假期高中数学必修1第一章学习检查

合集下载

人教A版数学必修一高中《》第一章教学质量检测卷.docx

人教A版数学必修一高中《》第一章教学质量检测卷.docx

第3题图高中数学《必修一》第一章教学质量检测卷班别: 姓名: 座号:一、选择题(将选择题的答案填入下面的表格。

本大题共10小题,每小题5分,共50分。

) 题号 1 2 3 4 5 6 7 8 9 10 答案1、下列各组对象中不能构成集合的是( )A 、佛冈中学高一(20)班的全体男生B 、佛冈中学全校学生家长的全体C 、李明的所有家人D 、王明的所有好朋友 2、已知集合{}{}5,1,A x R x B x R x =∈≤=∈>那么A B I 等于( )A.{1,2,3,4,5} B.{2,3,4,5} C.{2,3,4} D.{}15x R x ∈<≤ 3、设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为( )A .{}2B .{}4,6C .{}1,3,5D .{}4,6,7,8 4、下列四组函数中表示同一函数的是( )A.x x f =)(,2()()g x x =B.()221)(,)(+==x x g x x fC.2()f x x =,()g x x = D.()0f x =,()11g x x x=-+-5、函数2()21f x x =-,(0,3)x Î。

()7,f a =若则a 的值是 ( ) A 、1 B 、1- C 、2 D 、2±6、2,0()[(1)]1 0x x f x f f x ()设,则 ,()+≥⎧=-=⎨<⎩( ) A 、3 B 、1 C. 0 D.-1 7、()3f x x =+函数的值域为( )A 、[3,)+?B 、(,3]-?C 、[0)+?,D 、R8、下列四个图像中,不可能是函数图像的是 ( )题号 一 二 15 16 17 18 19 20 总分 得分yxxyyyOO9、设f(x)是R 上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是:( )A 、 f(-π)>f(3)>f(-2)B 、f(-π) >f(-2)>f(3)C 、 f(-2)>f(3)> f(-π)D 、 f(3)>f(-2)> f(-π) 10、在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:那么b ⊗ ()a c ⊕=( )A .aB .bC .cD .d 二、填空题(本大题共4小题,每小题5分,共20分) 11、函数01(3)2y x x =+--的定义域为12、函数2()610f x x x =-+-在区间[0,4]的最大值是13、若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B 是 . 14、下列命题:①集合{},,,a b c d 的子集个数有16个;②定义在R 上的奇函数()f x 必满足(0)0f =;③()()2()21221f x x x =+--既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤1()f x x=在()(),00,-∞+∞U 上是减函数。

人教版高中数学必修一第一章测试(含答案)

人教版高中数学必修一第一章测试(含答案)

第3题图2011-2012学年度第一学期佛冈中学高一级 高中数学《必修一》第一章教学质量检测卷时间:120分钟。

总分:150分。

命题者:XJL班别: 姓名: 座号:一、选择题(将选择题的答案填入下面的表格。

本大题共10小题,每小题5分,共50分。

) 题号 1 2 3 4 5 6 7 8 9 10 答案1、下列各组对象中不能构成集合的是( )A 、佛冈中学高一(20)班的全体男生B 、佛冈中学全校学生家长的全体C 、李明的所有家人D 、王明的所有好朋友 2、已知集合{}{}5,1,A x R x B x R x =∈≤=∈>那么AB 等于( )A.{1,2,3,4,5} B.{2,3,4,5} C.{2,3,4} D.{}15x R x ∈<≤ 3、设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为( )A .{}2B .{}4,6C .{}1,3,5D .{}4,6,7,8 4、下列四组函数中表示同一函数的是( )A.x x f =)(,2())g x x =B.()221)(,)(+==x x g x x fC.2()f x x =()g x x = D.()0f x =,()11g x x x=--5、函数2()21f x x ,(0,3)x。

()7,f a 若则a 的值是 ( )A 、1B 、1-C 、2D 、2±6、2,0()[(1)]1 0x x f x f f x ()设,则 ,()+≥⎧=-=⎨<⎩( ) A 、3 B 、1 C. 0题号 一 二 15 16 17 18 19 20 总分 得分7、()3f x x 函数的值域为( )A 、[3,) B 、(,3] C 、[0),D 、R8、下列四个图像中,不可能是函数图像的是 ( )9、设f(x)是R 上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是:( ) A 、 f(-π)>f(3)>f(-2) B 、f(-π) >f(-2)>f(3) C 、 f(-2)>f(3)> f(-π) D 、 f(3)>f(-2)> f(-π) 10、在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:那么b ⊗ ()a c ⊕=( )A .aB .bC .cD .d 二、填空题(本大题共4小题,每小题5分,共20分) 11、函数0(3)2y x x =+--的定义域为12、函数2()610f x x x =-+-在区间[0,4]的最大值是13、若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B 是 . 14、下列命题:①集合{},,,a b c d 的子集个数有16个;②定义在R 上的奇函数()f x 必满足(0)0f =;③()()2()21221f x x x =+--既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤1()f x x=在()(),00,-∞+∞上是减函数。

人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前

人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前

第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1U A x x - < 或1x ≥,{=|12U A B x x ∴()≤≤ .(6分) (2){}=|01A B x x <<,{=|0U A Bx x ∴ ()≤ 或}1x ≥.(12分) 19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x < 或}7x >,{}R =|21A B x x - ()≤< .(6分)(2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?。

(word版)高一数学必修一第一章测试题及答案[1],文档

(word版)高一数学必修一第一章测试题及答案[1],文档

高中数学必修1检测题一、选择题:1.全集U {1,2,3,4,5,6.7},A {2,4,6},B {1,3,5,7}.那么A (C U B〕等于〔〕A.{2,4,6} B.{1,3,5} C.{2,4,5} D.{2,5}2.集合 A {x|x2 1 0},那么以下式子表示正确的有〔〕①1 A ②{ 1} A ③ A ④{1, 1} AA.1个B.2个C.3个D.4个3.假设 f:A B能构成映射,以下说法正确的有〔〕1〕A中的任一元素在B中必须有像且唯一;2〕A中的多个元素可以在B中有相同的像;3〕B中的多个元素可以在A中有相同的原像;4〕像的集合就是集合B.A、1个B、2个C 、3个D、4个4、如果函数f(x)x22(a1)x 2在区间,4上单调递减,那么实数a的取值范围是〔〕A、a≤3B、a≥3C、a≤5D、a≥55、以下各组函数是同一函数的是〔〕①f(x)2x3与g(x)x2x;②f(x)x与g(x)x2;③f(x)x0与g(x)1;④f(x)x22x1与g(t)t22t1。

x0A、①②B、①③C 、③④D、①④6.根据表格中的数据,可以断定方程e x x20的一个根所在的区间是〔〕x-10123 e x1x212345A.〔-1,0〕B.〔0,1〕C.〔1,2〕D.〔2,3〕7.假设lgx lgy a,那么lg(x)3lg(y)3〔〕22A.3a B.3a C.a D.a22-1-8、假设定义运算ab a bx log2x log1x的值域是〔ba,那么函数f〕a b2A0,B0,1C 1,D R9.函数y a x在[0,1]上的最大值与最小值的和为3,那么a〔〕1B.2C.41A.D.2410 .以下函数中,在0,2上为增函数的是〔〕A、ylog1(x1)B、y log2x21C、y log21D、y log1(x24x5) 2x211.下表显示出函数值y随自变量x变化的一组数据,判断它最可能的函数模型是〔〕x45678910 y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型12、以下所给4个图象中,与所给3件事吻合最好的顺序为〔〕1〕我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;2〕我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽误了一些时间;3〕我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

人教版高一数学必修一第一章单元检测试题和答案

人教版高一数学必修一第一章单元检测试题和答案

高一数学第一章集合与函数概念单元检测试题一、选择题:共12题每题5分共60分1.已知函数的图象如下图所示,则函数的图象为2.下列各组函数为相等函数的是A. B.C. D.==3.函数的定义域为若对于任意的当时,都有则称函数在上为非减函数.设函数的上为非减函数,且满足以下三个条件:①②③=则等于A. B. C. D.4.设函数,则的最小值为A. B. C. D.5.函数f(x)=x2-4x+6(x∈[1,5))的值域是A.(3,11]B.[2,11)C.[3,11)D.(2,11]6.若函数在区间上单调,则实数的取值范围为A. B.C. D.7.定义运算:a*b=,如1*2=1,则函数f(x)=2x*2-x的值域为A.RB.(0,+∞)C.(0,1]D.[1,+∞)8.已知集合E={x|2-x≥0},若F⊆E,则集合F可以是A.{x|x<1}B.{x|x>2}C.{x|x>3}D.{x|1<x<3}9.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f()的x的取值范围是()A.(,)B.[,)C.(,)D.[,)10.某部队练习发射炮弹,炮弹的高度与时间(秒)的函数关系式是,则炮弹在发射几秒后最高呢?A.B. C. D.11.已知,且,则等于A.B. C. D.12.已知集合和集合,则两个集合间的关系是A.B. C. D.M,P互不包含试卷第2页,总4页二、填空题:共4题每题5分共20分13.已知函数f(x)=a﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,则实数的取值范围是A. C.14.设集合M={x|0≤x≤2},N={y|0≤y≤2}.给出下列四个图,其中能构成从集合M到集合N 的函数关系的是.15.给出下列二次函数,将其图象画在同一平面直角坐标系中,则图象的开口按从小到大的顺序排列为.(1)f(x)=-x2;(2)f(x)=(x+5)2;(3)f(x)=x2-6;(4)f(x)=-5(x-8)2+9.16.若函数的图像关于y轴对称,则的单调减区间为 .三、解答题:共6题共70分17.(本题10分)如果对函数f(x)定义域内任意的x1,x2都有|f(x1)-f(x2)|≤|x1-x2|成立,就称函数f(x)是定义域上的“平缓函数”.(1)判断函数f(x)=x2-x,x∈[0,1]是否为“平缓函数”;(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1),证明:对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.(注:可参考绝对值的基本性质①|ab|≤|a||b|,②|a+b|≤|a|+|b|)18.(本题12分)记函数的定义域为集合,集合.(1)求和;(2) 若,求实数的取值范围.19.(本题12分)设全集U={x|0<x<9,且x∈Z},集合S={1,3,5},T={3,6},求:(1)S∩T;(2).20.(本题12分)已知函数f(x)=.(1)用定义证明f(x)在区间[1,+∞)上是增函数;(2)求该函数在区间[2,4]上的最大值与最小值.21.(本题12分)定义在非零实数集上的函数对任意非零实数满足:,且当时.(Ⅰ)求及的值;(Ⅱ)求证:是偶函数;(Ⅲ)解不等式:.22.(本题12分)(1)证明:函数f(x )=在(-∞,0)上是减函数;(2)证明:函数f(x)=x3+x在R上是增函数.试卷第4页,总4页参考答案1.B【解析】本试题主要考查函数的图象.根据题意,由于函数图象可知,函数在y轴右侧图象在x 轴上方,在y轴左侧的图象在x 轴的下方,而函数在x>0时图象保持不变,因此排除C,D,对于选项A ,由于在时偶函数,故在y轴左侧的图象与y轴右侧的图象关于y轴对称,故选B.【备注】无2.C【解析】本题主要考查相等函数、函数的定义域、值域与对应关系.A.因为这两个函数的值域不同,所以这两个函数不是相等函数;B.这两个函数的定义域不同,所以这两个函数不是相等函数;C.这两个函数的定义域、值域与对应关系均相同,所以这两个函数为相等函数;D.这两个函数的定义域不同,所以这两个函数不是相等函数.【备注】无3.D【解析】本题主要考查新定义问题、函数的性质及其综合应用.由题意,令x=0,由=可得由可得令则=同理=====令则==同理====. 非减函数的性质:当时,都有.因为所以所以=.【备注】无4.A【解析】本题主要考查分段函数的最值问题.由题意,函数的图象如图所示:红色图象即为所求解的函数的图象,可知最小值为0.【备注】无5.B【解析】f(x)=x2-4x+6=(x-2)2+2.∵f(x)图象的对称轴是直线x=2,∴f(x)在[1,2]上单调递减,在(2,5)上单调递增,∴f(x)的值域是[2,11).故选B.【备注】无6.C【解析】本题主要考查二次函数.依题意,函数在区间上单调,则函数的对称轴或,得或,故选C.【备注】无7.C【解析】本题主要考查在新型定义的前提下函数值域的求解.根据题目定义知f(x)=2x*2-x =,结合图象知其值域为(0,1].故选C.【备注】无8.A【解析】由题意知E={x|2-x≥0}={x|x≤2},F⊆E,观察选项知应选A.【备注】无9.A【解析】偶函数f(x)在区间[0,+∞)上单调递增,所以函数f(x)在区间(-∞,0]上单调递减.由于f(x)是偶函数,所以f(-x)=f(x),则f(-)= f().由f(2x-1)<f()得①或②,解①得≤x<,解②得<x<.综上可得<x<,故x的取值范围是(,).【备注】无10.C【解析】本题主要考查二次函数.依题意,根据二次函数得性质,函数的开口向下,对称轴为,故炮弹在发射后最高,故选C.【备注】无11.B【解析】本题主要考查函数的解析式与求值.因为,设,则,所以,因为,所以,解得,故选B.【备注】无12.D【解析】无【备注】无13.D【解析】本题主要考查二次函数的图像与性质,考查了逻辑推理能力与计算能力.因为函数f(x)=a﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,所以函数f(x)=a﹣x2(1≤x≤2)与的图象上存在交点,所以有解,令,则,求解可得,故答案为D. 【备注】无14.④【解析】图①中函数的定义域是[0,1];图②中函数的定义域是[-1,2];图③中对任意的x∈(0,2],其对应的y值不唯一.故①②③均不能构成从集合M到集合N的函数,图④满足题意.【备注】无15.(4)(3)(2)(1)【解析】因为二次函数y=ax2+bx+c(a≠0)的图象在同一平面直角坐标系中|a|越小,图象开口越大,又|-|<||<||<|-5|,所以图象开口按从小到大的顺序排列为(4)(3)(2)(1).【备注】无16.【解析】本题考查函数的图象. 若函数的图像关于y轴对称,则a=0,,所以f(x)的单调减区间为.【备注】无17.(1)对任意的x1,x2∈[0,1],有-1≤x1+x2-1≤1,即|x1+x2-1|≤1.从而|f(x1)-f(x2)|=|(-x1)-(-x2)|=|x1-x2||x1+x2-1|≤|x1-x2|,所以函数f(x)=x2-x,x∈[0,1]是“平缓函数”.(2)当|x1-x2|<时,由已知,得|f(x1)-f(x2)|≤|x1-x2|<;当|x1-x2|≥时,因为x1,x2∈[0,1],不妨设0≤x1<x2≤1,所以x2-x1≥. 因为f(0)=f(1),所以|f(x1)-f(x2)|=|f(x1)-f(0)+f(1)-f(x2)|≤|f(x1)-f(0)|+|f(1)-f(x2)|≤|x1-0|+|1-x2|=x1-x2+1≤-+1=.所以对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.【解析】无 【备注】无18.由条件可得{|2}A x x =>, (1)={|23}x x <≤,{|3}A B x x ⋃=≥-;(2) {|}C x x p =>,由可得2p ≥.【解析】本题考查函数的定义域与集合的运算.(1)先求出函数的定义域,再进行运算即可;(2)利用数轴进行分析即可得出结论.【备注】与不等式有关的集合运算或集合之间的关系问题通常可以借助数轴进行求解.19.U ={1,2,3,4,5,6,7,8} (1)S ∩T ={3} (2)S ∪T={1,3,5,6}={2,4,7,8}【解析】本题主要考查集合的基本运算.(1)由交集的定义求解;(2)由并集与补集的定义求解. 【备注】无20.(1)任取x 1,x 2∈[1,+∞),且x 1<x 2,则f(x 1)-f(x 2)=-=.∵1≤x 1<x 2,∴x 1-x 2<0,(x 1+1)(x 2+1)>0, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), ∴函数f(x)在区间[1,+∞)上是增函数. (2)由(1)知函数f(x)在区间[2,4]上是增函数, ∴f(x)max =f(4)==, f(x)min =f(2)==.【解析】无 【备注】无21.(1)f (1)=0,f (-1)=0;(2)f (-x )=f (x )+f (-1)=f (x )∴f (-x )=f (x ),所以函数是偶函数;(3)据题意可知,f(2)+f(x2-1/2)=f(2x2-1)≤0∴-1≤2x2-1<0或0<2x2-1≤1∴0≤x2<1/2或<x2≤1,所以不等式的解集为【解析】本题主要考查特殊函数的性质的判断与应用以及一元二次不等式的解法.(1)分别令x=1与x=—1即可求出结果;(2)利用函数奇偶性的定义即可证明;(3)根据题意与f(1)=0,f(-1)=0,原不等式可化为-1≤2x2-1<0或0<2x2-1≤1然后求解即可.【备注】无22.(1)设x1,x2是(-∞,0)上的任意两个实数,且x1<x2,则f(x1)-f(x2)=-.因为x1,x2∈(-∞,0),所以x1x2>0,又因为x1<x2,所以x2-x1>0,则>0.于是f(x1)-f(x2)>0,即f(x1)>f(x2).因此函数f(x )=在(-∞,0)上是减函数.(2)设x1,x2是R上的任意两个实数,且x1<x2,则x2-x1>0,而f(x2)-f(x1)=(+x2)-(+x1)=(x2-x1)(+x2x1+)+(x2-x1)=(x2-x1)(+x2x1++1)=(x2-x1)[(x2+)2++1].因为(x2+)2++1>0,x2-x1>0,所以f(x2)-f(x1)>0,即f(x2)>f(x1).因此函数f(x)=x3+x在R上是增函数.【解析】用定义证明函数f(x)在给定区间D上的单调性的一般步骤:①取值——任取x1,x2∈D,且x1<x2;②作差——f(x1)-f(x2);③变形——通过因式分解、配方、通分、有理化等方法,向有利于判断差值的符号的方向变形;④定号——判断f(x1)-f(x2)的正负;⑤下结论——指出函数f(x)在给定区间D上的单调性.【备注】无。

高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案高一第一章测试题(一)一.选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1.设集合 $A=\{x\in Q|x>-1\}$,则()A。

$\varnothing \in A$ B。

$2\in A$ C。

$2\in A$ D。

$\{2\}\subseteq A$2.已知集合 $A$ 到 $B$ 的映射 $f:x\rightarrow y=2x+1$,那么集合 $A$ 中元素 $2$ 在 $B$ 中对应的元素是:A。

$2$ B。

$5$ C。

$6$ D。

$8$3.设集合 $A=\{x|1<x<2\},B=\{x|x<a\}$。

若 $A\subseteq B$,则 $a$ 的范围是()A。

$a\geq 2$ B。

$a\leq 1$ C。

$a\geq 1$ D。

$a\leq 2$4.函数 $y=2x-1$ 的定义域是()A。

$(,\infty)$ B。

$[。

\infty)$ C。

$(-\infty,)$ D。

$(-\infty,]$5.全集 $U=\{0,1,3,5,6,8\}$,集合 $A=\{1,5,8\},B=\{2\}$,则集合 $B$ 为()A。

$\{0,2,3,6\}$ B。

$\{0,3,6\}$ C。

$\{2,1,5,8\}$ D。

$\varnothing$6.已知集合 $A=\{x-1\leq x<3\},B=\{x^2<x\leq 5\}$,则$A\cap B$ 为()A。

$(2,3)$ B。

$[-1,5]$ C。

$(-1,5)$ D。

$(-1,5]$7.下列函数是奇函数的是()A。

$y=x$ B。

$y=2x-3$ C。

$y=x^2$ D。

$y=|x|$8.化简:$(\pi-4)+\pi=$()A。

$4$ B。

$2\pi-4$ C。

$2\pi-4$ 或 $4$ D。

$4-2\pi$9.设集合 $M=\{-2\leq x\leq 2\},N=\{y\leq y\leq 2\}$,给出下列四个图形,其中能表示以集合 $M$ 为定义域,$N$ 为值域的函数关系的是()无法呈现图片,无法回答)10.已知$f(x)=g(x)+2$,且$g(x)$ 为奇函数,若$f(2)=3$,则 $f(-2)=$A。

人教新课标版数学高一-必修一练习第一章质量检测

人教新课标版数学高一-必修一练习第一章质量检测

(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.已知集合U ={1,2,3,4,5,6,7},A ={2,4,5,7},B ={3,4,5},则(∁U A )∪(∁U B )=( )A .{1,6}B .{4,5}C .{2,3,4}D .{1,2,3,6,7}解析:∵∁U A ={1,3,6},∁U B ={1,2,6,7},∴(∁U A )∪(∁U B )={1,2,3,6,7}.答案:D2.设全集U ={x ∈Z|-1≤x ≤5},A ={1,2,5},B ={x ∈N|-1<x <4},则B ∩(∁U A )=() A .{3} B .{0,3}C .{0,4}D .{0,3,4}解析:∵U ={-1,0,1,2,3,4,5},B ={0,1,2,3},∴∁U A =(-1,0,3,4}.∴B ∩(∁U A )={0,3}.答案:B 3.函数y =2x +1+3-4x 的定义域为( )A .(-12,34) B .[-12,34]C .(-∞,12] D .(-12,0)∪(0,+∞)解析:由⎩⎪⎨⎪⎧ 2x +1≥0,3-4x ≥0得⎩⎨⎧ x ≥-12,x ≤34,即-12≤x ≤34, 所以函数的定义域为[-12,34].答案:B4.若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1) 解析:∵f (x )定义域为[0,2],∴对于g (x ),有⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,∴x ∈[0,1).答案:B5.函数y =x |x |,x ∈R ,满足( )A .既是奇函数又是减函数B .既是偶函数又是增函数C .既是奇函数又是增函数D .既是偶函数又是减函数 解析:由f (-x )=-f (x )可知,y =x |x |为奇函数.当x >0时,y =x 2为增函数,而奇函数在对称区间上单调性相同.答案:C6.已知f (x )=x 5-ax 3+bx +2,且f (5)=17,则f (-5)的值为( )A .-13B .13C .-19D .19解析:设g (x )=x 5-ax 3+bx ,则g (x )为奇函数.f (x )=g (x )+2,f (5)=g (5)+2=17.∴g (5)=15.故g (-5)=-15.∴f (-5)=g (-5)+2=-15+2=-13.答案:A7.若函数f (x )为奇函数,且当x >0时,f (x )=x -1,则当x <0时,有( )A .f (x )>0B .f (x )<0C .f (x )·f (-x )≤0D .f (x )-f (-x )>0 解析:f (x )为奇函数,当x <0,-x >0时,f (x )=-f (-x )=-(-x -1)=x +1,f (x )·f (-x )=-(x +1)2≤0.答案:C8.函数f (x )=|x +1|+|x -1|的奇偶性是( )A .奇函数B .偶函数C .既是奇函数也是偶函数D .既不是奇函数也不是偶函数解析:f (x )=|x +1|+|x -1|的定义域是R,且f (-x )=|-x +1|+|-x -1|=|x -1|+|x +1|=f (x ),所以f (x )是偶函数.答案:B9.已知函数f (x )=⎩⎪⎨⎪⎧ 3x +2, x <1,x 2+ax , x ≥1.若f [f (0)]=4a ,则实数a 等于( )A .0B .1C.32 D .2解析:∵f (x )=⎩⎪⎨⎪⎧3x +2, x <1,x 2+ax , x ≥1.∴f (0)=2.∴f [f (0)]=f (2)=4+2a .∴4+2a =4a .∴a =2.答案:D10.设f (x )是R 上的偶函数,且在(-∞,0)上为减函数,若x 1<0,且x 1+x 2>0,则() A .f (x 1)>f (x 2)B .f (x 1)=f (x 2)C .f (x 1)<f (x 2)D .无法比较f (x 1)与f (x 2)的大小解析:∵x 1<0且x 1+x 2>0,∴-x 2<x 1<0.又f (x )在(-∞,0)上为减函数,∴f (-x 2)>f (x 1).而f (x )又是偶函数,∴f (-x 2)=f (x 2).∴f (x 1)<f (x 2).答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)11.用列举法表示集合:A ={x |2x +1∈Z ,x ∈Z}=____________.解析:∵2x +1∈Z ,∴-2≤x +1≤2,且x +1≠0,即-3≤x ≤1,且x ≠1. 当x =-3时,有-1∈Z ;当x =-2时,有-2∈Z ;当x =0时,有2∈Z ;当x =1时,有1∈Z.∴A ={-3,-2,0,1}.答案:{-3,-2,0,1}12.函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f [f (5)]=________. 解析:由f (x +2)=1f (x )可得 f (x +4)=f (x ),f (5)=f (1)=-5,所以f [f (5)]=f (-5)=f (-1)=f (3)=1f (1)=-15, ∴f [f (5)]=-15. 答案:-1513.若函数f (x )=kx 2+(k -1)x +2是偶函数,则f (x )的递减区间是________.解析:∵f (x )是偶函数,∴f (-x )=kx 2-(k -1)x +2=kx 2+(k -1)x +2=f (x ).∴k =1.∴f (x )=x 2+2,其递减区间为(-∞,0].答案:(-∞,0]14.已知集合A ={x |0≤x ≤4},集合B ={y |0≤y ≤2},从A 到B 的对应关系f 分别为:①f :x →y =12x ;②f :x →y =x -2; ③f :x →y =x ;④f :x →y =|x -2|.其中,是函数关系的是________(将所有正确答案的序号均填在横线上).解析:由函数的定义可判定①③④正确.对于②,由于当0≤x ≤4时,-2≤x -2≤2,显然不满足存在性.答案:①③④三、解答题(本大题共4小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R.(1)求A ∪B ,(∁U A )∩B ;(2)若A ∩C ≠∅,求a 的取值范围.解:(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}.∁U A ={x |x <2或x >8},∴(∁U A )∩B ={x |1<x <2}.(2)∵A ∩C ≠∅,∴a <8,即a 的取值范围为(-∞,8).16.(本小题满分12分)若f (x )是定义在(0,+∞)上的增函数,且对一切x ,y >0,满足f (x y)=f (x )-f (y ). (1)求f (1)的值;(2)若f (6)=1,解不等式f (x +3)-f (13)<2. 解:(1)在f (x y )=f (x )-f (y )中,令x =y =1,则有f (1)=f (1)-f (1),∴f (1)=0.(2)∵f (6)=1,∴f (x +3)-f (13)<2=f (6)+f (6), ∴f (3x +9)-f (6)<f (6).即f (x +32)<f (6). ∵f (x )是定义在(0,+∞)上的增函数,∴⎩⎨⎧ x +3>0,x +32<6.解得-3<x <9,即不等式的解集为(-3,9).17.(本小题满分12分)某市规定出租车收费标准:起步价(不超过2 km)为5元;超过2 km 时,前2 km 依然按5元收费,超过2 km 的部分,每千米收1.5元.(1)写出打车费用关于路程的函数解析式;(2)规定:若遇堵车,每等待5分钟(不足5分钟按5分钟计时),乘客需交费1元.某乘客打车共行了20 km ,中途遇到了两次堵车,第一次等待7分钟,第二次等待13分钟.该乘客到达目的地时,该付多少车钱?解:(1)设乘车x km ,乘客需付费y 元,则当0<x ≤2时,y =5;当x >2时,y =5+(x -2)×1.5=1.5x +2.∴y =⎩⎪⎨⎪⎧5, 0<x ≤2,1.5x +2, x >2为所求函数解析式. (2)当x =20时,应付费y =1.5×20+2=32(元).另外,第一次堵车等待7分钟=5分钟+2分钟,需付费2元;第二次堵车等待13分钟=2×5分钟+3分钟,需付费3元.所以该乘客到达目的地后应付费32+2+3=37(元).18.(本小题满分14分)已知函数f (x )=x +m x,且此函数的图象过点(1,5). (1)求实数m 的值;(2)判断f (x )的奇偶性;(3)讨论函数f (x )在[2,+∞)上的单调性?证明你的结论.解:(1)∵f (x )过点(1,5),∴1+m =5⇒m =4.(2)对于f (x )=x +4x ,∵x ≠0,∴f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称.∴f (-x )=-x +4-x =-f (x ).∴f (x )为奇函数.(3)设x 1,x 2∈[2,+∞)且x 1<x 2, f (x 1)-f (x 2)=x 1+4x 1-x 2-4x 2=(x 1-x 2)+4(x 2-x 1)x 1x 2=(x 1-x 2)(x 1x 2-4)x 1x 2,∵x 1,x 2∈[2,+∞)且x 1<x 2, ∴x 1-x 2<0,x 1x 2>4,x 1x 2>0. ∴f (x 1)-f (x 2)<0.∴f (x )在[2,+∞)上单调递增.。

218人教a版高中数学必修一第一章测试题含答案

218人教a版高中数学必修一第一章测试题含答案

第一章章末检测题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合{1,2,3}的所有真子集的个数为()A.3B.6C.7D.8答案 C解析含一个元素的有{1},{2},{3},共3个;含两个元素的有{1,2},{1,3},{2,3},共3个;空集是任2.①{0}?{0}A.1C.3答案解析3.已知A.NC.R答案解析4.函数A.RC.[2答案解析故y≥(0+1)2+2=3.5.某学生离开家去学校,为了锻炼身体,开始跑步前进,跑累了再走余下的路程,图中d轴表示离学校的距离,t轴表示所用的时间,则符合学生走法的只可能是()答案 D解析t=0时,学生在家,离学校的距离d≠0,因此排除A、C项;学生先跑后走,因此d随t的变化是先快后慢,故选D.6.函数f(x)=的定义域为()A.(1,+∞)B.[1,+∞)C.[1,2)D.[1,2)∪(2,+∞)答案 D解析根据题意有解得x≥1且x≠2.7.在下面的四个选项所给的区间中,函数f(x)=x2-1不是减函数的是()A.(-∞,-2)B.(-2,-1)C.(-1,1)D.(-∞,0)答案 C解析函数f(x)=x2-1为二次函数,单调减区间为(-∞,0],而(-1,1)不是(-∞,0]的子集,故选C.8.函数A.关于C.答案解析9.已知A.-C.答案解析10.函数答案解析在x=0<0,可排除B11.若C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}答案 C解析由于f(x)是偶函数,∴f(3)=f(-3)=1,f(x)在(-∞,0)上是增函数,∴当x>0时,f(x)<1即f(x)<f(3),∴x>3,当x<0时,f(x)<1即f(x)<f(-3),∴x<-3,故选C.12.已知函数y=+的最大值为M,最小值为m,则的值为()A. B.C.2D.2答案 A解析本题考查函数的最值及求法.∵y≥0,∴y=+=(-3≤x≤1),∴当x=-3或1时,y min=2;当x=-1时,y max=2,即m=2,M=2,∴=.二、填空题(本大题共4小题,每小题5分,共20分)13.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.答案 1解析∵A∩B={3},∴3∈B.∵a2+414.答案解析15.函数答案解析∴f(-1)又f(x)∴f(3)≤16.答案解析∵f(x)在又∵f(x)为偶函数,∴f(x1)>f(x2).三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知集合A={x|-4≤x<8},函数y=的定义域构成集合B,求:(1)A∩B;(2)(?R A)∪B.解析y=的定义域为B={x|x≥5},则(1)A∩B={x|5≤x<8}.(2)?R A={x|x<-4或x≥8},∴(?R A)∪B={x|x<-4或x≥5}.18.(12分)已知函数f(x)=x2+ax+b的图像关于直线x=1对称.(1)求实数a的值;(2)若f(x)的图像过(2,0)点,求x∈[0,3]时,f(x)的值域.解析(1)二次函数f(x)=x2+ax+b的对称轴为x=-,∴-=1,∴a=-2.(2)若f(x)过(2,0)点,∴f(2)=0.∴22-2×2+b=0,∴b=0,∴f(x)=x2-2x.当x=1时f(x)最小为f(1)=-1,当x=3时,f(x)最大为f(3)=3,∴f(x)在[0,3]上的值域为[-1,3].19.(12(1)(2)解析∵x1-x2∴f(x1)∴函数(2)由20.(12(1)买1(2)法中y解析按照第当4≤当x=34时,y1-y2=0,y1=y2;当x>34时,y1-y2>0,y1>y2.故当4≤x<34时,第一种办法更省钱;当x=34时,两种办法付款数相同;当x>34时,第二种办法更省钱.21.(12分)函数f(x)是R上的偶函数,且当x>0时,函数的解析式为f(x)=-1.(1)用定义证明f(x)在(0,+∞)上是减函数;(2)求当x<0时,函数的解析式.解析证明(1)设0<x1<x2,则f(x1)-f(x2)=(-1)-(-1)=,∵0<x1<x2,∴x1x2>0,x2-x1>0.∴f(x1)-f(x2)>0,即f(x1)>f(x2).∴f(x)在(0,+∞)上是减函数.(2)设x<0,则-x>0,∴f(-x)=--1.又f(x)为偶函数,∴f(-x)=f(x)=--1.故f(x)22.(12(1)求(2)(3)若解析令a=b(2)f(1)∴f(x)+(3)∵f(4)f(9)=∴f(36)。

高一数学必修一第一章测试题及答案

高一数学必修一第一章测试题及答案

高中数学必修1检测题一、选择题: 每小题5分, 12个小题共60分 1. 已知全集 )等于 ( )A. {2, 4, 6}B. {1, 3, 5}C. {2, 4, 5}D. {2, 5}2.已知集合 , 则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A. 1个B. 2个C. 3个D. 4个3.若 能构成映射, 下列说法正确的有 ( ) (1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A.1个B.2个C.3个D.4个4、如果函数 在区间 上单调递减, 则实数 的取值范围是( ) A. B. C. D. 5.下列各组函数是同一函数的是 ( )①()f x =()g x =f(x)=x与()g x = ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。

A.①② B.①③ C.③④ D.①④A. (-1, 0)B. (0, 1)C. (1, 2)D. (2, 3)7. 若 ( )A. B. C. D.8、 若定义运算 , 则函数 的值域是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R 9. 函数 上的最大值与最小值的和为3, 则 ( ) A. B. 2 C. 4 D.10.下列函数中,在 上为增函数的是... )A. B、A. 一次函数模型B. 二次函数模型C. 指数函数模型D. 对数函数模型12.下列所给4个图象中, 与所给3件事吻合最好的顺序为 ( ) (1)我离开家不久, 发现自己把作业本忘在家里了, 于是立刻返回家里取了作业本再上学;(2)我骑着车一路以常速行驶, 只是在途中遇到一次交通堵塞, 耽搁了一些时间; (3)我出发后, 心情轻松, 缓缓行进, 后来为了赶时间开始加速。

人教A版高中数学必修一第一章学业质量标准检测(含答案)

人教A版高中数学必修一第一章学业质量标准检测(含答案)

第一章 学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017·北京理,1)若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =导学号 69174474( A )A .{x |-2<x <-1}B .{x |-2<x <3}C .{x |-1<x <1}D .{x |1<x <3}[解析] A ∩B ={x |-2<x <1}∩{x |x <-1或x >3}={x |-2<x <-1},故选A .2.设集合M ={1,2},则满足条件M ∪N ={1,2,3,4}的集合N 的个数是导学号 69174475( D )A .1B .3C .2D .4[解析] ∵M ={1,2},M ∪N ={1,2,3,4}.∴N ={3,4}或{1,3,4}或{2,3,4}或{1,2,3,4},即集合N 有4个. 3.下列函数中,在(0,2)上为增函数的是导学号 69174476( D ) A .y =-3x +2 B .y =3xC .y =x 2-4x +5D .y =3x 2+8x -10[解析] 显然A 、B 两项在(0,2)上为减函数,排除;对C 项,函数在(-∞,2)上为减函数,也不符合题意;对D 项,函数在(-43,+∞)上为增函数,所以在(0,2)上也为增函数,故选D .4.若奇函数f (x )在[3,7]上是增函数,且最小值是1,则它在[-7,-3]上是导学号 69174477( B )A .增函数且最小值是-1B .增函数且最大值是-1C .减函数且最大值是-1D .减函数且最小值是-1[解析] ∵奇函数在对称区间上的单调性相同,最值相反. ∴y =f (x )在[-7,-3]上有最大值-1且为增函数.5.已知集合P ={x |y =x +1},集合Q ={y |y =x -1},则P 与Q 的关系是导学号 69174478( B )A .P =QB .P QC .P QD .P ∩Q =∅[解析] P ={x |y =x +1}=[-1,+∞),Q ={y |y =x -1}=[0,+∞),所以Q P . 6.(2017·全国卷Ⅱ理,2)设集合A ={1,2,4},B ={x |x 2-4x +m =0},若A ∩B ={1},则B =导学号 69174479( C )A .{1,-3}B .{1,0}C .{1,3}D .{1,5}[解析] ∵A ∩B ={1},∴1∈B ,∴1是方程x 2-4x +m =0的根, ∴1-4+m =0,∴m =3.由x 2-4x +3=0,得x 1=1,x 2=3, ∴B ={1,3}.7.已知函数f (x )=x 2+bx +c 的图象的对称轴为直线x =1,则导学号 69174480( B ) A .f (-1)<f (1)<f (2) B .f (1)<f (2)<f (-1) C .f (2)<f (-1)<f (1)D .f (1)<f (-1)<f (2)[解析] 因为二次函数f (x )的图象的对称轴为直线x =1,所以f (-1)=f (3).又函数f (x )的图象为开口向上的抛物线,则f (x )在区间[1,+∞)上为增函数,故f (1)<f (2)<f (3),即f (1)<f (2)<f (-1).故选B .8.图中的图象所表示的函数的解析式为导学号 69174481( B )A .y =32|x -1| (0≤x ≤2)B .y =32-32|x -1| (0≤x ≤2)C .y =32-|x -1| (0≤x ≤2)D .y =1-|x -1| (0≤x ≤2)[解析] 0≤x ≤1,y =32x,1<x ≤2,y =3-32x .9.已知f (x )=⎩⎨⎧2x -x <12fx -+x ≥12,则f (14)+f (76)=导学号 69174482( A )A .-16B .16C .56D .-56[解析] f (14)=2×14-1=-12,f (76)=f (76-1)+1=f (16)+1=2×16-1+1=13,∴f (14)+f (76)=-16,故选A .10.(2017·全国卷Ⅰ理,2)函数f (x )在(-∞,+∞)上单调递减,且为奇函数,若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是导学号 69174483( D )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3][解析] ∵f (x )为R 上的奇函数,f (1)=-1, ∴f (-1)=-f (1)=1,由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1), 又∵f (x )在(-∞,+∞)上单调递减, ∴-1≤x -2≤1,∴1≤x ≤3,故选D .11.(2016·全国卷Ⅱ文,12)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =导学号 69174484( B )A .0B .mC .2mD .4m[解析] 因为y =f (x ),y =|x 2-2x -3|都关于x =1对称,所以它们交点也关于x =1对称,当m 为偶数时,其和为2×m2=m ,当m 为奇数时,其和为2×m -12+1=m ,因此选B .12.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧g x ,若f xg x ,f x ,若f x g x则F (x )的最值是导学号 69174485( B )A .最大值为3,最小值-1B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值[解析] 作出F (x )的图象,如图实线部分,知有最大值而无最小值,且最大值不是3,故选B .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.函数y =2x +41-x 的值域为__(-∞,4]__.导学号 69174486[解析] 令t =1-x ,则x =1-t 2(t ≥0),y =2x +41-x =2-2t 2+4t =-2(t -1)2+4.又∵t ≥0,∴当t =1时,y max =4.故原函数的值域是(-∞,4].14.有15人进家电超市,其中有9人买了电视,有7人买了电脑,两种均买了的有3人,则这两种都没买的有__2__人.导学号 69174487[解析] 结合Venn 图可知,两种都没买的有2人.15.若函数f (x )的定义域为[-1,2]则函数f (3-2x )的定义域为__[12,2]__.导学号 69174488[解析] 由-1≤3-2x ≤2解得12≤x ≤2,故定义域为[12,2].16.(2016·宁德高一检测)规定记号“Δ”表示一种运算,即aΔb =ab +a +b ,a ,b ∈R +,若1Δk =3,则函数f (x )=kΔx 的值域是__(1,+∞)__.导学号 69174489[解析] 由题意,1Δk =1×k +1+k =3,得k =1. f (x )=1Δx =1×x +1+x , 即f (x )=x +x +1=(x +12)2+34,由于x >0,∴(x +12)2+34>1,因此函数f (x )的值域为(1,+∞).三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R .导学号 69174490(1)求A ∪B ,(∁U A )∩B ;(2)若A ∩C ≠∅,求a 的取值范围.[解析] (1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}. ∵∁U A ={x |x <2或x >8}, ∴(∁U A )∩B ={x |1<x <2}.(2)∵A ∩C ≠∅,作图易知,只要a 在8的左边即可,∴a <8.18.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧-x +3,x ≤0,4x ,x >0.导学号 69174491(1)求f (f (-1));(2)若f (x 0)>2,求x 0的取值范围. [解析] (1)∵f (-1)=-(-1)+3=4, ∴f (f (-1))=f (4)=4×4=16.(2)当x 0≤0时,令2<-x 0+3,得x 0<1,此时x 0≤0;当x 0>0时,令2<4x 0,得x 0>12,∴x 0≤0或x 0>12.19.(本小题满分12分)已知定义在R 上的函数f (x )=x 2+ax +b 的图象经过原点,且对任意的实数x 都有f (1+x )=f (1-x )成立.导学号 69174492(1)求实数a ,b 的值;(2)若函数g (x )是定义在R 上的奇函数,且满足当x ≥0时,g (x )=f (x ),试求g (x )的解析式.[解析] (1)∵函数图象经过原点,∴b =0, 又∵对任意的实数x 都有f (1+x )=f (1-x )成立. ∴f (x )的对称轴为x =1,∴a =-2. (2)当x ≥0时,g (x )=f (x )=x 2-2x , 当x <0时,-x >0,g (-x )=(-x )2-2(-x )=x 2+2x , ∵g (x )为奇函数, ∴g (-x )=-g (x ), ∴g (x )=-x 2-2x ,∴g (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.20.(本小题满分12分)已知函数f (x )=x 2-2ax -3在区间[1,2]上是单调函数,求实数a 的取值范围.导学号 69174493[解析] 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数在(-∞,a]和[a,+∞)上分别单调,因此要使函数f(x)在区间[1,2]上为单调函数,只需a≤1或a≥2(其中当a≤1时,函数f(x)在区间[1,2]上单调递增;当a≥2时,函数f(x)在区间[1,2]上单调递减),从而a∈(-∞,1]∪[2,+∞).21.(本小题满分12分)设f(x)为定义在R上的偶函数,当0≤x≤2时,y=x;当x>2时,y=f(x)的图象是顶点为P(3,4)且过点A(2,2)的抛物线的一部分.导学号69174494(1)求函数f(x)在(-∞,-2)上的解析式;(2)在图中的直角坐标系中画出函数f(x)的图象;(3)写出函数f(x)的值域和单调区间.[解析](1)当x>2时,设f(x)=a(x-3)2+4.∵f(x)的图象过点A(2,2),∴f(2)=a(2-3)2+4=2,∴a=-2,∴f(x)=-2(x-3)2+4.设x∈(-∞,-2),则-x>2,∴f(-x)=-2(-x-3)2+4.又因为f(x)在R上为偶函数,∴f(-x)=f(x),∴f(x)=-2(-x-3)2+4,即f(x)=-2(x+3)2+4,x∈(-∞,-2).(2)图象如图所示.(3)由图象观察知f (x )的值域为{y |y ≤4}. 单调增区间为(-∞,-3]和[0,3]. 单调减区间为[-3,0]和[3,+∞).22.(本小题满分12分)定义在R 上的函数f (x ),满足当x >0时,f (x )>1,且对任意的x ,y ∈R ,有f (x +y )=f (x )·f (y ),f (1)=2.导学号 69174495(1)求f (0)的值;(2)求证:对任意x ∈R ,都有f (x )>0; (3)解不等式f (3-2x )>4. [解析] (1)对任意x ,y ∈R , f (x +y )=f (x )·f (y ).令x =y =0,得f (0)=f (0)·f (0), 即f (0)·[f (0)-1]=0.令y =0,得f (x )=f (x )·f (0),对任意x ∈R 成立, 所以f (0)≠0,因此f (0)=1. (2)证明:对任意x ∈R ,有f (x )=f (x 2+x 2)=f (x 2)·f (x 2)=[f (x2)]2≥0.假设存在x 0∈R ,使f (x 0)=0, 则对任意x >0,有f (x )=f [(x -x 0)+x 0]=f (x -x 0)·f (x 0)=0. 这与已知x >0时,f (x )>1矛盾. 所以,对任意x ∈R ,均有f (x )>0成立. (3)令x =y =1有 f (1+1)=f (1)·f (1), 所以f (2)=2×2=4. 任取x 1,x 2∈R ,且x 1<x 2, 则f (x 2)-f (x 1) =f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)·f (x 1)-f (x 1) =f (x 1)·[f (x 2-x 1)-1].∵x 1<x 2,∴x 2-x 1>0,由已知f (x 2-x 1)>1, ∴f (x 2-x 1)-1>0. 由(2)知x 1∈R ,f (x 1)>0.所以f (x 2)-f (x 1)>0,即f (x 1)<f (x 2). 故函数f (x )在(-∞,+∞)上是增函数. 由f (3-2x )>4,得f (3-2x )>f (2), 即3-2x >2.解得x <12.所以,不等式的解集是(-∞,12).。

人教版高一数学必修一第一章检测试卷

人教版高一数学必修一第一章检测试卷

x
5
x 2 的奇偶性为
A.是奇函数不是偶函数
B .是偶函数不是奇函数
C.既是奇函数又是偶函数
D .既不是奇函数又不是偶函数
二、填空题
11. 若集合 A x | 3 x 7 , B x | 2 x 10 ,则 A U B _____________
12. 已知集合 M={( x, y)| x+y=2} , N={( x, y)| x- y=4} ,那么集合 M∩N=

(Ⅱ)证明: 在区间 ( ,0] 上任取 x1, x2 ,且 x1 x2 ,则有 f ( x1) f ( x2) (2 x12 1) (2 x22 1) 2( x12 x22) 2( x1 x2) ( x1
∵ x1, x2 ( ,0] , x1 x2 ,∴ x1 x2
x1 x2 0,
即 ( x1 x2 ) ( x1 x2 ) 0
C. f ( x) 为增函数且为奇函数
D
. f ( x) 为增函数且为偶函数
9、下列图象中表示函数图象的是
()
y
y
y
y
A
B
C
D
0
x
0
x
0
0 x
x
精品文档交流
H 10、若 x R,n N * ,规定:
n
x x(x 1)(x 2)
( x n 1) ,例如:(

H H 4 4
( 4) ( 3) ( 2) ( 1) 24 ,则 f ( x)

A
B
C
7、 若全集 U 0,1,2,3 且CU A 2 ,则集合 A 的真子集共有(

A. 3 个 B. 5 个 C. 7 个 D. 8 个

高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案

( 2 ) 解 析 式 为 : f ( x)
x2 2x, x 0
,值域为:
x2 2x, x 0
y|y 1 .
20.解: y 2 x 2 3 4 x 3 (2 x )2 4 2 x ,
令 t 2 x ,则 y 3t 2 4t 3(t
1 ∴当 t
x 0, 2 ,即 x 3
1 2x 1即t 2
2 log 2 3 时ymax
18.已知全集 U {1,2,3,4,5,6,7,8} , A { x | x2 3x 2 0} ,B { x |1 x 5, x Z} , C { x | 2 x 9, x Z} .( 1)求 A (B C ) ; (2)求 (CU B ) (CU C) .
19.已知函数 y= x2- 2x+ 9 分别求下列条件下的值域, (1)定义域是 { x | 3 x 8} (2)定义域是 { x | -3 x 2}
2
5.全集 U={ 0,1,3,5,6,8 }, 集合 A={ 1 , 5, 8 }, B ={2},
则集合( CUA) B ( )
A. {0,2,3,6}
6.已知集合 A
B
.{ 0,3,6} C
. {2,1,5,8} D
x 1 x 3 , B x 2 x 5 , 则A B (
. )
A. ( 2, 3 ) B. [-1,5] C. (-1,5) D. (-1,5]

2


CU B {
6 CU C ,
7;


(痧U B
U)C
(
)
{
.6
5
進撃数学
20. 证明: (I) 函数为奇函数 f ( x)

人教版高中数学必修一第一章测试(含标准答案)

人教版高中数学必修一第一章测试(含标准答案)

第3题图高中数学《必修一》第一章教学质量检测卷时间:120分钟。

总分:150分。

班别: 姓名: 座号:一、选择题(将选择题的答案填入下面的表格。

本大题共10小题,每小题5分,共50分。

) 题号 1 2 3 4 5 6 7 8 9 10 答案1、下列各组对象中不能构成集合的是( )A 、佛冈中学高一(20)班的全体男生B 、佛冈中学全校学生家长的全体C 、李明的所有家人D 、王明的所有好朋友 2、已知集合{}{}5,1,A x R x B x R x =∈≤=∈>那么A B I 等于( )A.{1,2,3,4,5} B.{2,3,4,5} C.{2,3,4} D.{}15x R x ∈<≤ 3、设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为( )A .{}2B .{}4,6C .{}1,3,5D .{}4,6,7,8 4、下列四组函数中表示同一函数的是( )A.x x f =)(,2())g x x =B.()221)(,)(+==x x g x x fC.2()f x x =()g x x = D.()0f x =,()11g x x x=--5、函数2()21f x x =-,(0,3)x Î。

()7,f a =若则a 的值是 ( ) A 、1 B 、1- C 、2 D 、2±6、2,0()[(1)]1 0x x f x f f x ()设,则 ,()+≥⎧=-=⎨<⎩( ) A 、3 B 、1 C. 0 D.-17、()3f x x =函数的值域为( )题号 一 二 15 16 17 18 19 20 总分 得分A 、[3,)+?B 、(,3]-?C 、[0)+?,D 、R8、下列四个图像中,不可能是函数图像的是 ( )9、设f(x)是R 上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是:( ) A 、 f(-π)>f(3)>f(-2) B 、f(-π) >f(-2)>f(3) C 、 f(-2)>f(3)> f(-π) D 、 f(3)>f(-2)> f(-π) 10、在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:那么b ⊗ ()a c ⊕=( )A .aB .bC .cD .d 二、填空题(本大题共4小题,每小题5分,共20分) 11、函数0(3)2y x x =+--的定义域为12、函数2()610f x x x =-+-在区间[0,4]的最大值是13、若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B 是 . 14、下列命题:①集合{},,,a b c d 的子集个数有16个;②定义在R 上的奇函数()f x 必满足(0)0f =;③()()2()21221f x x x =+--既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤1()f x x=在()(),00,-∞+∞U 上是减函数。

高一数学必修1第一章测试题及答案(同名3758)

高一数学必修1第一章测试题及答案(同名3758)

必修1检测题第I卷(选择题,共48 分)一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 •已知全集U {1,2,345,6.7}, A {2,4,6}, B {1,3,5,7}.则A ( C d B )等于 ( )A. {2,4,6}B. {1,3,5}C. {2,4,5}D. {2,5}2. 已知集合A {x|x2 1 0},则下列式子表示正确的有( )① 1 A ②{ 1} A ③ A ④{1, 1} AA. 1个B. 2个C. 3个D. 4个3. 若f : A B能构成映射,下列说法正确的有 ( )(1)A中的任一元素在B中必须有像且唯一;(2)A中的多个元素可以在B中有相同的像;(3)B中的多个元素可以在A中有相同的原像;(4)像的集合就是集合B.A 1个B 、2个C 、3个D 、4个4、如果函数f(x) x 2(a 1)x 2在区间,4上单调递减,那么实数a的取值范围是( )A、a w 3 B 、a》3 C 、a w 5 D 、a》55、下列各组函数是同一函数的是( )① f (x) J 2x3与g(x) x j 2x :② f(x) x 与g(x) J X2;1③ f(x) x0与g(x) 0:④ f(x) x2 2x 1 与g(t) t2 2t 1。

xA、①② B 、①③ C 、③④ D 、①④6. 根据表格中的数据,可以断定方程e x x 2 0的一个根所在的区间是( )x 2123457.若lg x lg y a,则lg(x)32lg(?)3 ()A. 3aB. -aC. aD.a228 若定义运算ba b a b,则函数f x log2 xlog 1 x的值域是a a b2A 0,B 0,1C1, D R9•函数y a x在[0,1]上的最大值与最小值的和为3,则a ( )1 1A.丄B. 2C. 4D. 12 410. 下列函数中,在0,2上为增函数的是( )11. 下表显示出函数值y随自变量x变化的一组数据,判断它最可能的函数模型是( ) x45678910y15171921232527C.指数函数模型D.对数函数模型12、下列所给4个图象中,与所给3件事吻合最好的顺序为( )(1) 我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2) 我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3) 我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

人教版高中数学必修一第一章测验

人教版高中数学必修一第一章测验

第一章 集合与函数概念 班级 姓名 完成时间 分 满意程度一、选择题1.已知全集U ={0,1,2,3,4,5,6}且U A ={0,2,4,6},则集合A 的非空真子集共有( ). A .9个 B .8个 C .7个 D .6个2.设集合A ={x |1<x ≤2},B ={ x |x >a },若A ⊆B ,则a 的取值范围是( ).A .{a |a ≥1}B .{a |a ≤1}C .{a |a ≥2}D .{a |a >2}3.A ={x |x 2+x -6=0},B ={x |mx -3=0},且B B A = ,则m 的取值集合是( ).A .⎭⎬⎫⎩⎨⎧-1 ,23B .⎭⎬⎫⎩⎨⎧1 ,23C ⎭⎬⎫⎩⎨⎧-1 ,23D .⎭⎬⎫⎩⎨⎧-1,0 ,23 4.下列表示图形中的阴影部分的是( )A .()()A C B CB .()()A B AC C .()()AB BCD .()A B C5.设全集U ={(x ,y )| x ∈R ,y ∈R },集合M =⎭⎬⎫⎩⎨⎧+1=1-2,x y y x |)(, P ={(x ,y )|y ≠x -3},那么U (M ∪P )等于( ).A .UB .(1,-2)C .{(1,-2)}D .{(x ,y )| y =x -3}6.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;A B C⑶x x f =)(,2)(x x g =;⑷()f x =()F x =; ⑸21)52()(-=x x f ,52)(2-=x x f 。

A .⑴、⑵B .⑵、⑶C .⑷D .⑶、⑸7.函数f (x )=x 1-+3x 的图象关于( ).A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称8.函数f (x )=221x - (x ∈R )的值域是( ).A .(0,1)B .(-∞,0]C .[21,+∞) D .(-∞,0) [21,+∞)9.已知f (x )在R 上是偶函数,f (x -4)=f (x ),当x ∈(0,2)时,f (x )=98x 2,则f (7)=( ).A .-2B .2C .-98D .9810.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是()A .)2()1()23(f f f <-<- B .)2()23()1(f f f <-<-C .)23()1()2(-<-<f f f D .)1()23()2(-<-<f f f二、填空题11.函数0(1)x y -=的定义域是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

假期高中数学必修1第一章学习检查
满分100分用时90分钟 得分_________
1.用符号“∈”或“∉”填空:(12分)
(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,
(2)若2{|}A x x x ==,则1-_______A ;
(3)若2{|60}B x x x =+-=,则3_______B ;
(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C .
(5)237
_______Q ; (6)23______N ; (7)π_______Q ; (8)2_______R ; (9)9_______Z ; (10)2(5)_______N .
2.(6分)用适当的符号填空:
(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2
{|10}x R x ∈+=;
(4){0,1}______N ; (5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.
3.(8分)写出集合{1,2,3}的所有子集._________________________________________________
4.(4分)设{3,5,6,8},{4,5,7,8}A B ==,则.A ∩B=______________, A ∪B=____________ 5.(8分)已知全集}8|{正整数小于x x U =,
{2,4,5},{1,3,5,7}A B ==,则(U A )=____________、(U B )=___________、
A ∩(U
B )=______________,(U A )∩(U B )=____________
6.(4.分)如右图,设U 为全集,集合M ,N 都是其子集,则图中的阴影部分表示的集合为( ).
A 、M ∩N
B 、M ∪N
C 、U A
D 、U B
7、(8分)已知集合{|37},{|210}A x x B x x =≤<=<<,求(R A )∩B 、A ∪(R B )(要过程)
8.(8分)求下列函数的定义域
(1)1()47
f x x =
+; (2)x x f -=1)(+2
9.(8分)已知函数2()352f x x x =-+,求(2)f -,()f a -,(3)f a +,()(3)f a f +.
10.(6分)画出函数3y x =的图象,并说出函数的定义域和值域.
11.(8分)根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.
12.(6分)证明函数12)(-=x x f 在R 上是增函数.
13.(6分)证明函数3
()2f x x x =-为奇函数.
14.(8分)如图,以墙为一边用篱笆围成长方形的场地,.已知篱笆总长为20米. (Ⅰ)把场地面积S (米2)表示为场地宽x (米)的函数,并指出函数的定义域. (Ⅱ)这块场地的长和宽各为多少时,场地面积最大,最大面积是多少?。

相关文档
最新文档