2011年无锡市初中毕业升学考试数学试题精选

合集下载

2011年无锡市中考数学试题

2011年无锡市中考数学试题

2011年无锡市中考数学试题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用28铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答.写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B铅笔作答,并请加黑加粗.描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共l0小题.每小题3分.共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.︳-3︳的值等于( ▲)A.3 8.-3 C.±3 D.32.若a>b,则( ▲)A.a>-b B.a<-b C.-2a>-2b D.-2a<-2b3.分解因式2x2—4x+2的最终结果是( ▲)A.2x(x-2) B.2(x2-2x+1) C.2(x-1)2 D.(2x-2)24.已知圆柱的底面半径为2cm,高为5cm,则圆柱的侧面积是( ▲)A.20 cm28.20兀cm2 C.10兀cm2D.5兀cm25.菱形具有而矩形不一定具有的性质是( ▲) A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补6.一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合要求的是( ▲)7.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC-=0B:OD,则下列结论中一定正确的是( ▲)A.①与②相似B.①与③相似C.①与④相似D.②与④相似则这次测试成绩的中位数m满足( ▲) A.40<m≤50 B.50<m≤60 C.60<m≤70 D.m>70B9.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是 ( ▲ )A .y=(x -2)2+1B .y=(x+2)2+1C .y=(x -2)2-3D .y=(x+2)2-310.如图,抛物线y=x 2+1与双曲线y=xk的交点A 的横坐标是1,则关于x 的不等式xk + x 2+1<0的解集是 ( ▲ ) A .x>1 B .x<-1 C .0<x<1 D .-1<x<0二、填空题(本大题共8小题,每小题2分,共l6分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置处)11.计算:38= ▲ .12.我市去年约有50 000人参加中考,这个数据用科学记数法可表示为 ▲ 人.13.函数4-=x y 中自变量x 的取值范围是 ▲ .14.请写出一个大于1且小于2的无理数: ▲ .15.正五边形的每一个内角都等于 ▲ °.16.如图,在Rt △ABC 中,∠ACB=90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD=5cm ,则EF=▲ cm .AB CB(第16题) (第17题) (第18题)17.如图,在△ABC 中,AB=5cm ,AC=3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则 △ACD的周长为 ▲ cm .18.如图,以原点O 为圆心的圆交X 轴于A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB=20°,则∠OCD= ▲ °.三、解答题(本大题共10小题.共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)计算:(1)()()022161-+-- (2)a(a-3)+(2-a)(2+a)20.(本题满分8分)(1)解方程:x 2+4x -2=0; (2)解不等式组⎪⎩⎪⎨⎧-≤-〉-121312x x x x21.(本题满分8分)ABCD 中,E 、F 为对角线BD 上的两点,且∠BAE=∠DCF .求证:BE=DF .22.(本题满分7分)一不透明的袋子中装有4个球,它们除了上面分别标有的号码l 、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.求第二次取出球的号码比第一次的大的概率.(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)23.(本题满分8分)某区共有甲、乙、丙三所高中,所有高二学生参加了一次数学测试.老师们对其中的一道题进行了分析,把每个学生的解答情况归结为下列四类情况之一:A ——概念错误;B ——计算错误;C ——解答基本正确,但不完整;D ——解答完全正确.各校出现这四类情况的人数分别占本校高二已知甲校高二有400名学生,这三所学校高二学生人数的扇形统计图如图.根据以上信息,解答下列问题: (1)求全区高二学生总数;(2)求全区解答完全正确的学生数占全区高二学生总数的百分比m(精确到0.01%);D B A(3)请你对表中三校的数据进行对比分析,给丙校高二数学老师提一个值得关注的问题,并 说明理由.24.(本题满分9分)如图,一架飞机由A 向B 沿水平直线方向飞行,在航线AB 的正下方有两个山头C 、D .飞机在A 处时,测得山头C 、D 在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B 处时,往后测得山头C 的俯角为30°,而山头D 恰好在飞机的正下方.求山头C 、D 之间的距离.25.(本题满分10分)张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC 所示(不包含端点A ,但包含端点C).(1)求y 与x 之间的函数关系式;(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w 最大?最大利润是多少?26.(本题满分6分)如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动.(1)请在所给的图中,用尺规画出点A 在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A 所经过的路线与梯形MNPQ 的三边MN 、NP 、PQ 所围成图形的面积S .O 40008000BA(M)Q27.(本题满分10分)如图,已知O(0,0)、A(4,0)、B(4,3).动点P从O点出发,以每秒3个单位的速度,沿△OAB的边0A、AB、B0作匀速运动;动直线l从AB位置出发,以每秒1个单位的速度向x轴负方向作匀速平移运动.若它们同时出发,运动的时间为t秒,当点P运动到O时,它们都停止运动.(1)当P在线段OA上运动时,求直线l与以P为圆心、1为半径(2)当P在线段AB上运动时,设直线l分到与OA、OB交于C、D,试问:四边形CPBD是否可能为菱形?若能,求出此时t的值;若不能,请说明理由,并说明如何改变直线l的出发时间,使得四边形CPBD会是菱形.28.(本题满分10分)十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额.“速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%十600×15%=265(元).方法二:用“月应纳税额x适用税率一速算扣除数”计算,即2600×15%一l25=265(元)。

江苏省13市2011年中考数学试题分类解析汇编专题2 代数式和因式分解

江苏省13市2011年中考数学试题分类解析汇编专题2 代数式和因式分解

某某13市2011年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1.(某某3分)已知1112a b -=,则ab a b -的值是 A .12 B .-12 C .2 D .-2 【答案】D 。

【考点】代数式变形。

【分析】观察已知和所求的关系,容易发现把已知通分后,再求倒数即可:1111222b a ab a b ab a b--=⇒=⇒=--。

2. (某某3分) 分解因式2x 2—4x+2的最终结果是A .2x(x -2)B .2(x 2-2x+1)C .2(x -1)2D .(2x -2)2【答案】C 。

【考点】提取公因式法和应用公式法因式分解。

【分析】利用提公因式法和运用公式法,直接得出结果: ()()22224222121x x x x x -+=-+=-。

故选C 。

3. (某某、某某2分)下列计算正确的是A .632a a a =*B .y y y =÷33C .mnn m 633=+ D .()623x x = 【答案】D 。

【考点】同底幂乘法,同底幂除法,合并同类项,幂的乘方。

【分析】根据同底幂乘法,同底幂除法,合并同类项,幂的乘方的运算法则,得出结果:A 、23235a a a a +⋅==,故本选项错误;B 331y y ÷=,故本选项错误; C 、3m 与3n 不是同类项,不能合并,故本选项错误;D 、()23326x x x ⨯==,正确。

故选D 。

4.(某某2分)下列运算正确的是A .235a a a +=B .236a a a ⋅=C .32a a a ÷=D .()328a a =【答案】C 。

【考点】,和除法,。

【分析】根据,和除法,的法则运算:A.2a 与3a 不是同类项,不能合并,选项错误;B.232356a a a a a +⋅==≠,选项错误;C.3232a a a a -÷==,选项正确;D.()322368a a a a ⨯==≠,选项错误。

2011年江苏无锡省锡中中考三模数学试卷

2011年江苏无锡省锡中中考三模数学试卷

省锡中实验学校初三数学适应性练习2011.5一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.............) 1.16的平方根是( ▲ ) A .4 B .-4C .±4D .±82.下列运算正确的是( ▲ )A .743)(x x =B .532)(x x x =⋅-C .34)(x x x -=÷- D. 23x x x +=3.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( ▲ )A .1个B . 2个C . 3个D . 4个 4.如图,桌面上有一个一次性纸杯,它的俯视图应是( ▲ )5.某学习小组为了解本城市500万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是( ▲ ) A .该调查的方式是普查 B .本地区只有40个成年人不吸烟 C .样本容量是50 D .本城市一定有100万人吸烟6.已知圆锥的底面半径为1cm ,母线长为3cm ,则圆锥的侧面积是( ▲ )A. 6cm 2B. 3πcm 2C .6πcm 2D .23πcm 2 7.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是( ▲ )A. 内切B. 相交C. 外切D. 外离 8.在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC =5,则DE 的长是( ▲ ) A .2.5 B .5 C .10 D .15 9.如右图,一次函数y =kx +b 的图象经过A 、B 两点, 则不等式kx +b < 0的解集是( ▲ )A. x <0B. 0< x <1C.x <1D. x >110.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要( ▲ ) A. 12120元 B. 12140元 C. 12160元 D. 12200元二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在答A B C DA B O yx 12y =kx +b题卡上相应的位置)11.使42-x 有意义的x 的取值范围是 ▲ .12.中央电视台“情系玉树”赈灾晚会共筹得善款2975000000元,这个数据用科学记数法且保留三个有效数字可表示为 ▲ 元. 13.分解因式:a a a +-232= ▲ .14.反比例函数图像经过点(2,-3),则它的解析式为 ▲ .15.一元二次方程0132=+-x x 的两根为x 1、x 2,则x 1+x 2-x 1·x 2= ▲ .16.如图,⊙O 的直径AB =12,弦CD ⊥AB 于M ,且M 是半径OB 的中点,则CD 的长是 ▲ (结果保留根号).17.将一副三角板如图放置,使等腰直角三角板DEF 的锐角顶点D 放在另一块直角三角板(∠B =60°)的斜边AB 上,两块三角板的直角边交于点M .如果∠BDE =70°,那么∠AMD 的度数是 ▲ .18.如图,在直角坐标系中,直线4y x =+分别与x 轴、y 轴交于点M 、N ,点A 、B 分别在y 轴、x 轴上,且∠B =30°,AB =4,将△ABO 绕原点O 顺时针转动一周,当AB 与直线MN 平行时点A 的坐标为 ▲ .三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)计算:︒-+---30cos 4)21(|1|123 (2)化简2)1(111-÷⎪⎭⎫ ⎝⎛--+x x x x x 20.(本题满分8分)(1)解方程:32321---=-xxx ;(2)解不等式组:⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(32521.(本题满分6分) 如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成2个半圆,每一个扇形或半圆都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).第16题 第17题 第18题A BC D O M·(1)请你用画树状图或列表格的方法,列出所有等可能情况,并求出点(x ,y )落在坐标轴上的概率; (2)直接写出点(x ,y )落在以坐标原点为圆心,2为半径的圆内的概率.22.(本题满分6分) 某校为了解九年级男生1000米长跑的成绩,从中随机抽取了50名男生进行测试,根据测试评分标准,将他们的得分进行统计后分为A B C D ,,,四等,并绘制成下面的频数分布表和扇形统计图.(1)试直接写出x 、y 的值;(2)求表示得分为C 等的扇形的圆心角的度数; (3)如果该校九年级共有男生200名,试估计这200名男生中成绩达到A 等和B 等的人数共有多少人?23.(本题满分8分)已知:如图,AB 是⊙O 的直径,C 、D 为⊙O 上两点,CF ⊥AB 于点F ,CE ⊥AD 的延长线于点E ,且 CE =CF .(1)求证:CE 是⊙O 的切线;(2)若AD =CD =6,求四边形ABCD 的面积.24.(本题满分8分)某厂家新开发一种摩托车如图所示,它的大灯A 射出的光线AB 、AC 与地面MN 的夹角分别为8°和10°,大灯A 与地面距离1 m . (1)该车大灯照亮地面的宽度BC 约是多少?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2 s ,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km /h 的速度驾驶该车,突然遇到危险情况,立即刹等第 成绩(得分) 频数(人数) 频率A10分 7 0.149分 x 0.24B8分 15 0.307分 8 0.16 C 6分 4 0.08 5分 1 y D 5分以下 3 0.06 合计 50 1.00 2 30 0 -1 甲 乙B 等 A 等 38%C 等D 等 A BO F ED C车直到摩托车停止,在这过程中刹车距离是314 m ,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:2548sin ≈ ,718tan ≈ ,50910sin ≈ ,28510tan ≈ )25.(本题满分8分)一果农有一批经过挑选的橙子要包装出售,现随意挑选10个橙子测量直径,数据分别为(单位:cm )7.9 , 7.8 , 8 , 7.9 , 8 , 8 , 7.9 , 7.9 , 7.8 , 7.8. 包装盒内层的横截面如图(1),凹型为半圆形,半圆的直径为这批橙子直径的平均值加0.2cm ,现用纸箱作外包装,内包装嵌入纸箱内,每箱装一层,一层装5×4个(如图(2)所示),纸箱的高度比内包装高5cm.(1)估计这批橙子的平均直径大约是多少?(2)设计纸箱(不加盖子)的长、宽、高各为多少?(数据保留整数,设计时长和宽比内包装各需加长0.5cm );(3)加工成一只纸箱的硬纸板面积需多少cm 2?(不计接头重叠部分,盖子顶面用透明纸)26.(本题满分10分)如图,Rt △AOB 中,∠A =90°,以O 为坐标原点建立直角坐标系,使点A 在x 轴正半轴上,OA =2,AB =8,点C 为AB 边的中点,抛物线的顶点是原点O ,且经过C 点. (1)填空:直线OC 的解析式为 ▲ ; 抛物线的解析式为 ▲ ;(2) 现将该抛物线沿着线段OC 移动,使其顶点M 始终在线段OC 上(包括端点O 、C ),抛物线与y轴的交点为D ,与AB 边的交点为E ;①是否存在这样的点D ,使四边形BDOC 为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;②设△BOE 的面积为S ,求S 的取值范围.27.(本题满分10分)如图,菱形ABCD 中,AB =10,4sin 5A,点E 在AB 上,AE =4,过点E 作EF ∥AD ,交CD 于F ,点P 从点A 出发以1个单位/s 的速度沿着线段AB 向终点B 运动,同时点Q 从点E 出发也以1个单位/s 的速度沿着线段EF 向终点F 运动,设运动时间为t (s ). (1)填空:当t =5时,PQ = ▲ ;(2)当BQ 平分∠ABC 时,直线PQ 将菱形的周长分成两部分,求这两部分的比;(3)以P 为圆心,PQ 长为半径的⊙P 是否能与直线AD 相切?如果能,求此时t 的值;如果不能,说明理由.28.(本题满分12分)如图,边长为4的等边三角形AOB 的顶点O 在坐标原点,点A 在x 轴正半轴上,点B 在第一象限.一动点P 沿x 轴以每秒1个单位长的速度向点A 匀速运动,当点P 到达点A 时停止运动,设点P 运动的时间是t 秒.将线段BP 的中点绕点P 按顺时针方向旋转60°得点C ,点C 随点P 的运动而运动,连接CP 、CA ,过点P 作PD ⊥OB 于点D . (1)填空:PD 的长为 ▲ 用含t 的代数式表示); (2)求点C 的坐标(用含t 的代数式表示);(3)在点P 从O 向A 运动的过程中,△PCA 能否成为直角三角形?若能,求t 的值.若不能,请说明理由;(4)填空:在点P 从O 向A 运动的过程中,点C 运动路线的长为 ▲ . 备用图备用图省锡中实验学校初三数学适应性练习答题卷……………………(2)点(x ,y )落在以坐标原点为圆心,2为半径的圆内的概率是______________.22.(本题满分6分)(1)x=____,y=_____; (2)(3)23.(本题满分8分) (1)(2)24.(本题满分8分)A BO FED CMBCAN25.(本题满分8分)26.(本题满分10分)BO A Cx y BO ACxy初三数学适应性练习考答案一、选择题:二、 填空题:三、解答题:(1)︒-+---30cos 4)21(|1|123 (2)2)1(111-÷⎪⎭⎫⎝⎛--+x x x x x =23-1+8-23 ――3分 =)1(122---x x x x ×)1(-x ―――3分=7―――――――――――4分 =xx-1――――――――――4分 20.(本题满分8分)(1)解方程:32321---=-xxx ;(2)解不等式组:⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(325x =1―――――――――3分 45.2≤>x x ――――――3分经检验:x =1是方程的根.-4 45.2≤<∴x ――――4分 21.(1)树状图或表格(略)――――2分 P (点(x ,y )在坐标轴上)=32―――――――――-4分 (2)P (点(x ,y )在圆内)=31―――――――――-6分 22.(1)x =12,y =0.02.―――――――――2分(2)C 等扇形的圆心角的度数为:()0.080.0236036+⨯=︒°.――――――4分(3)达到A 等和B 等的人数为:()0.140.240.30.16200168+++⨯=人.―――――6分 23. (1)连结OC .∵CF ⊥AB ,CE ⊥AD ,且CE=CF∴∠CAE =∠CAB ――――――――――――――――――――――――1分 ∵ OC =OA∴ ∠CAB =∠O CA∴∠CAE =∠O CA ―――――――――――――――――――――――2分 ∴∠O CA +∠ECA =∠CAE +∠ECA =90° 又∵OC 是⊙O 的半径∴CE 是⊙O 的切线―――――――――――――――――――――――4分(2)∵AD =CD∴∠DAC =∠DCA =∠CAB ∴DC //AB∵∠CAE =∠O CA ∴OC//AD∴四边形AOCD 是平行四边形∴OC =AD =6,AB =12―――――――――――――――6分 ∵∠CAE =∠CAB ∴弧CD =弧CB ∴CD =CB =6∴△OCB 是等边三角形∴33=CF ―――――――――――――――7分∴S 四边形ABCD =327233)126(2)(=⋅+=+CF AB CD ――――8分24.(1)过点A 作AD ⊥MN 于点D ,可求得BD =7m ,CD =5.6m,――3分BC =BD -CD =7-5.6=1.4m∴该摩托车的大灯照亮地面的宽度约是1.4米.――4分(2)该摩托车大灯的设计不能满足最小安全距离的要求.――5分 理由如下:最小安全距离=3142.0350+⨯=8m,――7分 大灯能照到的最远距离为7m,小于最小安全距离.∴ 该摩托车大灯的设计不能满足最小安全距离的要求.――8分25.(1) 7.9―――――――2分(2) 长47,宽38,高10;―――――5分 (3)3486――――――――――――8分26.(1)y =2x -----1分;y =x 2-----2分(2)设解析式为m m x y 2)(2+-=-----3分,①则可得422=+m m -----5分,解得51±-=m (51--=m 舍去), 所以51+-=m -----6分②S=422++-m m -----8分=5)1(2+--m 而20≤≤m所以54≤≤m -----10分 27.(1)52--------2分(2)求出EQ =6,t =6,BP =4, --------3分设PQ 交CD 于点M ,则MD =38, MC =322--------5分 因此菱形的周长被分为356和364,所以这两部分的比为7:8--------6分(3)过P 作PH ⊥AB 于H ,则PH =t 54,PQ 2=22)524()54(t t -+,--------8分由题意可得方程2)54(t =22)524()54(t t -+,--------9分解得:t =10--------10分 28. (1)t 23-------2分 (2)过C 作CE ⊥OA 于E ,可得△PCE ∽△BPD -------4分 求得CE =t 43-------5分, PE =t 412-,OE =t 432+, 因此C (t 43,t 432+)-----6分 (3)当∠PCA =90°时,t =2-------8分当∠PAC =90°时,t =38-------10分 (4)32-------12分。

【初中数学】江苏省无锡市新区2011年中考一模数学试卷 苏科版

【初中数学】江苏省无锡市新区2011年中考一模数学试卷 苏科版

无锡市新区2011年中考一模数学试卷一、选择题(每小题3分,共30分)1.下列运算正确的是 ( )A . 632x x x = B .523x x x =+ C .5329)3(x x = D .224)2(x x =.2.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是 ( ) A .a >b B . a >-bC .-a >bD .-a <-b3.分式242--x x 的值等于0时,x 的值为 ( )A .2x =±B .2x =-C .2x = D.x =4. 下面所示的几何体的左视图是 ( )5.已知O ⊙的半径r ,圆心O 到直线l 的距离为d ,当d r =时,直线l 与O ⊙的位置关系是 ( )A .相交B .相切C .相离D .以上都不对6.把抛物线y =x 2向上平移2个单位,所得的抛物线的表达式为 ( )A. y =x 2+2B. y =x 2-2C. y =(x +2)2D. y =(x -2)27.甲、乙两名运动员在六次射击测试中的部分成绩如下:甲的成绩乙的成绩如果两人测试成绩的中位数相同,那么乙第六次射击的成绩可以是 ( ) A .9环 B .8环 C .7环 D .6环8.如图a 是长方形纸带,︒=∠20DEF ,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是 ( ) A .110° B .120° C .140° D .150°(第2题)图a 图b图c9. 如图9-1,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图7-2所示,则矩形ABCD 的面积是 ( ) A. 10 B. 16 C. 20 D. 3610.如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边长放大到原来的2倍,记所得的像是△A ′B ′C .设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+二、填空题(每小题3分,共24分) 11.黄金分割比是61803398.0215=-,将这个分割比用四舍五入法保留两位有效数字的近似数是 . 12= .13.已知6=+y x ,4=xy ,则22xy y x +的值为 .14.如图,AB CD ∥,EF AB ⊥于E EF ,交CD 于F ,已知160∠=°,则2∠= .15.如图,D 、E 两点分别在请填上一ADE ∽△ABC .16. 在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M为EF 中点,则AM 的最小值为 . 17. 函数()()1240y x x y x x==>≥0,的图象如图所示,则结论:①两个函数图象的交点A 的坐标为()22,;②当2x >时,21y y >;③当1x =时,3BC =;④当x 逐渐增大时,CDF121y 随着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号是 . 18. 如图,已知正方形纸片ABCD 的边长为8,⊙O 的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,使EA ’恰好与⊙O 相切于点A ′(△EFA ′与⊙O 除切点外无重叠部分),延长FA ′交CD 边于点G ,则A ′G 的长是 . 三、解答题:(共有10个小题,共76分) 19.(本题满分6分)先化简代数式:41)4422(22-÷-++-a a a a a ; 你能取两个不同的a 值使原式的值相同吗?如果能,请举例说明;如果不能,请说明理由.20.(本题满分6分)解不等组: ()②①⎪⎩⎪⎨⎧≤-+≤+321234xx x x21.(本题满分7分)操作:正方体涂色:如图,用白萝卜做成一个正方体,并把正方体表面涂成灰颜色. 探究:把正方体的棱三等分,然后沿等分线把正方体切开,得到27块小正方体.小正方第18题AE FMB P第16题x4体表面各面无涂色、一面涂色、两面涂色、三面涂色的个数分别是;;; .应用:①小明从上述的27块萝卜中任取一块,求只有两面涂色的概率.②小明和弟弟在做游戏,规则是:从上述的27块萝卜中任取一块,若他有奇数个面涂色时,小明赢;否则弟弟赢,你认为这样的游戏规则公平吗?为什么?22.(本题满分6分)先根据要求编写应用题,再解答所编写的应用题.编写要求:(1)编写一道关于行程问题的实际问题,使根据题意所列出的方程是20153x x=+.(2)所编写的问题题意清楚,符合实际.23.(本题满分8分)如图①,将一个内角为120︒的菱形纸片沿较长对角线剪开,得到图②的两张全等的三角形纸片.将这两张三角形纸片摆放成图③的形式.点B、F、C、D在同一条直线上,AB分别交DE、EF于点P、M,AC交DE于点N.(1)找出图③中的一对全等三角形(△ABC与△DEF全等除外),并加以证明.(2)当P为AB的中点时,求△APN与△DCN的面积比.图① 图② 图③24.(本题满分7分)如图,已知AB 为⊙O 的弦,C 为⊙O 上一点,∠C =∠BAD ,且BD ⊥AB 于B . (1)判断直线AD 与⊙O 的关系,并加以说明; (2)若⊙O 的半径为3,AB =4,求AD 的长.25.(本题满分7分)如图,某社区需在一建筑物上,悬挂“创文明小区,建和谐社会”的宣传条幅AB ,小明站在点C 处,看条幅顶端A ,测得仰角为︒30,再往条幅方向前行20米到达点D 处,看条幅顶端A ,测得仰角为︒60,求宣传条幅AB 的长.(小明的身高不计,414.12≈,732.13≈,结果精确到0.1米)26.(本题满分8分)我市“建设社会主义新农村”工作组到某乡大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,其费用p(万元)与大棚面积x(公顷)的函数关系式为p=0.9x 2;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元. (1) 基地的菜农共修建大棚x (公顷),当年收益(扣除修建和种植成本后)为y (万元),写出y 关于x 的函数关系式.(2) 若某菜农期望通过种植大棚蔬菜当年获得5万元收益,工作组应建议他修建多少公项大棚.(用分数表示即可)(3) 种子、化肥、农药每年都需要投资,其它设施3年内不需再投资.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.27.(本题满分10分)甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.(1)写出乙船在逆流中行驶的速度.(2)求甲船在逆流中行驶的路程.(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式.(4)求救生圈落入水中时,甲船到A港的距离.【参考公式:船顺流航行的速度=船在静水中航行的速度+水流速度,船逆流航行的速度=船在静水中航行的速度-水流速度.】28.(本题满分11分)如图,在平面直角坐标系中,ΔABC 是直角三角形,∠ACB=90°,点A (-15,0), AB=25,AC=15,点C 在第二象限,点P 是y 轴上的一个动点,连结AP,并把ΔAOP 绕着点A 逆时钟方向旋转.使边AO 与AC 重合.得到ΔACD 。

2011无锡中考数学试题

2011无锡中考数学试题

2011年无锡市初中毕业升学考试数学试题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用28铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答.写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B铅笔作答,并请加黑加粗.描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共l0小题.每小题3分.共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.︳-3︳的值等于( ▲) A.3 8.-3 C.±3 D.32.若a>b,则( ▲) A.a>-b B.a<-b C.-2a>-2b D.-2a<-2b3.分解因式2x2—4x+2的最终结果是( ▲) A.2x(x-2) B.2(x2-2x+1) C.2(x-1)2 D.(2x-2)24.已知圆柱的底面半径为2cm,高为5cm,则圆柱的侧面积是( ▲) A.20 cm28.20兀cm2 C.10兀cm2D.5兀cm25.菱形具有而矩形不一定具有的性质是( ▲) A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补6.一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合...要求的是( ▲)7.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC-=0B:OD,则下列结论中一定正确的是( ▲)A.①与②相似B.①与③相似C.①与④相似D.②与④相似Bx 人数 5 2 13 31 23 26A .40<m ≤50B .50<m ≤60C .60<m ≤70D .m>709.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是 ( ▲ ) A .y=(x -2)2+1 B .y=(x+2)2+1 C .y=(x -2)2-3 D .y=(x+2)2-3 10.如图,抛物线y=x 2+1与双曲线y=xk的交点A 的横坐标是1,则关于x 的不等式xk + x 2+1<0的解集是 ( ▲ ) A .x>1 B .x<-1 C .0<x<1 D .-1<x<0二、填空题(本大题共8小题,每小题2分,共l6分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........处) 11.计算:38= ▲ .12.我市去年约有50 000人参加中考,这个数据用科学记数法可表示为 ▲ 人. 13.函数4-=x y 中自变量x 的取值范围是 ▲ .14.请写出一个大于1且小于2的无理数: ▲ . 15.正五边形的每一个内角都等于 ▲ °. 16.如图,在Rt △ABC 中,∠ACB=90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD=5cm ,则EF= ▲ cm .EFABCDEBCxyB COA D(第16题) (第17题) (第18题)17.如图,在△ABC 中,AB=5cm ,AC=3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则 △ACD 的周长为 ▲ cm .18.如图,以原点O 为圆心的圆交X 轴于A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB=20°,则∠OCD= ▲ °.三、解答题(本大题共10小题.共84分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)()()022161-+-- (2)a(a-3)+(2-a)(2+a)20.(本题满分8分)(1)解方程:x 2+4x -2=0; (2)解不等式组⎪⎩⎪⎨⎧-≤-〉-121312x x x x21.(本题满分8分)如图,在 ABCD 中,E 、F 为对角线BD 上的两点,且∠BAE=∠DCF .求证:BE=DF .22.(本题满分7分)一不透明的袋子中装有4个球,它们除了上面分别标有的号码l 、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.求第二次取出球的号码比第一次的大的概率.(请用“画树状图”或“列表”的方法给出分析过程,并写出结果) 23.(本题满分8分)某区共有甲、乙、丙三所高中,所有高二学生参加了一次数学测试.老师们对其中的一道题进行了分析,把每个学生的解答情况归结为下列四类情况之一:A ——概念错误;B ——计算错误;C ——解答基本正确,但不完整;D ——解答完全正确.各A B C D 甲校(%) 2.7516.25 60.75 20.25 乙校(%)3.7522.50 41.2532.50FD B E统计图如图.根据以上信息,解答下列问题: (1)求全区高二学生总数;(2)求全区解答完全正确的学生数占全区高二学生总数的百分比m(精确到0.01%); (3)请你对表中三校的数据进行对比分析,给丙校高二数学老师提一个值得关注的问题,并 说明理由.24.(本题满分9分)如图,一架飞机由A 向B 沿水平直线方向飞行,在航线AB 的正下方有两个山头C 、D .飞机在A 处时,测得山头C 、D 在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B 处时,往后测得山头C 的俯角为30°,而山头D 恰好在飞机的正下方.求山头C 、D 之间的距离.25.(本题满分10分)张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC 所示(不包含端点A ,但包含端点C). (1)求y 与x 之间的函数关系式;(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w 最大?最大利润是多少?26.(本题满分6分)如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动. (1)请在所给的图中,用尺规画出点A 在正方形整个翻滚过程中所经过的路线图;O 40008000(2)求正方形在整个翻滚过程中点A 所经过的路线与梯形MNPQ 的三边MN 、NP 、PQ 所围成图形的面积S .27.(本题满分10分)如图,已知O(0,0)、A(4,0)、B(4,3).动点P 从O 点出发,以每秒3个单位的速度,沿△OAB 的边0A 、AB 、B0作匀速运动;动直线l 从AB 位置出发,以每秒1个单位的速度向x 轴负方向作匀速平移运动.若它们同时出发,运动的时间为t 秒,当点P 运动到O 时,它们都停止运动.(1)当P 在线段OA 上运动时,求直线l 与以P 为圆心、1为半径的圆相交时t 的取值范围;(2)当P 在线段AB 上运动时,设直线l 分到与OA 、OB 交于C 、D ,试问:四边形CPBD 是否可能为菱形?若能,求出此时t 的值;若不能,请说明理由,并说明如何改变直线l 的出发时间,使得四边形CPBD 会是菱形.BA(M)Q28.(本题满分10分)十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000“速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%十600×15%=265(元).方法二:用“月应纳税额x适用税率一速算扣除数”计算,即2600×15%一l25=265(元)。

2011年无锡市数学中考试卷

2011年无锡市数学中考试卷

2011年无锡市初中毕业升学考试数学试题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用28铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答.写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B铅笔作答,并请加黑加粗.描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共l0小题.每小题3分.共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.︳-3︳的值等于 ( ▲ )A.3 8.-3 C.±3 D.32.若a>b,则 ( ▲ )A.a>-b B.a<-b C.-2a>-2b D.-2a<-2b3.分解因式2x2—4x+2的最终结果是 ( ▲ )A.2x(x-2) B.2(x2-2x+1) C.2(x-1)2 D.(2x-2)24.已知圆柱的底面半径为2cm,高为5cm,则圆柱的侧面积是 ( ▲ )A.20 cm2 8.20兀cm2 C.10兀cm2 D.5兀cm25.菱形具有而矩形不一定具有的性质是 ( ▲ )A.对角线互相垂直 B.对角线相等 C.对角线互相平分 D.对角互补6.一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合要求的是 ( ▲ )7.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC-=0B:OD,则下列结论中一定正确的是 ( ▲ )A.①与②相似 B.①与③相似C.①与④相似 D.②与④相似8.100名学生进行20秒钟跳绳测试,测试成绩统计如下表:跳绳个数x20<x≤3030<x≤4040<x≤5050<x≤6060<x≤70x>70人数 5 2 13 31 23 26则这次测试成绩的中位数m满足 ( ▲ )A.40<m≤50 B.50<m≤60 C.60<m≤70 D.m>709.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是( ▲ )A.y=(x-2)2+1 B.y=(x+2)2+1C.y=(x-2)2-3 D.y=(x+2)2-3A B C D4321OABDC10.如图,抛物线y=x 2+1与双曲线y=x k 的交点A 的横坐标是1,则关于x 的不等式xk + x 2+1<0的解集是 ( ▲ )A .x>1B .x<-1C .0<x<1D .-1<x<0二、填空题(本大题共8小题,每小题2分,共l6分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置处)11.计算:38= ▲ .12.我市去年约有50 000人参加中考,这个数据用科学记数法可表示为 ▲ 人.13.函数4-=x y 中自变量x 的取值范围是 ▲ . 14.请写出一个大于1且小于2的无理数: ▲ . 15.正五边形的每一个内角都等于 ▲ °.16.如图,在Rt △ABC 中,∠ACB=90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD=5cm ,则EF= ▲ cm .DEFAB CDEBCAxyB COA D(第16题) (第17题) (第18题)17.如图,在△ABC 中,AB=5cm ,AC=3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则 △ACD 的周长为 ▲ cm .18.如图,以原点O 为圆心的圆交X 轴于A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB=20°,则∠OCD= ▲ °.三、解答题(本大题共10小题.共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)计算:(1)()()022161-+-- (2)a(a-3)+(2-a)(2+a)20.(本题满分8分)(1)解方程:x 2+4x -2=0; (2)解不等式组⎪⎩⎪⎨⎧-≤-〉-121312x x xx21.(本题满分8分)如图,在 ABCD 中,E 、F 为对角线BD 上的两点,且∠BAE=∠DCF . 求证:BE=DF .F D A22.(本题满分7分)一不透明的袋子中装有4个球,它们除了上面分别标有的号码l 、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.求第二次取出球的号码比第一次的大的概率.(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)23.(本题满分8分)某区共有甲、乙、丙三所高中,所有高二学生参加了一次数学测试.老师们对其中的一道题进行了分析,把每个学生的解答情况归结为下列四类情况之一:A ——概念错误;B ——计算错误;C ——解答基本正确,但不完整;D ——解答完全正确.各校出现这四类情况的人数分别占本校高二学生数的百分比如下表所示.A B C D 甲校(%) 2.7516.25 60.75 20.25 乙校(%) 3.7522.50 41.25 32.50 丙校(%) 12.50 6.2522.50 58.75已知甲校高二有400名学生,这三所学校高二学生人数的扇形 统计图如图.根据以上信息,解答下列问题: (1)求全区高二学生总数;(2)求全区解答完全正确的学生数占全区高二学生总数的百分比m(精确到0.01%);(3)请你对表中三校的数据进行对比分析,给丙校高二数学老师提一个值得关注的问题,并 说明理由.24.(本题满分9分)如图,一架飞机由A 向B 沿水平直线方向飞行,在航线AB 的正下方有两个山头C 、D .飞机在A 处时,测得山头C 、D 在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B 处时,往后测得山头C 的俯角为30°,而山头D 恰好在飞机的正下方.求山头C 、D 之间的距离.25.(本题满分10分)张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC 所示(不包含端点A ,但包含端点C).(1)求y 与x 之间的函数关系式;(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为A B C Dy A B 40008000多少时,老王在这次买卖中所获的利润w 最大?最大利润是多少?26.(本题满分6分)如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动.(1)请在所给的图中,用尺规画出点A 在正方形整个翻滚过程中所经过的路线图; (2)求正方形在整个翻滚过程中点A 所经过的路线与梯形MNPQ 的三边MN 、NP 、PQ 所围成图形的面积S .27.(本题满分10分)如图,已知O(0,0)、A(4,0)、B(4,3).动点P 从O 点出发,以每秒3个单位的速度,沿△OAB 的边0A 、AB 、B0作匀速运动;动直线l 从AB 位置出发,以每秒1个单位的速度向x 轴负方向作匀速平移运动.若它们同时出发,运动的时间为t 秒,当点P 运动到O 时,它们都停止运动. (1)当P 在线段OA 上运动时,求直线l 与以P 为圆心、1为半径的圆相交时t 的取值范围;(2)当P 在线段AB 上运动时,设直线l 分到与OA 、OB 交于C 、D ,试问:四边形CPBD 是否可能为菱形?若能,求出此时t 的值;若不能,请说明理由,并说明如何改变直线l 的出发时间,使得四边形CPBD 会是菱形.BP A(M)Q N D C xy BOA28.(本题满分10分)十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案 (简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的1~5级税率情况见下表:税级现行征税方法草案征税方法月应纳税额x 税率速算扣除数月应纳税额x 税率速算扣除数1 x≤500 5%0 x≤1 500 5%2 500<x≤2000 10%25 1500<x≤4500 10%▲3 2000<x≤5000 15%125 4500<x≤9000 20%▲4 5000<x≤20000 20%375 9000<x≤35000 25%9755 20000<x≤40000 25%1375 35000<x≤5500030%2725注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额.“速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%十600×15%=265(元).方法二:用“月应纳税额x适用税率一速算扣除数”计算,即2600×15%一l25=265(元)。

2011年江苏省无锡市中考数学试卷详解版

2011年江苏省无锡市中考数学试卷详解版

2011年江苏省无锡市中考数学试卷参考答案与试题解析圆锥一、选择题(本大题共l0小题.每小题3分.共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)|﹣3|的值等于()A.3 B.﹣3 C.±3 D.【考点】M113 绝对值【难度】容易题【分析】根据绝对值的性质一个负数的绝对值等于这个数的相反数,可得:|﹣3|=3.【解答】A.【点评】本题主要考查了绝对值的性质,题目比较简单,熟练应用绝对值的性质是解题的关键.2.(3分)若a>b,则()A.a>﹣b B.a<﹣b C.﹣2a>﹣2b D.﹣2a<﹣2b【考点】M12H 不等式的相关概念及基本性质【难度】容易题【分析】由于a、b的取值范围不确定,故可考虑利用特例来说明:A、例如a=0,b=﹣1,a<﹣b,故A选项错误;B、例如a=1,b=0,a>﹣b,故B选项错误;C、利用不等式性质3,同乘以﹣2,不等号改变,则有﹣2a<﹣2b,故C选项错误;D、利用不等式性质3,同乘以﹣2,不等号改变,则有﹣2a<﹣2b,故D选项正确.【解答】D.【点评】本题主要考查了不等式的基本性质,题目比较简单,解决本题的关键是运用特例对各选项逐一判断即可.3.(3分)分解因式2x2﹣4x+2的最终结果是()A.2x(x﹣2)B.2(x2﹣2x+1)C.2(x﹣1)2D.(2x﹣2)2【考点】M11O 提公因式法和公式法【难度】容易题【分析】根据完全平方公式:(a±b)2=a2±2ab+b2.可得:2x2﹣4x+2=2(x2﹣2x+1)﹣﹣(提取公因式)=2(x﹣1)2.﹣﹣(完全平方公式)【解答】C.【点评】本题主要考查了提公因式法和公式法分解因式,题目比较简单,解决本题的关键是提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.4.(3分)已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.10πcm2D.5πcm2【考点】M34D 圆锥的相关计算【难度】容易题【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.可得:圆锥的侧面积=π×2×5=10πcm2.【解答】C.【点评】本题主要考查圆锥侧面积的求法.题目较为简单,熟记圆锥的侧面积公式即可解决本题.5.(3分)菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补【考点】M333 矩形的性质与判定M334 菱形的性质与判定【难度】容易题【分析】根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求.【解答】A.【点评】本题主要考查了菱形及矩形的性质.题目较为简单,解决本题的关键是正确区分菱形和矩形的基本性质,菱形和矩形都具有平行四边形的性质,但菱形的特性是:对角线互相垂直、平分,四条边都相等.6.(3分)一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合要求的是()A.B.C.D.【考点】M411 轴对称图形与中心对称图形【难度】容易题【分析】轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合.由此对各选项判断如下:A、图象关于对角线所在的直线对称,两条对角线都是其对称轴;故符合要求;B、图象关于对角线所在的直线对称,两条对角线都是其对称轴;故符合要求;C、图象关于对角线所在的直线对称,有一条对称轴;故符合要求;D、图象关于对角线所在的直线不对称;故不符合要求.【解答】D.【点评】本题主要考查了轴对称图形,题目比较简单,判断轴对称图形的关键是寻找对称轴,即图形两部分沿对称轴折叠后可重合.7.(3分)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=OB:OD,则下列结论中一定正确的是()A.①与②相似B.①与③相似C.①与④相似D.②与④相似【考点】M32E 相似三角形性质与判定【难度】容易题【分析】由OA:OC=OB:OD,∠AOB=∠COD(对顶角相等),∴①与③相似.【解答】B.【点评】本题主要考查了相似三角形的判定,此题难度不大,属于基础题.解答的关键是熟练运用三角形相似的判定定理.A.40<m≤50 B.50<m≤60 C.60<m≤70 D.m>70【考点】M214 中位数、众数【难度】容易题【分析】首先确定人数的奇偶性,然后确定中位数的位置,最后确定中位数的范围.依题意可得:∵一共有100名学生参加测试,∴中位数应该是第50名和第51名成绩的平均数,∵第50名和第51名的成绩均在50<x≤60,∴这次测试成绩的中位数m满足50<x≤60.【解答】B.【点评】本题主要考查了中位数的确定,题目难度一般,解题的关键是根据人数的奇偶性确定中位数的位置,进而确定中位数.9.(3分)下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3【考点】M162 二次函数的的图象、性质【难度】容易题【分析】∵抛物线对称轴为直线x=2,∴可排除B、D选项,将点(0,1)代入A中,得(x﹣2)2+1=(0﹣2)2+1=5,故A选项错误,代入C中,得(x﹣2)2﹣3=(0﹣2)2﹣3=1,故C选项正确.【解答】C.【点评】本题主要考查了二次函数的性质.题目较为简单,解题关键是根据对称轴,点的坐标与抛物线解析式的关系,对选项采取逐一排除的方法即可.10.(3分)如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式+x2+1<0的解集是()A.x>1 B.x<﹣1 C.0<x<1 D.﹣1<x<0【考点】M162 二次函数的的图象、性质M12K 解一元一次不等式(组)【难度】中等题【分析】由抛物线y=x2+1与双曲线y=的交点A的横坐标是1,∴x=1时,=x2+1,再结合图象当0<x<1时,>x2+1,∴﹣1<x<0时,||>x2+1,∴+x2+1<0,∴关于x的不等式+x2+1<0的解集是﹣1<x<0.【解答】D.【点评】本题主要考查了二次函数与不等式.题目难度中等,解决本题的关键是利用图象上的点的坐标特征来解双曲线与二次函数的解析式.二、填空题(本大题共8小题,每小题2分,共l6分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置处)11.(2分)计算:=.【考点】M116 平方根、算术平方根、立方根【难度】容易题【分析】根据立方根的定义即可求解,∵23=8 ,∴=2.【解答】2.【点评】本题主要考查了立方根的概念和运用.题目比较简单,如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”,其中,a叫做被开方数,3叫做根指数.12.(2分)我市去年约有50 000人参加中考,这个数据用科学记数法可表示为人.【考点】M11F 科学记数法【难度】容易题【分析】科学记数法的表示形式为a×10n的形式,将50000用科学记数法表示为5.0×104.【解答】5.0×104.【点评】本题主要考查了科学记数法的表示方法.题目比较简单,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2分)在函数中,自变量x的取值范围是.【考点】M139 函数自变量的取值范围M11G 二次根式有意义的条件【难度】容易题【分析】根据二次根式的性质,被开方数大于等于0,可得:x﹣4≥0,解得x≥4,则自变量x的取值范围是x≥4.【解答】x≥4.【点评】本题主要考查了函数自变量的取值范围以及二次根式有意义的条件,题目比较简单,解题关键是熟记二次根式的被开方数是非负数.14.(2分)写出一个大于1且小于2的无理数.【考点】M115 估算无理数的大小【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.可得:大于1且小于2的无理数是,答案不唯一.【解答】.【点评】本题主要考查了无理数的估算,题目较为简单,现实生活中经常需要估算,熟记估算的一般方法“夹逼法”即可解决此类题目.15.(2分)正五边形的每一个内角都等于.【考点】M337 多边形内角与外角【难度】容易题【分析】根据多边形的外角和是360度,而正五边形的每个外角都相等,即可求得外角的度数,再根据外角与内角互补即可求得内角的度数.即:正五边形的外角是:360÷5=72°,则内角的度数是:180°﹣72°=108°.【解答】108.【点评】本题主要考查了多边形的内角和定理以及多边形的外角和定理,题目比较简单,注意多边形的外角和不随边数的变化而变化,因此本题把求多边形内角的计算转化为外角的计算即可解决本题.16.(2分)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=cm.【考点】M323 三角形的中位线M328 直角三角形性质与判定【难度】容易题【分析】∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=×10=5cm.【解答】5.【点评】本题主要考查了三角形的中位线定理以及直角三角形性质,题目比较简单,解题本题的关键是熟记:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.17.(2分)如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC 于D、E,则△ACD的周长为cm.【考点】M312 线段垂直平分线性质、判定、画法【难度】容易题【分析】依题意:DE为BC的垂直平分线,∴CD=BD,∴△ACD的周长=AC+CD+AD=AC+AD+BD=AC+AB,而AC=3cm,AB=5cm,∴△ACD的周长为3+5=8cm.【解答】8.【点评】本题主要考查了线段的垂直平分线的性质.题目比较简单,熟记线段的垂直平分线上的点到线段的两个端点的距离相等即可解题.18.(2分)如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D 为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD=°.【考点】M343 圆心角与圆周角M326 等腰三角形性质与判定【难度】中等题【分析】连接DO,∵∠DAB=20°,∴∠DOB=40°,∴∠COD=90°﹣40°=50°,∵CO=DO,∴∠OCD=∠CDO,∴∠OCD=(180°﹣50°)÷2=65°.【解答】65.【点评】本题主要考查了圆周角定理以及等腰三角形的性质,题目难度中等,得出∠OCD=∠CDO是解决本题的关键.三、解答题(本大题共10小题.共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1);(2)a(a﹣3)+(2﹣a)(2+a).【考点】M11J 整式运算M11A 整数指数幂M116 平方根、算术平方根、立方根M119 零指数幂M11R 单项式乘多项式M11S 合并同类项【难度】容易题【分析】(1)先分别求出每一项的值,再把所得结果相加即可求出答案.(2)先根据单项式乘以多项式的法则以及平方差公式分别进行计算,再合并同类项即可求出结果.【解答】解:(1)=1﹣4+1=﹣2·············4分(2)a(a﹣3)+(2﹣a)(2+a)=a2﹣3a+4﹣a2=﹣3a+4·············8分【点评】本题主要考查了整式运算以及单项式乘多项式,涉及的知识点有:整数指数幂、算术平方根、零指数幂和合并同类项,比较简单,在解题时要注意运算顺序和乘法公式的应用.20.(8分)(1)解方程:x2+4x﹣2=0;(2)解不等式组.【考点】M126 解一元二次方程M12K 解一元一次不等式(组)【难度】容易题【分析】(1)利用配方法解方程,首先把常数项﹣2移项后,再在左右两边同时加上一次项系数4的一半的平方.(2)首先分别解两个不等式后,再根据大小小大取中,求出公共部分.【解答】解:(1)x2+4x﹣2=0,移项:x2+4x=2,两边同时加上一次项系数4的一半的平方:x2+4x+4=6,即(x+2)2=6∴x+2=±,即得:x1=﹣2,x2=﹣﹣2,·············4分(2),由①得:x>1,由②得:x≤4,∴不等式组的解为:1<x≤4,·············8分【点评】本题主要考查了用配方法解一元二次方程和解一元一次不等式组,题目比较简单,解决本题的关键有两点:先注意配方法解题的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方;然后解不等式组求其解集时根据:大大取大,小小取小,大小小大取中,大大小小取不着,准确写出解集即可.21.(8分)如图,在▱ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BE=DF.【考点】M332 平行四边形的性质与判定M329 全等三角形性质与判定【难度】容易题【分析】首先由平行四边形的性质得出AB=CD,∠ABE=∠CDF,再根据已知∠BAE=∠DCF 可推出△ABE≌△DCF,即可得证.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠ABE=∠CDF,又已知∠BAE=∠DCF,∴△ABE≌△DCF,∴BE=DF.·············8分【点评】本题主要考查了平行四边形的性质与全等三角形的判定和性质,题目难度不大,关键是证明BE和DF所在的三角形全等.22.(7分)一不透明的袋子中装有4个球,它们除了上面分别标有的号码l、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.求第二次取出球的号码比第一次的大的概率.(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)【考点】M222 概率的计算M223 列表法与树状图法【难度】容易题【分析】首先列举出所有情况,再看第二次取出球的号码比第一次的大的情况数占所有情况数的多少即可.【解答】解:共有16种情况,第二次取出球的号码比第一次的大的情况数6种,所以概率为.·············7分【点评】本题主要考查了用列树状图的方法求概率,题目比较简单,得到第二次取出球的号码比第一次的大的情况数是解决本题的关键,用到的知识点为:概率等于所求情况数与总情况数之比.23.(8分)某区共有甲、乙、丙三所高中,所有高二学生参加了一次数学测试.老师们对其中的一道题进行了分析,把每个学生的解答情况归结为下列四类情况之一:A﹣﹣概念错误;B﹣﹣计算错误;C﹣﹣解答基本正确,但不完整;D﹣﹣解答完全正确.各校出现这根据以上信息,解答下列问题:(1)求全区高二学生总数;(2)求全区解答完全正确的学生数占全区高二学生总数的百分比m(精确到0.01%);(3)请你对表中三校的数据进行对比分析,给丙校高二数学老师提一个值得关注的问题,并说明理由.【考点】M211 总体、个体、样本、容量M217 统计图(扇形、条形、折线)【难度】容易题【分析】(1)根据甲校得人数及在扇形中所占的比例即可得出全区高二学生总数.(2)根据(1)的结果可求出全区解答完全正确的学生数,进而可得出全区解答完全正确的学生数占全区高二学生总数的百分比m.(3)根据概念错误所占的比例可提一些这方面的建议.【解答】解:(1)全区高二学生总数=400÷=1200人;·············3分(2)乙校人数=1200×=480人,丙校人数=1200×=320人,∴总人数=400×20.25%+480×32.50%+320×58.75%=425,∴全区解答完全正确的学生数占全区高二学生总数的百分比m==35.42%.·············6分(3)丙校的学生犯概念性的错误所占的比例很大,丙校的老师应加强概念的理解及掌握.·············8分【点评】本题主要考查了扇形统计图及用样本估计总体,题目难度一般,解题关键是掌握在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.24.(9分)如图,一架飞机由A向B沿水平直线方向飞行,在航线AB的正下方有两个山头C、D.飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B处时,往后测得山头C的俯角为30°,而山头D恰好在飞机的正下方.求山头C、D之间的距离.【考点】M32D 解直角三角形M31D 俯角、仰角、坡角、方向角【难度】容易题【分析】首先根据题意可以求出∠BAC=60°,∠ABC=30°,∠BAD=30°,进而得到∠ACB=90°,再利用AB=6千米求得BC的长,然后求得CD两点间的水平距离,进而求得C、D之间的距离.【解答】解:∵飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°,到B处时,往后测得山头C的俯角为30°,∴∠BAC=60°,∠ABC=30°,∠BAD=30°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣30°﹣60°=90°,即△ABC为直角三角形,∵AB=6千米,∴BC=AB•cos30°=6×=3千米.Rt△ABD中,BD=AB•tan30°=6×=2千米,作CE⊥BD于E点,∵AB⊥BD,∠ABC=30°,∴∠CBE=60°,则BE=BC•cos60°=,DE=BD﹣BE=,CE=BC•sin60°=,∴CD===千米.∴山头C、D之间的距离千米.·············9分【点评】本题主要考查了解直角三角形以及仰俯角问题,题目比较简单,解决此类题目的关键是正确的将仰俯角转化为直角三角形的内角并用解直角三角形的知识解答即可.25.(10分)张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y (元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)求y与x之间的函数关系式;(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?【考点】M143 求一次函数的关系式M162 二次函数的图象、性质M163 求二次函数的关系式M164 二次函数的应用【难度】容易题【分析】(1)根据函数图象即可得出分段函数解析式,注意x的取值范围;(2)利用(1)中函数解析式表示出w,进而利用函数性质得出最值.【解答】解:(1)根据图象可知当0<x≤20时,y=8000(0<x≤20),当20<x≤40时,将B(20,8000),C(40,4000),代入y=kx+b,得:,解得:,y=﹣200x+12000(20<x≤40);·············5分(2)根据上式以及老王种植水果的成本是2 800元/吨,由题意得:当0<x≤20时,W=(8000﹣2800)x=5200x,W随x的增大而增大,当x=20时,W最大=5200×20=104000元,当20<x≤40时,W=(﹣200x+12000﹣2800)x=﹣200x2+9200x,∵a=﹣200,∴函数有最大值,当x=﹣=23时,W最大==105800元.故张经理的采购量为23吨时,老王在这次买卖中所获的利润W最大,最大利润是105800元.·············10分【点评】本题是一道二次函数的应用题,涉及到求一次函数关系式和二次函数的图象、性质以及求二次函数的关系式,题目难度不大,利用函数图象分段求出解析式以及掌握二次函数的最值求法是解决本题的关键.26.(6分)如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.(1)请在所给的图中,用尺规画出点A在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S.【考点】M342 弦、直径、弧M343 扇形、弓形M337 等腰梯形的性质与判定【难度】中等题【分析】(1)根据点A绕点D翻滚,然后绕点C翻滚,然后绕点B翻滚,半径分别为1、、1,翻转角分别为90°、90°、150°,据此画出圆弧即可.【分析】(2)根据总结的翻转角度和翻转半径,求出圆弧与梯形的边长围成的扇形的面积即可.【解答】解:(1)作图如图;·············3分(2)∵点A绕点D翻滚,然后绕点C翻滚,然后绕点B翻滚,半径分别为1、、1,翻转角分别为90°、90°、150°,∴S=2×+2×+2×+4××12=+π+π+2=π+2.·············6分【点评】本题主要考查了扇形的面积的计算、等腰梯形的性质、弧长的计算,是一道综合题,题目难度中等,解决本题的关键是正确地得到点A的翻转角度和半径.27.(10分)如图,已知O(0,0)、A(4,0)、B(4,3).动点P从O点出发,以每秒3个单位的速度,沿△OAB的边0A、AB、B0作匀速运动;动直线l从AB位置出发,以每秒1个单位的速度向x轴负方向作匀速平移运动.若它们同时出发,运动的时间为t秒,当点P运动到O时,它们都停止运动.(1)当P在线段OA上运动时,求直线l与以P为圆心、1为半径的圆相交时t的取值范围;(2)当P在线段AB上运动时,设直线l分别与OA、OB交于C、D,试问:四边形CPBD 是否可能为菱形?若能,求出此时t的值;若不能,请说明理由,并说明如何改变直线l的出发时间,使得四边形CPBD会是菱形.【考点】M135 动点问题的函数图像M34D 直线与圆的位置关系M123 解一元一次方程M32B 勾股定理M334 菱形的性质与判定【难度】中等题【分析】(1)首先根据点P与直线l的距离d<1分为点P在直线l的左边和右边,再分别表示距离,列不等式组求范围;(2)四边形CPBD不可能为菱形.理由:依题意可得AC=t,OC=4﹣t,PA=3t﹣4,PB=7﹣3t,首先由CD∥AB,利用相似比表示CD,再由菱形的性质得CD=PB可求t的值,然后当四边形CPBD为菱形时,PC=PB=7﹣3t,把t代入PA2+AC2,PC2中,看结果是否相等,如果结果不相等,就不能构成菱形.最后设直线l比P点迟a秒出发,则AC=t﹣a,OC=4﹣t+a,再利用平行线表示CD,根据CD=PB,PC∥OB,得相似比,分别表示t,列方程求a即可.【解答】解:(1)当P在线段OA上运动时,OP=3t,AC=t,⊙P与直线l相交时,,解得<t<;·············3分(2)四边形CPBD不可能为菱形.依题意,得AC=t,OC=4﹣t,PA=3t﹣4,PB=7﹣3t,∵CD∥AB,∴=,即=,解得CD=(4﹣t),由菱形的性质,得CD=PB,即(4﹣t)=7﹣3t,解得t=,又当四边形CPBD为菱形时,PC=PB=7﹣3t,当t=时,代入PA2+AC2=(3t﹣4)2+t2=,PC2=(7﹣3t)2=,∴PA2+AC2≠PC2,就不能构成菱形.设直线l比P点迟a秒出发,则AC=t﹣a,OC=4﹣t+a,由CD∥AB,得CD=(4﹣t+a),由CD=PB,得(4﹣t+a)=7﹣3t,解得t=,PC∥OB,PC=CD,得=,即AB•PC=OB•AP,3×(4﹣t+a)=5×(3t﹣4),解得t=,则=,解得a=,即直线l比P点迟秒出发.·············10分【点评】本题主要考查了直线与圆的位置关系,涉及到勾股定理、菱形的性质、解一元一次方程、勾股定理,题目难度中等,解题关键是根据菱形的性质:对边平行,邻边相等,得出相似比及边相等的等式,然后运用代数方法,列方程求解.28.(10分)十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超“速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%+600×15%=265(元).方法二:用“月应纳税额x适用税率﹣速算扣除数”计算,即2600×15%﹣125=265(元).(1)请把表中空缺的“速算扣除数”填写完整;(2)甲今年3月缴了个人所得税1060元,若按“个税法草案”计算,则他应缴税款多少元?(3)乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴的税款恰好不变,那么乙今年3月所缴税款的具体数额为多少元?【考点】M124 一元一次方程的应用M12K 一元一次不等式(组)的应用【难度】较难题【分析】(1)首先假设是3000和5000元,再根据方法一和方法二进行运算,从而算出结果.(2)首先算出月应纳税额,再看看在“个税法草案”的那个阶段中,从而求出结果.设此时月应纳税额为x元.因为1060元,所以在第4阶段.(3)设今年3月份乙工资为y元,根据乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴的税款恰好不变,结合(2)中表格,可知两种方案都是在第4阶段.【解答】解:(1)3000×10%﹣1500×5%﹣1500×10%=75.5000×20%﹣1500×5%﹣3000×10%﹣500×20%=525.故表中填写:75,525;·············3分所以有20%x﹣375=1060,解得:x=7175(元).则他按“个税法草案”的应缴税款1500×5%+3000×10%+(6175﹣4500)×20%=710(元);·············7分(3)设今年3月份乙工资为z元,0.2(z﹣2000)﹣375=0.25(z﹣3000)﹣975,∴z=19000,∴(19000﹣2000)×0.2﹣375=(19000﹣3000)×0.25﹣975=3025元.故乙今年3月所缴税款的具体数额为3025元.·············10分【点评】本题是一道综合应用题,主要考查一元一次方程的应用和一元一次不等式组的应用,题目难度较大,解决本题的关键是理解月应纳税额和个人所得税概念的理解,以及对方法一和方法二计算的理解,从而设出未知数求方程即可.。

2011年江苏省无锡市中考数学试题(word)(含答案解析)

2011年江苏省无锡市中考数学试题(word)(含答案解析)

2011年无锡市初中毕业升学考试数学试题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用28铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答.写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗.描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共l0小题.每小题3分.共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑)1.︳-3︳的值等于 ( ▲ ) A .3 8.-3 C .±3 D .3 【答案】A .【考点】绝对值。

【分析】利用绝对值的定义,直接得出结果2.若a>b ,则 ( ▲ ) A .a>-b B .a<-b C .-2a>-2b D .-2a<-2b 【答案】D .【考点】不等式。

【分析】利用不等式的性质,直接得出结果3.分解因式2x 2—4x+2的最终结果是 ( ▲ ) A .2x(x -2) B .2(x 2-2x+1) C .2(x -1)2 D .(2x -2)2 【答案】C . 【考点】因式分解。

【分析】利用提公因式法和运用公式法,直接得出结果 ()()22224222121x x x x x -+=-+=-4.已知圆柱的底面半径为2cm ,高为5cm ,则圆柱的侧面积是 ( ▲ ) A .20 cm 2 8.20兀cm 2 C .10兀cm 2 D .5兀cm 2 【答案】B .【考点】图形的展开。

2005-2011年江苏省无锡市中考数学试卷及答案(7套)

2005-2011年江苏省无锡市中考数学试卷及答案(7套)

浙江省2009年初中毕业生学业考试绍兴市试卷数 学考生须知:1.全卷分试卷Ⅰ(选择题)、试卷Ⅱ(非选择题)和答题卡三部分.全卷满分150分,考试时间120分钟.2.答题前,先用钢笔或圆珠笔在试卷Ⅱ规定位置上填写县(市、区)、学校、姓名、准考证号;在答题卡规定栏中写上姓名和准考证号,然后用铅笔把答题卡上准考证号和学科名称对应的括号或方框涂黑涂满.3.答题时,将试卷Ⅰ的答案用铅笔在答题卡上对应的选项位置涂黑涂满,试卷Ⅱ的答案或解答过程直接做在试卷上.参考公式:二次函数2y ax bx c =++图象的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,试卷Ⅰ(选择题,共40分)请将本卷的答案,用铅笔在答题卡上对应的选项位置涂黑涂满.一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.下列运算正确的是( )A .2a +a =3aB .2a -a =1C .2a ·a =32a D .2a ÷a =a 2.甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( ) A .8.1×190-米 B .8.1×180-米 C .81×190-米 D .0.81×170-米3.平面直角坐标系中有四个点:M (16)-,,N (24),,P (61)--,,Q (32)-,,其中在反比例函数y =6x图象上的是( ) A .M 点 B .N 点 C .P 点 D .Q 点4.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“15cm ”分别对应数轴上的 3.6-和x ,则( )A .9<x <10B .10<x <11C .11<x <12D .12<x <13 5.如图是一个几何体的三视图,则该几何体是( )(第4题图)(第10题图)A .正方体B .圆锥C .圆柱D .球6.如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( ) A .42° B .48° C .52° D .58° 7.跳远比赛中,所有15位参赛者的成绩互不相同,在已知自己成绩的情况下,要想知道自己是否进入前8名,只需要知道所有参赛者成绩的( ) A .平均数 B .众数 C .中位数 D .方差8.一个布袋里装有只有颜色不同的5个球,其中3个红球,2个白球.从中任意摸出1个球,记下颜色后放回,搅匀,再任意摸出1个球.摸出的2个球都是红球的概率是( ) A .35 B .310 C .425 D .9259.如图,在平面直角坐标系中,P ⊙与x 轴相切于原点O ,平行于y 轴的直线交P ⊙于M ,N 两点.若点M 的坐标是(21-,),则点N 的坐标是( )A .(24)-,B. (2 4.5)-,C.(25)-,D.(2 5.5)-,10.如图,在x 轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x 轴的垂线与三条直线y ax =,(1)y a x =+,(2)y a x =+相交,其中0a >.则图中阴影部分的面积是( )A .12.5B .25C .12.5aD .25a主视图俯视图 左视图 (第5题图)P (第6题图)(第9题图)试卷Ⅱ(非选择题,共110分)请将答案或解答过程用钢笔或圆珠笔写在本卷上.二、填空题(本大题有6小题,每小题5分,共30分.将答案填在题中横线上) 11.因式分解:32x xy -=___________.12.如图,A ⊙,B ⊙的半径分别为1cm ,2cm ,圆心距AB 为5cm .如果A ⊙由图示位置沿直线AB 向右平移3cm ,则此时该圆与B ⊙的位置关系是_____________. 13.当x =代数式23x x -+_____________. 14.如图是绍兴市行政区域图,若上虞市区所在地用坐标表示为(12),,诸暨市区所在地用坐标表示为(52)--,,那么嵊州市区所在地用坐标可表示为______________.15.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在小量角器上对应的度数为65°,那么在大量角器上对应的度数为__________°(只需写出0°~90°的角度).16.李老师从油条的制作受到启发,设计了一个数学问题:如图,在数轴上截取从原点到1的对应点的线段AB ,对折后(点A 与B 重合)再均匀地拉成1个单位长度的线段,这一过程称为一次操作(如在第一次操作后,原线段AB 上的14,34均变成12,12变成1,等).那么在线段AB 上(除A ,B )的点中,在第二次操作后,恰好被拉到与1重合的点所对应的数之和是____________.(第12题图)(第15题图)(第14题图)AB(第16题图)三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:11(14sin 602-⎛⎫-+ ⎪⎝⎭°;(2)化简:2414a ⎛⎫+ ⎪-⎝⎭·2a a +.18.在黑板报的设计中,小敏遇到了如下的问题:在如图中,直线l 与AB 垂直,要作ABC △ 关于l 的轴对称图形.小敏已作出了一步,请你用直尺和圆规作出这个图形的其余部分,保留作图痕迹,并写出相应的作法. 作法:(1)以B 为圆心,BA 为半径作弧,与AB 的延长线交于点P ;就是所要作的轴对称图形.(第18题图) l P B A C19.如图,在ABC △中,40AB AC BAC =∠=,°,分别以AB AC ,为边作两个等腰直角三角形ABD 和ACE ,使90BAD CAE ∠=∠=°. (1)求DBC ∠的度数; (2)求证:BD CE =.20.京杭运河修建过程中,某村考虑到安全性,决定将运河边一河埠头的台阶进行改造.在如图的台阶横断面中,将坡面AB 的坡角由45°减至30°.已知原坡面的长为6cm (BD 所在地面为水平面)(1)改造后的台阶坡面会缩短多少? (2)改造后的台阶高度会降低多少?(精确到0.1m 23 1.73≈≈,)A B C E D (第19题图)DBCA (第20题图)ABC21.为了积极应对全球金融危机,某市采取宏观经济政策,启动了新一轮投资计划.该计划分民生工程,基础建设,企业技改,重点工程等四个项目,有关部门就投资计划分项目情况和民生工程项目分类情况分别绘制了如下的统计图.根据以上统计图,解答下列问题:(1)求投资计划中的企业技改项目投资占总投资的百分比;(2)如果交通设施投资占民生工程项目投资的25%,比食品卫生多投资850万元.计算交通设施和文化娱乐各投资多少万元?并据此补全图2.22.若从矩形一边上的点到对边的视角是直角,则称该点为直角点.例如,如图的矩形ABCD 中,点M 在CD 边上,连AM ,90BM AMB ∠=,°,则点M 为直角点. (1)若矩形ABCD 一边CD 上的直角点M 为中点,问该矩形的邻边具有何种数量关系?并说明理由;(2)若点M N ,分别为矩形ABCD 边CD ,AB上的直角点,且4AB BC ==,求MN 的长.30% 46% 基础建设企业技改投资计划分项目情况统计图 (第21题图1) DBCAM(第22题图)民生工程项目分类情况统计图 (单位:万元) 0 1000 900 800 700 600 500 400 300 200 100 投资额食品卫生学校医院交通设施文化娱乐旅游景点体育场馆(第21题图2) 类别(第23题图1)(第23题图2) 23.如图1的矩形包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度. (1)如图2,《思维游戏》这本书的长为21cm ,宽为15cm ,厚为1cm ,现有一张面积为875cm 2的矩形纸包好了这本书,展开后如图1所示.求折叠进去的宽度;(2)若有一张长为60cm ,宽为50cm 的矩形包书纸,包2本如图2中的书,书的边缘与包书纸的边缘平行,裁剪包好展开后均如图1所示.问折叠进去的宽度最大是多少?24.定义一种变换:平移抛物线1F 得到抛物线2F ,使2F 经过1F 的顶点A .设2F 的对称轴分别交12F F ,于点DB ,,点C 是点A 关于直线BD 的对称点.(1)如图1,若1F :2y x =,经过变换后,得到2F :2y x bx =+,点C 的坐标为(20),,则①b 的值等于______________;②四边形ABCD 为( )A .平行四边形B .矩形C .菱形D .正方形(2)如图2,若1F :2y ax c =+,经过变换后,点B 的坐标为(21)c -,,求ABD △的面积;(3)如图3,若1F :2127333y x x =-+,经过变换后,AC =点P 是直线AC 上的动点,求点P 到点D 的距离和到直线AD 的距离之和的最小值.BDCOyxF 1F 2A(第24题图1)(第24题图2)(第24题图3)。

江苏省13市2011年中考数学试题分类解析汇编(12份)-3

江苏省13市2011年中考数学试题分类解析汇编(12份)-3

江苏13市2011年中考数学试题分类解析汇编专题4:图形的变换一、选择题1. (无锡3分) 已知圆柱的底面半径为2cm ,高为5cm ,则圆柱的侧面积是A .20 cm 2 8.20πcm 2 C .10πcm 2 D .5πcm 2【答案】B 。

【考点】图形的展开。

【分析】把圆柱的侧面展开,利用圆的周长和长方形面积公式得出结果:圆的周长=24R ππ=,圆柱的侧面积=圆的周长×高=4520ππ⋅=。

故选B 。

2.(常州、镇江2分)已知某几何体的一个视图(如图),则此几何体是A .正三棱柱B .三棱锥C .圆锥D .圆柱【答案】C 。

【考点】几何体的三视图。

【分析】从基本图形的三视图可知:俯视图为圆的几何体为球,圆锥,圆柱,所以A 和B 选项错误;圆柱的主视图和俯视图是长方形,所以D 选项错误;圆锥的主视图和俯视图是三角形,正确。

故选C 。

3.(南京2分)如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是【答案】B 。

21世纪教育网【考点】图形的展开与折叠。

【分析】根据三棱柱及其表面展开图的特点.三棱柱上、下两底面都是三角形得:A 、折叠后有二个侧面重合,不能得到三棱柱;B 、折叠后可得到三棱柱;C 、折叠后有二个底面重合,不能得到三棱柱;D 、多了一个底面,不能得到三棱柱。

故选B 。

A .B .C .D .4.(南通3分)下列水平放置的几何体中,俯视图是矩形的为【答案】B 。

【考点】几何体的三视图。

【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于A 和D 的俯视图是圆,B 的俯视图是矩形,C 的俯视图是三角形。

故选B 。

5.(泰州3分)下图是一个几何体的三视图,则这个几何体是A .圆锥B .圆柱C .长方体D .球体【答案】A 。

【考点】由三视图判断几何体。

21世纪教育网【分析】从基本图形的三视图可知:圆锥的三视图是两个三角形,一个圆;圆柱的三视图是两个长方形,一个圆;长方体的三视图是三个长方形;球体的三视图是三个圆。

2011年滨湖区初三数学第一次模拟试卷(可打印修改)

2011年滨湖区初三数学第一次模拟试卷(可打印修改)

x
D
A
y
O
F ·
C
E
B
数学试题 (第 8 页 共 9 页)
P
B
C
(第 16 题)
17.某个立体图形的三视图如图所示,其中正视图、左视图都是
边长为 10cm 的正方形,俯视图是直径为 10cm 的圆,则这个
立体图形的表面积为 ▲ cm2.(结果保留 π)
正视图 左视图 俯视图 (第 17 题)
18.如图,在平面直角坐标系中,过 A(-1,0)、B(3,0)两
6. 如图,在四边形 ABCD 中, AD∥BC,要使四边形 ABCD 成为平行四边形,则应增加
的条件是
A
D
(▲
) A.AB=CD
B.AD=BC
O
B
C
(第 6 题)
180°
7.抛掷一枚质地均匀的硬币,若连续抛 3 次均得到“正面朝上”的结果,则对于第 4 次抛
掷结果的预测,下列说法中正确的是
O E
B
D
C
22.(本题满分 7 分)在“书香校园”活动中,小华和小清兄弟俩去南禅寺书城买了 A、B
两套科普读物,均有上、下两册,他们将这 4 本书装在一个不透明的口袋中,回到家
中,小华迫不及待地从中随机地抽出 2 本,请你通过画树状图或列表的方法,求小华
取出的 2 本书恰好是一套的概率.
23.(本题满分 8 分)如图,在 10×10 的方格纸中, A
了 1000 名学生参加义务收集废旧电池活动,右表是随 机抽出的 50 名学生收集废旧电池个数的统计表.根据 表中的数据回答下列问题:
电池个数 3 4 5 6 7 8 人数 9 16 8 6 5 6
(1)这 50 名学生所收集废旧电池个数的中位数是 ▲ ,众数是 ▲ ,平均

2011年江苏无锡省锡中中考三模数学试卷

2011年江苏无锡省锡中中考三模数学试卷

省锡中实验学校初三数学适应性练习2011.5一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.............) 1.16的平方根是( ▲ ) A .4 B .-4C .±4D .±82.下列运算正确的是( ▲ )A .743)(x x =B .532)(x x x =⋅-C .34)(x x x -=÷- D. 23x x x += 3.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( ▲ )A .1个B . 2个C . 3个D . 4个 4.如图,桌面上有一个一次性纸杯,它的俯视图应是( ▲ )5.某学习小组为了解本城市500万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是( ▲ )A .该调查的方式是普查B .本地区只有40个成年人不吸烟C .样本容量是50D .本城市一定有100万人吸烟 6.已知圆锥的底面半径为1cm ,母线长为3cm ,则圆锥的侧面积是( ▲ )A. 6cm 2B. 3πcm 2C .6πcm 2D .23πcm 27.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是( ▲ )A. 内切B. 相交C. 外切D. 外离 8.在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC =5,则DE 的长是( ▲ ) A .2.5 B .5 C .10 D .15 9.如右图,一次函数y =kx +b 的图象经过A 、B 两点, 则不等式kx +b < 0的解集是( ▲ )A. x <0B. 0< x <1C.x <1D. x >110.某剧场为希望工程义演的文艺表演有60元和100张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要( ▲ )A B C DA. 12120元B. 12140元C. 12160元D. 12200元二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在答题卡上相应的位置) 11.使42-x 有意义的x 的取值范围是 ▲ .12.中央电视台“情系玉树”赈灾晚会共筹得善款2975000000元,这个数据用科学记数法且保留三个有效数字可表示为 ▲ 元. 13.分解因式:a a a +-232= ▲ .14.反比例函数图像经过点(2,-3),则它的解析式为 ▲ .15.一元二次方程0132=+-x x 的两根为x 1、x 2,则x 1+x 2-x 1²x 2= ▲ .16.如图,⊙O 的直径AB =12,弦CD ⊥AB 于M ,且M 是半径OB 的中点,则CD 的长是 ▲ (结果保留根号).17.将一副三角板如图放置,使等腰直角三角板DEF 的锐角顶点D 放在另一块直角三角板(∠B =60°)的斜边AB 上,两块三角板的直角边交于点M .如果∠BDE =70°,那么∠AMD 的度数是 ▲ .18.如图,在直角坐标系中,直线4y x =+分别与x 轴、y 轴交于点M 、N ,点A 、B 分别在y 轴、x 轴上,且∠B =30°,AB =4,将△ABO 绕原点O 顺时针转动一周,当AB 与直线MN 平行时点A 的坐标为 ▲ .三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)计算:︒-+---30cos 4)21(|1|123(2)化简2)1(111-÷⎪⎭⎫ ⎝⎛--+x x x x x 20.(本题满分8分)(1)解方程:32321---=-xxx ; (2)解不等式组:⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(325第16题 第17题 第18题A C D O M²21.(本题满分6分) 如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成2个半圆,每一个扇形或半圆都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,列出所有等可能情况,并求出点(x ,y )落在坐标轴上的概率;(2)直接写出点(x ,y )落在以坐标原点为圆心,2为半径的圆内的概率.22.(本题满分6分) 某校为了解九年级男生1000米长跑的成绩,从中随机抽取了50名男生进行测试,根据测试评分标准,将他们的得分进行统计后分为A B C D ,,,四等,并绘制成下面的频数分布表和扇形统计图.(1)试直接写出x 、y 的值;(2)求表示得分为C 等的扇形的圆心角的度数;(3)如果该校九年级共有男生200名,试估计这200名男生中成绩达到A 等和B 等的人数共有多少人?23.(本题满分8分)已知:如图,AB 是⊙O 的直径,C 、D 为⊙O 上两点,CF ⊥AB 于点F ,CE ⊥AD 的延长线于点E ,且 CE =CF .(1)求证:CE 是⊙O 的切线;(2)若AD =CD =6,求四边形ABCD 的面积.甲 乙24.(本题满分8分)某厂家新开发一种摩托车如图所示,它的大灯A 射出的光线AB 、AC与地面MN 的夹角分别为8°和10°,大灯A 与地面距离1 m . (1)该车大灯照亮地面的宽度BC 约是多少?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2 s ,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km /h 的速度驾驶该车,突然遇到危险情况,立即刹车直到摩托车停止,在这过程中刹车距离是314m ,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:2548sin ≈,718tan ≈ ,50910sin ≈ ,28510tan ≈ )25.(本题满分8分)一果农有一批经过挑选的橙子要包装出售,现随意挑选10个橙子测量直径,数据分别为(单位:cm )7.9 , 7.8 , 8 , 7.9 , 8 , 8 , 7.9 , 7.9 , 7.8 , 7.8. 包装盒内层的横截面如图(1),凹型为半圆形,半圆的直径为这批橙子直径的平均值加0.2cm ,现用纸箱作外包装,内包装嵌入纸箱内,每箱装一层,一层装5³4个(如图(2)所示),纸箱的高度比内包装高5cm. (1)估计这批橙子的平均直径大约是多少?(2)设计纸箱(不加盖子)的长、宽、高各为多少?(数据保留整数,设计时长和宽比内包装各需加长0.5cm );(3)加工成一只纸箱的硬纸板面积需多少cm 2?(不计接头重叠部分,盖子顶面用透明纸)M B C A N26.(本题满分10分)如图,Rt △AOB 中,∠A =90°,以O 为坐标原点建立直角坐标系,使点A 在x 轴正半轴上,OA =2,AB =8,点C 为AB 边的中点,抛物线的顶点是原点O ,且经过C 点.(1)填空:直线OC 的解析式为 ▲ ; 抛物线的解析式为 ▲ ;(2) 现将该抛物线沿着线段OC 移动,使其顶点M 始终在线段OC 上(包括端点O 、C ),抛物线与y 轴的交点为D ,与AB 边的交点为E ;①是否存在这样的点D ,使四边形BDOC 为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;②设△BOE 的面积为S ,求S 的取值范围.27.(本题满分10分)如图,菱形ABCD 中,AB =10,点E 作EF ∥AD ,交CD 于F ,点P 从点A 出发以1个单位/s 的速度沿着线段AB 向终点B 运动,同时点Q 从点E 出发也以1个单位/s 的速度沿着线段EF 向终点F 运动,设运动时间为t (s ).(1)填空:当t =5时,PQ = ▲ ;(2)当BQ 平分∠ABC 时,直线PQ 将菱形的周长分成两部分,求这两部分的比;(3)以P 为圆心,PQ 长为半径的⊙P 是否能与直线AD 相切?如果能,求此时t 的值;如果不能,说明理由.备用图28.(本题满分12分)如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x 轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段BP的中点绕点P 按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CP、CA,过点P作PD ⊥OB于点D.(1)填空:PD的长为▲用含t的代数式表示);(2)求点C的坐标(用含t的代数式表示);(3)在点P从O向A运动的过程中,△PCA能否成为直角三角形?若能,求t的值.若不能,请说明理由;(4)填空:在点P从O向A运动的过程中,点C运动路线的长为▲ .省锡中实验学校初三数学适应性练习答题卷AN初三数学适应性练习考答案一、选择题:二、 填空题:三、解答题:19. (1)︒-+---30cos 4)21(|1|123(2)2)1(111-÷⎪⎭⎫ ⎝⎛--+x x x x x =23-1+8-23 ――3分 =)1(122---x x x x ³)1(-x ―――3分=7―――――――――――4分 =xx-1――――――――――4分 20.(本题满分8分)(1)解方程:32321---=-xxx ; (2)解不等式组:⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(325x =1―――――――――3分 45.2≤>x x ――――――3分经检验:x =1是方程的根.-4 45.2≤<∴x ――――4分 21.(1)树状图或表格(略)――――2分 P (点(x ,y )在坐标轴上)=32―――――――――-4分 (2)P (点(x ,y )在圆内)=31―――――――――-6分 22.(1)x =12,y =0.02.―――――――――2分(2)C 等扇形的圆心角的度数为:()0.080.0236036+⨯=︒°.――――――4分 (3)达到A 等和B 等的人数为:()0.140.240.30.16200168+++⨯=人.―――――6分23. (1)连结OC .∵CF ⊥AB ,CE ⊥AD ,且CE=CF∴∠CAE =∠CAB ――――――――――――――――――――――――1分 ∵ OC =OA∴ ∠CAB =∠O CA∴∠CAE =∠O CA ―――――――――――――――――――――――2分 ∴∠O CA +∠ECA =∠CAE +∠ECA =90° 又∵OC 是⊙O 的半径∴CE 是⊙O 的切线―――――――――――――――――――――――4分 (2)∵AD =CD∴∠DAC =∠DCA =∠CAB ∴DC //AB∵∠CAE =∠O CA ∴OC//AD∴四边形AOCD 是平行四边形∴OC =AD =6,AB =12―――――――――――――――6分 ∵∠CAE =∠CAB ∴弧CD =弧CB ∴CD =CB =6∴△OCB 是等边三角形∴33=CF ―――――――――――――――7分∴S 四边形ABCD =327233)126(2)(=⋅+=+CF AB CD ――――8分24.(1)过点A 作AD ⊥MN 于点D ,可求得BD =7m ,CD =5.6m,――3分BC =BD -CD =7-5.6=1.4m∴该摩托车的大灯照亮地面的宽度约是1.4米.――4分 (2)该摩托车大灯的设计不能满足最小安全距离的要求.――5分 理由如下:最小安全距离=3142.0350+⨯=8m,――7分 大灯能照到的最远距离为7m,小于最小安全距离.∴ 该摩托车大灯的设计不能满足最小安全距离的要求.――8分25.(1) 7.9―――――――2分(2) 长47,宽38,高10;―――――5分 (3)3486――――――――――――8分26.(1)y =2x -----1分;y =x 2-----2分(2)设解析式为m m x y 2)(2+-=-----3分,①则可得422=+m m -----5分,解得51±-=m (51--=m 舍去), 所以51+-=m -----6分 ②S=422++-m m -----8分=5)1(2+--m 而20≤≤m所以54≤≤m -----10分 27.(1)52--------2分(2)求出EQ =6,t =6,BP =4, --------3分设PQ 交CD 于点M ,则MD =38, MC =322--------5分 因此菱形的周长被分为356和364,所以这两部分的比为7:8--------6分(3)过P 作PH ⊥AB 于H ,则PH =t 54,PQ 2=22)524()54(t t -+,--------8分由题意可得方程2)54(t =22)524()54(t t -+,--------9分解得:t =10--------10分 28. (1)t 23-------2分 (2)过C 作CE ⊥OA 于E ,可得△PCE ∽△BPD -------4分 求得CE =t 43-------5分, PE =t 412-,OE =t 432+,因此C (t 43,t 432+)-----6分(3)当∠PCA =90°时,t =2-------8分当∠PAC =90°时,t =38-------10分 (4)32-------12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年无锡市初中毕业升学考试数学试题精选
2.若a>b,则( ) A.a>-b B.a<-b C.-2a>-2b D.-2a<-2b
【答案】D.
3.分解因式2x2—4x+2的最终结果是( ) A.2x(x-2) B.2(x2-2x+1) C.2(x-1)2 D.(2x-2)2
【答案】C.
4.已知圆柱的底面半径为2cm,高为5cm,则圆柱的侧面积是( ) A.20 cm28.20兀cm2 C.10兀cm2D.5兀cm2
【答案】B.
5.菱形具有而矩形不一定具有的性质是( ) A.对角线互相垂直B.对角线相等
C.对角线互相平分D.对角互补
【答案】A.
6.一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合
...要求的是(
)
【答案】D.
7.如图,四边形ABCD的对角线AC、BD相
交于O,且将这个四边形分成①、②、③、④四
个三角形.若OA:OC-=0B:OD,则下列结论
中一定正确的是( )
A.①与②相似B.①与③相似
C.①与④相似D.②与④相似
【答案】B.
8.100名学生进行20秒钟跳绳测试,测试成绩统计如下表:
跳绳个
数x
20<x≤
30
30<x≤
40
40<x≤
50
50<x≤
60
60<x≤
70
x>70
人数 5 2 13 31 23 26
A B C D
43
2
1
O
A
B
D
C
则这次测试成绩的中位数m 满足 ( ) A .40<m ≤50 B .50<m ≤60 C .60<m ≤70 D .m>70 【答案】B .
9.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是 ( )
A .y=(x -2)2+1
B .y=(x+2)2+1
C .y=(x -2)2-3
D .y=(x+2)2-3 【答案】C .
10.如图,抛物线y=x 2+1与双曲线y=x
k
的交点A 的横坐标是1,则关于x 的不等式x
k
+ x 2+1<0的解集是 ( ) A .x>1 B .x<-1 C .0<x<1 D .-1<x<0 【答案】D .
11.计算:38= .
【答案】2.
15.正五边形的每一个内角都等于 °.
【答案】108
16.如图,在Rt △ABC 中,∠ACB=90°,D 、E 、
F 分别是AB 、BC 、CA 的中点,若CD=5cm ,则EF= cm . 【答案】5
17.如图,在△ABC 中,AB=5cm ,AC=3cm ,BC 的
垂直平分线分别交AB 、BC 于D 、E ,则 △ACD 的周长为 cm .
【答案】8
18.如图,以原点O 为圆心的圆交X 轴于A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙
O 上的一点,若∠DAB=20°,则
∠OCD= °. 【答案】65
D
E
F A
B
C
x
y B C O A D D
E
B C
A。

相关文档
最新文档