高速切削知识
第7章 高速切削
12
3.工件平均温升小 在高速切削时, 95 % - 98 %以上的切 削热来不及传给工件,被切屑飞速带走, 工件上保持冷态,因而特别适合于加工容 易热变形的零件。
13
4.提高了加工质量
高速切削时,机床的激振频率特别高,它远 远离开了“机床-刀具-工件”工艺系统的频率范围, 不会造成工艺系统的受迫振动,保证了较好的加 工状态,因而可加工出非常精密、非常光洁的零 件。另外,由于切削深度、切削宽度和切削力都 很小,使得刀具、工件变形小,保持了尺寸的精 确性,也使得切削破坏层变薄,残余应力小,实 现了高精度、低粗糙度加工。零件经高速车、铣 的表面质量常可达到磨削的水平,残余应力很小, 故可省去铣削后的精加工工序。
25
陶瓷轴承高速主轴结构
密封圈 电主轴 陶瓷球轴承 冷却水出口
陶瓷球轴承
旋转变压器
冷却水入口 陶瓷轴承高速主轴
26
2. 磁浮轴承(可实现智能化控制) 不断检测转子位置,调整电磁力使转 子处于正确位置。
主轴由两个径向和两个轴向磁浮轴承支承,磁浮轴承 定子与转子间空隙约0.1mm。 刚度高,约为滚珠轴承主轴刚度10倍。 转速特征值可达4×106。 回转精度主要取决于传感器的精度和灵敏度,以及控 制电路性能,目前可达0.2μm。 机械结构及电路系统均较复杂;又由于发热多,对冷 却系统性能要求较高。
22
第三节 相关技术及其发展现状
高速加工虽具有众多的优点,但由于技术复杂,且对于 相关技术要求较高,使其应用受到限制。 与高速加工密切相关的技术主要有: ◎高速加工刀具与磨具制造技术; ◎高速主轴单元制造技术; ◎高速进给单元制造技术; ◎高速加工在线检测与控制技术; ◎其他:如高速加工毛坯制造技术,干切技术,高速加 工的排屑技术、安全防护技术等。 此外高速切削与磨削机理的研究,对于高速切削的发展 也具有重要意义。
先进制造工艺技术高速切削
进给速度
合理设置进给速度,以保 证加工表面质量和刀具寿 命。
切削深度
根据刀具和工件材料特性, 选择合适的切削深度,以 获得良好的加工效果。
加工过程的监控与检测
01
切削力监测
通过实时监测切削力变化,可以 判断刀具磨损情况和调整切削参 数。
02
加工表面质量检测
03
刀具磨损监测
采用表面粗糙度仪、光学显微镜 等方法检测加工表面质量,以确 保加工精度和降低不良率。
高速切削适用于多种材料加工 ,包括钢、铸铁、有色金属等
,扩大了加工范围。
高速切削对机床的要求
高转速主轴
高进给系统
为了实现高速旋转的刀具,机床需要配备 高转速的主轴,通常转速范围在每分钟数 千转到数万转之间。
为了实现高速进给的切削方式,机床需要 配备高进给的传动系统和控制系统,确保 切削过程的稳定性和准确性。
刀具涂层
涂层技术能够提高刀具表面的硬度 和耐磨性,降低摩擦系数,从而提 高切削速度和加工效率。
刀具结构
采用合理的刀具结构和几何参数, 如刀尖圆弧半径、切削刃倾角等, 能够改善切削效果,减少刀具磨损。
切削液技术
切削液种类
选择合适的切削液对于降低切削 温度、减少刀具磨损和提高加工 表面质量至关重要。常用的切削 液有油基、水基和半合成切削液
集成电路芯片。
高速切削技术能够实现高精度、 高效率的加工,满足电子信息产 业对产品精度和一致性的高要求。
高速切削技术的应用还有助于提 高电子信息产品的性能和可靠性,
降低生产成本。
05 高速切削技术的发展前景 与挑战
高速切削技术的发展前景
高效加工
高速切削技术能够显著提高加工效率,缩短产品 制造周期,降低生产成本。
《高速切削》课件
本PPT课件将介绍高速切削的定义、原理、分类、技术、应用、注意事项以及 未来发展,为您展示全面的高速切削知识。
什么是高速切削?
高速切削的定义
高速切削是指在高速运动下切削金属材料的加工方 法。
高速切削的优点
高速切削具有高效率、高精度和优质表面等优点。
高速切削的原理
1 原理介绍
高速切削技术的趋势 和前景
高速切削技术正朝着更高效率、 更高精度和更环保的方向发展。
ቤተ መጻሕፍቲ ባይዱ
高速切削的未来发展
高速切削未来将在各行各业中得 到更广泛的应用和进一步的优化。
高速切削注意事项
1 高速切削的注意事项
高速切削过程中需注意刀具选择、润滑和安全等方面。
2 如何安全进行高速切削
安全进行高速切削需遵循正确的操作规程和戴好个人防护装备。
3 如何保证高速切削的质量
保证高速切削质量需要注意刀具磨损和加工参数等关键因素。
高速切削发展前景
高速切削的发展历程
高速切削技术经历了多年的发展 与创新。
高速切削利用切削工具对工件进行高速运动切削,实现金属材料的加工。
2 高速切削的工作过程
高速切削的工作过程包括进给运动、主轴转动和切削速度等因素。
3 高速切削的工作原理
高速切削通过防振、刀具材料和润滑等措施,提高切削效率和质量。
高速切削的分类
高速切削分类介绍
高速切削可分为铣削加工和车削 加工两种主要类型。
CNC技术在高速切削加工中起到关 键作用,实现自动化加工。
高速切削的应用
1
高速切削在现代制造中的应用
高速切削广泛应用于航空、汽车、船舶等
高速切削的优势和局限性
2
高速切削简介
2020/4/3
金属切削原理 影响刀具耐用度的主要因素
泰勒公式 vT m A
T
Cv
11
1
vm f nap p
T
Cv
v5
f
2 .25
a
0 .75 p
2020/4/3
高速切削的概念和基本原理
➢ 高速切削技术,是以比常规高数倍的切削速度对零件进 行切削加工的一项先进制造技术。高速切削理论是1931 年4月德国物理学家Carl.J.Salomon提出的。
2020/4/3
2020/4/3
高速钻孔
表面和内侧倒棱
高速加工中心 1台1轴1工序(3万件/月) 柔性(零件、孔数、孔径、孔型可变)
汽车轮毂螺栓孔高速加工实例
电极制造
1毛坯 → 2粗铣 → 3半精铣 → 4热处理 →5电火花加工→6精铣 →7手工磨修 a)传统模具加工的过程
1硬化毛坯→ 2粗铣 → 3半精铣 → 4精铣 →5手工磨修 b)高速模具加工的过程
➢ 1931年德国物理学家C. J. Salomom在“高速切削原理 ”一文中给出了著名的“Salomom曲线”——对应于一 定的工件材料存在一个临界切削速度,此点切削温度最 高,超过该临界值,切削速度增加,切削温度反而下降 。
2020/4/3
➢ Salomom的理论与实验结果,引发了人们极大的兴趣, 并由此产生了“高速切削(HSC)”的概念。
2020/4/3
高速切削的特点
通常切削速度下
M A
I
Ⅱ O
I 剪切滑移 II 前刀面挤压摩擦 III 后刀面挤压摩擦
Ⅲ
2020/4/3
金属切削过程中的滑移线和流线示意图
高速切削的特点
机械制造中的机械加工高速切削技术
机械制造中的机械加工高速切削技术高速切削是机械加工领域中的一项重要技术,它在工件加工过程中使用高速切削工具,以较大的进给速度和转速进行切削,提高了加工效率和加工质量。
本文将介绍机械加工高速切削技术的原理、特点以及在机械制造中的应用。
一、高速切削技术的原理高速切削技术是基于高速运动的切削工具和工件之间的相对运动原理。
在高速切削过程中,切削工具以较高的转速和进给速度与工件接触,形成切屑并进行切削。
相比传统的慢速切削,高速切削具有以下特点:1. 切削速度较快:高速切削在保持刀具刃口整齐的情况下,增大刀具转速和进给速度,从而大幅提高了切削效率。
2. 切削温度较低:高速切削由于切削时间短,切削工具与工件接触时间减少,从而减少了热量在切削区域的积累,使得切削温度低于常规切削。
3. 切削力较小:高速切削采用较高的转速和进给速度,在单位时间内切削的材料量相对较大,切削力得到了有效分散,从而降低了切削力的大小。
二、高速切削技术的应用1. 提高生产效率:高速切削技术在机械制造中广泛应用,能够显著提高生产效率。
通过提高切削速度和进给速度,生产厂商可以在较短时间内完成更多的加工任务,提高了机械加工的效率。
2. 提高加工精度:高速切削技术具有切削温度低、切削力小等特点,能够减小热变形和机械振动对工件加工精度的影响,提高了加工精度和表面质量。
3. 增加工件材料种类:高速切削技术在闪光电火花加工、超硬材料和薄壁工件高速切削等领域应用广泛。
高速切削通过较高的转速和进给速度,能够更好地适应不同材料的加工需求。
4. 降低加工成本:高速切削技术通过提高加工效率和降低切削力,可以减少切削时间和刀具磨损,从而降低了加工成本。
三、机械加工高速切削技术的挑战与发展高速切削技术在机械制造中的应用受到了一些挑战,如切削热问题、切削润滑和冷却问题等。
同时,随着高速切削技术的发展,一些新的切削方式如超声波切削、激光切削等也受到了广泛关注。
为了进一步推动高速切削技术的发展,需要加强研究,探索新的切削理论和方法。
《高速切削加工》课件
03 高速切削加工的关键技术
高速切削加工的刀具技术
刀具材料
01
高速切削加工需要使用高硬度、高耐磨性的刀具材料,如硬质
合金、陶瓷和金刚石等。
刀具涂层技术
02
涂层技术能够提高刀具表面的硬度和耐磨性,降低摩擦系数,
提高切削效率。
刀具几何形状
03
高速切削加工需要采用特殊的刀具几何形状,如小前角、大后
角和短刀刃等,以减小切削力、切削热和刀具磨损。
在高速切削加工中,降低能耗、减少废弃 物排放和提高资源利用效率成为重要的发 展趋势,符合可持续发展的要求。
高速切削加工面临的挑战与对策
高温与热变形
高速切削加工过程中产生的高温可能导致 刀具磨损、工件热变形等问题,需采用新 型刀具材料、强化冷却技术等手段解决。
振动与稳定性
高速切削加工过程中的振动可能影响加工 精度和表面质量,应优化机床结构、提高 刚性和阻尼性能。
模具型腔加工
高速切削加工技术在模具制造业 中广泛应用于模具型腔的加工, 如注塑模、压铸模等,能够快速 准确地完成复杂型面的加工。
模具钢材料加工
高速切削加工技术能够高效地加 工各种模具钢材料,如H13、 SKD61等,提高加工效率,减少 热量的产生和材料的变形。
高速切削加工在航空航天制造业的应用
航空发动机制造
高速切削加工的工艺参数
1 2 3
切削速度
提高切削速度可以提高加工效率,但同时也需要 选择合适的刀具和材料,以避免刀具磨损和工件 热变形。
进给速度
进给速度的提高可以增加材料去除率,但过高的 进给速度可能导致刀具磨损和工件表面质量下降 。
切削深度
适当的切削深度可以提高加工效率,但过大的切 削深度可能导致刀具磨损和工件表面质量下降。
高速切削重要资料
1. 高速切削的技术关键高速主轴是高速切削的首要条件,对于不同的工件材料,目前的切削速度可达5~100m/s。
主轴的转速与刀具的直径有关,采用小直径的球头铣刀时,主轴转速可达100000r/min。
(1)滚珠轴承高速主轴当前高速切削铣床上装备的主轴多数为滚珠轴承电动主轴。
如图1所示,电动主轴由转子、轴承、外壳、电机组件和测角系统组成。
除此之外,主轴运转时,还必须配备冷却系统、润滑系统和变频驱动电气装置。
高速主轴的轴承大多用压力角为15º或25º的角接触滚珠轴承,其精度等级以精密级(C级)和超精密级(B级)为主。
为了提高轴承的极限转速,有的轴承厂在普通系列基础上增添了高速轴承系列,所不同的主要是采用直径较小的钢球和保持架以外圈滚道导向,从而减少了钢球由离心力的作用而引起的对轴承外圈的压力和改善保持架运转时的润滑条件。
高速主轴轴承的最新发展是所谓的混合轴承,它的内、外圈由轴承钢制成,但滚珠由氮化硅陶瓷制成。
与钢球相比,陶瓷球密度减少60%,因而可大幅度地降低离心力。
另外,陶瓷的弹性模量比钢高50%,在相同的滚珠直径时,混合轴承具有更高的刚度。
氮化硅陶瓷的另外一个特点是摩擦系数低,由此可减少轴承运转时的摩擦发热、磨损及功率损失。
为了便于比较不同轴的主轴的转速特性,一般采用转速特征值来度量,其定义为:转速特征值=轴径×转速除轴承外,润滑方式也是影响主轴极限转的一个重要因素,表1是各种轴承在不同润滑条件下所能达到的特征值。
表 1 电动主轴转速特征值油脂润滑是一种使用最多的方式,优点是结构简单,维护方便,可靠性高和造价低廉。
缺点是最高转速较低,要提高转速,只有通过采用陶瓷滚珠的途径。
油雾润滑又称气/油润滑,在主轴起动前必须先起动润滑装置,该装置将润滑油与压缩空气混合然后通过管路将油雾喷入各轴承。
这种润滑方式属于强制润滑,在正常工作情况下,可保证良好的润滑条件以提高转速。
其缺点是结构复杂,主轴壳体要附设许多必须密封的润滑通道,制造成本较高。
高速切削技术
高速切削(HSM=High Speed Machining)一、高速切削理论的提出和定义1.提出:高速切削理论最早是由德国物理学家Carl.J.Salomon 在1931 年4 月提出。
并发表了著名的Salomon曲线[1]。
如图1(a)所示。
主要内容是:在常规切削速度范围内,切削温度随着切削速度的提高而升高,但切削速度提高到一定值后,切削温度不但不升高反会降低,如图1(b)所示,且该切削速度值与工件材料的种类有关。
(a) (b)图1 切削温度变化曲线2、高速切削定义:目前高速切削技术比较普及的定义是根据1992年国际生产工程研究会(CIRP) 年会主题报告的定义:高速切削通常指切削速度超过传统切削速度5 - 10 倍的切削加工。
机床主轴转速在10000-20000r/min以上,进给速度通常达15-50m/min,最高可达90m/min。
实际上,高速切削是一个相对概念,它包括高速铣削、高速车削、高速钻孔与高速车铣(绝大部分应用是高速铣削)等不同的加工方式,根据被加工材料的不同及加工方式的不同,其切削速度范围也不同。
目前,不同的加工材料,切削速度约在下述范围,如表1所示[1]:表1 切削速度范围被加工材料切削速度范围铝合金1000~7500m/min铜合金900~5000m/min铸铁900~5000m/min钢500~2000m/min耐热镍基合金500m/min钛合金150~1000m/min纤维增强塑料2000~9000m/min3.特征现代研究表明,高速切削时,切屑变形所消耗的能量大多数转变为热,切削速度高,产生的热量越大,基本切削区的高温有助于加速塑性变形和切屑形成。
而且大部分热量都被切屑带走。
高速切削变形过程显著特征为:第一变形区变窄,剪切角增大,变形系数减少,如图2;第二变形区的接触长度变短,切屑排出速度极高,前刀面受周期载荷的作用。
所以高速切削的切削变形小,切削力有大幅度下降,切削表面损伤减轻。
高速切削简介
高速切削加工切屑形成特征 文献2
2021/7/16
高速切削加工切屑形成特征 文献2
从连续光滑的切削到周期性的锯齿状切屑,是随着切削速度增大而变化 过渡,这是高速切削加工中最基本又富有挑战性的问题。本文中,用临 界切削速度对切屑流起因的显式表达式,用材料性能,未变形切屑厚度 与刀具前角三者来表达,并基于尺寸分析和数值模拟。实验对于各种金 属材料在宽范围的切削厚度与刀具前角下,切屑由连续到锯齿状,给出 临界切削速度合理的预测。更有趣的是,发现,由于由雷诺数对湍流流 动的控制,对锯齿形切屑的流动模式的转变是由雷诺数主导。此外,材 料的性能对锯齿形切屑的影响进行系统的研究,其发展趋势和Recht经典 2021/7模/16 型吻合。
➢ 1931年德国物理学家C. J. Salomom在“高速切削原理 ”一文中给出了著名的“Salomom曲线”——对应于一 定的工件材料存在一个临界切削速度,此点切削温度最 高,超过该临界值,切削速度增加,切削温度反而下降 。
2021/7/16
➢ Salomom的理论与实验结果,引发了人们极大的兴趣, 并由此产生了“高速切削(HSC)”的概念。
2021/7/16
2021/7/16
高速钻孔
表面和内侧倒棱
高速加工中心 1台1轴1工序(3万件/月) 柔性(零件、孔数、孔径、孔型可变)
汽车轮毂螺栓孔高速加工实例
电极制造
1毛坯 → 2粗铣 → 3半精铣 → 4热处理 →5电火花加工→6精铣 →7手工磨修 a)传统模具加工的过程
1硬化毛坯→ 2粗铣 → 3半精铣 → 4精铣 →5手工磨修 b)高速模具加工的过程
切削热大部分由 切屑快速带走
避免积屑瘤的产 生
接触区 高速切削的剪切角 常规切削的剪切角
高速切削的基本原理
高速切削的基本原理
高速切削是一种高效率、高精度的切削加工方法,其基本原理包括以下几点:
1. 切削速度:高速切削的切削速度远高于传统切削速度。
通过提高切削速度,可以减少切削时间,提高加工效率。
同时,高速切削还可以降低切削力和切削温度,减少刀具磨损和工件变形的风险。
2. 刀具材料和涂层:高速切削所使用的刀具材料和涂层也有所不同。
常见的高速切削刀具材料包括硬质合金、陶瓷和超硬材料等,这些材料具有高硬度、高韧性和高热稳定性,可以承受高温和高压的切削环境。
涂层技术可以进一步提高刀具的耐磨性和耐热性。
3. 切削参数优化:高速切削需要对切削参数进行精确的优化。
切削速度、进给速度、切削深度和切削角度等参数需要根据工件材料、刀具材料和切削机床的性能进行调整。
合理的切削参数设计可以提高切削效率和刀具寿命。
4. 切削冷却和润滑:高速切削对切削冷却和润滑要求较高。
采用高效的切削冷却系统可以迅速排除切削过程中产生的热量,降低刀具和工件的温度,减少刀具磨损和工件变形的风险。
同时,润滑剂的使用可以减少切削摩擦,提高表面质量和加工精度。
总之,高速切削通过提高切削速度、优化切削参数、使用高性能刀具材料和涂层,
以及有效的冷却和润滑措施,可以实现高效率、高精度的切削加工效果。
第四讲 高速切削技术及刀具
当变形缓慢时,上述过程是等温的。开始时,塑性剪切应变 限制在材料的部分弱剪切区。在这个区里,应变硬化强化了 材料,而且应变区在材料上扩散,使切削力增加。这是传统 速度切削时切削力的情况。 然而如果切削速度足够快,使应变来不及发生,变形就只发 生在小范围内,会使切削力小于传统速度的切削力。 此即 高速切削时切削力下降的原因。
高速切削及刀具
3)突变滑移和绝热剪切: 在快速塑变过程中,局部发热产生温度梯度,最 大的温度出现在发热最大的点。如果被切削材料 应变强化速率下降,会导致切削点局部温度升高, 当下降速率等于或大于应变硬化材料的速率时, 金属将继续保持局部变形而不扩散。这个不稳定 过程导致突变条件产生,称为突变滑移。随着切 削温度的提高,达到绝热条件后,使热能量限制 在特定的滑移区。因为特定滑移区的软化,发生 附加滑移,最终得到完全剪切。
高速切削及刀具
高速切削技术的概念 高速切削的发展史;
;
高速切削的优点;
高速切削的应用; 高速切削的“软硬件”要求;
高速切削的概念与特点
高速切削技术的概念
20世纪90年代走向实际应用的先进制造技术,目前 国际上对其定义尚无统一规定;
通常指高主轴转速和高进给速度下的立铣; 现阶段一般把转速10000r/min以上视为高速切削; 国外对高速切削两种表述方法:
1)形成已加工表面和切屑底面两个新生表面所需 能量 2)剪切区的剪切变形功
3)前、后刀面与切屑、工件的摩擦功 4)切削层材料经过剪切面时,由于动量改变而消 耗的功
切削热
• 产生的热:
1)高速切削时,切屑变形所消耗的能量绝大部分转变成热 形成新生表面消耗的功: 成为工件和切屑所增加的内能 剪切变形功和动量改变消耗的功: 大部分变为基本变形区的热量, 小部分形成新生表面的内能 前后刀面的摩擦功产生的热: 变为第二、三变形区的热量
先进制造技术 第2章 高速切削技术2-1
萨洛蒙在l924一1931年间,进行了一系列的高速切削实验: 在非黑色金属材料,如铝、铜和青铜上,用特大直径的刀 盘进行锯切,最高实验的切削速度曾达到14000m/min, 在各种进给速度下,使用了多达20齿的螺旋铣刀。l931年 申请了“超极限速度”专利,随后卖给了“Krupp钢与工 具制造厂”。 萨洛蒙和他的研究室实际上完成了大部分有色金属的切削 试验研究,并且推断出铸铁材料和钢材的相关曲线。 萨洛蒙理论提出了一个描述切削条件的区域或者是范围, 在这个区域内是不能进行切削的。萨洛蒙没有提出可靠的 理论解释,而且他的许多实验细节也没有人知道。
刀具磨损曲线
三、高速切削切屑形成
高速切削试验表明,工件材料及 性能对切屑形态 有决定性影响。
低硬度和高热物理性能的工件材料(铝合金、低碳钢、未 淬硬钢等)易形成连续带状切屑。 高硬度和低热物理性能的工件材料(钛合金钢、未淬硬钢 等)易形成锯齿状切屑。
切削速度对切屑形态有重要影响。对钛合金,在 (1.5~4800)m/min的切削速度范围内形成锯齿状 切屑,随切削速度的增加,锯齿程度(锯齿的齿 距)在增加,直至成为分离的单元切屑。
不同切削速度下车削45钢件的切削形态。
一方面,切削速度增加,应变速度加大,导致脆 性增加,易于形成锯齿状切屑;另一方面,切削 速度增加,切屑温度增加,导致脆性降低,不易 形成锯齿状切屑;
绝热剪切理论(Adiabatic Shear Theory) 周期脆性断裂理论(Periodic brittle fracture theoty)
萨洛蒙(Salomon)曲线
1600
切削温度/℃
钢
1200
青铜
铸铁 硬质合金980℃ Stelite合金850℃ 高速钢650℃ 碳素工具钢450℃
《高速切削》课件
高速切削技术面临的挑战
高成本
高速切削技术需要高精度 和高性能的机床、刀具等 设备,成本较高。
技术门槛高
高速切削技术需要操作者 具备较高的技能水平和经 验,技术门槛较高。
加工过程不稳定
高速切削过程中的振动、 热变形等因素可能导致加 工过程不稳定,影响加工 精度和表面质量。
高速切削技术的发展前景
广泛应用
高速切削过程中产生的热量较 少,减少了工件的热变形和热 损伤,有利于加工质量的稳定 。
适合难加工材料
对于一些硬、韧、耐磨等难加 工材料,高速切削可以有效地
提高切削效率和加工质量。
高速切削的应用领域
航空航天
汽车制造
高速切削在航空航天领域广泛应用于加工 高强度、轻质材料,如钛合金和复合材料 等。
汽车制造过程中需要大量切削加工,高速 切削可以提高生产效率和加工质量,尤其 在汽车零部件的制造中得到广泛应用。
02
高速切削通常采用非常锋利的刀 具,并在高转速的机床条件下进 行加工,以实现高效率、高质量 的切削。
高速切削的特点
高效率
高速切削的切削速度远高于常 规切削,因此可以在短时间内 完成大量切削,提高生产效率
。
高质量
高速切削产生的切削力较小, 减少了工件的变形和振动,提 高了加工精度和表面质量。
减少热影响
高速切削时,应使用高质量的刀具和合适的切削液,以减小刀具磨损和提高加工精 度。
CHAPTER 03
高速切削的关键技术
高速切削的刀具技术
刀具材料
选用高硬度、高耐磨性的刀具材 料,如硬质合金、陶瓷和金刚石 等,以提高刀具的耐用度和切削
效率。
刀具几何形状
设计合理的刀具几何形状,如采用 较大的前角和后角,以减小切削力 和切削热,提高刀具的切削性能。
高速切削的名词解释
高速切削的名词解释高速切削是现代制造业中一项重要的加工技术,其在工件加工中起着至关重要的作用。
简单来说,高速切削就是在高转速下,通过刀具切削工件表面,快速去除工件上的多余材料,以达到制造精密零部件的目的。
这种切削方式在工艺和设备上相对传统切削方式有着显著的差异,具有许多独特的特点和优势。
本文将从原理、应用领域、特点和挑战等方面对高速切削进行详细解释。
高速切削的原理是基于材料去除的速度和切削轨迹,通过高速旋转的刀具将切削力传递至工件表面,实现切削过程。
相较于传统切削方式,高速切削使用的切削速度更高,可以达到数千转每分钟,甚至数万转每分钟。
高速切削依靠刀具的高转速和稳定性,既提高了生产效率,又确保了切削质量。
它还通过合理的刀具材料和结构设计,降低了切削过程中的热变形和振动等不利因素,进一步提高了工件的加工精度和表面质量。
高速切削的应用领域广泛。
首先,它在航空航天和汽车制造等领域的零部件加工中发挥着重要作用。
对于满足安全性和精密度要求的关键部件,高速切削能够更快速、高效地进行加工。
其次,高速切削在模具和工装制造中也有广泛应用。
模具和工装的加工要求高度精确,而高速切削技术通过提高切削质量和效率,实现了模具和工装的大规模制造。
此外,高速切削还在医疗器械、电子设备和精密仪器等领域有所应用。
高速切削具有许多独特的特点和优势。
首先,由于高速切削技术的使用,加工效率显著提高。
切削速度的增加意味着更短的加工时间,使得生产成本和周期可以大大缩短。
其次,高速切削还可以实现加工精度的提高。
高速切削技术克服了传统切削过程中的振动和热变形等因素,可获得更高的加工精度和表面质量。
此外,高速切削还可以延长切削刀具的使用寿命,减少了更换刀具的频率和成本。
最后,高速切削还能够更好地应对工艺难题。
在某些复杂形状的零部件加工中,高速切削技术能够实现较低的切削力和较高的切削精度,解决了以往的加工难题。
然而,高速切削也面临着一些挑战。
首先,高速切削需要刀具和机床等加工设备具备较高的技术水平。
高速切削
对机床的要求
对ISO/BT 40号机床的典型要求如下:
谢谢观看
优点和缺点
优点
缺点
高速切削可以节省30%的时间,进给速率为传统切削的5倍到10倍,而且切削需要的施力较小。因此可以针对 薄壁工件进行加工。而且其表面精度提高,因此省去了后续精磨的工序。因为切削速度比热传导速度要快,大部 分的热都留在切屑上,无法传到工件,也可以避免工件因受热产生的翘曲。
硬质材料也可以用高速切削,甚至是硬度到69HRC的材料也可以,因此在切削之后不需额外硬化的工序,也 省去硬化工序中的风险。
历史
1931年时Carl J. Salomon曾经针对高速下的切削发表过专利, 其中提到切削的温度会随着切削速度抛物 线上升,当温度到达最高点后,切削速度再上升时,切削温度下反而会下降。因此假若技术可行的话,可以用一 般的高速钢在切削速度 m/min下铣削钢制材料,不会破坏切削边。不过Salomon没有示范过这个实验。在1950年 代时,苏联及美国的洛克希德公司曾经验证过,例如曾在洛克希德公司用高速钢的刀具在40,000至50,000 m/min的速度,成功的对钢材加工。
高速切削还可以省下传统切削中粗加工(roughing,因为高速切削的高材料移除率)及精加工(finishing, 因为高表面精度)。
高速切削的超高转速使得工作场所需要提高其安全防护的设备,高转速下即使是最小的切屑也会有相当高的 飞行速度,甚至可能比枪支子弹的抛体运动还快。而且刀具也比较容易磨损,会减少刀具寿命(不过材料加工需 要的时间也变短了)。高速切削也对刀具平衡有高度的要求,因为不平衡可能会产生极大的力,一方面会让刀具 损坏,另一方面也强烈的影响了主轴的位置。因为高速切削的极高转速及负载,元件的消耗率高,需定期进行昂 贵的保养以及主轴、刀具的更换。
高速切削加工技术
在通用机械制造业中,高速切 削加工技术广泛应用于机床、 泵阀、压缩机和液压传动装置 等产品的制造。
05
高速切削加工技术的发 展趋势与挑战
高效稳定的高速切削技术
高效稳定的高速切削技术是未来发展 的关键,需要不断提高切削速度和加 工效率,同时保持加工过程的稳定性 和可靠性。
高效稳定的切削技术还需要不断优化 切削参数和刀具设计,以适应不同材 料和加工需求的挑战。
高速切削工艺技术
切削参数选择
根据不同的加工材料和切削条件, 选择合适的切削速度、进给速度 和切削深度等参数,以实现高效
切削和高质量加工。
切削液使用
合理选用切削液,如乳化液、极 压切削油等,以提高切削效率和 工件表面质量,同时减少刀具磨
损和热量产生。
加工路径规划
采用合理的加工路径和顺序,以 减少空行程和换刀次数,提高加
高效稳定的切削技术需要解决切削过 程中的振动和热变形问题,提高加工 精度和表面质量。
高性能刀具材料的研发
高性能刀具材料是实现高速切削 的关键因素之一,需要具备高硬 度、高强度、高耐磨性和良好的
抗热震性等特点。
研发新型高性能刀具材料,如超 硬材料、陶瓷材料等,能够提高 切削速度和加工效率,同时减少
刀具磨损和破损。
改善加工质量
01
高速切削加工技术能够减少切削 力,降低切削热,从而减小了工 件的热变形和残余应力,提高了 加工精度和表面质量。
02
由于切削力减小,工件不易产生 振动,减少了振纹和表面粗糙度 ,进一步提高了加工质量。
降低加工成本
高速切削加工技术能够显著提高加工效率,缩短了加工周期,从而降低了单件成 本。
高速切削加工技术
目 录
• 高速切削加工技术概述 • 高速切削加工技术的优势 • 高速切削加工的关键技术 • 高速切削加工的实践应用 • 高速切削加工技术的发展趋势与挑战 • 高速切削加工技术的未来展望
数控加工工艺学第8章高速切削工艺
冷却润滑优化
采用高效冷却润滑剂,减少切削热和 摩擦,降低刀具磨损和工件热变形。
高速切削的实践案例
1 2
航空制造领域
在航空制造领域,高速切削技术广泛应用于加工 飞机零部件,如发动机叶片和机身结构件等。
数控加工工艺学第8章高速切削工 艺
目录
• 高速切削工艺概述 • 高速切削的原理与技术 • 高速切削的材料与刀具 • 高速切削的机床与设备 • 高速切削的工艺优化与实践
01 高速切削工艺概述
高速切削的定义与特点
高速切削定义
高速切削是一种在极短时间内完 成高精度加工的方法,通过高转 速和高进给速度实现高效加工。
钟)。
根据布局形式
高速切削机床可分为立式机床、 卧式机床、龙门式机床等。
根据功能
高速切削机床可分为铣削机床、 车削机床、钻孔机床等。
高速切削机床的应用
难加工材料
01
高速切削机床适用于加工各种难加工材料,如高硬度、高强度、
高耐磨性的材料。
薄壁件和细长件
02
高速切削机床能够快速去除材料,减少工件变形,适用于加工
根据切削速度、进给量等 参数选择合适的刀具材料。
根据加工要求选择
根据加工精度、表面质量 等要求选择合适的刀具材 料。
04 高速切削的机床与设备
高速切削机床的特点
高转速
高速切削机床的主轴转速非常高,通常在10,000100,000转/分钟之间,甚至更高。
大功率
高速切削机床需要大功率来提供高切削速度和高进给速 度。
ABCD
高动态性能
高速切削机床的动态性能优异,能够快速响应加减速, 确保加工过程的稳定性和精度。
高速切削理论及相关技术
一、 高速切削技术的定义 二、 高速切削技术的特点及应用
概要
三、 高速切削的装备条件及关键技术
四、 高速切削机理 五、 高速切削技术的现状以及发展趋势
到哪?
高效率
低能耗
高质量
高精度
效率高!
高速切削条件下,虽然切削深度和厚 度小,但由于主轴转速高,进给速度快, 单位将时间内的金属切除量反而增加了。 因此,加工效率也相应提高了。
陶瓷刀具有两种:
Al₂O₃基陶瓷
氮化硅陶瓷
前者最大的缺点是抗弯强度低,冲击韧度差。 80年代进入刀具市场的氮化硅陶瓷相比具有高的 强度和韧性,在加工铸铁及镍基合金时取得良好 效果,其代表牌号是Sialon。
陶瓷
立方氮化硼 金刚石
超硬材料
涂层刀具
涂层刀具有两种:
化学气象沉积法(CVD)-硬质合金 物理气象沉积法(PVD)-高速钢
金刚石刀具有三种: 天然单晶金刚石刀具 整体人造聚晶金刚石刀具 金刚石复合刀片 天然金刚石价格昂贵,使用较少。 人造金刚石是通过合金触媒作用,在高温高 压下由石墨转化而成。 金刚石复合刀片是在硬质合金基体上烧结一 层约0.5mm厚的金刚石。
使用金刚石刀具时应注意:
金刚石与铁有极强的化学亲和力,故不适用于黑色金属加 工。 金刚石刀具仅适用于微量切削条件。 金刚石热稳定性低,切削温度超过700至800摄氏度时, 会完全失去其硬度。
高速切削理论及其相关技术
• 定义及特点
高速切削概念是谁提出的?高速切削有哪些特点?高速切削应用在那些方面?
•哪些?机床和刀具是什么样的?机理?
• 现状和趋势
重要试验?发展趋势?
一、 高速切削技术的定义 二、 高速切削技术的特点及应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精度高: 对于同样的切削层参数,高速切削的单位切削力明显减小。这对减小振动和偏差 非常重要,也使工件在切削过程的受力变形显著减小。
质量高: 一方面,高速切削的力值及其变化幅度小,与主轴转速有关的激振频率远远高于切削工 艺系统的高阶固有频率。 另一方面,也是的传入工件的切削热的比例大幅度减少,加工表面受热时间短、切削温 度低,因此热影响区和热影响程度都较小。加工表面质量显著提高。
低能耗:高速切削时,单位功率所切削的切削曾材料体积显著增大。由于采用较小的背吃 刀量,刀具每刃的切削量很小,因而机床的主轴、导轨的受力就小,机床的精度寿命 长,同时刀具寿命也延长了。
高速加工机床振动小、噪声低、少用或不用切削液,也符合环保要求。
二 .高速加工切削的特点:(6个问题)
1.单位时间内材料切除率可大大增加,可达到常规切削的 3~6倍。极大提高了机床的生产率 2.切削力可降低30%,尤其是径向切削力大幅度减少, 特别有利于薄壁等刚性较差零件的加工,最小0.05mm 3.高速切削时95%~98%以上的切削热来不及传给工件, 工件基本处于冷态。特别适合加工易热变形的零件 4.高速切削时,机床的激振频率特别高,远高出机床系统的固 有频率,可加工出非常精密光滑的零件
5.高速加工可加工各种难加工材料 6.降低加工成本 单件加工时向缩短 一次安装完粗、半精、精
先进制造技术专题
高速切削技术
切削技术的新发展
目标 手段
提高柔性 提高加工质量
柔性制造系统
提高切削速度
切削加工 提高精度 扩大加工材料范围 提高生产率 降低加工成本 减少消耗
高速切削
精密与超精密加工
硬材料切削 干切削与微切削
高速切削范围: 按不同的加工工艺:车削:700 ~ 7000m/min (线速度) 铣削:300 ~ 6000m/min 钻削:200 ~ 1100m/min 磨削:150 ~ 360m/s 主轴转速:10000转/分以上(最少) 进给建度:30 ~ 90m/min 加减速度:1 ~ 8g (普通数控 0.1 ~ 0.3g)
进给速度:20~40m/min
按加工工艺划分: 车削:700~7000m/min 铣削:300~6000m/min 钻削:200~1100m/min 磨削:5000~10000m/min 铜材:1000m/min 塑料:1150m/min
由于刀具、工件材料和加工工艺的多样性,对高速切削不可能用 一个确定的速度指标来定义。 ISO1940规定主轴转速大于8000r/min的加工形式为高速切削。 现阶段一般把主轴转速在10000r/min以上的加工形式视为高速切 削。
先进制造技术专题
高速切削技术
高速切削的特征
单位时间切除量 表面质量
切削力 刀具寿命
切削速度
来源:PTW
先进制造技术专题
高速切削技术
高速切削的应用领域
例1:高精度铝质模具型腔加工:在传统铣削加工中,由于铝熔点低,铝
屑容易粘附在刀具上,虽经后续的铲刮、抛光工序,型腔也很难达
到精度要求,在制时间达60小时。 高速铣削分粗、精两道工序:n精=20000r/min,ap=0.2mm,
高速加工定义
尚无统一定义,一般认为高速加工是指采用超硬材料
的刀具,通过极大地提高切削速度和进给速度,来提
高材料切除率、加工精度和加工表面质量的现代加工
技术。
以切削速度和进给速度界定:高速加工的切削速度和
进给速度为普通切削的5~10倍。
以主轴转速界定:高速加工的主轴转速≥10000 r/min
高速切削技术
实现高速切削的关键技术
高速切削机理及工艺 高性能刀具材料及刀具设计制造技术 高性能机床及其附件
† 机床结构及材料 † 机床设计制造技术 † 高速主轴系统
† 快速进给系统
† 效高精度测量测试技术
† 安全防护技术
按工件材料划分: 铝合金:1500~5500m/min 铸铁:750~2500m/min 普通钢:600~1200m/min 铜材:1000m/min 塑料:1150m/min
高速切削的概念和基本原理 高速切削技术,是以比常规高数倍的切削速度对零件进
行切削加工的一项先进制造技术。高速切削理论是1931 年4月德国物理学家Carl.J.Salomon提出的。 1931年德国物理学家C. J. Salomom在“高速切削原理 ”一文中给出了著名的“Salomom曲线”——对应于一 定的工件材料存在一个临界切削速度,此点切削温度最 高,超过该临界值,切削速度增加,切削温度反而下降 。
vf=5m/min;加工周期仅为6小时,完全达到精度要求。
例2:塑料的轮胎型芯加工:用传统方法(手工)需十几道工序,在制时间 20天以上,也很难达到复杂轮胎花纹的技术要求。 采用高速铣削,n= 18 000r/min,ap=2 mm,vf=10m/min,在 制时间仅24小时就完全达到了工艺要求。
先进制造技术专题