初中数学十大思想方法-待定系数法
初中数学常考的知识点待定系数法
初中数学常考的知识点待定系数法待定系数法是初中数学中常考的一种解题方法,它的思想是通过设定合适的未知数来构建方程,然后解方程求解问题。
待定系数法的应用广泛,包括代数问题、几何问题、概率问题等等。
下面我将详细介绍待定系数法在初中数学中的常见应用。
一、代数问题1.求一元一次方程的解待定系数法可以用来解决一元一次方程的解的问题。
例如,求方程7x-21=10的解。
我们设方程的解为x=a,那么方程可以表示为7a-21=10。
然后解方程,得到a=5、所以方程的解是x=52.求一元二次方程的解待定系数法可以用来求解一元二次方程的解。
例如,求方程x^2+5x+6=0的解。
我们设方程的解为x=a,那么方程可以表示为a^2+5a+6=0。
然后解方程,得到a=-3或a=-2、所以方程的解是x=-3或x=-23.求一元二次方程的系数待定系数法还可以用来求解一元二次方程的系数。
例如,已知方程的根为2和3,且方程的首项系数为1,我们要求方程的系数。
设方程为ax^2+bx+c=0,代入已知根得到两个方程:a(2)^2+b(2)+c=0和a(3)^2+b(3)+c=0。
解这两个方程,得到a=1,b=-5,c=6、所以方程为x^2-5x+6=0。
二、几何问题待定系数法可以用来解决几何问题的角度问题、边长问题等等。
例如:1.角度问题已知一条边和一个角的大小,求另一条边的长度。
设另一条边的长度为x,那么根据三角函数的定义,可以得到一个方程。
解方程,得到x的值。
2.边长问题已知两条边和一个角的大小,求第三条边的长度。
设第三条边的长度为x,根据三角不等式可以得到一个方程。
解方程,得到x的值。
三、概率问题待定系数法可以用来解决概率问题中的计数问题、排列问题等。
例如:1.计数问题已知有n个人,其中有m个男生和n-m个女生。
从中选出x个人,其中至少有y个男生,求选人的方法数。
设选出的x个人中有y个男生的方法数为C,那么根据组合的性质可以得到一个方程。
数学思想方法专题二(待定系数法、定义法数学归纳法)
数学思想方法专题二(待定系数法、定义法)一.待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等。
待定系数法解题的关键是依据已知,正确列出等式或方程。
使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。
例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。
使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。
如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程。
例1已知函数y=mx x nx22431+++的最大值为7,最小值为-1,求此函数式。
例2.设抛物线经过两点(-1,6)和(-1,-2),对称轴与x轴平行,开口向右,直线y=2x+7和抛物线截得的线段长是410, 求抛物线的方程。
练习一1.设f(x)=x2+m,f(x)的反函数f 1(x)=nx-5,那么m、n的值依次为_____。
A. 52, -2 B. -52, 2 C.52, 2 D. -52,-22.二次不等式ax2+bx+2>0的解集是(-12,13),则a+b的值是_____。
A. 10B. -10C. 14D. -143.在(1-x3)(1+x)10的展开式中,x5的系数是_____。
初中数学十大思想方法-待定系数法
初中数学思想方法——待定系数法在数学问题中,若得知所求结果具有某种确定的形式,则可设定一些尚待确定的系数(或参数)来表示这样的结果,这些待确定的系数(或参数),称作待定系数。
然后根据已知条件,选用恰当的方法,来确定这些系数,这种解决问题的方法叫待定系数法。
待定系数法是数学中的基本方法之一。
它渗透于初中数学教材的各个部分,在全国各地中考中有着广泛应用。
应用待定系数法解题以多项式的恒等知识为理论基础,通常有三种方法:比较系数法;代入特殊值法;消除待定系数法。
比较系数法通过比较等式两端项的系数而得到方程(组),从而使问题获解。
例如:“已知x2-3=(1-A)·x2+Bx+C,求A,B,C的值”,解答此题,并不困难,只需将右式与左式的多项式中对应项的系数加以比较后,就可得到A,B,C的值。
这里的A,B,C就是有待于确定的系数。
代入特殊值法通过代入特殊值而得到方程(组),从而使问题获解。
例如:“点(2,﹣3)在正比例函数图象上,求此正比例函数”,解答此题,只需设定正比例函数为y=kx,将(2,﹣3)代入即可得到k的值,从而求得正比例函数解析式。
这里的k就是有待于确定的系数。
消除待定系数法通过设定待定参数,把相关变量用它表示,代入所求,从而使问题获解。
例如:“已知b2a3=,求a ba b-+的值”,解答此题,只需设定b2=ka3=,则a=3k b=2k,,代入a ba b-+即可求解。
这里的k就是消除的待定参数。
应用待定系数法解题的一般步骤是:(1)确定所求问题的待定系数,建立条件与结果含有待定的系数的恒等式;(2)根据恒等式列出含有待定的系数的方程(组);(3)解方程(组)或消去待定系数,从而使问题得到解决。
在初中阶段和中考中应用待定系数法解题常常使用在代数式变型、分式求值、因式分解、求函数解析式、求解规律性问题、几何问题等方面。
下面通过2011年和2012年全国各地中考的实例探讨其应用。
一.待定系数法在代数式变型中的应用:在应用待定系数法解有关代数式变型的问题中,根据右式与左式多项式中对应项的系数相等的原理列出方程(组),解出方程(组)即可求得答案。
选修第5节待定系数法(初中数学培优)
数学思想方法谈(5)待定系数法待定系数法是一种常用的数学方法。
对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程或方程组,解之即得待定的系数。
广泛应用于多项式的因式分解,恒等变形,以及求函数的解析式和曲线的方程等。
该方法的主要过程是将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。
然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,从而使问题得到解决。
例如,在关于x 的二次三项式中,当1x =时,其值为0;当3x =-时,其值为0;当2x =时,其值为10,求这个二次三项式。
这就是一种最简单的待定系数法!~~~~例1 .分解因式22231415xxy y x y +-++-.练习:分解因式432435x x x x -+++.举一反三: 是否存在常数,p q ,使得42x px q ++能被225x x ++整除?如果存在,求出p和q 的值;如果不存在,请说明理由.例 2. 已知多项式32x bx cx d +++的系数都是整数。
若bd cd +是奇数,证明这个多项式不能分解为两个整系数多项式的乘积.待定系数法不仅可以帮助我们分解因式,对于任意“半已知”结果的数学问题,都可以采用,使上述“半已知”变为已知。
例3.已知m 为任意常数,请问不管m 为任何值,关于x 和y 的二元一次方程:(32)(21)510m x m y m -+++-=是否存在定解?例4.已知12x y ≤+≤和134x y -≤-≤,求43x y -的范围。
初中数学思想方法有哪些
初中数学思想方法有哪些1、数形结合思想:就是依据数学问题的条件和结论之间的内在联系,既分析其代数含义,又显示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、分类讨论的思想:在数学中,我们经常必须要依据研究对象性质的差异,分各种不同状况予以考查;这种分类思索的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
3、联系与转化的思想:事物之间是互相联系、互相制约的,是可以互相转化的。
数学学科的各部分之间也是互相联系,可以互相转化的。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
2方法一1.对应的思想和方法在初一代数入门教学中,有代数式求值的计算题,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。
这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系在进行此类教学〔制定〕时,应注意渗透对应的思想,这样既有助于培养同学用变化的观点看问题,又助于培养同学的函数观念。
2.整体的思想和方法整体思想就是合计数学问题时,不是着眼于它的局部特征,而是把注意和和着眼点放在问题的整体结构上,通过对其全面深入的观察,从宏观整体上熟悉问题的实质,把一些彼此独立但实质上又互相紧密联系着的量作为整体来处理的思想方法。
整体思想在处理数学问题时,有广泛的应用。
3.数形结合的思想和方法数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。
著名数学家华罗庚先生说:"数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。
'这充分说明了数形结合思想在数学研究和数学应用中的重要性。
4.分类的思想和方法教材中进行分类的实例比较多,如有理数、实数、三角形、四边形等分类的教学不仅可以使同学明确分类的重要性:一是使有关的概念系统化、完整化;二是使被分概念的外延更清楚、更深入、更具体,并且还能使同学掌握分数的要点方法:3方法二1、数形结合的思想和方法在同学刚接触初中数学不久,教材中设置利用"数轴'这一图形,巩固"具有相反意义的量'的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。
初中数学重点梳理:待定系数法
待定系数法知识定位待定系数法是一种求未知数的方法。
将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。
对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程或方程组,解之即得待定的系数。
广泛应用于多项式的因式分解,求函数的解析式和曲线的方程等。
知识梳理知识梳理1:待定系数法在多项式除法中的应用多项式除多项式时,其结果的形式我们往往是可以判断出的,在这种情况下,我们可以先假设出最后的结果(当然也是含未知数的),转化为等式再进行计算。
知识梳理2:待定系数法在因式分解中的应用在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.知识梳理3:待定系数法在解方程中的应用在解一些复杂方程时,如果能够判断出方程的部分根,或者有方程根的一些限制条件;在这种情况下,采用待定系数的方法去解方程,往往可以有意想不到的效果。
知识梳理3:待定系数法在代数式恒等变形中的应用 知识梳理4:待定系数法在求函数解析式中的应用例题精讲【试题来源】【题目】已知多项式56423+-+x x x ,除式为12+x ,求它们相除所得到的商式和余式。
【答案】【解析】【知识点】待定系数法 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】已知r qx px x x ++++464234能被39323+++x x x 整除,求p,q,r 之值.【答案】【解析】【知识点】待定系数法 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】把多项式x 3-x 2+2x+2表示为关于x -1的降幂排列形式. 【答案】x 3-x 2+2x+2=(x -1)3+2(x -1)2+3(x -1)+4. 【解析】用待定系数法:设x 3-x 2+2x+2=a(x -1)3+b(x -1)2+c(x -1)+d 把右边展开,合并同类项(把同类项对齐), 得 x 3-x 2+2x+2=ax 3-3ax 2+3ax -a +bx 2-2bx+b +cx -c +d 用恒等式的性质,比较同类项系数,得⎪⎪⎩⎪⎪⎨⎧=+-+-=+--=+-=2223131d c b a c b a b a a 解这个方程组,得⎪⎪⎩⎪⎪⎨⎧====4321d c b a∴x 3-x 2+2x+2=(x -1)3+2(x -1)2+3(x -1)+4. 本题也可用换元法: 设x -1=y, 那么x=y+1.把左边关于x 的多项式化为关于y 的多项式,最后再把y 换成x -1.【知识点】待定系数法 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】已知:4310252323-+-++-x x x cbx x ax 的值是恒为常数求:a, b, c 的值.【答案】a = 1 b = 1.5 c = -2 【解析】【知识点】待定系数法 【适用场合】当堂练习题 【难度系数】3【试题来源】【题目】分解因式:.310434422-+---y x y xy x【答案】【解析】【知识点】待定系数法【适用场合】当堂练习题【难度系数】3【试题来源】【题目】m为何值时,6522-++-ymxyx能够分解因式,并分解之.【答案】【解析】【知识点】待定系数法 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】已知:4x 4+ax 3+13x 2+bx+1是完全平方式.求: a 和b 的值.【答案】解得⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧-==⎩⎨⎧-=-=⎩⎨⎧==172174 172174612612b a b a b a b a -或或或.【解析】设4x 4+ax 3+13x 2+bx+1=(2x 2+mx±1)2(设待定的系数,要尽可能少.)右边展开,合并同类项,得4x 4+ax 3+13x 2+bx+1=4x 4+4mx 3+(m 2±4)x 2±2mx+1. 比较左右两边同类项系数,得方程组⎪⎩⎪⎨⎧==+=m b m m a 213442; 或⎪⎩⎪⎨⎧-==-=m b m ma 213442.解得⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧-==⎩⎨⎧-=-=⎩⎨⎧==172174 172174612612b a b a b a b a -或或或.【知识点】待定系数法 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】推导一元三次方程根与系数的关系. 【答案】见解析【解析】设方程ax 3+bx 2+cx+d=0(a≠0)的三个根分别为x 1, x 2, x 3.原方程化为x 3+02=++adx a c x a b . ∵x 1, x 2, x 3是方程的三个根. ∴x 3+=++adx a c x a b 2(x -x 1) (x -x 2) (x -x 3). 把右边展开,合并同类项,得 x 3+=++adx a c x a b 2=x 3-( x 1+x 2+x 3)x 2+(x 1x 2+x 1x 3+x 2x 3)x -x 1x 2x 3. 比较左右同类项的系数,得 一元三次方程根与系数的关系是: x 1+x 2+x 3=-a b , x 1x 2+x 1x 3+x 2x 3=a c , x 1x 2x 3=-ad.【知识点】待定系数法 【适用场合】课后两周练习 【难度系数】3【试题来源】【题目】已知:x 3+px+q 能被(x -a )2整除.求证:4p 3+27q 2=0. 【答案】见解析 【解析】证明:设x 3+px+q =(x -a )2(x+b ). x 3+px+q=x 3+(b -2a)x 2+(a 2-2ab)x+a 2b.⎪⎩⎪⎨⎧==-=-③②①q b a p ab a a b 22202 由①得b=2a , 代入②和③得 ⎪⎩⎪⎨⎧=-=3223aq ap∴4p 3+27q 2=4(-3a 2)3+27(2a 3)2=4×(-27a 6)+27×(4a 6)=0. (证毕).【知识点】待定系数法 【适用场合】课后一个月练习 【难度系数】3【试题来源】【题目】已知:f (x)=x 2+bx+c 是g (x)=x 4 +6x 2+25的因式,也是q (x)=3x 4+4x 2+28x+5的因式.求:f (1)的值. 【答案】f (1)=4【解析】∵g (x),q (x)都能被f (x)整除,它们的和、差、倍也能被f (x)整除.为了消去四次项,设3g (x)-q (x)=kf (x), (k 为正整数). 即14x 2-28x+70=k (x 2+bx+c) 14(x 2-2x+5)=k (x 2+bx+c) ∴k=14, b=-2, c=5. 即f (x)=x 2-2x+5. ∴f (1)=4 . 【知识点】待定系数法 【适用场合】阶段测验 【难度系数】4【试题来源】【题目】已知:23)2)(3(22++-+=+-+-x Cx B x A x x x x x , 求:A ,B ,C 的值.【答案】A =-31. B =158. C =54. 【解析】去分母,得x 2-x+2=A(x -3)(x+2)+Bx(x+2)+Cx(x -3).根据恒等式定义(选择x 的适当值,可直接求出A ,B ,C 的值),当x=0时, 2=-6A. ∴A =-31. 当x=3时, 8=15B. ∴B =158.当x=-2时, 8=10C. ∴C =54.【知识点】待定系数法 【适用场合】随堂课后练习 【难度系数】3【试题来源】【题目】分解因式:x 2+3xy+2y 2+4x+5y+3.【答案】原式=(x+2y+3)(x+y+1).【解析】由于(x 2+3xy+2y 2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m 和x +y +n 的形式,应用待定系数法即可求出m 和n ,使问题得到解决. 设x 2+3xy+2y 2+4x+5y+3 =(x+2y+m)(x+y+n)=x 2+3xy+2y 2+(m+n)x+(m+2n)y+mn , 比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).【知识点】待定系数法【适用场合】当堂练习题【难度系数】3【试题来源】【题目】分解因式:x4-2x3-27x2-44x+7.【答案】原式=(x2-7x+1)(x2+5x+7)【解析】分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.【知识点】待定系数法【适用场合】随堂课后练习【难度系数】4【试题来源】【题目】已知方程0412924=-+-x x x 有两根为1和2,解这个方程【答案】x 1 = 1 x 2 = 2【解析】【知识点】待定系数法【适用场合】当堂练习题【难度系数】3【试题来源】【题目】已知方程012823=+--x x x 有两个根相等,解这个方程. 【答案】【解析】【知识点】待定系数法【适用场合】当堂练习题【难度系数】3【试题来源】【题目】要使多项式))(2(2q x px x -++不含关于x 的二次项,则p 与q 的关系是()A 相等B 互为相反数C 互为倒数D 乘积等于1【答案】A【解析】【知识点】待定系数法【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】已知多项式43261312x x x x m -+-+是一个完全平方式,试求常数m 的值。
初中数学常考的知识点待定系数法
初中数学常考的知识点待定系数法待定系数法在初中数学中是一个非常重要的解题方法。
它通常用于解决一元一次方程组、二次方程、代数式的展开和因式分解等问题。
接下来,我将详细介绍待定系数法的基本概念、解题步骤以及一些常见的例题。
一、待定系数法的基本概念待定系数法是通过假设未知量的值为一些系数,然后通过数学运算得到方程组的解。
在待定系数法中,我们可以假设未知量是一个常数、一个变量,甚至是一个代数式。
二、待定系数法的解题步骤1.了解问题并设定未知量:首先,我们要仔细阅读题目,理解问题的要求,并确定需要求解的未知量。
2.假设未知量:根据题目的要求,我们根据经验和数学常识假设未知量的值。
3.建立方程:根据已知条件和假设的未知量,我们可以建立方程组或方程。
4.求解方程:将方程组或方程进行化简和整理,找到未知量的值。
5.验证解:将求得的未知量的值代入原方程中验证是否满足题目要求。
6.提出结论:根据求得的解和验证的结果,给出问题的最终解答。
三、待定系数法的常见例题1.一元一次方程组例题1:已知二次方程的两个根为4和-3,求该二次方程。
解析:根据二次方程的性质,已知根x1和x2,可以得到二次方程为(x-x1)(x-x2)=0,即(x-4)(x+3)=0。
将括号中的每个因式展开,得到x^2-x(4+3)+12=0,即x^2-7x+12=0。
2.二次方程例题2:求满足方程x^2+6x=8的x的值。
解析:我们可以假设x的值为a,即x=a,代入方程中得到a^2+6a=8、将方程化简为a^2+6a-8=0。
对于这个二次方程,我们需要用待定系数法求解,设定未知量为a,设定的a是一个常数。
然后,我们将这个方程因式分解为(a-1)(a+8)=0,即a-1=0或a+8=0。
解得a=1或a=-8,即x=1或x=-83.代数式的展开和因式分解例题3:将代数式(x-2)(x+3)展开。
解析:根据分配律,我们可以得到(x-2)(x+3)=x(x+3)-2(x+3)。
(完整版)初中数学解题必备10大思想方法
初中数学解题必备10大思想方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
中考数学专项讲解-待定系数法
待定系数法知识梳理对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称之为待定系数法.使用待定系数法解题的一般步骤是:(1)确定所求问题含待定系数的解析式;(2)根据恒等条件,列出一组含待定系数的方程;(3)解方程或消去待定系数,从而使问题得到解决.初中数学中,待定系数法主要用途如下:典型例题一、在求函数解析式中的运用这是待定系数法的一个主要用途,学生也是在这种运用过程中开始较深入的接触待定系数法.初中阶段主要有正比例函数、反比例函数、一次函数、二次函数这几类函数,前面三种分别可设y=kx ,k y x=,y=kx+b 的形式(其中k 、b 为待定系数,且k ≠0).而二次函数可以根据题目所给条件的不同,设成y=a x 2+bx+c(a 、b 、c 为待定系数),y=a (x -h) 2+k(a 、k 、h 为待定系数),y=a (x -x 1)(x -x 2)( a 、x 1、x 2为待定系数)三类形式.根据题意(可以是语句形式,也可以是图象形式),确定出h 、k 、a 、c 、b 、x 1、x 2等待定系数. 【例1】 (05上海)点A(2,4)在正比例函数的图象上,求这个正比例函数的解析式.【解】设这个正比例函数的解析式为y=kx(k ≠0),把A(2,4)代入得4=2k ,∴k=2,∴y=2x .【例2】 已知y 与x+1成反比例,且x=2时,y=4,求函数的解析式.【分析】 y 与x+1成反比例,把x+1看作一个整体,即可设为:1k y x =+ (k ≠0),然后把x=2,y=4代入,求出k 的值即得函数的解析式. 【解】 y 与x+1成反比例,∴可设1k y x =+(k ≠0) 将x=2,y=4代入1k y x =+(k ≠0),得421k =+,解得k=12 ∴所求的函数的解析式为121y x =+. 【解题反思】 本题中y 与x+1成反比例关系,但y 与x 不是反比例关系,所以当自变量为x 时,121y x =+不是反比例函数. 【例3】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【解】 (1)设这个函数的解析式为y=a x 2+bx+c .依题意得:0093142a b c a b c a b c =++⎧⎪=++⎨⎪-=++⎩解这个方程组得143a b c =⎧⎪=-⎨⎪=⎩ ∴这个函数的解析式是:y=x 2-4x+3(2)2431y x x y x ⎧=-+⎨=-+⎩ 解这个方程组得:1110x y =⎧⎨=⎩,2221x y =⎧⎨=-⎩ ∴函数与直线的交点坐标是:(1,0)、(2,-1)【解题反思】 运用待定系数法,由已知建立方程(组),可求其系数的值,在把a 、b 、c 的值代入解析式时要注意符号.二、在确定方程或解方程时,某些时候使用待定系数法也可使问题得到简化. 例如:已知一元二次方程的两根为x 1、x 2,求二次项系数为1的一元二次方程时,可设该方程为x 2+mx+n=0,则有(x -x 1)(x -x 2)=0,即x 2-(x 1+x 2)x+x 1x 2=0,对应相同项的系数得m=-(x 1+x 2),n=x 1x 2,所以所求方程为:x 2-(x 1+x 2)x+x 1x 2=0.【例4】 已知三次方程x 3-6x 2+11x -6=0,有一根是另一根的2倍,解该方程.【解】设方程的三根分别为a 、2a 、b ,则有x 3-6x 2+11x -6=(x -a )(x -2a )(x -b),左右分别展开,并把相同项的系数作比较,可得:-3a -b=-6,2a 2+3a b=11,-2a 2b=-6.解得a =1,b=3,所以该方程的根分别为:x 1=1,x 2=2,x 3=3.三、待定系数法在分式展开化为部分分式中的应用.分式化为部分分式时,如果用待定系数法也会产生很好的效果.【例5】 把分式21172x x x-+-化为部分分式. 【解】设2117221x A B x x x x -+=+--,然后将右边进行通分,化成一个分式,由于左右两边分母相同,则只要分子相同,即:-11x+7=(A -B)x -B .由各项系数相同得:-11x=A -B ,7=-B ,解得A=3,B=-7.所以211737221x x x x x-+-=+-- 四、待定系数法在因式分解中的应用【例6】 分解因式:2x 2-xy -y 2+13x+8y -7【解】 因为2x 2-xy -y 2=(2x+y)(x -y),所以可设2x 2-xy -y 213x+8y -7=(2x+y+8)(x -y+b),展开比较相同项系数,可得:a =-1,b=7,所以2x 2-xy -y 2+13x+8y -7=(2x+y -1)(x -y+7).五、待定系数法在多项式除法中的应用【例7】 当a 、b 为何值时,2x 3-a x 2+bx+1能被2x -1整除?【解】 设2x 2-a x 2+bx+l=(2x -1)(x 2+mx -1),右边展开由x 的相同项的系数相同可得a 、b ,m 的方程组,解得:a =3,b=-3.m=-11.已知:一次函数的图象经过(-4,15)、(6,-5)两点,求此一次函数的解析式.2.(08镇江)二次函数的图象经过点A(0,-3),B(2,-3),C(-1,0).(1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少平移________个单位,使得该图象的顶点在原点.3.如图所示,已知抛物线的对称轴是直线x=3,它与x轴交于A、B两点,与y轴交于C点,点A、C的坐标分别是(8,0)、(0,4),求这个抛物线的解析式.4.(07枣庄)在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(-3,1)(1)求点B的坐标.(2)求过A,O,B三点的抛物线的解析式;(3)设点B关于抛物线的对称轴的对称点为B1,求△AB1B的面积.1.y=-2x+7 2.(1)设y=a x 2+bx -3,把点(2,-3),(-1,0)代入得4233300a b a b +-=-⎧⎨--=⎩,解方程组得12a b =⎧⎨=-⎩. ∴y=x 2-2x -3.(也可设y=a (x -1) 2+k). (2)y=x 2-2x -3=(x -1) 2-4,∴函数的顶点坐标为(1,-4). (3)53.解:观察图象可知,A 、C 两点的坐标分别是(8,0)、(0,4),对称轴是直线x=3.因为对称轴是直线x=3,所以B 点坐标为(-2,0).设所求二次函数为y=a (x -x 1)(x -x 2),由已知,这个图象经过点(8,0)、(-2,0),可以得到y=a (x -8)(x+2).又由于其图象过(0,4)点,将点代入,得所求二次函数的关系式是213442y x x =-++. 4.解:(1)作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C ,D ,则∠ACO=∠ODB=90°. ∴∠AOC+∠OAC=90°.又∠AOB=90°,∴∠AOC+∠BOD=90°.∴∠OAC=∠BOD .又AO=BO ,∴△ACO ≌△ODB .∴OD=AC=1,DB=OC=3.∴点B 的坐标为(1,3).(2)抛物线过原点,可设所求抛物线的解析式为y=a x 2+bx .将A(-3,1),B(1,3)代入,解得56a =,136b =.故所求抛物线的解析式为251366y x x =+. (3)抛物线的对称轴的方程是1310x =-. 点B 关于抛物线的对称轴的对称点为11835B ⎛⎫-⎪⎝⎭,.在△AB 1B 中,底边B 1B=4.6,高为2.1 4.6S AB B ∴=。
浅谈待定系数法法在初中数学教学中的应用
浅谈待定系数法法在初中数学教学中的应用一、待定系数法对于所给的数学问题,根据已知条件和要求,先设出问题的多项式表达形式(含待定的字母系数),然后利用已知条件,确定或消去所设待定系数,使问题获解的这种方法叫待定系数法.二、待定系数法解题的一般步骤是:第一步 根据多项式次数关系,假设一个含待定系数的等式;第二步 利用恒等式对应项系数相等的性质。
列出含有待定系数的方程组;第三步 解方程组,求出待定系数,再代入所设问题的结构中去,得到需求问题的解决.三、待定系数法的应用(一)利用待定系数法因式分解例1 k 为何值时,多项式k y x y xy x +++-+108222有一个因式是22++y x ?分析: 因222y xy x -+=()y x 2+()y x -,故原多项式必为(22++y x )(n y x +-)的形式. 解:设k y x y xy x +++-+108222=(22++y x )(n y x +-)=()()n y n x n y xy x 2222222+-+++-+, 得⎪⎩⎪⎨⎧==-=+n k n n 2,102282 解得12=k . 所以k =12时,多项式k y x y xy x +++-+108222有一个因式是22++y x . (二)利用待定系数法确定函数解析式已知一条抛物线的顶点坐标为(2,0),且经过点(1,3),求这条抛物线的解析式.分析:根据题意,可设()22-=x a y ,再由已知条件确定出a 值即可. 解:设()22-=x a y ,因为抛物线经过点(1,3),所以3=()221-a ,所以3=a , 所以这条抛物线的解析式为()223-=x y =121232+-x x .(三)利用待定系数法解决分式的拆分问题例3 把2432--+x x x 化为部分分式和的形式.分析:先把原分式分母分解因式,据此确定部分分式分母.因为分母()()1222+-=--x x x x ,故可设 2432--+x x x =2-x A +1+x B ,通过计算,比较分子,建立A 、B 的等式. 解:设2432--+x x x =2-x A +1+x B ,则2432--+x x x =()()2212---++x x x B x A =()222---++x x B A x B A ,得⎩⎨⎧=-=+423B A B A ,解得⎪⎪⎩⎪⎪⎨⎧-==31310B A .所以2432--+x x x =()2310-x -()131+x .。
初中数学常用的十一种思想方法介绍
初中数学常用的十一种思想方法介绍初中数学常用的十一种思想方法介绍数学的思想和方法是初中数学的基础知识。
数学学习中要提高我们分析问题的能力,形成用数学的意识决问题,这些都离不开数学思想和数学方法。
我们在初中的数学学习中,学到了很多处理数学问题的思想和方法,下面,本人就教学过程中常用的数学思想方法介绍如下:一、数形结合思想根据数学问题的条件和结论之间内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起一,并充分得用这种结合,寻求解题思路,使问题得到解决。
二、联系与转化的思想事物之间是相互联系,相互制约的。
是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化特殊与一般的转化、具体抽象的转化、部分与整体的转化、动与静的转化等等。
三、分类讨论的思想在数学中,我们常常需要根据研究对象性质的差异,分各种不同的情况予以考查,这种分类思考的方法是一一种重要的.数学思想方法。
同时也是一种重要的解题策略。
四、待定系数法当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母的值就可以,为此,把已知道条件代入特定形式的式子中,往往会得到含待定字母的方和或方程组就使问题得到解决。
待定系数法是一种重要的数学解题方法,在代数式恒等变形及研究函数中有着广泛的应用。
五、配方法把一个代数式设法构造成平方式,然后再进行所需要的变形,配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
六、换元法在解题过程中,把某个(或某些)字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题从而过到化繁为简、化难为易的目的。
七、分析法在研究或证明一个命题时,由结论向己知条件追溯,即从结论升始,推求它成立的充分条件,这个条件的成立如果还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件(或己知的事实)为止,从而使命题得到证明,这种方法叫佬分析法。
初中数学解题思想及十大解题方法
建议同学们在做题型训练之前先了解数学解题思想,掌握解题技巧,并将做过的题⽬加以划分,以便在考试中游刃有余。
解题⽅法01配⽅法通过把⼀个解析式利⽤恒等变形的⽅法,把其中的某些项配成⼀个或⼏个多项式正整数次幂的和形式解决数学问题的⽅法,叫配⽅法。
配⽅法⽤得最多的是配成完全平⽅式,它是数学中⼀种重要的恒等变形的⽅法,它的应⽤⼗分⾮常⼴泛,在因式分解、化简根式、解⽅程、证明等式和不等式、求函数的极值和解析式等⽅⾯都经常⽤到它。
02因式分解法因式分解,就是把⼀个多项式化成⼏个整式乘积的形式,是恒等变形的基础,它作为数学的⼀个有⼒⼯具、⼀种数学⽅法,在代数、⼏何、三⾓等的解题中起着重要的作⽤。
因式分解的⽅法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、⼗字相乘法等外,还有利⽤拆项添项、求根分解、换元、待定系数等等。
03 换元法通常把未知数或变数称为元,所谓换元法,就是在⼀个⽐较复杂的数学式⼦中,⽤新的变元去代替原式的⼀个部分或改造原来的式⼦,使它简化,使问题易于解决。
04判别式法与韦达定理⼀元⼆次⽅程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅⽤来判定根的性质,⽽且作为⼀种解题⽅法,在代数式变形,解⽅程(组),解不等式,研究函数乃⾄⼏何、三⾓运算中都有⾮常⼴泛的应⽤。
韦达定理除了已知⼀元⼆次⽅程的⼀个根,求另⼀根;已知两个数的和与积,求这两个数等简单应⽤外,还可以求根的对称函数,计论⼆次⽅程根的符号,解对称⽅程组,以及解⼀些有关⼆次曲线的问题等。
05待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,⽽后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从⽽解答数学问题,这种解题⽅法称为待定系数法。
06构造法在解题时,我们常常会采⽤这样的⽅法,通过对条件和结论的分析,构造辅助元素,它可以是⼀个图形、⼀个⽅程(组)、⼀个等式、⼀个函数、⼀个等价命题等,架起⼀座连接条件和结论的桥梁,从⽽使问题得以解决,这种解题的数学⽅法,我们称为构造法。
初中常用的数学思想方法
初中常用的数学思想方法1、分类讨论的思想在数学问题中,我们常常需要根据研究对象的差异,分不同情况予以讨论,比如:当X>0,X=0,X<0的情况,我们需要进行讨论,从而得出正确结果,这是一种重要的解题方法。
2、数形结合思想就是利用代数和几何图形相结合的方法,相互辅助,以便于我们更好解决数学问题。
例如:求线段最值问题。
就需要借助图形帮助我们更好理解及作答。
3、待定系数法此法常用于方程组或方程式中,我们在计算数学式子具有某种特定形式时,我们只需求出式子中待确定的字母的值就可以了。
我们可以把已知条件代入这个待定形式的式子中,就能轻松求解出这个问题了。
4、配方法利用已知代数式构造成平方差或完全平方式,再根据需要进行计算。
配方法在计算分解因式、解方程、讨论二次函数等问题上起着重要的作用。
6、换元法就是把带有某个或某些字母的式子看成一个整体,用一个新的字母进行表示,把一个复杂的式子进行化简进行计算,从而求出正确答案。
7、分析法常用于证明命题时,从结论向已知条件推理,推理出它成立的充分条件。
我们通过逆向思维思考问题,从而使问题更加简明,正所谓正难则反易。
8、联系与转化的思想事物之间是可以相互联系、相互转化的。
数学学科的知识点各部分之间也是相互联系的。
在解题时,如果能巧妙利用处理它们往往可以使问题化难为易,化繁为简。
如:代换转化、数形转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化等等。
9、演绎归纳法即从一般到特殊的演绎,把握现象,抓住本质,总结归纳其一般规律,并将其运用到解决实际问题当中。
10、类比法此法和上面一法有相似之处,其利用某些事物属性相同或相似的一面,推理到其他属性方面也可能有相同或相似的一面。
类比法既可能是从特殊到特殊,也可能从一般到一般的推理。
11、综合法在处理数学问题时,当使用一种方法不能很好解决问题时,我们可利用多种方法进行解决,选取适合的方法往往有助于我们快速解决难题,从而大大节省我们的时间。
初中数学常见的思想方法有哪些
初中数学多见的思想方法有哪些数学复习是一个系统的工程,许多同学都在想,如何才能掌握技巧,更好地利用宝贵无限的时间,让自己能够取得一个可以的成绩,掌握常用的数学思想方法是必不可少的,这里为大家介绍相关思想方法。
1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形精巧调和地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
初中数学多见的思想方法有哪些?在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、分外与大凡的转化、详尽与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种例外情况予以考查;这种分类思考的方法,是一种严重的数学思想方法,同时也是一种严重的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中严重的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有严重的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为繁复的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。
初中数学常考的知识点待定系数法
初中数学常考的知识点待定系数法待定系数法:先设出函数解析式,在根据条件确定解析式中的未知的系数,从而写出这个式子的方法,叫待定系数法。
用待定系数法确定解析式的步骤:①设函数表达式为:y=k某或y=k某+b②将已知点的坐标代入函数表达式,得到方程(组)③解方程或组,求出待定的系数的值。
④把的值代回所设表达式,从而写出需要的解析式。
注意;正比例函数y=k某只要有一个条件就可以。
而一次函数y=k某+b需要有两个条件。
初中数学知识点解析:构造方程构造方程是初中数学的基本方法之一在解题过程中要善于观察、善于发现、认真分析,根据问题的结构特征、及其问题中的数量关系,挖掘潜在已知和未知之间的因素,从而构造出方程,使问题解答巧妙、简洁、合理。
1、一些题目根据条件、仔细观察其特点,构造一个"一元一次方程"求解,从而获得问题解决。
例1:如果关于某的方程a某+b=2(2某+7)+1有无数多个解,那么a、b的值分别是多少?解:原方程整理得(a-4)∵此方程有无数多解,∴a-4=0且分别解得a=42、有些问题,直接求解比较困难,但如果根据问题的特征,通过转化,构造"一元二次方程",再用根与系数的关系求解,使问题得到解决。
此方法简明、功能独特,应用比较广泛,特别在数学竞赛中的应用。
3、有时可根据题目的条件和结论的特征,构造出方程组,从而可找到解题途径。
例3:已知3,5,2某,3y的平均数是4、20,18,5某,-6y的平均数是1、求的值。
分析:这道题考查了平均数概念,根据题目的特征构造二元一次方程组,从而解出某、y的值,再求出的值。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为某轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
待定系数法
一般用法是,设某一多项式的全部或部分系数为未知数,利用两个多项式恒等式同类项系数相等的原理或其他已知条件确定这些系数,从而得到待求的值。
例如,将已知多项式分解因式,可以设某些因式的系数为未知数,利用恒等的条件,求出这些未知数。
求经过某些点的圆锥曲线方程也可以用待定系数法。
从更广泛的意义上说,待定系数法是将某个解析式的一些常数看作未知数,利用已知条件确定这些未知数,使问题得到解决的方法。
求函数的表达式,把一个有理分式分解成几个简单分式的和,求微分方程的级数形式的解等,都可用这种方法。
【又】一种常用的数学方法。
对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程或方程组,解之即得待定的系数。
广泛应用于多项式的因式分解,求函数的解析式和曲线的方程等。
编辑本段待定系数法分解因式待定系数法是初中数学的一个重要方法。
用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的,由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。
在初中竞赛中经常出现。
例、分解因式x ﹣x ﹣5x ﹣6x﹣4分析:已知这个多项式没有二次因式,因而只能分解为两个一次因式。
解:设x ﹣x ﹣5x ﹣6x﹣4=(x ﹢ax﹢b)(x ﹢cx﹢d) = x² ﹢(a﹢c)x ﹢(ac﹢b﹢d)x ﹢(ad﹢bc)x﹢bd所以解得则x -x -5x -6x-4 =(x +x+1)(x -2x-4)=(2x+1)(-x-4)编辑本段待定系数法解题步骤使用待定系数法解题的一般步骤是:(1)确定所求问题含待定系数的解析式;(2)根据恒等条件,列出一组含待定系数的方程;. (3)解方程或消去待定系数,从而使问题得到解决。
初中待定系数法公式
初中待定系数法公式待定系数法是解代数方程组的一种常用方法,适用于多个未知数的情况。
以下是待定系数法的基本步骤和公式。
步骤一:设方程的未知数个数为n,根据方程的条件构建n个方程。
步骤二:设未知数的系数为a₁,a₂,...,aₙ,构建n个方程表示与未知数相关的条件。
步骤三:根据未知数的系数和方程的条件列方程组。
步骤四:解方程组,求出未知数的值。
待定系数法常用的公式如下:1.线性方程组的待定系数法对于形如ax + by = c的线性方程组,可以使用待定系数法进行求解。
设x的系数为a₁,y的系数为b₁,等号右边的常数项为c₁,代表第一个等式。
设x的系数为a₂,y的系数为b₂,等号右边的常数项为c₂,代表第二个等式。
构建如下方程组:a₁x+b₁y=c₁a₂x+b₂y=c₂接下来,使用解方程组的方法求解该方程组,得到x和y的值。
2.二次方程的待定系数法对于形如ax² + bx + c = 0的二次方程,可以使用待定系数法进行求解。
设二次项系数为a₁,一次项系数为b₁,常数项为c₁,代表第一个等式。
设二次项系数为a₂,一次项系数为b₂,常数项为c₂,代表第二个等式。
设x的系数为x₁,y的系数为y₁,代表第三个等式。
构建如下方程组:a₁x²+b₁x+c₁=0a₂x²+b₂x+c₂=0x₁+y₁=0接下来,使用解方程组的方法求解该方程组,得到x和y的值。
3.三元一次方程组的待定系数法对于形如ax + by + cz = d的三元一次方程组,可以使用待定系数法进行求解。
设x的系数为a₁,y的系数为b₁,z的系数为c₁,等号右边的常数项为d₁,代表第一个等式。
设x的系数为a₂,y的系数为b₂,z的系数为c₂,等号右边的常数项为d₂,代表第二个等式。
设x的系数为a₃,y的系数为b₃,z的系数为c₃,等号右边的常数项为d₃,代表第三个等式。
构建如下方程组:a₁x+b₁y+c₁z=d₁a₂x+b₂y+c₂z=d₂a₃x+b₃y+c₃z=d₃接下来,使用解方程组的方法求解该方程组,得到x、y和z的值。
初中数学常考的知识点待定系数法
初中数学常考的知识点待定系数法待定系数法是初中数学中常用的一种解题方法,它主要用于解决带有未知系数的方程问题。
通过设定未知系数,列出方程,再根据已知条件以及方程的性质进行求解。
接下来,我将从待定系数法在一元一次方程、一元二次方程、及数列中的应用等方面进行详细介绍。
在初中数学中,一元一次方程通常是最早接触到的方程类型。
待定系数法可以用来解决一元一次方程中的问题。
例如,如下的一道例题:例题1:有一个三位数,各位数字之和为9,将它的各位数字反过来得到一个不同的三位数,再将这两个三位数相加,得到1332,求原数。
解析:设这个三位数为100a+10b+c,反过来得到的三位数为100c+10b+a。
根据已知条件列出方程为:(100a+10b+c)+(100c+10b+a)=1332化简得:101a+20b+101c=1332由于方程中含有三个未知数a、b和c,我们可以设定一个待定系数,假设a为一个未知数。
那么b和c就可以通过1332-101a得到。
代入方程可得:101a+20(1332-101a)+101(1332-101a)=1332解这个一元一次方程可得:a=144根据所设待定系数,可将b和c代入求得:b=10,c=18通过这道题目的解答过程不难看出,待定系数法在一元一次方程中的应用既能简化方程的形式,又能得到未知数的值,大大提高了问题的解答效率。
一元二次方程是初中数学中的重点和难点,待定系数法在解决一元二次方程问题中提供了一种有效的思路。
下面以一道例题为例进行解析:例题2:已知一元二次方程 x^2 + ax +b =0 的两根α 和β 之和等于 -1,乘积等于 3、求这个二次方程的解析式。
解析:设方程的解析式为 x^2 + ax +b =0,根据题目中所给条件,可以列出方程为:x^2 + ax + b = (x-α)(x-β) = 0展开得:x^2-(α+β)x+αβ=0根据题目中给出的条件α+β=-1和αβ=3,代入方程可得:x^2-(-1)x+3=0即:x^2+x+3=0所以这个二次方程的解析式为x^2+x+3=0。
待定系数法在初中阶段的应用主要体现在函数这一部分
在初中数学教学中,常见的数学方法有:待定系数法、配方法、换元法、类比法、分析法、综合法等等,但是待定系数法、配方法、换元法是初中数学中最重要的基本技能和数学思想方法,也是初中数学思想方法中的综合性很强的方法。
下面我就结合自己的教学实践来谈谈这三种常用的教学方法在初中数学教学中的应用。
1. 待定系数法在初中阶段的应用主要体现在函数这一部分。
待定系数法,一种求未知数的方法。
将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。
后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫待定系数法。
例如:根据二次函数图像上的(-1,0),(3,0),(1,-5)三点的坐标,写出函数解析式。
2. 配方法:在初中阶段的应用主要是在一元二次方程和二次函数这一部分。
把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.配方法的作用在于改变代数式的原有结构,是求解变形的一种手段;配方法的实质在于改变式子的非负性,是挖掘隐含条件的有力工具,配方法在代数式的化简求值、解方程、解最值问题、讨论不等关系等方面有广泛的应用.例如:求证无论x 为何值时,代数式5.442++x x 的值恒大于0.3.换元法:换元法又称辅助元素法、变量代换法。
通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。
或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
例如:用换元法解方程123322++=+x x x x (我们可以设y x x =+2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学思想方法——待定系数法在数学问题中,若得知所求结果具有某种确定的形式,则可设定一些尚待确定的系数(或参数)来表示这样的结果,这些待确定的系数(或参数),称作待定系数。
然后根据已知条件,选用恰当的方法,来确定这些系数,这种解决问题的方法叫待定系数法。
待定系数法是数学中的基本方法之一。
它渗透于初中数学教材的各个部分,在全国各地中考中有着广泛应用。
应用待定系数法解题以多项式的恒等知识为理论基础,通常有三种方法:比较系数法;代入特殊值法;消除待定系数法。
比较系数法通过比较等式两端项的系数而得到方程(组),从而使问题获解。
例如:“已知x2-3=(1-A)·x2+Bx+C,求A,B,C的值”,解答此题,并不困难,只需将右式与左式的多项式中对应项的系数加以比较后,就可得到A,B,C的值。
这里的A,B,C就是有待于确定的系数。
代入特殊值法通过代入特殊值而得到方程(组),从而使问题获解。
例如:“点(2,﹣3)在正比例函数图象上,求此正比例函数”,解答此题,只需设定正比例函数为y=kx,将(2,﹣3)代入即可得到k的值,从而求得正比例函数解析式。
这里的k就是有待于确定的系数。
消除待定系数法通过设定待定参数,把相关变量用它表示,代入所求,从而使问题获解。
例如:“已知b2a3=,求a ba b-+的值”,解答此题,只需设定b2=ka3=,则a=3k b=2k,,代入a ba b-+即可求解。
这里的k就是消除的待定参数。
应用待定系数法解题的一般步骤是:(1)确定所求问题的待定系数,建立条件与结果含有待定的系数的恒等式;(2)根据恒等式列出含有待定的系数的方程(组);(3)解方程(组)或消去待定系数,从而使问题得到解决。
在初中阶段和中考中应用待定系数法解题常常使用在代数式变型、分式求值、因式分解、求函数解析式、求解规律性问题、几何问题等方面。
下面通过2011年和2012年全国各地中考的实例探讨其应用。
一.待定系数法在代数式变型中的应用:在应用待定系数法解有关代数式变型的问题中,根据右式与左式多项式中对应项的系数相等的原理列出方程(组),解出方程(组)即可求得答案。
典型例题:例:(2011云南玉溪3分)若2x6x k++是完全平方式,则k=【】A .9B .-9C .±9D .±3【答案】A 。
【考点】待定系数法思想的应用。
【分析】设()22x 6x k=x+A ++,则222x 6x k=x 2Ax A ++++, ∴22A=6A=3k=9A =k ⎧⎧⇒⎨⎨⎩⎩。
故选A 。
练习题:1.(2012江苏南通3分)已知x 2+16x +k 是完全平方式,则常数k 等于【 】A .64B .48C .32D .162.(2012贵州黔东南4分)二次三项式x 2﹣kx+9是一个完全平方式,则k 的值是 ▲ 。
3.(2011江苏连云港3分)计算 (x +2) 2的结果为x 2+□x +4,则“□”中的数为【 】A .-2B .2C .-4D .44.(2011湖北荆州3分)将代数式2x 4x 1+-化成2(x p)q ++的形式为【 】A.2(x 2)3-+B.2(x 2)4+-C.2(x 2)5+-D.2(x 4)4++ 二. 待定系数法在分式求值中的应用:在一类分式求值问题中,已知一比例式求另一分式的值,可设定待定参数,把相关变量用它表示,代入所求分式,从而使问题获解。
典型例题:例:(2012四川凉山4分)已知b 5a 13=,则a b a b -+的值是【 】 A .23 B .32 C .94 D .49【答案】D 。
【考点】比例的性质。
【分析】∵b 5a 13=,∴设b 5k a 13==,则b=5k , a=13k ,把a ,b 的值代入a b a b-+,得, a b 13k 5k 8k 4===a b 13k 5k 18k 9--++。
故选D 。
练习题:1.(2012北京市5分)已知a b =023≠,求代数式5a 2b (a 2)(a+2b)(a 2b)b ⋅---的值。
2.(2011四川巴中3分)若a 22ab 3=-,则b a = ▲ 。
三. 待定系数法在因式分解中的应用:在因式分解问题中,除正常应用提取公因式法、应用公式法、十字相乘法、分组分解法等解题外还可应用待定系数法求解,特别对于三项以上多项式的分解有很大作用(如:x 3-6x 2+11x -6,223x 5xy 2y x 9y 4+-++-,目前这类考题很少,但不失为一种有效的解题方法)。
典型例题:例1:(2012湖北黄石3分)分解因式:2x x 2+-= ▲ 。
【答案】(x -1)(x +2)。
【考点】因式分解。
【分析】设()()2x x 2x A x B +-=++,∵()()()2x A x B x A B x A B ++=+++⋅,A B=1A B=2+⎧⎨⋅-⎩,解得A=1B=2-⎧⎨⎩或A=2B=1⎧⎨-⎩, ∴()()2x x 2=x 1x 2+--+。
〖注:本题实际用十字相乘法解题更容易,但作为一种解法介绍于此。
〗例2:分解因式:223x 5xy 2y x 9y 4+-++- ▲ 。
【答案】()()3x y 4x 2y 1-++-。
【考点】因式分解。
【分析】∵()()223x 5xy 2y 3x y x 2y +-=-+,∴可设()()223x 5xy 2y x 9y 43x y a x 2y b +-++-=-+++。
∵()()()223x y a x 2y b 3x 5xy 2y a 3b x (2a b)y ab -+++=+-+++-+, ∴()22223x 5xy 2y x 9y 43x 5xy 2y a 3b x (2a b)y ab +-++-=+-+++-+。
比较两边系数,得a 3b=12a b=9ab=4+⎧⎪-⎨⎪-⎩①②③。
联立①,②得a=4,b =-1。
代入③式适合。
∴()()223x 5xy 2y 3x y 4x 2y 1+-=-++-。
练习题:1.已知:4x4+ax3+13x2+bx+1是完全平方式.求:a和b的值.2.用待定系数法,求(x+y)5的展开式3.推导一元三次方程根与系数的关系。
四.待定系数法在求函数解析式中的应用:待定系数法是解决求函数解析式问题的常用方法,求函数解析式是初中阶段待定系数法的一个主要用途。
确定直线或曲线方程就是要确定方程中x的系数与常数,我们常常先设它们为未知数,根据点在曲线上,点的坐标满足方程的关系,将已知的条件代入方程,求出待定的系数与常数。
这是平面解析几何的重要内容,是求曲线方程的有效方法。
初中阶段主要有正比例函数、一次函数、反比例函数、二次函数这几类函数,前面三种分别可设y=kx,y=kx+b,kyx=的形式(其中k、b为待定系数,且k≠0)。
而二次函数可以根据题目所给条件的不同,设成一般式y=ax2+bx+c(a、b、c为待定系数),顶点式y=a (x-h) 2+k(a、k、h为待定系数),交点式y=a (x-x1)(x-x2)( a、x1、x2为待定系数)三类形式。
根据题意(可以是语句形式,也可以是图象形式),确定出a、b、c、k、x1、x2等待定系数,求出函数解析式。
典型例题:例1:(2012江苏南通3分)无论a取什么实数,点P(a-1,2a-3)都在直线l上,Q(m,n)是直线l上的点,则(2m-n+3)2的值等于▲ .【答案】16。
【考点】待定系数法,直线上点的坐标与方程的关系,求代数式的值。
【分析】∵由于a不论为何值此点均在直线l上,∴令a=0,则P1(-1,-3);再令a=1,则P2(0,-1)。
设直线l的解析式为y=kx+b(k≠0),∴k b3b1-+=-⎧⎨=-⎩,解得k2b1=⎧⎨=-⎩。
∴直线l的解析式为:y=2x-1。
∵Q(m,n)是直线l上的点,∴2m-1=n,即2m-n=1。
∴(2m-n+3)2=(1+3)2=16。
例2:(2012山东聊城7分)如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,﹣2).(1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.【答案】解:(1)设直线AB 的解析式为y=kx+b ,∵直线AB 过点A (1,0)、点B (0,﹣2),∴k b 0b=2+=⎧⎨-⎩,解得k 2b=2=⎧⎨-⎩。
∴直线AB 的解析式为y=2x ﹣2。
(2)设点C 的坐标为(x ,y ),∵S △BOC =2,∴12•2•x=2,解得x=2。
∴y=2×2﹣2=2。
∴点C 的坐标是(2,2)。
【考点】待定系数法,直线上点的坐标与方程的关系。
【分析】(1)设直线AB 的解析式为y=kx+b ,将点A (1,0)、点B (0,﹣2)分别代入解析式即可组成方程组,从而得到AB 的解析式。
(2)设点C 的坐标为(x ,y ),根据三角形面积公式以及S △BOC =2求出C 的横坐标,再代入直线即可求出y 的值,从而得到其坐标。
练习题1. 已知4286322+-+=++-x b x a x x x . 求a, b 的值. 2. 已知:2)1(1)2()1(534222++-+-=+-+-x C x B x A x x x x . 求:A ,B ,C 的值. 3. 已知: x 4—6x 3+13x 2-12x+4是完全平方式.求:这个代数式的算术平方根.4. 已知:ax 3+bx 2+cx+d 能被x 2+p 整除.求证:ad=bc.5. 试用待定系数法,证明一元二次方程根与系数的关系(即韦达定理).6. 用x -2的各次幂表示3x 3-10x 2+13.7. k 取什么值时,kx 2-2xy -y 2+3x -5y+2能分解为两个一次因式..8. 分解因式:①x 2+3xy+2y 24x+5y+3;②x 4+1987x 2+1986x+1987.9. 求下列展开式:① (x+y)6; ② (a+b+c)3.10. 多项式x 2y -y 2z+z 2x -x 2z+y 2x+z 2y -2xyz 因式分解的结果是( )(A) (x+y)(y -z)(x -z) . (B) (x+y)(y+z)(x -z).(C) (x -y)(y -z)(x+z). (D) (x -y)(y+z)(x+z).11. 已知( a+1)4=a 4+4a 3+6a 2+4a+1, 若S=(x -1)4+4(x -1)3+6(x -1)2+4x -3. 则S 等于( )(A) (x -2)4 . (B) (x -1)4 . (C) x 4 . (D) (x+1)4.12. 已知:4310252323-+-++-x x x c bx x ax 的值是恒为常数求:a, b, c 的值. 13. 已知:x 3-9x 2+25x+13=a(x+1)(x -2)(x -3) +b(x -1)(x -2)(x -3) +c(x -1)(x+1)(x-3) +d(x -1)(x+1)(x -2),求:a+b+c+d 的值.参考答案1. a=-27,b=-211 2. A=1,B=2,C=3 3. ± (x 2-3x+2) 4.由 (x 2+p)(ax+pd )… 6. 3(x -2)3+8(x -2)2-4(x -2)-3 7. 先整理为关于x 的二次三项式,并把常数项分解因式,再用待定系数法。