华师附中八年级上期期末数学测试卷(1)(含答案)
华东师大版八年级数学上册期末测试卷及答案(1)
华东师大版八年级数学上册期末测试卷及答案(1) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形 6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.分解因式:2x 3﹣6x 2+4x =__________.4.如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD ∥OY 交OX 于点D ,作PE ∥OX 交OY 于点E .设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.5.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.=;(1)求证:BG DE(2)若E为AD中点,2FH=,求菱形ABCD的周长.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、D5、B6、A7、B8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、1002、22()1y x =-+3、2x (x ﹣1)(x ﹣2).4、2≤a+2b ≤5.5、36、8三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =-2、3x3、(1)102b -≤≤;(2)2 4、(1) 65°;(2) 25°.5、(1)略;(2)8.6、(1)2元;(2)至少购进玫瑰200枝.。
华师大版八年级(上)期末数学试卷(含解析)1
华师大版八年级(上)期末数学试卷及答案一、选择题1.(3分)在,﹣3,0,这四个数中,无理数是()A.B.﹣3C.0D.2.(3分)的值是()A.2B.﹣2C.4D.﹣43.(3分)计算a3•a的结果正确的是()A.a3B.a4C.3a D.3a44.(3分)下列计算正确的是()A.2a+3a=5a2B.a2•a3=a6C.a6÷a2=a3D.(a2)3=a65.(3分)一个等腰三角形的两边长分别为4,8,则它的周长为()A.12B.16C.20D.16或206.(3分)某校为开展第二课堂,组织调查了本校300名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,根据统计图判断下列说法,其中正确的一项是()A.在调查的学生中最喜爱篮球的人数是50人;B.喜欢羽毛球在统计图中所对应的圆心角是144°C.其他所占的百分比是20%D.喜欢球类运动的占50%7.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画圆弧,分别交AB、AC于点D、E,再分别以点D、E为圆心,大于DE长为半径画圆弧,两弧交于点F,作射线AF交边BC于点G.若CG =3,AB=10,则△ABG的面积是()A.3B.10C.15D.308.(3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.3二、填空题9.(3分)9的算术平方根是.10.(3分)分解因式:a2﹣1=.11.(3分)命题“如果x2=4,那么x=2”是命题(填“真”或“假”).12.(3分)如图,在△ABC中,AB=AC,边AB的垂直平分线DE交BC于点E,连接AE,若∠BAC=100°,则∠AEC的大小为度.13.(3分)如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B、C、D的面积依次为4、3、9,则正方形A的面积为.14.(3分)如图,Rt△ABC中,∠C=90°,D、E分别是边AB、AC的点,将△ABC沿DE折叠,使点A的对称点A′恰好落在BC的中点处.若AB=10,BC=6,则AE的长为.三、解答题15.计算:﹣﹣16.计算:(a﹣1)(a+2)﹣(a2﹣2a)÷a17.图①、图②都是4×4的正方形网格,每个小正方形的顶点为格点,每个小正方形的边长均为1.在图①、图②中已画出线段AB,点A、B均在格点上按下列要求画图:(1)在图①中,以格点为顶点,AB为腰,画一个三边长都是无理数的等腰三角形;(2)在图②中,以格点为顶点,AB为底的等腰三角形.18.先化简,再求值:(2a+b)2﹣(2a+3b)(2a﹣3b),其中a=,b=﹣2.19.为了解某市的空气质量情况,某坏保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计根据空气污染指数的不同,将空气质量分为A、B、C、D和E五个等级,分别表示空气质量优、良、轻度污染、中度污染、重度污染,并绘制了如下两幅不完整的统计图.根据图中的信息,解答下列问题:(1)求被抽取的天数;(2)补全条形统计图,并求扇形统计图中表示空气质量表示中度污染的扇形的圆心角度数;(3)在这次抽取的天数中,求空气质量为良占的百分比.20.如图,点B、F、C、E在同一条直线上,点A、D在直线BC的异侧,AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)直接写出图中所有相等的角.21.题目:如图,在△ABC中,点D是BC边上一点,连结AD,若AB=10,AC=17,BD=6,AD=8,解答下列问题:(1)求∠ADB的度数;(2)求BC的长.小强做第(1)题的步骤如下:∵AB2=BD2+AD2∴△ABD是直角三角形,∠ADB=90°.(1)小强解答第(1)题的过程是否完整,如果不完整,请写出第(1)题完整的解答过程(2)完成第(2)题.22.【感知】如图①,△ABC是等边三角形,D是边BC上一点(点D不与点B、C重合),作∠EDF=60°,使角的两边分别交边AB、AC于点E、F,且BD=CF.若DE⊥BC,则∠DFC的大小是度;【探究】如图②,△ABC是等边三角形,D是边BC上一点(点D不与点B、C重合),作∠EDF=60°,使角的两边分别交边AB、AC于点E、F,且BD=CF.求证:BE=CD;【应用】在图③中,若D是边BC的中点,且AB=2,其它条件不变,如图③所示,则四边形AEDF的周长为.23.如图,一张四边形纸片ABCD,AB=20,BC=16,CD=13,AD=5,对角线AC⊥BC.(1)求AC的长;(2)求四边形纸片ABCD的面积;(3)若将四边形纸片ABCD沿AC剪开,拼成一个与四边形纸片ABCD面积相等的三角形,直接写出拼得的三角形各边高的长.24.如图,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是边AB的高线,动点E从点A出发,以每秒1个单位的速度沿射线AC运动;同时,动点F从点C出发,以相同的速度沿射线CB运动.设E的运动时间为t(s)(t>0).(1)AE=(用含t的代数式表示),∠BCD的大小是度;(2)点E在边AC上运动时,求证:△ADE≌△CDF;(3)点E在边AC上运动时,求∠EDF的度数;(4)连结BE,当CE=AD时,直接写出t的值和此时BE对应的值.参考答案与试题解析一、选择题1.【解答】解:在,﹣3,0,这四个数中,无理数是,故选:A.2.【解答】解:=﹣2,故选:B.3.【解答】解:a3•a=a4.故选:B.4.【解答】解:A、2a+3a=5a,故A错误;B、a2•a3=a5,故B错误;C、a6÷a2=a4,故C错误;D、(a2)3=a6,故D正确.故选:D.5.【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选:C.6.【解答】解:A.在调查的学生中最喜爱篮球的人数是300×20%=60(人),此选项错误;B.喜欢羽毛球在统计图中所对应的圆心角是360°×40%=144°,此选项正确;C.其他所占的百分比是1﹣(20%+30%+40%)=10%,此选项错误;D.喜欢球类运动所占百分比为20%+40%=60%,此选项错误;故选:B.7.【解答】解:作GH⊥AB于H,由基本尺规作图可知,AG是△ABC的角平分线,∵∠C=90°,GH⊥AB,∴GH=CG=3,∴△ABG的面积=×AB×GH=15,故选:C.8.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.二、填空题9.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.10.【解答】解:a2﹣1=(a+1)(a﹣1).故答案为:(a+1)(a﹣1).11.【解答】解:∵如果x2=4,那么x=±2,∴命题“如果x2=4,那么x=2”是假命题,故答案为:假.12.【解答】解:在△ACB中,∵AB=AC,∠BAC=100°,∴∠B=∠C==40°,∵DE是线段AB的垂直平分线,∴AE=EB,∴∠1=∠B=40°,又∠AEC是△ABE的一个外角,∴∠AEC=∠B+∠1=80°.故答案为:80.13.【解答】解:由题意:S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,∴S正方形A+S正方形B=S正方形D﹣S正方形C∵正方形B,C,D的面积依次为4,3,9∴S正方形A+4=9﹣3,∴S正方形A=2故答案为2.14.【解答】解:∵Rt△ABC中,∠C=90°,AB=10,BC=6,∴AC==8,∵A'为BC的中点,∴A'C=3,设AE=x,则CE=8﹣x,A'E=x,∵Rt△A'CE中,CE2+A'C2=A'E2,∴(8﹣x)2+32=x2,解得x=,∴AE=,故答案为:.三、解答题15.【解答】解:原式=5+4﹣=8.16.【解答】解:原式=a2+a﹣2﹣(a﹣2)=a2.17.【解答】解:(1)如图1所示:△ABC即为所求;(2)如图2所示:△ABC即为所求.18.【解答】解:原式=4a2+4ab+b2﹣(4a2﹣9b2)=4a2+4ab+b2﹣4a2+9b2=4ab+10b2,当a=,b=﹣2时,原式=4××(﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36.19.【解答】解:(1)10÷20%=50(天),答:被抽取的天数是50天;(2)空气质量中度污染的天数=50﹣12﹣18﹣10﹣5=5(天),360°×=36°,补全条形统计图如图所示,(3)×100%=24%,答:空气质量为良占的百分比为24%.20.【解答】(1)证明:∵BF=CE,∴BF+FC=FC+CE,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).(2)∵△ABC≌△DEF,∴∠A=∠D,∠B=∠E,∠ACE=∠DFE,∴∠ACE=∠DFB.21.【解答】解:(1)不完整,∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴∠ADB=90°;(2)在Rt△ACD中,CD==15,∴BC=BD+CD=6+15=21,答:BC的长是21.22.【解答】解:【感知】如图1,∵△ABC是等边三角形,∴∠B=∠C=60°,∵DE⊥BC,即∠BDE=90°,∠EDF=60°,∴∠BED=∠CDF=30°,∴∠DFC=90°,故答案为:90;【探究】∵△ABC是等边三角形,∴∠B=∠C=60°,∵∠EDF+∠CDF=∠B+∠BED,且∠EDF=60°,∴∠CDF=∠BED,在△BDE和△CFD中,∵,∴△BDE≌△CFD(AAS),∴BE=CD;【应用】∵△ABC是等边三角形,AB=2,∴∠B=∠C=60°,AB=BC=AC=2,∵D为BC中点,且BD=CF,∴BD=CD=CF=AF=1,由【探究】知△BDE≌△CFD,∴BE=CD=1,DE=DF,∵∠B=60°,∴△BDE是等边三角形,∴DE=DF=1,则四边形AEDF的周长为AE+DE+DF+AF=4,故答案为:4.23.【解答】解:(1)在RT△ABC中,AC===12;(2)∵AD2+AC2=52+122=133=CD2,∴∠CAD=90°∴四边形纸片ABCD的面积=S△ABC+S△ACD=AC•BC+AC•AD=×12×16+×12×5=126;(3)如图,∵AB=20,BC=16,CD=13,AD=5,∴BE边上的高AC=12,AB边上的高==,AE边上的高==.24.【解答】(1)解:由题意:AE=t,∵CA=CB,∠ACB=90°,CD⊥AB,∴∠BCD=∠ACD=45°,故答案为t,45.(2)证明:∵∠ACB=90°,CA=CB,CD⊥AB,∴CD=AD=BD,∴∠A=∠DCB=45°,∵AE=CF,∴△ADE≌△CDF(SAS).(3)∵点E在边AC上运动时,△ADE≌△CDF,∴∠ADE=∠CDF,∴∠EDF=∠ADC=90°,(4)①当点E在AC边上时,在Rt△ACB中,∵∠ACB=90°,AC=CB,AB=2,CD⊥AB,∴CD=AD=DB=1,AC=BC=∵CE=CD=1,∴AE=AC﹣CE=﹣1,∴t=﹣1.②当点E在AC的延长线上时,AE=AC+EC=+1,∴t=+1.综上所述,满足条件的t的值为﹣1或+1.。
华师版八年级数学上册第一学期期末测试卷(含答案)
华师版八年级数学上册第一学期期末测试卷(含答案)第一学期期末测试卷一、选择题(每题3分,共30分)1.9的平方根是(。
)。
A。
±3B。
±1/3C。
3D。
-32.下列运算正确的是(。
)。
A。
x3·x4=x12B。
(x3)4=x7C。
x8÷x2=x6D。
(3b3)2=6b63.将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是(。
)。
A。
8、15、17B。
7、24、25C。
3、4、5D。
2、3、74.已知∠AOB,求作射线OC,使OC平分∠AOB,那么作法的合理顺序是(。
)。
①作射线OC;②在射线OA和OB上分别截取OD,OE,使OD=OE;③分别以D、E为圆心,大于DE的长为半径在∠AOB内作弧,两弧交于点C.A。
①②③B。
②①③C。
②③①D。
③①②5.如图是丽水PM2.5来源统计图,则根据统计图得出的下列判断中,正确的是(。
)。
A。
汽车尾气约为建筑扬尘的3倍B。
表示建筑扬尘的占7%C。
表示煤炭燃烧对应的扇形圆心角度数为126°D。
煤炭燃烧的影响最大6.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为(。
)。
A。
40°B。
30°C。
70°D。
50°7.下列分解因式正确的是(。
)。
A。
-ma-m=-m(a-1)B。
a2-1=(a-1)2C。
a2-6a+9=(a-3)2D。
a2+3a+9=(a+3)28.如图,在△ABC中,AB=AC,D是BC的中点,AC 的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是(。
)。
A。
1B。
2C。
3D。
49.如图,数轴上点A、B分别对应数1、2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是(。
)。
A。
3B。
5C。
6D。
华师附中八年级上期期末数学测试卷(1)(含答案)
八年级上期期末数学测试卷(1)班级_______ 学号_______ 姓名_______ 总分_______一、选择题(每题3分,共30分) 1.下列计算正确的是( )A .a·a 2=a 2B .(a 2)2=a 4C .a 2·a 3=a 6D .(a 2b)3=a 2·b 32.下列式子中,从左到右的变形是因式分解的是( ). A .(x -1)(x -2)=x 2-3x +2 B .x 2-3x +2=(x -1)(x -2) C .x 2+4x +4=x(x 一4)+4 D .x 2+y 2=(x +y)(x —y) 3.下列因式分解变形中,正确的是( )A .ab(a -b)-a(b -a)=-a(b -a)(b +1);B .6(m +n)2-2(m +n)=(2m +n)(3m +n +1)C .3(y -x)2+2(x -y)=(y -x)(3y -3x +2);D .3x(x +y)2-(x +y)=(x +y)2(2x +y) 4.下列各命题中,假命题的个数为( )①面积相等的两个三角形是全等三角形;②三个角对应相等的两个三角形是全等三角形;③全等三角形的周长相等④有两边及其中一边的对角对应相等的两个三角形是全等三角形. A .1 B .2 C .3 D .45.已知:如图,△ABD 和△ACE 均为等边三角形,且∠DAB =∠CAE =60°,那么,△ADC ≌△AEB 的根据是( )A.边边边 B .边角边 C.角边角 D .角角边6.在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( ) A .a 2一b 2=(a +b)(a —b) B .(a +b)2=a 2+2ab +b 2 C .(a —b)2=a 2-2ab +b 2D .a 2-ab =a(a —b)7.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是( )A.310元 B .300元C.290元 D .280元 8.若2a 3x b y +5与5a 2-4y b 2x是同类项,则( ) A 、⎩⎨⎧x =1y =2B 、⎩⎨⎧x =2y =-1C 、⎩⎨⎧x =0y =2D 、⎩⎨⎧x =3y =19.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则一次函数y=x +k 的图象大致是( ).xyO Axy OBxyOCx y OD10.如图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为 千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有( )A.1个 B .2个 C .3个 D .4个 二、填空题(每题2分,共18分)1.多项式3a 2b +2b -13ab 2-1第三项的系数是_______,次数是_______。
华东师大版八年级数学上册期末测试卷及答案(1)
华东师大版八年级数学上册期末测试卷及答案(1)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.如果a ,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A .12B .1C .2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.若最简二次根式1a +与8能合并成一项,则a =__________.3.4的平方根是 .4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P (x ,y )是该直线上的一个动点,且在第二象限内运动,试写出△OPA 的面积S 关于x 的函数解析式,并写出自变量x 的取值范围.(3)探究:当点P 运动到什么位置时,△OPA 的面积为,并说明理由.5.如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、C5、A6、C7、B8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1002、13、±2.4、﹣2<x<25、49 136、15.三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、-3.3、(1)12b-≤≤;(2)24、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.5、(1)略;(2)112.5°.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
华东师大版八年级数学上册期末试卷及答案(1)
华东师大版八年级数学上册期末试卷及答案(1) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.2.计算:16=_______.3.使x2-有意义的x的取值范围是________.4.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.如图,平行四边形ABCD中,60AD=,点E是对角线AC上一BAD∠=︒,2动点,点F是边CD上一动点,连接BE、EF,则BE EF+的最小值是____________.6.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.三、解答题(本大题共6小题,共72分)1.解方程:(1)211x x-=+(2)2216124xx x--=+-2.先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、C5、A6、D7、B8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、43、x 2≥4、1456、42.三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、123、8k ≥-且0k ≠.4、(1)略;(2)45°;(3)略.5、(1)略(2)等腰三角形,理由略6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
华师大版八年级(上)期末数学试卷(含解析)1
华师大版八年级(上)期末数学试卷及答案一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)9的平方根是()A.B.81C.±3D.32.(4分)下列各数中,不是无理数的是()A.B.C.πD.3.(4分)下列各式计算结果是x6的是()A.x2•x3B.(x2)3C.x12÷x2D.x2+x44.(4分)每天用微信计步是不少市民的习惯,小张老师记录了一周每天的步数并制作成折线统计图,则小张老师这一周一天的步数超过7000步的有()A.1天B.2天C.3天D.4天5.(4分)下列各组数中,是勾股数的是()A.7,8,9B.6,8,11C.5,12,14D.3,4,56.(4分)如图,数轴上点N表示的数可能是()A.B.C.D.7.(4分)下列选项中,可以用来证明命题“若a2>4,则a>2”是假命题的反例是()A.a=﹣3B.a=﹣2C.a=2D.a=38.(4分)如图,在△ABC中,AD⊥BC,添加下列条件后,还不能使△ABD≌△ACD的是()A.AB=AC B.BD=CD C.∠B=∠C D.AD=BD9.(4分)下列命题的逆命题是真命题的是()A.同位角相等B.对顶角相等C.等边对等角D.全等三角形的面积相等10.(4分)如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点A出发,沿长方体表面到点B处吃食物,那么它爬行最短路程是()A.B.C.D.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)计算:.12.(4分)一个等腰三角形的两边长分别为3和7,这个三角形的周长是.13.(4分)李老师组织本班学生进行跳绳测试,根据学生测试的成绩,列出了如下表格,则成绩为“良”的频率为.成绩优良及格不及格频数102215314.(4分)如图,在△ABC中,AB=AC,D为BC的中点,且∠BAD=25°,则∠C的度数是°.15.(4分)若x2﹣3x﹣7=0,则x(x﹣1)(x﹣2)(x﹣3)的值为.16.(4分)如图,在四边形ABCD中,AB=AC,BC=BD,若∠ABC=∠BAD=α,则∠BCD=(用含α的代数式表示).三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.18.(8分)把下列多项式分解因式:(1)3x2﹣48(2)mx2﹣4mx+4m19.(8分)先化简,再求值:[(x+y)2﹣(x﹣3y)(x+3y)]÷5y,其中x=﹣5,y=1.20.(8分)如图所示,A,B,C,D四点在同一直线上,且AF∥DE,BF∥CE,AC=BD.求证:△ABF≌△DCE.21.(8分)2019年11月20日﹣23日,首届世界5G大会在北京举行.某校的学生开展对于5G知晓情况的问卷调查,问卷调查的结果分为A、B、C、D四类,其中A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,并把调查结果绘制成如图所示的两个统计图表(不完整).根据上述信息,解答下列问题:(1)这次一共调查了多少人;(2)求“A类”在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整.22.(10分)如图,A、B两个村子在笔直河岸的同侧,A、B两村到河岸的距离分别为AC=2km,BD=3km,CD =6km,现在要在河岸CD上建一水厂E向A、B两村输送自来水,要求A、B两村到水厂E的距离相等.(1)在图中作出水厂E的位置(要求:尺规作图,不写作法,保留作图痕迹);(2)求水厂E距离C处多远?23.(10分)如图,正方形ABCD是由两个小正方形和两个小长方形组成的,根据图形解答下列问题:(1)请用两种不同的方法表示正方形ABCD的面积,并写成一个等式;(2)运用(1)中的等式,解决以下问题:①已知a+b=5,ab=3,求a2+b2的值;②已知x+z﹣y=11,(x﹣y)z=9,求(x﹣y)2+z2的值.24.(12分)结论:直角三角形中,30°的锐角所对的直角边等于斜边的一半.如图①,我们用几何语言表示如下:∵在△ABC中,∠C=90°,∠A=30°,∴BC=AB.你可以利用以上这一结论解决以下问题:如图②,在△ABC中,∠BAC=60°,AC=8,AB=5,BC=7.(1)求△ABC的面积;(2)如图③,射线AM平分∠BAC,点P从点A出发,以每秒1个单位的速度沿着射线AM的方向运动,过点P分别作PE⊥AC于E,PF⊥AB于F,PG⊥BC于G.设点P的运动时间为t秒,当PE=PF=PG时,求t的值.25.(14分)已知△ABC中,∠ACB=90°,AC=BC,过顶点A作射线AP.(1)当射线AP在∠BAC外部时,如图①,点D在射线AP上,连结CD、BD,已知AD=n2﹣1,AB=n2+1,BD=2n(n>1).①试证明△ABD是直角三角形;②求线段CD的长.(用含n的代数式表示)(2)当射线AP在∠BAC内部时,如图②,过点B作BD⊥AP于点D,连结CD,请写出线段AD、BD、CD的数量关系,并说明理由.参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)9的平方根是()A.B.81C.±3D.3【解答】解:9的平方根是±3,故选:C.2.(4分)下列各数中,不是无理数的是()A.B.C.πD.【解答】解:A、,是有理数,符合题意;B、,是无理数,不合题意;C、π,是无理数,不合题意;D、,是无理数,不合题意;故选:A.3.(4分)下列各式计算结果是x6的是()A.x2•x3B.(x2)3C.x12÷x2D.x2+x4【解答】解:A.x2•x3=x5,故本选项不合题意;B.(x2)3=x6,故本选项符合题意;C.x12÷x2=x10,故本选项不合题意;D.x2与x4,不是同类项,所以不能合并,故本选项不合题意.故选:B.4.(4分)每天用微信计步是不少市民的习惯,小张老师记录了一周每天的步数并制作成折线统计图,则小张老师这一周一天的步数超过7000步的有()A.1天B.2天C.3天D.4天【解答】解:根据折现统计图给出的数据可得,周一和周六都的步数超过7000步,则小张老师这一周一天的步数超过7000步的有2天;故选:B.5.(4分)下列各组数中,是勾股数的是()A.7,8,9B.6,8,11C.5,12,14D.3,4,5【解答】解:A、∵72+82≠92,∴这组数不是勾股数.不符合题意;B、∵62+82≠112,∴不是勾股数,不符合题意;C、∵52+122≠14,∴这组数不是勾股数.不符合题意;D、∵32+42=52,∴是勾股数,符合题意.故选:D.6.(4分)如图,数轴上点N表示的数可能是()A.B.C.D.【解答】解:A.1<<2,不符合题意;B.1<<2,不符合题意;C.2<<3,符合题意;D.3<<4,不符合题意.故选:C.7.(4分)下列选项中,可以用来证明命题“若a2>4,则a>2”是假命题的反例是()A.a=﹣3B.a=﹣2C.a=2D.a=3【解答】解:用来证明命题“若a2>4,则a>2”是假命题的反例可以是:a=﹣3,∵(﹣3)2>4,但是a=﹣3<2,∴A正确.故选:A.8.(4分)如图,在△ABC中,AD⊥BC,添加下列条件后,还不能使△ABD≌△ACD的是()A.AB=AC B.BD=CD C.∠B=∠C D.AD=BD【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,A、∵在Rt△ABD和Rt△ACD中∴Rt△ABD≌Rt△ACD(HL),故本选项不符合题意;B、∵在△ABD和△ACD中∴△ABD≌△ACD(SAS),故本选项不符合题意;C、∵在△ABD和△ACD中∴△ABD≌△ACD(AAS),故本选项不符合题意;D、在△ABD和△ACD中,根据AD=BD和∠ADB=∠ADC=90°不能推出△ABD≌△ACD,故本选项符合题意;故选:D.9.(4分)下列命题的逆命题是真命题的是()A.同位角相等B.对顶角相等C.等边对等角D.全等三角形的面积相等【解答】解:A、同位角相等的逆命题是相等的角是同位角,是假命题,故此选项错误;B、对顶角相等的逆命题是相等的角是对顶角,是假命题,故此选项错误;C、等边对等角的逆命题是等角对等边,是真命题,故此选项正确;D、全等三角形的面积相等逆命题是面积相等的三角形全等是假命题,故此选项错误;故选:C.10.(4分)如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点A出发,沿长方体表面到点B处吃食物,那么它爬行最短路程是()A.B.C.D.【解答】解:第一种情况:把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是6和3,则所走的最短线段是=3;第二种情况:把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是4和5,所以走的最短线段是=;第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是7和2,所以走的最短线段是=;三种情况比较而言,第二种情况最短.所以它需要爬行的最短路线的长是,故选:B.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)计算:=3.【解答】解:=﹣2+5=3故答案为:=3.12.(4分)一个等腰三角形的两边长分别为3和7,这个三角形的周长是17.【解答】解:(1)若3为腰长,7为底边长,由于3+3<7,则三角形不存在;(2)若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为7+7+3=17.故答案为:17.13.(4分)李老师组织本班学生进行跳绳测试,根据学生测试的成绩,列出了如下表格,则成绩为“良”的频率为0.44.成绩优良及格不及格频数1022153【解答】解:成绩为“良”的频率为=0.44;故答案为:0.44.14.(4分)如图,在△ABC中,AB=AC,D为BC的中点,且∠BAD=25°,则∠C的度数是65°.【解答】解:AB=AC,D为BC中点,∴AD是∠BAC的平分线,∠B=∠C,∵∠BAD=25°,∴∠BAC=2∠BAD=50°,∴∠C=(180°﹣50°)=65°.故答案为:65.15.(4分)若x2﹣3x﹣7=0,则x(x﹣1)(x﹣2)(x﹣3)的值为63.【解答】解:∵x2﹣3x﹣7=0,∴x2=3x+7,则原式=(x2﹣x)(x2﹣5x+6)=(2x+7)(﹣2x+13)=﹣4x2+12x+91=﹣4(3x+7)+12x+91=﹣12x﹣28+12x+91=63,故答案为:6316.(4分)如图,在四边形ABCD中,AB=AC,BC=BD,若∠ABC=∠BAD=α,则∠BCD=180°﹣2α(用含α的代数式表示).【解答】解:延长DA至M,使AM=AB,连接BM,∵AB=AC,∴AM=AB=AC,∠ABC=∠ACB=α,∴∠BAC=180°﹣2α,∵∠BAD=2α,∴∠MAB=180°﹣∠BAD=180°﹣2α,∴∠BAC=∠MAB,在△MAB和△CAB中,∵,∴△MAB≌△CAB(SAS),∴∠M=∠ACB=α,BC=BM,∴∠CAD=180°﹣2∠BAC=4α﹣180°,∵BM=BC=BD,∴∠M=∠ADB=∠ACB=α,∴∠DBC=∠DAC=4α﹣180°,∴∠BCD==90°﹣∠DBC=90°﹣=180°﹣2α,故答案为:180°﹣2α.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.【解答】解:原式=﹣8x3y3+2x2y2+8x3y3=2x2y2.18.(8分)把下列多项式分解因式:(1)3x2﹣48(2)mx2﹣4mx+4m【解答】解:(1)原式=3(x2﹣16)=3(x+4)(x﹣4);(2)原式=m(x2﹣4x+4)=m(x﹣2)2.19.(8分)先化简,再求值:[(x+y)2﹣(x﹣3y)(x+3y)]÷5y,其中x=﹣5,y=1.【解答】解:原式=[x2+2xy+y2﹣x2+9y2]÷5y=[2xy+10y2]÷5y=x+2y,当x=﹣5,y=1时,原式=﹣2+2=0.20.(8分)如图所示,A,B,C,D四点在同一直线上,且AF∥DE,BF∥CE,AC=BD.求证:△ABF≌△DCE.【解答】证明:∵AE∥DE,∴∠A=∠D,∵BF∥CE,∴∠FBC=∠BCE,∵∠ABF+∠FBC=180°,∠DCE+∠ECB=180°,∴∠ABF=∠DCE,又∵AC=BD,∴AC﹣BC=BD﹣BC,即AB=CD,在△ABF和△DCE中∴△ABF≌△DCE(ASA).21.(8分)2019年11月20日﹣23日,首届世界5G大会在北京举行.某校的学生开展对于5G知晓情况的问卷调查,问卷调查的结果分为A、B、C、D四类,其中A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,并把调查结果绘制成如图所示的两个统计图表(不完整).根据上述信息,解答下列问题:(1)这次一共调查了多少人;(2)求“A类”在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整.【解答】解:(1)30÷30%=100人,答:一共调查100人;(2)360°×=36°,答:“A类”在扇形统计图中所占圆心角的度数为36°;(3)100﹣10﹣30﹣40=20人.补全条形统计图如图所示:22.(10分)如图,A、B两个村子在笔直河岸的同侧,A、B两村到河岸的距离分别为AC=2km,BD=3km,CD =6km,现在要在河岸CD上建一水厂E向A、B两村输送自来水,要求A、B两村到水厂E的距离相等.(1)在图中作出水厂E的位置(要求:尺规作图,不写作法,保留作图痕迹);(2)求水厂E距离C处多远?【解答】解:如图所示:(1)点E即为水厂的位置;(2)根据作图过程可知:EA=EB,在Rt△AEC和Rt△BED中,根据勾股定理,得AC2+CE2=BD2+DE2即4+CE2=9+(6﹣CE)2解得CE=.答:水厂E距离C处km.23.(10分)如图,正方形ABCD是由两个小正方形和两个小长方形组成的,根据图形解答下列问题:(1)请用两种不同的方法表示正方形ABCD的面积,并写成一个等式;(2)运用(1)中的等式,解决以下问题:①已知a+b=5,ab=3,求a2+b2的值;②已知x+z﹣y=11,(x﹣y)z=9,求(x﹣y)2+z2的值.【解答】解:(1)正方形的面积为(a+b)2或a2+b2+2ab,∴(a+b)2=a2+b2+2ab;(2)①∵(a+b)2=a2+b2+2ab,∴a2+b2=(a+b)2﹣2ab,∵a+b=5,ab=3,∴a2+b2=(a+b)2﹣2ab=25﹣6=19;②∵(x﹣y)2+z2=(x﹣y+z)2﹣2(x﹣y)z,∵x+z﹣y=11,(x﹣y)z=9,∴(x﹣y)2+z2=(x﹣y+z)2﹣2(x﹣y)z=121﹣18=103.24.(12分)结论:直角三角形中,30°的锐角所对的直角边等于斜边的一半.如图①,我们用几何语言表示如下:∵在△ABC中,∠C=90°,∠A=30°,∴BC=AB.你可以利用以上这一结论解决以下问题:如图②,在△ABC中,∠BAC=60°,AC=8,AB=5,BC=7.(1)求△ABC的面积;(2)如图③,射线AM平分∠BAC,点P从点A出发,以每秒1个单位的速度沿着射线AM的方向运动,过点P分别作PE⊥AC于E,PF⊥AB于F,PG⊥BC于G.设点P的运动时间为t秒,当PE=PF=PG时,求t的值.【解答】解:(1)如图②中,作BM⊥AC于M.在△ABM中,∵∠AMB=90°,∠ABM=90°﹣∠A=30°,∴AM=AB=,∴BM===,∴S△ABC=•AC•BM=×8×=10.(2)如图③中,连接PC,PB.∵S△ABC=S△P AC+S△P AB﹣S△PBC,∴10=•AC•PE+•AB•PF﹣•BC•PG,∵AC=8,AB=5,BC=7,PE=PF=PG,∴PE==,∵P A平分∠CAB,∴∠P AE=90°,在△APE中,∵∠PEA=90°,∠P AE=30°,∴PE=P A,∴P A=2PE=,∴t=.25.(14分)已知△ABC中,∠ACB=90°,AC=BC,过顶点A作射线AP.(1)当射线AP在∠BAC外部时,如图①,点D在射线AP上,连结CD、BD,已知AD=n2﹣1,AB=n2+1,BD=2n(n>1).①试证明△ABD是直角三角形;②求线段CD的长.(用含n的代数式表示)(2)当射线AP在∠BAC内部时,如图②,过点B作BD⊥AP于点D,连结CD,请写出线段AD、BD、CD的数量关系,并说明理由.【解答】(1)①证明:∵AD2+BD2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,AB2=(n2+1)2,∴AD2+BD2=AB2,∴∠ADB=90°,∴△ADB是直角三角形.②解:如图①中,作CE⊥AD于E,CF⊥DB交DB的延长线于F.∵∠CED=∠EDF=∠DFC=90°,∴四边形DECF是矩形,∴∠ECF=∠ACB=90°,∴∠ACE=∠BCF,∵∠AEC=∠CFB=90°,CA=CB,∴△CEA≌△CFB(AAS),∴CE=CF,AE=BF,∴四边形DECF是正方形,∴DE=DF=CE=CF,∵AD+DB=DE+AE+DF﹣BF=2DE,∴2DE=n2﹣1+2n,∴DE=,∴CD=DE=n2﹣n﹣.(2)解:如图②中,结论:AD﹣BD=CD.理由:作CE⊥CD交AD于E.∵CA=CB,∠ACB=90°,∴∠CAB=∠CBA=45°,∵∠ADB=∠ACB=90°,∴四边形A,B,D,C四点共圆,∴∠BDC=180°﹣∠CAB=135°,∠CDA=∠BDC﹣∠ADB=45°,∵∠ECD=90°,∴∠CED=∠CDE=45°,∴CE=CD,DE=CD∵∠ACB=∠ECD=90°,∴∠ACE=∠BCD,∵CA=CB,CE=CD,∴△ACE≌△BCD(SAS),∴AE=BD,∴AD﹣BD=DE=CD,∴AD﹣BD=CD.。
华师版八年级数学上册第一学期期末测试卷(含答案)
第一学期期末测试卷一、选择题(每题3分,共30分) 1.9的平方根是( )A .±3B .±13C .3D .-32.下列运算正确的是( )A .x 3·x 4=x 12B .(x 3)4=x 7C .x 8÷x 2=x 6D .(3b 3)2=6b 63.将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是( )A .8、15、17B .7、24、25C .3、4、5D .2、3、74.已知∠AOB ,求作射线OC ,使OC 平分∠AOB ,那么作法的合理顺序是( )①作射线OC ;②在射线OA 和OB 上分别截取OD ,OE ,使OD =OE ;③分别以D 、E 为圆心,大于12DE 的长为半径在∠AOB 内作弧,两弧交于点C . A .①②③B .②①③C .②③①D .③①②5.如图是丽水PM 2.5来源统计图,则根据统计图得出的下列判断中,正确的是( )A .汽车尾气约为建筑扬尘的3倍B .表示建筑扬尘的占7%C .表示煤炭燃烧对应的扇形圆心角度数为126°D .煤炭燃烧的影响最大(第5题) (第6题) (第8题) (第9题)6.如图,在△ABC 中,AB =AC ,过点A 作AD ∥BC ,若∠1=70°,则∠BAC 的大小为( ) A .40°B .30°C .70°D .50°7.下列分解因式正确的是( )A.-ma-m=-m(a-1) B.a2-1=(a-1)2C.a2-6a+9=(a-3)2D.a2+3a+9=(a+3)28.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1 B.2 C.3 D.49.如图,数轴上点A、B分别对应数1、2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A. 3B. 5C. 6D.710.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当P A=CQ时,连结PQ交AC于D,则DE的长为()A.13B.12C.23D.不能确定(第10题) (第13题)(第15题) 二、填空题(每题3分,共15分)11.在实数-7.5、15、4、3-125、15π、⎝⎛⎭⎪⎫222中,有a个有理数,b个无理数,则ba=________.12.已知x2n=5,则(3x3n)2-4(x2)2n的值为________.13.如图是小强根据全班同学最喜欢的四类电视节目的人数而绘制的两幅不完整的统计图,则最喜欢“体育”节目的人数是________.14.有下列命题:①正实数都有平方根;②实数都可以用数轴上的点表示;③等边三角形有一个内角为60°;④全等三角形对应边上的角平分线相等.其中逆命题是假命题的是________.15.如图,△ABC中,∠ABC与∠ACB的平分线交于点O,过O作EF∥BC分别交AB、AC于E、F.若△ABC的周长比△AEF的周长大12 cm,O到AB的距离为3.5 cm,则△OBC的面积为________cm2.三、解答题(16,23题每题12分,17,20题每题6分,19题9分,18,21,22题每题10分,共75分)16.计算:(1)49-327+|1-2|+⎝⎛⎭⎪⎫1-432;(2)4(x+1)2-(2x-5)(2x+5);(3)[x(x2y2-xy)-y(x2-x3y)]÷x2y.17.先化简,再求值.(a+b)(a-b)+(4ab3-8a2b2)÷4ab,其中a=2,b=1.18.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E 在BC边上,且BE=BD,连结AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.(第18题)19.设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理并绘制成如图所示的两幅不完整的统计图.(第19题)请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了________名学生,a=________%;(2)补全条形统计图;(3)扇形统计图中C级对应的扇形的圆心角为________度.20.如图,一个牧童在小河MN的南4 km的A处牧马,而他正位于他的小屋B 的西8 km北7 km处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事所走的最短路程是多少?(第20题)21.课间,小明拿着老师的等腰直角三角尺玩,不小心将三角尺掉到了两墙之间,如图所示.(1)求证:△ADC≌△CEB;(2)由三角尺的刻度可知AC=25,请你帮小明求出砌墙砖块的厚度a的大小(每块砖块的厚度相等).(第21题)22.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如,可用图①来解释a2+2ab+b2=(a+b)2,事实上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(第22题)(1)根据图②完成因式分解:2a2+2ab=2a(________);(2)现有足够多的正方形和长方形卡片(如图③),试在图④的虚线框中画出一个用若干张1号卡片、2号卡片和3号卡片拼成的长方形,使该长方形的面积为a2+3ab+2b2.要求:每两张卡片之间既不重叠,也无空隙,拼成的图中必须保留拼图的痕迹,并利用你所画的图形面积对a2+3ab+2b2进行因式分解:a2+3ab+2b2=______________.23.线段AB⊥直线l于点B,点D在直线l上,分别以AB,AD为边作等边三角形ABC和等边三角形ADE,直线CE交直线l于点F.(1)当点F在线段BD上时,如图①,求证:DF=CE-CF;(2)当点F在线段BD的延长线上时,如图②;当点F在线段DB的延长线上时,如图③,请分别写出线段DF、CE、CF之间的数量关系,不需要证明;(3)在(1)(2)的条件下,若BD=2BF,EF=6,则CF=________.(第23题)答案一、1.A 2.C 3.D 4.C 5.C6.A 点拨:∵AD ∥BC ,∴∠C =∠1=70°.∵AB =AC ,∴∠B =∠C =70°,∴∠BAC =180°-∠B -∠C =180°-70°-70°=40°. 7.C 8.D 9.B10.B 点拨:如图,过P 作PF ∥BC 交AC 于F ,∵PF ∥BC ,△ABC 是等边三角形,∴∠PFD =∠QCD ,易知△APF 是等边三角形,∴AP =PF =AF .∵PE ⊥AC ,∴AE =EF .∵AP =PF ,AP =CQ ,∴PF =CQ .在△PFD 和△QCD 中,⎩⎨⎧∠PDF =∠QDC ,∠PFD =∠QCD ,PF =CQ ,∴△PFD ≌△QCD (A.A.S.),∴FD =CD .∵AE =EF ,∴EF +FD =AE +CD ,∴AE +CD =DE =12AC .∵AC=1,∴DE =12.(第10题)二、11.2 12.1 025 13.10 14.①③④15.21 点拨:∵∠ABC 与∠ACB 的平分线交于点O ,∴∠EBO =∠OBC ,∠FCO =∠OCB .∵EF ∥BC , ∴∠EOB =∠OBC ,∠FOC =∠OCB , ∴∠EOB =∠EBO ,∠FOC =∠FCO , ∴OE =BE ,OF =FC ,∴EF =BE +CF , ∴AE +EF +AF =AB +AC .∵△ABC 的周长比△AEF 的周长大12 cm ,∴(AB +BC +AC )-(AE +EF +AF )=12 cm ,∴BC =12 cm. ∵O 到AB 的距离为3.5 cm ,且O 在∠ABC 的平分线上, ∴O 到BC 的距离也为3.5 cm ,∴△OBC的面积是12×12×3.5=21(cm2).三、16.解:(1)原式=7-3+2-1+13=103+ 2.(2)原式=4(x2+2x+1)-4x2+25=4x2+8x+4-4x2+25=8x+29.(3)原式=(x3y2-x2y-x2y+x3y2)÷x2y=(2x3y2-2x2y)÷x2y=2xy-2. 17.解:(a+b)(a-b)+(4ab3-8a2b2)÷4ab=a2-b2+b2-2ab=a2-2ab,当a=2,b=1时,原式=22-2×2×1=0.18.(1)证明:在△ABE和△CBD中,∵AB=CB,∠ABC=∠CBD=90°,BE=BD,∴△ABE≌△CBD(S.A.S.).(2)解:∵AB=CB,∠ABC=90°,∴∠BAC=∠ACB=45°.∵∠CAE=30°,∴∠AEB=∠ACB+∠CAE=45°+30°=75°.由(1)知△ABE≌△CBD,∴∠BDC=∠AEB=75°.19.解:(1)50;24(2)C级的人数为50-12-24-4=10.补全条形统计图如图所示.(第19题)(3)7220.解:如图,作点A关于MN的对称点A′,连结A′B交MN于点P,连结AP,则AP+PB就是最短路程.(第20题)在Rt△A′DB中,由勾股定理,得A′B=DA′2+DB2=(7+4+4)2+82=17(km).答:他要完成这件事所走的最短路程是17 km.21.(1)证明:由题意,得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠DAC=90°.又∵∠ACD+∠BCE=90°,∴∠DAC=∠BCE.在△ADC和△CEB中,∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(A.A.S.).(2)解:由题意得AD=4a,BE=3a.∵△ADC≌△CEB,∴DC=BE=3a.在Rt△ACD中,根据勾股定理得AD2+CD2=AC2,∴(4a)2+(3a)2=252,解得a=5(负值已舍去),∴砌墙砖块的厚度a为5.22.解:(1)a+b(2)如图所示.(答案不唯一)(a+b)(a+2b)(第22题)23.(1)证明:∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠ACB=∠ABC=60°,∴∠BAD=∠CAE.在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(S.A.S.),∴BD=CE,∠ABD=∠ACE.∵AB⊥直线l,∴∠ABD=90°,∴∠ACE=90°,∠CBF=30°.∵点E,C,F在同一条直线上,∠ACB=60°,∴∠BCF=30°,∴∠CBF=∠BCF,∴BF=CF.∵BD=DF+BF,∴BD=DF+CF=CE,即DF=CE-CF.(2)解:题图②中,DF=CF-CE,图③中,DF=CE+CF.(3)2或6。
【华东师大版】八年级数学上期末试题(带答案)(1)
一、选择题1.关于分式2634m n m n--,下列说法正确的是( ) A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变2.若关于x 的方程1044m x x x --=--无解,则m 的值是( ) A .2-B .2C .3-D .3 3.下列运算正确的是( ) A .236a a a ⋅= B .22a a -=- C .572a a a ÷= D .0(2)1(0)a a =≠ 4.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( )A .1B .2C .3D .45.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( )A .301050B .103020C .305010D .501030 6.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .7 7.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( ) A .43 B .43- C .0.75 D .-0.758.若|m ﹣3n ﹣2019|=1,则(2020﹣m +3n )2的值为( )A .1B .0C .1或2D .0或49.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…,在射线ON 上,点B ,1B ,2B ,3B ,…,在射线OM 上,112A B B ,223A B B △,334A B B △,…,均为等边三角形.若11OB =,则202020202021A B B △的边长为( )A .20192B .20202C .20212D .2022210.定义:等腰三角形的一个底角与其顶角的度数的比值()1k k >称为这个等腰三角形的“优美比”.若在等腰三角形ABC 中,36,A ∠=︒则它的优美比k 为( )A .32B .2C .52D .311.下列命题中,真命题是( )A .有两边和一角对应相等的两个三角形全等B .有两边和第三边上的高对应相等的两个三角形全等C .有两边和其中一边上的高对应相等的两个三角形全等D .有两边和第三边上的中线对应相等的两个三角形全等12.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60°二、填空题13.计算22111m m m ---,的正确结果为_____________. 14.计算:201(1)32|2π-⎛⎫++-= ⎪⎝⎭_____. 15.若23x =,25y =,则22x y +=____________.16.如果()()223232x x y ---=-,那么代数式()3()4(2)x y x y x y ++----的值是___________.17.如图,等腰ABC 的周长为36,底边上的高12AD =,则ABD △的周长为________.18.已知,点()1,3A a -与点()2,21B b --关于x 轴对称,则2a b +___________. 19.如图,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为,D E ,若9,6AD DE ==,则BE 的长为________________________.20.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.三、解答题21.(1)计算:1301|6|(2)(2)3π-⎛⎫-÷--⨯- ⎪⎝⎭; (2)先化简,再求值:(3)(2)()x x y x y x y +-++,其中1x =-,2y =. 22.武汉某道路工程项目,若由甲、乙两工程队合作20天可完工;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲、乙工程队合作施工时对道路交通有影响,独施工时对交通无影响且要求整个工期不能超过24天,问如何安排两队施工,对道路交通的影响会最小?23.如图1是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b 是直角边,两个小正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图2).用两种不同的方法列代数式表示图2中的大正方形面积:方法一:________________;方法二:________________;(直接把答案填写在答题卡的横线上)(2)观察图2,试写出()2a b +,2a ,2ab ,2b 这四个代数式之间的等量关系:________________.(直接把答案填写在答题卡的横线上)(3)请利用(2)中等量关系解决问题:若图1中一个三角形面积是6,图2的大正方形面积是64,求22a b +的值.24.如图,已知∠A =∠D =90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB =CD ,BE =CF .求证:(1)Rt △ABF ≌Rt △DCE ;(2)OE =OF .25.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC =CE ,∠ACD =∠B .求证:△ABC ≌△CDE .26.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.(1)过点A 画线段BC 的垂线,垂足为E ;(2)过点A 画线段AB 的垂线,交线段CB 的延长线于点F ;(3)线段BE 的长度是点 到直线 的距离;(4)线段AE 、BF 、AF 的大小关系是 .(用“<”连接)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据分式的基本性质即可求出答案.【详解】解:A 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m n m n m n⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意; C 、226212=32438m n m n m n m n-⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意; D 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 2.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 3.D解析:D【分析】运用同底数幂乘法、负整数次幂、同底数幂除法以及零次幂的知识逐项排查即可.【详解】解:A. 235a a a ⋅=,故A 选项不符合题意; B. 221a a -=,故B 选项不符合题意; C. 572a a a -÷=,故C 选项不符合题意;D. 0(2)1(0)a a =≠,故D 选项符合题意.故填:D .【点睛】本题主要考查了同底数幂乘法、负整数次幂、同底数幂除法、零次幂等的知识点,灵活运用相关运算法则是解答本题的关键.4.B解析:B【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答.【详解】解:分式方程不一定会产生增根,故①错误; 方程4102x -=+的根为x=2,故②正确; 方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x+=+-是分式方程,故④正确; 故选:B .【点睛】 此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.5.B解析:B【分析】对多项式利用提公因式法分解因式,利用平方差公式分解因式,然后把数值代入计算即可确定出密码.【详解】x 3−xy 2=x (x 2−y 2)=x (x +y )(x−y ),当x =30,y =20时,x =30,x +y =50,x−y =10,组成密码的数字应包括30,50,10,所以组成的密码不可能是103020.故选:B .【点睛】本题主要考查提公因式法分解因式、平方差公式分解因式,立意新颖,熟记公式结构是解题的关键.6.B解析:B【分析】利用题目给出的规律:把2021202020192222...221++++++乘(2-1)得出22022-1,研究22022的末位数字规律,进一步解决问题.【详解】解:由题目中等式的规律可得:2021202020192222...221++++++=(2-1)×2021202020192(222...221)++++++=22022-1,21的末位数字是2,22的末位数字是4,23的末位数字是8,24的末位数字是6,25的末位数字是2…,所以2n 的末位数字是以2、4、8、6四个数字一循环.2022÷4=505…2,所以22022的末位数字是4,22022-1的末位数字是3.故选:B【点睛】此题考查了平方差公式,乘方的末位数字的规律,尾数特征,注意从简单情形入手,发现规律,解决问题.7.D解析:D【分析】先将20200.75化为20193434⨯,再用幂的乘方的逆运算计算,再计算乘法即可得到答案. 【详解】 2019202040.753⎛⎫⨯- ⎪⎝⎭=20192019 343 434⎛⎫⎛⎫⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=201934()3 434⎡⎤⨯⎢⎥⎣⎦⨯-=(3 1)4 -⨯=3 4 -,故选:D.【点睛】此题考查有理数数的乘法运算,掌握幂的乘方的逆运算是解题的关键.8.D解析:D【分析】依据绝对值的性质,即可得到m﹣3n=2020或2018,进而得出m﹣3n的值,再根据平方运算,即可得到(2020﹣m+3n)2的值.【详解】∵|m﹣3n﹣2019|=1,∴m﹣3n﹣2019=±1,即m﹣3n=2020或2018,∴2020﹣m+3n=2020﹣(m﹣3n)=0或2,∴(2020﹣m+3n)2的值为0或4,故选:D.【点睛】本题考查绝对值的性质和代数式求值,利用整体思想求出m﹣3n的值且注意去绝对值时的两种情况.9.A解析:A【分析】先求出∠O=∠OA1B1=30°,从而A1B1=A1B2= OB1=1,然后根据含30°角的直角三角形的性质求解即可.【详解】解:∵△A1B1B2是等边三角形,∴∠A1B1B2=∠A1B2O=60°,A1B1=A1B2,∵∠O=30°,∴∠A2A1B2=∠O+∠A1B2O=90°,∵∠A1B1B2=∠O+∠OA1B1,∴∠O=∠OA1B1=30°,∴OB 1=A 1B 1=A 1B 2=1,在Rt △A 2A 1B 2中,∵∠A 1A 2B 2=30°,∴A 2B 2=2A 1B 2=2,同法可得A 3B 3=22,A 4B 4=23,…,A n B n =2n-1,∴202020202021A B B △的边长=22019,故选:A .【点睛】本题考查了图形类规律探究,等边三角形的性质,三角形外角的性质,含30角的直角三角形的性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.10.B解析:B【分析】由已知可以写出∠B 和∠C ,再根据三角形内角和定理可以得解.【详解】解:由已知可得:∠B=∠C=k ∠A=(36k )°,由三角形内角和定理可得:2×36k+36=180,∴k=2,故选B .【点睛】本题考查等腰三角形的应用,熟练掌握等腰三角形的性质、三角形内角和定理及方程思想的应用是解题关键 .11.D解析:D【分析】根据三角形全等的判定方法对A 、D 进行判断;利用三角形高的位置不同可对B 、C 进行判断.【详解】A 、有两边和它们的夹角对应相等的两个三角形全等,所以A 选项错误;B 、有两边和第三边上的高对应相等的两个锐角三角形全等,所以B 选项错误;C 、有两边和其中一边上的高对应相等的两个锐角三角形全等,所以C 选错误;D 、有两边和第三边上的中线对应相等的两个三角形全等,所以D 选项正确;故选:D .【点睛】本题考査了判断命题真假,以及全等三角形的判定,熟练掌握全等三角形的判定,仔细分类讨论是解题关键.12.A解析:A【分析】利用角平分线的定义和三角形内角和定理,余角即可计算.【详解】由图可知DAE DAC EAC ∠=∠-∠,∵AD 是角平分线. ∴12DAC BAC ∠=∠, ∴12DAE BAC EAC ∠=∠-∠, ∵90EAC C ∠=︒-∠, ∴1(90)2DAE BAC C ∠=∠-︒-∠ ∵2BAC B ∠=∠,2B DAE ∠=∠, ∴14(90)2DAE DAE C ∠=⨯∠-︒-∠, ∴90DAE C ∠=︒-∠∵180C B BAC ∠=︒-∠-∠, ∴18024C DAE DAE ∠=︒-∠-∠,∴1802(90)4(90)C C C ∠=︒-︒-∠-︒-∠,∴72C ∠=︒.故选:A .【点睛】本题主要考查了角平分线的定义和三角形的内角和定理以及余角.根据题意找到角之间的数量关系是解答本题的关键.二、填空题13.【分析】根据分式的加减法运算法则平方差公式因式分解计算即可解答【详解】解:===故答案为:【点睛】本题考查分式的加减运算平方差公式因式分解熟记公式掌握分式的加减运算法则是解答的关键 解析:11m - 【分析】根据分式的加减法运算法则、平方差公式因式分解计算即可解答.【详解】 解:22111m m m --- =22111m m m +--=1(1)(1)m m m ++- =11m -, 故答案为:11m -. 【点睛】本题考查分式的加减运算、平方差公式因式分解,熟记公式,掌握分式的加减运算法则是解答的关键.14.【分析】先利用零次幂绝对值负整数次幂化简然后再计算即可【详解】解:故答案为:【点睛】本题主要考查了零次幂绝对值负整数次幂以及实数的运算灵活应用相关知识点成为解答本题的关键解析:1--【分析】先利用零次幂、绝对值、负整数次幂化简,然后再计算即可.【详解】解:201(1)|2|2π-⎛⎫++- ⎪⎝⎭124=+1=-.故答案为:1-【点睛】本题主要考查了零次幂、绝对值、负整数次幂以及实数的运算,灵活应用相关知识点成为解答本题的关键.15.75【分析】逆用积的乘方可得再逆用幂的乘方即可求解【详解】解:故答案为:75【点睛】本题考查积的乘方和幂的乘方的逆用掌握积的乘方和幂的乘方是解题的关键解析:75【分析】逆用积的乘方可得22222x y x y +=⋅,再逆用幂的乘方即可求解.【详解】解:()2222222223575x y x y x y+=⋅=⋅=⨯=,故答案为:75.【点睛】本题考查积的乘方和幂的乘方的逆用,掌握积的乘方和幂的乘方是解题的关键.16.8【分析】先解求出将代入代数式即可得解【详解】∵∴式子展开得:化简得:∴将代入代数式故答案为:8【点睛】此题考查整式的化简求值掌握整式的去括号法则和合并同类项法则是解题的关键解析:8【分析】先解()()223232x x y ---=-,求出0y =,将0y =代入代数式()3()4(2)x y x y x y ++---- 即可得解.【详解】∵()()223232x x y ---=-,∴式子展开得:223232x x y --+=-,化简得:0y =,∴将0y =代入代数式()3()4(2)x y x y x y ++---- 34(2)x x x =+--448x x =-+8=.故答案为:8.【点睛】此题考查整式的化简求值,掌握整式的去括号法则和合并同类项法则是解题的关键. 17.30【分析】根据等腰三角形的性质可求得AB+BD=18再结合AD=12即可求得的周长【详解】∵△ABC 为等腰三角形AD 为底边上的高∴AB=ACBD=DC ∵△ABC 的周长等于36∴AB+BD+DC+A解析:30【分析】根据等腰三角形的性质可求得AB+BD=18,再结合AD=12,即可求得ABD △的周长.【详解】∵△ABC 为等腰三角形,AD 为底边上的高,∴AB=AC ,BD=DC ,∵△ABC 的周长等于36,∴AB+BD+DC+AC=36,即AB+BD=18,∵AD=12,∴△ABD 的周长等于=AD+BD+AB=12+18=30.故答案为:30.【点睛】本题考查等腰三角形的性质.掌握等腰三角形三线合一(底边上的中线、底边上的高线,顶角的平分线重合)是解题关键.18.7【分析】根据关于x 轴对称的点横坐标相同纵坐标互为相反数列方程求解即可【详解】解:∵点A(a-13)与点B(2-2b-1)关于x轴对称∴a-1=2-2b-1=-3解得a=3b=1∴=2×3+1=7故解析:7【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程求解即可.【详解】解:∵点A(a-1,3)与点B(2,-2b-1)关于x轴对称,∴a-1=2,-2b-1=-3,解得a=3,b=1,∴2a b+=2×3+1=7.故答案为:7.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.19.3【分析】由AD⊥CEBE⊥CE可以得到∠BEC=∠CDA=90°再根据∠ACB=90°可以得到∠BCE=∠CAD从而求得△CEB≌△ADC然后利用全等三角形的性质可以求得BE的长【详解】解:∵∠A解析:3【分析】由AD⊥CE,BE⊥CE,可以得到∠BEC=∠CDA=90°,再根据∠ACB=90°,可以得到∠BCE=∠CAD,从而求得△CEB≌△ADC,然后利用全等三角形的性质可以求得BE的长.【详解】解:∵∠ACB=90°,BE⊥CE,AD⊥CE,∴∠BCE+∠DCA=90°,∠BEC=∠CDA=90°,∴∠ACD+∠CAD=90°,∴∠BCE=∠CAD,在△CEB和△ADC中,BCE CADBEC CDA AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CEB≌△ADC(AAS);∴BE=CD,CE=AD=9.∵DC=CE-DE,DE=6,∴DC=9-6=3,∴BE=3.故答案为:3【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.54°【分析】根据折叠的性质及题意可在Rt △BEC 中求解∠C 及∠CBE 的度数从而计算∠ABD 的度数则∠BDC=∠A+∠ABD 即可计算出结果【详解】由题意可得:∠A=∠∠=∠CBE ∴则在Rt △BEC 中解析:54°【分析】根据折叠的性质及题意,可在Rt △BEC 中求解∠C 及∠CBE 的度数,从而计算∠ABD 的度数,则∠BDC=∠A+∠ABD ,即可计算出结果.【详解】由题意可得:∠A=∠A ',∠A '=∠CBE ,∴44ACB A CBE ∠=∠=∠,则在Rt △BEC 中,∠C+∠CBE=90°,即:5∠CBE=90°,∠CBE=18°,∴∠A=18°,∠C=72°,∠ABC=90°,∴72ABA ABC CBE '=-=︒∠∠∠,由折叠性质可知,ABD A BD '∠=∠,∴=36ABD A BD '∠=∠︒,∴54BDC ABD A ∠=∠+∠=︒故答案为:54°.【点睛】本体三角形的折叠问题,平行线的性质及三角形的外角定理,理解图形变化中的特点,准确结合题意计算是解题关键.三、解答题21.(1)10;(2)22x y --;-5【分析】(1)实数的混合运算,注意先算乘方,然后算乘除,最后算加减,如果有小括号,先算小括号里面的;(2)整式的混合运算,注意先算乘法,然后再算加减进行合并同类项的化简计算,最后代入求值【详解】解:(1)1301|6|(2)(2)3π-⎛⎫-÷--⨯- ⎪⎝⎭=63(8)1÷--⨯=2+8=10(2)(3)(2)()x x y x y x y +-++=2223(22)x xy x xy xy y +-+++=222323x xy x xy y +---=22x y --当1x =-,2y =时,原式=22(1)2145---=--=-【点睛】本题考查实数的混合运算,整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.22.(1)甲单独做需60天,乙单独做需30天;(2)应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【分析】(1)设甲单独做需x 天,则甲的工作效率为1x ,乙的工作效率为1120x-,根据“若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完成”,即可得出关于x 的分式方程,解之并检验后即可得出结论;(2)分两种情况:①若剩下工程甲单独做还需(603m -)天,②若剩下工程乙单独做还需(30 1.5)m -天,列出不等式,即可求解.【详解】(1)设甲单独做需x 天,则甲的工作效率为1x ,乙的工作效率为1120x-, 401110120x x ⎛⎫∴+-= ⎪⎝⎭,解得:60x =, 经检验60x =为原方程的解,∴甲单独做需60天,乙单独做需30天;(2)设甲、乙合作了m 天①若剩下工程甲单独做还需1120603160m m -=- 60324m m ∴+-≤,解得:18m ≥;②若剩下工程乙单独做还需112030 1.5130m m -=- 30 1.524m m ∴+-≤,解得:12m ≥由①②可知m 的最小值为12,所以应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【点睛】本题主要考查分式的实际应用以及一元一次不等的实际应用,找到等量关系和不等量关系,列出方程和不等式,是解题的关键.23.(1)()2a b +;222a b ab ++;(2)()2222a b a b ab +=++;(3)40【分析】(1)利用两种方法表示出大正方形面积即可;(2)写出四个代数式之间的等量关系即可;(3)由直角三角形的面积是6,得到ab =12,大正方形②的面积是(a +b )2=64,把(2)变形后,整体代入可直接求值;【详解】解:(1)方法一:()2a b +;方法二:222a b ab ++;故答案为:(a +b )2;a 2+2ab +b 2;(2)()2222a b a b ab +=++;(3)∵162ab =,()264a b +=, ∴224ab =, ∴()222240a b a b ab +=+-=.【点睛】此题考查了完全平方公式的几何背景,代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.24.(1)见解析;(2)见解析【分析】(1)由于△ABF 与△DCE 是直角三角形,根据直角三角形全等的判定的方法即可证明; (2)先根据三角形全等的性质得出∠AFB =∠DEC ,再根据等腰三角形的性质得出结论.【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,∵∠A =∠D =90°,∴△ABF 与△DCE 都为直角三角形,在Rt △ABF 和Rt △DCE 中∵BF CE AB CD =⎧⎨=⎩, ∴Rt △ABF ≌Rt △DCE (HL );(2)∵Rt △ABF ≌Rt △DCE (已证),∴∠AFB =∠DEC ,∴OE =OF .【点睛】本题主要考查全等三角形的判定和性质以及等腰三角形的判定定理,掌握HL 判断两个直角三角形全等,是解题的关键.25.见解析.【分析】首先根据AC ∥DE ,利用平行线的性质可得:∠ACB=∠E ,∠ACD=∠D ,再根据∠ACD=∠B 证出∠D=∠B ,再由∠ACB=∠E ,AC=CE 可根据三角形全等的判定定理AAS 证出△ABC ≌△CDE .【详解】证明:∵AC ∥DE ,∴ACD D ∠=∠,BCA E ∠=∠.又∵ACD B ∠=∠,∴B D ∠=∠,又∵AC CE =,∴()ABC CDE AAS ≌.【点睛】此题主要考查了全等三角形的判定,关键是熟练掌握判定两个三角形全等的方法:SSS 、SAS 、ASA 、AAS ,选用哪一种方法,取决于题目中的已知条件.26.(1)见解析;(2)见解析;(3)B ,AE ;(4)AE <AF <BF【分析】(1)根据垂线的做法画出图象;(2)根据垂线的做法画出图象;(3)根据点到直线距离的定义填空;(4)利用直角三角形的斜边和直角边的大小关系,得出结果.【详解】(1)如图所示;(2)如图所示;(3) ∵BE AE ⊥,∴线段BE 的长度是点B 到直线AE 的距离,故答案是:B ,AE ;(4)∵AE 是直角三角形AEF 的直角边,AF 是直角三角形AEF 的斜边,∴AE AF <,∵BF 是直角三角形ABF 的斜边,AF 是直角三角形ABF 的直角边,∴AF BF <,∴AE AF BF <<,故答案是:AE AF BF <<.【点睛】本题考查作垂线和直角三角形的性质,解题的关键是掌握作垂线的方法和直角三角形的直角边和斜边的大小关系.。
【华东师大版】八年级数学上期末试卷(带答案)(1)
一、选择题1.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2 2.化简2111313x x x x +⎫⎛-÷⎪---⎝⎭的结果是( ) A .2 B .23x - C .41x x -- D .21x - 3.下列计算正确的个数为( )①555•2a a a =;②5510b b b +=;③1644n n ÷=;④247••y y y y =;⑤()()23•x x x --=-;⑥()7214a a --=;⑦()()234214•a a a -=;⑧()242a a a ÷-=-;⑨()03.141π-=.A .2B .3C .4D .54.下列各式中,无论x 取何值,分式都有意义的是( ).A .132x -B .213x +C .231x x +D .21x x + 5.若2x y +=,1xy =-,则()()1212x y --的值是( )A .7-B .3-C .1D .9 6.化简()2003200455-+所得的值为( ) A .5-B .0C .20025D .200345⨯ 7.下列计算正确的是( ) A .()222x y x y +=+ B .()32626m m =C .()2224x x -=-D .()()2111x x x +-=- 8.下列运算正确的是( )A .428a a a ⋅=B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+9.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…,在射线ON 上,点B ,1B ,2B ,3B ,…,在射线OM 上,112A B B ,223A B B △,334A B B △,…,均为等边三角形.若11OB =,则202020202021A B B △的边长为( )A .20192B .20202C .20212D .20222 10.下列推理中,不能判断ABC 是等边三角形的是( ) A .A B C ∠=∠=∠ B .,60AB AC B =∠=︒C .60,60A B ∠=︒∠=︒D .AB AC =,且B C ∠=∠ 11.如图,已知ABC DCB ∠=∠,添加一个条件使ABC DCB △△≌,下列添加的条件不能使ABC DCB △△≌的是( )A .A D ∠=∠B .AB DC = C .AC DB =D .ACB DBC ∠=∠ 12.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒二、填空题13.甲、乙两同学的家与学校的距离均为3000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校,已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校结果甲同学比乙同学早到2分钟,若甲同学到达学校时,乙同学离学校还有m 米,则m =________.14.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________.15.若已知x +y =﹣3,xy =4,则3x +3y ﹣4xy 的值为_____.16.计算:32(2)a b -=________.17.给出如下三个图案,它们具有的公共特点是:________.(写出1个即可)18.如图,已知ABC 的周长是8,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC 于D ,且3OD =,ABC 的面积是______.19.已知,点()1,3A a -与点()2,21B b --关于x 轴对称,则2a b +___________. 20.如图所示,△ABC 中,∠BAC 、∠ABC 、∠ACB 的四等分线相交于D 、E 、F (其中∠CAD =3∠BAD ,∠ABE =3∠CBE ,∠BCF =3∠ACF ),且△DFE 的三个内角分别为∠DFE =60°、∠FDE =53°、∠FED =67°,则∠BAC 的度数为_________°.三、解答题21.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 22.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?23.计算:(1)()2323298---(2)()()2215105x y xy xy -÷-(3)()()()2321x x x -+--24.如图,ABC 中,AD 平分BAC ∠,BC 的垂直平分线DG 交AD 于D ,DE AB ⊥于E ,DF AC ⊥于F .求证:(1)BE CF =.(2)2AB AC CF -=.25.在学习了“等边对等角”定理后,某数学兴趣小组的同学继续探究了同一个三角形中边与角的数量关系,得到了一个正确的结论:“在同一个三角形中,较长的边所对的角较大”,简称:“在同一个三角形中,大边对大角”.即,如图:当 AB >AC 时,∠C >∠B .该兴趣小组的同学在此基础上对等腰三角形“三线合一”性质的一般情况,继续进行了深入的探究,请你补充完整:(1)在△ABC 中,AD 是BC 边上的高线.①如图1,若AB =AC ,则∠BAD =∠CAD ;②如图2,若AB ≠AC ,当AB >AC 时,∠BAD ∠CAD .(填“>”,“<”,“=”)证明:∵ AD 是BC 边上的高线,∴∠ADB =∠ADC =90°.∴ ∠BAD =90°-∠B ,∠CAD =90°-∠C .∵AB>AC,∴(在同一个三角形中,大边对大角).∴∠BAD∠CAD.(2)在△ABC中,AD是BC边上的中线.①如图1,若AB=AC,则∠BAD=∠CAD;②如图3,若AB≠AC,当AB>AC时,∠BAD∠CAD.(填“>”,“<”,“=”)证明:26.如图,△ABC中,∠ABC的角平分线与外角∠ACD的平分线交于A1.(1)∵BA1、CA1是∠ABC与∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=,∠ACD﹣∠ABD=∠,∴∠A1=.(2)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230°,求∠F的度数.(3)如图3,△ABC中,∠ABC的角平分线与外角∠ACD的平分线交于A1,若E为BA延长线上一动点,连接EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.2.D解析:D【分析】利用乘法分配律计算即可【详解】解:原式=11(3)(3)3(1)(1)x x x x x x +⋅--⋅--+-=1-31x x --=21x -, 故选D .【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则. 3.C解析:C【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,零指数幂及积的乘方可得答案.【详解】解:①5510•a a a =,故①错误;②5552b b b +=,故②错误;③2164444n n n n n ÷=÷=,故③错误;④247••y y y y =,故④正确;⑤()()23•x x x --=-,故⑤正确;⑥()7214a a --=,故⑥正确; ⑦()()23428614•a a a a a -=-⋅=-,故⑦错误; ⑧()242a a a ÷-=,故⑧错误;⑨()03.141π-=,故⑨正确,正确的有4个.故选:C .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,零指数幂及积的乘方,解题的关键是灵活运用运算法则.4.B解析:B【分析】根据分式有意义的条件:分母不等于0确定答案.【详解】A 、若3x-2≠0,即23x ≠时分式有意义,故该选项不符合题意; B 、∵230x +>,∴无论x 取何值,分式都有意义,故该项符合题意; C 、∵20x ≥,∴x ≠0时分式有意义,故该选项不符合题意;D 、若210x +≠即12x ≠-时分式有意义,故该选项不符合题意; 故选:B .【点睛】此题考查分式有意义的的条件:分母不等于0. 5.A解析:A【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7;故选:A .【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.D解析:D【分析】首先把52004化为(-5)2004,然后再提公因式(-5)2003,继而可得答案.【详解】解:()2003200455-+=(-5)2003+(-5)2004=(-5)2003(1-5)=4×52003,故选:D .【点睛】此题主要考查了提公因式分解因式,关键是正确确定公因式.7.D解析:D【分析】根据完全平方公式,平方差公式和积的乘方公式分别判断即可.【详解】A. ()2222x y x xy y +=++,故原选项错误;B.()32628m m =,故原选项错误;C.()22244x x x -=-+,故原选项错误;D. ()()2111x x x +-=-,故选项正确. 故选:D .【点睛】本题考查完全平方公式,平方差公式和积的乘方公式.熟记公式是解题关键.8.B解析:B【分析】根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断.【详解】A 、426a a a ⋅=,故该项错误;B 、()23624a a =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误;故选:B .【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.9.A解析:A【分析】先求出∠O=∠OA 1B 1=30°,从而A 1B 1=A 1B 2= OB 1=1,然后根据含30°角的直角三角形的性质求解即可.【详解】解:∵△A 1B 1B 2是等边三角形,∴∠A 1B 1B 2=∠A 1B 2O=60°,A 1B 1=A 1B 2,∵∠O=30°,∴∠A 2A 1B 2=∠O+∠A 1B 2O=90°,∵∠A 1B 1B 2=∠O+∠OA 1B 1,∴∠O=∠OA 1B 1=30°,∴OB 1=A 1B 1=A 1B 2=1,在Rt △A 2A 1B 2中,∵∠A 1A 2B 2=30°,∴A 2B 2=2A 1B 2=2,同法可得A 3B 3=22,A 4B 4=23,…,A n B n =2n-1,∴202020202021A B B △的边长=22019,故选:A .【点睛】本题考查了图形类规律探究,等边三角形的性质,三角形外角的性质,含30角的直角三角形的性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.10.D解析:D【分析】根据等边三角形的定义、判定定理以及三角形内角和定理进行判断.【详解】A 、由“三个角都相等的三角形是等边三角形”可以判断△ABC 是等边三角形,故本选项不符合题意;B 、由“有一个角是60°的等腰三角形是等边三角形”可以判断△ABC 是等边三角形,故本选项不符合题意;C 、由“∠A =60°,∠B =60°”可以得到“∠A =∠B =∠C =60°”,则由“三个角都相等的三角形是等边三角形”可以判断△ABC 是等边三角形,故本选项不符合题意;D 、由“AB =AC ,且∠B =∠C”只能判定△ABC 是等腰三角形,故本选项符合题意. 故选:D .【点睛】本题主要考查了等边三角形的判定和三角形内角和定理,属于基础题.(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.11.C解析:C【分析】根据全等三角形的判定与性质综合分析即可;【详解】在ABC 和DCB 中,A D ABC DCB BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,故ABC DCB △△≌,A 不符合题意;在ABC 和DCB 中,AB DC ABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩,故ABC DCB △△≌,B 不符合题意;只有AC=BD ,BC=CB ,ABC DCB ∠=∠,不符合全等三角形的判定,故C 符合题意;在ABC 和DCB 中,ACB DBC CB BC ABC DCB ∠=∠⎧⎪=⎨⎪∠=∠⎩,故ABC DCB △△≌,D 不符合题意;故答案选C .【点睛】本题主要考查了全等三角形的判定与性质,准确分析判断是解题的关键.12.C解析:C【分析】根据三角形内角和180︒求出∠BAC ,再由AD 是ABC ∆的角平分线求得∠DAC ,最后利用直角三角形的两个锐角互余求出∠ADE ,问题得到解决.【详解】解:∵40,60B C ︒︒∠=∠=,∴BAC=180B-C=80∠︒-∠∠︒,∵AD 是ABC ∆的角平分线, ∴1DAC=BAC=402∠∠︒, ∵DE AC ⊥,∴90DAC=50ADE ∠=︒-∠︒,故选:C .【点睛】本题考查了三角形的内角和定理,三角形的角平分线定义,直角三角形的两个锐角互余,正确理解三角形中角之间的关系是解本题的关键.二、填空题13.600【分析】设乙骑自行车的速度为x 米/分钟则甲步行速度是x 米/分钟公交车的速度是2x 米/分钟根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟列方程即可得到乙的速度甲同学到达学校时乙解析:600【分析】设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟,列方程即可得到乙的速度,甲同学到达学校时,乙同学离学校还有2x 米,即可得到结论;【详解】解:设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意得 600300060030002122x x x -+=- , 解得:x=300米/分钟,经检验x=300是方程的根,则乙骑自行车的速度为300米/分钟.那么甲同学到达学校时,乙同学离学校还=2×300=600米.故答案为:600.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 14.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是万元/台根 解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.15.﹣25【分析】将3x+3y ﹣4xy 变形为3(x+y )﹣4xy 再整体代入求值即可【详解】解:∵x+y =﹣3xy =4∴3x+3y ﹣4xy =3(x+y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25故解析:﹣25将3x+3y﹣4xy变形为3(x+y)﹣4xy,再整体代入求值即可.【详解】解:∵x+y=﹣3,xy=4,∴3x+3y﹣4xy=3(x+y)﹣4xy=3×(﹣3)﹣4×4=﹣9﹣16=﹣25,故答案为:﹣25.【点睛】此题考查已知式子的值求代数式的值,将代数式变形为已知式子的形式是解题的关键.16.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)=62a b4a b,4a b.故答案为:62【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.17.都是轴对称图形【分析】利用已知图形的特征分别得出其公共特征【详解】解:答案不唯一例如:都是轴对称图形故答案为:都是轴对称图形【点睛】本题考查了轴对称图形解题的关键是正确把握轴对称图形的特征解析:都是轴对称图形【分析】利用已知图形的特征分别得出其公共特征.【详解】解:答案不唯一,例如:都是轴对称图形,故答案为:都是轴对称图形.【点睛】本题考查了轴对称图形,解题的关键是正确把握轴对称图形的特征.18.12【分析】连接OA过O作OE⊥AB于EOF⊥AC于F根据角平分线的性质求出OE=OF=OD=3再根据三角形的面积公式求出即可【详解】解:连接OA过O作OE⊥AB于EOF⊥AC于F∵OBOC分别平分解析:12【分析】连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据角平分线的性质求出OE=OF=OD=3,再根据三角形的面积公式求出即可.解:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB, OC分别平分∠ABC和∠ACB,OD⊥BC,OD=3,∴OE=OD=3,OF=OD=3,∵△ABC的周长是8,∴AB+BC+AC=8,∴△ABC的面积S=S△ABO+S△BCO+S△ACO=12×AB×OE+12×BC×OD+12×AC×OF=12×AB×3+12×BC×3+12×AC×3=12×3×(AB+BC+AC)=12×3×8=12,故答案为:12.【点睛】本题考查了三角形的面积和角平分线的性质,能根据角平分线的性质求出OE=OD=OF=3是解此题的关键.19.7【分析】根据关于x轴对称的点横坐标相同纵坐标互为相反数列方程求解即可【详解】解:∵点A(a-13)与点B(2-2b-1)关于x轴对称∴a-1=2-2b-1=-3解得a=3b=1∴=2×3+1=7故解析:7【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程求解即可.【详解】解:∵点A(a-1,3)与点B(2,-2b-1)关于x轴对称,∴a-1=2,-2b-1=-3,解得a=3,b=1,∴2a b =2×3+1=7.故答案为:7.【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.20.72【分析】由∠CAD=3∠BAD ∠ABE=3∠CBE ∠BCF=3∠ACF 易得各角与∠ABC ∠ACB ∠BAC 之间的关系由三角形外角等于不相邻的两个内角和列方程组求解即可得出结论【详解】解:∵∠CAD解析:72【分析】由∠CAD=3∠BAD ,∠ABE=3∠CBE ,∠BCF=3∠ACF 易得各角与∠ABC 、∠ACB 、∠BAC 之间的关系,由三角形外角等于不相邻的两个内角和列方程组求解即可得出结论.【详解】解:∵∠CAD=3∠BAD ,∠ABE=3∠CBE ,∠BCF=3∠ACF ,∴∠CAD=34∠BAC ,∠BAD=14∠BAC ,∠ABE=34∠ABC ,∠CBE=14∠ABC ,∠BCF=34∠ACB ,∠ACF=14∠ACB . ∵∠DFE =60°、∠FDE =53°、∠FED =67°, ∴136********4136744BAC ABC ABC ACB ACB BAC ⎧∠+∠=⎪⎪⎪∠+∠=⎨⎪⎪∠+∠=⎪⎩, 解得∠BAC=72°,∠ABC=56°,∠ACB=52°,故答案为:72.【点睛】本题考查了三元一次方程组的应用,以及三角形外角的性质.解题的关键是由外角的性质列出方程组.本题属于中档题,难度不大,但在角的变化上稍显繁琐,一不注意就易失分,做形如此类题型时,牢牢把握等量关系是关键.三、解答题21.(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+,方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.22.(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 23.(1)33-;(2)32x y -+;(3)7x -【分析】(1)同时计算乘方、绝对值、算术平方根及开立方,再计算加减法;(2)用多项式除以单项式法则计算;(3)先根据多项式乘以多项式及完全平方公式计算,再合并同类项即可.【详解】(1)解:原式43232=+---33=-;(2)解:原式32x y =-+(3)解:原式2223621x x x x x =+---+-7x =-.【点睛】此题考查实数的混合运算及整式的混合运算,掌握实数的乘方、绝对值、算术平方根及开立方、加减法运算,整式的多项式乘以多项式及完全平方公式、多项式除以单项式法则是解题的关键.24.(1)证明见解析;(2)证明见解析【分析】(1)连接DB 、DC ,先由角平分线的性质就可以得出DE=DF ,再证明△BDE ≌△CDF 就可以得出结论;(2)由条件可以得出△DAE ≌△DAF 就可以得出AE=AF ,进而就可以求出结论.【详解】(1)连接DB 、DC ,如图所示,DG 垂直平分BC ,DB DC ∴=,又AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,DE DF ∴=,90DEB DFG ∠=∠=︒,DAE DAF ∠=∠, 在Rt BDE 和Rt CDF 中,DB DC DE DF =⎧⎨=⎩, ()HL Rt BDE Rt CDF ∴≅,BE CF ∴=.(2)在Rt DAE 和Rt DAF △中,DA DA DE DF =⎧⎨=⎩, ()Rt DAE Rt DAF HL ∴≅,AE AF ∴=,AB AE BE -=,AB AF CF ∴-=,()AB AC CF CF -+=,AB AC CF CF --=,2AB AC CF -=.【点睛】本题考查了角平分线的性质的运用,线段垂直平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.25.(1)①见解析,②∠B<∠C ,>;(2)①见解析;②<【分析】(1)①由HL 证明Rt △ABD ≌Rt △ACD 可得结论;②由AB >AC 得∠C >∠B 即可得出结论;(2)①由SSS 证明△ABD ≌△ACD 可得结论;②作辅助线证明△BDE CDA ≅∆,得BE CA =,∠BED CAD =∠,证得∠BAD BED <∠,即可得到结论.【详解】解:(1)①证明:∵AD 是BC 边上的高线∴∠ADB=∠ADC=90°,在Rt △ADB 和Rt △ADC 中AB AC AD AD=⎧⎨=⎩ ∴Rt △ABD ≌Rt △ACD∴∠BAD =∠CAD ;②证明:∵ AD 是BC 边上的高线,∴∠ADB =∠ADC =90°.∴ ∠BAD =90°-∠B ,∠CAD =90°-∠C .∵AB >AC , ∴∠B<∠C (在同一个三角形中,大边对大角).∴∠BAD > ∠CAD .故答案为:∠B<∠C ,>;(2)①证明:∵AD 是BC 边上的中线∴BD=CD在△ABD 和△ACD 中AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD∴∠BAD=∠CAD②如图,延长AD 至点E ,使AD=ED ,连接BE ,∵AD 是△ABC 的BC 边上的中线,∴BD CD =在△BDE 和△CDA 中,BD CD BDE CDA ED AD =⎧⎪∠=∠⎨⎪=⎩∴△BDE CDA ≅∆∴BE CA =,∠BED CAD =∠,又AB AC >,则AB BE >∴∠BAD BED <∠∴∠BAD CAD <∠.故答案为:<.【点睛】此题主要考查了全等三角形的判定与性质,作出辅助线构造全等三角形是解答此题的关键.26.(1)∠A1,A,12∠A;(2)25°;(3)①的结论是正确的,且这个定值为180°.【分析】(1)根据角平分线的定义可得∠A1BD=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,则可得出答案;(2)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°﹣(∠A+∠D),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,从而得出结论;(3)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)∵BA1是∠ABC的平分线,CA1是∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=∠A1,∠ACD﹣∠ABD=∠A,∴∠A1=12∠A.故答案为:∠A1,A,12∠A;(2)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∵∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,∴360°﹣(∠A+∠D)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=12(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;(3)△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°﹣∠Q),化简得:∠A1+∠Q=180°,因此①的结论是正确的,且这个定值为180°.【点睛】此题考查三角形的角平分线的性质,三角形内角和定理,三角形外角定理,熟练掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.。
华东师大版八年级数学上册期末试卷及答案(1)
华东师大版八年级数学上册期末试卷及答案(1) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==, 4.当22a a +-有意义时,a 的取值范围是( ) A .a ≥2 B .a >2 C .a ≠2 D .a ≠-25.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°7.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=__________. 3.使x 2-有意义的x 的取值范围是________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D 为顶点作∠MDN=70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为___________.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+++的值.4.如图,直线y =kx +b 经过点A (-5,0),B (-1,4)(1)求直线AB 的表达式;(2)求直线CE :y =-2x -4与直线AB 及y 轴围成图形的面积;(3)根据图象,直接写出关于x 的不等式kx +b >-2x -4的解集.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、D6、A7、D8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、13、x 2≥4、﹣2<x <25、46、8三、解答题(本大题共6小题,共72分)1、2x =2、3.3、0.4、(1)y =x +5;(2)272;(3)x >-3.5、CD 的长为3cm.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
【华东师大版】初二数学上期末试题(带答案)(1)
一、选择题1.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1 B .x ≠0C .x ≠±1D .x 为任意实数 2.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >- B .1m ≠ C .1m D .1m >-且1m ≠ 3.若关于x 的分式方程122x a x -=-的解为非负数,且关于x 的不等式组5x x a ≥⎧⎨>⎩的解集是5x ≥,则符合条件的整数a 有( ) A .1个 B .2个C .3个D .4个 4.为推进垃圾分类,推动绿色发展,宜宾天原化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台,两种型号机器人的单价和为140万元.若设乙型机器人每台x 万元,根据题意,所列方程正确的是( )A .4605801x 140x -=-B .4605801140x x =--C .4605801x 140x =+-D .4605801140x x-=- 5.当代数式2()2020x y ++的值取到最小..时,代数式222||2||x y x y -+-=……( ) A .0 B .2-C .0或2-D .以上答案都不对 6.下列运算正确的是( ). A .()2326ab a b = B .()325a a = C .236a a a ⋅= D .347a a a +=7.如图所示,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是( )A .1B .2C .4D .5 8.下列运算正确的是( )A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 99.如图,在ABC ∆中,DE 垂直平分BC 交AB 于点,D 交BC 于点E .若10,8AB cm AC cm ==,则ACD ∆的周长是( )A .12cmB .18cmC .16cmD .14cm10.如图,在ABC 中,AB AC =,D 为BC 的中点,AD AE =,若40BAD ∠=︒,则CDE ∠的度数为( )A .10︒B .20︒C .30D .40︒ 11.如图,OM 、ON 、OP 分别是AOB ∠,BOC ∠,AOC ∠的角平分线,则下列选项成立的( )A .AOP MON ∠>∠B .AOP MON ∠=∠C .AOP MON ∠<∠D .以上情况都有可能 12.以下列各组线段为边,能组成三角形的是( )A .1,2,3B .1,3,5C .2,3,4D .2,6,10 二、填空题13.甲、乙两同学的家与学校的距离均为3000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校,已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校结果甲同学比乙同学早到2分钟,若甲同学到达学校时,乙同学离学校还有m 米,则m =________.14.计算:20120192-⎛⎫-= ⎪⎝⎭______.15.2007200820092()(1.5)(1)3⨯÷-=_____.16.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________ 17.如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =________18.如图,ABC ∆中,AB AC =,点D 、E 、F 分别在AB 、BC 、CA 边上,且BE CF =,BD CE =,如果44A ∠=︒,则EDF ∠的度数为__.19.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)20.如图,将纸片ABC 沿DE 折叠,点A 落在点P 处,已知12124+∠=∠︒,A ∠=___________.三、解答题21.计算:(1)222221538x y y x ⎛⎫⋅ ⎪⎝⎭.(2)2222324424x x x x x x x ⎛⎫-+-÷ ⎪-+--⎝⎭. 22.(1)计算:1301|6|(2)(2)3π-⎛⎫-÷--⨯- ⎪⎝⎭; (2)先化简,再求值:(3)(2)()x x y x y x y +-++,其中1x =-,2y =. 23.如果关于x 的多项式2x a +与22x bx --的乘积展开式中没有二次项,且常数项为10,求2+a b 的值.24.如图,在ABC 中,50B C ∠=∠=︒,点D 在BC 边上,点E 在AC 边上,连接DE ,且ADE AED ∠=∠,当60BAD ∠=︒时,求CDE ∠的度数.25.如图,点B ,F ,C ,E 在一条直线上,FB=CE ,AB ∥ED ,AC ∥FD .求证:AB=DE .26.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】由题意,得x 2−1≠0,解得:x≠±1,故选:C .【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 2.D解析:D【分析】分式方程去分母转化为整式方程,表示出解,由解为正数确定出m 的范围即可.【详解】去分母得:m-1=2x-2,解得:x=12+m , 由方程的解为正数,得到12+m >0,且12+m ≠1, 解得:1m >-且1m ≠,故答案为:1m >-且1m ≠【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 3.C解析:C【分析】解分式方程的得出x=2a-2,根据解为非负数得出2a-2≥0,且2a-2≠2,据此求出解得a≥1且a≠2;解不等式组两个不等式,根据解集得出a <5;综合以上两点得出整数a 的值,从而得出答案.【详解】 解:分式方程122x a x -=-,去分母,得:2(x-a )=x-2,解得:x=2a-2,∵分式方程的解为非负数,∴2a-2≥0,且2a-2≠2,解得a≥1且a≠2,∵不等式组5x x a ≥⎧⎨>⎩的解集是x≥5, ∴1≤a <5,且a≠2,则整数a 的值为1、3、4共3个,故选:C .【点睛】本题主要考查分式方程的解和解一元一次不等式组,解题的关键是根据分式方程的解的情况及不等式组解集的情况得出a 的取值范围.4.B解析:B【分析】设乙型机器人每台x 万元,由两种型号机器人的单价和为140万元得甲型机器人每台()140x -万元,根据用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台列得方程.【详解】解:设乙型机器人每台x 万元,则甲型机器人每台()140x -万元,根据题意,可得4605801140x x=--. 故选:B.【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键.5.A解析:A【分析】由题意,当0x y +=时,代数式取到最小值,则有x y =-,根据绝对值的意义进行化简,即可得到答案.【详解】解:根据题意,∵2()0x y +≥,∴当0x y +=时,代数式2()2020x y ++的值取到最小值2020,∴x y =-, ∴x y =-, ∴0x y --=, ∴22,x y x y ==,∴222||2||0x y x y -+-=;故选:A .【点睛】本题考查了乘方的定义,绝对值的意义,以及求代数式的值,解题的关键是掌握运算法则,正确得到0x y +=和x y =-. 6.A解析:A【分析】分别根据同底数幂的乘法、幂的乘方与积的乘方的法则进行逐一计算即可.【详解】A 选项:()2326ab a b =,正确,符合题意;B 选项:()326a a =,错误,不符合题意; C 选项:235a a a ⋅=,错误,不符合题意;D 选项:347a a a +≠,错误,不符合题意.故选:A .【点睛】本题主要考查了同底数幂的乘法、幂的乘方与积的乘方,熟练掌握性质和法则是解题的关键.7.A解析:A【分析】根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解【详解】解:由数据运算程序得,如果开始输入的x 的值为10,那么:第1次输出的结果是5第2次输出的结果是16第3次输出的结果是8第4次输出的结果是4第5次输出的结果是2第6次输出的结果是1第7次输出的结果是4……综上可得,从第4次开始,每三个一循环由()2043367-÷= 可得第204次输出的结果与第6次输出的结果相等故选:A【点睛】本题实为代数式求值问题,解题的关键是通过计算特殊结果发现一般规律8.B解析:B【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可.【详解】∵x 2•x 3=x 5,∴选项A 不符合题意;∵(x 3)2=x 6,∴选项B 符合题意;∵(−3x )3=−27x 3,∴选项C 不符合题意;∵x 4+x 5≠x 9,∴选项D 不符合题意.故选:B .【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.9.B解析:B【分析】由题意可知BD=CD ,因此ACD ∆的周长= AB+AC ,据此可解.【详解】解:∵DE 垂直平分BC ,∴BD=CD ,∴ACD ∆的周长=AD+CD+AC= AD+BD+AC= AB+AC=10+8=18(cm),故选:B .【点睛】本题主要考查线段垂直平分线的性质,关键在于求出BD=CD .10.B解析:B【分析】根据AB AC =,D 为BC 的中点,∠CAD=40BAD ∠=︒,∠C=50︒,由AD AE =,得到∠AED =70︒,再根据∠AED=∠C+∠CDE 求得答案.【详解】∵AB AC =,D 为BC 的中点,∴∠CAD=40BAD ∠=︒,∠BAC=802BAD ∠=︒,∴∠B=∠C=50︒,∵AD AE =,∴∠AED=∠ADE=70︒,∵∠AED=∠C+∠CDE ,∴CDE ∠=20︒,故选:B .【点睛】此题考查等腰三角形的性质:等边对等角求角的度数以及三线合一,三角形的内角和定理,三角形外角的性质,熟记并熟练运用等腰三角形的性质是解题的关键.11.B解析:B【分析】根据角平分线的定义可得∠AOP=12∠AOC ,∠AOM=∠MOB=12∠AOB ,∠CON=∠BON=12∠BOC ,进而可得∠MON=12∠AOB+12∠BOC=12∠AOC ,从而可得∠AOP=∠MON .【详解】解:∵OP 平分∠AOC ,∴∠AOP=12∠AOC , ∵OM 、ON 分别是∠AOB 、∠BOC 的平分线, ∴∠AOM=∠MOB=12∠AOB ,∠CON=∠BON=12∠BOC , ∴∠MON=12∠AOB+12∠BOC=12∠AOC , ∴∠AOP=∠MON .故选B .【点睛】此题主要考查了角平分线的定义,关键是掌握角平分线把角分成相等的两部分. 12.C解析:C【分析】根据三角形三边关系逐一进行判断即可.【详解】A 、1+2=3,不能构成三角形,故不符合题意;B 、1+3=4<5,不能构成三角形,故不符合题意;C 、2+3=5>4,可以构成三角形,故符合题意;D 、2+6=8<10,不能构成三角形,故不符合题意,故选:C .【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键.二、填空题13.600【分析】设乙骑自行车的速度为x 米/分钟则甲步行速度是x 米/分钟公交车的速度是2x 米/分钟根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟列方程即可得到乙的速度甲同学到达学校时乙解析:600【分析】设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟,列方程即可得到乙的速度,甲同学到达学校时,乙同学离学校还有2x 米,即可得到结论;【详解】解:设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意得 600300060030002122x x x -+=- , 解得:x=300米/分钟,经检验x=300是方程的根,则乙骑自行车的速度为300米/分钟.那么甲同学到达学校时,乙同学离学校还=2×300=600米.故答案为:600.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 14.-3【分析】根据零指数幂和负指数幂法则计算即可【详解】解:原式=1-4=-3故答案为:-3【点睛】本题考查了零指数幂和负指数幂法则熟练掌握运算法则是解决本题的关键解析:-3【分析】根据零指数幂和负指数幂法则计算即可.【详解】解:原式=1-4=-3,故答案为:-3.【点睛】本题考查了零指数幂和负指数幂法则,熟练掌握运算法则是解决本题的关键.15.-15【分析】首先把分解成再根据积的乘方的性质的逆用解答即可【详解】解:原式===﹣15故答案为-15【点睛】本题考查有理数的乘方运算逆用积的乘方法则是解题关键解析:-1.5【分析】首先把20081.5分解成20071.5 1.5⨯,再根据积的乘方的性质的逆用解答即可.【详解】 解:原式=()200720072 1.5 1.513⎛⎫⨯⨯÷- ⎪⎝⎭=()20072 1.5 1.513⎛⎫⨯⨯⨯- ⎪⎝⎭=﹣1.5,故答案为-1.5 .【点睛】 本题考查有理数的乘方运算,逆用积的乘方法则是解题关键.16.【分析】运用平方差公式进行计算即可【详解】解:====故答案为:【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用熟练掌握运算法则以及平方差公式是解答此题的关键 解析:1120【分析】运用平方差公式进行计算即可.【详解】 解:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =1111111+1111122331010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯-⨯⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =132491122331010⨯⨯⨯⨯⨯⨯ =111210⨯=1120. 故答案为:1120. 【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用,熟练掌握运算法则以及平方差公式是解答此题的关键.17.25°【分析】先根据AB=AD 利用三角形内角和定理求出∠B 和∠ADB 的度数再根据三角形外角的性质即可求出∠C 的大小【详解】解:∵AB=AD ∴∠B=∠ADB ∵∠BAD=80°∴∠B=∠ADB==50°解析:25°【分析】先根据AB=AD ,利用三角形内角和定理求出∠B 和∠ADB 的度数,再根据三角形外角的性质即可求出∠C 的大小.【详解】解:∵AB=AD ,∴∠B=∠ADB ,∵∠BAD=80°,∴∠B=∠ADB =180802︒︒-=50°, ∵AD=DC ,∴∠C=∠ACD ,∴∠C=12∠ADB=25°, 故答案为:25°.【点睛】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,解答此题的关键是利用三角形一个外角等于与它不相邻的两个内角的和.18.56°【分析】根据AB=AC 可证明又因为∠A=44°可求出∠ABC=∠ACB=68°根据利用三角形内角和定理即可求出∠EDF 的度数;【详解】解:∵BE=CFBD=CE ∴在和中是等腰三角形;∴∠BDE解析:56°【分析】根据AB=AC 可证明DBE CEF ∆≅∆,又因为∠A=44°,可求出∠ABC=∠ACB=68°,根据DBE CEF ∆≅∆,利用三角形内角和定理即可求出∠EDF 的度数;【详解】解:AB AC =,ABC ACB ∴∠=∠,∵BE=CF ,BD=CE ,∴在DBE ∆和CEF ∆中BE CF ABC ACB BD CE =⎧⎪∠=∠⎨⎪=⎩,()DBE CEF SAS ∴∆≅∆,DE EF ∴=,DEF ∴∆是等腰三角形;DBE CEF ∆≅∆,∴∠BDE=∠CEF ,∠DEB=∠CFE ,180A B C ∠+∠+∠=︒,∠A=44°,1(18044)682B ∴∠=︒-︒=︒ ∴∠BDE+∠DEB=112°∴∠CEF +∠DEB=112°180112=68DEF ∴∠=︒-︒︒,18068562EDF ︒-︒∴∠==︒. 故答案为:56︒.【点睛】本题主要考查了等腰三角形的判定和性质的掌握,以及三角形的内角和定理和平角是180°,因此有一定的难度,属于中档题;19.OA=OB (答案不唯一)【分析】全等三角形的判定方法有SASASAAASSSS 只要添加一个符合的条件即可【详解】解:OA=OB 理由是:在△AOC 和△BOD 中∴△AOC ≌△BOD (SAS )故答案为:O解析:OA=OB .(答案不唯一)【分析】全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,只要添加一个符合的条件即可.【详解】解:OA=OB ,理由是:在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ).故答案为:OA=OB .(答案不唯一)【点睛】本题考查了全等三角形的判定的应用,通过做此题培养了学生的发散思维能力和对全等三角形的判定方法的灵活运用能力,题目答案不唯一,是一道比较好的题目.20.【分析】根据折叠得到由此得到利用计算得出再根据三角形的内角和定理求出结果【详解】解:∵∴∴∵∴∴故答案为:【点睛】此题考查折叠的性质三角形内角和定理正确理解折叠的性质得到对应角相等是解题的关键 解析:62︒.【分析】根据折叠得到ADE EDP ∠=∠,AED DEP ∠=∠,由此得到122()360ADE AED ∠+∠+∠+∠=︒,利用12124+∠=∠︒,计算得出118ADE AED ∠+∠=︒,再根据三角形的内角和定理求出结果.【详解】解:∵ADE EDP ∠=∠,AED DEP ∠=∠,∴1222180180ADE AED ∠+∠+∠+∠+︒=︒,∴122()360ADE AED ∠+∠+∠+∠=︒,∵12124+∠=∠︒,∴118ADE AED ∠+∠=︒,∴180()62A ADE AED ∠=︒-∠+∠=︒.故答案为:62︒.【点睛】此题考查折叠的性质,三角形内角和定理,正确理解折叠的性质得到对应角相等是解题的关键.三、解答题21.(1)256y ;(2)3x - 【分析】(1)先算乘方,再算乘法即可;(2)根据分式混合运算的法则进行计算即可.【详解】 (1)原式224241598x y y x =⋅256y =; (2)()()()()22322222x x x x x x x ⎡⎤-+=-÷⎢⎥-+--⎢⎥⎣⎦ 31222x x x x ⎛⎫=-÷ ⎪---⎝⎭()3232x x x x -=⨯-=-- 【点睛】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.22.(1)10;(2)22x y --;-5【分析】(1)实数的混合运算,注意先算乘方,然后算乘除,最后算加减,如果有小括号,先算小括号里面的;(2)整式的混合运算,注意先算乘法,然后再算加减进行合并同类项的化简计算,最后代入求值【详解】解:(1)1301|6|(2)(2)3π-⎛⎫-÷--⨯- ⎪⎝⎭=63(8)1÷--⨯=2+8=10(2)(3)(2)()x x y x y x y +-++=2223(22)x xy x xy xy y +-+++=222323x xy x xy y +---=22x y --当1x =-,2y =时,原式=22(1)2145---=--=-【点睛】本题考查实数的混合运算,整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 23.10-【分析】先根据多项式的乘法法则计算,然后根据展开式中没有二次项,且常数项为10列方程组求解即可.【详解】解:∵()()2322222242x a x bx x bx x ax abx a +--=--+-- ()()322242x b a x ab x a =---+-,∵乘积展开式中没有二次项,且常数项为10,∴20210a b a -=⎧⎨-=⎩, 解得:5a =-,52b =-, ∴5252102a b ⎛⎫+=-+⨯-=- ⎪⎝⎭. 【点睛】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.也考查了二元一次方程组的解法.24.30∠=︒CDE .【分析】根据等腰三角形的性质,求得DAE ∠,利用ADE AED ∠=∠,确定AED ∠的度数,在三角形DEC 中,利用三角形外角性质计算即可.【详解】∵50B C ∠=∠=︒,∴18080BAC B C ∠=︒-∠-∠=︒.∵60BAD ∠=︒,∴20DAE BAC BAD ∠=∠-∠=︒, ∴18020802ADE AED ︒-︒∠=∠==︒. ∵AED CDE C ∠=∠+∠, ∴805030CDE AED C ∠=∠-∠=︒-︒=︒.【点睛】本题主要考查了等腰三角形的顶角计算,底角的计算,熟记等腰三角形的性质和三角形外角性质是解题的关键.25.见详解【分析】先根据条件求出BC=EF ,根据平行线性质求出∠B=∠E ,∠ACB=∠DFE ,根据ASA 推出△ABC ≌△DEF 即可.【详解】∵FB =CE ,∴FB+FC=FC+CE ,即BC=FE ,又∵AB ∥ED ,AC ∥FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△ABC 和△DEF 中,B E BC FEACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA )∴AB=DE .【点睛】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理论证能力.26.(1)4522cm ;(2)23302t cm ⎛⎫- ⎪⎝⎭;218cm ;(3)53EG FH = 【分析】 (1)由长方形的性质得出10cm BC AD ==,6cm AB DC ==,由5t =得AE=5,DE=10-5=5,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形即可求解;(2)由题意得AE=t ,DE=10-t ,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形表示出阴影部分的面积;由12EDF S DE DF =⋅△求出t 的值,代入计算即可; (3)由长方形ABCD 得AD CD ⊥,根据平行线的性质得EG HF ⊥,根据平行线间的距离相等可得DE ,AE ,DF ,CF 分别等于,,,EGF EGB EHF BHF △△△△的高,由BEF S的面积即可得出结论.【详解】解:(1)∵长方形ABCD 中,10cm AD =,6cm DC =,∴10cm BC AD ==,6cm AB DC ==,∵点F 是DC 的中点,∴3cm DF CF ==,当5t =秒时,AE=5cm ,DE=10-5=5 cm ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()()1111066510353222⨯-⨯-⨯-⨯ =156015152--- =4522cm ; (2)由题意得AE=t ,DE=10-t , ∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()1111066103310222t t ⨯-⨯-⨯-⨯⨯- =360315152t t ---+ =3302t -, ∴用含t 的式子表示阴影部分的面积为:23302t cm ⎛⎫-⎪⎝⎭; 当三角形EDF 的面积等于3时,12EDF S DE DF =⋅△=()13102t ⨯⨯-=3, 解得:8t =,8t =时,38=30=182S ⨯-阴影2cm ; (3)∵长方形ABCD ∴AD CD ⊥,//,//AB CD AD BC ,∵//EG AB ,//FH BC ,∴EG HF ⊥,,AD EG CD HF ⊥⊥,∴DE ,AE 分别等于,EGF EGB △△的EG 边上的高,DF ,CF 分别等于,EHF BHF △△的FH 边上的高, ∴11112222BEF S EG DE EG AE HF DF HF CF =⋅+⋅=⋅+⋅△, ∴()()1122EG DE AE HF DF CF +=+,即EG AD HF CD ⋅=⋅, ∵10cm AD =,6cm DC =,∴106EG HF =,即53EG FH =.【点睛】本题是一个动点问题,考查了平行线间的距离,三角形面积的计算,解题的关键是熟练掌握平行线的性质和三角形面积的计算方法.。
华师大版八年级数学上册期末测试题1(含答案)
华师大版八年级数学上册期末测试题1(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.计算364的结果是(C)A.8B.-4C.4D.±42.下列各等式正确的是(B)A.a3·a2=a6B.(x3)2=x6C.(mn)3=mn3D.b8÷b4=b23.如图是某国产品牌手机专卖店今年8-12月高清大屏手机销售额折线统计图.根据图中信息,可以判断相邻两个月高清大屏手机销售额变化最大的是(C)A.8-9月B.9-10月C.10-11月D.11-12月4.实数3-2的绝对值是(B)A.3-2 B.2- 3 C.3+2 D.15.下列因式分解错误的是(C)A.2a-2b=2(a-b) B.x2-9=(x+3)(x-3)C.a2+4a-4=(a+2)2D.-x2-x+2=-(x-1)(x+2)6.下列选项中,可以用来说明命题“若x2>1,则x>1”是假命题的反例是(A) A.x=-2 B.x=-1 C.x=2 D.x=17.如图,已知∠CAB=∠DAB,则下列不能判定△ABC≌△ABD的条件是(D)A .∠C =∠DB .AC =AD C .∠CBA =∠DBAD .BC =BD8.★若一个直角三角形的面积为6 cm 2,斜边长为5 cm ,则该直角三角形的周长是( A )A .12 cmB .10 cmC .(5+37) cmD .7 cm第Ⅱ卷(非选择题 共96分)二、填空题(本大题共8小题,每小题3分,共24分) 9.在实数17,4,π3中,无理数是 π3.10.小明在纸上随手写下一串数字“1 010 010 001”,则数字“1”出现的频率是 40% . 11.如图,△ACB ≌△DCE ,∠ACD =50°,则∠BCE 的度数为 50° .第11题图第13题图第15题图12.若△ABC 的三边长分别为5,13,12,则△ABC 的形状是 直角三角形 . 13.用4张全等的长方形拼成一个如图所示的正方形,利用面积的不同表示方法可以写出一个代数恒等式.若长方形的长和宽分别为a ,b ,则该图可表示的代数恒等式是 (a +b)2=(a -b)2+4ab(不唯一) .14.在△ABC 中,已知AC =10 cm ,BC =12 cm ,BC 边上的中线AD =8 cm ,则△ABC 是 等腰 三角形.15.如图所示,把边长为1的正方形放在数轴上,以数1表示的点为圆心,正方形的对角线长为半径作弧,交数轴于点A ,则点A16.如图,在等腰三角形ACB 中,AC =BC =5,AB =8,D 为底边上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为点E ,F ,则DE +DF =245.三、解答题(本大题共8小题,共72分)17.(8分)计算:(1)6a 6b 4÷3a 3b 4+a 2·(-5a ); 解:原式=2a 3-5a 3 =-3a 3.(2)(x -2)(x +5)-x (x -2).解:原式=x 2+5x -2x -10-x 2+2x =5x -10.18.(8分)(1)因式分解:9a 3+6a 2b +ab 2; 解:原式=a(9a 2+6ab +b 2) =a(3a +b)2.(2)先化简,再求值: (x -2y )2+(2x 3-14x 2y +8xy 2)÷(-2x ),其中x =-23,y =5.解:原式=x 2-4xy +4y 2-x 2+7xy -4y 2=3xy. 当x =-23,y =5时,原式=3×⎝⎛⎭⎫-23×5=-10.19.(8分)如图,点C,B,E,F在同一直线上,CE=BF,AC∥DF,AC=DF.求证:△ABC≌△DEF.证明:∵ CE=BF,∴CE-BE=BF-BE, 即CB=FE,∵AC∥DF,∴∠C=∠F.在△ABC和△DEF中,∵AC=DF,∠C=∠F,CB=FE.∴△ABC≌△DEF.20.(8分)已知2x-1的平方根是±5,3x-y-1的立方根是3,求6x+y-8的算术平方根.解:∵2x-1的平方根是±5,∴2x-1=52=25,∴x=13,∵3x-y-1的立方根是3,∴3x-y-1=27,即3×13-y-1=27,解得y=11,∴6x+y-8=6×13+11-8=81,∵92=81,∴6x+y-8的算术平方根是9.21.(10分)某校在八年级(1)班学生中开展对于“我国国家公祭日”知晓情况的问卷调查.问卷调查的结果分为A,B,C,D四类,其中A类表示“非常了解”;B类表示“比较了解”;C类表示“基本了解”;D类表示“不太了解”;班长将本班同学的调查结果绘制成下列两幅不完整的统计图.请根据上述信息解答下列问题:(1)该班参与问卷调查的人数有________人;补全条形统计图;(2)求出C类人数占总调查人数的百分比及扇形统计图中A类所对应扇形圆心角的度数.解:(1)该班参与问卷调查的人数有50人,补全条形统计图,如图;(2)C类人数占总调查人数的百分比是(50-15-20-5)÷50=20%,扇形统计图中A类所对应扇形圆心角的度数:15÷50×360°=108°.22.(10分)如图,在△ABC中,∠ACB=105°,AC边上的垂直平分线交AB边于点D,交AC边于点E,连结CD.(1)若AB=10,BC=6,求△BCD的周长;(2)若AD=BC,试求∠A的度数.解:(1)∵DE是AC的垂直平分线,∴AD=CD∵△BCD的周长=BC+BD+CD=BC+BD+AD=BC+AB,AB=10,BC=6,∴△BCD的周长=16(2)∵AD=CD,∴∠A=∠ACD,设∠A=x,∵AD=CB,∴CD=CB, ∴∠CDB=∠CBD,∴∠CDB=∠A+∠ACD=2x,∠DCB=∠ACB-∠ACD=105°-x∵∠CDB+∠CBD+∠DCB=180°,∴2x+2x+105°-x=180°,即x=25°,∴∠A =25°.23.(10分)已知:如图,四边形ABCD中,AB∶BC∶CD∶DA=2 ∶2 ∶3 ∶1,且∠B =90°,求∠DAB的度数.解:连结AC.∵AB ∶BC ∶CD ∶DA=2 ∶2 ∶3 ∶1,∴设AB=2a,BC=2a,CD=3a,DA=a.∵∠B=90°,∴AC 2=BC 2+AB 2, ∴AC 2=4a 2+4a 2=8a 2. ∵AD =a ,DC =3a , ∴AD 2+AC 2=DC 2, ∴∠DAC =90°.∵AB =BC ,∠B =90°, ∴∠CAB =45°, ∴∠DAB =135°.24.(10分)如图,在Rt △ABC 中,∠ACB =90°,AC =BC ,CD 是∠ACB 的平分线,点E ,F 分别是边AC ,BC 上的动点.AB =32,设AE =x ,BF =y .(1)AC 的长是________;(2)若x +y =3,求四边形CEDF 的面积; (3)当DE ⊥DF 时,试探索x ,y 的数量关系.解:(1)4;(2)如图,过点D 作DG ⊥AC 于点G ,DH ⊥BC 于点H , ∵∠ACB =90°,AC =BC ,CD 是∠ACB 的角平分线,∴∠A =∠B =∠ACD =∠BCD =45°,CD ⊥AB ,∴AD =CD =BD ,∵在等腰直角三角形ACD 中,DG ⊥AC ,∠A =45°,∴DG =AG =12AC =2,同理DH=2,∵S △CDE =12CE·DG =4-x ,S △CDF =12CF·DH =4-y ,∴S 四边形CEDF =S △CDE +S △CDF =(4-x)+(4-y)=8-(x +y)=5;(3)当DE ⊥DF 时,∠EDF =90°,∵CD ⊥AB ,∴∠ADE +∠EDC =∠EDC +∠CDF =90°,∴∠ADE =∠CDF ,又∵∠A =∠DCF =45°,AD =CD ,∴△ADE ≌△CDF ,∴AE =CF ,∴AE+BF=CF+BF=BC,即x+y=4.。
【华东师大版】初二数学上期末试卷附答案(1)
一、选择题1.已知分式24x x+的值是正数,那么x 的取值范围是( ) A .x >0 B .x >-4C .x ≠0D .x >-4且x ≠0 2.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >- B .1m ≠ C .1m D .1m >-且1m ≠ 3.如果a ,b ,c ,d 是正数,且满足a +b +c +d =2,11a b c b c d ++++++11a c d a b d+++++=4,那么d a a b c b c d ++++++b c a c d a b d+++++的值为( ) A .1 B .12 C .0 D .44.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y -中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式 5.下列因式分解正确的是( ) A .m 2+n 2=(m+n)(m-n) B .a 3-a=a(a+1)(a-1)C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)26.已知25y x -=,那么()2236x y x y --+的值为( )A .10B .40C .80D .210 7.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( ) A .6163m n - B .6323m n - C .383m n - D .6169m n - 8.如图所示,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是( )A .1B .2C .4D .5 9.已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( ) A .75° B .90° C .105° D .120°或20° 10.等腰三角形的两边a ,b 满足7260a b -+-=,则它的周长是( ) A .17 B .13或17 C .13 D .1911.如图,在△ABC 中,点E 和F 分别是AC ,BC 上一点,EF ∥AB ,∠BCA 的平分线交AB 于点D ,∠MAC 是△ABC 的外角,若∠MAC =α,∠EFC =β,∠ADC =γ,则α、β、γ三者间的数量关系是( )A .β=α+γB .β=2γ﹣αC .β=α+2γD .β=2α﹣2γ 12.已知实数x 、y 满足|x -8y -0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18二、填空题13.若x =2是关于x 的分式方程31k x x x -+-=1的解,则实数k 的值等于_____. 14.计算:()0322--⋅=________.15.若231m n -=,则846m n -+=________.16.若6x y +=,3xy =-,则2222x y xy +=_____.17.如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =________18.若等腰三角形一腰上的高与另一腰的夹角为20°,则顶角的度数为______________ 19.如图,ABC 中,90ACB ∠=︒,8cm,6cm AC BC ==,直线l 经过点C 且与边AB 相交,动点P 从点A 出发沿A C B →→路径向终点B 运动,动点Q 从点B 出发沿B C A →→路径向终点A 运动,点P 和点Q 的速度分别为3cm/s 和2cm/s ,两点同时出发并开始计时,当点P 到达终点B 时计时结束.在某时刻分别过点P 和点Q 作PM l ⊥于点M ,QN l ⊥点N ,设运动时间为t 秒,则当t =__________秒时,PMC △与QNC 全等.20.一块含45°角的直角三角板如图放置,其中,直线//a b ,185∠=︒,则2∠=______度.三、解答题21.①先化简,再求值:12(1)y x y x y ⋅--+÷221y x -,其中x=y+2020. ②解方程:239x --112626x x =-+. 22.先化简,再求值:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中a 与2,3构成ABC 的三边长,且a 为整数.23.计算:4a 2·(-b )-8ab ·(b -12a ). 24.如图,在ABC ∆中,点,D E 分别是AB AC 、边上的点,BE 与CD 相交于点F ,且 BD CE =.(1)在下列给出的条件中,只需添加一个条件即可证明ABC ∆是等腰三角形,这个条件可以是 (多选);A .DF EF =B . BF CF =C .ABE ACD ∠=∠D .BCD CBE ∠=∠E . ADC AEB ∠=∠(2)利用你选的其中一个条件,证明ABC ∆是等腰三角形.25.已知4,BC BA BC =⊥,射线CM BC ⊥,动点P 在BC 上,PD PA ⊥交CM 于D .(1)如图1,当3,1BP AB ==时,求DC 的长;(2)如图2,连接AD ,当DP 平分ADC ∠时,求BP 的长.26.已知:如图90MON ∠=︒,与点O 不重合的两点A 、B 分别在OM 、ON 上,BE 平分ABN ∠,BE 所在的直线与OAB ∠的平分线所在的直线相交于点C .(1)当点A 、B 分别在射线OM 、ON 上,且45BAO ∠=︒时,求ACB ∠的度数; (2)当点A 、B 分别在射线OM 、ON 上运动时,ACB ∠的大小是否发生变化?若不变,请给出证明;若发生变化,请求出ACB ∠的范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】 若24x x +的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围.【详解】 解:∵24x x+>0, ∴x +4>0,x≠0,∴x >−4且x≠0.故选:D .【点睛】 本题考查分式值的正负性问题,若对于分式a b(b≠0)>0时,说明分子分母同号;分式a b(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 2.D解析:D【分析】分式方程去分母转化为整式方程,表示出解,由解为正数确定出m 的范围即可.【详解】去分母得:m-1=2x-2,解得:x=12+m , 由方程的解为正数,得到12+m >0,且12+m ≠1, 解得:1m >-且1m ≠,故答案为:1m >-且1m ≠【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 3.D解析:D【分析】根据a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++,将所求式子变形便可求出.【详解】∵a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++, ∴d a b c a b c b c d a c d a b d+++++++++++ =2()2()2()2()a b c b c d a c d a b d a b c b c d a c d a b d-++-++-++-+++++++++++++ =2a b c ++﹣1+2b c d ++﹣1+2a c d ++﹣1+2a b d++﹣1 =2×(1111a b c b c d a c d a b d+++++++++++)﹣4 =2×4﹣4=8﹣4=4,故选:D .【点睛】 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.4.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y -中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.5.B解析:B【分析】根据因式分解的定义判断即可.【详解】解:A 、等号左右两边不相等,故错误;B 、a 3-a=a(a+1)(a-1),故正确;C 、右边不是整式的积,故错误;D 、等号左右两边不相等,故错误.故选:B .【点睛】因式分解与整式的乘法互为逆变形,并且因式分解是等式的恒等变形,变形前后一定相等.6.B解析:B【分析】所求式子变形后,将已知等式变形代入计算即可求出值.【详解】25y x -=∴ 25x y -=-()2236x y x y --+ ()()2=322x y x y --- =()()2535--⨯-=25+15=40故选:B【点睛】此题主要考查整体代入的思想,还考查代数式求值的问题,是一道基础题.7.B解析:B【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a 和b ,再利用单项式乘以单项式计算结果即可.【详解】解:由题意可得:2328a b a b b -=⎧⎨+=⎩, 解得:72a b ==,,则这两个单项式分别为:3163m n -,316m n ,∴它们的积为:3163166323?3m n m n m n -=-,故选:B .【点睛】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键. 8.A解析:A【分析】根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解【详解】解:由数据运算程序得,如果开始输入的x 的值为10,那么:第1次输出的结果是5第2次输出的结果是16第3次输出的结果是8第4次输出的结果是4第5次输出的结果是2第6次输出的结果是1第7次输出的结果是4……综上可得,从第4次开始,每三个一循环由()2043367-÷= 可得第204次输出的结果与第6次输出的结果相等故选:A【点睛】本题实为代数式求值问题,解题的关键是通过计算特殊结果发现一般规律9.D解析:D【分析】设两内角的度数为x 、4x ,分两种情况,列出方程,即可求解.【详解】解:设两内角的度数为x 、4x ,当等腰三角形的顶角为x 时,x +4x +4x =180°,x =20°;当等腰三角形的顶角为4x 时,4x +x +x =180°,x =30°,4x =120°;因此等腰三角形的顶角度数为20°或120°.故选:D .【点睛】本题考查了等腰三角形的性质,掌握分类讨论思想方法是解题的关键.10.A解析:A【分析】根据绝对值和二次根式的性质求出a ,b ,再根据等腰三角形的性质判断即可;【详解】∵70a -=,∴70260a b -=⎧⎨-=⎩, 解得73a b =⎧⎨=⎩, ∵a ,b 是等腰三角形的两边,∴当7a =为腰时,三边分别为7,7,3,符合三角形三边关系,此时三角形的周长77317++=;当3b =为腰时,三边为3,3,7,由于33+<7,故不符合三角形的三边关系; ∴三角形的周长为17.故答案选A .【点睛】本题主要考查了等腰三角形的性质、绝对值性质和二次根式的性质,准确计算是解题的关键.11.B解析:B【分析】根据平行线的性质得到∠B=∠EFC=β,由角平分线的定义得到∠ACB=2∠BCD ,根据∠ADC 是△BDC 的外角,得到∠ADC=∠B+∠BCD ,由三角形外角的性质得到∠MAC=∠B+∠ACB ,于是得到结果.【详解】解:∵EF ∥AB ,∠EFC=β,∴∠B=∠EFC=β,∵CD 平分∠BCA ,∴∠ACB=2∠BCD,∵∠ADC是△BDC的外角,∴∠ADC=∠B+∠BCD,∵∠ADC=γ,∴∠BCD=γ-β,∵∠MAC是△ABC的外角,∴∠MAC=∠B+∠ACB,∵∠MAC=α,∴α=β+2(γ-β),∴β=2γ-α,故选:B.【点睛】本题考查了三角形外角的性质,角平分线的定义,平行线的性质,正确的识别图形是解题的关键.12.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x与y的值.由于没有说明x与y是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B.【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.二、填空题13.4【分析】将x=2代入求解即可【详解】将x=2代入=1得解得k=4故答案为:4【点睛】此题考查分式方程的解解一元一次方程正确理解方程的解是解题的关键解析:4【分析】将x=2代入求解即可.【详解】将x=2代入31k x x x -+-=1,得112k -=, 解得k=4,故答案为:4.【点睛】此题考查分式方程的解,解一元一次方程,正确理解方程的解是解题的关键. 14.【分析】根据零指数幂定义及负整数指数幂定义解答【详解】故答案为:【点睛】此题考查实数的计算掌握零指数幂定义及负整数指数幂定义是解题的关键 解析:18【分析】根据零指数幂定义及负整数指数幂定义解答.【详解】()0322--⋅=118⨯=18, 故答案为:18. 【点睛】此题考查实数的计算,掌握零指数幂定义及负整数指数幂定义是解题的关键. 15.6【分析】将原式化为再整体代入即可【详解】解:∵∴原式==8-2×1=6故答案为:6【点睛】本题考查了求代数式的值把某一部分看成一个整体是解题的关键解析:6【分析】将原式化为82(23)m n --,再整体代入即可.【详解】解:∵231m n -=,∴原式=82(23)m n --=8-2×1=6.故答案为:6.【点睛】本题考查了求代数式的值,把某一部分看成一个整体是解题的关键.16.【分析】先将原式因式分解得再整体代入即可求出结果【详解】解:∵∴原式故答案是:【点睛】本题考查因式分解解题的关键是熟练运用因式分解和整体代入的思想求值解析:36-【分析】先将原式因式分解得()2xy x y +,再整体代入即可求出结果.【详解】解:()22222x y xy xy x y +=+, ∵6x y +=,3xy =-,∴原式()23636=⨯-⨯=-.故答案是:36-.【点睛】本题考查因式分解,解题的关键是熟练运用因式分解和整体代入的思想求值. 17.25°【分析】先根据AB=AD 利用三角形内角和定理求出∠B 和∠ADB 的度数再根据三角形外角的性质即可求出∠C 的大小【详解】解:∵AB=AD ∴∠B=∠ADB ∵∠BAD=80°∴∠B=∠ADB==50°解析:25°【分析】先根据AB=AD ,利用三角形内角和定理求出∠B 和∠ADB 的度数,再根据三角形外角的性质即可求出∠C 的大小.【详解】解:∵AB=AD ,∴∠B=∠ADB ,∵∠BAD=80°,∴∠B=∠ADB =180802︒︒-=50°, ∵AD=DC ,∴∠C=∠ACD ,∴∠C=12∠ADB=25°, 故答案为:25°.【点睛】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,解答此题的关键是利用三角形一个外角等于与它不相邻的两个内角的和.18.70°或110°;【分析】分情况讨论:当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况【详解】解:①当等腰三角形的顶角是钝角时腰上的高在外部如图1根据三角形的一个外角等于与它不相邻的两个内解析:70°或110° ;【分析】分情况讨论:当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【详解】解:①当等腰三角形的顶角是钝角时,腰上的高在外部,如图1,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;②当等腰三角形的顶角是锐角时,腰上的高在其内部,如图2,根据直角三角形两锐角互余可求顶角是90°-20°=70°.故答案为70°或110°.【点睛】本题考查了等腰三角形的性质,注意此类题的两种情况.其中考查了直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.19.2或【分析】分点Q在BC上和点Q在AC上根据全等三角形的性质分情况列式计算【详解】由题意得AP=3tBQ=2tAC=8cmBC=6cmCP=8﹣3tCQ=6﹣2t①如图当与全等时PC=QC解得;②如解析:2或145.【分析】分点Q在BC上和点Q在AC上,根据全等三角形的性质分情况列式计算.【详解】由题意得,AP=3t,BQ=2t,AC=8cm,BC=6cm,∴ CP=8﹣3t,CQ=6﹣2t,①如图,当PMC△与QNC全等时,PC=QC,6283t t-=-,解得2t=;②如图,当PMC △与QNC 全等时,点P 已运动至BC 上,且与点Q 相遇, 则PC=QC ,6238t t -=-,解得145t =;故答案为:2或145. 【点睛】 本题考查了全等三角形的性质,掌握全等三角形对应边相等是解决问题的关键. 20.40【分析】如图(见解析)先根据直角三角板的定义可得再根据平行线的性质可得然后根据三角形的外角性质可得最后根据对顶角相等即可得【详解】如图由题意得:由对顶角相等得:故答案为:40【点睛】本题考查了平 解析:40【分析】如图(见解析),先根据直角三角板的定义可得445∠=︒,再根据平行线的性质可得1585=∠∠=︒,然后根据三角形的外角性质可得340∠=︒,最后根据对顶角相等即可得.【详解】如图,由题意得:445∠=︒,//a b ,185∠=︒,1855∴∠∠==︒,35440∴∠=∠-∠=︒,由对顶角相等得:2340∠=∠=︒,故答案为:40.【点睛】本题考查了平行线的性质、对顶角相等、三角形的外角性质,熟练掌握三角形的外角性质是解题关键.三、解答题21.①x-y;2020;②原方程无解.【分析】(1)根据分式的运算法则,先化简分式,再代入求值.(2)先变形,再把分式方程转化为整式方程,求出方程的解,再进行检验即可.【详解】解:①12(1)yx y x y⋅--+÷221y x-=1()()1y x y x y x x y x y-+-⋅⋅-+=x-y由x=y+2020得x-y=2020;②原方程可化为:3 (3)(3) x x+-—112(3)2(3)x x=-+方程两边同乘以2(x+3)(x-3)得:6-(x+3)=x-3解得,x=3检验:把x=3代入2(x+3)(x-3)=0所以x=3不是原方程的解,即原方程无解【点睛】本题考查了分式的化简和解分式方程,,掌握运算法则是解决本题的关键.22.224a a-,6【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出a的值,代入计算即可求出值.【详解】解:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭ ()22244422a a a a a a ---=÷-- ()()224224a a a a a --=⋅-- 224a a =-.∵a 与2,3构成ABC 的三边长,∴ 3232a -<<+,即15a <<.∵ a 为整数,∴ a 为2或3或4.当2a =时,分母20a -=(舍去);当4a =时,分母40a -=(舍去).故a 的值只能为3.∴当3a =时,222423436a a -=⨯-⨯=.【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键. 23.28ab -【分析】整式的混合运算,先算乘除,然后再算加减,有小括号先算小括号里面的.【详解】解:4a 2·(-b )-8ab ·(b -12a ) =222484--+ab ab a b=28ab -.【点睛】本题考查整式的混合运算,掌握单项式乘单项式以及单项式乘多项式的计算法则正确计算是解题关键.24.(1),C E ;(2)见解析【分析】(1)选C 的话,可以利用AAS 定理证得△BDF ≌△CEF ,从而可得BF=CF ,然后结合等腰三角形的性质及判定方法可以求解;选E 的话,可以求得∠BDF=∠CEF ,然后可以利用AAS 定理证得△BDF ≌△CEF ,从而可得BF=CF ,然后结合等腰三角形的性质及判定方法可以求解;(2)选C 的话,可以利用AAS 定理证得△BDF ≌△CEF ,从而可得BF=CF ,然后结合等腰三角形的性质及判定方法可以求解;选E 的话,可以求得∠BDF=∠CEF ,然后可以利用AAS 定理证得△BDF ≌△CEF ,从而可得BF=CF ,然后结合等腰三角形的性质及判定方法可以求解.【详解】解:(1)①选择C 选项中的ABE ACD ∠=∠在ABE ∆与CEF ∆中,ABE ACD BFD CFE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△CEF∴BF CF =FBC FCB ∴∠=∠ABE FBC FCB ACD ∴∠+∠=∠+∠即A ABC CB =∠∠AB AC ∴=ABC ∆∴是等腰三角形②选择E 选项中的ADC AEB ∠=∠,∴∠BDC=∠CEB :在ABE ∆与CEF ∆中,BDF CEF BFD CFE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()BDF CEF AAS ∴∆≅∆BF CF ∴=FBC FCB ∴∠=∠ABE FBC FCB ACD ∴∠+∠=∠+∠即A ABC CB =∠∠AB AC ∴=ABC ∆∴是等腰三角形而其余选项均无法证明△ABC 为等腰三角形故答案为:C ;E(2)①选择C 选项中的ABE ACD ∠=∠在ABE ∆与CEF ∆中,ABE ACD BFD CFE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△CEF∴BF CF =FBC FCB ∴∠=∠ABE FBC FCB ACD ∴∠+∠=∠+∠即A ABC CB =∠∠AB AC ∴=ABC ∆∴是等腰三角形②选择E 选项中的ADC AEB ∠=∠,∴∠BDC=∠CEB :在ABE ∆与CEF ∆中,BDF CEF BFD CFE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()BDF CEF AAS ∴∆≅∆BF CF ∴=FBC FCB ∴∠=∠ABE FBC FCB ACD ∴∠+∠=∠+∠即A ABC CB =∠∠AB AC ∴=ABC ∆∴是等腰三角形【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质和判定,掌握AAS 定理证明三角形全等是解题关键.25.(1)3;(2)2【分析】(1)根据同角的余角相等证得∠1=∠3,再利用AAS 证明()ABP PCD AAS ∆≅∆,然后根据全等三角形的性质解答即可;(2)过P 作PH AD ⊥于H ,利用角平分线的性质进行解答即可.【详解】解:(1)如图,∵AP PD ⊥,∴1290∠+∠=︒,∵PC CD ⊥,∴2390∠+∠=︒∴13∠=∠,∵3,4BP BC ==,∴1PC BC BP =-=,又∵1AB =,∴AB PC =,又∵AB BP ⊥,∴90B C ∠=∠=︒,∴()ABP PCD AAS ∆≅∆,∴3CD BP ==;(2)作PH AD ⊥于H ,如图2,∵DP 平分ADC ∠,∴∠1=∠2,∵90C ∠=︒,PH AD ⊥∴∠HDP=∠CDP ,∴PH PC =,又∵1390∠+∠=︒,2490∠+∠=︒,∴34∠=∠,又∵90B ∠=︒,PH AD ⊥∴∠HAP=∠BAP ,∴PH BP =, ∴122BP PC BC ===. 【点睛】本题考查全等三角形的判定与性质、角平分线的性质、同角的余角相等、直角三角形的两锐角互余,熟练掌握全等三角形的判定与性质,添加辅助线灵活运用角平分线的性质是解答的关键.26.(1)45°;(2)不变,45°【分析】(1)由题意,先求出135ABN ∠=︒,由角平分线的定义,求出67.5ABE ∠=︒,22.5∠︒=BAC ,由三角形外角的性质,即可求出答案;(2)由三角形的外角性质,得ACB ABE BAC ∠=∠-∠,再根据角平分线的定义即可求出答案.【详解】解:(1)∵90MON ∠=︒,即90AOB ∠=︒,45BAO ∠=︒,∴135ABN AOB BAO ∠=∠+∠=︒,∵BE 平分ABN ∠,AC 平分BAO ∠, ∴167.52ABE ABN ∠=∠=︒,122.52BAC BAO ∠=∠=︒, ∴67.522.545ACB ABE BAC ∠=∠-∠=︒-︒=︒.(2)ACB ∠的大小不会发生变化,理由如下: ∵BE 平分ABN ∠,AC 平分BAO ∠, ∴12ABE ABN ∠=∠,12BAC BAO ∠=∠, ∴ACB ABE BAC ∠=∠-∠1122ABN BAO =∠-∠ ()12ABN BAO =∠-∠12AOB =∠190452=⨯︒=︒. 【点睛】 本题考查了角平分线的定义,三角形的外角性质,解题的关键是熟练掌握所学的知识,正确的得到角的关系.。
【华东师大版】八年级数学上期末试题附答案(1)
一、选择题1.下列变形不正确...的是( ) A .1a b a b a b -=-- B.1a b a b a b +=++ C .221a b a b a b +=++ D .221-=-+a b a b a b2.下列计算正确的个数为( ) ①555•2a a a =;②5510b b b +=;③1644n n ÷=;④247••y y y y =;⑤()()23•x x x --=-;⑥()7214a a --=;⑦()()234214•a a a -=;⑧()242a a a ÷-=-;⑨()03.141π-=.A .2B .3C .4D .53.若实数a 使关于x 的不等式组313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4 B .3 C .2 D .14.020122012(31)(0.125)8-+⨯的结果是( )A .3B .32-C .2D .0 5.下列运算正确..的是( ) A .246x x x ⋅= B .246()x x = C .3362x x x +=D .33(2)6x x -=- 6.如图所示,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是( )A .1B .2C .4D .57.下列各式中,正确的是( )A .2222x y yx x y -+=B .22445a a a +=C .()2424m m --=-+D .33a b ab += 8.已知代数式2a -b =7,则-4a +2b +10的值是( )A .7B .4C .-4D .-7 9.如图,在ABC ∆中,90,30C B ︒︒∠=∠= ,以A 为圆心,任意长为半径画弧分别交AB AC 、于点M 和N ,再分别以M N 、为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP ,并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ︒∠=;③点D 在AB 的垂直平分线上﹔④若2AD =,则点D 到AB 的距离是1,:1:2DAC ABC S S ∆∆=A .2B .3C .4D .510.如图,在ABC 中,90C =∠,30B ∠=,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交 BC 于点D ,则:DAC ABC S S 等于( )A .1:2B .2:3C .1:3D .1:311.对于ABC 与DEF ,已知∠A=∠D ,∠B=∠E ,则下列条件:①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )A .①②B .①③C .②③D .③④12.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为( )A .145︒B .155︒C .165︒D .175︒二、填空题13.计算211()(1)11m m m -⨯--+的结果是______. 14.已知215a a+=,那么2421a a a =++________. 15.因式分解:33327xy x y -=______.16.已知a +b =5,且ab =3,则a 3+b 3=_____.17.如图,ABC 中,45ABC ∠=︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E 交CD 于点F ,H 是BC 边的中点,连接DH 交BE 于点G ,考察下列结论:①AC BF =;②2BF CE =;③ADGE GHCE S S =四四边形边形;④DGF △为等腰三角形.其中正确的有___.18.如图,ABC ADE ≅,延长BC ,分别交AD ,ED 于点F ,G ,若120EAB ∠=︒,30B ∠=︒,10CAD ∠=︒,则CFD ∠=________︒.19.如图,网格纸上每个小正方形的边长为1,点A ,点C 均在格点上,点P 为x 轴上任意一点,则PAC △周长的最小值为________.20.若等腰三角形两边的长分别为3cm 和6cm ,则此三角形的周长是______________cm .三、解答题21.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?22.解分式方程:63122x x x -=--. 23.阅读下面材料,完成任务. 多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.24.如图,在平面直角坐标系中有ABC :(1)已知111A B C △和ABC 关于y 轴对称,在图中画出111A B C △;(2)将111A B C △沿x 轴向右平移4个单位,在图中画出平移后的222A B C △; (3)222A B C △和ABC 关于某条直线l 对称,在图中画出对称轴l .25.如图,在ABC ∆中,90,C ∠=︒点D 在BC 上,过点D 作DE AB ⊥于点,E 点F 是AC 边上一点,连接DF .若,BD DF CF EB ==,求证:AD 平分BAC ∠.26.如果正多边形的每个内角都比它相邻的外角的4倍多30°.(1)它是几边形?(2)这个正多边形的内角和是多少度?(3)求这个正多边形对角线的条数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】A 、B 两项利用同分母分式的加减法法则计算,约分即可得到结果;C 、D 通过能否继续进行因式分解,继续化简,即可得到答案.【详解】 A. =1a b a b a b a b a b--=---,故此项正确;B.=1a b a b a b a b a b ++=+++,故此项正确; C. 22a b a b ++为最简分式,不能继续化简,故此项错误; D. ()()221a b a b a b a b a b a b--==-+-+,故此项正确; 故选C .【点睛】此题考查了分式的加减法、约分,熟练掌握运算法则是解本题的关键.2.C解析:C【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,零指数幂及积的乘方可得答案.【详解】解:①5510•a a a =,故①错误;②5552b b b +=,故②错误;③2164444n n n n n ÷=÷=,故③错误;④247••y y y y =,故④正确;⑤()()23•x x x --=-,故⑤正确;⑥()7214a a --=,故⑥正确; ⑦()()23428614•a a a a a -=-⋅=-,故⑦错误; ⑧()242a a a ÷-=,故⑧错误;⑨()03.141π-=,故⑨正确,正确的有4个.故选:C .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,零指数幂及积的乘方,解题的关键是灵活运用运算法则. 3.D解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】 解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.4.C解析:C【分析】根据零次幂定义,积的乘方的逆运算进行计算.【详解】020122012201211)(0.125)81(8)1128+⨯=+⨯=+=. 故选:C【点睛】此题考查实数的混合运算,掌握零次幂定义,积的乘方的逆运算是解题的关键.5.A解析:A【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可.【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意.故选:A .【点睛】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键. 6.A解析:A【分析】根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解【详解】解:由数据运算程序得,如果开始输入的x 的值为10,那么:第1次输出的结果是5第2次输出的结果是16第3次输出的结果是8第4次输出的结果是4第5次输出的结果是2第6次输出的结果是1第7次输出的结果是4……综上可得,从第4次开始,每三个一循环由()2043367-÷= 可得第204次输出的结果与第6次输出的结果相等故选:A【点睛】本题实为代数式求值问题,解题的关键是通过计算特殊结果发现一般规律7.A解析:A【分析】根据同类项的定义与单项式的乘法法则,分别判断分析即可.【详解】解:A.2222x y yx x y -+=,故A 正确;B.22245a a a +=,故B 不正确;C.-2(m-4)=-2m+8,故C 不正确;D.3a 与b 不是同类项,不能合并,故D 不正确.故选A.【点睛】本题考查了合并同类项与单项式的乘法、去括号与添括号.注意,去括号时,如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.8.C解析:C【分析】直接将原式变形,进而把已知代入求出答案.【详解】解:∵-4a +2b +10=10-2(2a-b ),把2a-b=7代入上式得:原式=10-2×7=10-14=-4.故选:C .【点睛】此题主要考查了代数式求值,正确将原式变形是解题关键.9.B解析:B【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD 得到DA=DB ,根据线段垂直平分线的性质定理的逆定理可对③进行判断.利用30度角所对的直角边是斜边的一半、三角形的面积计算公式即可得出两个三角形的面积之比.【详解】解:由作法得,AD 平分∠BAC ,所以①正确;∵∠C=90°,∠B=30°,∴∠BAC=60°,∴∠BAD=∠CAD=12×60°=30°, ∴∠ADC=90°-∠CAD=60°,所以②正确;∵∠B=∠BAD ,∴DA=DB ,∴点D 在AB 的垂直平分线上,所以③正确;在直角△ACD 中,∠CAD=30°,∴CD=12AD ,∴BC=CD+BD=12AD+AD=32AD ,1124DAC S AC CD AC AD ∆=⋅=⋅. ∴11332224ABC S AC BC AC AD AC AD ∆=⋅=⋅=⋅, ∴13::1:344DAC ABC S S AC AD AC AD ∆∆=⋅⋅=,故④错误. 所以,正确的结论有3个故选:B .【点睛】 本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.10.D解析:D【分析】先根据直角三角形的性质得出∠2=30°,CD=12AD ,再由三角形的面积公式即可得出结论.【详解】解:由作图过程可知:AP 平分∠BAC ,∵∠C=90°,∠B=30°,∴∠BAC=60°,∴∠1=∠2=∠B=30°,∴CD=12AD ,AD=BD , ∴BC=BD+CD=AD+12AD=32AD , S △DAC =12AC•CD=14AC•AD , ∴S △ABC =12AC•BC=12AC•32AD=34AC•AD , ∴S △DAC :S △ABC =1:3,故选D .【点睛】本题考查的是作图—基本作图,熟知角平分线的作法和性质,30°的直角三角形的性质是解答此题的关键.11.A解析:A【分析】根据已知条件,已知两角对应相等,所以要证两三角形全等,可以根据角边角、角角边、边角边判定定理添加条件,再根据选项选取答案即可;【详解】题意已知:∠A=∠D ,∠B=∠E ,∴①根据“ASA”可添加AB=DE ,故①正确;②根据“AAS” 可添加AC=DF ,故②正确;③根据“AAS” 可添加BC=EF ,故③错误;④根据“ASA”可添加AB=DE ,故④错误;所以补充①②可判定两三角形全等;故选:A .【点睛】本题主要考查了三角形全等的判定,根据不同的判定方法可选择不同的条件,所以对三角形全等的判定定理要熟练掌握并归纳总结;12.C解析:C【分析】根据三角形的内角和定理可求45E ∠=︒,利用补角的定义可求120FBE ∠=︒,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求出DFB ∠的度数【详解】解:在DEC ∆中∵90C ∠=︒,45CDE ∠=︒∴45E ∠=︒又∵60ABC ∠=︒∴120FBE ∠=︒由三角形的外角性质得DFB E FBE ∠=∠+∠45120=︒+︒165=︒故选:C【点睛】本题考查了三角形的内角和定理,互为补角的定义及三角形的外角性质,解题的关键是掌握三角形的外角性质二、填空题13.2【分析】利用乘法分配律展开括号再计算加减法【详解】故答案为:2【点睛】此题考查分式的混合运算掌握乘法分配律计算法则是解题的关键 解析:2【分析】利用乘法分配律展开括号,再计算加减法.【详解】()211()(1)11211m m m m m -⨯-=+--=-+. 故答案为:2.【点睛】 此题考查分式的混合运算,掌握乘法分配律计算法则是解题的关键.14.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a , ∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 15.【分析】根据因式分解的提公因式法找出公因式为然后再根据平方差公式求解即可;【详解】原式=故答案为:【点睛】本题考查了因式分解的提公因式法平方差公式找出公因式是是解题的关键解析:()()333xy y x y x +-【分析】根据因式分解的提公因式法,找出公因式为3xy ,然后再根据平方差公式求解即可;【详解】原式=()()()2239333xy y x xy y x y x -=+-,故答案为:()()333xy y x y x +-.【点睛】本题考查了因式分解的提公因式法、平方差公式,找出公因式是3xy 是解题的关键. 16.80【分析】先求出再将a +b =5代入a3+b3公式中计算即可【详解】∵a +b =5且ab =3∴∴∴故答案为:80【点睛】此题考查完全平方公式的变形计算立方和公式正确掌握立方和的计算公式是解题的关键解析:80【分析】先求出2216a b ab +-=,再将a +b =5,2216a b ab +-=代入a 3+b 3公式中计算即可.【详解】∵a +b =5,且ab =3,∴2222()253219a b a b ab +=+-=-⨯=,∴2222()353316a b ab a b ab +-=+-=-⨯=,∴3322()()51680a b a b a ab b +=+-+=⨯=故答案为:80.【点睛】此题考查完全平方公式的变形计算,立方和公式,正确掌握立方和的计算公式是解题的关键.17.①②④【分析】只要证明△BDF ≌△CDA △BAC 是等腰三角形即可判断①②正确作GM ⊥BD 于M 只要证明GH <DG 即可判断③错误证明可判断④正确【详解】解:①又又∴是等腰直角三角形在和中故①正确;②平分 解析:①②④【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,即可判断①②正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断③错误,证明DGF DFG ∠=∠可判断④正确.【详解】解:①CD AB ⊥,90CDA BDF ∠∴∠==︒,18090DBF DFB BDF ︒∠+∠=-∠=︒,又BE AC ⊥,90BEA ∴∠=︒,18090DBF DAC BEA ∠+∠=-∠=∴︒︒,DAC DFB ∠=∠∴,又45ABC ∠=︒,18045DCB ABC BDF ∴∠=︒-∠-∠=︒,∴BCD △是等腰直角三角形,BD CD ∴=,在ACD △和FBD 中, DAC DFB CDA BDF CD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD FBD AAS ∴≅,AC BF ∴=.故①正确;②BE 平分ABC ∠,BE AC ⊥,ABE CBE ∴∠=∠,90BEA BEC ∠=∠=︒,∴在ABE △和CBE △中,ABE CBE BE BEBEA BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ASA ABE CBE ∴≅,AE CE ∴=,2AC AE CE CE ∴=+=,又AC BF =,2BF CE ∴=,故②正确;③如图所示,过G 作GM BD ⊥于点M ,H 为等腰直角BCD △斜边BC 的中点,DH BC ∴⊥,即90GHB ∠=︒,又BE 平分ABC ∠,GM BD ⊥,GM GH ∴=,又BD BH >,BDG BGH S S ∴>,又ABE CBE ≅ABE CBE S S ∴=,ABE BDG ADGE S S S ∴=-四边形,CBE BGH GHCE S S S =-四边形,ADGE GHCE S S ∴<四边形四边形,故③错误;④18090HBG BGH GHB ∠+∠=︒-∠=︒,18090DBF DFG BDF ∠+∠=︒-∠=︒,HBG DBF ∠=∠,BGH DFG ∴∠=∠,又BGH DGF ∠=∠,DGF DFG ∴∠=∠,DGF ∴为等腰三角形.∴综上,答案为①②④.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第三个问题难度比较大,添加辅助线是解题关键.18.95【分析】根据全等三角形的性质得∠BAC=∠DAE 结合三角形外角的性质和三角形内角和定理即可求解【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查全等三角形的性质三角形外角的性质和三角形内角和定解析:95【分析】根据全等三角形的性质,得∠BAC=∠DAE ,结合三角形外角的性质和三角形内角和定理,即可求解.【详解】解:∵ABC ADE ≅,∴()12010255BAC DAE ∠=∠=-÷=,∴85ACF BAC B ∠=∠+∠=,∴18085CFA ACF CAD ∠=-∠-∠=,∴1808595CFD ∠=-=.故答案为:95.【点睛】本题主要考查全等三角形的性质,三角形外角的性质和三角形内角和定理,熟练掌握上述定理和性质,是解题的关键. 19.【分析】根据勾股定理可得AC 的长度作点C 关于x 轴的对称点C′连接AC′与x 轴交于点P 利用勾股定理求出AP+PC 的最小值从而得出答案【详解】AC=如图作点C 关于x 轴的对称点C′连接AC′与x 轴交于点P解析:【分析】根据勾股定理可得AC的长度,作点C关于x轴的对称点C′,连接AC′,与x轴交于点P,利用勾股定理求出AP+PC的最小值,从而得出答案.【详解】AC=222222+=,如图,作点C关于x轴的对称点C′,连接AC′,与x轴交于点P,则AP+PC=AP+PC′=AC′,此时AP+PC22+=26210所以△PAC周长的最小值为21022故答案为:21022.【点睛】本题主要考查了轴对称-最短路线问题,解题的关键是掌握轴对称变换的性质.20.15【分析】题中没有指出哪个底哪个是腰故应该分情况进行分析以3为腰6为底以6为腰3为底;然后应用三角形三边关系进行验证能否组成三角形即可【详解】当3cm是腰时3+3=6不符合三角形三边关系故舍去;当解析:15【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,以3为腰6为底,以6为腰3为底;然后应用三角形三边关系进行验证能否组成三角形即可.【详解】当3cm是腰时,3+3=6,不符合三角形三边关系,故舍去;当6cm是腰时,6+6=12>3,6-6=0<3,能组成三角形;∴周长=6+6+3=15cm.故它的周长为15cm.故答案为:15.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.三、解答题21.(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 22.1x =-【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【详解】解:方程两边乘()2x -,得632x x +=-.1x =-.检验:当1x =-时,20x -≠.所以,原方程的解为1x =-.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.24.(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用轴对称的性质得出对称轴的位置进而得出答案.【详解】解:(1)如图所示:(2)如图所示;(3)如图所示.【点睛】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键. 25.证明见解析【分析】由已知可得RT △DCF ≌RT △DEB ,从而得到DC=DE ,又由已知可得DC ⊥AC ,DE ⊥AB ,所以由角平分线的判定定理即可得解.【详解】证明:由题意可得,在Rt DCF ∆和Rt DEB ∆中,CF EB BD DF =⎧⎨=⎩Rt DCF Rt DEB ∴∆≅∆,DC DE ∴=90,C ∠=︒,DC AC ∴⊥,DE AB ⊥AD ∴平分BAC ∠.【点睛】本题考查角平分线与直角三角形的综合运用,熟练掌握角平分线的判定与直角三角形的判定和性质是解题关键.26.(1)十二边形;(2)这个正多边形的内角和为1800︒;(3)对角线的总条数为54 条.【分析】(1)设一个外角为x°,则内角为(4x+30)°,根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x 的值,再利用外角和360°÷外角的度数可得边数;(2)利用多边形内角和公式即可得到答案;(3)根据n 边形有()32n n -条对角线,即可解答. 【详解】 (1)设这个正多边形的一个外角为x ︒,依题意有430180x x ++=,解得30x =,3603012︒÷︒=∴这个正多边形是十二边形.(2)这个正多边形的内角和为(122)1801800-⨯︒=︒;(3)对角线的总条数为()12312542⨯=-(条) . 【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式寻求等量关系,构建方程求解即可.另外还要注意从n 边形一个顶点可以引(n-3)条对角线.。
华师大版八年级数学上册期末测试题含答案
华师大版八年级数学上册期末测试题含答案期末测试题(一)测试时间:120分钟满分:120分一.选择题(满分40分,每小题4分)1.的算术平方根是()A.2B.4C.±2D.±42.下列运算正确的是()A.a2•a2=2a2B.(a4)4=a8C.(﹣2a)2=﹣4a2D.a7÷a5=a23.有下列各数:3.14159,﹣,0.131131113…(相邻两个3之间依次多一个1),﹣π,,﹣,其中无理数有()A.1个B.2个C.3个D.4个4.一个正方形的面积为17,估计它的边长大小为()A.2与3之间B.3与4之间C.4与5之间D.5与6之间5.一个正数的两个不同平方根分别是a﹣1和5﹣2a,则这个正数是()A.1B.4C.9D.166.观察下列几个命题:①相等的角是对顶角;②同位角都相等;③三个角相等的三角形是等边三角形;④两直线平行,内错角相等;⑤若a2=b2,则a=b.其中真命题的个数有()A.0个B.1个C.2个D.3个7.2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%8.如图,在等腰△ABC中,顶角∠A=40°,AB的垂直平分线MN交AC于点D,若AB=m,BC=n,则△DBC的周长是()A.m+2n B.2m+n C.2m+2n D.m+n9.如图,这是用面积为24的四个全等的直角三角形△ABE,△BCF,△CDG和△DAH拼成的“赵爽弦图”,如果AB=10,那么正方形EFGH的边长为()A.1B.2C.3D.410.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④二.填空题(满分24分,每小题4分)11.8的立方根是.12.已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频数为,频率为.13.若A=(2+1)(22+1)(24+1)(28+1)(216+1)+1,则A+2018的末位数字是.14.a+b=0,ab=﹣7,则a2b+ab2=.15.如图,在△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,BD:DC=4:3,点D 到AB的距离为6,则BC等于.16.如图,在△ABC中,∠A=45°,点D为AC中点,DE⊥AB于点E,BE=BC,BD=,则AC的长为.三.解答题17.(8分)计算:(1)(2)(2x2y)3•(5xy2)÷(﹣10x2y4)18.(8分)因式分解(1)9a2(x﹣y)+4b2(y﹣x);(2)4a(b﹣a)﹣b219.(7分)先化简,再求值:[(m+3n)(m﹣3n)+(2n﹣m)2+5n2(1﹣m)﹣2m2]÷mn,其中m=3,n=2.20.(9分)为了了解某校学生对以下四个电视节目:A《最强大脑》、B《中国诗词大会》、C《朗读者》、D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:(1)本次调查的学生人数为;(2)在扇形统计图中,A部分所占圆心角的度数为;(3)请将条形统计图补充完整;(4)若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名.21.(8分)如图,OA=OB,∠A=∠B,D在OB上,C在OA上,BC与DA相交于点E.(1)试判断图中共有哪几对全等三角形?都罗列出来,并选出其中的一对证明;(2)判断点E是否在∠O的平分线上?并说明理由.22.(10分)如图,圆柱形杯子高9cm,底面周长18cm,在杯口点B处有一滴蜂蜜,此时蚂蚁在杯外底部与蜂蜜相对的点A处.(1)求蚂蚁从A到B处杯壁爬行吃到蜂查的最短距离;(2)若妈蚁出发时发現有蜜蜂正以每秒钟1cm沿杯内壁下滑,3秒钟吃到了蜂蜜,求蚂蚁的平均速度至少是多少?23.(7分)若(x2+px+8)(x2﹣3x﹣q)的展开式中不含有x3和x2项,求2p+q的值.24.(12分)如图,现有5张写着不同数字的卡片,请按要求完成下列问题:(1)若从中取出2张卡片,使这2张卡片上数字的乘积最大,则乘积的最大值是.(2)若从中取出2张卡片,使这2张卡片上数字相除的商最小,则商的最小值是.(3)若从中取出4张卡片,请运用所学的计算方法,写出两个不同的运算式,使四个数字的计算结果为24.25.(12分)在平面直角坐标系中,A(a,0),C(0,c)且满足:(a+6)2+=0,长方形ABCO在坐标系中(如图),点O为坐标系的原点.(1)求点B的坐标.(2)如图1,若点M从点A出发,以2个单位/秒的速度向右运动(不超过点O),点N 从原点O出发,以1个单位/秒的速度向下运动(不超过点C),设M、N两点同时出发,在它们运动的过程中,四边形MBNO的面积是否发生变化?若不变,求其值;若变化,求变化的范围.(3)如图2,E为x轴负半轴上一点,且∠CBE=∠CEB,F是x轴正半轴上一动点,∠ECF 的平分线CD交BE的延长线于点D,在点F运动的过程中,请探究∠CFE与∠D的数量关系,并说明理由参考答案一.选择题1.A.2.D.3.C.4.C.5.C.6.C.7.C.8.D.9.B.10.D.二.填空题11.2.12.8,0.4.13.414.0.15.14.16.4.三.解答题17.解:(1)原式=6﹣(﹣2)+1=9;(2)原式=8x6y3•5xy2÷(﹣10x2y4)=40x7y5÷(﹣10x2y4)=﹣4x5y.18.解:(1)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(3a+2b)(3a﹣2b);(2)原式=﹣(4a2﹣4ab+b2)=﹣(2a﹣b)2.19.解:原式=(m2﹣9n2+4n2﹣4mn+m2+5n2﹣5mn2﹣2m2)÷mn=(﹣4mn﹣5mn2)÷mn=﹣4﹣5n,当m=3,n=2时,原式=﹣4﹣10=﹣14.20.解:(1)66÷55%=120,故答案为:120;(2)×360°=54°,故答案为:54°;(3)C:120×25%=30,如图所示:(4)3000×55%=1650,答:该校最喜爱《中国诗词大会》的学生有1650名.21.解:(1)图中共有2对全等三角形:△AOD≌△BOC,△ACE≌△BDE;证明△AOD≌△BOC,理由如下:∵∠O=∠O,OA=OB,∠A=∠B,∴△AOD≌△BOC(ASA);(2)点E在∠O的平分线上,理由如下:连接OE,如图:∵△AOD≌△BOC,∴OD=OC,∵OA=OB,∴BD=AC,又∵∠A=∠B,∠AEC=∠BED,∴△ACE≌△BDE(AAS),∴CE=DE,又∵OD=OC,OE=OE,∴△OCE≌△ODE(SSS),∴∠DOE=∠COE,∴点E在∠O的平分线上.22.解:(1)如图所示,∵圆柱形玻璃容器高9cm,底面周长18cm,∴AD=9cm,∴AB===9(cm).答:蚂蚁要吃到食物所走的最短路线长度是9cm;(2)∵AD=9cm,∴蚂蚁所走的路程==15,∴蚂蚁的平均速度=15÷3=5(cm/s).答:蚂蚁的平均速度至少是5cm/s.23.解:(x2+px+8)(x2﹣3x﹣q)=x4﹣3x3﹣qx2+px3﹣3px2﹣pqx+8x2﹣24x﹣8q=x4+(﹣3+p)x3+(﹣q﹣3p+8)x2+(﹣pq﹣24)x﹣8q,展开式中不含有x3和x2项,∴,解得:.故2p+q=6﹣1=5.24.解:(1)若从中取出2张卡片,使这2张卡片上数字的乘积最大,则乘积的最大值是:(﹣7)×(﹣3)=21,故答案为:21;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,则商的最小值是:(﹣7)÷1=﹣7,故答案为:﹣7;(3)由题意可得,如果抽取的数字是﹣7,﹣3,1,2,则(﹣7)×(﹣3)+1+2=24,(﹣7+1﹣2)×(﹣3)=24;如果抽取的数字是﹣3,1,2,5,则(1﹣5)×(﹣3)×2=24,[5﹣(﹣3)]×(1+2)=24.25.解:(1)∵(a+6)2+=0,∴a=﹣6,c=﹣3∴A(﹣6,0),C(0,﹣3)∵四边形OABC是长方形∴AO∥BC,AB∥OC,AB=OC=3,AO=BC=6∴B(﹣6,﹣3)(2)四边形MBNO的面积不变.设M、N同时出发的时间为t,则S四边形MBNO =S长方形OABC﹣S△ABM﹣S△BCN=18﹣×2t×3﹣×6×(3﹣t)=9.与时间无关.∴在运动过程中面积不变.是定值9(3)∠CFE=2∠D.理由如下:如图∵∠CBE=∠CEB∴∠ECB=180°﹣2∠BEC∵CD平分∠ECF∴∠DCE=∠DCF∵AF∥BC∴∠CFE=180°﹣∠DCF﹣∠DCE﹣∠BCE=180°﹣2∠DCE﹣(180°﹣2∠BEC)∴∠CFE=2∠BEC﹣2∠DCE∵∠BEC=∠D+∠DCE∴∠CFE=2(∠D+∠DCE)﹣2∠DCE∴∠CFE=2∠D期末测试题(二)一、选择题:(满分42分,每小题3分)下列各题都有A、B、C、D四个答案供选择,其中只有一个答案是正确的,请把你认为正确的答案前面的字母编号写在相应的题号下. 1.9的平方根是()A.3 B.±3 C.±D.±812.下列说法中,正确的是()A.﹣4的算术平方根是2 B.﹣是2的一个平方根C.(﹣1)2的立方根是﹣1 D.=±53.下列实数中,属于无理数的是()A.B.0 C.D.3.144.下列计算正确的是()A.a2•a3=a6B.3a2﹣a2=2 C.a6÷a2=a3D.(﹣2a)2=4a25.若()×(﹣xy)=3x2y2,则括号里应填的单项式是()A.﹣3y B.3xy C.﹣3xy D.3x2y6.下列各式由左边到右边的变形中,属于分解因式的是()A.3(a+b)=3a+3b B.x2+6x+9=x(x+6)+9C.ax﹣ay=a(x﹣y)D.a2﹣2=(a+2)(a﹣2)7.已知x2+kx+4可以用完全平方公式进行因式分解,则k的值为()A.﹣4 B.2 C.4 D.±48.若m为大于0的整数,则(m+1)2﹣(m﹣1)2一定是()A.2的倍数B.4的倍数C.6的倍数D.16的倍数9.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°10.如图,在△ABC中,点D在BC上,若AD=BD=DC,则∠BAC等于()A.60°B.80°C.90°D.100°11.如图,在△ABC中,AB=AC=2,∠B=60°,AD平分∠BAC,则AD等于()A.1 B.C.D.1.512.如图,在△ABC中,AB=AC,DE是AC的垂直平分线,△BCD的周长为24,BC=10,则AC等于()A.11 B.12 C.14 D.1613.如图,已知AC∥BD,要使△ABC≌△BAD需再补充一个条件,下列条件中,不能选择的是()A.BC∥AD B.AC=BD C.BC=AD D.∠C=∠D14.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.1二、填空题(每小题4分,共16分)15.(4x2y3)2÷2xy2=16.若m﹣n=2,则m2﹣2mn+n2=.17.如图△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF=.18.如图,在△ABC中,∠C=90°,AB=10,BC=8,AD是∠BAC的平分线,DE⊥AB于点E,则△BED的周长为.三、解答题(共62分)19.(17分)计算:(1)(x+y)2﹣2x(x+y);(2)(a+1)(a﹣1)﹣(a﹣1)2;(3)先化简,再求值:(x+2y)(x﹣2y)﹣(2x3y﹣4x2y2)÷2xy,其中x=﹣3,y=.20.(8分)把下列多项式分解因式(1)a3﹣ab2(2)(x﹣2)(x﹣4)+1.21.(8分)某校八年级数学兴趣小组的同学调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)接受这次调查的家长共有人;(2)补全条形统计图;(3)在扇形统计图中,“很赞同”的家长占被调查家长总数的百分比是;(4)在扇形统计图中,“不赞同”的家长部分所对应扇形的圆心角度数是度.22.(8分)如图,在6×8的正方形网格中,每个小正方形的边长都为1,△ABC的顶点在格点上.(1)在△ABC中,AB的长为,AC的长为;(2)在网格中,直接画出所有与△ABC全等的△DBC.23.(8分)如图,AM∥BN,BC是∠ABN的平分线.(1)过点A作AD⊥BC,垂足为O,AD与BN交于点D.(要求:用尺规作图,并在图中标明相应字母,保留作图痕迹,不写作法.)(2)求证:AC=BD.24.(13分)如图,△ABC和△ADE都是等边三角形,点B在ED的延长线上.(1)求证:△ABD≌△ACE.(2)求证:AE+CE=BE.(3)求∠BEC的度数.参考答案与试题解析一、选择题:(满分42分,每小题3分)下列各题都有A、B、C、D四个答案供选择,其中只有一个答案是正确的,请把你认为正确的答案前面的字母编号写在相应的题号下. 1.9的平方根是()A.3 B.±3 C.±D.±81【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故选:B.【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.2.下列说法中,正确的是()A.﹣4的算术平方根是2 B.﹣是2的一个平方根C.(﹣1)2的立方根是﹣1 D.=±5【分析】根据平方根、算术平方根、立方根的定义判断即可.【解答】解:A、﹣4没有算术平方根,故本选项错误;B、2的平方根有两个,是,﹣,故本选项正确;C、(﹣1)2=1,即(﹣1)2的立方根是1,故本选项错误;D、=5,故本选项错误;故选:B.【点评】本题考查了对平方根、算术平方根、立方根的定义的应用,主要考查学生的理解能力和计算能力.3.下列实数中,属于无理数的是()A.B.0 C.D.3.14【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.是分数,属于有理数;B.0是整数,属于有理数;C.是无理数;D.3.14是有限小数,即分数,属于有理数;故选:C.【点评】此题主要考查了无理数的定义.初中范围内学习的无理数有:π,2π等;开方开不尽的数以及像0.1010010001…,等有这样规律的数.4.下列计算正确的是()A.a2•a3=a6B.3a2﹣a2=2 C.a6÷a2=a3D.(﹣2a)2=4a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别判断得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a2﹣a2=2a2,故此选项错误;C、a6÷a2=a4,故此选项错误;D、(﹣2a)2=4a2,正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.5.若()×(﹣xy)=3x2y2,则括号里应填的单项式是()A.﹣3y B.3xy C.﹣3xy D.3x2y【分析】直接利用单项式与单项式的乘除运算法则计算得出答案.【解答】解:∵()×(﹣xy)=3x2y2,∴括号里应填的单项式是:3x2y2÷(﹣xy)=﹣3xy.故选:C.【点评】此题主要考查了单项式与单项式的乘除运算,正确掌握相关运算法则是解题关键.6.下列各式由左边到右边的变形中,属于分解因式的是()A.3(a+b)=3a+3b B.x2+6x+9=x(x+6)+9C.ax﹣ay=a(x﹣y)D.a2﹣2=(a+2)(a﹣2)【分析】根据因式分解是把一个多项式转化成几个整式的积,可得答案.【解答】解:ax﹣ay=a(x﹣y),故C说法正确,故选:C.【点评】本题考查了因式分解,注意因式分解是把一个多项式转化成几个整式的积.7.已知x2+kx+4可以用完全平方公式进行因式分解,则k的值为()A.﹣4 B.2 C.4 D.±4【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【解答】解:∵x2+kx+4=x2+kx+22,∴kx=±2x•2,解得k=±4.故选:D.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.8.若m为大于0的整数,则(m+1)2﹣(m﹣1)2一定是()A.2的倍数B.4的倍数C.6的倍数D.16的倍数【分析】原式利用完全平方公式化简,即可作出判断.【解答】解:原式=m2+2m+1﹣m2+2m﹣1=4m,∵m>0的整数,∴(m+1)2﹣(m﹣1)2一定是4的倍数,故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.9.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.10.如图,在△ABC中,点D在BC上,若AD=BD=DC,则∠BAC等于()A.60°B.80°C.90°D.100°【分析】依据等腰三角形的性质以及三角形内角和定理,即可得到∠BAC=90°.【解答】解:∵AD=BD=DC,∴△ADB和△ADC都是等腰三角形∴∠B=∠BAD,∠C=∠CAD,∵∠B+∠BAD+∠CAD+∠C=180°,∴∠BAD+∠CAD=90°,即∠BAC=90°.故选:C.【点评】本题主要考查了等腰三角形的性质,解题时注意:等腰三角形的两个底角相等.11.如图,在△ABC中,AB=AC=2,∠B=60°,AD平分∠BAC,则AD等于()A.1 B.C.D.1.5【分析】根据等边三角形的性质得到AD⊥BC,BD=CD,根据三角函数的定义可得到结论.【解答】解:∵AB=AC=2,∠B=60°,∴∠ADB=90°,∴AD=AB=,故选:C.【点评】本题考查了等边三角形的性质,熟练掌握等边三角形的性质是解题的关键.12.如图,在△ABC中,AB=AC,DE是AC的垂直平分线,△BCD的周长为24,BC=10,则AC等于()A.11 B.12 C.14 D.16【分析】根据线段垂直平分线的性质可得AD=CD,再根据△BCD的周长为24可得AB+BC =24,进而得到AC的长.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∵△BCD的周长为24,∴BD+CD+BC=24,∴AB+BC=24,∵BC=10,∴AC=AB=24﹣10=14.故选:C.【点评】此题主要考查了等腰三角形的性质,线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等.13.如图,已知AC∥BD,要使△ABC≌△BAD需再补充一个条件,下列条件中,不能选择的是()A.BC∥AD B.AC=BD C.BC=AD D.∠C=∠D【分析】根据平行线的性质得到∠CAB=∠DBA,根据全等三角形的判定定理判断即可.【解答】解:∵AC∥BD,∴∠CAB=∠DBA,当BC∥AD时,∠CBA=∠DAB,在△ABC和△BAD中,,∴△ABC≌△BAD(ASA),A能选择;当AC=BD时,在△ABC和△BAD中,,∴△ABC≌△BAD(SAS),B能选择;当BC=AD,△ABC与△BAD不一定全等,C不能选择;当∠C=∠D时,,∴△ABC≌△BAD(AAS),D能选择;故选:C.【点评】本题考查的是全等三角形的判定,掌握全等三角形的判定定理、平行线的性质定理是解题的关键.14.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.1【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=24.根据完全平方公式即可求解.【解答】解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=25+24=49.故选:A.【点评】本题考查了勾股定理的应用,解题的关键是注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.二、填空题(每小题4分,共16分)15.(4x2y3)2÷2xy2=8x3y4【分析】根据整式的除法即可求出答案.【解答】解:原式=16x4y6÷2xy2=8x3y4,故答案为:8x3y4【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.16.若m﹣n=2,则m2﹣2mn+n2=4.【分析】根据m﹣n=2,利用完全平方公式将所求式子进行分解因式,即可求得所求式子的值,本题得以解决.【解答】解:∵m﹣n=2,∴m2﹣2mn+n2=(m﹣n)2=22=4,故答案为:4【点评】本题考查因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法解答.17.如图△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF=70°.【分析】根据三角形内角和定理求出∠ACB,根据全等三角形的性质解答.【解答】解:∵∠A=30°,∠B=80°,∴∠ACB=180°﹣30°﹣80°=70°,∵△ABC≌△FED,∴∠EDF=∠ACB=70°,故答案为:70°.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.18.如图,在△ABC中,∠C=90°,AB=10,BC=8,AD是∠BAC的平分线,DE⊥AB于点E,则△BED的周长为12.【分析】根据勾股定理可得AC的长,再依据AD是∠BAC的平分线,DE⊥AB,∠C=90°,AD=AD,即可得出△ADE≌△ADC(AAS),且CD=ED,即可得到△BED的周长=BD+CD+BE =BD+CD+BE=BC+BE.【解答】解:∵∠C=90°,AB=10,BC=8,∴由勾股定理可得,Rt△ABC中,AC=6,∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,AD=AD,∴△ADE≌△ADC(AAS),∴CD=ED,AE=AC=6,又∵AB=10,∴BE=4,∴△BED的周长=BD+CD+BE=BD+CD+BE=BC+BE=8+4=12,故答案为:12.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.三、解答题(共62分)19.(17分)计算:(1)(x+y)2﹣2x(x+y);(2)(a+1)(a﹣1)﹣(a﹣1)2;(3)先化简,再求值:(x+2y)(x﹣2y)﹣(2x3y﹣4x2y2)÷2xy,其中x=﹣3,y=.【分析】(1)原式利用完全平方公式,以及单项式乘以多项式法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果;(3)原式利用平方差公式,多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)(x+y)2﹣2x(x+y)=x2+2xy+y2﹣2x2﹣2xy=y2﹣x2;(2)(a+1)(a﹣1)﹣(a﹣1)2=a2﹣1﹣(a2﹣2a+1)=2a﹣2;(3)(x+2y)(x﹣2y)﹣(2x3y﹣4x2y2)÷2xy=x2﹣4y2﹣x2+2xy=﹣4y2+2xy,当x=﹣3,y=时,原式=﹣1﹣3=﹣4.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.(8分)把下列多项式分解因式(1)a3﹣ab2(2)(x﹣2)(x﹣4)+1.【分析】(1)直接提取公因式a,再利用平方差公式分解因式即可;(2)直接去括号,进而利用完全平方公式分解因式即可.【解答】解:(1)a3﹣ab2=a(a2﹣b2)=a(a﹣b)(a+b);(2)(x﹣2)(x﹣4)+1=x2﹣6x+9=(x﹣3)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.(8分)某校八年级数学兴趣小组的同学调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)接受这次调查的家长共有200人;(2)补全条形统计图;(3)在扇形统计图中,“很赞同”的家长占被调查家长总数的百分比是10%;(4)在扇形统计图中,“不赞同”的家长部分所对应扇形的圆心角度数是162度.【分析】(1)根据赞同的人数和所占的百分比求出总人数,再乘以无所谓所占的百分比求出无所谓的人数,用总人数减去其它的人数求出很赞同的人数,然后乘以360°求出“很赞同”初中生带手机上学的家长所对应的圆心角的度数;(2)根据(1)求出无所谓的人数可直接画出条形统计图;(3)根据学生现在正需要好好地学习,不应该带手机,网络这么发达,会影响学习.【解答】解:(1)本次调查的学生家长有=200(名),无所谓的人数是:200×20%=40(人),很赞同的人数是:200﹣50﹣40﹣90=20(人),故答案为200人.(2)根据(1)求出的无所谓的人数是40,补图如下:(3)×100%=10%.故答案为10%.(4)“不赞同”的家长部分所对应扇形的圆心角度数360°×=162°,故答案为162.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)如图,在6×8的正方形网格中,每个小正方形的边长都为1,△ABC的顶点在格点上.(1)在△ABC中,AB的长为,AC的长为2;(2)在网格中,直接画出所有与△ABC全等的△DBC.【分析】(1)根据勾股定理计算可得结论;(2)直接画出三角形即可,注意有多种可能性.【解答】解:(1)由勾股定理得:AB==,AC==2,故答案为:,2;(2)如图2,△D1BC、△D2BC、△D3BC即为所求.【点评】本题考查了勾股定理的运用、三角形全等的判定及网格作图问题,熟练掌握网格结构与全等三角形的判定是关键.23.(8分)如图,AM∥BN,BC是∠ABN的平分线.(1)过点A作AD⊥BC,垂足为O,AD与BN交于点D.(要求:用尺规作图,并在图中标明相应字母,保留作图痕迹,不写作法.)(2)求证:AC=BD.【分析】(1)根据角平分线的作法即可得到结论;(2)根据平行线的性质得到∠ACB=∠CBN,根据角平分线的定义得到∠ABC=∠CBN,等量代换得到∠ABC=∠ACB,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图,AD即为所求;(2)∵AM∥BN,∴∠ACB=∠CBN,∵BC是∠ABN的平分线,∴∠ABC=∠CBN,∴∠ABC=∠ACB,∴AB=AC,∵AD⊥BC,∴∠1=∠2,∵AM∥BN,∴∠2=∠3,∴∠1=∠3,∴AB=BD,∴AC=BD.【点评】本题考查了作图﹣基本作图,平行线的性质,角平分线的定义,正确的作出图形是解题的关键.24.(13分)如图,△ABC和△ADE都是等边三角形,点B在ED的延长线上.(1)求证:△ABD≌△ACE.(2)求证:AE+CE=BE.(3)求∠BEC的度数.【分析】(1)依据等边三角形的性质,即可得到判定△ABD≌△ACE的条件.(2)依据等边三角形的性质以及全等三角形的性质,即可得出BD=CE,DE=AE,进而得到AE+CE=BE.(3)依据等边三角形的性质以及全等三角形的性质,即可得出∠BEC的度数.【解答】证明:(1)∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.∴△ABD≌△ACE(SAS).(2)∵△ABD≌△ACE,∴BD=CE.∵△ADE是等边三角形,∴DE=AE.∵DE+BD=BE,∴AE+CE=BE.(3)∵△ADE是等边三角形,∴∠ADE=∠AED=60°.∴∠ADB=180°﹣∠ADE=180°﹣60°=120°.∵△ABD≌△ACE,∴∠AEC=∠ADB=120°.∴∠BEC=∠AEC﹣∠AED=120°﹣60°=60°.【点评】本题考查的是等边三角形的判定和性质、全等三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上期期末数学测试卷(1)
班级_______ 学号_______ 姓名_______ 总分_______
一、选择题(每题3分,共30分) 1.下列计算正确的是( )
A .a·a 2
=a 2
B .(a 2)2
=a 4
C .a 2
·a 3
=a 6
D .(a 2
b)3
=a 2
·b 3
2.下列式子中,从左到右的变形是因式分解的是( ). A .(x -1)(x -2)=x 2-3x +2 B .x 2-3x +2=(x -1)(x -2) C .x 2+4x +4=x(x 一4)+4 D .x 2+y 2=(x +y)(x —y) 3.下列因式分解变形中,正确的是( )
A .ab(a -b)-a(b -a)=-a(b -a)(b +1);
B .6(m +n)2-2(m +n)=(2m +n)(3m +n +1)
C .3(y -x)2+2(x -y)=(y -x)(3y -3x +2);
D .3x(x +y)2-(x +y)=(x +y)2(2x +y) 4.下列各命题中,假命题的个数为( )
①面积相等的两个三角形是全等三角形;②三个角对应相等的两个三角形是全等三角形;③全等三角形的周长相等④有两边及其中一边的对角对应相等的两个三角形是全等三角形. A .1 B .2 C .3 D .4
5.已知:如图,△ABD 和△ACE 均为等边三角形,且∠DAB =∠CAE =60°,那么,△ADC ≌△AEB 的根据是( )
A.边边边 B .边角边 C.角边角 D .角角边
6.在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( ) A .a 2一b 2=(a +b)(a —b) B .(a +b)2=a 2+2ab +b 2 C .(a —b)2=a 2-2ab +b 2
D .a 2-ab =a(a —b)
7.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是( )
A.310元 B .300元
C.290元 D .280元 8.若2a 3x b y +5与5a 2-4y b 2x
是同类项,则( ) A 、⎩⎨
⎧x =1y =2
B 、⎩⎨
⎧x =2y =-1
C 、⎩⎨
⎧x =0y =2
D 、⎩⎨
⎧x =3y =1
9.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则一次函数y=x +k 的图象大致是( ).
x
y
O A
x
y O
B
x
y
O
C
x y O
D
10.如图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为 千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有( )
A.1个 B .2个 C .3个 D .4个 二、填空题(每题2分,共18分)
1.多项式3a 2b +2b -1
3ab 2-1第三项的系数是_______,次数是_______。
2.计算(-3a 3)2·(-2a 2)3=_______
3.已知y 与x 成正比例,且当x =1时,y =2,那么当x =3时,y =_______。
4.一弹簧,不挂重物时,长6cm ,挂上重物后,重物每增加1kg ,弹簧就伸长0.25cm ,但所挂重物不能超过10kg ,则弹簧总长y(cm)与重物质量x(kg)之间的函数关系式为_____² 5.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(—x 2
+3xy -122)-(-12x 2+4xy -32y 2)=
-1
2x 2______________________+y 2空格的地方被钢笔水弄污了,请你帮他补上! 6.填空:x 2+( )+1
4
=( )2;( )(-2x +3y)=9y 2—4x 2
7.2003年,国家卫生部信息统计中心根据国务院新闻办公室授权发布全国内地5月21日至5月25日非典型肺炎发病情况,按年龄段进行统计分析中,各年龄段发病的总人数如图所示。
观察图形你能获得哪些信息(至少写三条):___________________________
____________________________________________________________________________.
人数
年龄
69.5
49.529.5
9.5
1
56810142538 A B C D
P
O M N 第 8 题图
A B
C
D
第 9 题
8.如图,点P 关于OA 、OB 的对称点分别为C 、D ,连结CD ,交OA 于M ,交OB 于N ,若PMN 的周长=8厘米,则CD 为_______厘米.
9.如图,已知AC=BD ,则再添加条件_______,可证出△ABC ≌△BAD . 三、解答题(共52分)
1.计算:(12分)
(1) 2(m +1)2-(2m +1)(2m —1) (2)4x 2-(2-x +3)(-2x -3).
(2) 先化简,再求值.[(x +2y)2-(x +y)(3x -y)-5y 2]÷2x ,其中x =-2,y =1
2.
2.(6分)如图,△ABC 、△ECD 都是等腰直角三角形,且C 在AD 上.AE 的延长线与BD 交于P .请你在图中找出一对全等的三角形,并写出证明他们全等的过程.
A
B
C D
E
F
3.对下列代数式分解因式:(每小题4分,共计8分)
(1)n 2
(m -2)-n(2-m) (2)(x -1)(x -3)+1
4.(8分(某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如下图所示。
(1)分别写出用租书卡和会员卡租书金额y(元)与租书时间x(天)之间的关系式。
(2)两种租书方式每天的收费是多少元?(x <
100)
5.(6分)已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .
A B
C
D E P 图 ⑴
6.(12分)红太阳大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元)。
为吸引客源,在五一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠。
一个50人的旅游团在五月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元。
①三人间、双人间普通客房各住了多少间?
②设三人间共住了x人,则双人间住了_______人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;
③在直角坐标系内画出这个函数图象;
④如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?
答案:
一、BBACB ,ABBDA
二、(1)-1
3 ,3 (2)-72a 12 (3)6 (4)y =0.25x +6(0≤x ≤10)
(5)-xy (6)±x ,x ±1
2+3y (7)略 (8)8
(9)∠CAB=∠DBA 或BC=AD 。
三、1、(1)-2m 2
+4m +6 (2)9 (3)化简为-x +y ,值为212
2、△ACE ≌△BCD 证明略
3、(1)n(m -2)(n +1) (2)(x -2)2
4、(1)y 租书卡=12 x y 会员卡=3
10
x +20(x 为非负整数);
(2)租书卡每天0.5元,会员卡每天0.3元。
5、可得△BDP 、△CEP 为等腰△,可是BD=DP CE=PE DE=BD +CE 即DE -DB =EC
6、①三人间8间,双人间13间; ②双人间住了(50-x)人,
y =10x +1750(0≤x ≤50,且x 为整数); ③图象略;
④不是费用最少的,理由从图象上一目了然。