新人教版初中数学八年级上册《第十二章全等三角形:12.2三角形全等的判定》优质课教学设计_2
部编人教版八年级数学上册《12第十二章 全等三角形【全章】》精品PPT优质课件
(B )
A.∠DAB B.∠DBA C.∠DBC D.∠CAD
5.如图,△ABC≌△AED,AB是△ABC的最大边,AE 是△AED的最大边, ∠BAC 与∠ EAD是对应角,且 ∠BAC=25°,∠B= 35°,AB=3cm,BC=1cm,求出 ∠E, ∠ ADE的度数和线段DE,AE 的长度.
1.有公共边
A
B
D
C
A
D B
C
AD
B
C
2.有公共点
D
A
A O
AD
A
E
D
B
C B
O B
CD
E CB
C
总结归纳 1. 有公共边,则公共边为对应边; 2. 有公共角(对顶角),则公共角(对顶角)为对应角; 3.最大边与最大边(最小边与最小边)为对应边;
最大角与最大角(最小角与最小角)为对应角;
4. 对应角的对边为对应边;对应边的对角为对应角.
你能指出上面两 个全等三角形的 对应顶点、对应 边、对应角吗?
思考:把一个三角形平移、旋转、翻折,变换前后的
两个三角形全等吗?
A
M
E
D
A
B
FC
N
A
B
C
A
B
C
B
E
D
D
C
归纳总结
全等变化 一个图形经过平移、翻折、旋转后,位__置_ 变化了,
但_形_状_和_大_小_都没有改变,即平移、翻折、旋 转前后的两个图形_全_等_. 全等三角形的性质
一个正确的结论并证明. 解:结论:EF∥NM
想一想:你还能得出 其他结论吗?
证明: ∵ △EFG≌△NMH,
∴ ∠E=∠N. ∴ EF∥NM.
人教版八年级数学上册第十二章《全等三角形12.2三角形全等的判定第2课时》说课稿
人教版八年级数学上册第十二章《全等三角形12.2三角形全等的判定第2课时》说课稿一. 教材分析人教版八年级数学上册第十二章《全等三角形12.2三角形全等的判定第2课时》这一节主要讲述了三角形全等的判定方法。
在上一课时中,我们已经学习了三角形全等的概念和性质。
本课时将通过具体的例题和练习,让学生掌握三角形全等的判定方法,并能够运用这些方法解决实际问题。
教材中安排了丰富的例题和练习题,通过这些题目,学生可以巩固所学知识,提高解题能力。
此外,教材还设置了“思考与探索”环节,引导学生主动思考,培养其创新意识和解决问题的能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对三角形的相关知识有一定的了解。
但是,对于三角形全等的判定方法,他们可能还比较陌生。
因此,在教学过程中,教师需要关注学生的认知水平,从简单到复杂,逐步引导学生理解和掌握三角形全等的判定方法。
同时,学生在学习过程中,需要动手操作,观察和分析图形,从而更好地理解和运用三角形全等的判定方法。
因此,教师在教学过程中,要注重培养学生的动手能力、观察能力和分析能力。
三. 说教学目标1.知识与技能目标:让学生掌握三角形全等的判定方法,能够运用这些方法解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,让学生自主探索三角形全等的判定方法,培养其创新意识和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养其团队协作精神,使其能够积极面对学习中的困难,树立自信心。
四. 说教学重难点1.教学重点:三角形全等的判定方法。
2.教学难点:如何运用三角形全等的判定方法解决实际问题。
五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入新课:通过复习三角形全等的概念和性质,引出本节课的内容——三角形全等的判定方法。
2.知识讲解:讲解三角形全等的判定方法,并结合例题进行讲解,让学生通过观察、分析、归纳等方法,自主探索三角形全等的判定方法。
八年级数学上册 第十二章 全等三角形 12.2 三角形全等的判定 第3课时 运用“角边角”和“角角边
17
8. 如图,在四边形 ABCD 中,AD∥BC,EF 过 AC 的中点 O,分别交 AD,BC 于点 E,F.
(1)求证:OE=OF; (2)若直线 EF 绕点 O 旋转一定角度后,与 AD,BC 分别交于点 E′,F′,仍有 OE′=OF′吗?为什么? (3)EF 绕点 O 旋转到何处时,线段 EF 最短?
∠2.又∵∠1=∠2,
∴∠1=∠BEO,∴∠AEC=∠BED.
∠A=∠B,
在△ AEC 和△ BED 中,
AE=BE, ∠AEC=∠BED,
∴△AEC≌△BED(ASA).
(2)∵△AEC≌△BED , ∴EC = ED , ∠C = ∠BDE.
在△ EDC 中,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE
第十二章 全等三角形 12.2 三角形全等的判定
第3课时 运用“角边角”和“角角边” 证三角形全等
1
三角形全等的判定方法三: 两角和它们的夹边对
应相等 的两个三角形全等(简写为“ 角边角 ”或
“ ASA ”).由于三角形的内角和为 180° ,所以,
我们也可以得到:两个角和其中一个角的对边对应相
等
=∠C=69°.
6
知识点 利用“AAS”判定三角形全等
4. 如图,C,B 是线段 AD 上的两点,已知 AM=CN,
∠A=∠DCN,下列条件中不能判定△ ABM≌△CDN 的
是( C )
A.∠M=∠N
B.AC=BD
C.BM=DN
D.BM∥DN
7
5. 如图,已知△ ABC 的六个元素,则对于甲、乙、 丙三个三角形,判断正确的是( C )
人教版八年级数学上册考点与题型归纳第十二章全等三角形12.2全等三角形的判定(含解析)
人教版八年级数学上册考点与题型归纳第十二章全等三角形12.2 全等三角形的判定一:考点归纳考点一、三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
考点二、直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”).考点三、证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.二:【题型归纳】题型一:直角三角形全等的判定1.如图,已知,,AE BD AC BC DF EF =⊥⊥,垂足分别为点,C F ,且BC EF =.求证:ABC DEF ∆≅∆题型二:SAS的判定2.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=48°,求∠BDE的度数.题型三:全等三角形判定与性质的综合3.如图,∆ABC中,AC=CB,∠ACB=90°,D为AC延长线上的一点,E在BC边上,连接AE,DE,BD,AE=BD,∆≅∆(1)求证:ACE BCD(2)若∠CAE=15°,求∠EDB的度数.4.如图,AD为ABC的高,AD=BD,E为AC上一点,BE交AD于F,且FD=CD.(1)求证:BFD≌ACD;(2)判断BE与AC的位置关系,并说明理由.三:基础巩固和培优一、单选题1.如图,∠ABD =∠EBC ,BC =BD ,再添加一个条件,使得△ABC ≌△EBD ,所添加的条件不正确的是( )A .∠A =∠EB .BA =BEC .∠C =∠D D .AC =DE2.如图,下列条件中,不能证明ABD ≌ACD 的是( )A .BD DC =,AB AC =B .ADB ADC ∠∠=,BD DC =C .B C ∠=∠,BAD CAD ∠=∠D .B C ∠=∠,BD DC =3.如图,下列条件不能证明ABC DCB △≌△的是( )A .AB =DC ,AC =DB B .AB =DC ,∠ABC =∠DCBC .BO =CO ,∠A =∠D D .AB =DC ,∠ACB =∠DBC4.如图,BE=CF ,AB=DE ,添加下列哪一个条件可以推证△ABC ≌△DEF ()A .BC=EFB .∠A=∠DC .AC//DFD .∠B=∠DEF5.如图,∆ABC 的面积为102cm ,BP 平分∠ABC ,AP 垂直于BP 于P .连接CP ,若∆ACP 的面积为22cm ,则∆ABP 的面积为( )A .12cmB .22cmC .32cmD .42cm6.如图,已知AD 是ABC 的角平分线,增加以下条件:①AB =AC ;②∠B =∠C ;③AD ⊥BC ;④ABD ACD S S ,其中能使BD =CD 的条件有 ( )A .①B .①②C .①②③D .①②③④7.如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是( )A .∠B=∠DB .BE=DFC .AD=CBD .AD ∥BC8.如图,在△ABC 和△DEC 中,已知CB CE =,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( ).A .AB DE =,B E ∠=∠ B .AB DE =,AC DC =C .AB DE =,AD ∠=∠ D .A D ∠=∠,BE ∠=∠9.如图,90ACB ∠=︒,AC=BC .AD CE ⊥,BE CE ⊥,垂足分别是点D 、E .若AD=6,BE=2,则DE 的长是( )A .2B .3C .4D .510.如图,△ABC 的面积为1cm 2, AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .0.4 cm 2B .0.5 cm 2C .13 cm 2D .0.6 cm 2二、填空题 11.如图所示,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 上,且BE =BD ,连接AE 、DE 、DC .若∠CAE =25°,则∠BDC =_____.12.在△ABC 和△A ′B ′C ′中,若∠A =∠A ′,AB =A ′B ′,请你补充一个条件_____,使得△ABC ≌△A ′B ′C ′.13.如图,在ABC中,点D、E、F分别是BC,AB,AC上的点,若∠B=∠C,BF=CD,BD=CE,∠EDF =56°,则∠A=_____°.14.如图,已知在ABC中,PR⊥AB于R,PS⊥AC于S,PR=PS,∠1=∠2,则四个结论:①AR=AS;②PQ∥AB;≌;④BP=CP中,正确的是________.③BPR CPS15.如图,在△ABC 中,AB=AC=12,BC=8,D 为AB 的中点,点P 在线段BC 上以每秒2 个单位的速度由B 点向C 点运动,同时,点Q 在线段CA 上以每秒x 个单位的速度由C 点向A 点运动.当△BPD 与以C、Q、P 为顶点的三角形全等时,x 的值为_____.三、解答题16.如图所示,在四边形ABCD中,CD∥AB,∠ABC的平分线与∠BC D的平分线相交于点F,BF与CD的延长线交于点E,连接CE.求证:(1)△BCE是等腰三角形.(2)BC=AB+CD17.如图,点B,E,C,F在一条直线上,AB=DE,AC =DF,BE=CF.求证:△ABC ≌△DEF;18.如图,D为△ABC外一点,∠DAB=∠B,CD⊥AD,∠1=∠2,若AC=7,BC=4,求AD的长.19.如图,在△ABC中,AB<AC,边BC的垂直平分线DE交△ABC的外角∠CAM平分线于点D,垂足为E,DF⊥AC于点F,DG⊥AM于点G,连接CD.(1)求证:BG=CF;(2)若AB=10cm,AC=14cm,求AG的长.20.在ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你直接写出这个数量关系,不要证明.10 / 26参考答案题型归纳1.证明:,AC BC DF EF ⊥⊥ 90C F ︒∴∠=∠=AE BD =AB DE ∴=在Rt ABC ∆和Rt DEF ∆中AB DEBC EF =⎧⎨=⎩()Rt ABC Rt DEF HL ∴∆≅∆ 2.解:(1)证明:∵AE 和BD 相交于点O , ∴∠AOD =∠BOE .在△AOD 和△BOE 中,∠A =∠B ,∴∠BEO =∠2. 又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC =∠BED .在△AEC 和△BED 中,A BAE BE AEC BED∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEC ≌△BED (ASA ).(2)∵△AEC ≌△BED ,∴EC =ED ,∠C =∠BDE .在△EDC 中,∵EC =ED ,∠1=48°,∴∠C =∠EDC =66°,∴∠BDE =∠C =66°.3.(1)证明:在Rt △ACE 和Rt △BCD 中,AC BCAE BD =⎧⎨=⎩,∴△ACE ≌△BCD (HL );(2)∵△ACE ≌△BCD ,∠CAE=15°,∴CE=CD,∠CBD=∠CAE=15°∴∠CDE=∠CED ,∵∠ACB=90°,∴∠CED=45°,∵∠CED 为△BDE 的外角,∴∠EDB=∠CED-∠CBD=45°-15°=30°.4.证明:(1)在△BDF 和△ADC 中,90ADBD ADCBDF CD DF , ∴△BDF≌△ADC(SAS );(2)BE⊥AC,理由如下:∵△BDF≌△ADC,∴∠DAC=∠DBF,∵∠DAC+∠C=90°,∴∠DBF+∠C=90°,∴∠BEC=90°,∴BE⊥AC.三:基础巩固和培优1.D解:∵∠ABD =∠EBC ,BC=BD ,∴∠ABC=∠EBD ,A.当添加∠A=∠E 时,可根据“AAS”判断△ABC ≌△EBD ,故正确;B.当添加BA=BE 时,可根据“SAS”判断△ABC ≌△EBD ,故正确;C.当添加∠C=∠D 时,可根据“ASA”判断△ABC ≌△EBD ,故正确;D.当添加AC =DE 时,无法判断△ABC ≌△EBD ,故错误;故选:D .2.D解:A 、因为BD DC =,AB AC =,又因为AD=AD ,所以ABD ≌ACD (SSS ),故本选项不符合题意; B 、因为ADB ADC ∠∠=,BD DC =,又因为AD=AD ,所以ABD ≌ACD (SAS ),故本选项不符合题意;C 、因为B C ∠=∠,BAD CAD ∠=∠,又因为AD=AD ,所以ABD ≌ACD (AAS ),故本选项不符合题意;D 、因为B C ∠=∠,BD DC =,AD=AD ,这是边边角,不能证明ABD ≌ACD ,故本选项符合题意. 故选:D .3.D解:AB =DC ,AC =DB ,BC =BC ,符合全等三角形的判定定理“SSS”,能推出ABC DCB △≌△ ,故A 选项错误;AB =DC ,ABC DCB ∠=∠,BC =CB符合全等三角形的判定定理“SAS”,能推出ABC DCB △≌△ ,故B 选项错误;在△AOB 和△DOC 中,AOB DOCA D OB OC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AOB DOC △≌△ (AAS ),∴AB =DC ,∠ABO =∠DCO ,∵OB =OC ,∴∠OBC =∠OCB ,∴∠ABC =∠DCB ,在△ABC 和△DCB 中,AB DC ABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩, ∴ABC DCB △≌△(SAS ),能推出ABC DCB △≌△,故C 选项错误;BC =CB ,AB =DC ,∠ACB =∠DBC ,SSA 不符合全等三角形的判定定理,即不能推出ABC DCB △≌△,故D 选项正确.故选D .4.D解:∵BE =CF ,∴BC =EF ,又∵AB=DE ,A 、添加BC =EF 不能证明△ABC ≌△DEF ,故此选项错误;B 、添加∠A =∠D 不能证明△ABC ≌△DEF ,故此选项错误;C 、添加AC ∥DF 可得∠ACB =∠F ,不能证明△ABC ≌△DEF ,故此选项错误;D 、添加∠B=∠DEF 可利用SAS 判定△ABC ≌△DEF ,故此选项正确;故选:D .5.C解:延长AP 交BC 于D ,∵BP 平分∠ABC ,AP ⊥BP ,∴∠ABP=∠DBP ,∠APB=∠DPB=90°,在△ABP 与△DBP 中,ABP DBPPB PB APB DPB∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABP ≌△DBP (ASA ),∴AP=PD ,S △PBD =S △ABP∴2ACP PCD S S ∆∆==2cm∴S △ABD =10-4=62cm ,∴△ABP 的面积=3cm 2,故选:C .6.D解:∵AD 平分∠BAC ,∴∠BAD=∠CAD ,∵AB=AC ,AD=AD ,∴△BAD ≌△CAD (SAS ),∴BD=CD ,故①符合题意;∵∠B=∠C ,AD=AD ,∴△BAD ≌△CAD (AAS ),∴BD=CD ,故②符合题意;∵AD ⊥BC ,∴∠ADB=∠ADC=90°,∵AD=AD ,∴△BAD ≌△CAD (ASA ),∴BD=DC ,故③符合题意;∵ABD ACD S S ,∴BD=DC ,故④符合题意;∴①②③④都可以得到BD=CD ;故选D .7.C解:∵AE=CF ,∴AE+EF=CF+EF ,∴AF=CE ,A 、∠B=∠D ,∠AFD=∠CEB ,AF=CE ,满足AAS ,能判定△ADF ≌△CBE ;B 、BE=DF ,∠AFD=∠CEB ,AF=CE ,满足SAS ,能判定△ADF ≌△CBE ;C 、AD=CB ,AF=CE ,∠AFD=∠CEB ,满足SSA ,不能判定△ADF ≌△CBE ;D 、AD ∥BC ,则∠A=∠C ,又AF=CE ,∠AFD=∠CEB ,满足ASA ,能判定△ADF ≌△CBE ; 故选:C .8.C解:∵CB=CE.∴当AB DE =,B E ∠=∠时,满足SAS ,可证△ABC ≌△DEC ,故A 不符合题意; 当AB DE =,AC DC =时,满足SSS ,可证△ABC ≌△DEC ,故B 不符合题意;当AB DE =,A D ∠=∠时,满足是ASS ,不能证明△ABC ≌△DEC ,故C 符合题意; 当A D ∠=∠,B E ∠=∠时,满足AAS ,可证△ABC ≌△DEC ,故D 不符合题意. 故选C .9.C解:∵90ACB ∠=︒,∴∠ACD+∠ECB=90º,∵AD CE ⊥,BE CE ⊥,∴∠ADC=∠CEB=90º,∴∠ECB+∠CBE=90º,∴∠ACD=∠CBE ,在△ACD 和△CBE 中,∵∠ADC=∠CEB=90º,∠ACD=∠CBE ,AC=BC ,∴△ACD ≌△CBE (AAS ),∴AD=CE=6,CD=BE=2,∴ED=EC-CD=6-2=4.故选择:C .10.B解:如图,延长AP 交BC 于T .∵BP ⊥AT ,∴∠BPA =∠BPT =90°,∵BP =BP ,∠PBA =∠PBT ,∴△BPA ≌△BPT (ASA ),∴PA =PT ,∴S △BPA =S △BPT ,S △CAP =S △CPT ,∴S △PBC =12S △ABC =12=0.5,故选:B .11.70°解: ∵∠ABC=90°,∴∠CBD=∠ABC =90°,在Rt △ABE 与Rt △CBD 中,BE BDCBD ABC AB BC=⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CBD ,∴∠AEB=∠BDC ,∵AB=BC ,∴∠BAC=∠ACB=45°,∵∠AEB 为△AEC 的外角,∠CAE=25°,∴∠AEB=∠ACB+∠CAE=45°+25°=70°,∴∠BDC=70°.故答案为:70°.12.∠B =∠B ′或∠C =∠C ′或AC =A ′C ′.解:在△ABC 和△A ′B ′C ′中,AB =A ′B ′,∠A =∠A ′, 当添加∠B =∠B ′可利用“ASA ”判断△ABC ≌△A ′B ′C ′; 当添加∠C =∠C ′可利用“AAS ”判断△ABC ≌△A ′B ′C ′; 当添加AC =∠A ′C ′可利用“SAS ”判断△ABC ≌△A ′B ′C ′. 故答案为:∠B =∠B ′或∠C =∠C ′或AC =A ′C ′. 13.68°.解:在△BDF和△CED中∵BF=CD ,∠B=∠C ,BD =CE ,∴△BDF ≌△CED (SAS ),∴∠BFD=∠CDE ,∠BDF=∠CED ,∴∠BDF+∠CDE=180º-∠EDF=180º-56º=124º,∴∠BFD+∠BDF=∠BDF+∠CDE=124º,∴∠C=∠B=180º-∠BFD-∠BDF=56º,∴∠A=180º-∠B-∠C=180º-56º-56º=68º.故答案为:68º.14.①② 解:在Rt APR ∆和Rt APS ∆中,PS PR AP AP =⎧⎨=⎩, Rt APR Rt APS ∴∆≅∆,()HLAR AS ∴=,①正确,∴1BAP ∠=∠,12∠=∠,2BAP ∴∠=∠,//QP AB ∴,②正确,BRP ∆和QSP ∆中,只有一个条件PR PS =,再没有其余条件可以证明 BRP QSP ∆≅∆,故③④错误; 故答案是:①②.15.2 或 3解:设经过 t 秒后,使△BPD 与△CQP 全等. ∵AB =AC =12,点 D 为 AB 的中点.∴BD =6.∵∠ABC =∠ACB .∴要使△BPD 与△CQP 全等,必须 BD =CP 或 BP =CP . 即 6=8﹣2t 或 2t =8﹣2t .1t =1,2t =2.当t =1 时,BP =CQ =2,2÷1=2. 当t =2 时,BD =CQ =6,6÷2=3. 即点 Q 的运动速度是 2 或 3,故答案为:2 或 3.16.解:(1)∵BF 平分∠ABC , ∴12ABF CBF ABC ∠=∠=∠,∵CD ∥AB ,∴ABF E ∠=∠,∴E CBF ∠=∠,∴BC=CE ,∴△BCE 是等腰三角形.(2)∵CF 平分∠BCE , ∴12BCF BCE ∠=,∵CD ∥AB ,∴180ABC BCE ∠+∠=︒,∴90CBF BCF ∠+∠=︒,∴90BFC ∠=︒,即 CF ⊥BE ,又BC=CE ,∴BF=EF ,在△ABF 和△DEF 中,∵ABF EAFB DFE BF EF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DEF ;∴AB=DE ,∴BC=CE=DE+CD=AB+CD ,因此 BC=AB+CD .17.解:证明:∵BE =CF ,∴BE +EC =CF +EC ,∴BC =EF ,在△ABC 和△DEF 中,∵AB DEAC DF BC EF=⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF (SSS ).18.解:证明:延长AD ,BC 交于点E .∵CD ⊥AD ,∴∠ADC =∠EDC =90°.在△ADC 和△EDC 中12ADC EDCCD CD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△EDC(ASA).∴∠DAC=∠DEC,AC=EC,AD=ED.∵AC=7,∴EC=7.∵BC=4∴BE=11∵∠DAB=∠B,∴AE=BE=11.∴AD=5.5.答:AD的长为5.5.19.解:(1)证明:如图所示,连接DB.∵AD是△ABC的外角平分线,DG⊥AB,DF⊥CA,∴DF=DG .∵DE 垂直平分BC ,∴DC=DB ,在Rt △CDF 与Rt △BDG 中DF DG DC DB=⎧⎨=⎩ ∴Rt △CDF ≌Rt △BDG (HL ),∴BG=CF .(2)解:∵∠GAD=∠FAD ,∠AGD=∠AFD ,AD=AD , ∴在△ADG 与△ADF 中GAD FAD AGD AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADG ≌△ADF (AAS ),∴AG=AF ,∵BG=CF∴AG=()()111410222AC AB -=-=(cm). 20.解:(1)证明:∵AD ⊥MN ,BE ⊥MN , ∴∠ADC =∠CEB =90°,∴∠DAC+∠ACD =90°,∵∠ACB =90°,∴∠BCE+∠ACD =90°,∴∠DAC =∠BCE ,在△ADC 和△CEB ,ADC CEBDAC ECB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ), ∴CD =BE ,AD =CE ,∴DE =CE+CD =AD+BE ;(2)证明:∵AD ⊥MN ,BE ⊥MN , ∴∠ADC =∠CEB =90°, ∴∠DAC+∠ACD =90°, ∵∠ACB =90°,∴∠BCE+∠ACD =90°,∴∠DAC =∠BCE ,∵AC=BC ,∴△ADC ≌△CEB ,∴CD =BE ,AD =CE ,∴DE =CE ﹣CD =AD ﹣BE ;(3)解:DE =BE ﹣AD ,理由如下:∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠CEB =90°, ∴∠DAC+∠ACD =90°, ∵∠ACB =90°,∴∠BCE+∠ACD =90°,∴∠DAC=∠BCE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,AD=CE,∴DE=BE﹣AD.。
人教版数学八年级上册第十二章全等三角形全章复习优秀教学案例
3. 结合实际问题,讲解全等三角形在实际生活中的应用,让学生感受数学的实用价值。
(三)学生小组讨论
1. 将学生分成小组,给出具有挑战性和实际意义的数学题目,引导学生运用全等三角形的知识进行分析、解答。
2. 鼓励学生相互讨论、交流,培养学生的团队精神和合作能力。
1. 将学生分成小组,鼓励学生相互讨论、交流,培养学生的团队精神和合作能力。
2. 设计小组合作任务,如共同解决一个数学问题,让学生在合作中发现问题、解决问题,提高解决问题的能力。
3. 教师观察学生的合作过程,及时给予指导和评价,促进学生的合作效果。
(四)反思与评价
1. 引导学生对自己的学习过程进行反思,总结自己在学习全等三角形过程中的优点和不足。
作为一名特级教师,我深知教学目标的重要性,因此在本章节的复习过程中,我将注重对学生知识与技能、过程与方法、情感态度与价值观的培养。通过科学合理的教学设计,我将引导学生深入理解全等三角形的性质和判定方法,提高他们的数学思维能力和解决问题的能力。同时,我将关注每一个学生的个体差异,给予他们个性化的指导和关爱,使他们在数学学习过程中能够充分感受到学习的乐趣和成功的喜悦。
人教版数学八年级上册第十二章全等三角形全章复习优秀教学案例
一、案例背景
本案例背景以人教版数学八年级上册第十二章全等三角形全章复习为主题,旨在通过具体教学实践,探讨如何提高学生对全等三角形知识的理解和应用能力。本章内容主要包括全等三角形的性质、判定方法以及全等三角形的应用。在全章复习过程中,我将结合学科特点和课本内容,设计一系列具有针对性和实用性的教学活动,以帮助学生巩固全等三角形知识,提高他们的数学思维能力和解决问题的能力。
2024年人教版八年级数学上册教案及教学反思第12章12.2 三角形全等的判定(第4课时)
第十二章全等三角形12.2.三角形全等的判定第4课时直角三角形全等的判定一、教学目标【知识与技能】掌握直角三角形全等的条件:“斜边、直角边”.能运用全等三角形的条件,解决简单的推理证明问题.【过程与方法】经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系.【情感、态度与价值观】通过画图、探究、归纳、交流,发展学生的实践能力和创新精神.二、课型新授课三、课时第4课时,共4课时。
四、教学重难点【教学重点】掌握判定两个直角三角形全等的特殊方法——HL.【教学难点】熟练选择判定方法,判定两个直角三角形全等.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规。
六、教学过程(一)导入新课小明去公园玩,在公园看到了如下两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF相等,小明说只要测量出左边滑梯AB的长度就可以知道右边滑梯有多高了,小明的说法正确吗?(出示课件2-4)(二)探索新知1.师生互动,探究直角三角形全等的判定方法教师问1:判定两个三角形全等的条件有哪些?(出示课件6)学生回答:SSS、SAS、AAS、ASA教师提出问题:前面学过的四种判定三角形全等的方法,对直角三角形是否适用?(出示课件7)教师问2:两个直角三角形,除了直角相等外,还要满足几个条件,这两个直角三角形就全等了?(出示课件8)(让学生观察课件中的两个直角三角形并思考回答:分析:1.再满足一边一锐角对应相等,就可用“AAS”或“ASA”证全等了.2.再满足两直角边对应相等,就可用“SAS”证全等了.教师问3:那么,如果满足斜边和一条直角边对应相等,这两个直角三角形全等吗?学生不能作肯定回答,经过小组讨论,只能作出猜测:可能全等.教师讲解:现在不要求马上给出结论.看看通过动手探究,你是否能得出结论.直角三角形我们用Rt△表示.教师问4:如图,已知AC=DF,BC=EF,∠B=∠E,△ABC≌△DEF 吗?(出示课件9)学生讨论并回答:证明三角形全等不存在SSA定理.所以一般的三角形不一定全等.教师问5:如果这两个三角形都是直角三角形,即∠B=∠E=90°,且AC=DF,BC=EF,现在能判定△ABC≌△DEF吗?(出示课件10)我们完成下边的问题:思考:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使B′C′=BC,A′B′=AB,把画好的Rt△A′B′C′剪下,放到Rt△ABC 上,看看它们是否全等.(课件出示11-14,师生一起看题)(学生独立探究,动手作图)分析:画法直接由教师给出,而不安排学生画出,是考虑学生画图有一定的难度,况且作图不是本节课的重点.教师问6:Rt△ABC就是所求作的三角形吗?学生回答:是要求作的三角形.教师问7:画好后,把Rt△A′B′C′剪下,放到Rt△ABC上,看它们全等吗?学生动手做后回答:全等.教师问8:这样你发现了什么结论?学生回答:有一条斜边和直角边相等的两个直角三角形全等》教师板书:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边,直角边”或“HL”).总结点拨:(出示课件15)“斜边、直角边”判定方法文字语言:斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:在Rt△ABC和Rt△ A′B′C′ 中,AB=A′B′,BC=B′C′,∴Rt△ABC ≌ Rt△ A′B′C′ (HL).警示注意:(1)一是“HL”是仅适用于Rt△的特殊方法;二是应用“HL”时,虽只有两个条件,但必须先有两个三角形是Rt△的条件.(2)“SSA”可以判定两个直角三角形全等,但是“边边”指的是斜边和一直角边,而“角”指的是直角.例1:如图,AC⊥BC,BD⊥AD,AC﹦BD.求证:BC﹦AD.(出示课件17)师生共同解答如下:证明:∵ AC⊥BC,BD⊥AD,∴∠C与∠D 都是直角.在Rt△ABC 和Rt△BAD 中,AC=BD .∴Rt△ABC≌Rt△BAD (HL).∴ BC﹦AD.例2:如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE. 求证:BC=BE.(出示课件22)师生共同解答如下:证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC =AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD-CD=BF-EF. 即BC=BE.总结点拨:(出示课件23)证明线段相等可通过证明三角形全等解决,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.例3:如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?师生共同解答如下:解:在Rt△ABC和Rt△DEF中,BC=EF,AC=DF .∴Rt△ABC≌Rt△DEF (HL).∴∠B=∠DEF(全等三角形对应角相等).∵∠DEF+∠F=90°,∴∠B+∠F=90°.(三)课堂练习(出示课件29-34)1. 判断两个直角三角形全等的方法不正确的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等2. 如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点E ,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长为()A.1 B.2 C.3 D.43.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC________(填“全等”或“不全等”),根据_______________(用简写法).4. 如图,在△ABC中,已知BD⊥AC,CE ⊥AB,BD=CE.求证:△EBC≌△DCB.5. 如图,AB=CD, BF⊥AC,DE⊥AC, AE=CF.求证:BF=DE.6. 如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P,Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等?参考答案:1.D2.A3. 全等HL4. 证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90 °.在Rt△EBC 和Rt△DCB 中,CE=BD,BC=CB .∴Rt△EBC≌Rt△DCB (HL).5. 证明: ∵ BF⊥AC,DE⊥AC,∴∠BFA=∠DEC=90 °.∵AE=CF,∴AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,AB=CD,AF=CE.∴Rt△ABF≌Rt△CDE(HL).∴BF=DE.6. 解:(1)当P运动到AP=BC时,∵∠C=∠QAP=90°.在Rt△ABC与Rt△QPA中,∵PQ=AB,AP=BC,∴Rt△ABC≌Rt△QPA(HL),∴AP=BC=5cm;(2)当P运动到与C点重合时,AP=AC.在Rt△ABC与Rt△QPA中,∵PQ=AB,AP=AC,∴Rt△QAP≌Rt△BCA(HL),∴AP=AC=10cm,∴当AP=5cm或10cm时,△ABC才能和△APQ全等.(四)课堂小结今天我们学了哪些内容:1.直角三角形“HL”判定方法2.灵活选择三角形全等的判定方法来解决问题(五)课前预习预习下节课(12.3)教材48页到49页的相关内容。
数学人教版八年级上第十二章12.2三角形全等的判定
12.2三角形全等的判定
1.三角形全等的判定方法一:边边边(SSS)
(1)边边边:三边
..对应相等的两个三角形全等(可以简写成“边边边”或“SSS”).这个判定方法告诉我们:当三角形的三边确定后,其形状、大小也就随之确定,这就
是三角形的稳定性
...,它在实际生活中应用非常广泛.
(2)书写格式:
①先写出所要判定的两个三角形;
②列出条件:用大括号将两个三角形中相等的边分别写出;
③得出结论:两个三角形全等.
如下图,在△ABC和△A′B′C′中,
∵AB=A′B′,BC=B′C′,AC=A′C′,
∴△ABC≌△A′B′C′(SSS).
警误区书写判定两个三角形全等的条件在书写全等的过程中,等号左边表示同一个三角形的量,等号右边表示另一个三角形的量.如上图,等号左边表示△ABC的量,等号右边表示△A′B′C′的量.
符号“∵”表示“因为”,“∴”表示“所以”,在以后的推理中,这样书写简捷、方便.要注意它们的区别.
(3)作一个角等于已知角.
已知:∠AOB.
求作:∠A′O′B′,使∠A′O′B′=∠AOB.
作法:如上图所示,①以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;
②画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;
③以点C′为圆心,CD长为半径画弧,与上一步中所画的弧交于点D′;
④过点D′画射线O′B′,则∠A′O′B′=∠AOB.
【例1】如图所示,已知AB=DC,AC=DB,
求证:△ABC≌△DCB.
分析:已知两边对应相等,由图形可知BC为两个三角形的公共边,所以△ABC≌△DCB(SSS).。
人教版八年级数学上册第十二章《全等三角形12.2三角形全等的判定第2课时》教学设计
人教版八年级数学上册第十二章《全等三角形12.2三角形全等的判定第2课时》教学设计一. 教材分析本节课的内容是全等三角形12.2三角形全等的判定第2课时。
这部分内容主要包括SSS全等判定、SAS全等判定、ASA全等判定、AAS全等判定四种判定方法。
这些判定方法是解决三角形全等问题的重要工具,对于学生理解和掌握全等三角形的性质具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了全等图形的概念、性质以及全等图形的判定方法。
但是对于部分学生来说,对于全等三角形的判定方法仍然存在一定的困惑,特别是对于各种判定方法的适用范围和条件理解不透彻。
因此,在教学过程中,需要针对学生的实际情况进行讲解,引导学生理解和掌握各种判定方法。
三. 教学目标1.知识与技能:使学生理解和掌握SSS全等判定、SAS全等判定、ASA全等判定、AAS全等判定四种判定方法,能够运用这些方法判定两个三角形是否全等。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间观念和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 教学重难点1.重点:SSS全等判定、SAS全等判定、ASA全等判定、AAS全等判定四种判定方法。
2.难点:各种判定方法的适用范围和条件的理解和运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、交流等方式自主学习,培养学生的空间观念和逻辑思维能力。
2.运用多媒体教学手段,展示全等三角形的判定过程,增强学生的直观感受。
3.学生进行小组合作学习,培养学生的团队合作意识和交流沟通能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备一些实际的三角形图形,用于引导学生观察和操作。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过复习全等图形的概念和性质,引导学生回顾全等图形的判定方法,为新课的学习做好铺垫。
2.呈现(10分钟)介绍SSS全等判定、SAS全等判定、ASA全等判定、AAS全等判定四种判定方法,并通过具体的例子进行讲解和展示。
人教版八年级数学上册第十二章全等三角形12.2三角形全等的判定12.2.1“SSS”备课资料教案新版
第十二章“SSS”
知识点:边边边定理(SSS)
三边对应相等的两个三角形全等( 能够简写成“边边边”或“SSS” ).
重点提示 :1 .用“ SSS”判断两个三角形全等时, 只要说明两个三角形的三对对应边
相等 , 证明时必然要正确理解“对应”的含义.
2. 运用“ SSS”证明三角形全等时, 还要注意公共边这一隐含条件的利用.
考点 1:利用“ SSS”证明三角形全等
【例 1】如图 , 点 A、 E、C、 F 在同一条直线上,AB=FD,BC=DE,AE=FC.求证 : △ ABC≌△FDE.
解 : ∵AE=FC, ∴AE+EC=FC+CE,即 AC=FE.
在△ABC和△FDE中,∴△ABC≌△ FDE(SSS).
点拨 : 在两个三角形中, 已经知道了两条对应边相等, 即 AB=FD,BC=DE,还缺少一个条件 , 能够找两边的夹角 , 也能够找边 . 此题中已知 AE=FC,所以能够追求第三条对应边相等 .
考点 2:“ SSS”证明三角形全等在本质生活中的应用
【例2】曙光中学师生自己着手新建一条水泥路(如图),为查验这条水泥路的两边
缘 l 1 ,l 2可否平行 , 小鹏同学手中只有米尺, 他先在此水泥路的一边缘l 1上取两点A、B, 在此水泥路的另一边缘l 2上取两点C、 D, 并且使 CD=AB,尔后用手中的米尺测得AC=BD小.鹏由此便确定此水泥路的两边缘l 1,l 2 是平行的, 你知道其中的道理吗?
解 : 如图 , 连结 AD. 在△ ABD与△ DCA中 ,
∴△ ABD≌△ DCA(SSS). ∴∠ BAD=∠ CDA.∴l 1∥ l 2.。
人教版八年级数学上册12.2三角形全等的判定
BC AC,
∴△AMC≌△CNB(AAS),∴AM=CN,MC=NB. 又∵MN=CN+MC,∴MN=AM+BN.
灿若寒星
5.如图所示,已知AB∥CD,BE,CE分别为∠ABC,∠BCD的平分线,
点E在AD上.求证BC=AB+CD.
AB=AC,AD=AE,点C,D,E三点在同一直线上,连接BD.试猜想BD,CE 有何特殊位置关系,并证明.
〔解析〕BD,CE有何特殊位置关系,从图形上可看 出是垂直关系,可向这方面努力.要证BD⊥CE,需证
∠BDE=90°,需证∠ADB+∠ADE=90°,可由全等
三角形的性质提供.
解:BD,CE特殊位置关系为BD⊥CE.证明如下:
∠B=∠C.求证∠A=∠D.
证明:∵BE=CF, ∴BE+EF=CF+EF,即BF=CE.
在△ABF与△DCE中,
BF CE, B C, AB DC,
△ABF≌△DCE(SAS),∴∠A=∠D.
灿若寒星
全等三角形的判定和性质的综合应用
如图所例示4 ,在△ABC,△ADE中,∠BAC=∠DAE=90°,
证明:在△ABC和△ABD中,
∵
BC AD, CBA DAB,
AB BA,
∴△ABC≌△BAD(SAS),∴AC=BD.
【解题归纳】 应用三角形全等的判定方法证明三角形全等时, 特别注意隐含条件的应用,如公共边、公共角、对顶角等条件.
灿若寒星
1.如图所示,点E,A,C在同一直线上,AB∥CD,AB=CE, AC=CD.求证BC=ED.
在△AEC和△BFD中,
人教版八年级数学上册第十二章《全等三角形12.2三角形全等的判定第3课时》教学设计
人教版八年级数学上册第十二章《全等三角形12.2三角形全等的判定第3课时》教学设计一. 教材分析本节课为人教版八年级数学上册第十二章《全等三角形》的第3课时,主要讲解三角形全等的判定方法。
在此之前,学生已经学习了全等图形的概念和全等三角形的性质,本节课将进一步引导学生探究三角形全等的判定方法,培养学生解决实际问题的能力。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和空间想象力,但对三角形全等的判定方法可能还存在一定的困惑。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生通过观察、操作、思考、交流等活动,逐步掌握三角形全等的判定方法。
三. 教学目标1.理解并掌握三角形全等的判定方法(SAS、ASA、AAS)。
2.能够运用三角形全等的判定方法判断两个三角形是否全等。
3.培养学生的观察能力、操作能力、逻辑思维能力和空间想象力。
4.渗透数学转化思想,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:三角形全等的判定方法(SAS、ASA、AAS)。
2.教学难点:三角形全等判定方法的灵活运用。
五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、思考、交流,培养学生解决问题的能力。
3.实践操作法:让学生动手操作,加深对三角形全等判定方法的理解。
4.小组合作学习:培养学生团队合作精神,提高解决问题的效率。
六. 教学准备1.教学课件:制作课件,展示三角形全等的判定方法及相关实例。
2.教学素材:准备一些三角形模型或图片,用于实践操作和举例说明。
3.教学视频:收集相关教学视频,用于引导学生观察和分析。
七. 教学过程1.导入(5分钟)利用生活实例引入三角形全等的概念,激发学生的学习兴趣。
例如,讲解一个变形金刚玩具,展示其形状发生变化但仍保持原貌的特点,引导学生思考三角形全等的问题。
2.呈现(10分钟)展示三角形全等的判定方法(SAS、ASA、AAS),并用课件或板书进行解释。
初中数学人教版八年级上册12.2 三角形全等的判定
例1 如图12-2-1,AB=CD,BE=CF,AF=DE. 求证:△ABE ≌△DCF.
图12-2-1
证明:∵AF=DE,∴AF-EF=DE-EF,即AE=DF. 在△ABE和△DCF中,AB=DC, BE=CF, AE=DF, ∴△ABE ≌△DCF(SSS).
对于本题中“AF=DE”这个条件的运用是证明的突 破口,由“AF=DE”得到对应边相等,即AE=DF. 证明中积累图形情境下的小结论,掌握证明题的 小技巧,可以迅速地获得解题思路.
在本题的证明过程中,有些同学想当然地把 DE=DF直接作为已知条件来利用,从而导致错 误.在证明时,要结合图形、已知、求证等各种信 息,综合运用后分析找到适合的解题思路,按照严 谨的推理步骤完成证明过程.需要特别指出的是, 当我们学习了角平分线的性质后,可直接得出 DE=DF.
题型一 “边边边”的运用 例10 如图12-2-12,已知AB=BC,AD=DC,
图12-2-6
图12-2-7
证明:如图12-2-7.∵AB∥CD,∴∠1=∠2.
∵AF=CE,∴AF+EF=CE+EF,即AE=CF. 在△ABE和△CDF中,∠1=∠2, ∠ABE=∠CDF,AE=CF, ∴△ABE ≌△CDF(AAS).
应用“AAS”证明两个三角形全等时,一定要注 意它和“ASA”的主要区别在边与角的关系上, 前者是一组等角的对边相等,后者是两组等角的 夹边相等,使用时一定要弄清楚.
求证△AEB ≌△AFC,必须找到这对三角形的“对 应”元素,选取适当的三角形全等的判定方法,而 ∠1与∠2不是相应三角形的对应角,不能直接使用, 应该先转化为∠EAB=∠FAC.
凭对图形的直观印象,误把未知当条件参与证明 例9 如图12-2-11,在△ABC中,AD是角平分线, BD=CD,DE,DF分别垂直于AB,AC,垂足分别为E, F.求证:BE=CF .
八年级数学人教版上册第12章全等三角形12.2三角形全等的判定(第4课时图文详解)
判定全等的方法:SAS、ASA、AAS、SSS,还有直角三角形 特殊的判定方法:HL.
八年级数学上册第12章全等三角形
1.如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF.求证:BF=DE
B
A
E
F
C
D
八年级数学上册第12章全等三角形
【证明】在Rt△ABF和Rt△CDE中,
∵ AE=CF
∴AF=CE 又∵ AB=CD
A
E
∴ Rt△ABF≌Rt△CDE(HL)
∴ BF=DE
D
B
八年级数学上册第12章全等三角形
我们已经学过判定全等三角形的方法有哪些? 1、边边边(SSS) 2、边角边(SAS) 3、角边角(ASA) 4、角角边(AAS)
八年级数学上册第12章全等三角形
A 如图,AB ⊥ BE于B,DE⊥BE于E,
(1)若A= D,AB=DE,
F
E
B
C
则△ ABC与 △DEF 全等 (填“全等”或“不全
等”)根据 ASA (用简写法).
D
八年级数学上册第12章全等三角形
(2)若A=D,BC=EF,则 △ABC与△ DEF 全等 (填
“全等”或“不全等”)根据 AAS .(用简写法)
(3)若AB=DE,BC=EF,则△ABC与△ DEF 全等 (填“全 等”或“不全等”)根据 SAS (用简写法)
八年级数学上册第12章全等三角形
第12章全等三角形
八年级上册
八年级数学上册第12章全等三角形
12.2 三角形全等的判定
第4课时
八年级数学上册第12章全等三角形
最新人教版八年级数学上册《12.2 三角形全等的判定(第1课时)》优质教学课件
写出
(2)∠BAD = ∠CAD.
结论
由(1)得△ABD≌△ACD ,
∴ ∠BAD= ∠CAD.
(全等三角形对应角相等)
探究新知
归纳总结
证明的书写步骤: ①准备条件:证全等时要用的条件要先证好; ②指明范围:写出在哪两个三角形中; ③摆齐根据:摆出三个条件用大括号括起来;
④写出结论:写出全等结论.
巩固练习
如图, C是BF的中点,AB =DC,AC=DF.
求证:△ABC ≌ △DCF.
证明:∵C是BF中点, ∴BC=CF. 在△ABC 和△DCF中, AB = DC,(已知) AC = DF,(已知) BC = CF,(已证) ∴ △ABC ≌ △DCF (SSS).
探究新知
素养考点 2 利用三角形全等证明线段或角相等
O C
课堂检测
能力提升题
1. 已知:如图,AB=AE,AC=AD,BD=CE, 求证:△ABC ≌△AED.
证明:∵BD=CE,
∴BD-CD=CE-CD .
∴BC=ED . 在△ABC和△ADE中,
AC=AD(已知), AB=AE(已知), BC=ED(已证),
=× × =
∴△ABC≌△AED(SSS).
吗?
A B
A′ C B′
作法: (1)画B′C′=BC; (2)分别以B',C'为圆心,线段 AB,AC长为半径画圆,两弧相 交于点A'; C′ (3)连接线段A'B', A 'C'.
想一想 作图的结果反映了什么规律?你能用文字语言和符号语言 概括吗?
探究新知
“边边边”判定方法
文字语言:三边对应相等的两个三角形全等.
02-第十二章12.2三角形全等的判定
AB DE,
∴在△ABC与△DEF中,A D,
AC DF,
∴△ABC≌△DEF(SAS), ∴∠ACB=∠DFE,∴BC∥EF.
栏目索引
12.2 三角形全等的判定
栏目索引
知识点三 用“角边角(ASA)”判定两个三角形全等
A ' B ', B 'C ',
∴Rt△ABC≌
Rt△A'B'C'(HL)
(1)“HL”是判定两个直角三角形全等特有的方法,应用此方法时要注意:①要保证两个三角形是直角三 角形;②斜边相等;③任意一条直角边对应相等. (2)一般三角形全等的判定方法对判定两个直角三角形全等全部适用,也就是说判定两个直角三角形全等 共有5种方法,分别为“SSS”“SAS”“ASA”“AAS”“HL”
栏目索引
题型一 利用三角形全等证明线段或角相等 例1 如图12-2-7,点A,B,C,D在同一条直线上,BE∥DF,BE=DC,AB=FD. 求证:∠A=∠F.
图12-2-7 分析 欲证∠A=∠F,只需证△ABE≌△FDC.
12.2 三角形全等的判定
栏目索引
证明 因为BE∥DF,所以∠ABE=∠D. 又因为AB=FD,BE=DC,所以△ABE≌△FDC(SAS). 所以∠A=∠F. 点拨 证明两条线段或两个角相等,一般将其放在两个三角形中,根据 已知条件,选用合适的证明方法得出结论.
12.2 三角形全等的判定
栏目索引
知识点五 用“斜边、直角边(HL)”判定两个三角形全等
斜边、 直角边 (HL)
知识详解
内容
应用格式
图形表示
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.2全等三角形的判定(1)——SSS
教学目标:
知识目标:理解“边边边”判定方法,会用“边边边”判定方法证明三角形全等。
能力目标:构建三角形全等条件的探索思路,体会研究结合问题的方法;
情感态度目标:通过小组活动,培养合作交流,语言表达概括能力。
学情分析:
探索三角形全等的条件是一个开放性问题,对于思维正在发展的八年级学生来说有一定困
难,探索过程中多次涉及作图,而学生只在七年级学习了用尺规作简单的图形,作图技能还不高。
重点:理解“边边边”判定方法,构建三角形全等条件的探索思路
难点:构建三角形全等条件的探索思路
教学活动:
活动一:创设情境,引出问题
问题:请欣赏一组图片,在这组图片中,你发现全等三角形了吗?你又是如何判定它们呢?
1.全等三角形的定义:
2.全等三角形的性质
3.根据三个角对应相等,三条边也对应相等可以判定是全等三角形。
活动二:尝试探究,揭示定理
教师:判定三角形全等的条件能否简洁一些呢?
探究一:只满足一个条件
(1)一边相等:
(2)一角相等:
师生总结:只满足一个条件不一定画出来的三角形不一定全等。
设计意图:一边相等由教师在白板演示,一角相等学生独立完成并总结结论,激发了学生作图探索的积极性。
探究二:只满足两个条件
教师:满足两个条件可能出现几种可能的情况?
学生:三种,分别是两角、两边、一边一角
(1)画出一边为4cm,一边是6cm的三角形
(2)画出一边为4cm,一角为30°的三角形
(3)画出一内角为30°,另一个内角为45°的三角形
小组交流,讨论,总结发现的结论
设计意图:探究二是继探究一增加一个条件基础上探究全等三角形全等条件的过程,要求学生会根据要求作出图形,此处设计小组活动,培养学生合作交流意识,激发探究精神。
探究三:满足三个条件
问题:满足两个条件可能出现几种可能的情况?
师生活动:学生回答问题,并互相补充,发现需要分四种情况进行研究,即三边、三角、两
边一角、两角一边分别相等。
设计意图:培养学生分类讨论的数学思想。
活动三:应用新知,解决问题
例1:如图所示,△ABC是一个钢架AB=AC,AD是连接点A与BC中点D的支架。
求证:△ABD≌△ACD
练习1:已知:如图,AB=AD,BC=CD,求证:△ABC≌△ADC
练习2:如图,AB=CD,AC=BD,△ABC和△DCB是否全等?试说明理由。
想一想:工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M、N重合,过角尺顶点C的射线OC便是∠AOB的平分线。
为什么?
活动四:课堂小结
回顾这节课,你都学会了哪些知识?
对自己说,你有哪些收获?
对同学说,你还有哪些温馨提示?
对老师说,你还有哪些困惑?
活动五:布置作业:教科书习题 1.3复习巩固第1、7题.
活动六:课堂检测
利用白板超链接设计游戏智慧岛应用园
智慧岛:1.如图,D、F是线段BC上的两点,
AB=CE,AF=DE,要△ABF≌△ECD ,还需要条件 ______________
应用园:已知:∠AOB.
求作:∠A’O’B’,使∠A’O’B’=∠AOB(用直尺和圆规作图)
教师反思:在本课教学中,我摒弃由教师直接给出定理,组织学生练习,以求熟练地掌握定理的“填鸭式”教学方法,而是加强探究定理的形成过程,着力培养学生的观察、比较、归
纳能力,适当压缩应用定理的练习,注重引导学生参与探索,体会研究几何问题的一般方法,主动获取知识.这样,学生在这节课上不仅学懂了定理,而且能感知到研究数学问题的一些
基本方法.减少了应用定理进行证明的练习,所以学生证明的熟练程度可能稍差,这是教学中的问题.但是,在后续的教学中学生将千万次应用“边边边判定定理”进行证明,故这种缺陷是可以得到弥补的.在进行本课过程中由于使用的白板辅助工具,增强了学生的学习兴趣,激发他们的求知欲,比如:使用拖拽功能使得全等的三角形完全重合,在课堂检测环节利用白板超链接功能设计检测使得课堂气氛又一次达到高潮。
但是也存在缺陷,比如:使用白板笔绘图,绘制的4cm边长太小,学生看不清,教师只能画40cm线段代替4cm,
导致有些学生产生不必要的怀疑。