2018高中数学人教a版必修3课时作业:20 3.3.2 均匀随机数的产生 含解析
高中数学人教A版必修3课时作业:203.3.2 均匀随机数的产生含解析
解析:方法一:我们可以向正方形区域内随机地撒一把豆子,数出落在区域A内的豆子数与落在正方形内的豆子数,根据 ≈ ,即可求区域A面积的近似值.例如,假设撒1 000粒豆子,落在区域A内的豆子数为700,则区域A的面积S≈ =0.7.
A.0 B.2
C.4 D.5
解析:当x= 时,y=2× +3=4.
答案:C
4.将一个长与宽不等的长方形,沿对角线分成四个区域,如图所示涂上四种颜色,中间装个指针,使其可以自由转动,对指针停留的可能性下列说法正确的是()
A.一样大
B.蓝白区域大
C.红黄区域大
D.由指针转动圈数决定
解析:指针停留在哪个区域的可能性大,即表明该区域的张角大,显然、蓝白区域大.
10.如图所示,在一个长为4,宽为2的矩形中有一个半圆,试用随机模拟的方法近似计算半圆面积,并估计π的值.
解析:记事件A为“点落在半圆内”.
(1)利用计算机产生两组[0,1]上的均匀随机数a1=RAND,b1=RAND;
(2)进行平移和伸缩变换,a=(a1-0.5)*4,
b=b1]N1,N),即为点落在阴影部分的概率近似值;
A. , ,
B. , ,
C. , ,
D. , ,
解析:P(A)的近似值为 ,P(B)的近似值为 ,P(C)的近似值为 .
答案:A
12.利用随机模拟方法计算y=x2与y=4围成的面积时,利用计算器产生两组0~1之间的均匀随机数a1=RAND,b1=RAND,然后进行平移与伸缩变换a=a1·4-2,b=b1·4,试验进行100次,前98次中落在所求面积区域内的样本点数为65,已知最后两次试验的随机数a1=0.3,b1=0.8及a1=0.4,b1=0.3,那么本次模拟得出的面积约为________.
高中数学人教A版必修三课时作业第3章概率3.3.2含答案
课时目标
在正方形围栏内均匀撒米粒,食,此刻小鸡正在正方形的内切圆中的概率是
.如图所示,在一个边长为3 cm的正方形内部画一个边长为的正方形,向大正方形内随机投点,用随机模拟的方法求所投的点落入小正方形内的概率.
所投点落入小正方形内}.
[0,1]上的均匀随机数,
经过平移和伸缩平移变换,a=3a1-1.5
计用随机模拟的方法估计他能赶上车的概率的步骤?
解:能赶上车的条件是到达乙地时汽车没有出发,我们可以用两组均匀随机数x 和y 来表示到达乙地的时间和汽车从乙地出发的时间,当x ≤y 时能赶上车.
设事件A :“他能赶上车”.
①利用计算器或计算机产生两组[0,1]上的均匀随机数,x 1=RAND ,y 1=RAND.
②经过变换x =0.5x 1+9.5,y =0.5y 1+9.75.
③统计出试验总次数N 和满足条件x ≤y 的点(x ,y )的个数N 1.
④计算频率f n (A )=N 1N ,则N 1N 即为概率P (A )的近似值.
能力提升
12.将[0,1]内的均匀随机数转化为[-3,4]内的均匀随机数,需实施的变换为( )
答案:C
解析:根据伸缩平移变换
13.利用模拟的方法计算如图,由y =1和y =x 2所围成的部分M
的面积.
解:(1)用计算机产生两组[0,1]内均匀随机数a 1=RAND( ),b
=RAND( ).
(2)经过平移和伸缩变换,a =(a 1-0.5)*2.
(3)数落在区域内(即满足0<b <1,且b -a 2>0)的样本点数N 1计算S 阴影=2N 1N (N 代表落在矩形中的点(a ,b )的个数).。
新人教A版高中数学【必修3】 3.3.2均匀随机数的产生课时作业练习含答案解析
3.3.2 均匀随机数的产生课时目标 1.了解均匀随机数的产生方法与意义.2.会用模拟实验求几何概型的概率.3.能利用模拟实验估计不规则图形的面积.1.均匀随机数的产生(1)计算器上产生[0,1]的均匀随机数的函数是______________函数. (2)Excel 软件产生[0,1]区间上均匀随机数的函数为“rand()”. 2.用模拟的方法近似计算某事件概率的方法(1)____________的方法:制作两个转盘模型,进行模拟试验,并统计试验结果.(2)____________的方法:用Excel 软件产生[0,1]区间上均匀随机数进行模拟.注意操作步骤. 3.[a ,b ]上均匀随机数的产生.利用计算器或计算机产生[0,1]上的均匀随机数x =RAND ,然后利用伸缩和平移交换,x =x 1*(b-a)+a 就可以得到[a,b ]内的均匀随机数,试验的结果是[a,b ]上的任何一个实数,并且任何一个实数都是等可能的.一、选择题1.将[0,1]内的均匀随机数转化为[-3,4]内的均匀随机数,需要实施的变换为( )2.在线段AB 上任取三个点x 1,x 2,x 3,则x 2位于x 1与x 3之间的概率是( ) A.12 B.13 C.14 D .1 3.与均匀随机数特点不符的是( ) A .它是[0,1]内的任何一个实数 B .它是一个随机数C .出现的每一个实数都是等可能的D .是随机数的平均数4.如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43B.83C.23 D .无法计算5.在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形.这个正方形的面积介于36 cm 2与81 cm 2之间的概率为( )A.3681B.1236C.1281D.146.将一个长与宽不等的长方形,沿对角线分成四个区域,如图所示涂上四种颜色,中间装个指针,使其可以自由转动,对指针停留的可能性下列说法正确的是( )A .一样大B .蓝白区域大C .红黄区域大D .由指针转动圈数决定7.在圆心角为90°的扇形中,以圆心O 为起点作射线OC ,使得∠AOC 和∠BOC 都不小于30°的概率为______.8.在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________.9.在边长为2的正三角形ABC 内任取一点P ,则使点P 到三个顶点的距离至少有一个小于1的概率是________. 三、解答题10.利用随机模拟法近似计算图中阴影部分(曲线y =log 3x 与x =3及x 轴围成的图形)的面积.11.假设小军、小燕和小明所在的班级共有50名学生,并且这50名学生早上到校先后的可能性是相同的.设计模拟方法估计下列事件的概率:(1)小燕比小明先到校;(2)小燕比小明先到校,小明比小军先到校.能力提升12.如图所示,曲线y=x2与y轴、直线y=1围成一个区域A(图中的阴影部分),用模拟的方法求图中阴影部分的面积(用两种方法).13.甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去.求两人能会面的概率(用两种方法).1.[0,1]或[a,b]上均匀随机数的产生利用计算器的RAND函数可以产生[0,1]的均匀随机数,试验的结果是区间[0,1]内的任何一个实数,而且出现任何一个实数是等可能的,因此,可以用计算器产生的0到1之间的均匀随机数进行随机模拟.计算器不能直接产生[a,b]区间上的随机数,但可利用伸缩和平移变换得到:如果Z是[0,1]区间上的均匀随机数,则a+(b-a)Z就是[a,b]区间上的均匀随机数.2.随机模拟试验是研究随机事件概率的重要方法.用计算机或计算器模拟试验,首先把实际问题转化为可以用随机数来模拟试验结果的概率模型,也就是怎样用随机数刻画影响随机事件结果的量.我们可以从以下几个方面考虑:(1)由影响随机事件结果的量的个数确定需要产生的随机数的组数.如长度、角度型只用一组,面积型需要两组.(2)由所有基本事件总体对应区域确定产生随机数的范围.(3)由事件A发生的条件确定随机数所应满足的关系式.答案:3.3.2均匀随机数的产生知识梳理1.(1)RAND 2.(1)试验模拟(2)计算机模拟作业设计1.C [根据伸缩、平移变换a =a 1*[4-(-3)]+(-3)=a 1*7-3.]2.B [因为x 1,x 2,x 3是线段AB 上任意的三个点,任何一个数在中间的概率相等且都是13.] 3.D [A 、B 、C 是均匀随机数的定义,均匀随机数的均匀是“等可能”的意思,并不是“随机数的平均数”.]4.B [∵S 阴影S 正方形=23,∴S 阴影=23S 正方形=83.]5.D [由题意知,6<AM<9,而AB =12,则所求概率为9-612=14.]6.B [指针停留在哪个区域的可能性大,即表明该区域的张角大,显然,蓝白区域大.] 7.13解析 作∠AOE =∠BOD =30°,如图所示,随机试验中,射线OC 可能落在扇面AOB 内任意一条射线上,而要使∠AOC 和∠BOC 都不小于30°,则OC 落在扇面DOE 内, ∴P(A)=13. 8.23解析 由|x|≤1,得-1≤x ≤1.由几何概型的概率求法知,所求的概率P =区间[-1,1]的长度区间[-1,2]的长度=23.9.3π6解析 以A 、B 、C 为圆心,以1为半径作圆,与△ABC 交出三个扇形, 当P 落在其内时符合要求.∴P =312×π3×1234×22=3π6.10.解 设事件A :“随机向正方形内投点,所投的点落在阴影部分”. (1)利用计算器或计算机产生两组[0,1]上的均匀随机数,x 1=RAND ,y 1=RAND . (2)经过伸缩变换x =x 1*3,y=y1*3,得到两组[0,3]上的均匀随机数.(3)统计出试验总次数N 和满足条件y<log3x 的点(x,y )的个数N 1(4)计算频率f n (A)=1AN N ,即为概率P(A)的近似值. 设阴影部分的面积为S ,正方形的面积为9,由几何概率公式得P(A)=S 9,所以N 1N ≈S9. 所以S ≈9N 1N 即为阴影部分面积的近似值.11.解 记事件A “小燕比小明先到校”;记事件B “小燕比小明先到校且小明比小军先到校”. ①利用计算器或计算机产生三组0到1区间的均匀随机数,a =RAND ,b =RAND ,c =RAND 分别表示小军、小燕和小明三人早上到校的时间;②统计出试验总次数N 及其中满足b<c 的次数N 1,满足b<c<a 的次数N 2; ③计算频率f n (A)=N 1N ,f n (B)=N 2N ,即分别为事件A ,B 的概率的近似值.12.解 方法一 我们可以向正方形区域内随机地撒一把豆子,数出落在区域A 内的豆子数与落在正方形内的豆子数,根据,即可求区域A 面积的近似值.例如,假设撒1 000粒豆子,落在区域A 内的豆子数为700,则区域A 的面积S ≈7001 000=0.7. 方法二 对于上述问题,我们可以用计算机模拟上述过程,步骤如下:第一步,产生两组0~1内的均匀随机数,它们表示随机点(x ,y)的坐标.如果一个点的坐标满足y ≥x 2,就表示这个点落在区域A 内.第二步,统计出落在区域A 内的随机点的个数M 与落在正方形内的随机点的个数N ,可求得区域A 的面积S ≈M N .13. 解 方法一 以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x -y|≤15.在如图所示平面直角坐标系下,(x ,y)的所有可能结果是边长为60的正方形区域,而事件A “两人能够会面”的可能结果由图中的阴影部分表示. 由几何概型的概率公式得:P(A)=A S S=602-452602=3 600-2 0253 600=716. 所以两人能会面的概率是716. 方法二 设事件A ={两人能会面}.(1)利用计算器或计算机产生两组0到1区间的均匀随机数,x 1=RAND ,y 1=RAND ; (2)经过伸缩变换,x =x 1*60,y=y 1*60,得到两组[0,60]上的均匀随机数; (3)统计出试验总次数N 和满足条件|x-y|≤15的点(x,y )的个数N 1; (4)计算频率f n (A)=1N N,即为概率P (A )的近似值.。
3.3.2均匀随机数的产生
典 型 例 题 精 析
知 能 巩 固 提 升
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精 析
知 能 巩 固 提 升
目 录 课 程 目 标 设 置 主 题 探 究 导 学
1.如何产生a b之间的均匀随机数? 1.如何产生a~b之间的均匀随机数? 如何产生
典
提示:(1 利用计算器或计算机产生0 1 提示:(1)利用计算器或计算机产生0~1之间的均匀随机数 :( x1=RAND. (2)利用伸缩和平移变换: (b-a)+a,得到 b 得到a (2)利用伸缩和平移变换:x=x1 (b-a)+a,得到a~b之间的均匀 利用伸缩和平移变换 随机数. 随机数. 2.怎样用随机模拟估计几何概型? 2.怎样用随机模拟估计几何概型? 怎样用随机模拟估计几何概型 提示: 提示:用随机模拟的方法估计几何概型是把实际问题中的事件 及基本事件总体对应的区域“长度”转化为几何概型, 及基本事件总体对应的区域“长度”转化为几何概型,同时确 定随机数的范围. 定随机数的范围.
µA µΩ
知 能 巩 固
求出的值是事
提 升
目 录 课 程 目 标 设 置 主 题 探 究 导 学
(C)根据古典概型试验,用计算机或计算器产生的随机整数 根据古典概型试验, 统计试验次数N和事件A发生的次数N1,得到的值 N1 是P(A) 统计试验次数N和事件A发生的次数N N 的近似值 (D)根据几何概型试验,用计算机或计算器产生的均匀随机 根据几何概型试验, 数统计试验次数N和事件A发生的次数N 数统计试验次数N和事件A发生的次数N1,得到的值 N1 是 N P(A)的精确值
典 型 例 题 精 析
知 能 巩 固 提 升
目 录 课 程 目 标 设 置 主 题 探 究 导 学
高中数学《3.3.2均匀随机数的产生》 新人教A版必修3
2.整数随机数与均匀随机数的联系与区别: (1)二者都是随机产生的随机数,在一定的区域长度上出现 的机率是均等的.但是整数随机数是离散的单个整数值, 相邻两个整数随机数的步长为1,而均匀随机数是个小数 或整数,是连续的小数值,相邻两个均匀随机数的步长是 人为设定的. (2)要产生[a,b]上的均匀随机数,利用计算器或计算机产 生[0,1]上的均匀随机数x1=RAND,然后利用伸缩和平移 变换x=x1]
落在半圆中的豆子数 所以 π≈落在正方形中的豆子数×4, 这样就得到 π 的近似值.
题型二 利用随机模拟试验估计图形的面积
【例2】如图所示,向边长为2的正方形内投飞镖,求飞镖落在 中央边长为1的正方形内的概率.
审题指导 考查用随机模拟的方法求解.由于飞镖落在大 正方形内的位置是随机的,有无限个,并且是等可能的, 符合几何概型概率问题.
4.[a,b]上均匀随机数的产生 利用计算器或计算机产生[0,1]上的均匀随机数x=RAND, 然后利用伸缩和平移交换x=x1] 概率为0的事件一定是不可能事件吗?概率为1的事件 也一定是必然事件吗? 提示 如果随机事件所在区域是一个单点,因单点的长度、 面积、体积均为0,则它出现的概率为0(即P=0),但它不 是不可能事件;如果随机事件所在的区域是全部区域扣除 一个单点,则它出现的概率为1(即P=1),但它不是必然事 件.
2.均匀随机数的产生 (1)计算器上产生[0,1]的均匀随机数的函数是_R__A_N_D_函数. (2)Excel软件产生[0,1]区间上均匀随机数的函数为rand().
原创1:3.3.2均匀随机数的产生
试验的总次数
.
思考2 设X、Y为[0,1]上的均匀随机数,6.5+X表示送 报人到达你家的时间,7+Y表示父亲离开家的时间, 若事件A发生,则X、Y应满足什么关系? 7+Y >6.5+X,即Y>X-0.5.
思考3:如何利用计算机做100次模拟试验,计算事件A发 生的频率,从而估计事件A发生的概率? (1)在A1~A100,B1~B100产生两组[0,1]上的均匀随机 数;
a1=RAND,b1=RAND; (2)经平移和伸缩变换, a=(a1-0.5)﹡2; (3)数出落在阴影内的样本点数N1,用几何概型计 算阴影部分的面积. 例如做1000次试验,即N=1000,模拟得到N1=698, 所以 S 2N1 1.396.
N
根据几何概型计算概率的公式,概率等于面
积之比,如果概率用频率近似表示,在不规则 的图形外套上一个规则图形,则不规则图形的 面积近似等于规则图形的面积乘频率.
(2)选定D1格,键入“=A1-B1”,按Enter键. 再选定D1格, 拖动至D100,则在D1~D100的数为Y-X的值; (3)选定E1格,键入“=FREQUENCY(D1:D100, 0.5)”,统计D列中小于0.5的数的频数;
对于复杂的实际问题,解题的关键是要建立模型,找 出随机事件与所有基本事件相对应的几何区域,把问题 转化为几何概率问题,利用几何概率公式求解.
记“两人会面”为事件A.
阴影(红色)部分的面积
P( A)
正方形的面积
25 2 1 42
=
2
=
9
.
25
25
y
5
y=x+1
4
y=x-1
3
2
1
0 1234 5 x
3.2.2《随机数的产生》教案
3.2.2<<随机数的产生>>教案(新人教A必修3)
一、教学目标:
1、知识与技能:(1)了解随机数的概念;
(2)利用计算机产生随机数,并能直接统计出频数与频率。
2、过程与方法:(1)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.
二、重点与难点:准确理解随机数的概念,并能应用计算机产生随机数.
三、学法与教学用具:通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.
四、教学设想:
1、基本概念:随机数、伪随机数的概念.
2、例题分析:
例1一体育代表队有21名水平相当的运动员,现从中抽取11人参加某场比赛,其中甲运动员必须参加,试写出利用随机数抽取的过程.
例2随机模拟掷一枚骰子试验,估计得向上点数为1的概率.
变式题:同时抛掷两枚骰子,计算出现点数相同的概率.
例3种植某种树苗,成活率为0.9,若种植这种树苗5棵,求恰好成活4颗的概率. 变式题:某种心脏手术成功率为0.6,现准备实行3例此种手术,试用随机模拟的方法估计(1)恰好成功1例的概率;(2)恰好成功2例的概率.
3、小结:(1)随机模拟方法的优点.
(2)随机模拟估计概率的步骤:
①建立模拟概型;
②实行模拟试验,可用计算机或计算器实行;
③统计试验结果.
(3)Randbetween函数,frequency函数和if函数的使用.
4、课后作业:课时作业80-81页。
2018版高中数学人教版A版必修三课件:3-3-2 均匀随机数的产生
y=2x与x轴、x=±1围成的部分)的面积.
反思与感
解析答案
跟踪训练2
利用随机模拟的方法近似计算边长为 2的正方形
ห้องสมุดไป่ตู้
内切圆的面积,如图,并估计圆周率π的近似值.
解析答案
题型三 几何概型的应用问题 例3 甲、乙两人约定在 6时到7时之间在某处会 面,并约定先到者应等候另一人一刻钟,过时即 可离去.求两人能会面的概率.
等可能取值,不同点是均匀随机数可以取区间内的任意一个 实数,整数值随机数只取区间内的整数. 2.利用几何概型的概率公式,结合随机模拟试验,可以解决求 概率、面积、参数值等一系列问题,体现了数学知识的应用 价值.
返回
本课结束
解析答案
1 2 3 4 5
5.利用计算机产生0~1之间的均匀随机数a,则事件“3a-1<
1 0”的概率为________. 3
解析 已知0≤a≤1,事件“3a-1<0”发生时,1 0<a< ,
3
1 . 由几何概型得其概率为 3
解析答案
课堂小 结 1.在区间[a,b]上的均匀随机数与整数值随机数的共同点都是
”.
答案
3.用模拟的方法近似计算某事件概率的方法 (1)试验模拟的方法:制作两个转盘模型,进行模拟试验,并统计 试验结果.
(2) 计算机模拟的方法:用 Excel软件产生 [0,1] 区间上均匀随机数
进行模拟. (注意操作步骤). 4.[a,b]上均匀随机数的产生 利用计算器或计算机产生 [0,1] 上的均匀随机数 x = RAND ,然后 x1*(b-a)+a 利用伸缩和平移交换, x= 实数都是等可能出现的.
把[0,1]内的均匀随机数转化为[-2,6]内的均匀随 )
新课标人教A版数学必修3全部课件:3.3.2均匀随机数的产生
x
x 6.5 rand() y 7 rand()
设随机模拟的试验次数为 ,其中父亲得到报纸 的次数为 (即为满足y x 的试验次数),则由 古典概型的知识可得,可以由频率近似的代替概率,
n
a
n 所以有: p ( A) a
随机模拟
例2:在如右图所示的正方形 盘子中随机的撒一把豆子, 计算落在圆中得豆子数与落 在正方形中的豆子数之比并 依此估计圆周率的值。
例1:假如你家订了一 份报纸,送报人可能在 早上6:30~7:30之间 把报纸送到你家,你父 亲离开家去工作的时间 是在早上7:00~8:00, 问你父亲在离开家前能 得到报纸(称为事件A) 的概率是多少?
想一想:你
能设计一个 随机模拟的 方法来求它 的概率吗? 分析:我们有两种方法计 算该事件的概率: (1)利用几何概型的公式; (2)用随机模拟的方法.
解:方法一(几何概型法)
设送报人送报纸的时间为 x , 父亲离家的时间为 y ,由题义可得父 亲要想得到报纸,则 x与 y 应该满足 的条件为:
6.5 x 7.5 7 y 8 yx
画出图像如右图所示,
由题义可得符合几何概 型的条件,所以由几何 概型的知识可得:
y
父 离 时 亲 家 间 y=x
M (a, b) ,求出满足 a 2 b 2 1 的点 (3)构造点
的个数 M (a, b) 的个数
m,则可得:
4m . n
模拟试验
例3:利用随机模拟方法计算 右图中阴影部分(由 y 1 2 和 y x 所围成的部分)的 面积. 想一想:你 能设计一个 随机模拟的 方法来估计 阴影部分的 面积吗?
线 x 1, y 1, y 0 围成的的矩形的面积为2, 利用随机模拟的方法可以得到落在 阴影部分内的点与落在矩形内的点 数之比,再用几何概型公式就可以 估计出阴影部分的面积.
吉林省舒兰市第一中学高中数学人教A版导学案 必修三 3.3.2均匀随机数的产生
第一章 3.3.2 均匀随机数的产生编号022【学习目标】1.了解均匀随机数产生的方法与意义.2.会利用随机模拟试验估量几何概型的概率.【学习重点】如何利用均与随机数估量试验的概率.【基础学问】均匀随机数(1)产生方法:方法一,利用几何概型产生;方法二,用转盘产生;方法三,用______或______产生.(2)应用:利用均匀随机数可以进行随机模拟试验估量______的概率.【做一做】下列关于用转盘进行随机模拟的说法中正确的是()A.旋转的次数的多少不会影响估量的结果B.旋转的次数越多,估量的结果越精确C.旋转时可以按规律旋转D.转盘的半径越大,估量的结果越精确重难点突破:1.均匀随机数的产生剖析:产生均匀随机数和产生整数随机数的方法基本相同,都可以接受计算器和Excel软件产生,只是具体操作时所用的函数略有不同.下面以产生之间的均匀随机数为例来说明这种随机数的产生方法.(1)计算器法.比如我们要产生之间的均匀随机数,具体操作如下:(2)计算机法.比如首先打开Excel软件,在想要产生随机数的第一个单元格中输入“=rand()”,再按Enter键,这时就在此单元格中产生了一个之间的均匀随机数,选中此单元格“复制”,再点选其他单元格中的一个,拖动鼠标直到最终一个单元格,执行“粘贴”操作,这时就得到了若干个之间的均匀随机数.2.产生范围的均匀随机数剖析:我们知道rand()函数可以产生范围内的均匀随机数,但事实上我们需要用到的随机数的范围是各种各样的,下面就介绍如何将范围内的随机数转化为之间的随机数.初探:先利用计算器或计算机产生内的均匀随机数a1,由于0≤a1≤1,且b-a>0,所以0≤a1(b-a)≤b -a,∴a≤a1(b-a)+a≤b.探究结果:rand()*(b-a)+a表示之间的均匀随机数.特例:若0≤a1≤1,则-0.5≤a1-0.5≤0.5,即-1≤2(a1-0.5)≤1.所以当我们需要范围内的均匀随机数时,可以接受(rand()-0.5) 2,也可以接受2rand()-1来产生.【例题讲解】【例题1】在长为12 cm的线段AB上任取一点M,并以线段AM为边作正方形,用随机模拟方法求这个正方形的面积介于36 cm2与81 cm2之间的概率.反思:用随机模拟方法估量几何概型的步骤:①确定需要产生随机数的组数,如长度、角度型只用一组,面积型需要两组;②由基本大事空间对应的区域确定产生随机数的范围;③由大事A发生的条件确定随机数应满足的关系式;④统计大事A对应的随机数并计算A的频率来估量A的概率.【例题2】利用随机模拟方法计算图中阴影部分(曲线y=2x与x轴、x=±1围成的部分)的面积.反思:利用随机模拟方法估量图形面积的步骤是:①把已知图形放在平面直角坐标系中,将图形看成某规章图形(长方形或圆等)的一部分,并用阴影表示;②利用随机模拟方法在规章图形内任取一点,求出落在阴影部分的概率P (A )=N 1N ;③设阴影部分的面积是S ,规章图形的面积是S ′,则有S S ′=N 1N ,解得S =N 1N S ′,则所求图形面积的近似值为N 1NS ′.【达标检测】1.用计算器或计算机产生20个0~1之间的随机数x ,但是基本大事都在区间上,则需要经过的变换是( )A .y =3x -1B .y =3x +1C .y =4x +1D .y =4x -1 2.b 1是上的均匀随机数,b =3(b 1-2),则b 是区间________上的均匀随机数.3.利用随机模拟方法计算如图所示的阴影部分(y =x 3和x =2以及x 轴所围成的部分)的面积.步骤是:(1)利用计算器或计算机产生两组0到1之间的均匀随机数,a 1=RAND ,b 1=RAND ; (2)进行伸缩变换a =2a 1,b =8b 1;(3)数出落在阴影内的样本点数N 1(满足b <a 3的点(a ,b )的个数),用几何概型公式计算阴影部分的面积. 例如,做1 000次试验,即N =1 000,模拟得到N 1=250.由S S 阴影矩≈1N N ,得S 阴影≈________.4.取一根长度为3 m 的绳子,拉直后在任意位置剪断,用随机模拟方法求出剪得两段的长都不小于1 m 的概率.5.如图所示,在一个边长为3 cm 的正方形内部画一个边长为2 cm 的正方形,向大正方形内随机投点,用随机模拟的方法求所投的点落入小正方形内的概率.【问题与收获】基础学问答案:(1)计算机 计算器 (2)几何概型【做一做】 B 旋转时要无规律旋转,否则估量的结果与实际有较大的误差,所以C 项不正确;转盘的半径与估量的结果无关,所以D 项不正确;旋转的次数越多,估量的结果越精确,所以B 项正确,A 项不正确.例题答案:【例题1】 解:步骤:(1)用计算机产生一组内的均匀随机数,a 1=RAND . (2)经过伸缩变换,a =12a 1得到内的均匀随机数. (3)统计试验总次数N 和内随机数的个数N 1. (4)计算频率N 1N.记大事A ={面积介于36 cm 2与81 cm 2之间}={边长介于6 cm 与9 cm 之间},则P (A )的近似值为N 1N .【例题2】 解:步骤:(1)利用计算机产生两组内的均匀随机数,a 1=RAND ,b 1=RAND .(2)进行平移和伸缩变换,a =2(a 1-0.5),b =2b 1,得到一组内的均匀随机数和一组内的均匀随机数.(3)统计试验总数N 和落在阴影内的点数N 1.(4)计算频率N 1N ,即为点落在阴影部分的概率的近似值.(5)用几何概率公式求得点落在阴影部分的概率为P =S4,则N 1N =S 4. 故S =4N 1N ,即阴影部分面积的近似值为4N 1N .达标检测答案:1.D2. 0≤b 1≤1,则函数b =3(b 1-2)的值域是-6≤b ≤-3,即b 是区间上的均匀随机数.3.4 S 阴影≈1N N ·S 矩=2501000×2×8=4.4.分析:在任意位置剪断绳子,则剪断位置到一端点的距离取遍内的任意数,并且内的每一个实数被取到都是等可能的.因此在任意位置剪断绳子的全部结果(基本大事)对应上的均匀随机数,其中取得的内的随机数就表示剪断位置与端点距离在内,也就是剪得的两段长都不小于1 m .这样取得的内的随机数个数与内个数之比就是大事A 发生的频率.解:设剪得两段的长都不小于1 m 为大事A .(1)利用计算器或计算机产生一组0到1之间的均匀随机数,a 1=RAND . (2)经过伸缩变换,a =3a 1.(3)统计出内随机数的个数N 1和内随机数的个数N .(4)计算频率1N N 即为概率P (A )的近似值.5.解:设大事A ={所投点落入小正方形内}.①用计算机产生两组上的均匀随机数,a 1=RAND ,b 1=RAND .②经过平移和伸缩平移变换,a =3a 1-1.5,b =3b 1-1.5,得上的均匀随机数.③统计落入大正方形内的点数N (即上述全部随机数构成的点(a ,b )的个数)及落入小正方形内的点数N 1(即满足-1<a <1且-1<b <1的点(a ,b )的个数).④计算1N N ,即为概率P (A )的近似值.。
高中数学第三章概率3.3几何概型3.3.2均匀随机数的产生
3.3.2 均匀随机数的产生[课时作业][A组学业水平达标]1.用随机模拟方法求得某几何概型的概率为m,其实际概率的大小为n,则( ) A.m>n B.m<nC.m=n D.m是n的近似值解析:用随机模拟方法求得几何概型的概率是实际概率的近似值.答案:D2.设x是[0,1]内的一个均匀随机数,经过变换y=2x+3,则x=12对应变换成的均匀随机数是( )A.0 B.2C.4 D.5解析:当x=12时,y=2×12+3=4.答案:C3.已知函数f(x)=log2x,x∈⎣⎢⎡⎦⎥⎤12,2,在区间⎣⎢⎡⎦⎥⎤12,2上任取一点x0,则使f(x0)≥0的概率为( )A.1 B.12C.23D.34解析:由log2x0≥0,得x0≥1,又x0∈⎣⎢⎡⎦⎥⎤12,2,所以1≤x0≤2,所以P=2-12-12=132=23,故选C.答案:C4.如图,曲线OB的方程为y2=x(0≤x≤1),为估计阴影部分的面积,采用随机模拟方法产生x∈(0,1),y∈(0,1)的200个点(x,y),经统计,落在阴影部分的点共134个,则估计阴影部分的面积是( )A .0.47B .0.57C .0.67D .0.77解析:根据题意,落在阴影部分的点的概率是134200=0.67,矩形的面积为1,阴影部分的面积为S ,所以S =0.67. 答案:C5.将[0,1]内的均匀随机数转化为[-2,6]内的均匀随机数,需实施的变换为( )解析:将[0,1]内的随机数转化为[a ,b ]内的随机数,需进行的变换为答案:C6.若x 可以在-4≤x ≤2的条件下任意取值,则x 是负数的概率是________.解析:记事件A 为“x 是负数”,则A 的长度为0-(-4)=4,整个事件长度为2-(-4)=6,则P (A )=46=23.答案:237.假设你在如图所示的图形上随机撒一粒黄豆,则它落在阴影部分(等腰三角形)的概率是__________.解析:设圆的半径为R ,则圆的面积为πR 2,等腰三角形的面积为12×2R ×R=R 2,∴所求概率为P =R 2πR 2=1π. 答案:1π8.利用随机模拟法近似计算图中阴影部分(曲线y =log 3x 与x =3及x 轴围成的图形)的面积.解析:设事件A :“随机向正方形内投点,所投的点落在阴影部分”. (1)利用计算器或计算机产生两组 [0,1]上的均匀随机数,x 1=RAND ,y 1=RAND. (2)经伸缩变换x =3x 1,y =3y 1,得一组[0,3],一组[0, 3]上的均匀随机数. (3)统计试验总次数N 和落在阴影部分的点的个数为N 1.(4)设阴影部分的面积为S ,正方形的面积为9,由几何概率公式得P (A )=S 9,所以N 1N ≈S9.所以S ≈9N 1N即为阴影部分面积的近似值.9.利用随机模拟的方法近似计算边长为2的正方形内切圆面积,并估计π的近似值. 解析: (1)利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND ,b 1=RAND.(2)经过平移和伸缩变换,a =(a 1-0.5)*2,b =(b 1-0.5)*2,得到两组[-1,1]上的均匀随机数.(3)统计试验总次数N 和点落在圆内的次数N 1(满足a 2+b 2≤1的点(a ,b )数). (4)计算频率N 1N,即为点落在圆内的概率的近似值. (5)设圆面积为S ,则由几何概型概率公式得P =S4.∴S 4≈N 1N ,即S ≈4N 1N, 即为正方形内切圆面积的近似值. 又S 圆=πr 2=π,∴π=S ≈4N 1N,即为π的近似值.[B 组 应考能力提升]1.如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43B.83C.23 D .无法计算解析:∵S 阴影S 正方形=23,∴S 阴影=23S 正方形=83. 答案:B2.如图,在直角坐标系内,射线OC 落在120°角的终边上,任作一条射线OA (OA 在平面直角坐标系内的分布是等可能的),那么射线OA 落在∠xOC 内的概率为( ) A.12 B.23 C.13D.34解析:射线OA 落在∠xOC 内的概率只与∠xOC 的大小有关,故所求概率为120360=13.答案:C3.用计算器生成两个[0,1]上的均匀随机数,问这两个随机数的差小于0.5的概率为________.解析:设x ,y 为计算器生成的[0,1]上的两个均匀随机数,则0≤x ≤1,0≤y ≤1,所有的可能(x ,y )构成边长为1的正方形,如图,设事件A ={两随机数的差小于0.5},则当|x -y |<0.5时事件A 发生,条件(x ,y )构成图中的阴影部分. ∴P (A )=S 阴影S 正方形=1-2×12×1221=34. 答案:344.如图,一不规则区域内,有一边长为1米的正方形,向区域内随机地撒1 000颗黄豆,数得落在正方形区域内(含边界)的黄豆数400颗,以此实验数据为依据可以估计出该不规则图形的面积为________m 2.(用分数作答).解析:∵向区域内随机地撒1 000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为400颗,记“黄豆落在正方形区域内”为事件A ,∴P (A )=4001 000=1S 不规则图形,∴S 不规则图形=52 m 2.答案:525.甲、乙两辆班车都要停在同一停车位,它们可能在一天中的任意时刻到达.如果这两辆班车的停车时间都是一个小时,求有一辆班车停车时必须等待一段时间的概率.解析:记事件A ={有一辆班车停泊时必须等待一段时间}.(1)用计算器或计算机产生两组[0,1]区间上的均匀随机数,a =RAND ,b =RAND ;(2)经过伸缩变换x =a *24,y =b *24,得到[0,24]区间上的两组均匀随机数; (3)统计试验次数N 和事件A 发生对应的次数N 1(满足|x -y |≤1的点(x ,y )的个数); (4)计算频率f n (A )=N 1N,即有一辆班车停泊时必须等待一段时间的概率.6.假设小霞、小倩和小珍所在的班级共有 65名学生,并且这65名学生早上到校先后的可能性是相同的.设计模拟方法估计下列事件的概率: (1)小倩比小珍先到校;(2)小倩比小珍先到校,小珍比小霞先到校.解析:因为早上到校先后的可能性是相同的,所以假设每人到校的时间是某一个时间段内的任一时刻,可以分别用三组随机数x 、y 、z 表示,因而可以随机模拟.设事件A :“小倩比小珍先到校”;设事件B :“小倩比小珍先到校,小珍比小霞先到校”. (1)利用计算器或计算机产生一组[0,1]内的均匀随机数,a =RAND ,b =RAND ,c =RAND 分别表示小霞、小倩和小珍三人早上到校的时间;(2)统计出试验总次数N 以及其中满足b <c 的次数N 1,满足b <c <a 的次数N 2; (3)计算频率f n (A )=N 1N ,f n (B )=N 2N,即分别为事件A ,B 的概率的近似值.。
2017-2018学年高中数学必修三教材用书:第三章 概率 3
3.3.2 均匀随机数的产生[导入新知]1.均匀随机数的产生(1)计算器上产生[0,1]的均匀随机数的函数是RAND 函数. (2)Excel 软件产生[0,1]区间上均匀随机数的函数为“rand(_)”. 2.用模拟的方法近似计算某事件概率的方法(1)试验模拟的方法:制作两个转盘模型,进行模拟试验,并统计试验结果.(2)计算机模拟的方法:用Excel 的软件产生[0,1]区间上均匀随机数进行模拟.注意操作步骤.[化解疑难]整数随机数与均匀随机数的异同二者都是随机产生的随机数,在一定的区域长度上出现的概率是均等的.但是整数随机数是离散的单个整数值,相邻两个整数随机数的步长为1;而均匀随机数是小数或整数,是连续的小数值,相邻两个均匀随机数的步长是人为设定的.[例1] 得两段的长都不小于2 m 的概率有多大?[解] 设剪得两段的长都不小于2 m 为事件A .法一:(1)利用计算器或计算机产生n 个0~1之间的均匀随机数,x =RAND ; (2)作伸缩变换:y =x *(5-0),转化为[0,5]上的均匀随机数; (3)统计出[2,3]内均匀随机数的个数m ; (4)概率P (A )的近似值为mn .法二:(1)做一个带有指针的转盘,把圆周五等分,标上刻度[0,5](这里5和0重合); (2)固定指针转动转盘或固定转盘旋转指针,记下指针在[2,3]内(表示剪断绳子位置在[2,3]范围内)的次数m 及试验总次数n ;(3)概率P (A )的近似值为m n .[类题通法]利用随机模拟计算概率的步骤(1)确定概率模型;(2)进行随机模拟试验,即利用计算器等以及伸缩和平移变换得到[a ,b ]上的均匀随机数; (3)统计计算;(4)得出结论,近似求得概率. [活学活用]已知米粒等可能地落入如图所示的四边形ABCD 内,如果通过大量的试验发现米粒落入△BCD 内的频率稳定在49附近,那么点A 和点C 到直线BD 的距离之比约为________.解析:设米粒落入△BCD 内的频率为P 1,米粒落入△BAD 内的频率为P 2,点C 和点A 到直线BD 的距离分别为d 1,d 2,根据题意得,P 2=1-P 1=1-49=59,又∵P 1=S △BCDS 四边形ABCD =12×BD ×d 1S 四边形ABCD ,P 2=S △BADS 四边形ABCD =12×BD ×d 2S 四边形ABCD ,∴P 2P 1=d 2d 1=54. 答案:54[例2] 面画了小、中、大三个同心圆,半径分别为3 cm ,6 cm,9 cm.某人站在3 m 之外向此板投镖,假设投镖击在线上或没有投中木板不算,可重投,用随机模拟的方法估计:(1)“投中小圆内”的概率是多少?(2)“投中小圆与中圆形成的圆环”的概率是多少? [解] 记事件A ={}投中小圆内, 事件B ={}投中小圆与中圆形成的圆环.按如下步骤进行:第一步,用计算机产生两组[0,1]上的均匀随机数,a 1=RAND ,b 1=RAND ;第二步,经过伸缩和平移变换,a =a 1·32-16,b =b 1·32-16,得到两组[-16,16]上的均匀随机数;第三步,统计投在小圆内的次数N 1(即满足a 2+b 2<9的点(a ,b )的个数),投中小圆与中圆形成的圆环的次数N 2(即满足9<a 2+b 2<36的点(a ,b )的个数),投中木板的总次数N (即满足-16<a <16,-16<b <16的点(a ,b )的个数);第四步,计算频率f n (A )=N 1N ,f n (B )=N 2N ,即分别为概率P (A ),P (B )的近似值. [类题通法]用随机模拟方法估计长度型与面积型几何概型的概率的联系与区别 (1)联系:二者模拟试验的方法和步骤基本相同,都需产生随机数;(2)区别:长度型几何概型只要产生一组均匀随机数即可,所求事件的概率为表示事件的长度之比,对面积型几何概型问题,一般需要确定点的位置,而一组随机数是不能在平面上确定点的位置的,故需要利用两组均匀随机数分别表示点的横纵坐标,从而确定点的位置,所求事件的概率为点的个数比.[活学活用]现向图中所示正方形内随机地投掷飞镖,试用随机模拟的方法求飞镖落在阴影部分的概率.解:第一步,利用计算器或计算机产生两组0至1区间内的均匀随机数a 1、b 1(共N 组);第二步,经过平移和伸缩变换,a =(a 1-0.5)*2, b =(b 1-0.5)*2;第三步,数出满足不等式b <2a -43,即6a -3b >4的数组数N 1.所求概率P ≈N 1N .可以发现,试验次数越多,概率P 越接近25144.机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43 B .83C.23D .无法计算(2)利用随机模拟的方法近似计算图中阴影部分(抛物线y =2-2x -x 2与x 轴围成的图形)的面积.[解析] (1)选B 由几何概型的公式可得S 阴影S 正方形=23,又S 正方形=4,∴S 阴影=4×23=83.(2)第一步,利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND ,b 1=RAND ; 第二步,经过平移和伸缩变换,a =a 1·4-3,b =b 1·3,得到一组[-3,1]和一组[0,3]上的均匀随机数;第三步,统计试验总次数N 和落在阴影部分的点数N 1(满足条件b <2-2a -a 2的点(a ,b )的个数);第四步,计算频率N 1N 就是点落在阴影部分的概率的近似值;第五步,设阴影部分的面积为S ,由几何概型概率公式得点落在阴影部分的概率为S12,所以S 12≈N 1N ,故S ≈12N 1N 即为阴影部分面积的近似值. [类题通法]利用随机模拟法估计图形面积的步骤(1)把已知图形放在平面直角坐标系中,将图形看成某规则图形(长方形或圆等)内的一部分,并用阴影表示;(2)利用随机模拟方法在规则图形内任取一点,求出落在阴影部分的概率P (A )=N 1N; (3)设阴影部分的面积是S ,规则图形的面积是S ′,则有S S ′=N 1N ,解得S =N 1N S ′,即已知图形面积的近似值为N 1N S ′.[活学活用]利用随机模拟的方法近似计算图中阴影部分(曲线y =2x 与直线x =±1及x 轴围成的图形)的面积.解:设事件A 为“随机向正方形内投点,所投的点落在阴影部分”,操作步骤如下:第一步,用计数器n 记录做了多少次试验,用计数器m 记录其中有多少次(x ,y )满足-1<x <1,0<y <2x (即点落在图中阴影部分),首先设置n =0,m =0;第二步,用变换rand( )*2-1产生-1~1之间的均匀随机数x 表示所投点的横坐标,用变换rand( )*2产生0~2之间的均匀随机数y 表示所投点的纵坐标;第三步,判断点是否落在阴影部分,即是否满足y <2x ,如果是,则计数器m 的值加1,即m =m +1,如果不是,m 的值保持不变;第四步,表示随机试验次数的计数器n 的值加1,即n =n +1,如果还要试验,则返回步骤第二步继续执行,否则结束.程序结束后事件A 发生的频率mn作为事件A 的概率的近似值.设阴影部分的面积为S ,正方形面积为4,由几何概型概率计算公式得,P (A )=S 4,所以mn ≈S 4,故4mn 可作为阴影部分面积S 的近似值.9.几何概型中的会面问题[典例] 甲、乙两人约定晚上6点到7点之间在某地见面,并约定先到者要等候另一人一刻钟,过时即可离开.求甲、乙能见面的概率.[解题流程][规范解答]法一(利用几何概型的概率公式): 如图所示:[类题通法]利用几何概型求解会面问题会面问题是利用数形结合转化为面积型几何概型的问题解决的,步骤如下: (1)将时间分别用x ,y 两个坐标表示,构成平面内的点(x ,y ); (2)找出会面关系,用式子表示出能够会面的条件;(3)在平面直角坐标系里,画出所有可能的结果表示的区域,并求出面积; (4)用阴影部分表示出能够会面的区域,并求面积; (5)代入几何概型的概率公式求解. [活学活用]两艘轮船都要停靠同一个泊位,它们可能在一昼夜的任意时刻到达,设甲、乙两艘轮船停靠泊位的时间分别是2小时与4小时,求有一艘轮船停靠泊位时必须等待一段时间的概率.解:如图所示,以x 和y 分别表示甲、乙两船到达泊位的时间,则有一艘船停靠泊位时必须等待一段时间的等价条件是甲先到:y ≤x +2,乙先到:x ≤y +4.在平面直角坐标系内,(x ,y )的所有可能结果是边长为24的正方形,而事件A “有一艘船停靠泊位时必须等待一段时间”的所有可能结果由图中的阴影部分来表示,μA =242-12×222-12×202=134,μΩ=242=576,所以P (A )=μA μΩ=134576=67288.故有一艘轮船停靠泊位时必须等待一段时间的概率为67288.[随堂即时演练]1.要产生[-3,3]上的均匀随机数y ,现有[0,1]上的均匀随机数x ,则y 不可取为( ) A .-3x B .3x C .6x -3D .-6x -3解析:选D 法一:利用伸缩和平移变换进行判断, 法二:由0≤x ≤1,得-9≤-6x -3≤-3, 故y 不能取-6x -3.2.设x ,y 是两个[0,1]上的均匀随机数,则0≤x +y ≤1的概率为( ) A.12 B .14C.29D .316解析:选A 如图所示,所求的概率为 P =S 阴影S 正方形=12. 3.b 1是[0,1]上的均匀随机数,b =6(b 1-0.5),则b 是________上的均匀随机数. 解析:∵b 1∈[0,1], ∴b 1-0.5∈[-0.5,0.5], ∴6(b 1-0.5)∈[-3,3]. 答案:[-3,3]4.(全国甲卷改编)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为________.(用m ,n 表示)解析:因为x 1,x 2,…,x n ,y 1,y 2,…,y n 都在区间[0,1]内随机抽取,所以构成的n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )都在边长为1的正方形OABC 内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC 内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC 内的数对有m 个.用随机模拟的方法可得S 扇形S 正方形=m n ,即π4=mn ,所以π=4m n .答案:4m n5.如图所示,向边长为2的大正方形内投飞镖,利用随机模拟的方法求飞镖落在中央边长为1的小正方形中的概率.(假设飞镖全部落在大正方形内)解:用几何概型概率计算公式得P =S 小正方形S 大正方形=14.用计算机随机模拟这个试验,步骤如下:第一步,用计数器n 记录做了多少次投飞镖的试验,用计数器m 记录其中有多少次投在中央的小正方形内,设置n =0,m =0;第二步,用函数rand( )*4-2产生两个-2~2之间的均匀随机数x ,y ,x 表示所投飞镖的横坐标,y 表示所投飞镖的纵坐标;第三步,判断(x ,y )是否落在中央的小正方形内,也就是看是否满足|x |<1,|y |<1,如果是,则m 的值加1,即m =m +1,否则m 的值保持不变;第四步,表示随机试验次数的计数器n 加1,即n =n +1,如果还需要继续试验,则返回步骤第二步继续执行,否则,程序结束.程序结束后飞镖投在小正方形内的频率mn作为所求概率的近似值.[课时达标检测]一、选择题1.若-4≤x ≤2,则x 是负数的概率是( ) A.14 B .34C.13 D .23答案:D2.已知函数f (x )=log 2x ,x ∈⎣⎡⎦⎤12,2,则在区间⎣⎡⎦⎤12,2上任取一点x 0,使f (x 0)≥0的概率为( )A .1B .12C.23 D .34答案:C3.设一直角三角形两直角边的长均是区间[0,1]上的随机数,则斜边的长小于1的概率为( )A.12 B .34C.π4 D .3π16答案:C4.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为1.5 cm 的圆,中间有边长为0.5 cm 的正方形孔,随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为( )A.49π B .94π C.4π9 D .9π4答案:A5.如图,在△AOB 中,已知∠AOB =60°,OA =2,OB =5,在线段OB 上任取一点C ,求△AOC 为钝角三角形的概率.( )A .0.6B .0.4C .0.2D .0.1答案:B 二、填空题6.如图的矩形,长为5 m ,宽为2 m ,在矩形内随机撒300粒黄豆,数得落在阴影部分的黄豆数为138,则我们可以估计出阴影部分的面积为________m 2.解析:由题意得:138300=S 阴影5×2,S 阴影=235.答案:2357.一个投针试验的模板如图所示,AB 为半圆O 的直径,点C 在半圆上,且CA =CB .现向模板内任投一针,则该针恰好落在△ABC 内(图中的阴影区域)的概率是________.解析:设半圆O 的半径为r , 则半圆O 的面积S 半圆=12πr 2,在△ABC 中,AB =2r ,CA =CB =2r , ∴S △ABC =12·2r ·2r =r 2.据题意可知该概率模型是几何概型,所以所求的概率为P =S △ABC S 半圆=r 212πr 2=2π.答案:2π8.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.解析:由题意画出示意图,如图所示.表示小波在家看书的区域如图中阴影部分所示,则他在家看书的概率为⎝⎛⎭⎫122π-⎝⎛⎭⎫142ππ=316, 因此他不在家看书的概率为 1-316=1316. 答案:1316三、解答题9.利用随机模拟方法计算图中阴影部分(曲线y =2x 与x 轴、x =±1围成的部分)的面积. 解:(1)利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND ,b 1=RAND.(2)经过平移和伸缩变换,a =(a 1-0.5)*2,b =b 1]N 1,N ),即为点落在阴影部分的概率的近似值.(3)统计试验总次数N 和落在阴影内的点数N 1. (4)计算频率N 1N,即为点落在阴影部分的概率的近似值.(5)用几何概型的概率公式求得点落在阴影部分的概率为P =S 4,N 1N =S 4,∴S ≈4N 1N ,即为阴影部分的面积值.10.对某人某两项指标进行考核,每项指标满分100分,设此人每项得分在[0,100]上是等可能出现的.若单项80分以上,且总分170分以上才合格,求他合格的概率.解:设某人两项的分数分别为x 分、y 分, 则0≤x ≤100,0≤y ≤100, 某人合格的条件是:80<x ≤100, 80<y ≤100,x +y >170.在同一平面直角坐标系中,作出上述区域(如图中阴影部分所示).由图可知:0≤x ≤100,0≤y ≤100构成的区域面积为100×100=10 000,合格条件构成的区域面积为S 五边形BCDEF =S 矩形ABCD -S △AEF =400-12×10×10=350, 所以所求概率为P =35010 000=7200. 答:该人合格的概率为7200. 11.已知甲、乙两人约定到羽毛球馆去打球,两人都在9:30~11:30的任意时刻到达,若两人的到达时刻相差20分钟以内,两人可以一起打球,否则先到者就和别人在一起打球,求甲、乙两人没在一起打球的概率.解:设甲的到达时刻为x ,乙的到达时刻为y ,由(x ,y )构成的区域Ω={(x ,y )|0≤x ≤2,0≤y ≤2},此区域面积S =2×2=4,令两人没在一起打球的事件为A ,则事件A 构成区域A =(x ,y )|x -y |>13,0≤x ≤2,0≤y ≤2,区域A 的面积为S A =⎝⎛⎭⎫532=259, ∴P (A )=S A S =2536.。
人教A版高中数学必修三3-3-2 均匀随机数的产生
用随机模拟方法估计面积型几何概型的概率
学法指导 用随机模拟方法估计长度型与面积型几何概型的概率的 区别与联系: (1)联系:二者模拟试验的方法和步骤基本相同,都需 产生随机数;
(2)区别:长度型几何概型只要产生一组均匀随机数即 可,所求事件的概率为表示事件的长度之比,对面积型几何 概型问题,一般需要确定点的位置,而一组随机数是不能在 平面上确定点的位置的,故需要利用两组均匀随机数分别表 示点的两个坐标,从而确定点的位置,所求事件的概率为点 的个数比.
(2)进行平移和伸缩变换,a=2(a1-0.5),b=2b1,得到 一组[-1,1]内的均匀随机数和一组[0,2]内的均匀随机数.
(3)统计试验总数N和落在阴影内的点数N1[满足条件b<2a 的点(a,b)的个数].
(4)计算频率NN1,即为点落在阴影部分的概率的近似值. (5)用几何概率公式求得点落在阴影部分的概率为P= S4 , 则NN1=S4. 故S=4NN1,即阴影部分面积的近似值为4NN1.
数和[a,b]上的整数值随机数等
计算器不可以产生[a,b]上的均匀 ②×
随机数,只能通过线性变换得到
③ × 计算器可以产生整数值随机数
④ √ 显然正确
规纳总结:随机数的产生还可以通过人工操作.例 如:抽签、摸球、转盘等方面,但这样做费时费力,用计算 机可产生大量的随机数,又可以自动统计试验结果,同时可 以在短时间内多次重复试验,方便快捷.因此,我们现在主 要是通过计算器或计算机来产生随机数.
[分析] 本题为面积型几何概型,所求的概率为面积之 比,若用随机模拟的方法求其概率则要转化为求点数之比, 要表示平面图形内的点必须有两个坐标,故需产生两组随机 数来表示点的坐标以确定点的位置.
[解析] 设事件A表示“该特种兵跳伞的成绩为良好”. (1)利用计算器或计算杌产生两组[0,1]上的均匀随机数, a1=RAND, b1=RAND. (2)经过伸缩和平移变换,a=16a1-8,6=14b1-7,得到 [-8,8]与[-7,7]上的均匀随机数. (3)统计满足-8<a<8,-7<b<7的点(a,b)的个数N.满足 1<a2+b2<4的点(a,b)的个数N1. (4)计算频率fn(A)=NN1即为所求概率的近似值.
2017-2018学年高中数学人教A版必修三课时作业:第3章 概率 3.2.2 Word版含答案
答案:C
解析:这里所有的基本事件为:甲、乙;甲、丙;乙、丙,即基本事件共有三个。甲被选中的事件有两个,按等可能事件的概率,有P(甲)= .
4.下课以后,教室里最后还剩下2位男同学,2位女同学.如果没有2位同学一块儿走,则第2位走的是男同学的概率是()
A. B.
C. D.
答案:A
解析:已知有2位女同学和2位男同学,所有走的可能顺序有(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男),所以第2位走的是男同学的概率是P= = .
(3)以上号码对应的10名运动员,就是要参赛的对象.
11.在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n
1
2
3
4
5
成绩xn
பைடு நூலகம்70
76
72
70
72
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
③统计总试验次数N及甲的编号出现的个数N1;
④计算频率fn(A)= ,即为甲被选的概率的近似值;
⑤ 一定等于 .
A.②④B.①③④
C.⑤D.①④
答案:C
解析:概率是频率的稳定值,频率是概率的近似值,频率不一定等于概率, 不一定等于 ,故选C.
3.从甲、乙、丙三人中任选两名代表,甲被选中的概率为()
A. B.
5.欲寄出两封信,现有两个邮箱,供选择,则两封信都投到同一邮箱的概率是()
A. B.
高中数学必修三课时作业15:3.3.2 均匀随机数的产生
3.3.2 均匀随机数的产生1.与均匀随机数特点不符的是()A.它是[0,1]内的任何一个实数B.它是一个随机数C.出现的每一个实数都是等可能的D.是随机数的平均数[解析]A,B,C是均匀随机数的定义,均匀随机数的均匀是“等可能”的意思,并不是“随机数的平均数”.[答案] D2.质点在数轴上的区间[0,2]上运动,假定质点出现在该区间各点处的概率相等,那么质点落在区间[0,1]上的概率为()A.14 B.13C.12 D.以上都不对[解析]区间[0,2]的长度为2,记“质点落在区间[0,1]上”为事件A.则事件A的区间长度为1,则P(A)=12.[答案] C3.用Excel中的随机函数RAND()如何产生-8~2内的随机数()A.RAND()*10-8B.RAND()*10-12C.RAND()*2-10D.RAND()*10+8[解析]0×10-8=-8,1×10-8=2,故RAND()*10-8符合.[答案] A4.利用计算机产生0~1之间的均匀随机数a,则事件“3a-1<0”的概率为________.[解析]已知0≤a≤1,事件“3a-1<0”发生时,0<a<13,由几何概型得其概率为13.[答案] 135.实数m 是区间[0,6]上的随机数,则方程x 2-mx +4=0有实根的概率是________.[解析] 由⎩⎨⎧0≤m ≤6,Δ=m 2-16≥0,解得4≤m ≤6,故所求的概率为P =6-46-0=13. [答案] 136.用随机模拟方法求函数y =x 与x 轴和直线x =1围成的图形的面积.解 如图所示,阴影部分是函数y =x 的图象与x 轴和直线x =1围成的图形,设阴影部分的面积为S .随机模拟的步骤:(1)利用计算机产生两组[0,1]内的均匀随机数,x 1=RAND ,y 1=RAND ;(2)统计试验总数N 和落在阴影内的点数N 1(满足条件y <x 的点(x ,y )的个数);(3)计算频率N 1N ,即为点落在阴影部分的概率的近似值;(4)直线x =1,y =1和x ,y 轴围成的正方形面积为1,由几何概型概率的计算公式得,点落在阴影部分的概率为S 1=S .则S =N 1N ,即阴影部分面积的近似值为N 1N .7.在长为12 cm 的线段AB 上任意取一点M ,并以线段AM 为边作正方形.用随机模拟的方法估计该正方形的面积介于36 cm 2与81 cm 2之间的概率.解 由于正方形的面积与边长有关,因此本题可转化为在线段AB 上任取一点M ,求使得AM 的长度介于6 cm 与9 cm 之间的概率.记事件A ={正方形的面积介于36 cm 2与81 cm 2之间}={正方形的边长介于6 cm 与9 cm 之间}.(1)利用计算机或计算器产生一组[0,1]上的均匀随机数,a 1=RAND ;(2)经过伸缩变换a =a 1]n,N ),即事件A 的概率近似值.能力提升8.向图中所示正方形内随机地投掷飞镖,则飞镖落在阴影部分的概率为( )A.14B.2536C.25144D.1[解析] 直线6x -3y -4=0与直线x =1交于点(1,23),与直线y =-1交于点(16,-1),易知阴影部分面积为12×56×53=2536.∴P=S阴影S正方形=25364=25144.[答案] C9.如图所示,在墙上挂着一块边长为16 cm的正方形木板,上面画了小、中、大三个同心圆,半径分别为2 cm,4 cm,6 cm,某人站在3 m之外向此木板投镖,设镖击中线上或没有投中木板时不算,可重投,记事件A={投中大圆内},事件B={投中小圆与中圆形成的圆环内},事件C={投中大圆之外}.(1)用计算机产生两组[0,1]内的均匀随机数,a1=RAND,b1=RNAD.(2)经过伸缩和平移变换,a=16a1-8,b=16b1-8,得到两组[-8,8]内的均匀随机数.(3)统计投在大圆内的次数N1(即满足a2+b2<36的点(a,b)的个数),投中小圆与中圆形成的圆环次数N2(即满足4<a2+b2<16的点(a,b)的个数),投中木板的总次数N(即满足上述-8<a<8,-8<b<8的点(a,b)的个数).则概率P(A),P(B),P(C)的近似值分别是()A.N1N,N2N,N-N1N B.N2N,N1N,N-N2NC.N1N,N2-N1N,N2N D.N2N,N1N,N1-N2N[解析] P (A )的近似值为N 1N ,P (B )的近似值为N 2N ,P (C )的近似值为N -N 1N .[答案] A10.由于计算器不能直接产生[a ,b ]区间上的均匀随机数,只能通过线性变换得到.如果x 是[0,1]区间上的均匀随机数,则a +(b -a )x 就是[a ,b ]区间上的均匀随机数,据此,[0,1]区间上的均匀随机数0.8对应于[3,5]区间上的均匀随机数为________.[解析] 因为x 是[0,1]区间上的均匀随机数,则[a +(b -a )x ]就是[a ,b ]区间上的均匀随机数,所以[0,1]区间上的均匀随机数0.8对应于[3,5]区间上的均匀随机数为3+(5-3)×0.8=4.6.[答案] 4.611.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.[解析] 当m ≤2时,2m 6=56无解.当2<m ≤4时,由m +26=56得m =3,综上m =3.[答案] 312.在正方形中随机撒一把豆子,通过考察落在其内切圆内豆子的数目,用随机模拟的方法可计算圆周率π的近似值(如图).(1)用两个均匀随机数x, y 构成的一个点的坐标(x ,y )代替一颗豆子,请写出随机模拟法的方案.(2)以下程序框图可以用来实现该模拟过程,请将它补充完整,(注:rand( )是计算机在Excel 中产生[0,1]区间上的均匀随机数的函数)解 (1)具体方案如下:①利用计算器产生两组[0,1]区间上的均匀随机数,x 1=RAND ,y 1=RAND ; ②经过平移和伸缩变换,x =2(x 1-0.5),y =2(y 1-0.5);③统计试验总次数N 和落在内切圆内的点数N 1(满足条件x 2+y 2≤1的点(x ,y )的个数);④计算频率N 1N ,即为点落在圆内的概率的近似值;⑤设圆的面积为S ,由几何概型概率公式得点落在圆内部分的概率为P =S 4,所以S 4≈N 1N ,所以S ≈4N 1N ,即为圆的面积的近似值.又S =πr 2=π,所以π=S ≈4N 1N ,即为圆周率的近似值.(2)由题意,第一个判断框中应填x 2+y 2≤1?,其下的处理框中应填m =m +1,跳出循环体后的处理框中应填P =m n .13.(选做题)甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去.求两人能会面的概率.解以x轴和y轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件为|x-y|≤15,在如图所示的平面直角坐标系下,(x,y)的所有可能结果是边长为60的正方形,而事件A“两人能会面”的可能结果由图中的阴影部分表示.u A=602-452=1 575,uΩ=602=3 600,P(A)=u AuΩ=1 5753 600=716.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:由题意知所求的概率为P= = .
答案:A
二、填空题(每小题5分,共15分)
6.已知b1是[0,1]上的均匀随机数,b=6(b1-0.5),则b是区间________上的均匀随机数.
解析:因为b1是[0,1]上的均匀随机数,所以b1- 是 上的均匀随机数,
所以b=6(b1-0.5)是[-3,3]上的均匀随机数.
答案:[-3,3]
7.如图所示,在半径为 的半圆内放置一个长方形ABCD,且AB=2BC,向半圆内任投一点P,则点P落在长方形内的概率为________.
解析:P= = .
答案:
8.如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.
解析:由几何概型可知 = ,所以S=0.18.
课பைடு நூலகம்作业
|
一、选择题(每小题5分,共25分)
1.用随机模拟方法求得某几何概型的概率为m,其实际概率的大小为n,则()
A.m>nB.m<n
C.m=n D.m是n的近似值
解析:随机模拟法求其概率,只是对概率的估计.
答案:D
2.下列关于用转盘进行随机模拟的说法中正确的是()
A.旋转的次数的多少不会影响估计的结果
10.如图所示,在一个长为4,宽为2的矩形中有一个半圆,试用随机模拟的方法近似计算半圆面积,并估计π的值.
解析:记事件A为“点落在半圆内”.
(1)利用计算机产生两组[0,1]上的均匀随机数a1=RAND,b1=RAND;
(2)进行平移和伸缩变换,a=(a1-0.5)*4,
b=b1]N1,N),即为点落在阴影部分的概率近似值;
A. , ,
B. , ,
C. , ,
D. , ,
解析:P(A)的近似值为 ,P(B)的近似值为 ,P(C)的近似值为 .
答案:A
12.利用随机模拟方法计算y=x2与y=4围成的面积时,利用计算器产生两组0~1之间的均匀随机数a1=RAND,b1=RAND,然后进行平移与伸缩变换a=a1·4-2,b=b1·4,试验进行100次,前98次中落在所求面积区域内的样本点数为65,已知最后两次试验的随机数a1=0.3,b1=0.8及a1=0.4,b1=0.3,那么本次模拟得出的面积约为________.
(5)用几何概型的概率公式求概率,P(A)= ,所以 ≈ ,即S半圆≈ ,为半圆面积的近似值.
又2π≈ ,所以π≈ .
|
11.如图所示,墙上挂着一块边长为16 cm的正方形木块,上面画了小、中、大三个同心圆,半径分别为2 cm,4 cm,6 cm,某人站在3 m之外向此板投镖,设镖击中线上或没有投中木板时不算,可重投,记事件A表示投中大圆内,事件B表示投中小圆与中圆形成的圆环内,事件C表示投中大圆之外.
解析:由a1=0.3,b1=0.8,得a=-0.8,b=3.2,(-0.8,3.2)落在y=x2与y=4围成的区域内;由a1=0.4,b1=0.3,得a=-0.4,b=1.2,(-0.4,1.2)落在y=x2与y=4围成的区域内,所以本次模拟得出的面积约为16× =10.72.
答案:10.72
13.在长为14 cm的线段AB上任取一点M,以A为圆心,以线段AM为半径作圆.用随机模拟法估算该圆的面积介于9πcm2到16πcm2之间的概率.
答案:0.18
三、解答题(每小题10分,共20分)
9.有一个底面圆的半径为1、高为2的圆柱,点O为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P,求点P到点O的距离大于1的概率.
解析:圆柱的体积V圆柱=π×12×2=2π是试验的全部结果构成的区域体积.
以O为球心,1为半径且在圆柱内部的半球的体积V半球= × ×13= ,则构成事件A“P到点O的距离大于1”的区域体积为2π- = ,由几何概型的概率公式得P(A)= = .
(1)用计算机产生两组[0,1]内的均匀随机数,a1=RAND,b1=RNAD.
(2)经过伸缩和平移变换,a=16a1-8,b=16b1-8,得到两组[-8,8]内的均匀随机数.
(3)统计投在大圆内的次数N1(即满足a2+b2<36的点(a,b)的个数),投中小圆与中圆形成的圆环次数N2(即满足4<a2+b2<16的点(a,b)的个数),投中木板的总次数N(即满足上述-8≤a≤8,-8≤b≤8的点(a,b)的个数).则概率P(A),P(B),P(C)的近似值分别是()
解析:设事件A表示“圆的面积介于9πcm2到16πcm2之间”.
(1)利用计算器或计算机产生一组[0,1]上的均匀随机数a1=RAND;
(2)经过伸缩变换a=14a1得到一组[0,14]上的均匀随机数;
(3)统计出试验总次数N和[3,4]内的随机数个数N1(即满足3≤a≤4的个数);
(4)计算频率fn(A)= ,即为概率P(A)的近似值.
14.如图所示,曲线y=x2与y轴、直线y=1围成一个区域A(图中的阴影部分),用模拟的方法求图中阴影部分的面积(用两种方法).
B.旋转的次数越多,估计的结果越精确
C.旋转时可以按规律旋转
D.转盘的半径越大,估计的结果越精确
解析:旋转时要无规律旋转,否则估计的结果与实际有较大的误差,所以C不正确;转盘的半径与估计的结果无关,所以D不正确;旋转的次数越多,估计的结果越精确,所以B正确,A不正确.
答案:B
3.设x是[0,1]内的一个均匀随机数,经过变换y=2x+3,则x= 对应变换成的均匀随机数是()
答案:B
5.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为1.5 cm的圆,中间有边长为0.5 cm的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为()
A. B.
A.0 B.2
C.4 D.5
解析:当x= 时,y=2× +3=4.
答案:C
4.将一个长与宽不等的长方形,沿对角线分成四个区域,如图所示涂上四种颜色,中间装个指针,使其可以自由转动,对指针停留的可能性下列说法正确的是()
A.一样大
B.蓝白区域大
C.红黄区域大
D.由指针转动圈数决定
解析:指针停留在哪个区域的可能性大,即表明该区域的张角大,显然、蓝白区域大.