b=;(2)∵b=,∴直线l2的解析式为y=x+,∴C点的坐标为(﹣7,0),①由直线l1:y1=﹣x+2可知A(2,0),∴当Q在A、C之间时,AQ=2+7﹣t=9﹣t,∴S=AQ•|y P|=×(9﹣t)×3=﹣t;当Q在A的右边时,AQ=t﹣9,∴S=AQ•|y P|=×(t﹣9)×3=t﹣;即△APQ的面积S与t的函数关系式为S=﹣t+或S=t﹣;②∵S<3,∴﹣t+<3或t﹣<3解得7<t<9或9<t<11.③存在;设Q(t﹣7,0),当PQ=P A时,则(t﹣7+1)2+(0﹣3)2=(2+1)2+(0﹣3)2∴(t﹣6)2=32,解得t=3或t=9(舍去),当AQ=P A时,则(t﹣7﹣2)2=(2+1)2+(0﹣3)2∴(t﹣9)2=18,解得t=9+3或t=9﹣3;当PQ=AQ时,则(t﹣7+1)2+(0﹣3)2=(t﹣7﹣2)2,∴(t﹣6)2+9=(t﹣9)2,解得t=6.故当t的值为3或9+3或9﹣3或6时,△APQ为等腰三角形.28.解:(1)依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△ABE中,AE=AO=10,AB=8,BE===6,∴CE=10﹣6=4,在Rt△DCE中,DC2+CE2=DE2,又∵DE=OD,∴(8﹣OD)2+42=OD2,∴OD=5.(2)∵CE=4,∴E(4,8).∵OD=5,∴D(0,5),设直线DE的解析式为y=mx+n,∴,解得,∴直线DE的解析式为y=x+5.(3)∵直线y=kx+b与DE平行,∴直线为y=x+b,∴当直线经过A点时,0=×10+b,则b=﹣,当直线经过C点时,则b=8,∴当直线y=kx+b与矩形OABC有公共点时,﹣≤b≤8且b≠5.29.解:(1)对于直线AB:,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t<4时,OM=OA﹣AM=4﹣t,S△OCM=×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=×4×(t﹣4)=2t﹣8;(3)分为两种情况:①当M在OA上时,OB=OM=2,△COM≌△AOB.∴AM=OA﹣OM=4﹣2=2∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间是2秒钟;M(2,0),②当M在AO的延长线上时,OM=OB=2,则M(﹣2,0),此时所需要的时间t=[4﹣(﹣2)]/1=6秒,即M点的坐标是(2,0)或(﹣2,0).30.解:(1)∵点E(﹣8,0)在直线y=kx+6上,∴0=﹣8k+6,∴k=;(2)∵k=,∴直线的解析式为:y=x+6,∵点P(x,y)是第二象限内的直线y=x+6上的一个动点,∴y=x+6>0,﹣8<x<0.∵点A的坐标为(﹣6,0),∴OA=6,∴S=OA•|y P|=×6×(x+6)=x+18.∴三角形OP A的面积S与x的函数关系式为:S=x+18(﹣8<x<0);(3)∵三角形OP A的面积=OA•|y|=,∴×6×|y|=,解得|y|=,∴y=±.当y=时,=x+6,解得x=﹣,故P(﹣,);当y=﹣时,﹣=x+6,解得x=﹣,故P(﹣,﹣);综上可知,当点P的坐标为P(﹣,)或P(﹣,﹣)时,三角形OP A的面积为.31.解:(1)y=﹣x+1与x轴、y轴交于A、B两点,∴A(,0),B(0,1).∵△AOB为直角三角形,∴AB=2.∴S△ABC=×2×sin60°=.(2)S四边形ABPO=S△ABO+S△BOP=×OA×OB+×OB×h=××1+×1×|a|.∵P在第二象限,∴S四边形ABPO=﹣=,S△ABP=S ABPO﹣S△AOP=(﹣)﹣×OA×.∴S△ABP=﹣﹣=﹣=S△ABC=.∴a=﹣.32.解:(1)联立得:,解得:,则点A的坐标为(3,4);(2)根据勾股定理得:OA==5,如图1所示,分四种情况考虑:当OM1=OA=5时,M1(0,5);当OM2=OA=5时,M2(0,﹣5);当AM3=OA=5时,M3(0,8);当OM4=AM4时,M4(0,),综上,点M为(0,5)、(0,﹣5)、(0,8)、(0,);(3)设点B(a,a),C(a,﹣a+7),∵BC=OA=×5=14,∴a﹣(﹣a+7)=14,解得:a=9,过点A作AQ⊥BC,如图2所示,∴S△ABC=BC•AQ=×14×(9﹣3)=42,当a=9时,a=×9=12,﹣a+7=﹣9+7=﹣2,∴点B(9,12)、C(9,﹣2);(4)如图3所示,作出D关于直线BC的对称点D′,连接AD′,与直线BC交于点E,连接DE,此时△ADE周长最小,对于直线y=﹣x+7,令y=0,得到x=7,即D(7,0),由(3)得到直线BC为直线x=9,∴D′(11,0),设直线AD′解析式为y=kx+b,把A与D′坐标代入得:,解得:,∴直线AD′解析式为y=﹣x+,令x=9,得到y=1,则此时点E坐标为(9,1).33.解:(1)解方程x2﹣6x+8=0可得x=2或x=4,∵BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC,∴BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(4,0),设直线BD解析式为y=kx+b,把B、D坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y轴的距离为,又由(1)可得F(0,),∴OF=,∴S△OFH=××=;(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,由(2)可知OF=,OD=4,则有△MOF∽△FOD,∴=,即=,解得OM=,∴M(﹣,0),且D(4,0),∴G(,0),设N点坐标为(x,y),则=,=0,解得x=,y=﹣,此时N点坐标为(,﹣);②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD∽△DOM,∴=,即=,解得OM=6,∴M(0,﹣6),且F(0,),∴MG=MF=,则OG=OM﹣MG=6﹣=,∴G(0,﹣),设N点坐标为(x,y),则=0,=﹣,解得x=﹣4,y=﹣,此时N(﹣4,﹣);③当∠FMD=90°时,则可知M点为O点,如图3,∵四边形MFND为矩形,∴NF=OD=4,ND=OF=,可求得N(4,);综上可知存在满足条件的N点,其坐标为(,﹣)或(﹣4,﹣)或(4,).34.解:(1)3000÷(50﹣30)=3000÷20=150(米/分),答:张强返回时的速度为150米/分;(2)(45﹣30)×150=2250(米),点B的坐标为(45,750),妈妈原来的速度为:2250÷45=50(米/分),妈妈原来回家所用的时间为:3000÷50=60(分),60﹣50=10(分),妈妈比按原速返回提前10分钟到家;(3)如图:设线段BD的函数解析式为:y=kx+b,把(0,3000),(45,750)代入得:,解得:,∴y=﹣50x+3000,线段OA的函数解析式为:y=100x(0≤x≤30),设线段AC的解析式为:y=k1x+b1,把(30,3000),(50,0)代入得:解得:,∴y=﹣150x+7500,(30<x≤50)当张强与妈妈相距1000米时,即﹣50x+3000﹣100x=1000或100x﹣(﹣50x+3000)=1000或(﹣150x+7500)﹣(﹣50x+3000)=1000,解得:x=35或x=或x=,∴当时间为35分或分或分时,张强与妈妈何时相距1000米.。
2021-2022学年北师大版八年级数学上册《一次函数的应用》期末综合复习训练(附答案)
2021-2022学年北师大版八年级数学上册《一次函数的应用》期末综合复习训练(附答案)1.速度分别为100km/h和akm/h(0<a<100)的两车分别从相距s千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y(km)与行驶时间t(h)之间的函数关系如图所示.下列说法:①a=60;②b=2;③c=b+;④若s=40,则b=.其中说法正确的是()A.①②③B.①④C.①②D.①③2.小明和小李住在同一个小区,暑假期间,他们相约去缙云山某地露营;小明先出发5分钟后,小李以65米/分的速度从小区出发,小明到达相约地点后放下装备,休息了10分钟,立即按原路以另一速度返回,途中与小李相遇,随后他们一起步行到达目的地.小李与小明之间的距离y(米)与小明出发的时间x(分)之间的关系如图,则下列说法正确的是()A.小明首次到达目的地之前的速度是75米/分B.小明首次到达目的地时,小李距离目的地还有200米C.从小区到目的地路程为2800米D.小明返回时的速度是33米/分3.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了36分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个4.甲、乙两车从A地出发,沿同一路线驶向B地,甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地.甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示,则下列说法:①a=4.5;②甲的速度是60km/h;③乙刚开始的速度是80km/h;④乙出发第一次追上甲用时80min.其中正确的是()A.①②③B.①②④C.①③④D.①②③④5.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离乙地的距离y(单位:km)与慢车行驶时间x(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是()A.h B.h C.h D.2h6.A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系.对于以下说法:①乙车出发1.5小时后甲才出发;②两人相遇时,他们离开A地20km;③甲的速度是40km/h,乙的速度是km/h;④当乙车出发2小时时,两车相距13km.其中正确的结论有()A.1个B.2个C.3个D.4个7.货车和轿车分别沿同一路线从A地出发去B地,已知货车先出发10分钟后,轿车才出发,当轿车追上货车5分钟后,轿车发生了故障,花了20分钟修好车后,轿车按原来速度的继续前进,在整个行驶过程中,货车和轿车均保持各自的速度匀速前进,两车相距的路程y(米)与货车出发的时间x(分钟)之间的关系的部分图象如图所示,对于以下说法:①货车的速度为1500米/分;②OA∥CD;③点D的坐标为(65,27500);④图中a的值是,其中正确的结论有()个.A.1B.2C.3D.48.已知A、B两地相距810千米,甲车从A地匀速前往B地,到达B地后停止.甲车出发1小时后,乙车从B地沿同一公路匀速前往A地,到达A地后停止.设甲、乙两车之间的距离为y(千米),甲车出发的时间为x(小时),y与x的关系如图所示,对于以下说法:①乙车的速度为90千米/时;②点F的坐标是(9,540);③图中a的值是13.5;④当甲、乙两车相遇时,两车相遇地距A地的距离为360千米.其中正确的结论是()A.①②③B.①②④C.②③④D.①③④9.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象,有以下结论:①m=1;②a=40;③甲车从A地到B地共用了6.5小时;④当两车相距50km时,乙车用时为h.其中正确结论的个数是()A.1B.2C.3D.410.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是()A.h B.h C.h D.h11.笔直的海岸线上依次有A,B,C三个港口,甲船从A港口出发,沿海岸线匀速驶向C 港口,1小时后乙船从B港口出发,沿海岸线匀速驶向A港口,两船同时到达目的地.甲船的速度是乙船的1.25倍,甲、乙两船与B港口的距离y(km)与甲船行驶时间x(h)之间的函数关系如图所示.给出下列说法:①A,B港口相距400km;②乙船的速度为80km/h;③B,C港口相距200km;④乙船出发4h时,两船相距220km.其中正确是(填序号).12.小明早8点从家骑自行车出发,沿一条直路去公园锻炼,小明出发的同时,他的爸爸锻炼结束从公园沿同一条道路匀速步行回家;小明在公园锻炼了一会后沿原路以原速返回,小明比爸爸早3分钟到家.设两人离家的距离s(m)与小明离开家的时间t(min)之间的函数关系如图所示,有以下说法:①公园与家的距离为1200米;②爸爸的速度为48m/min;③小明到家的时间为8:22;④小明在返回途中离家360米处与爸爸相遇.其中,说法正确的是:(请把正确说法的序号都填在横线上).13.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子先到达终点;③乌龟比兔子晚出发40分钟;④兔子在760米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)14.小明和小杰在同一直道的A,B两点间作匀速往返走锻炼(忽略掉头等时间).小明从A 地出发,同时小杰从B地出发,两人第一次相遇时小明曾停下接电话数分钟.图中的折线表示从开始到小杰第一次到达A地止,两人之间的距离y(米)与行走时间x(分)的函数关系图象.则图中的b=米,d=分.15.甲、乙两车分别从A、B两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为2:3,甲、乙两车离AB中点C的路程y(千米)与甲车出发时间t(时)的关系图象如图所示,则下列说法①乙车的速度为90千米/时;②a的值为;③b的值为150;④当甲、乙车相距30千米时,甲行走了h或h.正确的是.16.甲、乙两车从A地驶向B地,甲车比乙车早行驶2h,并且在途中休息了0.5h,休息前后速度相同,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论正确的是.①a的值为40;②当1.5<x≤7时,甲车行驶路程y与时间x的函数表达式为y=40x﹣20;③乙车比甲车早1.5h到达B地;④乙车行驶0.5h或2.5h时,两车恰好相距40km.17.甲、乙两人相约周末沿同一条路线登山,甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题.(1)甲登山的速度是多少?(2)乙到达A地后决定提速,提速后乙的速度是甲登山速度的3倍,求乙登山全过程中,登山时距地面的高度y(米)与登山时间x(分钟)之间的函数解析式;(3)在(2)的条件下,当x为多少时,甲、乙两人距地面的高度差为80米?18.如图,在平面直角坐标系中,一次函数y=﹣x+b的图象与x轴,y轴分别交于B,C两点,与正比例函数y=x的图象交于点A,点A的横坐标为4.(1)求A,B,C三点的坐标;(2)若动点M在线段OA上运动,当三角形OMC的面积是三角形OAC的面积的时,求点M的坐标;(3)若点P(m,1)在三角形AOB的内部(不包括边界),求m的取值范围.19.已知A、B两地间有C地,客车由A地驶向C地,货车由B地经过C地去A地(客货车在A、C两地间沿同一条路行驶),两车同时出发,匀速行驶.货车的速度是客车速度的.如图是客车、货车离C站的路程y(km)与行驶时间x(h)的函数关系图象.(1)求货车的速度并求A、B两地间的路程.(2)求客车y与x的函数关系式并直接写出货车y与x的函数关系式.(3)求点P的坐标并说出点P的实际意义.(4)出发后经过多长时间两车间路程是70km?20.如图,在平面直角坐标系中,O为坐标原点,已知直线y=﹣x+8与x轴、y轴分别交于B、A两点.直线OD⊥直线AB于点D.现有一点P从点D出发,沿线段DO向点O 运动,另一点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到O时,两点都停止.设运动时间为t秒.(1)点A的坐标为.(2)设△OPQ的面积为S,问当t为何值时S的值最大?最大值是多少?(3)是否存在某一时刻t,使得△OPQ为等腰三角形?若存在,直接写出所有满足条件的t的值;若不存在,则说明理由.21.甲、乙两车分别从B,A两地同时出发,甲车匀速前往A地;乙车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;设甲、乙两车距A地的路程为y(千米),乙车行驶的时间为x(时),y与x之间的函数图象如图所示.(1)求乙车从B地到达A地的速度;(2)求乙车到达B地时甲车距A地的路程;(3)求乙车返回前甲、乙两车相距40千米时,乙车行驶的时间.22.如图,在平面直角坐标系中,直线AB:y=﹣x+3,与x轴,y轴交于点A、B,直线x =﹣1与直线AB交于点D,直线l过点A,与y轴交于点C,点C的纵坐标是﹣.(1)求直线AC的解析式;(2)在直线l上是否存在点P,点P在直线x=﹣1的左侧,使得S△ABC=S△PDB,若存在,请求出点P的坐标,若不存在,请说明理由.(3)在第(2)问的条件下,点Q是线段PD的动点,过点Q做QM∥x轴,交直线AB 与点M,在x轴上是否存在点N,使得△QMN为等腰直角三角形,若存在,请直接写出点N的坐标,若不存在,请说明理由.23.如图,在平面直角坐标系中,O为坐标原点,一次函数y=x+4与x轴,y轴分别交于点B,点A,点C的坐标为C(5,0),点P是射线BO上一动点.(1)点A的坐标是;点B的坐标是;(2)连接AP,若△ABP的面积为10,求点P的坐标;(3)当点P在射线BO上运动时,若△APC是等腰三角形,请直接写出点P的坐标.24.在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C 村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题.(1)A,C两村间的距离为km,a=.(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义.(3)乙在行驶过程中,何时距甲20km.25.某剧院举行新年专场音乐会,成人票每张40元,学生票每张10元,剧院制定了两种优惠方案,且每个团体购票时只能选择其中一种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款.某校有4名老师与x(x≥4)名学生去观赏这次音乐会,设用方案1和方案2付款的总金额分别为y1(元)和y2(元).(1)分别求出y1、y2与x之间的函数关系式;(2)当学生人数为20名时,请通过计算说明哪种方案更优惠;(3)请通过计算说明:当学生人数为多少时,选择两种方案一样优惠?26.为全面打造“艺美郓城”美育品牌,逐步形成具有郓城特色的美育体系.某校学生展示花鼓表演,在笔直的跑道两端有A、B两地相距240米,甲队从A地跑到B地,乙队从B 地跑到A地.已知乙队的速度是甲队的2倍,两队同时出发,乙队到达A地后12分钟甲队到达B地.(1)求甲队每分钟跑米;(2)如图表示的是甲、乙两队离B地的距离S(米)与时间t(分钟)之间的函数图象,请分别求出甲、乙两队的函数关系式,并求出甲、乙两队相遇时t的值;(3)求甲、乙两队相距30米时t的值.27.小明家、新华书店、学校在一条笔直的公路旁,某天小明骑车上学,当他骑了一段后,想起要买某本书,于是又返回到刚经过的新华书店,买到书后继续骑车去学校,他本次骑车上学的过程中离家距离与所用的时间的关系如图所示,请根据图象提供的信息回答下列问题:(1)小明家到学校的距离是米;小明在书店停留了分钟;(2)如果骑车的速度超过了300米/分就超越了安全限度,小明买到书后继续骑车到学校的这段时间的骑车速度在安全限度内吗?请说明理由;(3)请直接写出小明出发后多长时间离家的距离为900米?28.A、B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是(填“l1”或“l2”);甲的速度是km/h,乙的速度是km/h.(2)甲出发多长时间两人相遇?(3)甲出发多长时间后两人恰好相距5km?参考答案1.解:①两车的速度之差为80÷(b+2﹣b)=40(km/h),∴a=100﹣40=60,结论①正确;②两车第一次相遇所需时间=(h),∵s的值不确定,∴b值不确定,结论②不正确;③两车第二次相遇时间为b+2+=b+(h),∴c=b+,结论③正确;④∵b=,s=40,∴b=1,结论④不正确.故选:D.2.解:小明首次到达目的地之前的速度是=80(米/分),故A不正确;两地间的距离为:80×35=2800(米),小李在小明到达目的地时行走的路程为:65×(35﹣5)=65×30=1950(米),∴2800﹣1950=850(米),此时,小李距目的地还有850米,故B不正确;C正确;D、850﹣65×10=200(米),200÷(47﹣45)=100(米/分),100﹣65=35(米/分),故D不正确;故选:C.3.解:由题意可得:甲步行速度==60(米/分);故①结论正确;设乙的速度为:x米/分,由题意可得:16×60=(16﹣4)x,解得x=80,∴乙的速度为80米/分;∴乙走完全程的时间==30(分),故②结论错误;由图可得,乙追上甲的时间为:16﹣4=12(分);故③结论错误;乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360(米),故④结论错误;故正确的结论有①共1个.故选:A.4.解:由图象可得,a=4+0.5=4.5,故①正确;甲的速度是460÷(7+)=60(km/h),故②正确;设乙刚开始的速度是vkm/h,则后来的速度为(v﹣50)km/h,4v+(7﹣4.5)×(v﹣50)=460,解得v=90,故③错误;设乙出发第一次追上甲用时th,90t=60(t+),解得t=,h=80min,故④正确;故选:B.5.解:根据图象可知,慢车的速度为=60(km/h).对于快车,由于往返速度大小不变,总共行驶时间是(9﹣3)h,故其速度为=180(km/h).所以对于慢车,y与t的函数表达式为y=540﹣60x(0≤x≤9)①.对于快车,设当3≤x≤6时,y与x的函数表达式为y=kx+b,由题意得:,解得:,∴对于快车,当3≤x≤6时,y与x的函数表达式为y=﹣180x+1080②,对于快车,设当6<x≤9时,y与x的函数表达式为y=kx+b,由题意得:,解得:,∴对于快车,当3≤x≤6时,y与x的函数表达式为y=180x﹣1080③,联立①②,可解得交点横坐标为x=,联立①③,可解得交点横坐标为x=,因此,两车先后两次相遇的间隔时间是﹣=(h),故选:B.6.解:由图象可得,乙车出发1.5小时后甲乙相遇,故①错误;两人相遇时,他们离开A地20km,故②正确;甲的速度是(80﹣20)÷(3﹣1.5)=40(km/h),乙的速度是km/h,故③正确;当乙车出发2小时时,两车相距:20+(2﹣1.5)×40﹣×2=km,故④错误;故选:B.7.解:①由图象可知,当x=10时,轿车开始出发;当x=45时,轿车开始发生故障,则x=45﹣5=40(分钟),即货车出发40分钟时,轿车追上了货车,设货车,轿车的速度分别为m米/分,n米/分,根据题意,得,解得,所以货车的速度为1500米/分,故①正确;②由题意可知,OA段货车在行驶,轿车停止;CD段货车在行驶,轿车发生故障停止,则OA与x轴夹角和CD与x轴夹角相等,所以OA∥CD,故②正确;③轿车故障花了20分钟修好,由题意图象可知,B点时x=45,此时轿车开始分钟故障,D点时轿车刚修好,即此时x=45+20=65,∴D点纵坐标为:(20﹣)×1500=30000﹣2500=27500,∴D点坐标为:(65,27500),故③正确;④在D点时,轿车的速度变为原来的,即此时轿车的速度为:2000×=1800(米/分),D点坐标为:(65,27500),到x=a时轿车开始追赶货车直到两车相遇,∴(a﹣65)×(1800﹣1500)=27500,解得a=65+=,即图中a的值是,故④正确.综上所述,正确的结论①②③④.故选:D.8.解:由图象可知,甲车行驶的速度为(810﹣750)÷1=60(千米/时),设乙车的速度为x千米/时,根据题意得:6×60+(6﹣1)x=810,解得x=90.即乙车的速度为90千米/时,故①正确;乙车从B地到达A地的时间为810÷90=9(小时),∵甲车出发1小时后,乙车从B地沿同一公路匀速前往A地,∴甲车行驶的时间为9+1=10(小时),∴甲车10小时行驶的路程为60×10=600(千米),∴点F的坐标为(10,600),故②错误;甲车从A地匀速前往B地的时间为810÷60=13.5(小时),∴a=13.5,故③正确;当甲、乙两车相遇时,甲车行驶了6小时,行驶的路程为60×6=360(千米),故④正确,综上,正确的结论是①③④,故选:D.9.解:由题意,得m=1.5﹣0.5=1,故①结论正确;120÷(3.5﹣0.5)=40(km/h),则a=40,故②结论正确;设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得:,解得,∴y=40x﹣20(1.5<x≤7),当y=260时,260=40x﹣20,解得:x=7,∴甲车从A地到B地共用了7小时,故③结论错误;当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得:,解得,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=,当40x﹣20+50=80x﹣160时,解得:x=,∴﹣2=,﹣2=,所以乙车行驶小时或小时,两车恰好相距50km,故④结论错误.∴正确结论的个数是2个.故选:B.10.解:根据图象可知,慢车的速度为.对于快车,由于往返速度大小不变,总共行驶时间是4 h,因此单程所花时间为2 h,故其速度为.所以对于慢车,y与t的函数表达式为①.对于快车,y与t的函数表达式为y=,联立①②,可解得交点横坐标为t=3,联立①③,可解得交点横坐标为t=4.5,因此,两车先后两次相遇的间隔时间是1.5,故选:B.11.解:由题意和图象可知,A、B港口相距400km,故①正确;∵甲船4个小时行驶了400km,∴甲船的速度为:400÷4=100(km/h),∵甲船的速度是乙船的1.25倍,∴乙船的速度为:100÷1.25=80(km/h),故②正确;∵乙船的速度为80km/h,∴400÷80=(400+s BC)÷100﹣1,解得:s BC=200km,故③正确;乙出发4h时两船相距的距离是:4×80+(4+1﹣4)×100=420(km),故④错误.故答案为:①②③.12.解:由图象可得,公园与家的距离为1200米,故①正确;爸爸的速度为:1200÷(12+10+3)=48(m/min),故②正确;∵10+12+10=22(min),∴小明到家的时间为8:22,故③正确;小明的速度为:1200÷10=120(m/min),设小明在返回途中离家a米处与爸爸相遇,=12+,解得,a=240,即小明在返回途中离家240米处与爸爸相遇,故④不正确;故答案为:①②③.13.解:由函数图象可得,“龟兔再次赛跑”的路程为1000米,故①说法正确;兔子先到达终点,故②说法正确;兔子比乌龟晚出发40分钟,故③说法错误;当40≤x≤60时,设y1与x的函数关系式为y1=kx+b,∵点(40,600),(60,1000)在该函数图象上,∴,解得,∴当40≤x≤60时,y1与x的函数关系式为y1=20x﹣200;当40≤x≤50时,设y2与x的函数关系式为y2=mx+n,∵点(40,0),(50,1000)在该函数图象上,∴,解得,即当40≤x≤50时,y2与x的函数关系式为y2=100x﹣4000;令20x﹣200=100x﹣4000,解得x=47.5,∴当x=47.5时,此时y1=y2=750,即兔子在750米处追上乌龟,故④错误;故答案为:①②.14.解:由折线可知小杰的速度为:4200÷70=60米/分,且=60,解得c=30,则两人速度和为4200÷30=140米/分,故小明速度为:140﹣60=80米/分,d点表示小明到达B地开始返向,4200=30×80+(d﹣40)×80,得d=62.5,则a=62.5×60=3750,b=3750﹣(80﹣60)×7.5=3600.故答案为:3600,62.5.15.解:①A、B两地之间的距离为30×2÷(﹣)=300(千米),∴出发时,甲、乙两车离AB中点C的路程是300÷2=150(千米),即b=150,③正确;②乙车的速度为(150+30)÷2=90(千米/小时),①正确;③甲车的速度为(150﹣30)÷2=60(千米/小时),∴a的值为150÷60=,③正确;④设出发xh甲、乙车相距30千米,则(90+60)x=300﹣30或(90+60)x=300+30,解得:x=或x=,故④错误.综上所述:正确的结论有①②③.故答案为:①②③.16.解:a=120÷(3.5﹣0.5)×1=40,故①正确;当1.5<x≤7时,设甲车行驶路程y与时间x的函数表达式为y=kx+b,,得,即当1.5<x≤7时,甲车行驶路程y与时间x的函数表达式为y=40x﹣20,故②正确;乙车的速度为:120÷(3.5﹣2)=80(km/h),乙车从A地到B地用的时间为:260÷80=3.25(h),乙车比甲车早[3.5+(260﹣120)÷40]﹣(2+3.25)=1.75h到达B地,故③错误;当乙车行驶0.5h时,两车相距[40+(2+0.5﹣1.5)×40]﹣80×0.5=40(km),当乙车行驶2.5h时,两车相距80×2.5﹣[40+(2﹣1.5+2.5)×40]=40(km),故④正确;故答案为:①②④.17.解:(1)甲登山的速度为:(300﹣100)÷20=10(米/分),答:甲登山的速度是10米/分;(2)V乙=3V甲=30米/分,t=2+(300﹣30)÷30=11(分钟),设2到11分钟,乙的函数解析式为y=kx+b,∵直线经过A(2,30),(11,300),∴,解得,∴当2<x≤11时,y=30x﹣30,设当0≤x≤2时,乙的函数关系式为y=ax,∵直线经过A(2,30),∴30=2a解得a=15,∴当0≤x≤2时,y=15x,综上,y=;(3)设甲的函数解析式为:y=mx+100,将(20,300)代入得:300=20m+100,∴m=10,∴y=10x+100.∴当0≤x≤2时,由(10x+100)﹣15x=80,解得x=4>2矛盾,故此时没有符合题意的解;当2<x≤11时,由|(10x+100)﹣(30x﹣30)|=80得,|130﹣20x|=80,∴x=2.5或x=10.5;当11<x≤20时,由300﹣(10x+100)=80得x=12,∴x=2.5或10.5或12.∴当x为2.5或10.5或12时,甲、乙两人距地面的高度差为80米.18.解:(1)∵点A在正比例函数y=x的图象上,且点A的横坐标为4.∴点A(4,2),∵一次函数y=﹣x+b的图象与正比例函数y=x的图象交于点A,∴2=﹣4+b,∴b=6,∴一次函数解析式为y=﹣x+6,∵一次函数y=﹣x+6的图象与x轴,y轴分别交于B,C两点,∴点B(6,0),点C(0,6);(2)由(1)可知:OC=6,x A=4,∴S△OAC=×OC×x A=×6×4=12,∵S△OMC=S△OAC=4,∴S△OMC=×OC×|x M|=4,∴|x M|=,∴x M=±,当动点M在线段OA上时,x>0,则当x=时,y=×=,∴此时M点的坐标为(,);(3)∵点P(m,1)在△AOB的内部(不包括边界),∴当y=1时,代入正比例函数中得:1=x,解得:x=2,当y=1时,代入一次函数中得:1=﹣x+6,解得:x=5,∴2<m<5.故答案为:2<m<5.19.解:(1)由图象可得,客车的速度:720÷9=80(km/h),则货车速度:(km/h).A与B两地间路程为:60×2+720=840(km),即货车的速度是60km/h,A、B两地间的路程是840km;(2)设客车y与x的函数关系式是y=kx+b,,解得,即客车y与x的函数关系式是y=﹣80x+720;当0≤x≤2时,设货车y与x的函数关系式是y=ax+c,∵货车的速度为60km/h,60×2=120,∴该函数过点(0,120),(2,0),∴,解得,即当0≤x≤2时,货车y与x的函数关系式是y=﹣60x+120;720÷60=12,当2<x≤14时,设货车y与x的函数关系式是y=mx+n,∵点(2,0),(14,720)在该函数图象上,∴,解得,即当2<x≤14时,货车y与x的函数关系式是y=60x﹣120;由上可得,货车y与x的函数关系式是y=;(3)令﹣80x+720=60x﹣120,解得x=6,则x=6时,y=60×6﹣120=360﹣120=240,∴点P的坐标为(6,240),点P的实际意义是:两车出发6小时,两车相遇.与C地相距240km;(4)当两车相遇前相距70千米时,(﹣80x+720)﹣(60x﹣120)=70,解得x=5.5,当两车相遇后相距70千米时,(60x﹣120)﹣(80x+720)=70,解得x=6.5,综上所述,出发后经过5.5小时或6.5小时,两车相距70千米.20.解:(1)y=﹣x+8与x轴、y轴分别交于B、A两点,令x=0,则y=8,∴A(0,8),故答案为:(0,8);(2)∵A(0,8),∴OA=8,令y=0,则﹣x+8=0,∴x=6,∴B(6,0),∴OB=6,∴AB=10,∵OD⊥AB,∴S△AOB=OA×OB=AB×OD,∴OD==,如图,过点P作PH⊥OA于H,在Rt△AOD中,OA=8,OD=,根据勾股定理得,AD=,由运动知,DP=t,OQ=t,∴OP=OD﹣DP=﹣t,∴PH=(﹣t)×,∴t=时,S最大,最大值为;(3)∵△OPQ为等腰三角形,∴①当OQ=OP时,∴t=﹣t,∴t=,②当OQ=PQ时,在Rt△AOD中如图,过点Q作QM⊥OD于M,∴OM=OP=(﹣t),在Rt△OMQ中,OM=t,∴(﹣t)=t,∴t=,③当PO=PQ时,如图,过点P作PH⊥OA于H,∴OH=OQ=t,在Rt△POH中,OH=(﹣t),∴t=(﹣t),∴t=,∴△OPQ为等腰三角形时,t的值为秒或秒或秒.21.解:(1)由图象可得,乙车从A地到B地的速度为:180÷1.5=120(千米/时),∴120m=300,解得m=2.5,∴乙车从B地到达A地的速度为:300÷(5.5﹣2.5)=300÷3=100(千米/时),即乙车从B地到达A地的速度是100千米/时;(2)由图象可得,甲车的速度为:(300﹣180)÷1.5=120÷1.5=80(千米/时),则乙车到达B地时甲车距A地的路程是:300﹣2.5×80=300﹣200=100(千米),即乙车到达B地时甲车距A地的路程是100千米;(3)乙车返回前甲、乙两车相距40千米时,设乙车行驶的时间为t小时,甲乙相遇之前:80t+120t+40=300,解得t=1.3;甲乙相遇之后:80t+120t﹣40=300,解得t=1.7;答:乙车返回前甲、乙两车相距40千米时,乙车行驶的时间是1.3小时或1.7小时.22.解:(1)在y=﹣x+3中,令x=0得y=3,令y=0得x=3,∴A(3,0),B(0,3),∵点C的纵坐标是﹣,∴C(0,﹣),设直线AC的解析式为y=kx﹣,把A(3,0)代入得:0=3k﹣,解得k=,∴直线AC的解析式为y=x﹣;(2)在直线l上存在点P,使得S△ABC=S△PDB,设PB交直线x=﹣1于E,如图:∵A(3,0),B(0,3),C(0,﹣),∴S△ABC=BC•OA=×(3+)×3=,在y=﹣x+3中,令x=﹣1得y=4,∴D(﹣1,4),设P(m,m﹣),直线PB为y=k'x+3,则m﹣=k'm+3,解得k'=,∴直线PB为y=x+3,令x=﹣1得y=,∴E(﹣1,),∴DE=4﹣=,∵S△ABC=S△PDB,∴DE•|x B﹣x P|=,即××(﹣m)=,解得m=﹣6,∴P(﹣6,﹣);(3)在x轴上存在点N,使得△QMN为等腰直角三角形,由P(﹣6,﹣),D(﹣1,4)得直线PD解析式为y=x+,设Q(t,t+),∵QM∥x轴,M在AB上,∴在y=﹣x+3中令y=t+,得x=﹣t﹣,∴M(﹣t﹣,t+),∴QM=﹣t﹣﹣t=﹣,①当Q为直角顶点时,如图:∵QM=QN,∴﹣=t+,解得t=﹣,∴N(﹣,0);②当M为直角顶点时,如图:∵QM=MN,∴﹣=t+,解得t=﹣,∴N(,0);③当N为直角顶点时,过N作NH⊥QM,如图:∵QM=2NH,∴﹣=2×(t+),解得t=﹣,∴Q(﹣,),∴QH=NH=,∴ON=﹣=,∴N(﹣,0);综上所述,N的坐标为:(﹣,0)或(,0)或(﹣,0).23.解:(1)在y=x+4中,令y=0,得x+4=0,解得:x=﹣8,∴B(﹣8,0),令x=0,得y=4,∴A(0,4),故答案为:(0,4),(﹣8,0);(2)∵S△ABP=BP•OA=10,∴×BP×4=10,∴BP=5,∴PO=3,∵点P是射线BO上一动点,∴P(﹣3,0);(3)设P(x,0),①若AP=AC,∴x2+42=42+52,∴x=﹣5,x=5(舍去),∴P(﹣5,0);②若AC=PC,∴(5﹣x)2=42+52,∴x=5+或x=5﹣,∴P(5+,0)或P(5﹣,0);③若AP=PC,∴x2+42=(x﹣5)2,∴x=,∴P(,0).综合以上可得,点P的坐标为(﹣5,0)或(5+,0)或P(5﹣,0)或(,0).24.解:(1)A、C两村间的距离120km,a=120÷[(120﹣90)÷0.5]=2;故答案为120,2;(2)设y2=k2x+90,代入(3,0),得0=3k2+90,解得k2=﹣30,所以y2=﹣30x+90.当y1=y2时,﹣60t+120=﹣30t+90,解得:t=1,所以甲乙二人行驶1小时后两人相遇,此时距离C村60km,故P点坐标为P(1,60).(3)当y1﹣y2=20,即﹣60x+120﹣(﹣30x+90)=20解得x=,当y2﹣y1=20,即﹣30x+90﹣(﹣60x+120)=20解得x=,当甲走到C地,而乙距离C地20km时,﹣30x+90=20解得x=;综上所知当x=h,或x=h,或x=h乙距甲20km.25.解:(1)由题意可得,y1=4×40+10(x﹣4)=10x+120,y2=(4×40+10x)×90%=9x+144;(2)当x=20时,y1=10×20+120=320,y2=9×20+144=324;∵320元<324元,∴当x=20时,方案一更优惠;(3)令10x+120=9x+144,得x=24,答:当学生为24人时,两种方案一样优惠.26.解:(1)由图象可得,甲队每分钟跑:240÷24=10(米),故答案为:10;(2)设甲队离B地的距离S(米)与时间t(分钟)之间的函数关系式为S=kt+b,∵点(0,240),(24,0)在该函数图象上,∴,解得,即甲队离B地的距离S(米)与时间t(分钟)之间的函数关系式为S=﹣10t+240(0≤t ≤24);设乙队离B地的距离S(米)与时间t(分钟)之间的函数关系式为S=at,∵点(12,240)在该函数图象上,∴240=12a,解得a=20,即乙队离B地的距离S(米)与时间t(分钟)之间的函数关系式为S=20t(0≤t≤12);当甲和乙相遇时,﹣10t+240=20t,解得t=8,即甲、乙两队相遇时t的值是8;(3)当甲和乙相遇前相距30米,﹣10t+240﹣20t=30,解得t=7;当甲和乙相遇后相距30米,∴20t﹣(﹣10t+240)=30,解得t=9,即甲、乙两队相距30米时t的值是7或9.27.解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;根据题意,小明在书店停留的时间为从8分到12分,故小明在书店停留了4分钟.故答案为:1500;4;(2)由图象可知:12~14分钟时,平均速度==450米/分,∵450>300,∴小明买到书后继续骑车到学校,这段时间速度不在安全限度内;(3)从图象上看,小明出发后离家距离为900米时,一共有三个时间,①在0~6分钟时,平均速度为:=200米/分,距家900米的时间为:t1=900÷200=4.5(分);②在6~8分钟内,平均速度==300米/分,距家900米时时间为t2,则:1200﹣300(t2﹣6)=900,解得:t2=7,③在12~14分钟内,平均速度450米/分,距家900米时时间为t3,则600+450(t3﹣12)=900,解得:t3=12,综上,小明出发4.5分钟或7分钟或12分钟时距家900米.28.解:(1)∵甲先出发,由图象可知l1,l2分别表示甲、乙的函数图象,∴甲的速度为60÷2=30(km/h),乙的速度为60÷(3.5﹣0.5)=20(km/h),故答案为l2,30,20;(2)设甲出发xh后两人相遇,根据题意得:30x+20(x﹣0.5)=60,解得x=1.4,∴甲出发1.4h后两人相遇;(3)设甲出发th时后两人恰好相距5km,①两人相遇前:30t+20(t﹣0.5)+5=60,解得t=1.3,②两人相遇后:30t+20(t﹣0.5)﹣5=60,解得:t=1.5,∴甲出发1.3h或1.5h时后两人恰好相距5km.。
八年级数学上册《第十九章 一次函数》单元测试卷附带答案-人教版
八年级数学上册《第十九章 一次函数》单元测试卷附带答案-人教版一、单选题1.对于函数y=x+1,自变量x 取5时,对应的函数值为( )A .3B .36C .16D .62.下列各图像中,y 不是x 的函数的是( ).A .B .C .D .3.已知正比例函数3y x =的图象经过点()1m ,,则m 的值为( ) A .13B .3C .13-D .3-4.若一次函数的3y x b =-+图象上有两点()12A y -,和()26B y ,,则下列1y ,2y 大小关系正确的是( ). A .12y y >B .12y y <C .12y y ≥D .12y y ≤5.如图,直线()0y kx b k =+≠经过点()32A -,,则关于x 的不等式2kx b +<解集为( )A .3x >-B .3x <-C .2x >D .2x <6.一个圆形花坛,面积S 与半径r 的函数关系式2S πr =中关于常量和变量的表述正确的是( )A .常量是2,变量是S 、π、rB .常量是2、π,变量是S 、rC .常量是2,变量是S 、πD .常量是π,变量是S 、r7.点在直线23y x =-+上的是( )A .()23,B .()21-,C .()30,D .()03-,8.根据图象,可得关于x 的不等式k 1x <k 2x+b 的解集是( )A .x <2B .x >2C .x <3D .x >39.同一平面直角坐标系中,一次函数1y k x b =+的图象与2y k x =的图象如图所示,则关于x 的方程12k x b k x +=的解为( )A .0x =B .1x =-C .2x =-D .以上都不对10.清明假期第一天天气晴朗,小明和爸爸去爬山.小明和爸爸同时从山脚出发,由于爸爸有爬山经验,匀速爬到山顶.小明刚开始的速度比爸爸快,累了之后减速继续爬山,和爸爸相遇后0.5h 才加速追赶爸爸,最终爸爸用2h 爬到了山顶,小明比爸爸晚了6min 到达.他们出发的时间x (单位:h )与爬山的路程y (单位:km )的函数图象如图所示,则下列说法错误的是( )A .爸爸爬山的速度为3km/hB .1.5h 时爸爸与小明的距离为0.5kmC .山脚到山顶的总路程为6kmD .小明加速追赶爸爸时的速度为3km/h二、填空题11.函数232x y x -=+中,自变量x 的取值范围是 . 12.正比例函数(2)y m x =-的图象从左到右逐渐下降,则m 的取值范围是 .13.将直线21y x =--向左平移a (0a >)个单位长度后,经过点()15-,,则a 的值为 . 14.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1,0.5,2.分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是 .三、解答题15.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分钟)之间的部分关系如图象所示.求从关闭进水管起需要多少分钟该容器内的水恰好放完.16.正比例函数 y kx = 的图象经过点 ()1,3A - , (),1B a a + 求a 的值.17.已知一次函数的图象经过点A (﹣4,9)与点B (6,3),求这个一次函数的解析式.18.由于灯管老化,现某学校要购进A 、B 两种节能灯管320只,A 、B 两种灯管的单价分别为25元和30元,现要求B 种灯管的数量不少于A 种灯管的3倍,那么购买A 种灯管多少只时,可使所付金额最少?最少为多少元?四、综合题19.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与m (米)的函数关系式 . (2)计算当m =3时,地砖的费用.20.在平面直角坐标系中,一个正比例函数的图象经过点(12),,把此正比函数的图象向上平移5个单位,得到一次函数:y kx b =+ (1)求一次函数的解析式.(2)直线(0)y kx b k =+≠与x 轴交于点A ,求A 点的坐标.(3)点(1)B n -,是该直线上一点,点C 在x 轴上,当ABC 的面积为154时,请直接写出C 点的坐标.21.如图,一次函数()10y kx b k =+≠的图象分别与x 轴和y 轴相交于C 、()03A ,两点,且与正比例函数22y x =-的图象交于点()1B m -,.(1)求一次函数的解析式;(2)当12y y >时,直接写出自变量x 的取值范围;22.某养殖场计划今年养殖无公害标准化龙虾和鲤鱼,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位: 千元/吨)品种 先期投资养殖期间投资产值 鲤鱼 9 3 30 龙虾41020苗的投放量为x 吨. (1)求x 的取值范围;(2)设这两个品种产出后的总产值为y(千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少?参考答案与解析1.【答案】D【解析】【解答】解:当x=5时,y=5+1=6故答案为:D .【分析】将x=5代入y=x+1,求出y 的值即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上一次函数综合题
1.如图,直线1l 的解析式为,33+-=x y 且1l 与x 轴交于点D,直线2l 经过点A (4,0)、B (3,
2
3
-
),直线1l 、2l 交于点C.(1)求直线2l 的解析式;(2)求△ADC 的面积;(3)试问:在直线2l 上是否存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等?若存在,请求出点P 的坐标;若不存在,请说明理由.
2.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2), 则B n 的坐标是____________.
3.如图,有一矩形纸片OABC 放在直角坐标系中,O 为原点,C 在x 轴上,OA=6,OC=10,如图,在OA 上取一点E,将△EOC 沿EC 折叠,使O 点落在AB 边上的D 点处,则点E 的坐标为_________________
X
Y
O
A
D
B
C
E
4.如图,直线643+-
=x y 分别与x 轴、y 轴交于A 、B 两点,直线x y 4
5
=与AB 交于点C ,与过点A 且平行于y 轴的直线交于点D 。
点E 从点A 出发,以每秒1个单位的速度沿x 轴向
左运动。
过点E 作x 轴的垂线,分别交直线AB 、OD 于P 、Q 两点,以PQ 为边向右作正方形,设正方形与△ACD 重叠部份的面积为S (平方单位),点E 的运动时间为t (秒)。
(1)求点C 的坐标;(2)多少秒时。
直线EQ 经过点C ;(3)当0<t <5时,用含t 的代数式表示PQ 的长度;(3)当0<t <5时,求S 与t 之间的函数关系式。
y kx b =+
5.如图,直线OC 、BC 的函数关系式分别是x y =1和622+-=x y ,动点P 沿路线0→C →B 运动.
(1)求点C 的坐标,并回答当x 取何值时21y y >? (2)求COB ∆的面积.
(3)当POB ∆的面积是△COB 的面积的一半时,求出这时点P 的坐标.
6.如图,四边形OABC 是矩形,点A 、C 的坐标分别为(-3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 做直线y=
2
1
x+b 交折线OAB 与点E . (1)记△ODE 的面积为S ,求S 与b 的函数关系式;
(2)当点E 在线段OA 上,且DE =5时,作出矩形OABC 关于直线DE 的对称图形四边形O 1A 1B 1C 1,试探究四边形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,如不变,求出该重叠部分的面积;若改变,请说明理由.
7.如图,矩形OABC 在平面直角坐标系内(O 为坐标原点),点A 在x 轴上,点C 在y 轴
上,点B
的坐标分别为(-,点E 是BC 的中点,点H 在OA 上,且AH=1
2,过点H
且平行于y 轴的HG 与EB 交于点G ,现将矩形折叠,使顶点C 落在HG 上,并与HG 上的点D 重合,折痕为EF ,点F 为折痕与y 轴的交点。
(1)求∠CEF 的度数和点D 的坐标; (2)求折痕EF 所在直线的函数表达式;
备用图1 备用图2
(3)若点P在直线EF上,当⊿PFD为等腰三角形时,试问满足条件的点P有几个?请求出点P的坐标,并写出解答过程。